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Abstract

We compare the performance of two volatility scaling methods in momentum
strategies: (i) the constant volatility scaling approach of Barroso and Santa-
Clara (2015), and (ii) the dynamic volatility scaling method of Daniel and
Moskowitz (2016). We perform momentum strategies based on these two
approaches in a diversified portfolio consisting of 55 global liquid futures
contracts, and further compare these results to the time series momentum
and buy-and-hold strategies. We find that the momentum strategy based on
the constant volatility scaling method is the most efficient approach with an
annual return of 15.3%.

Keywords: Cross-sectional momentum, Time series momentum,
Momentum crashes, Volatility scaling

1. Introduction

Over the past two decades, momentum has become one of the most widely
studied financial market phenomenons and profitable trading rules, in both
academia and industry. Momentum refers to the cross-sectional momen-
tum (henceforth, XSMOM), where abnormal profits are generated by longing
the best-performed stocks (winner) and shorting the poor-performed stocks
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(loser) in the past 3-12 months (Jegadeesh and Titman, 1993). However,
recent studies suggest that momentum strategies, although generate persis-
tent abnormal returns over time and across different asset classes1, suffer
from occasional large crashes (i.e. momentum crash)2. To address this issue,
volatility scaling methods are used to avoid risks of momentum strategies,
see, e.g., Boguth et al. (2011), Wang and Xu (2015), Barroso and Santa-Clara
(2015) and Daniel and Moskowitz (2016).

According to recent literature, there are two prevalent volatility scaling
methods: (i) the Constant Volatility Scaling Approach (henceforth, CVS)
documented by Barroso and Santa-Clara (2015), and (ii) theDynamic Volatil-

ity Scaling Approach (henceforth, DVS) of Daniel and Moskowitz (2016). A
CVS momentum strategy weights different instruments in the portfolio based
on the ratio between a constant target volatility and realised volatility. In
contrast, a DVS momentum strategy weights its instruments depending on
the ratio between the expected market returns and realised volatility. Both
approaches perform efficiently in U.S stock markets as seen in Barroso and
Santa-Clara (2015) and Daniel and Moskowitz (2016), but it is still under
debate that which one is better.

The rationales of the two approaches are qualitatively different but re-
lated to each other. Barroso and Santa-Clara (2015) argue that the main
risks of momentum strategies are the systematic risks which account for
87% of total risks. Hence, they introduce the CVS to control for systematic
risks. Whereas Daniel and Moskowitz (2016) suggest that the major risks
of momentum strategies are the time-varying beta risks caused by investors’
hedging positions. To reduce these risks, the authors develop the DVS. On
the other hand, these two approaches are highly related. According to Daniel
and Moskowitz (2016), the two approaches yield to the same results, when
the Sharpe ratios of momentum strategies are time invariant.

1Evidence of momentum has also been found in international stock markets, see, e.g.,
Fama and French (1998); Teplova and Mikova (2015), emerging markets see, e.g., Rouwen-
horst (1999); Zaremba and Szyszka (2016), country indices, see, e.g., Asness et al. (1997),
industries, see, e.g., Moskowitz and Grinblatt (1999), size and B/M factors, see, e.g.,
Lewellen (2002), commodities, see, e.g., Miffre and Rallis (2007); Shen et al. (2007), and
global asset classes, see, e.g., Asness et al. (2013).

2See Daniel and Moskowitz (2016).
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In this paper, we implement volatility scaled momentum strategies based
on both approaches, i.e. CVS based XSMOM and DVS based XSMOM, in
a diversified portfolio consisting of 55 futures instruments similar to Asness
et al. (2013) and Kim et al. (2016). Results confirm the existence of momen-
tum crash in futures markets across different asset classes. Then we employ
the Fama-French-Carhart four-factor model to evaluate the performance of
these two scaling methods. The regression results show that the Jense’s al-
pha of CVS based XSMOM strategy (1.93%) is significantly higher than the
alpha of DVS based XSMOM strategy (1.43%) using our sample data from
November, 1991 to May, 2017.

For a more in-depth comparison between the two aforementioned ap-
proaches, we divide the entire period into three sub-periods according to
Daniel and Moskowitz (2016), who claim that the motivation of designing
DVS is due to the relationship between sentiment and realised volatilities.
In other words, when investors experience financial stress (e.g., the 2007-2008
global financial crisis), their market activities would increase the volatilities
dramatically. Hence, we generate 3 sub-periods (1991-2006, 2006-2010 and
2010-2017) based on the 2007-2008 financial crisis. During pre sub-period,
we find that the abnormal returns of CVS based XSMOM are significantly
higher than the XSMOM returns based on DVS. However, the superiority of
CVS becomes statistically insignificant during crisis and post crisis periods.

In our cross-strategy comparison, we include a standard buy-and-hold
strategy and the time series momentum strategy (henceforth, TSMOM) of
Moskowitz et al. (2012) as two benchmarks. In contrast to XSMOM which
focuses on relative returns, a TSMOM signal only depends on the historical
returns of each future contract on its own. In particular, a TSMOM strategy
generates profits by longing (shorting) the contracts with positive (negative)
returns in the past 3-12 months. Moreover, we implement a time-varying
weighting scheme based on volatility scaling as in Moskowitz et al. (2012).
This method not only improves the performance of TSMOM strategy, but
also allows a fair comparison with our volatility adjusted XSMOM strate-
gies. Empirical results shows that the volatility scaled benchmark strategies
outperform the unscaled strategies as is also confirmed in Kim et al. (2016).
However, the CVS based XSMOM is still the most profitable trading strategy
among all of them.
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In summary, this paper contributes to the literature in the following man-
ners. First, we identify the momentum crash in futures markets, and hence
demonstrate the reasonableness to employ the volatility scaling approaches.
Second, we find that the CVS based XSMOM is more efficient and prof-
itable than the DVS based XSMOM with the difference being statistically
significant. Finally, the expanded comparison suggests that the CVS based
XSMOM strategy performs significantly better than the scaled TSMOM and
buy-and-hold strategies.

