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Abstract: 

We use industry directory data as a novel source of information to model the strength of interre-

gional research collaboration in German biotechnology. Specifically, we gather data on the number 

of research collaborations for biotech actors listed in the BIOCOM Year and Address book and ag-

gregate this information to the level of German NUTS3 regions. This allows us to set up a modeling 

framework that treats individual regions as nodes of the biotech research network. We then specify 

the collaboration activity between regional nodes as a function of research and economic capacities 

at the regional level, the geographical proximity between regions, and policy variables. Our results 

show that the strength of interregional research collaboration can be related to both node properties 

and the relationship between nodes. As such, we find that modern locational factors are positively 

correlated with the extent of interregional research collaboration, while geographical distance is 

found to be an impediment to collaboration. The results further show that the pursuit of network 

and cluster policies in the biotech sector, particularly through collaborative R&D funding, is posi-

tively related to the strength of the interregional collaboration activity. 
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1. Introduction 

Economic systems are characterized by mutual interdependencies among their actors, and the 

emergence of network and collaboration structures marks a crucial channel for knowledge exchange 

and diffusion in modern economies. In particular technology-intensive industries are prone towards 

the development of networks and alliances with interrelated actors as a means to external 

knowledge access (Quintana-Garcia and Benavides-Valasco, 2004). There is by now ample evidence 

showing that to gain and maintain access to external knowledge constitutes an essential success 

factor for 1) building up own knowledge stocks, 2) benefiting from effective knowledge transfer and 

ultimately 3) improving the own research and development (R&D) as well as innovation perfor-

mance (see, e.g., Kesteloot and Veugelers, 1995; Veugelers, 1998; Bathelt et al., 2004; Paci et al., 2014 

for evidence at the firm, regional, and national level). Although empirical research on knowledge 

sharing and network formation is a challenging task given the inherent complexity of the underlying 

networks (Schweitzer et al., 2009), it may at the same time yield new insights on the drivers of 

knowledge networks and thus offer guidance for policymakers on how to develop proper policy 

instruments to foster knowledge creation and diffusion. 

Accordingly, in this paper we aim to map the research collaboration structure in the sectoral 

innovation network of the German biotech industry and analyse the main determinants for link 

formation between the nodes of the network. Given that the spatial distribution of the biotech in-

dustry is typically characterized by the prevalence of distinct urban centers and regional clusters 

(see Ter Wal, 2014 for Germany as well as Ó hUallancháin and Lee, 2014 for the American biotech 

industry), we combine the aggregate analysis of the sectoral innovation system with a particular 

regional perspective. Our motivation for studying the innovation network in biotechnology stems 

from two facts: Firstly, from a technological and innovation-centered perspective, biotechnology can 

be seen as a frontier technology for the invention and commercialization of new products and pro-

cesses in fields such as health care, agriculture, food, and manufacturing (Kang and Park, 2012; 

Hazir and Autant-Bernard, 2014). From a policy perspective, the biotech industry can further be 
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regarded as an interesting case study due to the role played by avant-garde network and cluster 

policies, such as the BioRegio contest and its successors, to foster the competitiveness and innova-

tiveness of the entire industry (Dohse, 2007; Engel et al., 2013). These collaboration-based science 

and technology (S&T) policy instruments have become a common tool of Germany’s high-tech 

strategy 2020 (BMBF, 2010).  

For our empirical analysis, we combine information from multiple sources to map and model 

the strength of research collaborations in German biotechnology. Our key information on research 

collaboration activity is thereby extracted from a commercial industry directory of German biotech 

firms and institutions, the BIOCOM Year- and Addressbook, which collects information on firms 

and institutions in the German biotech sector as well as provides data on their research collaboration 

activities. The data is then aggregated to the level of NUTS3 regions (Kreise), which allows us to set 

up a modeling framework for the German biotech research collaboration network using NUTS3 

regions as individual nodes of the national collaboration network. The aggregated research collab-

oration data for NUTS regions are then merged with several indicators related to the region’s geog-

raphy, economy, and innovation system. Finally, using indicators from social network analysis 

combined with an econometric analysis for count data, we then assess the role played by bio-

tech-specific and general regional resource endowments in determining tie formation between re-

gional nodes. We also analyse the importance of proximity between region pairs as a driver for 

network formation and quantify the role played by biotech-related policy instruments.   

Regarding the latter, we particularly focus on public R&D support schemes to support collab-

orative R&D activities in selected regional networks/cluster initiatives (so-called BioRegions). Fos-

tering collaborative R&D activities within and between regions can be seen as an essential interme-

diate policy target in order to improve the international competitiveness of German biotechnology 

(see, for instance, RWI et al., 2014 for a discussion on the issue of enhancing research and innovation 

collaboration activity as a short-term policy target). If we regard this intermediate target as a neces-

sary prerequisite for overall policy effectiveness, our empirical analysis on network formation may 
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hence be seen as a complementary approach to evaluate the success of R&D-based cluster policies 

beyond the scope of a direct assessment of “classical” outcome variables, such as the regional patent 

activity or start-up rates in the biotech industry (see, for instance, Staehler et al., 2006; Engel et al., 

2013 for evidence on the German BioRegio contest as well as Uyarra and Ramlogan, 2012 for a meta 

study on the link between cluster policy and innovation). 

Foreshadowing some key empirical results, the descriptive statistics of indicators from social 

network analysis show that the structure of the research collaboration network in German biotech-

nology is far from being random and features specific sector-region and overall regional character-

istics. Although we find that collaboration activities are generally highly localized and geographical 

distance works as an impediment to tie formation, selected interregional linkages over long dis-

tances are found to mark important channels of knowledge flows and can be seen as crucial bridges 

between local biotechnology sub-networks. This result is in line with earlier empirical contributions 

assessing the role of local and global networks for knowledge flows and innovative activity in the 

biotech industry (see, e.g., Gertler and Levitte, 2005, Maskell et al., 2006). 

On the basis of a zero-inflated count-data regression approach we further show that re-

search-related resource endowments at the regional level are positively correlated with the extent of 

collaboration activity between NUTS3 regions. Modern location factors, such as start-up activities in 

high-tech manufacturing sectors and knowledge-intensive services as well as agglomeration factors, 

matter for the formation of network ties, while geographic distance which is often used as an in-

direct measure for social proximity in social network analysis is found to be an impediment to 

interregional research collaborations. Regarding the role of cluster-based R&D policy, particularly 

with regard to monetary incentives such as the volume of collaborative R&D funding, we find that 

these policy instruments are positively correlated with the number of research collaborations be-

tween regions in the German biotech network. 
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The remainder of the paper is organized as follows: The next section introduces the underlying 

data used to measure collaboration activity in the biotech industry and presents some stylized facts 

of the research collaboration network in the German biotech industry with the help of indicators 

from social network analysis. Section 3 then develops an econometric modeling framework to esti-

mate the determinants of collaboration activity between NUTS3 regions using model specifications 

for count data. The section also presents the empirical results of the estimation approach and con-

ducts robustness tests. Section 4 discusses the main implications of our approach with regard to 

theory, practice, and policy. Section 5 finally concludes the paper. 

2. Mapping interregional research collaborations using industry directory data 

In this section, we take a closer look at the research collaboration network in the German bio-

tech sector with a focus on data issues. Readers interested in obtaining general information on the 

state of the sectoral innovation system in German biotechnology are referred to Appendix A. This 

appendix also provides an overview of the institutional setup of industry-specific policy support 

schemes, thereby highlighting the role of distinct regional biotechnology initiatives (BioRegions). The 

background information in the appendix may be helpful for uninformed readers to understand the 

emergence of urban centers and regional clusters in German biotechnology, which motivates our 

focus on regional entities as nodes of the German research network in biotechnology.  

When it comes to the issue of measuring and mapping research collaboration structures within 

a particular industry, previous contributions to the literature have proposed indicators that pre-

dominantly rely on patent data (e.g., patent citations or co-patenting; see, e.g., Balconi et al., 2004; 

Ma and Lee, 2008) or public funding information (see, e.g., Scherngell and Barber, 2009). In this 

study, we make use of alternative firm-level information gathered from a commercial industry di-

rectory, the BIOCOM Biotechnology Year and Address book, which contains basic information on 

firms and institutions of the German biotech sector as well as on their (research) collaboration activ-

ities. The BIOCOM AG is a specialized information provider for the European biotech industry and 
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publishes its Year and Address book on an annual basis. The industry directory has become a main 

source of information for the German biotechnology. Between 2005 and 2015 the BIOCOM AG has 

also complemented its industry directory with annual surveys of the structure of the German bio-

technology, which have been conducted on behalf of the German Federal Ministry for Education and 

Research and have been used by the OECD for publishing its “Key Biotech Indicators”. 

To assess the coverage of the BIOCOM industry directory, we show in Table 1 the number of 

biotech companies and industry-wide employment levels as reported by alternative industry ac-

counts for the year 2004. As the table shows, the reported number of companies covered by the 

BIOCOM Year and Address book thereby lies between the narrower definition of biotech core 

companies applied by Ernst & Young (2005) and the slightly wider definition adopted by the Ger-

man statistical office (Statistisches Bundesamt, 2005). With regard to the overall employment level in 

biotechnology, the BIOCOM industry directory adopts the widest definition of all three industry 

accounts. Taken together, the comparison in Table 1 indicates that the BIOCOM data provide a 

sufficient coverage of the German biotech sector and can be regarded as being representative for the 

industry. 

 

Table 1. Estimated size of the German biotech industry based on three different industry accounts 

 Ernst & Young Statistisches Bundesamt BIOCOM AG 

No. of (core) companies 380 572 541 

No. of employees 9,703 11,958 14,437 

Notes: The data cover the sample year 2004 and have been retrieved from the Internet platform 
http://www.biotechnologie.de. Core companies (category I) are defined as those using modern bio-
engineering methods for R&D and production. The method applied by Ernst & Young only covers a 
selected number of core companies; values have been corrected for methodical changes. Sources: 
Ernst & Young (2005); Statistisches Bundesamt (2005); BIOCOM AG (2005). 

 

For the empirical analysis in the remainder parts of this work, we extract data from the BIO-

COM Year and Address book 2005 as main source of information. The sample year 2005 has mainly 

been selected for two reasons: 1) As shown in the stylized facts of the German biotech industry in 

http://www.biotechnologie.de/
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Appendix A, the period covering the late 1990s and early 2000s can be seen as the most dynamic 

expansion period of German biotechnology. The associated building up of capacities and collabora-

tive linkages should thus be reflected in the industry structure for 2005. 2) Given that the BioRegio 

contest, as a blueprint for a broader program family of cluster policies in Germany, was imple-

mented in the period 1997 to 2001, the year 2005 allows us to assess ex post the mid-run effects of the 

policy scheme on the formation of collaborative linkages among regions in the industry and thus 

allows us to make statements about the role of policy in shaping a sectoral innovation system with a 

focus on local cluster initiatives. As a robustness check, we will additionally extract information for 

the sample year 2009 in order to look at variations in the data over time. 

