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Abstract 

In this paper, we develop a new unit root testing procedure which considers jointly for 

structural breaks and nonlinear adjustment. The structural breaks are modelled by means of a 

logistic smooth transition function and nonlinear adjustment is modelled by means of an 

ESTAR model. The empirical size of test is quite close to the nominal one and in terms of 

power; the new unit root test is generally superior to the alternative test. The new unit root test 

presents good size properties and does not lead to over-rejections of the null hypothesis of the 

unit root. 
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1. Introduction 

In the last forty years, the time series analysis of models with unit roots has increasingly 

become one of the major topics for the investigators and practitioners to understand the 

response of economic systems to shocks. The first tests for unit root were proposed by Fuller 

(1976) and Dickey and Fuller (1979). However, it is well known that the presence of 

structural breaks and nonlinearities in time series might affect the power of the traditional unit 

root tests. Accordingly, the Dickey-Fuller test fails to reject the null hypothesis of unit root 

and these types of tests would be powerless to separate the behaviour of a unit process from 

the behaviour of a stationary process with structural breaks.  

 

Perron (1989) proposed a unit root test which takes into account structural breaks 

exogenously in the deterministic components and displayed that the traditional unit roots tests 

detect incorrectly that the series have a unit root when in fact they are stationary with 

structural breaks. Apart from Perron (1989), many authors have developed unit root tests in 

order to take into account structural breaks (Zivot and Andrews (1992); Lumsdaine and Papell 

(1997); Lee and Strazicich (2003). The main feature of these unit root tests is that the 

deterministic structural changes are assumed to occur instantaneously, only in certain points 

of time.   

 

Nonetheless, individual agents can react simultaneously to a given economic stimulus; while 

some may be able to react instantaneously and so will adjust with different time lags. Thus, 

when considering aggregate behaviour, the time path of structural changes in economic series 

is likely to be better captured by a model whose deterministic component permits gradual 

rather than instantaneous adjustment between different values (Leybourne, Newbold and 

Vougas, 1998). From this point of view, some authors proposed different unit root tests that 
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consider smooth rather than a sudden change. The main idea behind of these tests is that 

nonlinearities can be present in time series as an asymmetric speed of mean reversion and 

autoregressive parameter varies depending upon the values of a variable. This nonlinear 

behaviour implies that there is a central regime where the series behave as a unit root whereas 

for values outside the central regime, the variable tends to revert to the equilibrium (Cuestas 

and Ordóñez, 2014).  

 

The nonlinear dynamics for unit root testing procedures and the joint analysis of nonlinearity 

and nonstationarity have been popularised since about the last twenty years. Kapetanios, Shin 

and Snell (2003) proposed a unit root test within an exponential smooth transition 

autoregressive (ESTAR) model. Apart from Kapetanios, Shin and Snell (2003), Sollis (2009), 

Kruse (2011) present invaluable contributions to the testing of unit roots considering 

nonlinearity. Although these studies consider asymmetric speed of mean reversion, they do 

not take into account nonlinearities in the deterministic components.  

 

On the other hand, Christopoulos and León-Ledesma (2010) developed tests for unit roots that 

account jointly for structural breaks and nonlinear adjustment. The prominent contribution of 

unit root test of Christopoulos and León-Ledesma (2010) is that this test takes into account 

asymmetric speed of mean reversion, as well as structural changes in the intercept, 

approximated by means of a Fourier function. Cuestas and Ordóñez (2014) also proposed a 

unit root test which extends the unit root test of Leybourne, Newbold and Vougas (1998) and 

takes into account both sources of nonlinearities, i.e. in the deterministic components, 

approximated by a logistic smooth transition function not only in the intercept, but also in the 

slope, an asymmetric adjustment of mean reversion. 
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In this paper, we develop a new unit root testing procedure which considers jointly for 

structural breaks and nonlinear adjustment. In our proposed test, structural breaks are 

modelled by means of a logistic smooth transition function that allows in the intercept, in the 

intercept under a fixed slope and in the intercept and slope terms. Nonlinear adjustment is 

modelled by means of an ESTAR model as suggested by Kruse (2011).  

 

The rest of the paper is organized as follows: Section 2 describes the proposed test statistics 

and provides asymptotic critical values. Section 3 presents the results of power and size of our 

proposed test via Monte Carlo simulation experiments. The last section concludes the paper. 

 

2. The Unit Root Test 

In this section, we propose a unit root test which accounts jointly for structural breaks and 

nonlinear adjustment. The test, which is considered as an alternative to Leybourne et. al. 