The remainder of this paper is organised as follows. In Section 2, we
provide the data sources and the summary statistics. Section 3 presents
the ways in calculating XSMOM strategies and different volatility scaling
methods. Then, we discuss the performance of different XSMOM strategies
and regression results in Section 4. Finally, Section 5 concludes.

2. Data

Similar to Moskowitz et al. (2012) and Kim et al. (2016), we collect
monthly prices from 55 global liquid futures instruments with updated time
range (June, 1986 to May, 2017). The portfolio consists of 24 commodity
contracts, 13 sovereign bond contracts, 9 currency contracts and 9 equity
index contracts. In this section, both the data sources and summarised
statistics of our sample data are reported.

2.1. Data sources

For each instrument, the continuous monthly futures prices are con-
structed by rolling all the nearest contracts to form a long time series from
Bloomberg. In commodity sector, Aluminium, Copper, Nickel, Zinc are from
London Metal Exchange (LME), The Brent Crude, Gas Oil, Cotton, Coffee,
Cocoa, Sugar are collected from Intercontinental Exchange (ICE), Live Cat-
tle, Lean Hogs are from Chicago Mercantile Exchange centre (CME), Corn,
Soy beans, Soy Meal, Soy Oil and Wheat are downloaded from Chicago Board
of Trade (CBOT), WTI crude, Unleaded Gasoline, Heating Oil, Natural Gas
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are from New York Commodity Exchange (COMEX). Platinum is collected
from Tokyo Commodity Exchange (TOCOM)3. In bond sector, we include
Australia 3-year and 10-year Bond, Euro 2-year, 5-year, 10-year and 30-year
Bond, Canada 10-year Bond, Japan 10-year Bond, Long Gilt (UK 10-year),
US 2-year, 5-year, 10-year and 30-year treasury. In currency sector, we cover
the currencies of Australia, Canada, Euro, Japan, New Zealand, Norway,
Sweden, Switzerland, UK against US dollar. While the universe of equity
sector consists of stock indices futures from SPI 200 (Australia), CAC 40
(France), DAX 30 (Germany), FTSE/MIB (Italy), TOPIX (Japan), AEX
(Netherlands), IBEX 35 (Spain), FTSE 100 (U.K), and S&P 500 (U.S).

In order to explore the properties of different asset classes, we collect the
monthly returns of four major financial asset class indices including MSCI
world Index, S&P GSCI, Barclays Aggregate Bond Index and the US Dol-
lar Index. These factors are downloaded from Bloomberg. Besides, we also
include the percentage changes of Fama-French factors in the regression anal-
ysis. They are Fama and French (1993) small market capitalization minus
big (smb), high book-to-market ratio minus low (hml), and Carhart (1997)
premium on winner minus loser (umd). The above data is downloaded from
K. French’s website.

2.2. Summarized statistics

In Table 1, we summarise the descriptive statistics of the original series.
The Bloomberg tickers, sectors, date of the first available data for each series,
annualised arithmetic means and standard deviations are presented. Most
futures have positive long term annualised means, while some of the curren-
cies and index futures show slightly negative returns. Regarding volatility,
we find that it varies across different asset classes.

In sector level, the government bond shows the lowest average standard

3According to Futures Industry Association data, Tokyo Commodity Exchange (TO-
COM) Platinum contract is the world most liquid platinum futures market, with an annual
trading volume of more than 4 million lots compared to the CME/NYMEX one (3,262,770
lots) in 2013.

5



deviation (6.72%), but it does not generate the lowest return. The average
return cross different contracts in currency sector is only 0.72%, which is the
smallest among all the four sectors. In contrast, The volatility and return
of commodities and equities are much higher than those of currencies and
bonds. Specifically, the FTSE/MIB index contracts provide the lowest an-
nualised return (-1.33%) among all contracts. The EURO 2-years bond con-
tracts exhibit the lowest annualised stander deviation (1.33%). The Natural
Gas contracts display the highest annualised return and stander deviation of
16.56% and 72.53%, respectively.

3. Methodology

This section presents details of methodologies used in this study. We first
explain our method in calculating the XSMOM returns. Then, we focus on
the volatility estimation and introduce the two volatility scaling approach,
CVS and DVS. Finally, the two benchmarks, buy-and-hold and TSMOM,
are specified in Section 3.3.

3.1. Cross-section momentum strategies

The XSMOM strategy is constructed by longing the winners and shorting
the losers over a certain look-back period. According to Kim et al. (2016),
we select the look-back period of 6 months and holding period of 1 month.
We divide the entire diversified portfolio into deciles, where we buy the top-
performed decile and short the bottom one. To make sure that there are
enough futures contracts to be included in our momentum portfolio, we im-
plement our momentum strategies when there are at least 45 contracts avail-
able in the dataset, so that the number of instruments in the top/bottom
decile is at least 5. This makes our XSMOM strategies available from Novem-
ber, 1991 to May, 2017.
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Table 1: Summarized Statistics.