In its main function as an industry directory, the BIOCOM Year and Address book provides 

basic information on listed biotech firms and institutions (including address and contact infor-

mation, foundation year, and number of employees). What makes the BIOCOM industry data par-

ticularly interesting for our study is that they also contain details on the collaboration activity 

(names of collaboration partners) for each listed biotech actor. We will use this latter information as 

the key input for our empirical analysis. However, one limitation of the reported collaboration ac-

tivity is that the actual type of collaboration activity is not precisely specified in the BIOCOM data. 

Therefore, detailed Internet research has been conducted to exclude pure supplier relationships 

(objects of utility such as petri dishes or pipettes) and advisory services (such as consultancies). This 

reduction leads to a set of 575 core companies of the German biotech sector with R&D as the main 

business activity and a strong focus on R&D collaboration in 2005. 

Due to the interdisciplinary nature of the biotech sector (with strong links to pharmacy or tex-

tiles and chemicals; see Cooke et al., 2007), in a second step each listed national collaboration partner 

not included in the set of core companies has been added to the latter set. This results in a data set of 

1002 firms and institutions, which will be used throughout the empirical analysis. At this stage, we 

exclude foreign collaboration partners of German biotech firms given our focus on modeling the 

determinants of interregional research collaborations within the German biotech collaboration net-
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work. For instance, the inclusion of selected international collaboration partners outside Germany 

may lead to a measurement bias when assessing the role of geographic distance as impediment to 

collaboration within the German sectoral innovation network in biotechnology. We have thus de-

cided to focus on German regions as a closed geographical system. Clearly, future research should 

also account for the role of international collaboration activity as outlined in Ma and Lee (2008), for 

instance.   

Starting from the extracted data set of 1002 German biotech actors and their collaboration 

partners within Germany in 2005, the actor-specific information is then aggregated to the regional 

level (NUTS3)  thereby reducing the role of individual actors to that of representative agents within 

a region. For our sample year 2005, 178 out of the 439 German regions are found to host at least one 

biotech actor listed in the BIOCOM industry directory. On the one hand, the aggregation helps us to 

cope with the inherent heterogeneity among biotech actors, and on the other hand it further allows 

us to link data on collaborative linkages between regions with regional covariates in order to char-

acterize the determinants of interregional collaboration activity. Similar covariates are unfortunately 

not available at the individual actor level. Our method of aggregation is highlighted in Figure 1 for 

the case of six exemplary biotech actors located in three different regions. While panel (a) in Figure 1 

shows the underlying research collaboration network at the level of the individual actors, panel (b) 

displays the results for the aggregated network at the regional level. 

To give an example: Since all three actors (A,B,C) in Region I are engaged in pairwise research 

collaborations with the other actors, the number of intraregional linkages (loops) in Region I 

amounts to three. Similarly, since Actors A and C are engaged in collaboration with Actor D in Re-

gion III and Actor B has an active collaboration with Actor E in Region III, the total number of col-

laborative linkages between Region I and Region III is three as indicated in panel (b) of Figure 1. 

Taken together, aggregating all intra- and interregional linkages to the regional level gives a 3x3 

matrix with the number of intraregional collaboration linkages (loops) on the diagonal and interre-

gional linkages in the remaining matrix cells. Since research collaboration activity is undirected, the 
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matrix is symmetric. Applied to the case of German NUTS3 regions, this gives a 439x439 matrix 

measuring the intra- and interregional research collaboration activity in German biotechnology. 

 

Figure 1. Regional aggregation of collaborative linkages among German biotech actors 

(a) Individual Level           (b) Regional Level 

 

 

 

 

 

 

 

 

 

 

In a further step, these 178 districts have been mapped into the set of the 17 BioRegions, which 

have been formed in the course of the BioRegio contest (see Dohse, 2007 as well as Table B.3 in the 

appendix). Given that these BioRegions, which can be seen as larger macro-regions comprising sev-

eral NUTS3 regions, are a crucial backbone of the German biotech industry, Figure 2 displays the 

interregional collaboration network grouped by these BioRegions. Each node in Figure 2 presents one 

BioRegion, and ties between nodes visualize collaborative research linkages between the BioRegions. 

The size of the nodes indicates the number of internal linkages (loops) within each BioRegion, 

whereas the width of each tie linking two nodes reflects the number of collaborative research link-

ages observed between the two macro-regions.  
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Figure 2. Collaborative linkages within and between German BioRegions (in 2005) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

No. Name of BioRegion No. Name of BioRegion 

1 BioTOP-Initiative Berlin-Brandenburg 10 BioInitiative Nord 
2 Region Bremen 11 Region Nordwest-Niedersachsen* 
3 BioRegion Freiburg 12 BioRegion Regensburg 
4 BioRegion Greifswald-Rostock 13 BioRegion Rheinland 
5 BioRegion Halle-Leipzig 14 BioRegion Rhein-Main 
6 BioRegion Jena 15 BioRegion Rhein-Neckar-Dreieck 
7 BioMIT Mittelhessen 16 BioRegion Stuttgart/Neckar-Alb 
8 Initiativkreis Biotechnologie München 17 Biotechnologie Ulm 
9 BioRegioN 99 Not part of established BioRegion 

Notes: * = not represented in the sample; calculated on the basis of data from BIOCOM (2005), and the 
definition of BioRegions is taken from Dohse (2007). 

 

As Figure 2 shows, the German biotechnology research network is characterized by mutual in-

terdependencies among the BioRegions. We also observe a high degree of regional heterogeneity, 

both with respect to intra- as well as interregional collaboration activity. The rather big “99”-node of 

regional actors outside any established BioRegion demonstrates that German biotech activity is not 

solely concentrated within these macro-regional cluster initiatives. With 378 actors to be found in the 

remainder “99”-node, roughly 37 percent of biotech actors from our BIOCOM data set are not lo-

cated in a particular Bioregion; however, this also means that 63 percent indeed are. Among the Bio-
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Regions the biggest player characterized both with regard to node size and edge width is the BioTOP 

Initiative Berlin-Brandenburg with 133 actors. As Table 2 summarizes, the remaining BioRegions 

consist of about 30 actors on average. 

Based on this basic information, we can compute two further indicators, which have been 

developed in the field of social network analysis (SNA) to analyse the observed network structure 

with regard to the position of inidvidual BioRegions: 1) the degree centrality (𝐶𝐷) of a node (𝑛𝑘) 

shown in eq.(1) measures the number of direct linkages for underlying actors associated with node 𝑛𝑘 and sample size k=1,…,N, where the function f(𝑛𝑖 , 𝑛𝑘) counts the number of direct linkages 

between actors located in nodes 𝑛𝑘 and 𝑛𝑖 (Freeman, 1978/79) as 

(1) 𝐶𝐷(𝑛𝑘) = ∑ 𝑓(𝑛𝑖 , 𝑛𝑘)𝑁𝑖=1 . 

Moreover, 2) the average degree for node 𝑛𝑘 can be calculated by dividing 𝐶𝐷(𝑛𝑘) with the 

number of actors per node. To give a numerical example: As shown in Table 2, the BioTOP Initiative 

Berlin-Brandenburg has a total of 133 biotech actors. The BioRegion has a total count of 𝐶𝐷(𝑛𝑘) = 569 

direct linkages both within the macro-region (denoted as loops for i=k) as well as across Bioregions 

(interregional linkages for i≠k). As Table 2 shows the BioTOP Initiative Berlin-Brandenburg has the 

largest degree centrality as well as the largest average degree centrality. Similarly, the runner-ups 

BioRegion Rheinland with 𝐶𝐷(𝑛𝑘) = 260 and BioRegion Rhein-NeckarDreieck with 𝐶𝐷(𝑛𝑘) = 177 

are also among the BioRegions with the largest average degree centrality, which indicates that the 

number of collaborative linkages seems to be positively correlated with the number of firms and 

institutions, as indicated in Table 2. 
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Table 2. Degree centrality and average degree for German BioRegions 

No. of BioRegions 1 2 3 4 5 6 7 8 9 𝐶𝐷(𝑛𝑘) 569 110 78 46 96 41 31 140 55 

No. of firms / institutions 133 40 23 18 28 17 11 56 23 

Average degree 4.27 2.75 3.39 2.55 3.42 2.41 2.81 2.5 2.39 

No. of BioRegions 10 11 12 13 14 15 16 17 
 𝐶𝐷(𝑛𝑘) 142 0 41 260 132 177 156 19  

No. of firms / institutions 47 0 14 74 45 47 40 8  

Average degree 3.02 0 2.92 3.51 2.93 3.76 3.9 2.37  

Notes: Calculated on the basis of data from BIOCOM (2005); BioRegions are defined in Figure 2. 

 

However, this relationship does not appear to be a linear one: For example, the BioRegion 

Freiburg (No. 3) and BioRegioN (No. 9) both contain 23 biotech actors, but there is a big difference 

with regard to the regions’ average degree centrality (2.39 compared to 3.39, respectively). This 

heterogeneity also becomes visible if we compare the BioRegion Rhein-Main (No. 14) with 

BioRegion Stuttgart/Neckar-Alb (No. 16): While Rhein-Main contains more actors (firms/-

institutions) than Stuttgart/Neckar-Alb (45 compared to 40), the latter has a much higher average 

degree (2.9 compared to 3.9). This indicates that there is a more complex story to tell rather than just 

linking the region’s (average) degree centrality to the number of its actors. To further investigate this 

issue, we take a closer look at how collaborative linkages (ties) are distributed between the 

BioRegions. Table 3 shows in a column-by-column manner the relative importance of each pairwise 

link, where row entries for each column add up to 1 (=100 percent). To give an example, 

Berlin-Brandenburg (No. 1) has 10 percent of all of its (intra- and interregional) collaborative 

research linkages with Bremen (No. 2), while the relative importance of collaborations with 

Berlin-Brandenburg from the perspective of Bremen is only 3 percent. Thus, the relative importance 

of interregional collaboration activity is not symmetric for the different BioRegions. 
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Another interesting result from Table 3 can be found if we look at entries on the diagonal 

(values in bold type), which display the percentage of collaborative linkages defined as loops. There 

are strong differences between the BioRegions as well. For instance, regional actors of the BioRegion 

Jena (No. 6) have –on average– about 13 percent of their linkages with partners within the region, 

while 33 percent of all linkages are between Jena and actors outside any established BioRegion 

