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Abstract

We propose a new methodology to employ composite indicators for performance analysis of units

of interest using Stochastic Multiattribute Acceptability Analysis. We start evaluating each unit by

means of weighted sums of their elementary indicators in the whole set of admissible weights. For

each unit, we compute the mean, µ, and the standard deviation, σ, of its evaluations. Clearly, the

former has to be maximized, while the latter has to be minimized as it denotes instability in the eval-

uations with respect to the variability of weights. We consider a unit to be Pareto-Koopmans efficient

with respect to µ and σ if there is no convex combination of µ and σ of the rest of the units with a

value of µ that is not smaller, and a value of σ that is not greater, with at least one strict inequality.

The set of all Pareto-Koopmans efficient units constitutes the first Pareto-Koopmans frontier. By re-

moving this set and computing the efficiency frontier for the rest of the units, one could obtain the

second Pareto-Koopmans frontier. Analogously, the third, fourth and so on Pareto-Koopmans fron-

tiers can be defined. This permits to assign each unit to one of this sequence of Pareto-Koopmans

frontiers. We measure the efficiency of each unit not only with respect to the first Pareto-Koopmans

frontier, as in the classic Data Envelopment Analysis, but also with respect to the rest of the fron-

tiers, thus enhancing the explicative power of the proposed approach. To illustrate its potential, we

apply it to a case study of world happiness based on the data of the homonymous report, annually

produced by the United Nations’ Sustainable Development Solutions Network.

Keywords: OR in societal problem analysis · Composite Indicators ·Weighting · Sigma-Mu efficiency

· Stochastic Multiattribute Acceptability Analysis · Data Envelopment Analysis.



1 Introduction

In recent years, composite indicators are witnessed as increasingly popular tools for evaluating the per-

formance of units such as countries and institutions (Becker et al., 2017). In fact, there are over 500

official composite indicators evidenced to date, mainly produced by institutions, scholars and univer-

sities, with the aim of assessing countries in a complex socio-economic phenomenon (Bandura, 2011;

Yang, 2014). Understandably, their adoption by global institutions (e.g. the OECD, UN, World Bank

etc.) over the past years has gradually drawn the attention of the media and policy-makers around the

globe (Saltelli, 2007), and the number of applications in the literature has surged ever since (Greco

et al., 2018). This spiral of attention raises several flags on issues that are still debated in the literature,

mainly regarding two stages in the construction of an index; namely, the weighting and aggregation.

There is a wide variety of methods available for a developer of an index to choose in these steps, with

each bringing forward a solution, but with a given limitation (Gan et al., 2017). Undeniably, the choice

of the proper approach lies in the developer’s craftsmanship and the objective of the index (OECD,

2008). Nevertheless, these issues are still in great need of consideration; especially when something as

crucial as a policy is to be drawn on the basis of a synthetic measure that could easily be ‘manipulated’

(see Grupp and Schubert, 2010; Abberger et al., 2017).

A fundamental step in the construction of composite indices regards the weighting of elementary

indicators. Very often, this point is not taken into account and a non-weighted mean -typically the arith-

metic (Karagiannis, 2017), but sometimes also the geometric one- is considered (Van Puyenbroeck and

Rogge, 2017). This results in giving the same weight to all the dimensions taken into account in the

composite index. By contrast, sometimes the dimensions are weighted by taking into account reasonable

differences in the importance of considered dimensions (Decancq and Lugo, 2013). Either way, at first

sight this procedure of weighting the indicators -with, or without equal weights- could appear as a neu-

tral approach to the problem of aggregating the different dimensions, given a single, well-determined

vector of weights. Of course, this implicitly assumes a representative agent (Hartley and Hartley, 2002),

summing up in itself the preferences of all the individuals potentially interested in the composite index.

However, one has to admit that in a miscellaneous group of people, each one may assign a radically

different importance to the considered dimensions. Consequently, in order to ensure that the composite

index is meaningful, the diversity of existing viewpoints has to be considered (Decancq et al., 2013).

Undeniably, the hypothesis of the representative agent is rather stringent. Moreover, it has been long

criticized in economics with the so-called “fallacy of composition”, proposed by Kirman (1992), who gave

an example in which the representative agent disagrees with all individuals in the economy (a similar

point can be found in Blackburn and Ukhov (2013), examining the relationship between individual and

aggregate risk preferences in the financial markets). Besides the observation of a plurality of preferences

corresponding to the individuals interested in the composite index, one has to take into account that

each individual can be seen as a multiplicity of ‘selves’ that she is composed of (see, e.g., Elster, 1987).

Several researchers have acknowledged the relevance of this point in economics (see, e.g., Ainslie, 2001;

Schelling, 1980; McClure et al., 2004), so that even to represent an individual’s preferences, we need

to consider a set of weight vectors for the considered dimensions. Something similar happens in Mul-

tiple Criteria Decision Aiding (MCDA) (for an updated survey see Greco et al., 2016). Indeed, some

recently-introduced MCDA models consider a plurality of value functions compatible with the prefer-

ences expressed by a decision maker (see, e.g., Greco et al., 2008, 2010; Corrente et al., 2013), or even

a probability distribution in the set of value functions (see, e.g., Corrente et al., 2016b). This can be

interpreted as a plurality of selves for each individual, from the point of view that each considered value

function is a specific ‘self’. Similar arguments hold for multi-prior models proposed for decisions under

uncertainty, where each individual takes a decision considering a plurality of probability distributions

2



on the state of the words (see, for example, Gilboa and Schmeidler, 1989; Bewley, 2002; Gilboa et al.,

2010). These arguments suggest to abandon the idea of a single, allegedly well-defined weighting of

dimensions. Indeed, by taking into account the whole set of admissible weight vectors, one can con-

sider the whole spectrum of preferences of individuals, as well as multiple selves within each individual

interested in the composite index. With respect to the domain of composite indices, this approach was

recently proposed by Greco et al. (2017a) using Stochastic Multiattribute Acceptability Analysis (SMAA)

(Lahdelma et al., 1998; Lahdelma and Salminen, 2001). More specifically, by considering a probability

distribution on the set of feasible weight vectors, SMAA reveals the probability that a unit attains a given

ranking position, as well as the probability that a given unit is better than another.

In this paper we will argue that another possible use of the plurality of weight vectors is to consider

for each unit the mean value (µ) of the composite index and its variability -measured by the standard

deviation (σ)- in the space of feasible weight vectors. Of course, the former is supposed to be maximized,

while the latter is to be minimized, as higher values of σ denote more volatile overall performance

attributed to changes in the weight vectors. Consequently, by considering the mean value and the

standard deviation, it is straightforward to define a dominance relation as follows: unit a is σ − µ

Pareto-dominating unit b if the mean value of a is not smaller than that of b and the standard deviation

of a is not greater than the that of b, with at least one of these two inequalities being strict. Thus,

unit a will be σ − µ Pareto-efficient if there is no other unit σ − µ Pareto-dominating it with respect

to the former inequalities. Analogously obtaining the set of all efficient units permits to constitute the

σ−µ Pareto-efficiency frontier. Consideration of the mean value and the standard deviation along with

the related dominance and efficiency concepts clearly reminds the Markowitz mean-variance analysis

(Markowitz, 1952), which formed the foundations of modern portfolio theory (Elton et al., 2009).

However, we are not only interested in finding dominating solutions (i.e. alternatives lying on the

Pareto-efficiency frontier), but in measuring the efficiency of each unit with respect to the frontier.

In the domain of Operations Research this naturally leads to the consideration of Data Envelopment

Analysis (DEA) (Charnes et al., 1978a; Cooper et al., 2011), which brings us to acknowledge another

definition of efficiency, taking into account this time the possibility to combine different units. More

specifically, in this case, unit a is Pareto-Koopmans efficient (Charnes et al., 1985) if there is no linear

combination of the mean values (µ) and standard deviations (σ) of the rest of units dominating a.

Moreover, following an approach that was recently presented in a companion paper for the whole DEA

methodology (see Greco et al., 2017b), we are interested in decomposing the set of considered units

in a family of Pareto-efficiency frontiers, as well as in a family of Pareto-Koopmans efficiency frontiers.

For instance, considering the Pareto efficiency, the first frontier is the σ − µ Pareto efficiency frontier

above-introduced, the second frontier is the σ− µ Pareto-efficiency frontier obtained once the units of

the previous frontier have been removed, and so on until all the remaining units are σ−µ efficient. Of

course, an analogous procedure holds for the computation of all Pareto-Koopmans efficiency frontiers.