No Contract Bloomberg Ticker Sector Start End Mean SD

1 Aluminum LMAHDS03 Comdty commodity Jun-87 May-17 0.022 0.245
2 Brent CO1 Comdty commodity Jun-88 May-17 0.121 0.416
3 Cocoa CC1 Comdty commodity Jan-86 May-17 0.035 0.260
4 Coffee KC1 Comdty commodity Jan-86 May-17 0.064 0.396
5 Copper LMCADS03 Comdty commodity Apr-86 May-17 0.108 0.405
6 Corn C 1 Comdty commodity Jan-86 May-17 0.058 0.276
7 Cotton CT1 Comdty commodity Jan-86 May-17 0.047 0.303
8 Gas Oil QS1 Comdty commodity Jan-86 May-17 0.103 0.410
9 Gold GC1 Comdty commodity Jan-86 May-17 0.046 0.150
10 Heating Oil HO1 Comdty commodity Jan-86 May-17 0.112 0.397
11 Lean Hogs LH1 Comdty commodity Jan-86 May-17 0.036 0.235
12 Live Cattle LC1 Comdty commodity Jan-86 May-17 0.032 0.111
13 Natural Gas NG1 Comdty commodity Apr-90 May-17 0.166 0.725
14 Nickel LMNIDS03 Comdty commodity Jan-87 May-17 0.158 0.673
15 Platinum JA1 Comdty commodity Jan-86 May-17 0.038 0.240
16 Unleaded XB1 Comdty commodity Oct-05 May-17 0.086 0.452
17 Silver SI1 Comdty commodity Jan-86 May-17 0.064 0.257
18 Soy Meal SM1 Comdty commodity Jan-86 May-17 0.059 0.270
19 Soy Oil BO1 Comdty commodity Jan-86 May-17 0.055 0.251
20 Soybeans S 1 Comdty commodity Jan-86 May-17 0.050 0.246
21 Sugar SB1 Comdty commodity Jan-86 May-17 0.091 0.370
22 Wheat W 1 Comdty commodity Jan-86 May-17 0.046 0.276
23 WTI CL1 Comdty commodity Jan-86 May-17 0.100 0.378
24 Zinc LMZSDS03 Comdty commodity Jan-89 May-17 0.087 0.401
25 AUS 3Y YM1 Comdty bond Dec-89 May-17 0.005 0.019
26 AUS 10Y XM1 Comdty bond Sep-87 May-17 0.004 0.015
27 EURO 2Y DU1 Comdty bond Mar-97 May-17 0.005 0.013
28 EURO 5Y OE1 Comdty bond Oct-91 May-17 0.016 0.041
29 EURO 10Y RX1 Comdty bond Nov-90 May-17 0.029 0.065
30 EURO 30Y UB1 Comdty bond Oct-98 May-17 0.031 0.134
31 CA 10Y CN1 Comdty bond Sep-89 May-17 0.016 0.071
32 JP 10Y JB1 Comdty bond Jan-86 May-17 0.013 0.040
33 UK 10Y G 1 Comdty bond Jan-86 May-17 0.007 0.086
34 US 2Y TU1 Comdty bond Jun-90 May-17 0.003 0.027
35 US 5Y FV1 Comdty bond May-88 May-17 0.009 0.052
36 US 10Y TY1 Comdty bond Jan-86 May-17 0.009 0.197
37 US 30Y US1 Comdty bond Jan-86 May-17 0.021 0.113
38 AUD/USD AD1 Curncy currency Jan-87 May-17 0.008 0.129
39 CAD/USD CD1 Curncy currency Apr-86 May-17 0.005 0.089
40 EUR/USD EC1 Curncy currency May-98 May-17 -0.001 0.103
41 JPY/USD JY1 Curncy currency May-86 May-17 0.017 0.120
42 NZD/USD NV1 Curncy currency May-97 May-17 0.018 0.133
43 NOK/USD NO1 Curncy currency May-02 May-17 -0.007 0.128
44 SEK/USD SE1 Curncy currency May-02 May-17 0.004 0.122
45 CHF/USD SF1 Curncy currency Apr-86 May-17 0.021 0.110
46 GBP/USD BP1 Curncy currency May-86 May-17 0.001 0.113
47 SPI 200 XP1 Index index May-00 May-17 0.052 0.174
48 CAC 40 CF1 Index index Jan-90 May-17 0.064 0.215
49 DAX 30 GX1 Index index Nov-90 May-17 0.112 0.235
50 FTSE/MIB ST1 Index index Mar-04 May-17 -0.013 0.211
51 TOPIX TP1 Index index May-90 May-17 0.020 0.237
52 AEX FXNL Index index Jan-90 May-17 0.080 0.242
53 IBEX 35 IB1 Index index Jul-92 May-17 0.088 0.248
54 FTSE 100 Z 1 Index index Jan-90 May-17 0.062 0.158
55 S&P 500 SP1 Index index Jan-90 May-17 0.091 0.169
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3.2. Volatility scaling weights

The core idea of volatility scaling approaches is to control the weight of
each instrument to be inversely proportional to its volatility. To adopt the
volatility scaling appraches, the first step is to estimate this volatility. Here,
we calculate the 6-month realised volatility using the method of Barroso and
Santa-Clara (2015), which is an average of squared previous 126 daily returns.
The equation is shown as follows:

σ2
t =

21
∑125

j=0
r2WML,dt−1−j

126
, (1)

where σt denotes the volatility of winner minus loser (WML) series of the
XSMOM strategy at time t, and rWML,d is the return of WML series. Given
this method is tractable and aligned with the 6 months look-back period, it
is used throughout the rest of the paper.