(“99”-node), and roughly 17 percent are between Jena and the BioRegion Halle-Leipzig. This 

indicates that the role of interregional linkages may be more important compared to intraregional 

linkages, especially for small BioRegions. In comparison to Jena, the share of intraregional 

collaborations for the large BioTOP Initiative Berlin-Brandenburg is 25 percentage points higher (in 

total 38 percent). This large difference indicates that Berlin-Brandenburg has a sufficiently large 

internal absorptive capacity for R&D collaborations, while the BioRegion Jena heavily depends on 

external research partners. In Section 3, we will investigate whether information on the regional 

innovation system can be used to explain differences in absorptive capacity beyond core factors such 

as the number of biotech actors within the region. 
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Table 3. Relative importance of internal and external linkages for BioRegions 

No.    1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 

 
BioRegion  10 99 14 2 13 9 8 15 16 7 1 5 4 3 12 6 17 

1. 10 0.14 0.06 0.04 0.05 0.04 0.04 0.06 0.03 0.01 0.04 0.03 0.01 - 0.02 0.08 0.03 - 

2. 99 0.44 0.31 0.37 0.36 0.33 0.38 0.50 0.31 0.31 0.37 0.24 0.42 0.37 0.34 0.35 0.33 0.36 

3. 14 0.04 0.05 0.11 0.05 0.07 - 0.01 - 0.04 0.11 0.06 0.03 - 0.02 - - - 

4. 2 0.04 0.04 0.04 0.23 0.01 0.07 0.04 0.04 0.02 - 0.03 0.01 - 0.02 - 0.03 0.07 

5. 13 0.07 0.08 0.12 0.02 0.25 0.07 0.01 0.07 0.05 0.04 0.06 0.07 0.09 0.03 - - - 

6. 9 0.02 0.02 - 0.03 0.02 0.13 0.01 - - 0.04 0.02 0.01 0.03 0.02 0.04 - 0.07 

7. 8 0.07 0.08 0.01 0.05 0.01 0.02 0.10 0.07 0.04 0.04 0.03 0.05 - 0.03 0.08 0.03 - 

8. 15 0.03 0.05 - 0.05 0.04 - 0.07 0.26 0.07 0.07 0.04 - - 0.02 - - - 

9. 16 0.01 0.05 0.05 0.02 0.03 - 0.04 0.07 0.19 0.04 0.03 - 0.09 0.11 - 0.13 0.14 

10. 7 0.01 0.01 0.03 - 0.01 0.02 0.01 0.02 0.01 0.11 0.01 - - - - - - 

11. 1 0.09 0.12 0.21 0.10 0.13 0.16 0.08 0.12 0.11 0.15 0.38 0.13 0.06 0.15 0.12 0.10 - 

12. 5 0.01 0.04 0.02 0.01 0.03 0.02 0.04 - - - 0.03 0.16 0.03 0.02 0.04 0.17 - 

13. 4 - 0.02 - - 0.02 0.02 - - 0.03 - 0.01 0.01 0.31 0.02 - - - 

14. 3 0.01 0.03 0.01 0.01 0.01 0.02 0.02 0.01 0.06 - 0.03 0.01 0.03 0.18 0.04 - 0.07 

15. 12 0.02 0.01 - - - 0.02 0.02 - - - 0.01 0.01 - 0.02 0.27 - - 

16. 6 0.01 0.01 - 0.01 - - 0.01 - 0.04 - 0.01 0.07 - - - 0.13 0.07 

17. 17 - 0.01 - 0.01 - 0.02 - - 0.02 - - - - 0.02 - 0.03 0.21 

Notes: Calculated on the basis of data from BIOCOM (2005); listed BioRegions are numbered as in Figure 2. 
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With respect to the geographical distribution of collaboration activities across BioRegions, a 

striking fact is that actors in Jena tend to collaborate with external partners in close geographic 

proximity (Halle-Leipzig). Although Halle-Leipzig is a rather small regional cluster (28 actors), the 

relative share of collaborations with regional actors in Jena is much higher compared to the 

relatively large BioRegions such as Berlin-Brandenburg (133 actors, 10 percent). Thus, geographic 

proximity seems to matter for collaborative linkages among the BioRegions. The explicit role of 

geographic distance is also underlined by the fact that in nearly all cases, the highest weight is given 

to internal collaboration (values on the diagonal), even though there is a remarkable difference 

among BioRegions, ranging from a low value of 10 percent (Initiativkreis Biotechnologie München, 

No. 8) to a high value of 31 percent (BioRegion GreifswaldRostock, No. 4) or even 38 percent 

(BioTOP-Initiative Berlin-Brandenburg). 

All in all, the qualitative inspection of the SNA-based indicators already shows that 

collaborative research behavior varies considerably among BioRegions. This heterogeneity can also 

be seen if we use the level of individual NUTS3 regions (rather than BioRegions) as the nodes of the 

intra-German collaboration network and plot the distribution of the average degree for the 178 

NUTS3 regions with at least one biotech actor in the BIOCOM industry directory. The reader should 

note that the disaggregated NUTS3 level will also constitute the unit of analysis for a quantitative 

regression approach in the next section relating collaboration structures with regional attributes 

(membership in a BioRegion will then be measured by a set of binary dummies). As the histogram in 

Figure 3 shows, there is a wide range of average degree values at the regional level: In 68 out of the 

178 regions (with at least one biotech actor) the average degree for the 178 NUTS3 regions is between 
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zero and one, while some districts even show values up to nine (that is, in these NUTS3 regions 

biotech actors have on average about 9 collaborative research linkages). 

 

Figure 3. Frequency distribution of the average degree for NUTS3 districts 

 
 

 

 

 

 

 

 

 

 

Note: Calculated on the basis of data from BIOCOM (2005) for 178 NUTS3 districts. 

 

Finally, this regional diversity can also be gathered graphically if we draw a map of the biotech 

network at the NUTS3 level combining information on the linkages between the districts and their 

geographical location in Germany. The results in Figure 4 thereby show that large agglomerations, 

such as Berlin, Hamburg, and Munich, are at the core of the network and constitute important hubs 

through which collaboration activity runs even over large geographical distances. However, besides 

these dominant nodes also a wide range of smaller districts, such as Heidelberg, Tübingen, and 

Freiburg, show a strong performance in terms of cooperative behavior and network centrality. Since 

all of the latter actors are embedded in BioRegion cluster initiatives, this advocates the need to 
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elaborate an exploratory quantitative model of network formation accounting for the role played by 

the sectoral and regional innovation system. 

 

Figure 4. Spatial distribution of collaborative linkages among German NUTS3 districts 

 
Notes: Black dots mark centroids of the 439 German NUTS3 districts; orange dots and lines measure 
intra- and interregional collaboration activity; calculated on the basis of data from BIOCOM (2005). 

 

3. Modeling interregional research collaborations the German biotech network 

3.1 Econometric specification 

When testing for the role played by regional and policy variables in determining link formation 

between nodes in the German biotech research network, we combine the descriptive SNA from 

above with an econometric modeling approach. As Knoke and Yang (2008) have pointed out, the 

field of SNA has steadily advanced with regard to statistical tools, such as exponential random 
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graph models (ERGM), for analysing tie formation as a function of node properties and the rela-

tionship of nodes towards each other. We will focus on econometric models for count data using the 

degree of research collaboration between each (𝑖, 𝑗)-region tuple in the overall collaboration matrix 

of German NUTS3 regions with 𝑖, 𝑗 = (1, … ,439) as outcome variable of interest. Since these col-

laborative linkages are undirected, our specified matrix has symmetric entries for two cells, (𝑖, 𝑗) 

and (𝑗, 𝑖). 

In order to avoid an over-precision bias due to double counts, for estimation purposes we 

therefore only rely on observations in the lower triangular part of this collaboration matrix. Linkages 

(𝑖, 𝑖) along the diagonal are covered as intraregional loops. This leaves us with a total number of 

(440 × 439)/2 = 96,580 observations on collaboration activities at the level of NUTS3 districts. One 

advantage of our chosen dyadic (𝑖, 𝑗)-specification compared to an aggregated analysis at the re-

gional level (as for the degree centrality shown in eq.(1)) is that we have a higher number of obser-

vations, which increases estimation efficiency. Additionally, the pairwise estimation approach for 

each (𝑖, 𝑗)-region tuple allows us to explicitly test for the influence of geographic distance between 

NUTS3 districts on the collaborative behavior of biotechnology actors which is typically assumed in 

the literature on proximity mechanisms to drive collaboration strength and network formation (see, 

e.g., Boschma, 2005; Ter Wal, 2014). 

Given that we cover the entire geographical space of all German NUTS3 regions, one challenge 

for the estimation approach is that we have to deal with a large number of zero observations since 

only 178 of all 439 NUTS3 districts are found to host at least one biotech actor registered in the BI-

OCOM Year and Address book for 2005. Thus, besides applying standard count data specifications, 
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such as the Poisson or negative binomial regression models, we also test for the necessity to account 

for the inflation of zero entries in the number of collaboration activities by means of a zero-inflated 

Poisson (ZIP) or zero-inflated negative binomial (ZINB) specification. Zero-inflated models gener-

ally assume different data generating processes to be in order when predicting the probability for 

having no collaboration activity versus a positive collaboration activity on the one hand, and dif-

ferences in the actual (non-zero) extent on the other hand. 

The probability part of the model is estimated as a binary choice model (here: logit), which is 

then mapped into a standard Poisson or negative binomial specification. To guide model selection, 

different statistical tests will be used: Specifically, to judge whether a standard Poisson distribution 

with equal mean and variance is valid compared to a negative binomial model with under- or 

overdispersion in the expected mean value, we use a standard Likelihood Ratio (LR) test for the 

statistical significance of the overdispersion parameter in the empirical model. Likewise, a Vuong 

(1989) test will be applied to discriminate between the standard and zero-inflated specification (ei-

ther for the Poisson or the negative binomial specification). 

For the most general case of a zero-inflated negative binomial specification (ZINB), we model 

the number of
 
collaborative linkages between i and j (𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗) as 

(2) log(𝜇𝑖𝑗)= 𝐗𝑖𝑗𝛽′ + 𝑢𝑖𝑗    and    logit(𝜋𝑖𝑗) = 𝐙𝑖𝑗𝛾′ + 𝜀𝑖𝑗 . 

The ZINB assumes that there are two distinct data generation processes: The first part of eq.(2) 

describes the negative binomial part of the ZINB, which relates the conditional mean of the outcome 

variable 𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗  defined as 𝐸(𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗|𝐗𝑖𝑗) = 𝜇𝑖𝑗   (for the case of a non-excessive zero) to a vector 
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of explanatory factors 𝐗𝑖𝑗. As shown in eq.(2), the logarithm (log) is used as the link function. In the 

binary choice part of the model, 𝜋𝑖𝑗  measures the probability that 𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗  has excessive zero en-

tries. The latter is related through a logit function to a vector of explanatory variables, 𝐙𝑖𝑗 . We 

thereby allow for the case that 𝐗𝑖𝑗  and 𝐙𝑖𝑗  may contain the same set of variables. Finally, 𝑢𝑖𝑗 and 

𝜀𝑖𝑗  are the residuals in the negative binomial and binary choice part, respectively, where 

exp(𝑢𝑖𝑗) ~𝐺𝑎𝑚𝑚𝑎(1/𝜏, 𝜏)  and 𝜀𝑖𝑗~𝑁(0, 𝜎2)  with 𝜏  being the shape parameter quantifying the 

amount of overdispersion. Empirical estimation of the model according to eq.(2) is conducted by 

means of Maximum Likelihood (ML) technique (for a formulation of the (log) likelihood function of 

the ZINB, see, e.g., Mwalili et al., 2008). 

