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Abstract

The thesis consists of three essays on real and financial effects of uncertainty

shocks.The first chapter investigates two different news-based uncertainty indices, Eco-

nomic Policy Uncertainty Index (EPU) and Relative Sentiment Shift Index (RSS). I

employ reduced form VAR and local projections (Jordá, 2005) to explore the differences

in wait-and-see effect of uncertainty on the real economy. Surprises in either index lead

to significant declines in production and employment and the effect is larger and per-

sistent in the case of RSS shocks than EPU. In the second chapter, the probabilistic

approach is applied to uncover the dependence structure in inflation uncertainty for the

countries bordering a major currency area, the UK and the euro area. Inflation uncer-

tainty is measured by the conditional volatility removing entire forecastable variations

by bivariate VAR GARCH model and joint distribution of uncertainties of two regions

is estimated by using copula to account for non-linear association. The results show

that the left tail events of inflation are positively correlated between the two regions.

This implies that the appropriate monetary policy can be drawn if policymakers con-

sider the interconnectedness of the deflationary pressures. Finally, the third chapter

examines the long run relationship between gross capital flow and its determinants,

focusing on the impact of uncertainty as global and contagion factors. I apply bounds

testing approach by Pesaran, Shin, and Smith (2001) allowing for the underlying re-

gressors being either I(0), I(1) or mutually cointegrated. Both gross capital inflows

and outflows exhibit significant level relationship with global, contagion and domestic

factors and uncertainty spillovers through financial linkages between the UK and the

euro area play crucial role in predicting capital flows of the UK.
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Chapter 1

Macroeconomic Uncertainty and

Its Impact on Economic Activity:

Investigating Different Measures

Abstract

This chapter investigates various measures of macroeconomic uncertainty and the

impact of uncertainty on real economy, focusing mainly two measures, Economic Policy

Uncertainty Index (EPU) by Baker, Bloom and Davis (2015) and Relative Sentiment

Shift Index (RSS) by Tuckett et al. (2014), Tuckett, Smith, and Nyman (2014). Al-

though the two measures show similar trend and high correlation, there exist distinctive

features among measures due to the differences in the methodology to construct the

indices: EPU is sensitive to political events or natural disasters whereas RSS responds

more to financial events. The impulse responses from reduced form VAR and local

projections (Jordá, 2005) show significant differences in the impact of two different

uncertainty measures on the real economy. The magnitude of the RSS shocks on both

production and employment is larger and the responses persist longer than EPU. Wait-

and-see effect, the rebound and overshoot after the downturn of the real activity, is

more noticeable in EPU than in RSS. RSS may capture contemporaneous structures

among variables in VAR model and consequently explains alternative channels other

than wait-and-see effect. To account for whether the effect evolves from mean preserv-

ing variance, not from bad economic situation itself, the baseline specification includes

stock market index to separate out the effect of changes in future expectation of busi-

ness cycle, assuming stock market returns are forward-looking. The robustness check

confirms that the result is consistent with the theoretical predictions. The volatility

is more relevant for the short run negative effect while the expectation of the state of

economy mainly explains the persistent negative effects.
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1.1 Introduction

Uncertainty has been increasingly recognised as one of the significant causes of pro-

longed recession after the Great Financial Crisis of 2008. The US economy experienced

persistent stagnation with low growth and high unemployment rate because of the lim-

ited monetary policy effectiveness under the zero lower bound on interest rate. Jurado,

Ludvigson and Ng (2015) argues that the structural shift might have taken place due

to high uncertainty in economy, changing economic agents’ behaviour towards reduced

propensity to spend and invest. Stock and Watson (2010) also found that uncertainty

was one of the main contributors to the recent Great Recession. In order to resolve the

unprecedented economic crisis in many advanced countries, nontraditional monetary

and fiscal policies were implemented to affect the real interest rate and boost economy.

Besides the crisis-led structural changes, the implementation of new policies is largely

recognised as another important source of uncertainty since 2008. Among many stud-

ies, Summers (2014) pointed out that unconventional monetary policy measures might

create economic uncertainty around policy as markets get confused about when and

how these measures put into practice and eventually affect investors’ beliefs.