This idea of a sequence of Pareto frontiers has been considered within the celebrated evolutionary

multi-objective optimization algorithm NSGA-II (Deb et al., 2002). In this case, we adopt this idea of

successive efficiency frontiers not to guide a multi-objective optimization process, but to measure and

analyze the efficiency of units with respect to the considered composite indicators. More specifically,

we introduce an efficiency measure with respect to each frontier in the above-mentioned sequence.

This measure takes a positive value when the unit is dominating the considered efficiency frontier, and

a negative value if the unit is dominated by the efficiency frontier instead. Moreover, we define an

overall efficiency by aggregating the efficiency measures corresponding to the efficiency frontiers in the

sequence.

This paper introduces the σ-µ efficiency analysis, illustrating its potential in a case study of world

happiness, based on the homonymous report by Helliwell et al. (2017). In the following, Section 2

describes in more detail the issues of weighting in the construction of a composite index. Section 3
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introduces the σ-µ efficiency analysis, followed by a brief didactic example to illustrate its application

on a step-by-step basis in Section 4. Section 5 contains the case study of world happiness and Section

6 provides conclusive remarks and future direction of research.

2 Composite Indicators: Issues on weights and aggregation

2.1 Weighting dimensions in composite indicators

Despite the severe criticism in their inauguration (Sharpe, 2004), the use of composite indicators is

constantly growing by the day, with an ever-increasing number of composite measures produced every

year by global institutions, academics and media around the world (Bandura, 2011; Yang, 2014). This is

mainly owed to their irresistible property of summarizing complex phenomena with a sole number that

can be easily interpreted as a benchmark (Saisana et al., 2005). Of course, this can be seen as both an

asset and a liability at the same time. More specifically, lack of transparency in their construction allows

significant room for ‘manipulation’ (Grupp and Schubert, 2010; Abberger et al., 2017). The reason

being is that there exists a sequence of steps in the construction of an index, and admittedly, different

choices in each step might radically alter the final outcome. As one would expect, not a single step in

the construction of an index lacks criticism (Booysen, 2002); nevertheless, the paramount critique lies

in two stages, namely the weighting and aggregation. The former refers to the process of declaring the

importance of index dimensions, whereas the latter refers to the final synthesis of the overall index. In

this paper we are engrossed with the former, thus discussion will solely revolve around it.

The basic model of composite indicators is the following. There exists a set of units I = {1, . . . , n} to

be evaluated with respect to the set of dimensions J = {1, . . . , m}, the values of which are x i j . For each

unit i ∈ I , the vector xi = [x i1, . . . , x im] collects the values assigned to that unit in the dimensions from

J . To each dimension j ∈ J , a weight, w j , is attached such that w j ≥ 0 for all j ∈ J and
∑m

j=1 w j = 1.

Given a weight vector w = [w1, . . . , wm], the composite index assigns the following value to each unit

i ∈ I :

C I(xi ,w) =

n∑

j=1

x i jw j .

The authoritative Handbook on Constructing Composite Indicators (OECD, 2008) lists several ap-

proaches regarding the weighting procedure in the construction of a composite index (for a recent

review of existing methodologies, criticism and proposed solutions, see Greco et al., 2018), with equal

weighting being the most frequent approach (Paruolo et al., 2013). This, however, also appears to

be the most criticized (Decancq and Lugo, 2013). More specifically, assignment of equal weights can

be seen as a convenient solution of the last resort (Chowdhury and Squire, 2006), mainly when there

is no scientific basis to justify peculiar weighting, or when an alleged ‘objectivity’ is desired (OECD,

2008). This rationale has been contradicted in the literature for the following two reasons. First, equal

weights could be reasonably considered subjective as well as objective (see, e.g., Ray, 2008; Mikulić

et al., 2015). Second, there are other, potentially more realistic solutions to deal with uncertainty in

the lack of decision-makers’ preferences on weights (see, e.g., Doumpos et al., 2016, 2017; Greco et al.,

2017a). Other past solutions revolve around two sets of approaches, often characterized as ‘subjective’,

and ‘objective’ respectively (Decancq and Lugo, 2013). The former involve participatory techniques

such as the Budget Allocation Process (BAP) (see OECD, 2008, p.96) or Analytic Hierarchy Process

(AHP) (Saaty, 1977, 1980). These engage a single, or a number of stakeholders (e.g. a panel of ex-

perts) to decide upon the weights to be assigned, according to their beliefs/expertise (hence, the term

‘subjective’). These approaches appear to be ideal where a well-defined framework for national policy

exists (see Munda, 2005b). Yet, they might yield radically different results (see Saisana et al., 2005,
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p.314, for a comparison between AHP and BAP), while in the presence of many criteria, they can give

‘cognitive stress’ decision-makers that is amplified in AHP, due to the number of pairwise comparisons

required (Ishizaka and Nemery, 2013). The second set of approaches are awarded their epithet ‘ob-

jective’ from the fact that they do not rely on human judgement, but rather on the use of data-driven

techniques (e.g. Multiple linear regression analysis, Principal Component Analysis (Pearson, 1901),

Factor Analysis (Spearman, 1904), or Data Envelopment Analysis (Charnes et al., 1978b)). These have

been conceptually criticized for being disoriented from the objective at hand, or that they provide un-

realistic results (Decancq and Lugo, 2013), while they have a few methodology-related drawbacks that

need to be addressed (Greco et al., 2018).

Irrespectively of classification (‘subjective’, or ‘objective’), all the above approaches produce a single

weight vector that is used in the stage of aggregation to synthesize the composite index. While this

procedure is common practice in the domain of composite indicators (OECD, 2008), either unwittingly

or deliberately, the developer assumes that the obtained univocal set of weights is representative of

the whole population interested in the composite index. Understandably, one could argue that this

is a rather stringent assumption, as in a miscellaneous group of people, each individual may assign a

radically different importance to each dimension, and the representativeness assumption may be only

valid for a very small part of the population, or it could even become infeasible overall. Decancq et al.

(2013) argue that when a policy-maker chooses a weight-vector there are several individuals who are

inevitably ‘worse-off’. This situation highly resembles the case of the representative agent in economics

(see e.g. Hartley and Hartley, 2002), which has been long criticized in the literature by Kirman (1992).

Kirman provides an example in which, quaintly to his title, the ‘representative’ agent disagrees with all

the individuals in the economy. Acknowledging this confounding situation, Greco et al. (2017a) recently

proposed the use of SMAA (Lahdelma et al., 1998; Lahdelma and Salminen, 2001) to take into account

the whole set of possible weight vectors in the evaluation process. According to the authors, the standard

procedure of choosing a single weight vector produces a single, allegedly ‘representative’ ranking for

the units evaluated which “amalgamates different preferences in the population” (p.6). SMAA permits

the inclusion of several potential viewpoints in the decision-making process, e.g. in the form of weight

vectors, enriching in this way the single ranking that is obtained from a single preference. In terms

of output, probabilistic rankings are assigned to each unit, expressing its probability to be ranked first,

second etc.; or, its probability to be preferred from another unit. The use of SMAA in this exercise seems

alluring, whether it is applied to take into account potential representations of citizens’ preferences

(Greco et al., 2017a), or simply to deal with uncertainty in the lack of information about decision-

makers’ preferences (see e.g. Doumpos et al., 2016, 2017). Since SMAA is the fundamental framework

that we take into account in this paper, we present it in more detail in the following subsection.

2.2 Stochastic Multiattribute Acceptability Analysis (SMAA)

SMAA offers a solid solution to real-world decision-making that is surrounded by any source of uncer-

tainty. In the domain of composite indicators, such an example would involve a decision-maker that is

unable to provide the parameters required for the evaluation process (see e.g. Doumpos et al., 2016,

2017). In this paper we are engrossed with the step of weighting, hence, we are solely considering this

source of uncertainty. Essentially, SMAA takes it into account by considering a probability distribution

fw over the space of all weight vectors

W = {w= [w1, . . . , wm] : w j ≥ 0, j = 1, . . . , m,

m∑

j=1

w j = 1}.

Understandably, if a different importance has to be assigned to the dimensions from J , the space W
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is transformed accordingly. For instance, if the dimension j(1) is the most important, j(2) the second

most important and so on until the least important, j(m); we have to assign higher weights to the more

important dimensions, thus the space W is transformed as follows:

W = {w= [w1, . . . , wm] : w j(1)
≥ w j(2)

≥ . . . w j(m)
≥ 0, j = 1, . . . , m,

m∑

j=1

w j = 1}.