3.2 Variable selection 

The empirical literature on modeling research collaborations and network formation is fastly 

evolving (see, for instance, Hazir and Autant-Bernard, 2014; Wanzenböck et al., 2014, 2015; Broekel, 

2015 for recent contributions). Determinants of network formation and the creation of new ties can 

thereby be broadly classified as either being related to capacity-based attributes of the underlying 

nodes (NUTS3 districts) or to different dimensions of the relationship between two nodes. Along 

these lines, we define three categories of variables for the estimation of eq.(2), which comprise 

i.) “core” factors of the sectoral innovation system in biotechnology, 

ii.) “capacity-based” indicators of the overall regional innovation system, and 

iii.) “policy” variables related to signaling effects of the BioRegio contest and R&D funding 

(both through BioRegio and other channels of policy support in the biotech industry). 
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With regard to the core factors, in first place, we include the number of biotech firms in the re-

gion as a necessary condition for link formation. Moreover, we include the number of loops within 

NUTS3 regions as a separate determinant for the extent of interregional collaboration activity. We 

expect that the number of biotech patent applications is positively correlated with the region’s abil-

ity to form collaborative linkages within the sector. As a third factor, we include the geographic 

distance between NUTS3 districts as an additional regressor, which can be motivated by a large 

empirical literature on the role of different proximity measures as determinants for network for-

mation. In this literature, network relationships are supposed to be more common over short than 

long distances (Maggioni et al., 2007). 

As the SNA has already shown, the intensity of intraregional collaboration within BioRegions is 

generally higher compared to interregional collaboration. Moreover, among interregional collabo-

ration activities, regional actors tend to choose external partners nearby. There is ample empirical 

evidence on the role of proximity measures, particularly geographical distance, for network for-

mation. Here, the literature predominantly finds that the quality and quantity of knowledge flows 

are subject to distance decay (Jaffe et al., 1993; Breschi and Lissoni, 2009) and that being located in 

clusters of spatial proximate actors has a positive impact on the actors’ innovative performance 

(Baptista and Swann, 1998; Fornahl et al., 2011). At the EU regional level, Maggioni et al. (2007) as 

well as Scherngell and Barber (2009) provide evidence for the role of spatial proximity on interre-

gional knowledge flows measured by co-patents and research projects funded by the EU Framework 

Programme(s). The latter authors find strong evidence for technological proximity among EU re-

gions as a determinant for establishing research collaborations. 
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Capacity-based indicators stress the availability of (regional) resources as a significant contrib-

uting factor to absorb, exploit, and assemble different types of knowledge in the conduct of research 

and innovation activities (Cohen and Levinthal, 1990; Herrera and Nieto, 2008; Broekel and Brenner, 

2011; Wanzenböck et al., 2014; Broekel, 2015). Since we treat NUTS3 regions as the nodes of the 

biotechnology network here, the large literature on regional innovation systems (RIS) is used to 

construct indicators on the basis of a region’s human capital endowment, entrepreneurial activity, 

and international openness as well as localization and urbanization forces, which are likely to impact 

the regions’ collaboration capacity (McCann, 2013). To test for the different channels through which 

the surrounding regional innovation system can impact the degree of collaboration activities be-

tween regions, we use a broad set of regional control variables, which are summarized in Table 4. 

Summary statistics for these variables are given in Table B.1 in the appendix. 

Policy variables may have a distinct impact on network formation: Looking at the biotech in-

dustry in Germany, we find that public funding takes a prominent role, and the BioRegio contest in 

the mid-1990s can be seen as a “kick-off” event for massive policy support. As outlined above, the 

underlying intention of the BioRegio contest and its successors was to support regions with the best 

chances of success (Engel and Heneric 2005; Dohse 2007; Engel et al., 2013). Hence, if a BioRegion 

gains public support, the underlying collaboration activity of a region being member of an awarded 

BioRegion is likely to increase for two reasons. Firstly, there can be a direct effect as mentioned above: 

That is, the BioRegion has already had a noteworthy collaboration basis when starting to compete for 

financial support. And secondly, an awarded BioRegion might be seen as an interesting location for 
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finding new collaboration partners. Regarding the latter effect, being a winner (having high chances 

of succeeding in the biotech industry) might work as a signal for other actors in the industry. 

However, the local network can also have a tendency for closure, and one may expect that while 

intraregional linkages increase due to BioRegio funding, interregional collaborative linkages are less 

likely to occur (see, for instance, Broekel et al., 2015). To capture these different effects, we therefore 

include variables that are directly related to R&D funding volumes in biotechnology as well as a set 

of binary dummies to reveal whether combinations of different categories of BioRegio participants 

show additional effects. The basic idea of including these dummy variables is to check for level 

differences between regions within and regions outside the BioRegio network, which may be related 

to preferential access to R&D funding and signaling/mobilizing effects of the BioRegio contest. We 

construct three types of dummies as 

i.) BioRegio (Winner x Winner): The dummy variable takes the value of 1 for region pair (ij) if both 

NUTS3 regions are members of an awarded BioRegio cluster initiative and is 0 otherwise; 

ii.) BioRegio (Winner x Participant): The dummy variable takes the value of 1 for region pair (ij) if 

one NUTS3 region is a member of an awarded BioRegio cluster initiative and the other NUTS3 

region is a member of a non-winning BioRegio cluster initiative; the dummy is 0 otherwise; 

iii.) BioRegio (Participant x Participant): The dummy variable takes the value of 1 for region pair (ij) 

if both NUTS3 regions are member of a non-winning BioRegio cluster initiative and is 0 oth-

erwise. 
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Table 4. Variable definitions and source information 

Variable Description Period Source 

Collaborative linkages  Number of total R&D collaborations between region i 

and j (including loops) 

2005 BIOCOM AG 

Actors Number of biotech firms and institutions in region i 2005 BIOCOM AG 

Loops Number of total R&D collaborations of biotech actors 
within region i 

2005 BIOCOM AG 

Geographical distance  Driving time (in minutes) between the centroids of 
region i and j 

2005 Federal Institute for 
Research on Building, 
Urban Affairs and 
Spatial Development 
(BBSR) 

Biotech patent applications Weighted number of patent applications in biotech-
nology in region i  (OECD definition) 

Sum of 

1997-2002  

European Patent 
Office (EPO)  

Individual R&D Funding Direct funding of biotechnology-related R&D indi-

vidual projects by federal government in region i (in 
1000 €) 

Sum of 

1997-2002 

Projektförderungs- 

Informationssystem 
(PROFI) 

Collaborative R&D funding Direct funding of biotechnology-related R&D collabo-
rative projects by federal government in region i (in 
1000 €) 

Sum of 

1997-2002  

Projektförderungs- 
Informationssystem 
(PROFI) 

High-tech start-ups Number of start-ups in high-tech industries relative to 
MINT employees in region i (1 = 100%) 

Average of 

1996-2003  

ZEW Foundation 
Panel  

Medium-tech start-ups Number of start-ups in medium-tech industries rela-
tive to MINT employees in region I (1 = 100%) 

Average of 

1996-2003  

ZEW Foundation 
Panel  

KIS start-ups  Number of start-ups in knowledge-intensive services 
relative to MINT employees in region i (1 = 100%) 

Average of 

1996-2003  

ZEW Foundation 
Panel  

International openness Share of foreign turnover in manufacturing sector 

relative to total turnover in the sector in region i (1 = 
100%) 

Average of 

1997-2002  

German Statistical 

Office  

MINT employment Share of employees trained in mathematics, informat-
ics, natural sciences and technology in total employ-
ment of region i (in %) 

Average of 

1997-2002  

Federal Employment 
Agency 

Population density Number of inhabitants per area in region i (in square 

kilometers) 
Average of 

1997-2002  

German Statistical 

Office  

Sectoral specialization 
manufacturing 

Sum of squared deviations in employment shares for 
NACE3 sectors between region i and national average 

1998 Alecke et al. (2006)  

Sectoral specialization 

business-rel. services 

Sum of squared deviations in employment shares for 

NACE3 sectors between region i and national average  
1998 Alecke et al. (2006)  

Sectoral specialization 
household-rel. services 

Sum of squared deviations in employment shares for 
NACE3 sectors between region i and national average  

1998 Alecke et al. (2006)  

Ellison-Glaeser index 

manufacturing 

Employment in sectors with high Ellison-Glaeser index 

(>0.005) relative to total employment in region i 
1998 Alecke et al. (2006)  

Ellison-Glaeser index 
business-rel. services 

Employment in sectors with high Ellison-Glaeser index 
(>0.005) relative to total employment in region i  

1998 Alecke et al. (2006) 

Ellison-Glaeser index 
household-rel. services 

Employment in sectors with high Ellison-Glaeser index 
(>0.005) relative to total employment in region i 

1998 Alecke et al. (2006) 

Notes: See Table B.1 in Appendix B for summary statistics of the variables. 
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Except for the set of dummies and the geographical distance between two NUTS3 regions, 

which vary for each (𝒊, 𝒋)-region tuple, all regressors are measured at the regional level. In order to 

construct a set of doubly-indexed regressors as shown in eq.(2), we follow the literature on Gravity 

models (of trade) and calculate average values for log-transformed variables such as 𝒙𝒊𝒋 =(𝒙𝒊 + 𝒙𝒋) 𝟐⁄  (see, e.g., Rose, 2004). Loops for intraregional collaborations within NUTS3 regions are 

specified as a vector of constant values for each region tuple. Finally, with regard to sample organ-

ization, we impose a lag structure for the transmission channels running from the regressors to the 

model’s outcome variable in order to reduce the problem of reversed causality: That is, while we use 

observations in 2005 for our dependent variable, the number of loops and the number of biotech 

firms as a normalizing factor (variables are taken from the BIOCOM Year and Address book), we 

impose a time lag of at least three years for all other regressors (see Table 4). 