In general, heightened perceived uncertainty level in economy, whether it is pro-

voked by policy or not, might discourage individuals to make economic decisions. They

will wait until the situation gets better. The real option theory explains this coun-

tercyclicality of uncertainty as wait-and-see effect (Bernake, 1983; Dixit and Pindyck,

1994). Dixit and Pindyck (1994) argue that if investment is irreversible, uncertainty

raises the value of hoarding cash and waiting to see what happens, making an anal-

ogy between an investment opportunity and a stock option in financial market. After

the seminal works of real option theory, the potential channels of uncertainty on real

economy have been widely examined by many, taking demand, supply and financial

sectors into account (see Romer, 1990; Carroll, 1996; Gilchrist, Sim, and Zakraǰsek,

2014; Lazear and Spletzer, 2011, among others).

There are mainly two challenges in the empirical analysis of the uncertainty and

its economic consequences: the measurement and the identification of uncertainty in

estimation. Regarding the former issues, it is important to examine the related concepts

and proxies of uncertainty in the pre-existing studies. One popular uncertainty proxy is

volatility measures. Most of empirical papers use implied stock market volatility index

(VIX or VXO) by Chicago Board Options Exchange Market as a proxy for uncertainty

13



for practical reasons, not resting on a profound theoretical background. The doubts

and critiques whether market volatility could measure uncertainty per se have been

emerged recently. For example, Jurado, Ludvigson and Ng (2015) claimed that it is

more closely related to risk-aversion in financial markets (see Bekaert, Hoerova, and

Duca, 2013 for a comprehensive critique).

Other related concept is sentiment. Sentiment indices reflect broader market ex-

pectation (including perceived uncertainty by economic agents) and may explain real

economic fluctuations. Among numerous studies, Estrella and Mishkin (1998) and Go-

linelli and Parigi (2004) found that Michigan Consumer Sentiment Index (MCI) could

predict and be predicted by a wide range of economic variables in the US. Although

MCI seems to be loosely linked to uncertainty per se, it captures the changes in confi-

dence and beliefs about the economic situation that can be interpreted as the changes

in perceived uncertainty.

Risk is also conceptually related to uncertainty. In fact, it is often misunderstood.

Frank Knight’s seminal paper (1921) provides useful insights to refine the concepts of

uncertainty and risk. Knight laid out two concepts of uncertainty: one is often called

Knightian uncertainty and another is non-Knightian uncertainty. The key distinction

between the two concepts is whether it is measurable and observable. Knightian uncer-

tainty is not directly measurable and unobservable, whereas non-Knightian uncertainty

refers to measurable and observable uncertainty. In addition, the concept of risk and

non-Knightian uncertainty are confusing and requires clarification. Makarova (2014)

clearly explained that the non-Knightian uncertainty ‘becomes a risk after such marks

are explicitly known and addressed’.1

In clarifying the definition of different related concepts of uncertainty, we found

it interesting to relate decision theory to Knight’s concepts of uncertainty. In the

von-Neumann Morgenstern expected utility theory, agent considers alternatives with

uncertain outcomes by means of objectively known probabilities. That is, the proba-

bility density of ex ante realisations is defined (non-Knightian uncertainty). However,

the assumption that the probability densities are defined with known probability rarely

holds. This is the world where Knightian uncertainty lies. In the subjective proba-

bility theory, initially proposed by Savage (1972), with probability density unknown,

individuals make decision as if they held probabilistic beliefs. The well-defined prob-

abilistic beliefs can be uniquely revealed by the choice behaviour of individuals. The

subjective probability theory dissolves the distinction between ‘risk’ and ‘uncertainty’

by using beliefs expressible as probabilities (Mas-Colell, Whinston, and Green, 1995).

For empirical technique, this naturally leads to a basis of Bayesian approach as beliefs

1Makarova (2014) defined the non-Knightian uncertainty as ‘the uncertainty of a phenomenon which

is potentially measurable in the sense that a probability distribution of ex ante realisations can be

defined, but the marks (values of interest) are not defined’.

14



are the important key for defining subjective probabilities.

To analyse the macroeconomic effects of uncertainty, it is also important to dis-

cuss the implication of measuring uncertainty in the macro level. Decision theory in

microeconomics provides insights how uncertainty affect the choice of individual eco-

nomic agent. Based on this micro-foundation, the appropriate macroeconomic uncer-

tainty measure needs to offer time-varying data that can be used in the estimation of

macro time-series models. Literature on measuring macroeconomic uncertainty based

on micro-foundation is a fast growing area in applied research (see, inter alia Bloom,

2009; Bachmann, Elstner, and Sims, 2013; Charemza, Diaz, and Makarova, 2013; ILO,

2013, 2014; Tuckett et al., 2014; Tuckett, Smith, and Nyman, 2014; Baker, Bloom and