As the composite index C I(xi ,w) provides a ranking for each w in W , SMAA calculates the position

attained by each unit, i, as follows:

rank(i,w) = 1+
∑

i′ 6=i

ρ(C I(xi′ ,w)> C I(xi ,w)),

where ρ(true) = 1, ρ(false) = 0. Likewise, for every i ∈ I , SMAA defines the favorable rank weights of

unit i ∈ I

W r
i = {w ∈W : rank(i,w) = r}

being the set of feasible weights that position unit i in the r th place, r = 1, ..., n, in the final rank. Finally,

SMAA delivers the ranking acceptability indices, the central weight vectors and the pair-wise winning

indices as follows:

• Ranking Acceptability Index (RAI) for unit i ∈ I and r th position, r = 1, ..., n,

br
i =

∫

w∈W r
i

fw(w) dw

RAI illustrates the proportion of weight vectors w ∈W giving unit i the r th position in the obtained

final ranking. For instance, b1
i

represent the share of weight vectors for which unit i takes the first

position.

• Provided b1
i
6= 0, Central Weight Vector (CWV) for unit i

wc
i =

1

b1
i

∫

w∈W 1
i
(ξ)

fw(w)w dw

CWV represents the weight vector of a potential decision-maker, according to whom unit i is the

best.

• Pairwise Winning Index (PWI) for units i and i′

pii′ =

∫

w∈W :rank(i,w)>rank(i′,w)

fw(w)dw

PWI (Tervonen et al., 2009b; Leskinen et al., 2006) shows the probability that unit i is better than

unit i′.

For some recent papers utilizing SMAA in the MCDA context, the reader is referred, among others,

to Durbach (2009); Lahdelma and Salminen (2009); Tervonen et al. (2009a,c); Menou et al. (2010);
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Aertens et al. (2011); Corrente et al. (2014); Angilella et al. (2015), while for a comprehensive review,

see Tervonen and Figueira (2008). SMAA was only recently introduced in the field of composite indica-

tors. More specifically, Doumpos et al. (2016) use it to deal with the uncertainty arising from the lack

of information regarding the parameters to be used in the evaluation process of some financial institu-

tions. Using 10,000 uniformly distributed random weights and marginal value functions, the authors

evaluate the overall financial strength of 1,200 commercial banks through an additive value function

setting, given five financial characteristics from the CAMEL framework. A similar application is found

in Doumpos et al. (2017), comparing the overall financial strength of Islamic and conventional banks.

Greco et al. (2017a) propose the use of SMAA in the context of composite indicators as a way to deal

with the issue of representativeness inherent in the single weight vector. The authors evaluate the 20

regions of Italy, based on 65 socio-economic criteria. By enlarging the space of weight vectors, they

refrain from the classic setting of the univocal set of weights, including 1,000,000 uniformly distributed

weight vectors. In an alternative interpretation, these could be potentially seen as an expression of sev-

eral decision-makers’ preferences, e.g. ranging from policymakers to citizens, regarding the importance

of the index dimensions. This involvement of a ‘multiplicity of participants’, or even ‘selves’ (see El-

ster, 1987) could indeed be enriching to consider in such an exercise. Quoting Munda (2005a, p.132):

“when science is used in policy, the appropriate management of quality has to be enriched to include this

multiplicity of participants and perspectives”. While the author’s point refers to the context of a sustain-

ability policy exercise (regarding the objectives and scales of such an analysis and the set of dimensions

to be used in the evaluation process), the intended allegory is astonishingly fit to the context of the

decision-makers’ number and preferences respectively.

3 The σ-µ efficiency

We stand by the principle that a meaningful composite index should ideally reflect a multiplicity of

viewpoints. Technically speaking, this can be achieved in the weighting stage, in which individuals

that the index is concerning can participate, by expressing their preferences on the importance of index

dimensions. These individuals could constitute different clusters, e.g. experts, policy-makers, or even

citizens at whom policies are addressed. Therefore, the main driver of this concept refrains from the

classic scheme of a single, allegedly representative weight vector in the construction of an index, by tak-

ing into account all these individuals’ viewpoints. With this aim in mind, we re-consider the framework

of SMAA, though, instead of focusing on the probability of obtaining a given ranking position, or the

probability that a unit is better than another; for each unit, i ∈ I , we synthesize the distribution of its

composite indicators values, C I(xi ,w), by computing its mean value µi and standard deviation σi in

the weight vector space W , that is

µi =

∫

w∈W

fw(w)C I(xi ,w) dw, (1)

σi =

√√√
∫

w∈W

fw(w) [C I(xi ,w)−µi]
2 dw. (2)

Understandably, µi is intended to be maximized because it represents the average evaluation of a

unit taking into account the variability of the weight vectors w. Instead, σi has to be minimized, as it

exhibits the instability in the overall evaluations with respect to the variability of weights. Let us observe

that, in some form, this reminds us of the same reasoning explicit in the Markowitz model (Markowitz,

1952). Following his influential theory, by taking into account the mean, µi , and the standard deviation,
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σi , one can draw a plane that units i ∈ I are plotted on, pending evaluation. To be consistent with the

proposed concept of σ − µ efficiency analysis, we will refer to this throughout the text as ‘The σ − µ

plane’ (illustrated in Figure 1) which shows the standard deviation σ (on the x axis) and the mean µ

(on the y axis) of ten European countries with respect to the data of the 2017 World Happiness Report

(WHR) (Helliwell et al., 2017) that will be detailed in Section 4. Moreover, one can define aσ−µ Pareto

dominance relation on the set of units I as follows: for all i, i′ ∈ I , unit i is Pareto dominating unit i′ if

µi ≥ µi′ and σi ≤ σi′ , with at least one of the two inequalities being strict. A unit i ∈ I is σ−µ Pareto

efficient if there is no other unit dominating it. The set of all Pareto efficient units constitutes the Pareto

frontier. A concept stricter thanσ−µ Pareto efficiency is theσ−µ Pareto-Koopmans efficiency (Charnes

and Cooper, 1962). A unit i ∈ I is σ − µ Pareto-Koopmans efficient if there is no convex combination

of µi′ and σi′ of the remaining units, i′ 6= i, with a mean value µ that is not smaller, and a standard

deviation σ that is not higher, with at least one of these inequalities being strict. Formally, a unit i ∈ I

is σ − µ Pareto-Koopmans efficient if for all [λi′ , i′ 6= i], with λi′ ≥ 0, for all i′ 6= i and
∑

i′ 6=i λi′ = 1,

neither (3) nor (4) hold: ∑

i′ 6=i

λi′µi′ > µi and
∑

i′ 6=i

λi′σi′ ≤ σi (3)

∑

i′ 6=i

λi′µi′ ≥ µi and
∑

i′ 6=i

λi′σi′ > σi . (4)

Figure 1: The σ−µ plane

Units i ∈ I are plotted in the plane with coordinates (σi ,µi). The σ − µ analysis hereby

presented concerns ten EU countries evaluated with respect to the data of the 2017 World

Happiness Report (WHR) (Helliwell et al., 2017) as explained in Section 4.

The set of all σ−µ Pareto-Koopmans efficient units constitutes the σ−µ Pareto-Koopmans frontier. The

membership of a unit i ∈ I to the Pareto-Koopmans effciency frontier can be verified with a direct or an

indirect procedure described below.

The direct procedure verifies that there exist no unit -obtained as linear combination of mean µi′ and

standard deviation σi′- dominating unit i. This is obtained by considering the following LP problem:
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ǫ∗i =Max ǫ

s.t.





∑

i′ 6=i

λi′µi′ ¾ µi + ǫ

∑

i′ 6=i

λi′σi′ ¶ σi − ǫ

λ′i ¾ 0, ∀i′ 6= i
∑

i′ 6=i

λi′ = 1

where unit i is σ−µ Pareto-Koopmans efficient if ǫ∗
i
¶ 0.

The indirect procedure to test the σ−µ Pareto-Koopmans efficiency requires to consider the follow-

ing LP problem:

δ∗i =Max δ

s.t.





αµi − βσi ¾ αµi′ − βσi′ +δ, ∀i′ 6= i

α,β ¾ 0

α+ β = 1

(5)

which can be interpreted as follows. An evaluation αµi′−βσi′ , with α,β ¾ 0 and α+β = 1, is assigned

to all units i′ ∈ I . The non-negative coefficient α for the mean µi′ and the non-positive coefficient −β

for the standard deviation σi′ are coherent with the idea that µi′ is intended to be maximised and σi′ is

intended to be minimised. Therefore, ideally the greater αµi′−βσi′ , the better the unit i′ performs with

respect to µi′ and σi′ . The LP problem verifies whether a pair (α,β) exists, for which unit i ∈ I receives

an evaluation that is not worse than the remaining units, i′ 6= i, that is if αµi−βσi ¾ αµi′−βσi′+δ, ∀i′,

with a non-negative value of δ. This happens if δ∗
i
¾ 0 which, for the units belonging to theσ−µ Pareto-

Koopmans efficiency frontier, represents the margin that can be subtracted to the overall evaluation

αµi − βσi of unit i maintaining the maximality of its evaluation with respect to all other units i′ 6= i.