(1998) and Kruse (2011), attempts to model the structural change as a smooth transition 

between different regimes over time and also model the nonlinearities by means of ESTAR 

model suggested by Kruse (2011).  

 

In order to develop the new unit root testing strategy, we consider the following three logistic 

smooth transition models by following Leybourne, Newbold and Vougas (1998): 

 

Model A:  1 2 ,t t ty S v                  (1) 

Model B:  1 1 2 ,t t ty t S v                   (2) 

Model C:    1 1 2 2, ,t t t ty t S tS v                      (3) 
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where tv  is error term which is normally distributed with zero mean and unit variance and 

 ,tS    is the logistic smooth transition function, based on a sample of size T . 

 

     1
, 1 exptS t T   


       0             (4)

  

The parameter   determines the timing of the transition midpoint and the speed of transition 

is determined by the parameter  . If we assume tv  is a zero-mean  0I  process, then in 

model A ty  is stationary around a mean which changes from the initial value 1  to the final 

value 1 2  . Model B is similar to Model A, with the intercept changing from 1  to 1 2 

, but it allows for a fixed slope term. Finally, in Model C, in addition to the change in 

intercept from 1  to 1 2  , the slope also changes contemporaneously, and with the same 

speed of transition 1  to 1 2  .  

 

In this paper, we also follow a similar way to the approach of Cuestas and Ordóñez (2014) 

who propose to apply the unit root test of Kapetanios, Shin and Snell (2003) to the residuals 

of Equation (3) which considers the smooth breaks in the intercept and slope.  

 

The null of unit root hypothesis may be stated as follows: 

 

0 1: ,t t t t tH y                    (5) 

 

where t  is assumed to be an  0I  process with zero mean. In our proposed unit root test, the 

test statistics are calculated via a two step procedure. In the first step, we use the nonlinear 
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least squares (NLS) algorithm for estimating model A, B and C, and then we compute the 

NLS residuals. 

 

Model A:  1 2
ˆˆ ˆˆ ˆ,t t tv y S                  (6) 

Model B:  1 1 2
ˆ ˆˆ ˆˆ ˆ,t t tv y t S                   (7) 

Model C:    1 1 2 2
ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ, ,t t t tv y t S tS                      (8) 

 

In the second step, we apply the unit root test of Kruse (2011) to the residuals obtained in the 

first step. We allow for a nonzero location parameter c  by following Kruse (2011) in the 

ESTAR model which is modified to our strategy as the following form: 

 

   2
1 1ˆ ˆ ˆ1 expt t t tv v v c                    (9) 

 

where t̂v  is the estimated NLS residuals in the first step. Kruse (2011) proposes a first order 

Taylor approximation for equation (9) and obtains the auxiliary regression shown at equation 

(10). 

 

3 2
1 1 2 1

1

ˆ ˆ ˆ ˆ
p

t t t i t i t
i

v v v v     


                           (10)

       

In the auxiliary regression (10), the null hypothesis could be constituted 0 1 2: 0H   

against 1 1 2: 0, 0H    . It can be remarked that one parameter is one-sided and the other 

one is two-sided under the alternative hypothesis so a standard Wald type would be 

inconvenient to derive a test statistic. By following Kruse (2011) and applying the method of 



7 
 

Abadir and Distaso (2007), the one-sided parameter is orthogonalized with respect to the two-

sided one. The test statistics of our new procedure are computed as a modified Wald type test 

which builds upon the one-sided parameter and the transformed two-sided parameter: 

 

   
22 2

21 21 1
22 2 1 1

11 11 11

ˆˆ ˆˆ ˆ ˆˆ 1 0
ˆ ˆ ˆSNL SNLSNL  

        
  

  
        

  
                                      (11) 

 

which are the new statistics for a unit root hypothesis against nonlinear and stationary with 

one smooth break. 22̂ , 11̂  and 21̂  are the elements of Variance-Covariance matrix. We 

denote the value of test statistics as SNL  if Model A is used to construct the t̂v ,  SNL   if 

Model B is used and SNL  if Model C is used.  

 

As mentioned by Leybourne, Newbold and Vougas (1998), we assume the residuals tv  are 

zero-mean  0I  processes, and then ty  are also stationary processes in models A, B and C. 

Therefore, the asymptotic distributions of SNL ,  SNL   and SNL  statistics have the same 

properties with the   statistic of Kruse (2011). (For proofs, see Appendix of Kruse (2011)). 