Davis, 2015; Jurado, Ludvigson, and Ng, 2015). However, there has been little agree-

ment on the definitions and best strategies to capture the true uncertainty. In addition,

the classification of the methods of measurements has not reached to any conventions in

the field.2 One popular approach is to search for the (unobservable) underlying compo-

nents of uncertainty, either from news quotes (Baker, Bloom and Davis, 2015; Tuckett

et al., 2014; Tuckett, Smith, and Nyman, 2014) or from a huge set of macro variables

(Bank of England, 2013; ILO; 2013, 2014; Jurado, Ludvigson and Ng, 2015). On the

other hand, some rely on non-Knightian uncertainty by evaluating forecast errors of

a certain economic variable (Charemza, Diaz, and Makarova, 2013) or measuring dis-

agreement among the forecasters (Wallis, 2005; Clements, 2014). These methods can

be interpreted as non-Knightian approach since it assumes a certain probability density

function to measure uncertainty.

In terms of estimating the impact of macroeconomic uncertainty given a certain

uncertainty measure, there is increasing concern on how we recover causal effect us-

ing appropriate identification strategy. Existing empirical papers implemented different

strategies of VAR (Vector Autoregression) specification to estimate the effects of uncer-

tainty (Bachmann, Elstner, and Sims, 2013; Colombo, 2013; Baker, Bloom and Davis,

2015; Jurado, Ludvigson and Ng, 2015). Some of them employ Bayesian inference tech-

nique (for example, Aastveit, Natvik and Sola, 2013). However, the specification issue

still arises as simple VAR models may not guarantee whether they estimate true causal

effect, free of any potential bias. Based on these potential shortcomings of VAR models,

the discussion has been extended to the distinction between endogenous and exogenous

uncertainty (See Ludvigson, Ma, and Ng, 2015; Segal, Shaliastovich, and Yaron, 2015;

Berger, Dew-Becker and Giglio, 2016). Another remaining issue is whether we could

separate out the mean preserving spread effect (second moment shock) from the first

moment effect, so-called bad news effect. In this regard, Baker and Bloom (2013)

2One interesting work on the classification of the methods in assessing uncertainty is Makarova

(2014). The methods of assessing uncertainty can be categorised into three groups: (i) assessing the

disagreement among the forecasters, (ii) uncertainty by model, and (iii) mixed approach and other

aggregate measures.
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constructed cross country panel and used natural disasters, terrorist attacks and un-

expected political shocks as instruments for stock market proxies of first and second

moment shocks. They found that second moment shocks, uncertainty, appear to ex-

plain the variation in growth as well as the first moments. Obviously, the identification

strategy is the potential field of the future research to focus.

This chapter attempts to give an account of those two main challenges: the mea-

surement of macroeconomic uncertainty and the estimation of the impact of uncertainty

on real economy. Among many different concepts of uncertainty, it mainly focuses on

two recently developed measures based on text resources: Economic Policy Uncertainty

Index (EPU) by Baker, Bloom and Davis (2015) and Relative Sentiment Shift Index

(RSS) by Tuckett et al. (2014) and Tuckett, Smith, and Nyman (2014). This study

also contributes to the development of empirical models to estimate the real impact of

uncertainty. In particular, it builds reduced form VAR model with Impulse Response

Functions (IRFs) robust to the misspecification due to serial correlation across different

forecast horizons. The real economic variables that are considered to estimate impact

of two different uncertainty shocks are industrial production and employment. In order

to deal with the misspecification problem, the local projections by Jordá (2005) and

simultaneous confidence regions by Jordá (2009) are considered. This estimation strat-

egy would help interpret the impulse responses at time h, orthogonal to the variability

up to h− 1 periods.

The plan for the remaining sections is as follows. Section 1.2 broadly examines the

measurement issue of macroeconomic uncertainty. It covers six different measures and

proxies for macroeconomic uncertainty including stock market volatility measure, con-

sumer sentiment measure, and other macroeconomic uncertainty measures which have

been developed recently. The institutional backgrounds, trend and cyclical behaviour

of these indices are also investigated and compared. Section 1.3 is dedicated to the

analysis of the impact of macroeconomic uncertainty. Beginning with reviewing the

theoretical backgrounds, this section examines the empirical model for estimation. In

particular, the classical reduced form VAR model and local projections (Jordá, 2005)

for estimating impulse responses will be outlined. Then I will investigate the empirical

strategy for constructing the conditional bands of the impulse responses introduced

by Jordá (2009) and explain data. Section 1.4 reviews the results from the empiri-

cal models, including Impulse Response Functions (IRFs) and Forecast Error Variance