Then, the return of CVS based momentum strategy rCV S
WML,t is given by:

rCV S
WML,t =

σtarget

σt

rWML,t, (2)

where σtarget is the target annualised volatility of the portfolio, σt is the
realised volatility of 6-month returns calculated from Equation 1. According
to both Moskowitz et al. (2012) and Barroso and Santa-Clara (2015), the
monthly target volatility for futures investment is reasonably considered as
12%. Hence, we use this figure as the target volatility in our study.

In the DVS approach, the first step is to calculate the conditional ex-
pected WML returns, which is estimated depending on the market status
and realised volatility. Given that the investors’ market expectation is highly
related to market conditions, we use the bear market indicator to proxy the
market status. Similar to Daniel and Moskowitz (2016), we define the bear
market indicator to be equal to 1 if the cumulative returns of the market
index in the past 24 months are negative and 0 otherwise. In this study, we
employ the MSCI index as the market index because it reflects market status
immediately.
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Apart from the market status, market expected return is also influenced
by the ex-ante realised volatility as high volatility lowers market expecta-
tion and vice versa. Hence, we capture how ex-ante realised volatility and
bear market indicator impact WML return using the method of Daniel and
Moskowitz (2016), which is shown as follows:

RWML,t = γ0 + γBIB,t−1 + γσ2
m
σ2
m,t−1 + γintIB,t−1σ

2
m,t−1 + ǫt, (3)

where the dependent variable RWML,t is the monthly WML return, IB,t−1

denotes the lagged bear market indicator, σ2
m,t−1 represents the lagged re-

alised volatility, and epsilont is the error term. γ0, γB, γσ2
m
, and γint denote

the constant and coefficients for corresponding explanatory variables. Then,
the conditional expected WML return over the coming month, E(RWML,t), is
calculated by the combination of realised volatility and bear market indicator
in current month as follow:

E(RWML,t) = γ0,t−1 + γint,t−1 ∗ IB,t−1 ∗ σ
2
m,t−1, (4)

where γ0,t−1 and γint,t−1 are the estimated coefficients in last period, as the
expected WML return of time t is determined by the market status and
volatility at time t− 1.

After the clarification of the relationship between market expected return
and realised volatility, we compute the return of DVS based momentum
strategy, rDV S

WML,t, as:

rDV S
WML,t = (

1

2λ
)
E(RWML,t+1)

σ2
t

rWML,t, (5)

where rWML,t represents the WML return, λ is a time-varying parameter
which makes the volatility of DVS based XSMOM returns equals the volatil-
ity of weighted average returns of four market indices.

3.3. Benchmark strategies

There are two benchmarks used in this study, buy-and-hold and TSMOM
strategies. We consider both equally weighted and time-varying volatility
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weighting schemes to determine the position sizes of the two benchmarks.
This returns us four different benchmark strategies. First, in an equally
weighted buy-and-hold strategy, the portfolio return, rbnht , in a diversified
portfolio consisting of S instruments at time t is given by:

rbnht =
1

St

St∑

s=1

rst , (6)

where s denotes each individual instrument, and rst is the monthly return of
s asset.

Next, in a TSMOM strategy, a positive signal is constructed when the
past period return is positive, while a negative signal is generated when the
past return is negative. We set the parameters the same as in our XSMOM
strategy with a look-back period of 6 months and a holding period of 1 month.
Hence, the return of an equally weighted (unscaled) TSMOM strategy at time
t is calculated as:

rTSMOM
t =

1

St

St∑

s=1

sign(rst−6,t)r
s
t , (7)

where the past 6 months return sign, sign(rst−6,t), is either 1 if the 6 months
return is positive, and -1 otherwise.

In addition to the above equally weighted benchmarks, we also apply a
time-varying volatility adjusted weighting shceme to the buy-and-hold and
TSMOM strategies. According to Moskowitz et al. (2012) and Kim et al.
(2016), the volatility scaled benchmarks should outperform their original
equally weighted version. To implement this approach, we calculate the time-
varying volatility σ2

t,B which is an annualised exponentially weighted variance
of the past returns4. This time-varying volatility estimation is used as a scaler
for volatility adjusted (scaled) buy-and-hold and TSMOM strategies.

To measure the scaled returns of buy-and-hold trading strategy, we cal-
culate its position signals in the same way as in Equation 6 but allow the
portfolio weight for each instrument to be given as a function of its ex-ante

4For more details, see Moskowitz et al. (2012) Equation 1 there in.
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realised volatility. We generate the volatility weighted factor to scale the re-
turns for each asset and average all the weighted returns to calculate returns
of the whole portfolio. The equation of this scaled buy-and-hold return is
exhibited as follow:

r
bnh,scaled
t =

1

St

St∑

s=1

22.6%

σs
t,B

rst , (8)

where σs
t,B is the volatility estimated by Equation ??, St are the number of

instruments at time t, rst is the return of asset s. According to the method
of Moskowitz et al. (2012), the target volatility of 22.6% is the calculated
depending on the volatility of the whole portfolio. More specifically, it is
re-estimated in our dataset so that it is equal to the realised volatility of an
equal weighted buy-and-hold portfolio. The choice of the target volatility
aligns our results with the current literature and also mimics a real-trading
situation with a capital margin of about 5-15%.