To give a practical example: When taking a closer look at the relationship between public R&D 

funding and the degree of collaboration activity between NUTS3 districts, we expect that public 

funding positively influences the collaboration activity of regions. However, a high degree of col-

laborative linkages is also likely to increase the probability of raising further public funding in the 

future. Similarly, regional economic and institutional conditions may influence the results of na-

tional innovation policy (Herrera and Nieto, 2008). The latter feedback mechanism results in a re-

versed causality problem between the two variables. In order to minimize this problem, we only use 

funding volumes allocated throughout the period 1997-2002 to measure the correlation with collab-

orative linkages in 2005. The period 1997-2002 was chosen since it reflects the de facto funding period 

in the BioRegio contest. Similarly, we chose lag structures for the remaining regressors as shown in 

Table 4. 
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Another limitation related to our estimation approach stems from the fact that we only observe 

research collaborations for a single sample year and thus have to estimate the model in a 

cross-sectional fashion. This surely limits the interpretation of our estimation results in terms of 

“causeeffects” statements compared to empirical identification approaches developed on the basis 

of panel data estimators. However, although we cannot fully control for cross-sectional heterogene-

ity by introducing region-fixed effects, we make use of spatial filters as a surrogate for these re-

gion-fixed effects (Patuelli et al., 2012). In fact, controlling for spatial autocorrelation by means of 

spatial filtering allows us to capture omitted variables and unobserved spatial spillover effects that 

can lead to inconsistent or inefficient estimation results particularly when working with regional 

data (Anselin, 1988). 

We apply an eigenvector-based spatial filtering approach developed by Griffith (2003) to ac-

count for the potentially uneven and spatially correlated regional distribution of collaboration 

activities in the biotech industry (see Figure B.1 in the appendix for a graphical overview of selected 

variables at the NUTS3 level). A main advantage of the spatial filtering approach compared to al-

ternative spatial regression techniques is that the former does not require the assumption of nor-

mality or other estimation restrictions and can be straightforwardly applied to count data regression 

approaches. As starting point, we extract orthogonal and uncorrelated numerical components (ei-

genvectors) from a projection matrix of an exogenously specified spatial weights matrix, W. For the 

latter, we employ a “rook-type” binary contiguity weighting matrix, which takes values of 1 if two 

NUTS3 regions share a common geographical border and has zero entries otherwise. 
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In order to apply the spatial filtering approach to dyadic regression specifications, we transform 

the underlying W matrix into a network weighting matrix, C, which extends the two-dimensional 

space for (𝑁 × 𝑁)-regional tuples with (𝑖, 𝑗, |𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, … , 𝑁) of W to a four-dimensional space 

with (𝑁2 × 𝑁2)  possible linkages for 𝑖, 𝑗, 𝑟, 𝑠|𝑖 ≠ 𝑗; 𝑟 ≠ 𝑠; 𝑖, 𝑗 = 1, … , 𝑁; 𝑟, 𝑠 = 1, … , 𝑁) . We thereby 

allow for both origin- and destination-related linkages as outlined in Chun and Griffith (2010). The 

extracted eigenvectors from C are then included as additional regressors in eq.(2). To reduce the 

total number of included eigenvectors in the regression equation, we follow Grimpe and Patuelli 

(2011) and first select a subset of candidate eigenvectors according to the following threshold: 

𝑀𝐼(𝑒𝑖)/𝑚𝑎𝑥𝑖[𝑀𝐼(𝑒𝑖)] > 0.25, where 𝑀𝐼(𝑒𝑖) is Moran’s I (MI) indicator for spatial autocorrelation 

computed based on a generic eigenvector, 𝑒𝑖. We use a stepwise regression approach to exclude 

statistically insignificant eigenvectors in each regression setup. Finally, we test for the joint signifi-

cance of the remaining eigenvectors by means of a Wald test. Taken together, although this approach 

does not fully alleviate the problems associated with the estimation of a cross-section vis-à-vis a 

panel econometric specification, it ensures obtaining the most robust estimation results under the 

given data restrictions (see Kristin and Fischer, 2015 for a similar application to the estimation of 

dyadic trade data). 

 

3.3 Empirical results 

The estimation results for different count data specifications are shown in Table 5. In columns I 

and II we first estimate a negative binomial (NegBin) model, which includes the “core” factors 

(number of biotech firms and geographical distance in column I) and subsequently adds further 

regressors in column II. Column III additionally estimates the full models on the basis of a ze-
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ro-inflated negative binomial (ZINB) model according to eq.(2). As the regression results show, in all 

specifications we obtain a positive and statistically significant regression parameter for the number 

of biotech actors indicating the existence of a link between the number of actors and the extent of 

collaboration activity. In line with the literature reviewed above, we also find a negative correlation 

between geographical distance and the number of collaborative linkages indicating that spatial 

proximity matters for tie formation in the biotechnology network composed of NUTS3 regions. We 

also find a negative correlation between the number of loops within a region and the interregional 

collaboration activity indicating that NUTS3 districts with a sufficient mass of intraregional collab-

oration activities tend to close their network with regard to external collaborations. This latter result 

relates to recent findings reported in Broekel et al. (2015) showing that actors embedded in strong 

local clusters tend to be less intensively embedded in national research collaboration networks 

(measured in terms of collaborative R&D funding). 

With regard to the role of policy variables, the specification in column I of Table 5 only includes 

the set of binary dummies. The results show that particularly the combinations of winner regions in 

the contest as well as winning and non-winning participants have a statistically significant higher 

collaboration activity compared to other region pair types. In particular the positive effect found for 

regional pairs comprising a BioRegio winner and a non-winning participant region may hint at a 

double dividend of the BioRegio contest comprising both a monetary funding effect as well as a 

signaling effect. However, if we additionally include the volume of R&D funding received in col-

umns II and III as additional regressors, we see that the positive signaling effect of the contest can-

cels out, indicating that the overall funding effect can be reduced to the pure monetary dimension of 
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funding. The absence of additional signaling effects for non-winning participants, once we control 

for the monetary effect of funding, may reflect the tendency of awarded BioRegions to close their 

networks and form dense cliques of strongly interconnected actors (see Ter Wal, 2014). 

With regard to the different types of R&D funding, we particularly get evidence for a positive 

correlation between the volume of collaborative R&D grants and the number of collaborative link-

ages, while the volume of individual R&D grants turns out to be statistically insignificant in the 

ZINB specification in column III. Our obtained results support the findings by Fornahl et al. (2011), 

namely that individual R&D subsidies do not enhance the performance of biotech firms in terms of 

patent activity, while collaborative research subsidies, in fact, do. Since we are using logarithmic 

transformations for the set of regressors, the obtained regression parameters can be interpreted in a 

straightforward manner as elasticities. Thus, a 1 percent increase in the volume of collaborative R&D 

funding leads to a 0.15-0.23 percent change in the number of pairwise collaboration linkages. Sur-

prisingly, we do not get statistical evidence for a positive link between the number of biotech patent 

applications and the collaboration activity of region pairs at the NUTS3 level in the ZINB, while the 

variable is positive and statistically significant in the NegBin specification in column II. 
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Table 5. Estimation results for the determinants of collaborative links between NUTS3 regions 

Dep. var.: 𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗 NegBin (I) NegBin (II) ZINB (III) 

Core Actors 0.085 0.041 0.042 

  (0.007)*** (0.007)*** (0.007)*** 

 Loops -0.009 -0.007 -0.007 

  (0.003)*** (0.003)** (0.002)*** 

 Geographic distance -0.839 -0.751 -0.587 

  (0.049)*** (0.047)*** (0.059)*** 

 Biotech patent applications  0.286 -0.058 

   (0.045)*** (0.082) 

Policy Individual R&D funding  0.093 0.024 

   (0.015)*** (0.027) 

 Collaborative R&D funding  0.223 0.160 

   (0.018)*** (0.040)*** 

 BioRegio dummy (winner x winner) 0.670 -0.005 0.227 

  (0.289)** (0.244) (0.216) 

 BioRegio dummy (winner x participant) 0.475 -0.134 0.068 

  (0.194)** (0.174) (0.163) 

 BioRegio dummy (participant x participant) 0.426 -0.275 -0.168 

  (0.245)* (0.230) (0.224) 

RIS High-tech start-ups 0.720 0.528 0.544 

  (0.166)*** (0.191)*** (0.198)*** 

 Medium-tech start-ups -0.369 -0.384 0.028 

  (0.205)* (0.224)* (0.246) 

 KIS start-ups 2.405 0.369 1.138 

  (0.309)*** (0.288) (0.336)*** 

 International openness -0.023 -0.102 -0.164 

  (0.055) (0.052)** (0.054)*** 

 MINT employment 1.435 0.535 0.307 

  (0.198)*** (0.201)*** (0.207) 

 Population density 0.551 0.412 0.310 

  (0.086)*** (0.084)*** (0.088)*** 

 Specialization manufacturing -0.140 -0.035 -0.000 

  (0.091) (0.091) (0.091) 

 Specialization business-rel. services -1.197 -0.244 -0.400 

  (0.140)*** (0.133)* (0.143)*** 

 Specialization household-rel. services -0.322 -0.162 -0.342 

  (0.107)*** (0.096)* (0.102)*** 

 Ellison-Glaeser index manufacturing -0.928 -0.548 -0.641 

  (0.103)*** (0.097)*** (0.105)*** 

 Ellison-Glaeser index business-rel. services -0.468 0.029 -0.313 

  (0.283)* (0.284) (0.299) 

 Ellison-Glaeser index household-rel. services 0.438 0.168 0.410 

  (0.223)** (0.223) (0.235)* 

No. of observations 96,579 96,579 96,579 

Wald test (2) for spatial filters 372.69*** 302.22*** 271.30*** 

LR-test (Poisson vs. NegBin) 177.17*** 92.54*** 4.26**,$ 

Vuong (NegBin vs. ZINB)   2.38*** 

Notes: * p<0.1; ** p<0.05; *** p<0.01; $ = LR-test for zero-inflated Poisson vs. ZINB. Standard errors are given in 
brackets. A constant term has been included in the regression but is not reported here. See main text for details.
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Regarding the impact of factors from the regional innovation system, the ZINB results show 

that cooperative behavior is positively correlated with the share of business start-ups in high-tech 

sectors and knowledge-intensive services (KIS) according to the OECD (2010) classification. While 

we also observe a positive regression coefficient for general agglomeration factors (measured in 

terms of population density), localization forces (proxied by industry specialization and sectoral 

concentration) generally show a negative correlation with the number of regional linkages. This 

latter finding can be brought in line with Cantner and Graf (2004), who argue that for high-tech 

regions the collaboration activity is expected to be the highest for some intermediate degree of spe-

cialization. Similarly, we find a negative correlation between international openness and the number 

of research collaborations. 

With regard to post-estimation tests for model selection, the ZINB specification can also be seen 

as the preferred empirical choice on the basis of the reported Vuong test. Additionally, as shown in 

Table 5, we get empirical evidence for the role played by overdispersion favoring the negative bi-

nomial distribution against the Poisson distribution (LR-test). As the post-estimation tests further 

show, the included spatial filter turns out to be statistically significant in all regression specifications 

indicating that it is important to account for spatial network effects. 