Decomposition (FEVD). Finally, Section 1.5 concludes.
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1.2 Different Measures of Macroeconomic Uncertainty and

Proxies

1.2.1 Descriptive analysis of uncertainty measures

Six different proxies related to macroeconomic uncertainty are considered in this

study: financial market volatility index (often referred as VIX or VXO, VXO on-

wards), Michigan Consumer Sentiment Index (MCI), Economic Policy Uncertainty In-

dex (EPU), Relative Sentiment Shift Index (RSS), macroeconomic uncertainty measure

by Jurado, Ludvigson and Ng (2015, denoted as JLN), and the measure of inflation

uncertainty by Charemza, Dı́az, and Makarova (2015, referred as CDM).

The implied volatility index for stock market by Chicago Board Options Exchange

is used as the canonical proxy for uncertainty in most existing finance and economic

literature, in particular, as a proxy for uncertainty at the firm level (e.g. Leahy and

Whited, 1995; Bloom, Bond, and Van Reenen, 2007). However, the volatility mea-

sures lack theoretical background as it simply captures the consequence of collective

decisions of stock market participants. Stock market volatility may fluctuate for many

reasons other than changes in uncertainty, for example, leverage, risk-aversion, senti-

ment. Bekaert, Hoerova, and Duca (2013) argued that VIX consists of components

driven by factors associated with time-varying risk aversion. Moreover, Jurado, Lud-

vigson and Ng (2015) pointed out that stock market volatility is more correlated with

time-varying risk aversion rather with economic uncertainty per se. From the empirical

point of view, Baker, Bloom and Davis (2015) showed that stock market volatility is

a measure based on explicit time frame, generally 30 days, so that it does not capture

the perception of uncertainty in longer period of time.

Another popular proxy for uncertainty is Michigan Consumer Sentiment Index

(MCI). MCI is a monthly survey data published by University of Michigan. The index

is based on the survey responses to five questions; two questions on personal finances,

two on the outlook for the economy, and one question on buying conditions for durables.

MCI is often considered as consumer confidence level in the literature. In a broad sense,

there are two contrasting views on the impact of sentiment on business cycle fluctua-

tions (see Barsky and Sims, 2012). One is the “animal spirit” view, which postulates

that the exogenous fluctuations in beliefs cause business cycle. For example, Blanchard

(1993) suggested that the cause of the 1990-1991 recession was the prolonged negative

consumption shock associated with an exogenous shift in sentiment. Another view is

the “information” or “news” view, which suggests that the sentiment or confidence

indicies contain the the fundamental information about the current and future eco-

nomic developments. Beaudry and Portier (2006) proposed a VAR model specification

where the anticipated changes in expectation may drive the business cycle fluctuations.
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Grounded on the model by Beaudry and Portier (2006), Barsky and Sims (2012) found

that the confidence does not play an important role in macroeconomic fluctuations.

The conclusions from two contrasting views on the impact of sentiment still remain

ambiguous both theoretically and empirically.

The most recent and popular macroeconomic uncertainty index is the Economic

Policy Uncertainty Index (EPU) by Baker, Bloom and Davis (2015). EPU for the US

consists of three components: the counts how often uncertainty related to policy is

mentioned in newspapers (news-based EPU, denoted as EPUN hereafter), the number

of temporary provisions in the tax code and the degree to which forecasts of inflation

and federal spending differ from each other. They report both EPU and EPUN for

the US. The index is available for other advanced countries or region - such as Japan,

Canada, some European countries - including Germany, UK, France, Italy, Spain, Ire-

land, Netherlands, and Sweden - and emerging economies - Australia, Brazil, Chile,

China, India, Korea, Russia, and Singapore. For Canada, Europe and India, they

report composite index of news-based index, budget disagreement index, and CPI dis-

agreement index from Consensus Economics throughout March 2014 but as of April

2014 they are no longer using Consensus Economics forecaster dispersion data and

solely constructing indices based on newspaper articles. For other remaining countries,

EPU indices are solely news-based EPU.

Figure 1.1 plots the the historical movements in EPUN for the US. EPUN di-

rectly measures the number of word counts which include “uncertainty”, “economy”

and “policy terms” from the selective choice of popular newspapers. It is straight-

forward measure for policy-related uncertainty and contains relatively objective and

neutral information about economic uncertainty reflected in the newspaper articles.