For all units i ∈ I that do not belong to the σ − µ Pareto-Koopmans efficiency frontier, the greater the

absolute value of δ∗
i
, the greater the margin that has to be added to αµi − βσi , in order to attain the

evaluation αµi′ − βσi′ of the units belonging to the σ− µ Pareto-Koopmans efficiency frontier. In this

sense, the value of δ∗
i

can be interpreted as a measure of efficiency of unit i ∈ I with the following

characteristics:

• if δ∗
i

is non-negative, then unit i is efficient, with higher values of δ∗
i

indicating higher efficiency

for i,

• if δ∗
i

is non-positive, then unit i is inefficient, with higher values of |δ∗
i
| indicating greater ineffi-

ciency for i.

For this reason, in the following we shall refer to δ∗
i

as the σ−µ Pareto-Koopmans efficiency of unit i.

The following proposition enunciates the equivalence between the direct and the indirect test of the

σ−µ Pareto-Koopmans efficiency.

Proposition 1. δ∗
i
¾ 0 if and only if ǫ∗

i
¶ 0
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Proof.

Let us start by proving that if δ∗
i
¾ 0 then ǫ∗

i
¶ 0.

If δ∗
i
¾ 0, then there exists α,β ¾ 0, with α+ β = 1, for which:

αµi − βσi ¾ αµi′ − βσi′ for all i′ 6= i.

Therefore, for all λ = [λi′ , i′ 6= i] with λi′ ¾ 0, for all i′ 6= i, and
∑
i′ 6=i

λi′ = 1, we have:

λi′(αµi − βσi)¾ λi′(αµi′ − βσi′) for all i′ 6= i (6)

By (6) we can get the following:

∑

i′ 6=i

λi′(αµi − βσi)¾
∑

i′ 6=i

λi′(αµi′ − βσi′)

and, consequently,

αµi − βσi ¾ α
∑

i′ 6=i

λi′µi′ − β
∑

i′ 6=i

λi′σi′

.

This implies that the following condition is not verified






∑

i′ 6=i

λi′µi′ ¾ µi

∑

i′ 6=i

λi′σi′ ¶ σi

with at least one strict inequality.

This amounts to the Pareto-Koopmans efficiency of unit i, so that we have ǫ∗ ≤ 0. Thus, we proved that

if δ∗
i
¾ 0, then ǫ∗

i
¶ 0. Let us now prove that if ǫ∗

i
¶ 0, then δ∗

i
¾ 0.

For a given unit, i, let us consider the pair (σi ,µi) and the two following sets:

• the set P+(σi ,µi) of all the pairs (σ,µ) ∈ R2
+ Pareto dominating (σi ,µi), that is

P+(σi ,µi) = {(σ,µ) ∈ R2
+ : σ ≤ σi and µ≥ µi with at least one strict inequality }

• the set P−(σi ,µi) given by the convex hull of the pairs (σi′ ,µi′) with i′ 6= i, that is

P−(σi ,µi) = {(
∑

i′ 6=i

λi′µi′ ,
∑

i′ 6=i

λi′σi′) : λi′ ≥ 0 for all i′ 6= i and
∑

i′ 6=i

= 1}.

Let us remember that the condition ǫ∗
i
¶ 0 implies that (σi ,µi) is Pareto-Koopmans efficient. This

means that there is no pair (σ,µ) ∈ R2
+ being a convex combination of the pairs (σi′ ,µi′) ∈ R2

+, i′ 6= i

that is dominating (σi ,µi). As the set of pairs (σ,µ) ∈ R2
+ dominating (σi ,µi) is P+(σi ,µi) and the

set of convex combinations of the pairs (σi′ ,µi′), i′ 6= i, is P−(σi ,µi), the Pareto-Koopmans efficiency of

(σi ,µi) amounts to the condition that P+(σi ,µi) and P−(σi ,µi) are disjoint. Let us point out that both

P+(σi ,µi) and P−(σi ,µi) are convex sets in R2. Therefore, for the hyperplane separating theorem (see

e.g. Boyd and Vandenberghe (2004), there must be a hyperplane separating P+(σi ,µi) from P−(σi ,µi)
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in the σ−µ space. In fact, this means that there exists a straight line αµ− βσ = γ, such that:

αµ− βσ > γ

for all (σ,µ) ∈ P+(σi ,µi), and

αµ− βσ < γ

for all (σ,µ) ∈ P−(σi ,µi). For contradiction, suppose now that δ∗
i
< 0. This means that for all α,β ≥ 0

we have

αµi − βσi < αµi′ − βσi′

for at least one i′ 6= i. Thus, for all γ ∈ R

αµi − βσi > γ

implies

αµi′ − βσi′ > γ

for at least one i′ 6= i. But (σi′ ,µi′) ∈ P−(σi ,µi) and therefore, there cannot exist any hyperplane

αµ− βσ = γ

separating P+(σi ,µi) from P−(σi ,µi). Thus, in this case the pair (σi ,µi) is not σ−µ Pareto-Koopmans

efficient. So, if ǫ∗
i
¶ 0 and, consequently (σi ,µi) is efficient, then δ∗

i
¾ 0.

�

The σ−µ Pareto-Koopmans efficiency δ∗
i

of unit i ∈ I refers to the σ−µ Pareto-Koopmans efficiency

frontier. However, for a unit that is quite remote from the σ − µ Pareto-Koopmans efficiency frontier,

it might not be very meaningful to compare it with units of that frontier, as they could be seen as

potentially implausible benchmarks. Instead, it could be useful to compare these remote units with their

counterparts that are closer to them in theσ−µ plane, and as such, constitute more realistic benchmarks.

This suggests taking into consideration the idea of a sequence of efficiency frontiers considered within

the celebrated evolutionary multi-objective optimization algorithm NSGA-II (Deb et al., 2002).

A first sequence of σ−µ efficiency frontiers can be defined by taking into consideration the Pareto

dominance. In this perspective, the set of all σ − µ Pareto-efficient units constitutes the first σ − µ

Pareto efficiency frontier, denoted by PF1. Removing PF1 from I and computing again the σ−µ Pareto

efficiency frontier for the remaining units, we get the second σ−µ Pareto-efficiency frontier denoted by

PF2. The thirdσ−µ Pareto efficiency frontier, PF3, and the following ones can be computed analogously.

The sequence of Pareto efficiency frontiers PF1, PF2, . . . based on the concept of Pareto dominance

is used in NSGA-II (Deb et al., 2002). However, for the sake of our analysis, an analogous sequence of

efficiency frontiers based on the concept of Pareto-Koopmans dominance seems more appropriate. We

call the efficiency frontiers of this new sequence first σ−µ Pareto-Koopmans efficient frontier, denoted

by PKF1, second σ−µ Pareto-Koopmans efficiency frontier, denoted by PKF2, and so on. Let us denote

by PKF = {PKF1, . . . , PKFp} the set of all the σ − µ Pareto-Koopmans efficiency frontiers. For each

unit i ∈ I , and for each σ− µ Pareto-Koopmans efficiency frontier PKFk ∈ PKF, we can define a σ− µ

Pareto-Koopmans efficiency δik with respect to PKFk as follows:
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δik =Max δ

s.t.