Finally, the results for the underlying binary choice part of the ZINB reported in Table 6 indi-

cate that both individual and collaborative R&D funding as well as the number of biotech patent 

applications are essential for having collaborative linkages at all. Thus, having a critical mass in 

research activity as proxied by the number of patent applications and having access to public 

R&D grants may be seen as important prerequisites for engaging in research collaborations. The 
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negative role of distance also turns out to be statistically significant in the logit part of the ZINB 

model. This means that increasing the distance between two regions lowers the probability that any 

interregional collaboration will occur. The reader should note that we have only included core sec-

toral and policy variables in the first-step logit model specification in Table 6. However, these results 

remain stable even if we include the full set of variables as in Table 5. 

 

Table 6. Estimation results for the binary choice part (logit) of the ZINB specification  

Dep. var.: 𝜋𝑖𝑗  ZINB 

 Geographic distance 0.313 

  (0.105)*** 

 Biotech patent applications -0.426 

  (0.094)*** 

 Individual R&D funding -0.117 

  (0.039)*** 

 Collaborative R&D funding -0.094 

  (0.054)* 

Notes: * p<0.1; ** p<0.05; *** p<0.01. Standard errors are given in brackets. A constant term 
has been included in the regression but is not reported here. Results from alternative logit 
model specifications can be obtained from the authors upon request. 

 

3.4 Robustness tests 

This section serves as a critical appraisal of the use of the BIOCOM industry directory data as a 

novel source of information to model the German research collaboration network in biotechnology. 

To do so, we first compare its structure with the patent citation network at the regional level. Patent 

citations are proposed in the literature as a widely accepted measure for knowledge flows within a 

sectoral innovation system. As Breschi and Lissoni (2004) point out, the reason for using patent 

citations as a meaningful indicator for knowledge flows resides in the view of innovation as a social 

process implying that inventors often need to exchange tacit knowledge with other inventors be-

yond using bibliographic sources and personal experiments. 
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Following the classification of biotech-related IPC classes as outlined in Lecocq (2010), we count 

sector-specific patent citations between German NUTS3 regions on the basis of the OECD RegPAT 

database (Maraut et al., 2008). Geographic information on the citing and cited patent is retrieved at 

the applicant level. Moreover, directed patent citations from region i to region j and from region j to 

region i have been summed to get an undirected measure of two-way patent citations for region pair 

(i,j), which comes closest to the undirected collaboration measure from the BIOCOM industry di-

rectory. With regard to the sample period, we select all biotech-related patent applications at the 

European Patent Offices (EPO) between 1997 and 2005, which can be expected to reflect the collab-

oration network in German biotechnology until 2005 in the context of the BioRegio contest starting in 

1997. Besides the comparison across indicators, we also gather collaboration data from the BIOCOM 

Year and Address book 2009 in order to check for variations and discontinuities in the industry 

directory data over time. We use the same data aggregation procedure as outlined above. 

While Table 7 reports summary measures for each of the three networks (Patent Citations 

1997-2005, BIOCOM 2005, and BIOCOM 2009) together with the results of a bivariate correlation 

analysis, Figure 5 provides a graphical presentation of the two alternative networks in similar veins 

as Figure 4 for the BIOCOM research collaboration network in 2005. When we compare the sum-

mary measures, the results show that the collaboration networks based on the BIOCOM data for 

2005 and 2009 have a significantly larger average degree compared to the EPO patent citations 

network. This difference is also highlighted by the lower number of interregional linkages for patent 

citations in Figure 5. However, while this level difference can mainly be attributed to the specific 

characteristics of patent citations as one specific channel of research connectivity, the link structure 

for the patent citation network and BIOCOM collaboration networks (both in 2005 and 2009) is very 

similar highlighting the role played by key linkages connecting the large regional hubs of the biotech 

sectors such as Berlin, Munich, Heidelberg, and the Rhineland. This rectified structure is also re-

flected by the pairwise correlation coefficients for the patent citation network and the BIOCOM 

collaboration networks, which show positive and statistically significant coefficients of 0.30 (2005) 
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and 0.31 (2009), respectively. Finally, with regard to the average clustering coefficient and the av-

erage path length, the BIOCOM collaboration and EPO patent citation networks show to have sim-

ilar values as well. 

 

Table 7. Comparison of the alternative networks of interregional research collaborations in German biotech 

Indicator 

BIOCOM 

collaborations 2005 

BIOCOM 

collaborations 2009 

EPO Patent 

citations 19972005 

Average degree 6.351 6.556 1.021 

Average clustering coefficient 0.373 0.302 0.267 

Average path length 2.774 2.822 3.241 

Pearson's correlation coefficient       

BIOCOM collaborations 2005 1 

BIOCOM collaborations 2009 0.88*** 1 

EPO Patent citations 19972005 0.31*** 0.30*** 1 

Notes: * p<0.1; ** p<0.05; *** p<0.01. 

 

When we take a closer look at the change in the BIOCOM network between 2005 and 2009, the 

highly positive and statistically significant correlation coefficient reported in Table 7 indicates that 

interregional collaboration activity is quite persistent over time. The further network indicators in 

Table 7 moreover show that the average degree for distinct regions in the network has grown be-

tween 2005 and 2009 indicating that regions have still increased their outreach in terms of research 

collaborations with other regions throughout the mid-2000s. At the same time, the average cluster-

ing coefficient as a measure to which degree nodes cluster together has decreased between 2005 and 

2009, while the average path length has increased slightly. These reversed trends may reflect 

changes in the organization of the sectoral innovation system, for instance, driven by shifts in the 

funding regime with a weaker focus on network and cluster policies. The latter trend can also be 

identified when we re-estimate the model from eq.(2) using the BIOCOM collaboration network in 

2009 as the outcome variable and add the interregional collaboration structure in 2005 as an addi-

tional regressor (a detailed regression output is given in Table B.2 in the appendix). 
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Figure 5. Alternative measures for the interregional research collaboration network of German NUTS3 districts 

(a) EPO Patent Citations 19972005      (b) BIOCOM Industry Directory 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Black dots mark centroids of the 439 German NUTS3 districts; colored dots and lines measure intra- 
and interregional collaboration activity; for details on calculation see main text.  

 

Although most regression coefficients remain stable, two noteworthy findings can be gathered: 

Firstly, different from the network structure in 2005, the degree of interregional research collabora-

tion (in 2009) is not significantly correlated with previous levels of collaborative R&D funding, while 

the spatial distribution of individual R&D funding volumes appears to matter. This result may 

hence reflect the above-mentioned shift in the overall funding regime in biotechnology. Secondly, 

the estimation results in Table B.2 show that the coefficient for the collaboration activity in 2005 

enters the model for 2009 in a positive and statistically significant way hinting at temporal autocor-

relation in the interregional collaboration activity over time. Although this latter result has to be 

interpreted carefully given that it may simply reflect the tendency of actors to seek (and/or report) 

stable long-run collaborative linkages, at the regional level the result may also be interpreted in 

favor of a temporal network evolution in the form of preferential attachment  that is, nodes with an 

above average collaboration degree attract new links at a higher rate over time compared to nodes 
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with an initially lower collaboration degree (Barabasi and Albert, 1999). As Fritsch and Kudic (2016) 

point out, this development may be particularly relevant at the system level of networks. 

4. Discussion 

The findings from our empirical investigation have theoretical and practical implications for the 

emerging field of innovation studies, which aim at modeling research collaboration activities from a 

network perspective. Additionally, several policy implications emerge, which will be discussed in 

the following subsections. 

4.1 Theory and Practice 

Theoretical research on network formation has grown considerably in recent years. However, 

when it comes to the empirical modeling of knowledge networks and its main drivers related to 

node characteristics and the relationship between nodes, scholars often face binding data limitations. 

In this paper, we have proposed the use of commercial industry directory data as a novel source of 

information to map and model the interregional research collaboration activity for German bio-

technology. Further, we have placed a particular focus on the interregional dimension of collabora-

tion given that the biotech sector is typically characterized by the emergence of urban centers and 

spatial clusters, which act as knowledge hubs in the sectoral innovation system. 

Using indicators commonly employed in the field of social network analysis together with an 

econometric modeling approach for count data, we have then tested theoretically motivated model 

predictions related to the role of proximity dimensions for network formation and were able to 

study the temporal evolution of networks linked to an assessment of the role played by preferential 

attachment mechanisms. Our results support earlier findings hinting at the role of geographic dis-

tance as an impediment to collaboration. They also hint at the role played by modern location factors 

for the formation of network ties. With regard to robustness tests, we find that the BIOCOM industry 

directory data on research collaboration are significantly correlated with the biotech patent citation 
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network of German regions and can thus be seen as a complementary indicator to map and model 

knowledge flows in German biotechnology.   

4.2. Policy 

Our empirical results have also shown that public policy inputs are significantly related to the 

strength of interregional research collaborations – mainly through monetary incentives in terms of 

collaborative R&D support schemes during the BioRegio contest. Our focus on this policy instrument 

can be justified by its prototype role for the larger family of national, sector-specific, and mul-

ti-sectoral cluster policy programs in Germany. Examples of these policies include the BioProfile and 

BioChance funding schemes within the biotech sectors, as well as InnoRegio and the Spitzenclus-

ter-Wettbewerb for multi-sectoral funding schemes. Moreover, several cluster policy instruments at 

the regional level have adopted the original idea of the BioRegio contest as well (for instance BioRegio 

Bayern 2020 in Bavaria and RegioWIN in Baden-Württemberg). Particularly the Spitzenclus-

ter-Wettbewerb can be seen as an important instrument of the high-tech strategy of the German gov-

ernment (Cantner et al., 2015). Similar to the BioRegio contest, the Spitzencluster-Wettbewerb 

(2008-2014) has been based on a contest-of-cooperation approach and has been pursued in three 

rounds of competition with a total of 15 winner cluster initiatives from various industries, such as 

biotechnology, aviation, e-mobility, micro- and nano-electronics, organic electronics, etc. 

Broadening the scope from an industry-specific cluster policy such as BioRegio to multi-sectoral 

policy programs has led to substantial heterogeneity among cluster initiatives in terms of formal 

structure, organization, and research activities (Cantner et al., 2015). Also the size of their geo-

graphical areas and distances within cluster boundaries differ substantially due to a fuzzier inter-

pretation of the cluster concept. Accordingly, empirical results for network formation in the 

awarded cluster initiatives of the Spitzencluster-Wettbewerb were twofold: On the one hand, in line 

with our empirical results, Cantner et al. (2015) find that network formation is mainly driven by 

monetary incentives stemming from the cluster policy without any additional (signaling) impact. On 

the other hand, the authors also find a considerable heterogeneity in the observed effects across 
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industries. This indicates that policymakers should be cautious about adopting policy schemes that 

work properly within a specific sectoral context to other domains in a 1-1 fashion (see also Dolfsma 

and Seo, 2013).   