Finally, after the combination of scaling factor and Equation 7, the port-
folio returns of scaled TSMOM strategy is given by:

r
TSMOM,scaled
t =

1

St

St∑

s=1

sign(rst−6,t)
22.6%

σs
t,B

rst , (9)

where sign(rst−6,t) is the signal factor as in Equation 7.

4. Empirical results

4.1. Momentum crashes in futures markets

As is defined in Daniel and Moskowitz (2016), momentum crash is the
period when the cumulative returns of the bottom decile are significantly
higher than the cumulative returns of the top decile. This under-performance
of bottom decile is caused by the high-risk assets during the crisis period.
After the crisis, performance of loser decile is improved more than that of
the winner decile. Hence, momentum crashes normally occur during financial
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stress. To motivate our application of volatility scaling approaches, we first
identify the momentum crashes in futures markets in this sub-section.

We plot the cumulative returns5 of top and bottom deciles in XSMOM
strategy from 1991 to 2017 and report it in Figure 1. It can be seen that at
the beginning of our XSMOM strategy (1991-1993), the cumulative returns
of the bottom decile are slightly higher than the ones in the top decile. This
is probably caused by the Soviet Union collapse6 and Gulf War7. It is a
potential momentum crash, but we are not able to identify it as we do not
have enough data to calculate the aforementioned 24 months cumulative
returns. Then, we focus on the crash resulted from the 2007-2008 financial
crisis.

In Figure 1, it can be seen that the cumulative returns of top decile drop
significantly from 2007 and become highly volatile between 2007 and 2011,
reflecting great uncertainty in the market. Since the bear market indicators
for momentum crash are estimated by the 24 months cumulative returns, we
investigate the momentum crash between 2009 and 2013. Then, we display
the sub-period (2009-2013) cumulative returns in Figure 2 and find that the
cumulative returns of bottom decile are higher than the cumulative returns
of top decile. Hence, we conclude the observation of the momentum crash
caused by the financial crisis in futures markets.

4.2. Constant versus dynamic volatility scaling approach

As both CVS and DVS approaches aim to reduce the momentum losses
during times of financial stress, we investigate the effect of volatility scaling
during 2007-2008 which is also emphasised in Barroso and Santa-Clara (2015)

5We assume the investors invest 100 dollars in the strategy, and cumulative returns
(CR) is calculated as : CR = 100 ∗ exp(

∑
n

i=1
ln(1 + ri)).

6Feldstein (1998) claim that the collapse crashes the currencies exchange rates in Eu-
rope and triggers Black Wednesday.

7Guo et al. (2005) and Kilian (2009) demonstrate that the war significantly impact the
supply of crude oil, which further shocks the prices of crude related futures and leads to
financial stress.
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Figure 1: Cumulative returns of XSMOM top and bottom deciles.

and Daniel and Moskowitz (2016). In particular, we separate the entire sam-
ple period into 3 sub-periods, including pre-crisis, crisis and post-crisis, for a
thorough analysis. The first sub-period covers the time between November,
1991 and December, 2006, which is before the beginning of 2007-2008 global
financial crisis8. The second sub-period (crisis period) spans January, 2007
to December, 2010, since the bear market indicators keep equal 1 until the
end of 2010. The last sub-period, i.e. the post-crisis period, is from January,
2011 to May, 2017.

To understand the dynamics of CVS and DVS based XSMOM strategies,
we regress their returns on four market indices proxying different asset classes
as well as the Fama-French and Carhart three factor models (Fama and
French, 1993; Carhart, 1997) representing size, value and momentum effects.

8We thank the referee for pointing out that the pre-crisis period contains some periods
of regional financial distress (e.g., 1997 East Asian currency crisis), which is also reflected
in the momentum returns shown in Figure 1. However, these drawdowns are much smaller
than the momentum losses in the global financial 2007-2008 which caused a massive asset
price crash internationally.
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Figure 2: Cumulative returns during momentum crash.

The regression equation is shown as:

rt = α+β1mscit+β2gscit+β3aggrt+β4dinxt+β5smbt+β6hmlt+β7umdt+ǫt,

(10)
where rt denotes the returns of CVS or DVS XSMOM strategies, mscit, gscit,
aggrt, dinxt are the returns of four market indices introduced in Section 2.1,
smbt (size), hmlt (value) umdt (momentum) are the three aforementioned
risk factors. The results of this regression are shown in Table 2.

In Table 2 Panel A, we report the regression results of the two scaled
XSMOM strategies during the entire sample period. Both approaches show
statistically significant alphas at 1% level. The alpha of the CVS based
XSMOM strategy(1.93%), is slightly greater than the alpha from the DVS
approach(1.43%). The returns of both strategies are also strongly related to
the umd factors and slightly related to hml factors. Moreover, the CVS and
DVS based strategies are also negatively related to the gsci factors at 10%
level of significance.

When sub-periods are considered, as shown in Table 2 Panel B, both
scaled XSMOM strategies display statistically significant alphas in the pre-
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Table 2: Constant versus dynamic volatility scaling approaches.