αµi − βσi ¾ αµi′ − βσi′ +δ, ∀i′ ∈ I \

k−1⋃

h=1

PKFh

α,β ¾ 0

α+ β = 1

(7)

The above LP problem verifies whether there exists a pair (α,β), for which unit i ∈ I receives an

evaluation αµi − βσi which is not worse than the analogous evaluation of the rest of the units i′ ∈

I \
⋃k−1

h=1 PKFh, that is, all the units i′ belonging to the kth σ − µ Pareto-Koopmans efficiency frontier,

or to a better σ − µ Pareto-Koopmans efficiency frontier. This happens if δik ¾ 0. Instead, if δik < 0,

then unit i belongs to a σ−µ Pareto-Koopmans efficiency frontier worse than PKFk, that is, if i ∈ PKFh

with h= k+1, . . . , p. The interpretation of δik with respect to the kth σ−µ Pareto-Koopmans efficiency

frontier is analogous to the interpretation δ∗
i

with respect to the overallσ−µ Pareto-Koopmans efficiency

frontier. More precisely, for the units in the kth σ − µ Pareto-Koopmans efficiency frontier or better,

δik ¾ 0 represents the margin that can be subtracted from the overall evaluation αµi − βσi of unit

i maintaining an evaluation that is superior to all units in the kth σ − µ Pareto-Koopmans efficiency

frontier or worse. Instead, for all units i ∈ I belonging to the kth σ − µ Pareto-Koopmans efficiency

frontier or worse, the absolute value of δ∗
i
< 0 represents the margin that has to be added to αµi−βσi ,

in order to obtain the same evaluation of at least one unit belonging to k-th σ − µ Pareto-Koopmans

efficiency frontier or better. Therefore, as δ∗
i

constitutes an efficiency measure with respect to the

overall σ − µ Pareto-Koopmans efficiency frontier (that, in fact, corresponds to the first σ − µ Pareto-

Koopmans efficient frontier), δik constitutes an efficiency measure with respect to the overall kth σ−µ

Pareto-Koopmans efficiency frontier. For this reason, in the following we shall refer to δik as σ − µ

Pareto-Koopmans efficiency of unit i with respect to the kth frontier.

The following proposition gives a simple, yet useful result with respect to the σ − µ Pareto-Koopmans

efficiency corresponding to the kth frontier.

Proposition 2. The σ−µ Pareto-Koopmans efficiency respects the σ−µ Pareto dominance, that is,

for all i, i′ ∈ I if µi ¾ µi′ and σi ¶ σi′ , then δik ¾ δi′k for any k = 1, . . . , p.

Proof. As µi ¾ µi′ and σi ¶ σi′ , αµi − βσi ¾ αµi′ − βσi′ for all α,β ¾ 0 with α + β = 1.

Consequently,

αµi′ − βσi′ ¾ αµi′′ − βσi′′ +δ

implies

αµi − βσi ¾ αµi′′ − βσi′′ +δ

for any i′′ ∈ I and any δ ∈ R. Therefore

αµi′ − βσi′ ¾ αµi′′ − βσi′′ +δi′k, ∀i′′ ∈ I \

k−1⋃

h=1

PKFh

implies

αµi − βσi ¾ αµi′′ − βσi′′ +δi′k, ∀i′′ ∈ I \

k−1⋃

h=1

PKFh.
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Consequently, since δik is the maximum δ satisfying

αµi − βσi ¾ αµi′′ − βσi′′ +δ, ∀i′′ ∈ I \

k−1⋃

h=1

PKFh,

we have to conclude that δik ¾ δi′k.

To all units i ∈ I , we can assign an overall σ−µ Pareto-Koopmans efficiency score, denoted by smi , that

reflects its efficiency with respect to all frontiers from PKF, as follows:

smi =

p∑

k=1

δik. (8)

The following corollary of Proposition 2 ensures that overall σ− µ Pareto - Koopmans efficiency score

smi respects the σ−µ Pareto dominance.

Proposition 3. For all i, i′ ∈ I if µi ¾ µi′ and σi ¶ σi′ , then smik ¾ smi′k.

Proof. By Proposition 2: µi ¾ µi′ and σi ¶ σi′ implies δik ¾ δi′k for all k = 1, . . . , p. Consequently,

we have

smi =

p∑

k=1

δik ¾

p∑

k=1

δi′k = smi′ .

In the following we supply some remarks related to the application of our approach in real life problems.

As usual for the other indices of SMAA, the integrals defining the mean value µi and the standard

deviation σi , i ∈ I , can be approximated by using a random sampling of q vectors of weights - with

q being a relatively large number; for instance, following the suggestions of Tervonen and Lahdelma

(2007), q could equal 10, 000-. The q random extracted weight vectors wh = [w1h, . . . , wmh], h= 1, . . . , q

can be collected in the following m× q RW matrix:

RW
m×q
=





w11 w12 · · · w1q

w21 w22 · · · w2q
...

... · · ·
...

wm1 wm2 · · · wmq





Using the weight vector matrix RW, a composite index C I(xi ,wh) can be computed for each unit i ∈ I

and each weight vector wh, and the obtained results can be ordered in the following n×q matrix CI

shown below:

CI
n×q
=





C I(x1,w1) C I(x1,w2) · · · C I(x1,wq)

C I(x2,w1) C I(x2,w2) . . . C I(x2,wq)
...

... · · ·
...

C I(xn,w1) C I(xn,w2) · · · C(xn,wq)





Using the values collected in CI, for each unit i ∈ I one can compute the approximated values eµi and

eσi for the mean µi and the standard deviation σi as follows:
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eµi =
1

q

q∑

h=1

C I(xi ,wh)

eσi =

√√√1

q

q∑

h=1

(C I(xi ,wh)− eµi)
2

4 The σ-µ efficiency analysis step by step: A didactic example

The present section illustrates the application ofσ−µ efficiency analysis with a concise didactic example.

We consider a sample of the dataset supplied by the 2017 World Happiness Report (WHR) (Helliwell

et al., 2017) that will be analyzed in its entirety as a case study in the following section. The WHR

provides an evaluation of life satisfaction in more than 150 countries, based on citizens’ responses to a

Gallup World Poll survey. The report further supplies data on six key variables, analysing their relation

with life satisfaction. For this didactic example, we take into consideration a sub-set of ten European

countries (namely, Austria, Denmark, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland

and United Kingdom) for the latest available year (data regarding the year 2016) to be evaluated through

σ−µ efficiency analysis. For the sake of simplicity, we only consider three of the six key variables, and

more precisely, GDP per capita, Social support and Perceptions of corruption. We report these in Table 1.

We start by normalizing the raw data reported in Table 1 following the methodology proposed in

Greco et al. (2017a) that we recall in the following. Let us denote by yi j , i ∈ I , j ∈ J the raw value

assumed for unit i with respect to dimension j. For each dimension j ∈ J , the mean value M j and the

standard deviation s j can be computed as follows:

M j =

∑n
i=1 yi j

n
,

s j =

√√√
∑n

i=1(yi j −M j)
2

n
.

Using the mean M j and the standard deviation s j we obtain the z-score

zi j =
yi j −M j

s j

for each i ∈ I and j ∈ J . Finally, we compute the normalized values x i j as follows:

x i j =






0, if yi j ¶ M j − 3s j

0.5+
zi j

6
, if M j − 3s j < yi j < M j + 3s j

1, if yi j ¾ M j + 3s j

The normalization is applicable to positively-oriented dimensions, that is, dimensions for which the

greater the raw value the better (e.g. GDP per capita and Social Support). Instead, for negatively-

oriented dimensions, for which the greater the raw value the worse for a unit’s performance (e.g. Per-

ception of corruption), the normalization is formulated as follows:
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Table 1: Raw and normalized values of the considered dimensions.

Raw Data Normalized values

Country Log of GDP Social Perceptions of Country Log of GDP Social Corruption

per capita support corruption per capita support free

Austria 10.69 0.93 0.52 Austria 0.48 0.49 0.44

Denmark 10.68 0.95 0.21 Denmark 0.47 0.70 0.71

France 10.54 0.88 0.62 France 0.33 0.18 0.35

Germany 10.70 0.91 0.45 Germany 0.49 0.34 0.51

Italy 10.43 0.93 0.90 Italy 0.23 0.50 0.11

Netherlands 10.76 0.93 0.43 Netherlands 0.54 0.49 0.52

Norway 11.07 0.96 0.41 Norway 0.84 0.74 0.54

Sweden 10.74 0.91 0.25 Sweden 0.53 0.38 0.68

Switzerland 10.92 0.93 0.30 Switzerland 0.70 0.50 0.63

United Kingdom 10.57 0.95 0.46 United Kingdom 0.37 0.70 0.50

Average 10.71 0.93 0.46

Standard Deviation 0.17 0.02 0.19

Data: 2017 World Happiness Report (WHR), obtained from: http://worldhappiness.report/ed/2017/. The data regard the year 2016. The detailed

description and the sources of the considered dimensions can be found in Helliwell et al. (2017, p.17).
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x i j =






0, if yi j ¾ M j + 3s j

0.5−
zi j

6
, if M j − 3s j < yi j < M j + 3s j

1, if yi j ¶ M j − 3s j

With respect to the creation of the weight vector matrix RW, in this didactic example we consider the

following two scenarios, where wGDP , wSoc , wCorr denote weights for GDP per capita, Social support

and Perception of corruption respectively:

• Scenario 1: No definite ranking importance of the three considered dimensions, so that the set of

feasible weight vectors is

W= {[wGDP , wSoc , wCorr] : wGDP ¾ 0, wSoc ¾ 0, wCorr ¾ 0, wGDP + wSoc + wCorr = 1};

• Scenario 2: Social support is more important than Perception of corruption that in turn is more

important than GDP per capita, so that the set of feasible weight vectors is

W= {[wGDP , wSoc , wCorr] : wSoc ¾ wCorr ¾ wGDP ¾ 0, wGDP + wSoc + wCorr = 1}.