 

Thus, the critical values of SNL ,  SNL   and SNL  test statistics have been obtained via 

stochastic simulations at 1%, 5% and 10% significance levels based on 50,000 replications for 

50,100, 250, 500T  . The critical values are reported in Table 1.  
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Table 1: Critical Values 

 SNL      SNL   
   SNL  

  
T 1% 5% 10%  1% 5% 10%  1% 5% 10% 
50 13.390 9.662 8.014  27.252 15.619 10.897  17.315 12.404 10.409 
100 13.567 9.839 8.925  16.895 12.621 10.749  16.897 12.621 10.749 
250 13.454 9.613 7.958  16.579 12.730 10.928  16.586 12.728 10.925 
500 13.247 9.525 7.846  17.107 12.895 11.053  13.656 9.830 8.050 

 

3. Monte Carlo Study 

This section involves the Monte Carlo investigation of the size properties and power 

performance of our new unit root test and also the power comparison of the new test with 

Kruse (2011) test.  

 

First, we study the empirical size of test for different sample sizes i.e. 50,100T   with a 

nominal size of 0.05. We generate the DGP as follows.  

 

 1 0, , 0 ~ 0,1t t t t t ty NIID                 (12) 

 

The results of empirical size of test, based on 5000 replications, are presented in Table 2. In 

general, we could conclude that the empirical size of test is quite close to the nominal one, 

5%. A significant size distortion is only determined for 50T   for  SNL   test. Nonetheless, 

the size distortion disappears for 100T  . 

 

Table 2: Size Properties of Test 
T  SNL    SNL   

 SNL  
50  0.059  0.017  0.046 

100  0.054  0.050  0.049 
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Next, we investigate the power of SNL ,  SNL  , SNL  tests based on the following models, 

respectively: 

 

  
101

1 expt ty v
t T 

  
    

          (13) 

 

  
101 10

1 expt ty t v
t T 

   
    

         (14) 

     
10 101 10

1 exp 1 expt t
ty t v

t T t T   
    

           
      (15) 

 

   2
1 11 expt t t tv v v c                  (16) 

 

with 1.0  , 0.5   and 1.5   . The location parameter c  is allowed by drawing from a 

uniform distribution with lower and upper bound of  5 10   and  5 10 , respectively. 

Analogously, the parameter   is allowed by drawing from a uniform distribution with lower 

and upper bound of  0.001,0.01  with slow transition between regimes  l  and  0.01,0.1  

with fast transition between regimes  h , respectively. The nominal size of the tests are 

determined at 0.05, the number of replications is 5000 and the sample size is considered for 

50,100T  . The results of power experiments and power comparison with Kruse (2011) test 

are displayed in Table 3.   
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Table 3: Power Experiments and Comparison 

Model A 

 5 ,c l   5 ,c h   10 ,c l   10 ,c h  

 SNL      SNL      SNL      SNL     
T=50 0.068  0.168  0.795  0.835  0.260  0.138  0.938  0.815 

T=100 0.333  0.304  0.964  0.986  0.448  0.265  1.000  0.983 

                
Model B 

 5 ,c l   5 ,c h   10 ,c l   10 ,c h  

  SNL   
     SNL   

     SNL   
     SNL   

   
T=50 0.042  0.166  0.396  0.642  0.050  0.138  0.998  0.854 

T=100 0.116  0.134  0.514  0.692  0.846  0.286  0.704  1.000 

                
Model C 

 5 ,c l   5 ,c h   10 ,c l   10 ,c h  

 SNL      SNL      SNL      SNL     
T=50 0.077  0.141  0.338  0.227  0.209  0.026  1.000  0.760 

T=100 0.404  0.170  0.796  0.507  0.319  0.043  0.773  0.998 
Notes: The values are rejection rates of Kruse test    and SNL ,  SNL   and SNL  tests 
and bold values display the cases where each test performs better. In power experiments we 
consider 1td   statistic for model A and 

 1td t
 

statistics for models B and C. 

 

The results of the power experiments and comparison show that the new unit root test is 

generally superior to the Kruse test. Only in some cases where the unit root test is applied for 

Model B, the Kruse test performs better than  SNL   test.  

 

4. Conclusions 

In this paper, we develop a new unit root testing procedure which considers jointly for 

structural breaks and nonlinear adjustment. The empirical size of test is quite close to the 

nominal one and in terms of power; the new unit root test is generally superior to the Kruse 

test. The new unit root test presents good size properties and does not lead to over-rejections 

of the null hypothesis of the unit root. 
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