As EPUN measures unobservable component of policy-driven uncertainty, it can be

interpreted as Knightian uncertainty. However, as Makarova (2014) pointed out, EPU

may incorporate mixed signal of Knightian and non-Knightian uncertainty because

one of the components in EPU, forecast disagreement, indeed portrays non-Knightian

uncertainty.

Another perspective in measuring macroeconomic uncertainty emphasizes emo-

tions as key drivers of economic and financial activity (Akerlof and Shiller, 2009; Tuck-

ett, 2011). In the states of economy with high uncertainty, market participants make

their decision by securing conviction through narratives (Chong and Tuckett, 2015).

Such conviction narratives can be persistent for a certain period of time, supporting

human decision-making to be easy and quick despite the presence of incomplete infor-

mation and uncertainty. It is important to note that social interactions enable such

narratives to spread ‘systemically’ as we have witnessed in historical examples, such

as dotcom bubbles and house price bubble backed by structured finance during late

2000s. Aikman, Haldane, and Nelson (2013) pointed out that financial markets can be
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Figure 1.1: The US news-based Economic Policy Uncertainty Index

Source: Economic Policy Uncertainty website, http://www.policyuncertainty.com/.

systematically linked because of the search for yield with top performers as a reference,

namely “keeping up with the Goldmans” (Nyman et al, 2014).

Based on the theory of conviction narrative, Tuckett et al. (2014), Tuckett, Smith

and Nyman (2014) developed a Relative Sentiment Shift Index (RSS), using the Di-

rected Algorithmic Text Analysis (DATA) to assess the change in economic confidence

about the future. They focused on the two emotion groups, excitement and anxiety,

which either promotes or inhibit decision-making. They pointed out that shifting be-

tween two emotional groups is likely to be determined by the degree of confidence (or

doubt) and suggest that the relative degree of sentiment movement could reflect the

conditions of uncertainty perceived by agents in economy. This approach is in line

with the concept of Knightian uncertainty. Knight (1921) emphasizes that the degree

of confidence in the evaluation of probability can be determined not only by whether

the estimate is the best guess from model (a priori probability) but by how much the

forecaster (or a decision maker) is confident of it. RSS offers a complete account for

the degree of confidence as it is based on the individual’s behavioural aspect where

excitement explains attraction process in gain domain and anxiety signals inhibition

process in loss domain.

The wider availability in digital form of texts sources opens the opportunities for

investigating the sentiment efficiently. For example, Sinha (2014) proposed a machine-

learning algorithm for classifying news by three dimensions, positive, negative, and

neutral to construct a sentiment index. The critical feature for these type of algorithms

to effectively capture sentiment is the selection of relevant words list. Unlike other

text analysis methods, the selection of word lists for RSS is drawn from the context-
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independent algorithm directed by the underlying theory and validated in laboratory

settings (Tuckett, Smith and Nyman, 2014). They create very focused word lists with

around 150 words that are psychologically justified to depict conviction narratives.

Comparing to common word lists which often include over one thousand words, e.g.

Harvard-IV word list published in 2014 contains 1,915 positive words and 2,291 negative

words, RSS is very parsimonious. For more detailed explanation how RSS is constructed

and sample word list, see Appendix 1.6.1.

Comparing EPU and RSS, there are distinctive features in terms of text sources.

News components of EPU refers to leading newspapers in a country. For example, the

US news-based EPU uses the archive of 10 major newspapers.3 Therefore, EPU has

relatively broader data sources overarching worldwide and regional topics. RSS, how-

ever, covers targeted text resource, Reuters News Archive, comprising over 20 million

news articles in English from 1996 to 2013.4 Since the coverage of RSS text source

is quite specific to financial market and contains assessments of market participants

and journalists, RSS might include rich information about investors’ behaviour and

their qualitative evaluation on uncertainty level in the market. On the other hand, it

can be viewed as narrow information neglecting the sentiment of general public since

Reuters News Archive could only provide professional views focusing on financial mar-

kets. By and large, it seems that RSS reflects the individual investor’s decision making

process by directly selecting words from the theory of conviction narratives whereas

EPU is designed for measuring policy-related uncertainty with an advantage of broader

accessibility of source texts.

Jurado, Ludvigson and Ng (2015) constructed the macroeconomic uncertainty in

terms of forecasting errors estimated using the huge set of macro variables. They

define root mean squared forecast errors as h-period ahead uncertainty in variable yjt

for j = 1, · · · , Ny as

Ujt(h) =

√
E

[
[yj,t+h − E[yj,t+h|It]]2|It

]

where It denotes the information set available at time t. Then they aggregate across the

macro variables, j, to obtain a measure of macroeconomic uncertainty using common

latent factor.