For both scenarios, a set of 10,000 weight vectors wh, h= 1, . . . , 10, 000, was randomly sampled from a

uniform distribution on the feasible set of weight vectors W and collected in the matrix RW= [w jh, j =

1,2, 3, h= 1, . . . , 10, 000]. The weight vectors from RW and the normalized values x i j , i = 1, . . . , 10, j =

1,2, 3, are then used to compute the composite indices

C I(xi ,wh) = wGDP x i,GDP + wSoc x i,Soc + wCorr x i,Corr ,

h= 1, . . . , 10, 000.

Using the values C I(xi ,wh), i = 1, . . . , 10, h = 1, . . . , 10,000, the approximation of the mean value

eµi and the standard deviation eσi of composite indices were calculated for each considered country. For

the sake of simplicity, we refer to them as µi and σi , respectively. These two measures are reported

in Table 2 and plotted in Figure 2 for both scenarios considered. Figure 2 also delineates the σ − µ

Pareto-Koopmans efficiency frontiers; five were found in each scenario.

The σ − µ Pareto-Koopmans efficiency δik of the considered countries with respect to the differ-

ent σ − µ Pareto-Koopmans efficiency frontiers is given in Table 3. In both scenarios examined, the

σ − µ Pareto-Koopmans family of frontiers consists of five frontiers. For the first scenario, that with-

out a definite ranking of importance for the considered dimensions, the five frontiers are the follow-

ing: PKF1 = {Norway, Netherlands, Austria} , PKF2 = {Denmark, Switzerland, Germany}, PKF3 =

{Sweden, France}, PFK4 = {United Kindom}, PKF5 = {Italy}. In the second scenario, the σ−µ Pareto-

Koopmans frontiers are the same with the exceptions of Switzerland, that was in the second σ − µ

Pareto-Koopmans efficiency frontier in the first scenario but descended to the third frontier in this one.

Similarly, Sweden, which was in the third σ−µ Pareto-Koopmans efficiency frontier in the first scenario

has been now descended to the fourth one.

In terms of overall efficiency, Norway presents the highest overall σ−µ Pareto-Koopmans efficiency

score smi , while the second highest value is attributed to Denmark in both scenarios. It is worthwhile

to observe that Denmark is not in the first σ−µ Pareto-Koopmans efficiency frontier, which, instead, is

the case for Netherlands and Austria. Therefore, we can say that even if Denmark is in a worse Pareto-

Koopmans efficiency frontier with respect to Netherlands and Austria, overall it compares better with
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Figure 2: Illustrative example of the σ−µ plane in the two scenarios considered

Black colour represents σ − µ efficiency analysis output in the unconstrained case (i.e. scenario 1), while grey

colour represents σ − µ efficiency analysis output in the constrained case (i.e. scenario 2). Numbers in paren-

theses denote respective σ−µ Pareto-Koopmans efficiency frontier (PKFi).
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respect to the whole set of efficiency frontiers (as shown by the overall efficiency score, smi). Let us also

observe that in both scenarios Italy is the only country for which the efficiency score, smi , is negative.

On the other hand, Italy is also the only country in the worst efficiency frontier.
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Table 2: Evaluating the units with σ−µ under the two alternative scenarios

Scenario 1 Scenario 2

Unconstrained weights Constrained weights

Country µiµiµi σiσiσi smi µiµiµi σiσiσi smi

Austria 0.471 0.013 0.338 0.475 0.011 0.281

Denmark 0.628 0.064 0.561 0.646 0.051 0.514

France 0.289 0.045 0.076 0.262 0.048 0.037

Germany 0.447 0.045 0.188 0.419 0.048 0.074

Italy 0.278 0.093 -0.188 0.333 0.096 -0.209

Netherlands 0.517 0.014 0.393 0.509 0.014 0.303

Norway 0.707 0.073 0.948 0.715 0.052 0.802

Sweden 0.533 0.071 0.219 0.495 0.070 0.081

Switzerland 0.611 0.048 0.512 0.582 0.050 0.287

United Kingdom 0.519 0.078 0.394 0.564 0.080 0.204

µiµiµi and σiσiσi are the means and standard deviations of the composite index C I(xi ,w)

in the 10,000 extractions accordingly. smi is the overall score computed as in eq.8.
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Table 3: Measuring σ−µ Pareto-Koopmans efficiency

Unconstrained weights Constrained weights

σ−µ Pareto-Koopmans efficiency σ−µ Pareto-Koopmans efficiency

PKF1 PKF2 PKF3 PKF4 PKF5 PKF1 PKF2 PKF3 PKF4 PKF5

Country δi1 δi2 δi3 δi4 δi5 Country δi1 δi2 δi3 δi4 δi5

Austria 0.001 0.032 0.047 0.065 0.193 Austria 0.003 0.037 0.038 0.059 0.143

Denmark -0.012 0.018 0.095 0.110 0.350 Denmark -0.009 0.064 0.064 0.083 0.313

France -0.032 0.000 0.026 0.033 0.048 France -0.037 0.000 0.002 0.022 0.049

Germany -0.032 0.002 0.015 0.034 0.169 Germany -0.037 0.001 0.001 0.022 0.086

Italy -0.080 -0.048 -0.045 -0.015 0.000 Italy -0.086 -0.049 -0.048 -0.026 0.000

Netherlands 0.008 0.032 0.050 0.064 0.239 Netherlands 0.002 0.034 0.035 0.056 0.176

Norway 0.078 0.078 0.174 0.188 0.429 Norway 0.068 0.068 0.132 0.151 0.382

Sweden -0.040 -0.024 0.014 0.014 0.255 Sweden -0.049 -0.021 -0.020 0.010 0.162

Switzerland -0.004 0.013 0.078 0.092 0.333 Switzerland -0.019 0.000 0.028 0.028 0.249

United Kingdom -0.049 -0.031 -0.008 0.241 0.241 United Kingdom -0.047 -0.030 -0.019 0.069 0.231

PKF1-5 denote respective σ−µ Pareto-Koopmans frontiers illustrated in Figure 2. δik shows the (in)efficiency of Country i, with respect to the kth frontier.
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5 Case Study: World Happiness Index

In this section, we apply σ−µ efficiency analysis to the whole set of data supplied by the 2017 Report

of ‘World Happiness’. On a general note, happiness is an age-old concept that can be traced back to

Aristotle’s ‘eudaimonia’, a word commonly translated as ‘welfare’ (Shin and Johnson, 1978). Central

concept of the Aristotelian ethics, welfare was seen as the ultimate human good (Robinson, 1989),

which, more than two millennia after Aristotle’s era appears to be at the centre of academics and policy-

makers’ discussions. More specifically, world-renowned economists have recently criticized the use of

traditional, economic output measures like the GDP as a proxy for welfare (see e.g. Costanza et al.,

2009; Stiglitz et al., 2009). In April 2012, an initiative of a group of independent experts -in support of

the United Nations’ High Level Meeting on happiness and well-being- further paved this way. Through

the Sustainable Development Solutions Network of the UN, they published the first ‘World Happiness

Report’ (Helliwell et al., 2012). Since 2012, these reports have gained considerable attention, while,

in the authors’ words (Helliwell et al., 2017, p.3): “happiness is now increasingly considered the proper

measure of social progress and the goal of public policy”. In fact, on a recent OECD meeting at the

ministerial level (OECD, 2016, p.12), the OECD committed to “redefine the growth narrative to put

people’s well-being at the center of governments’ efforts”.

The ‘World Happiness’ report presents and analyses the data of a survey question conducted by

the Gallup World Poll. More specifically, 3,000 respondents in each of the -roughly- 150 countries

considered, evaluate their lives on a 0-10 scale which is known as ‘Cantril Ladder’ (see Helliwell et al.,

2017, p.123). The authors use a three-year rolling window of the average response in each country to

rank them accordingly. For instance, the 2016 ranking is based on the average response of the three-

year period 2014-2016. We shall refer to the results of the survey as Subjective Well Being (SWB).