5. Conclusions 

This paper has conducted an empirical investigation of the structure and determinants of the 

research collaboration network in German biotechnology. One novelty of our approach rests on the 

use of so far largely unexplored commercial industry directory data as a source of information for 

mapping and modeling research collaborations in German biotechnology. Another novelty stems 

from our distinct focus on regional entities (NUTS3 regions) as nodes of the German research col-

laboration network. This focus can be motivated on the basis of the role that distinct urban centers 

and regional clusters play in the German biotech sector. From a methodological perspective, we 

have combined social network analysis and econometric count data modeling to study the strength 

of interregional research collaboration activity as a function of node properties (e.g., the underlying 

regional innovation system) and the relationship between nodes (e.g., geographic distance between 

regions). By doing so, our explorative empirical analysis was able to shed new light on the deter-

minants of network formation within a sectoral innovation system. This, in fact, can be seen as 

highly relevant for policymakers interested in fostering the collaboration activity of research actors 

in the short to midterm as a means to cater the long-run policy goal of increasing the economy’s 

innovative performance (Zeng et al., 2010; Kang and Park, 2012). 

Our empirical analysis has shown that the structure of the research collaboration network in 

German biotechnology is far from being random and features specific factors that can be related to 

underlying regional research and economic endowments as well as the relationship between re-

gions. As such, we find that modern locational factors are positively correlated with the extent of 

interregional research collaborations, while geographic distance is found to be an impediment to 

collaboration. Moreover, network and cluster policies, in particularly the BioRegio contest analysed 
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in the context of German biotech funding, appear to be a promising instrument of public policy as 

we find that the volume of collaborative R&D funding is positively correlated with the interregional 

collaboration activity among German NUTS3 regions. One should note, though, that the empirical 

approach chosen in this paper should merely be seen as an explorative modeling exercise rather than 

a strict “causal” impact analysis with regard to the economic effects of cluster policies (see, e.g., Falck 

et al., 2010, Martin et al., 2011, or Engel et al., 2013 for rigorous causal-impact studies). Future re-

search should thus particularly focus on these latter tools when assessing the different long-run 

goals of policy seen from a network perspective. Additionally, future studies may further investigate 

the dynamic nature of network formation within sectoral innovation systems. The use of industry 

directory data as a complementary data source next to widely used patent indicators can be seen as a 

fruitful approach in this endeavor. 
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Appendix A: Evolution of German biotechnology in an international context 

While the German economy was characterized by having a merely inhospitable climate for bi-

otechnology two decades ago (Dickman, 1996), today the country has developed to one of Europe’s 

leading biotechnology countries. As Müller (2002) outlines, the number of dedicated biotechnology 

firms has grown from 17 to 333 in the period between the early 1990s and 2001  thereby outpacing 

the number of biotech firms in the UK (271) and France (240). More recent data from the European 

cluster observatory (2016) show that the German biotechnology industry has manifested its leading 

role as national biotechnology player within Europe since then. Figure A.1 plots different indicators 

characterizing the national innovation systems in biotechnology with regard to industry concentra-

tion (location quotient, see Isserman, 1977), overall industry size as well as a composite “stars” in-

dicator for the period 1995-2010. The European cluster observatory thereby defines the biotechnol-

ogy industry according to the 4-digit level NACE Rev. 2 classification as 72.11 ”Research and ex-

perimental development on biotechnology”, which is in line with similar studies as in Laskawi 

(2015). 

The location quotient (LQ) in panel (a) of Figure A.1 compares the extent to which the national 

economies of Germany, the UK, France, and Switzerland have an above average concentration of 

biotechnology employment relative to the EU-27 average (indicated by LQ ≥ 1). As the figure shows, 

the industry concentration in Germany and the UK has been constantly above the EU-27 average for 

the sample period 1995-2010. In comparison, biotechnology-related employment concentration in 

Switzerland has rapidly grown in the second half of the last decade, while the LQ value for France 

has dropped considerably. Reasons for the striking decline in French biotechnology can be at-

tributed to an increasing relocations of firms (particularly to Switzerland), a funding crisis with a 

drastic decline in equity investments and no active financial market as back-up (PharmaLetter, 

2005a&b, BioSpace, 2009) combined with the worsening of the overall macroeconomic conditions in 

the course of the global financial and economic crisis (France Biotech, 2008). 
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Figure A.1. Evolution of biotechnology industry in selected European countries (19952010) 

 
Notes: CH = Switzerland, DE = Germany, FR = France, UK = United Kingdom. The four panels dis-
play the following information: (a) LQ (country); (b) LQ (regions); (c) size and (d) observatory star 
rating. For details on the definitions of these indicators see main text; calculated on the basis of data 
from the European cluster observatory (2016). 

 

In addition to the computation of national LQ values for the biotechnology sector in the four 

economies, panel (b) in Figure A.1 shows a box plot graph of the intra-national distribution of LQ 

values in biotechnology at the level of NUTS2 regions (again measured relative to the EU-27 aver-

age). As the box plot graph shows, Germany has both the highest median value in terms of regional 

LQ values as well as particularly the highest LQ values for regions in the upper quartile of the dis-

tribution indicating that Germany hosts the most highly concentrated hot spots of European bio-

technology employment. Looking at the absolute size of the biotechnology in the four economies 

(measured in terms of thousands of employees), panel (c) in Figure A.1 shows that biotechnology 

employment in the UK and Germany is above the employment level in France and Switzerland, 

particularly in recent years. Again the time series in panel (c) shows that France experienced a con-

siderable drop in employment levels compared to the UK and Germany. 
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On the basis of different indicators (LQ, size and focus) the European cluster observatory also 

computes a ‘star’ ranking as composite indicator for the significance of the industry in a particular 

country or region (see Crawley and Pickernell, 2012, for a critical appraisal). The focus sub-indicator, 

which has not been presented here, thereby measures the extent to which the national economy is 

focused upon biotechnology employment relative to total national employment. The ‘star’ ranking 

in panel (d) of Figure A.1 indicates that Germany has outpaced the other three economies with re-

spect to this composite ranking for biotechnology mainly during the recent sample period after 2000. 

Further indicators for the evolution of the sectoral innovation system in German biotechnology 

point to the same direction: Comparing the distribution of patent applications in the EU-28 and the 

United States for the period 2004-2012, panel (a) of Figure A.2 shows that both economic blocks have 

an almost equal overall share (U.S. 52%; EU-28 48%). Within the EU-28, Germany has the largest 

share of patent applications followed by France and the UK. Looking at the evolution of patent 

applications over the time period 1977 to 2012, panel (b) of Figure A.2 shows that the number of EPO 

patent applications per million of inhabitants has grown exponentially during the 1990s in selected 

European economies and the United States. Thereby the German patent dynamics has even matched 

up with the level of patent applications per million inhabitants in the United States as leading bio-

technology nation in the world. However, at the same time the evolution of patent applications since 

the second half of the 2000s shows a trend reversal, particularly for Germany and the United States. 

The figure thus underlines that particularly the 1990s and early 2000s mark a period of rising biotech 

activity in the United States and Europe. 
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Figure A.2. Patent shares and evolution of patent applications in biotechnology per million inhabitants 

(a) Patent Shares    (b) Patent Evolution 

 

 

 

 

 

 

 

 

 

Notes: Panel (a) describes to percentage shares of patent applications for 2004-2012 in the EU-28 and 
the United States (summed to 100%); panel (b) show the time evolution for selected countries since 
1977; both figures calculated on the basis of data from Eurostat (2016). 
 

Taking a closer look at the German development during this period, particularly massive de-

regulation, public funding, good provision of venture capital, a high rate of innovative start-ups and 

rapid localized knowledge transfers have been identified the major driving factors for the rapid 

progress of the industry in the 1990s (see, for instance, Dohse, 2000, Müller, 2002). The rise of the 

German biotechnology sector was thereby also supported by a global change in the worldwide 

technological regime of the industry, which evolved from an explorative state-of-art to a merely 

exploitative one. In the course of this structural shift, codified knowledge (rather than tacit) became 

increasingly important and facilitated the spreading of new ideas and research collaborations across 

longer distances (Ter Wal, 2014). These developments paved the way for the emergence of multiple 

hot-spots of biotech activity in the geographical landscape of the industry’s innovation system. 

One specific indicator for the change in the technological regime in biotechnology is the grow-

ing importance of collaborative R&D activities (see, for instance, Roijakkers and Hagedoorn, 2006, 

for the specific case of pharmaceutical biotechnology). Public support to collaborative R&D projects 

Country Patents in 2004-2012

Germany 7310.51
France 4026.02
UK 3136.54
Other EU-28 10166.4
USA 26257.89
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thereby also turned into the main focus of policy makers. As Figure A.3 shows on the basis of data 

from the PROFI database of the German Federal Ministry for Education and Research (Bundesmin-

isterium für Bildung und Forschung, BMBF), the share of actors participating in funded collaborative 

R&D projects (panel (a)) as well as their relative funding volume as part of overall funding in the 

biotechnology sector (panel (b)) follow a positive long-run growth trend over the period 1982-2007. 

These growth trends thereby also reflect the paradigmatic shift in the organization of public funding 

schemes for the biotech industry since the mid-1990s on the basis of competitive funding elements 

and the promotion of cooperative R&D activities (BMBF, 2005). 

 

Figure A.3. Share of actors and financial volume in publically-funded collaborate R&D projects  

(a) Funded Actors     (b) Funding Volume 

 

Notes: Panel (a) shows the percentage share of participating actors in collaborative R&D research 
projects in German biotechnology as part of all funded actors together with a linear trend line for 
period 1982-2007. Panel (b) shows the share of funding allocated to collaborative R&D research pro-
jects in German biotechnology as part of the overall funding volume together with a linear trend line 
for period 1982-2007. Calculations have been made on the basis of data from the PROFI database of 
the Federal Ministry of Research and Education. To identify relevant projects, the following tech-
nology fields have been selected: i) K - Biotechnology and ii) I19080 - Molecular Bioinformatics. 

 

The BioRegio contest, launched in 1995, can thereby be seen as a forerunner for this new type of 

(cluster) policy schemes, which Eickelpasch and Fritsch (2005) label as ‘contests-for-cooperation’. 

The main idea of the BioRegio contest was to encourage regional cluster initiatives (so-called BioRe-
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gions) to form a common strategy and apply for subsidies to promote the biotechnology industry in 

the region (Dohse, 2000). A crucial feature of the BioRegio contest was its design as a network and 

cluster policy since the contest promoted the spatial clustering of biotechnology actors in regional 

innovation systems (Dohse, 2000). The underlying logic of this policy approach built on predictions 

from theoretical models in regional science and economic geography, which argued that spatial 

proximity and clustering of economic activities gives rise to increasing economies of scale through 

localization and urbanization advantages (McCann, 2013). The funding concept of the BioRegio con-

test thereby aimed at developing a new holistic approach for research and technology policy and 

was planned to integrate biotechnological capacities and scientific, economic and administrative 

activities. 