Panel A Comparison in overall period

Date strategies alpha msci gsci dinx aggr smb hml umd

1991-2017 CVS 0.0193*** 0.280 -0.219* 0.208 -0.617 0.000351 -0.00400* -0.00701***
(2.75) (1.62) (-1.91) (0.33) (-0.68) (0.17) (-1.83) (-4.00)

DVS 0.0143*** 0.197 -0.156* 0.168 -0.437 0.000427 -0.00293* -0.00512***
(2.66) (1.50) (-1.78) (0.35) (-0.63) (0.27) (-1.76) (-3.83)

Panel B Comparison in sub-periods

Date strategies alpha msci gsci dinx aggr smb hml umd

1991-2006 CVS 0.0256*** 0.138 0.143 0.401 -0.0000324 -0.000334 -0.00337 -0.00530***
(3.32) (0.66) (0.74) (0.62) (-0.02) (-0.15) (-1.39) (-2.98)

DVS 0.0187*** 0.0929 -0.347*** 0.313 -0.614 0.0000496 -0.00240 -0.00381***
(3.26) (0.65) (-3.77) (0.65) (-0.94) (0.03) (-1.33) (-2.87)

2007-2010 CVS 0.00232 0.519 -0.135 -1.292 1.689 -0.00748 -0.00828 -0.00588
(0.11) (1.02) (-0.43) (-0.77) (0.59) (-0.86) (-1.34) (-1.38)

DVS 0.00207 0.386 -0.112 -0.892 1.194 -0.00578 -0.00619 -0.00422
(0.13) (1.03) (-0.48) (-0.72) (0.57) (-0.90) (-1.35) (-1.34)

2011-2017 CVS 0.0217 0.341 0.185 -1.105 1.373 0.0108 -0.0127 -0.0224***
(1.20) (0.59) (0.47) (-0.53) (0.40) (1.37) (-1.43) (-3.04)

DVS 0.0159 0.273 0.149 -1.002 1.408 0.00920 -0.00988 -0.0170***
(1.11) (0.60) (0.48) (-0.60) (0.52) (1.49) (-1.41) (-2.93)

Panel C The differences between two approaches (CVS miuns DVS)

Date Diff P-value

1991-2006 0.007 0.0003
2007-2010 0.0003 0.960
2011-2017 0.006 0.130
1991-2017 0.005 0.002

The CVS represents constant volatility scaling based XSMOM strategy of Barroso and Santa-Clara (2015). The DVS
represents dynamic volatility scaling based XSMOM strategy introduced by Daniel and Moskowitz (2016). The msci,
gsci, dinx, aggr, smb, hml, umb are the benchmark factors. Panel A displays the results for the overall period. Panel B
displays the results for the three sub-periods. Panel C reports the differences between the alphas of CVS minus DVS
approaches, where P-values are estimated based on the F-test as in Kim et al. (2016).
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crisis sub-period, but insignificant ones during crisis and post-crisis sub-
periods. In most of the sample period, the CVS and DVS based returns are
strongly correlated with the changes in the momentum factor umd. However,
this relationship ceases to hold during the crisis period.

Finally, as is observed in Table 2 Panel C, results show that the CVS
based XSMOM strategy outperforms DVS based XSMOM strategy as the
difference in alphas is statistically significant at 1% level (p=0.002). However,
when different sub-periods are considered, the difference is only statistically
significant before the crisis. Specifically, the superiority in alphas is 0.7%
(p=0.0003) during the pre-crisis period, and then narrows to 0.03%(p=0.96)
in the financial crisis period. In the post-crisis period, the gap between two
scaled strategies gets larger at 0.6% level (p=0.13) again. To sum up, the
CVS is a more efficient scaling method than DVS in the whole period, but
the superiority of CVS based XSMOM strategy is almost eliminated during
time of financial crisis.

Figure 3 plots the cumulative returns for two 100 dollars investments in
CVS and DVS based XSMOM strategies over the period from November,
1991 to May, 2017. Overall, despite the return tendencies of two scaled
strategies are similar to each other, the performance of CVS based XSMOM
is higher than DVS based XSMOM. More specifically, the cumulative re-
turns of CVS based XSMOM are slightly higher than DVS based XSMOM
before 2003, but the superiority expands between 2003 and 2007. Then, the
recession during 2007-2008 financial crisis nearly eliminates the difference
between the two scaled strategies. After the financial crisis, the recovery
of global economic condition improves performance of both scaled strategies
with the gap being quite small. These findings are consistent with our prior
regression results, where 2007-2008 financial crisis decreases the performance
of both scaled XSMOM strategies and almost eliminates the superiority of
CVS based XSMOM strategy.

4.3. Cross-strategy comparison

In this sub-section, we conduct an extended cross-strategy comparison
where the equally weighted buy-and-hold, TSMOM (Moskowitz et al., 2012)
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Figure 3: Cumulative returns of CVS and DVS based XSMOM strategies.

and XSMOM as well as the scaled buy-and-hold and TSMOM strategies
are included. These benchmarks are added as they are also linked to the
volatility scaling approach studied in this paper, and hence, providing valu-
able comparison. This allows us to evaluate whether the CVS/DVS based
XSMOM outperform the benchmarks, resulting in a more robust conclusion.
To implement the comparison, we still employ the regression as in Equation
10 to understand the dynamics of all involved strategies. As in the previ-
ous sub-section, we also include the trading strategy analysis and cumulative
returns plot.