According to the report, 6 key variables (namely GDP per capita, healthy life expectancy at birth, social

support, freedom to make life choices, generosity and perceptions of corruption) used as proxies for 6 socio-

economic aspects respectively, may on average explain 75% of the respondents’ subjective evaluations

(Pooled OLS regression). Detailed information about the description and sources of the 6 key variables

can be found in Helliwell et al. (2017, Technical Box 2, p.17). We applied σ − µ efficiency analysis

adopting the same procedure extensively described in the previous section, which considered a sub-

sample of 10 European countries, apart from the following step. We use a three-year rolling-window

for the six variables, in order to be consistent with the procedure used by the World Happiness Report

for the subjective evaluation. This means that the values we consider in each dimension in year 2016

are in fact non-weighted arithmetic averages of the period 2014-2016. We restrict the sample to only

these countries that possess data for all 6 dimensions for the 2016 and at least one of the years 2014

and 2015. After this cleansing procedure we are left with a final sample of 119 countries.

In applying the proposed approach, we find that the family of σ − µ Pareto-Koopmans frontiers

consists of 31 frontiers, which are illustrated in Figure 3. We computed the σ − µ Pareto-Koopmans

efficiency δik with respect to all 31 frontiers for each country. However, due to a large number of

countries and frontiers in our sample, we will hereby discuss and report only the efficiency of the top-

10 ranked countries of the 2017 ‘World Happiness’ report. The results for the rest of the countries (e.g.

efficiencies, overall scores and rankings) are disclosed in the on-line supplementary appendix (available

here: ❤tt♣s✿✴✴❣♦♦✳❣❧✴❯❘❇❘✉❈). According to the 2017 report, the countries found in the top ten

rankings are the following: Norway, Denmark, Iceland, Switzerland, Finland, Netherlands, Canada, New

Zealand, Australia and Sweden, which are ranked in this exact order. In our analysis, these 10 countries

are found to be spread in the first seven frontiers, which will therefore be the focus of our analysis for

the rest of this section.

The countries spread over the first seven frontiers are reported in Table 4, ordered according to the
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Figure 3: Family of σ−µ Pareto-Koopmans frontiers.

The 119 countries in our sample are spread over 31 σ−µ Pareto-Koopmans efficiency frontiers (PKF). Further details about the

coordinates, efficiency with respect to each PKF, overall σ− µ efficiency and rankings of each country are given in the on-line

supplementary appendix.

21



rankings attributed to them in the WHR (denoted by ‘WHR rank’ respectively). Also reported in the

table are the mean score (µi) and the standard deviation (σi) of the countries’ scores in the 10, 000

extractions, the σ−µ Pareto-Koopmans efficiency of each country with respect to the efficiency frontier

PKFk, k = 1, . . . , 7, δik, and the overall efficiency score smi with its corresponding and ranking (denoted

by ‘σ−µ rank’).

First of all, we should note that it is by definition reasonable to observe a shuffle, or even entirely

different patterns between the SWB (‘WHR rank’) and the σ−µ efficiency rankings (‘σ−µ rank’). The

first expresses peoples’ own subjective beliefs, while the latter refers to the aggregation of 6 variables

that are considered to explain SWB well on average. Moreover, there is a whole ongoing discussion

between the difference of SWB and objective conditions attributed to psychological reasons and cultural

differences (see Kroll and Delhey, 2013). In other words, the two rankings are not directly comparable,

nor should they necessarily be; though one could make a few interesting inferences. To start with, it

is notable, that the countries which are self-claimed to be ranked in the top-10 positions (i.e. having

the top-10 highest subjective evaluation) are positioned in our top-10 list as well, with the exception of

Iceland and Finland, which we position in the 11th and 13th places accordingly.

A second interesting point relates to the measurement of efficiency with respect to the frontiers,

and how the dynamics of these might change under some circumstances. Consider for instance Fin-

land, a country that is ranked 13th according to our overall σ − µ Pareto-Koopmans efficiency, and

which participates in the σ − µ Pareto-Koopmans family by lying on the 7th frontier. The reason

Finland is not participating in the previous frontier (i.e. PKF6) can be better clarified when it is

compared to Luxembourg. The latter clearly dominates the former in terms of standard deviation

(σLuxembour g = 0.059 versus σF inland = 0.076), but only marginally dominates in terms of average

performance (µLuxembour g = 0.70865 versus µF inland = 0.70864 - in Table 4 both are rounded to three

decimals). Therefore, if Finland slightly increases its average performance to surpass that of Luxem-

bourg, it will then move to frontier 6 ceteris paribus. This is also clear by looking at the efficiency of

Finland with respect to the 6th frontier (Table 4: δF inland,6 = −0.00001), which is almost zero. Follow-

ing this line of reasoning, one could be interested to compare Finland with Iceland (µI celand = 0.7111

versus µF inland = 0.70864), e.g. by looking at the (in)efficiency of the former with respect to the frontier

that the latter is lying on (Table 4: δF inland,5 = −0.002).

Another interesting point arises from tracking the frontiers’ formation from a dynamic viewpoint.

More specifically, one could be interested in tracing changes in the performance of units in the σ − µ

plane within a time period and thus, how were the frontiers re-structured accordingly. This could be

accomplished in several ways. For instance, one could trace all, or a subset of the σ − µ PKF, or even

trace the frontiers and performance of only certain countries. An example is given in Figure 4, which

illustrates how the first two frontiers were changed from 2015 (illustrated in gray) to the following

year (illustrated in black). It quickly becomes obvious that Singapore did not participate in the first two

frontiers in 2015, but it joined the second in 2016. Moreover, one can distinguish how the performance

of the countries lying in the first two σ−µ PKF changed during this time period. For instance, almost all

countries exhibit a drop from 2015 to the following year. In few countries this is less and in others more

noticeable. Exception in this rule are Germany, Luxembourg and Singapore, with the latter meeting with

such an improvement that positioned the country in the second frontier. Of course this can be attributed

to both a remarkable improvement in the elementary indicators, and the fact that the performance of

the surrounding countries was deteriorated (e.g. see Denmark in Fig. 4). This highlights the fact that

even if a unit’s performance remains steady through a time period examined, the distance with respect

to other frontiers might alter either due to an improvement, or a downturn of the surrounding units. In

this particular example, from a policy-maker’s perspective, two consecutive years might not be enough;

thus, the time period examined in the plane could be re-considered to that of specific ‘goalposts’ (i.e. the

start and end dates of a scheduled policy period, see Mazziotta and Pareto, 2016, p.989). Nonetheless,
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Table 4: Case study results for the first seven frontiers.

σ−µ Pareto-Koopmans efficiency

Country
WHR

rank
µiµiµi σiσiσi smi

σσσ−µµµ

rank

PKF1

δi1

PKF2

δi2

PKF3

δi3

PKF4

δi4

PKF5

δi5

PKF6

δi6

PKF7

δi7

Norway 1 0.731 0.034 6.040 6 -0.004 0.003 0.008 0.017 0.020 0.024 0.034

Denmark 2 0.742 0.063 6.312 3 -0.012 0.003 0.005 0.013 0.031 0.033 0.033

Iceland 3 0.711 0.052 5.445 11 -0.022 -0.019 -0.011 -0.002 0.006 0.006 0.016

Switzerland 4 0.728 0.061 5.922 7 -0.018 -0.009 -0.007 0.017 0.017 0.020 0.020

Finland 5 0.709 0.076 5.335 13 -0.036 -0.027 -0.024 -0.017 -0.002 -0.000 0.030

Netherlands 6 0.714 0.034 5.619 10 -0.010 -0.008 0.009 0.010 0.016 0.022 0.028

Canada 7 0.721 0.024 5.843 9 -0.001 0.006 0.009 0.018 0.025 0.031 0.036

New Zealand 8 0.761 0.059 6.904 1 0.018 0.018 0.024 0.032 0.050 0.052 0.052

Australia 9 0.737 0.032 6.218 4 0.002 0.005 0.012 0.021 0.026 0.028 0.038

Sweden 10 0.737 0.056 6.173 5 -0.011 -0.002 0.009 0.009 0.026 0.028 0.028

Austria 13 0.665 0.021 4.496 17 0.002 0.002 0.011 0.020 0.021 0.025 0.032

United States 14 0.639 0.042 3.726 19 -0.021 -0.018 -0.010 -0.001 0.004 0.004 0.011