 

Figure A.4. Spatial distribution of observatory star rating in biotechnology for German NUTS2 regions 

(a) 1998            (b)  2009 

  

NUTS2 Stars LQ Size Focus BioRegion 

Karlsruhe 2 19.37 11.38 1.02 BioRegion Rhein-Neckar-Dreieck 

Oberbayern 2 3.2 3.23 0.17 Initiativkreis Biotechnologie München 

Berlin 2 2.56 1.66 0.13 BioTOP-Initiative Berlin-Brandenburg 

Darmstadt 2 2.46 2.11 0.13 BioRegion Rhein-Main 

Stuttgart 2 2.27 2.07 0.12 BioRegion Stuttgart/Neckar-Alb 

Köln 1 1.75 1.47 0.09 BioRegion Rheinland 

Niedersachsen 1 1.42 2.08 0.07 Region Nordwest-Niedersachsen 

Notes: The table shows the values for sub-indicators used to calculate the cluster “stars” in 2009 to-
gether with a list of associated BioRegions; based on data from the European cluster observatory 
(2016).  
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Out of the 17 participating BioRegions an independent jury selected four winner regions 

(Rhineland, Rhine-Neckar, Munich and Jena) of the BioRegio contest. Selection criteria were mostly 

based on “hard” quantitative facts like the existence of a critical mass of biotech firms and research 

facilities within the region (for details, see Dohse, 2000). As Engel et al. (2013) point out, each winner 

region received a total lump sum amount of 25 million euro public grants (exception Jena: 15 million 

euro) for conducting joint R&D projects over a five-year time horizon (1997-2001). Additionally, the 

winner regions were favored in terms of getting access to the standard public funding schemes of 

the Federal Ministry of Research and Education. The total amount of these R&D grants exceeded 750 

million euros for the time period 1997-2001. With regard to the share of publically funded collabo-

rative R&D projects as outlined in Figure A.3, the four winner regions of the BioRegio contest re-

ceived more than one third of the total collaborative R&D funding provided by the BMBF during the 

period 1997-2001. The BioRegio program was followed by smaller follow-up programmes such as 

BioProfile und BioChance. 

Besides the purely monetary benefits for awarded BioRegions, participating in the contest was 

also considered attractive for non-winning participants, which could label themselves as part of the 

national network of BioRegions (organized as a registered association, for further information see 

Arbeitskreis BioRegionen https://www.biodeutschland.org/de/ak-bioregio.html) and potentially bene-

fit from signaling effects due to the prestige of the contest. Moreover, the BioRegio contest was fol-

lowed by the BioProfile contest starting in 1999 and its winners were mostly selected out of the 

original pool of BioRegions. As Figure A.4 visualizes for the “star” ranking from the European cluster 

observatory (based on German NUTS2 regions for the sample years 1998 and 2009), these funding 

programmes led to the prevalence of local clusters and fostered the development of strong regional 

nodes in the German biotechnology research network, which can be linked to associated BioRegions 

as shown in Figure A.4. 

 

 

https://www.biodeutschland.org/de/ak-bioregio.html
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Appendix B: Summary statistics for variables and additional estimation results 

 

Table B.1. Sample period and summary statistics of variables 

Variable Sample Period Mean Std. Dev. Min. Max. 

Collaborative linkages  2005 0.014 0.406 0 102 

Collaborative linkages  2009 0.013 0.363 0 87 

Actors 2005 2.278 7.127 0 100 

Loops 2005 0.708 4.166 0 102 

Geographical distance  2005 308.74 152.74 0 844.50 

Biotech patent applications Sum of 1997-2002 16.058 46.893 0 576.06 

Individual R&D funding Sum of 1997-2002 1633.88 9728.61 0 1322145 

Collaborative R&D funding Sum of 1997-2002 1082.70 4645.32 0 61094 

BioRegio dummy (winner x winner) Binary dummy 0.001 0.035 0 1 

BioRegio dummy (winner x participant) Binary dummy 0.004 0.063 0 1 

BioRegio dummy (participant x participant) Binary dummy 0.004 0.060 0 1 

High-tech start-ups Average of 1996-2003 0.005 0.003 0 0.021 

Medium-tech start-ups Average of 1996-2003 0.007 0.003 0.001 0.036 

KIS start-ups  Average of 1996-2003 0.063 0.020 0.021 0.154 

International openness Average of 1997-2002 26.050 13.572 0 96.186 

MINT employment Average of 1997-2002 2.198 1.290 0.450 13.550 

Population density Average of 1997-2002 514.27 662.51 40.84 3904.83 

Sectoral specialization manufacturing 1998 713.35 901.53 144.48 8120.97 

Sectoral specialization business-rel. services 1998 254.18 202.69 39.13 2911.67 

Sectoral specialization household-rel. services 1998 129.69 98.59 19.53 609.07 

Ellison-Glaeser index manufacturing 1998 27.741 35.697 0.210 390.83 

Ellison-Glaeser index business-rel. services 1998 12.086 36.241 0.054 460.57 

Ellison-Glaeser index household-rel. services 1998 6.753 23.263 0.013 279.04 

Notes: See Table 4 in the main document for variable definitions. 
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Figure B.1. Spatial distribution of selected variables among German NUTS3 regions 

(a)       (b) 

   

(c)       (d) 

  

Note: The four panels display the following information: (a) degree centrality as defined in eq.(1); (b) 
number of biotechnology patents (OECD definition); (c) volume of individual R&D funding and (d) 
volume of collaborative R&D funding. Patent applications and volumes of R&D funding are calcu-
lated as sum for the period 1997-2002 (see Table B.1). 
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Table B.2. Estimation results for the determinants of collaborative links among NUTS3 regions in 2009 

Dep. Var.: 𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗 (in 2009) NegBin ZINB 

 𝑐𝑜𝑙𝑙𝑎𝑏𝑖𝑗 (in 2005) 0.426 0.349 
  (0.055)*** (0.059)*** 
Core Actors 0.044 0.051 
  (0.007)*** (0.007)*** 
 Loops -0.004 -0.003 
  (0.003) (0.003) 
 Geographic distance -0.681 -0.527 
  (0.048)*** (0.068)*** 
 Biotech patent applications 0.254 -0.039 
  (0.041)*** (0.104) 
Policy Individual R&D funding 0.126 0.091 
  (0.015)*** (0.044)** 
 Collaborative R&D funding 0.152 0.068 
  (0.017)*** (0.061) 
 BioRegio dummy (winner x winner) -0.196 0.085 
  (0.280) (0.267) 
 BioRegio dummy (winner x participant) -0.069 0.047 
  (0.193) (0.188) 
 BioRegio dummy (participant x participant) 0.258 0.291 
  (0.216) (0.213) 

RIS High-tech start-ups 0.480 0.491 
  (0.180)*** (0.185)*** 
 Medium-tech start-ups 0.100 0.117 
  (0.211) (0.227) 
 KIS start-ups -0.137 -0.134 
  (0.291) (0.334) 
 International openness -0.183 -0.189 
  (0.038)*** (0.040)*** 
 MINT employment 0.614 0.583 
  (0.198)*** (0.202)*** 
 Population density 0.172 0.195 
  (0.084)** (0.087)** 
 Specialization manufacturing 0.047 0.048 
  (0.093) (0.093) 
 Specialization business-rel. services -0.290 -0.227 
  (0.128)** (0.141) 
 Specialization household-rel. services 0.167 0.151 
  (0.090)* (0.096) 
 Ellison-Glaeser index manufacturing -0.591 -0.547 
  (0.094)*** (0.102)*** 
 Ellison-Glaeser index business-rel. services 0.836 0.838 
  (0.279)*** (0.287)*** 
 Ellison-Glaeser index household-rel. services -0.308 -0.326 
  (0.220) (0.225) 

No. of observations 96,579 96,579 
Wald test (2) for spatial filters 180.81*** 171.73*** 
LR-test (Poisson vs. NegBin) 180.16*** 46.69***,$  
Vuong (NegBin vs. ZINB)  1.13 

Notes: * p<0.1; ** p<0.05; *** p<0.01; standard errors are given in brackets; $ = LR-test for zero-inflated Poisson vs. ZINB. 
See main document for details. A constant term has been included in the regression but is not reported here. 
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Table B.3. List of NUTS3 regions as a member of a BioRegio winner and participant cluster initiatives 

ID Name of NUTS3 district BioRegio 

winner 

BioRegio 

participant 

BioRegio 

number 

1002   Kiel  0 1 10 

1003   Lübeck  0 1 10 

2000   Hamburg  0 1 10 

13003   Rostock  0 1 4 

13001   Greifswald  0 1 4 

3405   Wilhelmshaven  0 1 11 

3403   Oldenburg  0 1 11 

4011   Bremen  0 1 2 

4012   Bremerhaven  0 1 2 

3241   Region Hannover  0 1 2 

3201   Hannover  0 1 9 

3101   Braunschweig  0 1 9 

3152   Göttingen  0 1 9 

5124   Wuppertal  1 0 13 

5111   Düsseldorf  1 0 13 

5315   Köln  1 0 13 

5313   Aachen  1 0 13 

5316   Leverkusen  1 0 13 

5354   Aachen  1 0 13 

5358   Düren  1 0 13 

5314   Bonn  1 0 13 

6534   Marburg-Biedenkopf  0 1 7 

6531   Gießen  0 1 7 

6414   Wiesbaden  0 1 14 

6412   Frankfurt  0 1 14 

7315   Mainz  0 1 14 

6411   Darmstadt  0 1 14 

6413   Offenbach  0 1 14 

6436   Main-Taunus  0 1 14 

6438   Offenbach  0 1 14 

7314   Ludwigshafen  1 0 15 

7316   Neustadt a. d. W.  1 0 15 

8111   Stuttgart  0 1 16 

8116   Esslingen  0 1 16 

8221   Heidelberg  1 0 15 

8222   Mannheim  1 0 15 

8416   Tübingen  0 1 16 

8415   Reutlingen  0 1 16 

8417   Zollernalbkreis  0 1 16 

8311   Freiburg  0 1 3 
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Table B.3. (cont’d) List of NUTS3 regions as a member of a BioRegio winner and participant cluster initiatives 

ID Name of NUTS3 district BioRegio 

winner 

BioRegio 

participant 

BioRegion 

number 

8421   Ulm  0 1 17 

9162   München  1 0 8 

9188   Starnberg  1 0 8 

9362   Regensburg  0 1 12 

16053   Jena  1 0 6 

15202   Halle  0 1 5 

14365   Leipzig  0 1 5 

15261   Merseburg-Querfurt  0 1 5 

15265   Saalkreis  0 1 5 

15154   Bitterfeld  0 1 5 

11000   Berlin  0 1 1 

12065   Oberhavel  0 1 1 

12069   Potsdam-Mittelmark  0 1 1 

12072   Teltow-Fläming  0 1 1 

12054   Potsdam  0 1 1 

Note: The BioRegion number refers to the definition given in Figure 2 in the main document. 
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