Ut(h) ≡ plimNy→∞

Ny∑

j=1

wjUjt(h) ≡ Ew[Ujt(h)]

3USA Today, Miami Herald, Chicago Tribune, Washington Post, Los Angeles Times, Boston Globe,

San Francisco Chronicle, Dallas Morning News, New York Times, and the Wall Street Journal.

4Tuckett, Smith and Nyman (2014) developed similar index which comprises Reuters News Archive,

Broker reports of 14 brokers’ commentaries, and Bank of England internal market commentaries using

the same DATA algorithm. Bank of England commentaries were obtained by the collaboration of Bank

of England.
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JLN macroeconomic uncertainty index is available for 1-month, 3-month, and 12-

month ahead forecasts from June 1960 until December 2014 (http://www.econ.nyu.

edu/user/ludvigsons/) for the US macro variables.

Charemza, Dı́az, and Makarova (2015) constructed a measure of inflation uncer-

tainty by computing the squares of forecast errors evaluated from a univariate ARMA-

GARCH model. CDM is a non-Knightian measure of inflation uncertainty since it

assumes that inflation uncertainty can be backed out from ex post observable density.

Depending on the forecasting horizon, h, inflation uncertainty can be interpreted as

unexpected components in inflation fluctuations unpredictable at the time of forecast.

Comparing to other uncertainty measures that uses big data from newspaper quotes

(EPU, RSS) or huge dataset of macro variables (JLN), CDM is much more parsimo-

nious as it can be constructed by univariate model. Therefore, if there exist significant

correlations in the movements of CDM and other measures, CDM can be useful as a

compact measure for uncertainty of individual variable of interest.

Figure 1.2 illustrates time series trajectories of stock market volatility (VXO),

consumer sentiment index (MCI) and other types of uncertainty measures, RSS, EPU,

EPUN, JLN and CDM. The sample period is from January 1996 to December 2014,

except RSS (since it is only available from January 1996 to November 2013). The

original RSS and MCI series is multiplied by −1 so that positive (negative) values of

RSS and MCI indicate the increase (decrease) of uncertainty level. CDM is illustrated

using 6-month moving average to smooth out large fluctuations in the figure.

The most distinctive difference between stock volatility index and RSS, EPU, CDM

is found after September 2011 when VXO hiked for the second time due to European

debt crisis. EPU, RSS, and CDM uncertainty indices showed prolonged high level at

least for a year until the end of 2012 while stock volatility dropped sharply during

the consecutive 6 months, returning quickly to the normal level. Schwert (2011) found

that the volatility seen after 2008 crisis was relatively short-lived in many advanced

countries comparing to the volatility after the Great Depression. Due to the potential

structural break after the Great Recession, VXO might fail to have higher correlation

with perceived uncertainty in economy. Therefore, the premise of stable relationship

between stock volatility and real activity might also have been changed since the recent

crisis.

The trajectories of uncertainty measures in mid-2000s show similar trend. During

the period between 2004-06, VXO, EPU and RSS remained very low, in line with the

reasoning of the Great Moderation. During the Great Moderation, macro volatility and

the cost of risk in most advanced countries had dropped remarkably.5 During 2000s,

5Bernanke mentioned such trend in the FRB Governer’s Speech in 2004. Retrieved online from

http://www.federalreserve.gov/BOARDDOCS/speechES/2004/20040220/default.htm.
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there was an episode of natural disaster and the effect of disaster on uncertainty varies

across different measures. MCI and JLN uncertainty increased sharply in October 2005

when Hurricane Katrina hit the US while RSS, EPU uncertainty increased modestly

and VXO remained intact.

Figure 1.2: Uncertainty indices and proxies

Source: Thomson Reuters Datastream (VXO, MCI), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS),

Charemza, Dı́az, and Makarova (2015, CDM).

Focusing RSS and EPU only (see Figure 1.3), they show similar trend with some

episodes of divergence. Three cases of divergence are examined: (i) RSS increases

without any significant changes in EPU, (ii) both measures increase but RSS increases

more, and (iii) both increases but EPU increase more.