We report the regression results in Table 3. As seen in panel A, the buy-
and-hold returns are highly related to the four market indices, namely msci,
gsci, dinx, and aggr. The only difference is that the scaled buy-and-hold
generates an statistically significant alpha while the unscaled buy-and-hold
does not. In contrast, the TSMOM returns only have significant coefficients
with the msci and umd as shown in Panel B. Both scaled and unscaled
TSMOM strategies exhibit alphas at 0.217% and 0.332%, respectively, which
are at 5% level of significance. Panel C provides a comparison among the
three XSMOM strategies: unscaled XSMOM, CVS and DVS based XSMOM.
It can be seen from the results that the volatility scaled strategies have less
exposure to the market indices than the original XSMOM strategy. The CVS
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based XSMOM still generates the highest alpha among the three approaches.
Finally, in order to assess whether the alphas of scaled XSMOM strategies are
significantly higher than scaled benchmark strategies, we compare the alphas
of scaled XSMOM strategies with the other scaled strategies in panel D.
According to the negative differences and low p-values, we suggest that both
scaled XSMOM strategies significantly outperform the benchmark strategies.

Table 3: Cross-strategy comparison.

Panel A: Buy-and-hold strategies

alpha msci gsci dinx aggr smb hml umd

Buy-and-hold 0.000886 0.239*** 0.224*** 0.227*** -0.0544 -0.0000743 0.000233 -0.000101
(1.47) (16.10) (22.72) (4.23) (-0.70) (-0.42) (1.24) (-0.67)

Buy-and-hold scaled -0.00221*** 0.210*** 0.175*** 0.403*** 0.629*** 0.00000363 0.0000378 -0.000170
(-2.84) (10.99) (13.71) (5.83) (6.24) (0.02) (0.16) (-0.87)

Panel B: Time series momentum strategies

alpha msci gsci dinx aggr smb hml umd

TSMOM 0.00217** -0.0574** 0.0229 0.0810 -0.239* -0.000330 0.000417 0.00114***
(2.07) (-2.23) (1.34) (0.87) (-1.76) (-1.08) (1.28) (4.38)

TSMOM scaled 0.00332** 0.00123*** 0.000372 -0.000421 -0.158 0.116 -0.00198 -0.0771**
(2.42) (3.60) (0.87) (-1.05) (-0.89) (0.96) (-0.09) (-2.29)

Panel C: Cross-sectional momentum strategies

alpha msci gsci dinx aggr smb hml umd

XSMOM 0.00633*** 0.145*** -0.108*** -0.0507 -0.198 -0.000354 -0.00152** -0.00268***
(2.87) (2.68) (-2.99) (-0.26) (-0.69) (-0.55) (-2.22) (-4.88)

CVS 0.0193*** 0.280 -0.219* 0.208 -0.617 0.000351 -0.00400* -0.00701***
(2.75) (1.62) (-1.91) (0.33) (-0.68) (0.17) (-1.83) (-4.00)

DVS 0.0143*** 0.197 -0.156* 0.168 -0.437 0.000427 -0.00293* -0.00512***
(2.66) (1.50) (-1.78) (0.35) (-0.63) (0.27) (-1.76) (-3.83)

Panel D: Differences cross scaled strategies

Scaled strategies pair Diff P-value

TSMOM scaled vs. CVS -0.016 0.038
TSMOM scaled vs. DVS -0.011 0.074
Buy-and-hold Scaled vs. CVS -0.022 0.001
Buy-and-hold Scaled vs. DVS -0.017 0.001

The msci, gsci, dinx, aggr, smb, hml, umb are the benchmark factors. Panel A shows the regression results of unscaled and
scaled simple buy-and-hold strategies. Panel B displays the results of unscaled and scaled TSMOM strategies. In Panel C,
XSMOM reports the regression result of the equally weighted XSMOM strategy, while the CVS and DVS report the two
volatility scaling approaches, respectively. Panel D exhibits the differences of intercepts for scaled strategies based on the
F-test as in Kim et al. (2016).
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In addition to the regression results, we also plot the expanded cumulative
return comparison in Figure 4, where the cumulative returns of both CVS and
DVS based XSMOM perform better than the scaled benchmark strategies.
These results are consistent with the aforementioned findings in Table 3,
where the two scaled XSMOM strategies perform significantly better than
any benchmarks. However, it is also witnessed that the strategies based on
CVS and DVS approaches exhibit higher volatility than the two benchmarks,
indicating lower return-to-risk ratios.

Figure 4: Cumulative returns of all scaled strategies.

For a thorough investigation of these trading strategies, we further eval-
uate their performance as summarised in Table 4. First, all the volatility
scaled strategies exhibit higher average returns and volatility than the corre-
sponding unscaled strategies. This result is the same as is suggested in Kim
et al. (2016). Second, the two scaled XSMOM strategies display the highest
average returns of 15.3%(CVS) and 11.5%(DVS) per annum, which are twice
to three times greater than those of the benchmark strategies. Whereas the
Sharp ratios of the two scaled XSMOM strategies are almost equal to each
other, but smaller than some of the benchmarks. This suggests that the CVS
and DVS approaches lead to greater profitability than their rivals, and at the
same time display higher uncertainty.
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Table 4: Performance of CVS and DVS based XSMOM compared to benchmarks.

Strategies Average Volatility Sharpe Max Min Cumulative Drawdown

buy-and-hold 0.045 0.077 0.580 0.078 -0.134 1.915 0.301
buy-and-hold scaled 0.051 0.084 0.605 0.074 -0.131 2.361 0.270

TSMOM 0.023 0.059 0.396 0.136 -0.043 0.738 0.188
TSMOM scaled 0.042 0.076 0.548 0.154 -0.057 1.693 0.224

XSMOM 0.048 0.123 0.393 0.101 -0.099 1.825 0.297
CVS 0.153 0.391 0.392 0.515 -0.287 6.261 0.645
DVS 0.115 0.297 0.386 0.439 -0.224 5.164 0.532

Each row concludes the annualised summary of covered strategies. In particular, the Average
column reports the average annualise returns of each strategy, Volatility column displays the
annualised volatility of each strategy, the Sharpe column exhibits the Sharpe ratios of strate-
gies, Max and Min columns report the highest and lowest monthly returns in each strategy;
Drawdown shows the peak-to-trough decline periods. All figures are calculated by the monthly
returns of each strategies.