Ireland 15 0.723 0.024 5.891 8 0.001 0.001 0.010 0.019 0.026 0.032 0.038

Germany 16 0.685 0.023 4.955 15 -0.001 0.001 0.009 0.018 0.022 0.025 0.031

Belgium 17 0.648 0.047 3.925 18 -0.025 -0.023 -0.014 -0.006 -0.003 0.006 0.007

Luxembourg 18 0.709 0.059 5.358 12 -0.027 -0.023 -0.015 -0.007 -0.002 0.010 0.010

United Kingdom 19 0.702 0.042 5.252 14 -0.018 -0.017 -0.008 0.008 0.008 0.013 0.018

Singapore 26 0.743 0.084 6.341 2 -0.018 0.001 0.006 0.015 0.032 0.034 0.034

Nicaragua 41 0.526 0.037 1.668 33 -0.017 -0.014 -0.010 0.000 0.000 0.003 0.005

Ecuador 44 0.519 0.042 1.496 38 -0.021 -0.019 -0.014 -0.005 -0.004 -0.002 0.002

Kazakhstan 60 0.541 0.038 1.871 30 -0.017 -0.014 -0.009 0.000 0.001 0.003 0.006

Hong Kong 71 0.679 0.057 4.592 16 -0.034 -0.033 -0.023 -0.015 -0.008 -0.004 0.012

Honduras 91 0.455 0.025 1.359 40 -0.004 -0.002 0.009 0.012 0.013 0.013 0.016

Macedonia 92 0.487 0.038 1.272 41 -0.017 -0.015 -0.011 -0.001 0.000 0.004 0.004

Egypt 111 0.424 0.041 0.786 55 -0.020 -0.018 -0.016 -0.004 -0.003 -0.003 0.000

Iraq 117 0.442 0.041 0.876 54 -0.020 -0.018 -0.016 -0.004 -0.003 -0.003 0.000

WHR is the rank attributed to Country i by the ‘World Happiness’ report using the Gallup World Poll surveys (i.e. ‘Cantril Ladder’). µiµiµi and σiσiσi are the means and standard

deviations of the composite index C I(xi ,w) in the 10, 000 extractions accordingly. smi is the overall score computed as in eq.8. σσσ-µµµ rank is the rank obtained based on

the overall score sm. PKF1-7 denote respective frontiers and δik exhibits the (in)efficiency of Country i, with respect to the kth σ−µ Pareto-Koopmans frontier.
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our approach would eventually allow for the analysis of the impact of such a policy in comparative

terms, with respect to similar units of analysis not involved in the policy programme.

Figure 4: Dynamic illustration of the frontiers.

An interesting feature of σ − µ analysis is the comparison of units or frontiers from a dynamic viewpoint. A developer might

be keen on tracking the formation of a frontier of interest, or the performance of a unit through time (e.g. either consecutive

years, or a policy period of interest). This figure delineates the formation of the first two σ − µ Pareto-Koopmans efficiency

frontiers (PKF) in two consecutive years. Black colour represents the year 2016 while grey colour represents the year 2015.

Last, but not least, interesting inferences could be made by focusing on specific clusters of units

of interest within the σ − µ plane. For instance, a policy-maker could be interested in observing how

a specific country performs in comparison to a manually-chosen group of countries. In Figure 5 we

have chosen to illustrate how the EU-28 countries (with the exception of Malta and Croatia due to

missing data for the period examined) perform both among them and in comparison to the rest of the

countries considered in our sample. This type of manual grouping into specific clusters of units has

highlighted some further structural differences among them, with EU-28 countries positioned in the

north and north-west σ − µ Pareto-dominating those to the south and south-east. This is validated

even according to the WHR rankings (unreported) that reflect the citizens’ own beliefs, in which the

highest-ranked EU-28 country belonging to the second cluster of countries in Figure 5 is France (ranked

31st according to the report) (see Helliwell et al., 2017, figure 2.2, p.20). Obviously, the discussion

about the structural differences inherent in these countries and their determinants goes beyond the

scope of this study. However, we can argue that the σ − µ plane can provide the decision-maker with

some enriched implications. This can be seen as a considerable asset of our proposed method, which

illustrates alternative comparisons among units of interest. More specifically, one could be interested

in benchmarking countries within their own specified cluster, entirely neglecting the rest of the units.

For instance, countries belonging to the second cluster in Figure 5 could be benchmarked against each
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other, instead of a more holistic analysis that involves all 119 countries considered in our sample.

Figure 5: Leaders and Laggards: cluster-spotting in the σ−µ plane.

This figure delineates the manual grouping of the 119 countries in our sample into ‘EU28’ (symbolized with pentagram;

Malta & Croatia missing due to data unavailability) and ‘Others’ (symbolized with reversed triangles). It is visually clear

that the EU28 group of countries is partitioned into two clusters. One could be interested in comparing a group of countries

(e.g those belonging to a predetermined cluster) with their counterparts within this group, rather than conducting a more

holistic analysis.

Consequently, there are several points that could be noted from the outputs of our proposed ap-

proach. From an overall score/ranking that takes into account all potential viewpoints (i.e. space of

weight vectors) and all potential benchmarks (as denoted by the family of σ−µ Pareto-Koopmans fron-

tiers), to the analysis of the dynamic, or spatial performance of an unit. These could be all advantageous

to both the developer of an index and the individuals interested in it. Due to a high number of countries

within our sample we have limited the discussion of the results to only those countries that made the

top-10 list in the 2017 World Happiness Report. For the reader interested in the remaining results, we

report these in the on-line supplementary appendix (available here: ❤tt♣s✿✴✴❣♦♦✳❣❧✴❯❘❇❘✉❈). We

should hereby note again that subjective evaluations (i.e. those of the WHR in this case) and our own

output (i.e. smi overall efficiency score and σ − µ rankings accordingly) cannot be directly compared

due to the intrinsic differences in their representation.

6 Conclusion

We proposed a novel methodology called σ−µ efficiency analysis to deal with the issue of weighting in

the construction of a composite index. In fact, quite different results can be obtained by changing the

weights of the dimensions considered by the composite index. Therefore, it seems reasonable to take
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into account for each unit the distribution of values assumed by the composite index on the whole set of

feasible weight vectors. We synthesize such distributions for each unit with its mean value µ, intended

to be maximized, and its standard deviation σ, intended to be minimized, as it denotes instability in

the evaluations with respect to the variability of weights. We further defined the concepts of σ − µ

Pareto-Koopmans dominance and efficiency, which permitted us to partition the units under analysis in

a sequence of efficiency frontiers and to define several types of meaningful efficiency measures. This

way we outlined the σ − µ efficiency analysis which finds its basis in some well known Operational

Research methodologies:

• Stochastic Multiattribute Acceptability Analysis (SMAA), for the idea of considering the whole set

of feasible weight vectors;

• Data Envelpment Analysis (DEA), for the idea of measuring efficiency;

• Markowitz modern portfolio theory, for the idea of representing distributions in terms of mean

and standard deviation.

• NSGA-II, for the idea of a sequence of Pareto frontiers.

With respect to its merits, the proposed method permits the inclusion of all potential viewpoints in

the construction of a composite index, while it takes into account the distances of units from all theσ−µ

Pareto-Koopmans frontiers lying on the plane. While there is no particular scope in this study to treat

compensatory issues in the construction of an index; we should note that our methodology permits the

use of non-compensatory aggregation techniques such as PROMETHEE methods (see Brans et al., 1986)

or ELECTREE methods (for a survey see Figueira et al., 2016 and for a review of recent developments

see Figueira et al., 2013) to be applied instead of the additive utility model illustrated in the paper. In

this case, to apply the SMAA to PROMETHEE and ELECTRE methods, see the approaches proposed in

Corrente et al. (2014) and Corrente et al. (2016a) respectively.

We attempted to show the potential of σ−µ efficiency analysis by applying it to the data supplied by

the ‘World Happiness’ report, obtaining a few interesting results and insights. Of course, our methodol-

ogy cannot be considered a ‘panacea’ for the many problems affecting the adoption of composite indices,

in general, and the ‘World Happiness’ in particular (see e.g. the critical discussion on composite indices

applied to wellbeing measures in Kroll and Delhey, 2013). However, we hope that this case study can

convince on the many interesting analyses and insights that σ − µ efficiency analysis permits in this

domain.

Finally, as far as its future direction of research is concerned, we believe that our methodology can

be fruitfully applied to all the domains in which composite indices are considered, ranging from the

ranking of universities to the measurement of competitiveness of geographical regions. Moreover, we

believe that the idea of successive Pareto-Koopmans efficiency frontiers has clear implications in the

domain of classic DEA, which we endeavour to explore in Greco et al. (2017b).
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