As for the first case, there are four episodes where RSS increased sharply without

any significant signal of EPU increase.6 These events of dramatic increase in RSS rela-

tive to EPU occurred when RSS was influenced by global financial events. In particular,

RSS acted as an early warning for the subsequent financial crisis in some cases. The first

episode of the split between two measures is the stock market downturn in September

2002. RSS increased sharply due to bursting dotcom bubble, while EPU level did not

rise that much during that period. Similarly, there was only RSS hike in August 2007

when BNP Paribas froze redemption for three investment funds and announced that

6These episodes occurred in September 2002, August 2007, July 2008, and May 2010.
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Figure 1.3: Economic Policy Uncertainty and Relative Sentiment Shift

Source: Economic Policy Uncertainty website, http://www.policyuncertainty.com/ (EPU), UCL

Centre for Study of Decision-Making Uncertainty (RSS)

they could not value the underlying assets of their funds fairly due to their exposure to

subprime mortgage loans. In fact, this event is considered as the first acknowledgment

of the risk of major banks’ high exposure to subprime mortgages. Brunnermeier (2008)

dubbed this episode “illiquidity wave”, arguing that interbank market was frozen up

as the perceived default and liquidity risks of banks rose significantly and the LIBOR

increased sharply. The next example is the failure of IndyMac Bank in the US in July

2008. IndyMac, one of the largest US mortgage lender then, was closed by the Office of

Thrift Supervision and the Federal Deposit Insurance Corporation (FDIC) established

IndyMac Federal Bank, FSB, as successor to the Bank.7 In May 2010, RSS rose sharply

while EPU remained relatively stable level due to global financial market turbulence

upon the Greek government’s announcement of austerity measures.

By examining the remaining two cases where both measures increase but either

one of the measure increases more, it seems that EPU tends to react relatively sensitive

to political events, such as elections and war, whereas RSS has been affected largely by

financial events. For example, there were steeper increases in EPU than in RSS during

the US interest cuts and stimulus in January 2008, banking crisis in February 2009,

and the US midterm election in September 2010. On the contrary, the episodes when

RSS increased more than EPU can be found mostly during the financial turbulences:

Russian financial crisis/LTCM in September 1998, 9/11 in 2001, the bankruptcy of

Lehman in September 2008, the European debt crisis in November 2011, and the US

debt ceiling debate in October 2013.8

7See FDIC Press release, July 11 2008, https://www.fdic.gov/news/news/press/2008/pr08056.

html for more details.

8(I). Major events that is associated with substantial increase in EPU: Russian Crisis/LTCM (August

1998), Bush election controversy(November 2000), 9/11 (August to September 2001), Second Gulf War
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It is also worthwhile to pay attention to the period of low uncertainty state and

compare the patterns before and after the Great Recession in 2008. Before the recent

crisis, RSS was persistently lower than EPU and the state continued for longer period

when uncertainty remained below average level: January 1996–March 1998 (27 months’

duration), December 1999–August 2000 (9 months’ duration), August 2003–April 2005

(21 months’ duration). Assuming that RSS reacts more to financial factors than policy

factors while EPU reacts mainly to policy factors, it demonstrates that financial sta-

bility effect constantly dominates the effect of politics and policy related uncertainty in

low uncertainty era before recent crisis. However, the durations of diversion between

EPU and RSS after the crisis have been shortened: July 2009–May 2010 (10 months’

duration) and August 2010–January 2011 (6 months’ duration). It suggests that the

financial stability effects are short-lived and macro uncertainty is mainly governed by

political or policy factors after the Great Recession.

To analyse the dependence structure among various uncertainty measures, pair-

wise Pearson’s correlation and Spearman’s rank correlation are computed. Correlation

coefficient is the most widely used linear dependence measure between two variables,

X and Y:

ρXY =
COV(X,Y )

σXσY

Where σX and σY denote the standard deviation of random variables, X and Y. Cor-

relation coefficient satisfies desirable properties of dependence measures as it is (1)

symmetric, (2) satisfies normalization, −1 ≤ ρXY ≤ 1, (3) measures perfect positive

and negative dependence, and (4) invariant to linear transformation. Furthermore, if

(X,Y ) follows bivariate Gaussian, then the correlation coefficient fully determines its

dependence structure and ρXY = 0, if they are independent. In case of multivariate

distributions, the dependence structure of elliptical families can be fully characterized

by correlation matrix.

However, the correlation coefficient cannot measure non-linear dependence.9 In

addition, the correlation coefficient is not a sufficient measure for dependence in cases

where there is heavy tail or asymmetric dependences (see, for example, Cont, 2001).

Another crucial limitation of Pearson’s correlation coefficient is that it is invariant only

for linear transformation. That is, for strictly increasing nonlinear transformation, T :

R→ R, ρ[T (X), T (Y )] 6= ρXY .