5. Conclusion

We observe a momentum crash in futures markets during 2009-2013,
which is also witnessed in the US stock markets by Daniel and Moskowitz
(2016). Then, we compare the performance of two volatility scaling ap-
proaches, CVS and DVS, in XSMOM strategies. The regression results sug-
gest that CVS of Barroso and Santa-Clara (2015) produces statistically su-
perior alphas than the DVS of Daniel and Moskowitz (2016) in most of the
sample periods. However, the positive difference gets smaller during the cri-
sis period. These volatility scaled momentum strategies also display high
relationship with the commodity index gsci (10% level of significance) and
the momentum factors in particular (1% level of significance).

Furthermore, the CVS based XSMOM strategy exhibits the best prof-
itability among all strategies in a cross-strategy comparison including the
equally weighted buy-and-hold, TSMOM and XSMOM as well as scaled
buy-and-hold and TSMOM strategies. Despite this strategy incorporates
relatively larger risk and drawdown, it ends up with the highest cumulative
returns. Therefore, we conclude that the CSV is a more efficient volatility
scaling method for momentum strategies in futures markets.
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One of the main concerns for users of the CVS approach is that it displays
higher risks (standard deviation) compared to the other volatility scaling
approaches which might affect its profitability in times of uncertainty. We
suggest future researches could be focused on investigating the source of this
risk and how to alleviate it. One possible method is to rank the winner/loser
portfolio using an alternative way, instead of ranking their returns.

21



References

Asness, C. S., Liew, J. M. and Stevens, R. L. (1997), ‘Parallels between the
cross-sectional predictability of stock and country returns’, The Journal

of Portfolio Management 23(3), 79–87.

Asness, C. S., Moskowitz, T. J. and Pedersen, L. H. (2013), ‘Value and
momentum everywhere’, The Journal of Finance 68(3), 929–985.

Barroso, P. and Santa-Clara, P. (2015), ‘Momentum has its moments’,
Journal of Financial Economics 116(1), 111–120.

Boguth, O., Carlson, M., Fisher, A. and Simutin, M. (2011), ‘Conditional
risk and performance evaluation: Volatility timing, overconditioning, and
new estimates of momentum alphas’, Journal of Financial Economics

102(2), 363–389.

Carhart, M. M. (1997), ‘On persistence in mutual fund performance’, The
Journal of Finance 52(1), 57–82.

Daniel, K. and Moskowitz, T. J. (2016), ‘Momentum crashes’, Journal of
Financial Economics 122(2), 221–247.

Fama, E. F. and French, K. R. (1993), ‘Common risk factors in the returns
on stocks and bonds’, Journal of Financial Economics 33(1), 3–56.

Fama, E. F. and French, K. R. (1998), ‘Value versus growth: The
international evidence’, The Journal of Finance 53(6), 1975–1999.

Feldstein, M. (1998), ‘Refocusing the imf’, Foreign Affairs-New York

77, 20–33.

Guo, H., Kliesen, K. L. et al. (2005), ‘Oil price volatility and us
macroeconomic activity’, Review-Federal Reserve Bank of Saint Louis

87(6), 669.

Jegadeesh, N. and Titman, S. (1993), ‘Returns to buying winners and
selling losers: Implications for stock market efficiency’, The Journal of

Finance 48(1), 65–91.

22



Kilian, L. (2009), ‘Not all oil price shocks are alike: Disentangling demand
and supply shocks in the crude oil market’, The American Economic

Review 99(3), 1053–1069.

Kim, A. Y., Tse, Y. and Wald, J. K. (2016), ‘Time series momentum and
volatility scaling’, Journal of Financial Markets 30, 103–124.

Lewellen, J. (2002), ‘Momentum and autocorrelation in stock returns’,
Review of Financial Studies 15(2), 533–564.

Miffre, J. and Rallis, G. (2007), ‘Momentum strategies in commodity
futures markets’, Journal of Banking & Finance 31(6), 1863–1886.

Moskowitz, T. J. and Grinblatt, M. (1999), ‘Do industries explain
momentum?’, The Journal of Finance 54(4), 1249–1290.

Moskowitz, T. J., Ooi, Y. H. and Pedersen, L. H. (2012), ‘Time series
momentum’, Journal of Financial Economics 104(2), 228–250.

Rouwenhorst, K. G. (1999), ‘Local return factors and turnover in emerging
stock markets’, The Journal of Finance 54(4), 1439–1464.

Shen, Q., Szakmary, A. C. and Sharma, S. C. (2007), ‘An examination of
momentum strategies in commodity futures markets’, Journal of Futures
Markets 27(3), 227–256.

Teplova, T. and Mikova, E. (2015), ‘New evidence on determinants of price
momentum in the japanese stock market’, Research in International

Business and Finance 34, 84–109.

Wang, K. Q. and Xu, J. (2015), ‘Market volatility and momentum’, Journal
of Empirical Finance 30, 79–91.

Zaremba, A. and Szyszka, A. (2016), ‘Is there momentum in equity
anomalies? evidence from the polish emerging market’, Research in

International Business and Finance 38, 546–564.

23