(March 2003), Large interest cuts and stimulus (January 2008), Lehman and TARP (September 2008),

Obama election (November 2008), Banking crisis (February 2009), Midterm elections (September 2010),

Debt ceiling dispute (July 2011), Government shut down and debt ceiling debate (September 2013).

(II). Major events that is associated with substantial increase in RSS but not in EPU: Dotcom bubble

stock market burst (September 2002), Interbank illiquidity wave (August 2007).

9For example, if X ∼ N(0, 1) and Y = X2, then cov[X,Y ] = 0 but the pair is obviously dependent.
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Unlike Pearson’s correlation coefficient, Spearman’s rank correlation measures the

degree of monotonic dependence even in non-linear fashion. For sample of size n,

Spearman’s ρS is computed as follows:

ρS(X,Y ) = 1− 6
∑
d2i

n(n2 − 1)

where di = xi − yi, and xi, yi are the converted rank of the raw random variables

Xi, Yi. In order to assess the degree of dependence of time series data potentially

from non-Gaussian data generating process, rank correlation seems to be more reliable

measure.

Table 1.1-1.2 illustrate the results of Pearson’s correlation coefficients and Spear-

man’s rank correlation coefficients among uncertainty measures. CDM is calculated

from 12-months-ahead forecast errors which has the largest and significant correlation

with most of uncertainty measures.10

Pairwise Pearson’s correlation coefficients between EPU and all other measures

of uncertainty are statistically significant at 1%. EPU and EPUN has the largest

coefficients for both Pearson’s correlation (0.90) and rank correlation (0.93), simply

because EPUN is one of the component consisting EPU. RSS has the second largest

correlation coefficient with EPU (0.78-0.80). VXO and CDM exhibit similar magnitude

of correlation with EPU although CDM has slightly larger rank correlation than VXO.

Among different horizons of JLN measures, JLN based on 1-month-ahead forecast error

has the largest correlation with EPU (0.29-0.35).

Pairwise Pearson’s correlations between RSS and VXO (0.43) and MCI (0.65) are

the evidence of representativeness of RSS as an uncertainty proxy. The rank correla-

tion between RSS and VXO (0.35) and MCI (0.67) also exhibit similar results. Among

different horizons of JLN measures, 1-month-ahead JLN index shows the largest corre-

lation with RSS as in the case of EPU.

As seen in the graphical analysis, volatility index (VXO) exhibits relatively low

correlation with other measures of uncertainty. Rank correlation is the largest when

paring with EPUN but the magnitude is rather moderate (0.43). Rank correlation

between VXO and MCI is negative and insignificant. On the contrary, MCI shows

relatively higher correlation with other measures except VXO. Among them, the rank

correlation with EPU and with RSS are the largest, approximately 0.68.

10In particular, CDMt,h = log(
√

(forecast errort|t−h × 100)2), where h = 12. See Appendix 1.6.2. for

the correlation coefficients between CDM and other measures based on different forecasting horizons.
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Table 1.1: Pearson’s correlation coefficients

EPU EPUN VXO MCI RSS JLN1 JLN3 JLN12 CDM

EPU 1

EPUN 0.9042* 1

0.0000

VXO 0.3955* 0.4974* 1

0.0000 0.0000

MCI 0.6956* 0.5227* 0.1493 1

0.0000 0.0000 0.0242

RSS 0.8035* 0.7714* 0.4274* 0.6497* 1

0.0000 0.0000 0.0000 0.0000

JLN1 0.3544* 0.3028* 0.5154* 0.5786* 0.3370* 1

0.0000 0.0000 0.0000 0.0000 0.0000

JLN3 0.3374* 0.2944* 0.5283* 0.5540* 0.3230* 0.9981* 1

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

JLN12 0.2637* 0.2454* 0.5468* 0.4509* 0.2576* 0.9723* 0.9832* 1

0.0001 0.0002 0.0000 0.0000 0.0001 0.0000 0.0000

CDM 0.3362* 0.2552* 0.2065* 0.3207* 0.3192* 0.3724* 0.3653* 0.3379* 1

0.0000 0.0001 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Sample period is 1996m1-2014m12, except RSS (1996m1-2013m11). JLN1 denotes JLN macroeconomic

uncertainty measured based on 1-month-ahead forecast errors. Similarly, JLN3 and JLN12 denotes the measure

based on 3-months- and 12-months-ahead forecast errors. The values in the first row of each variable is the cor-

relation coefficients and the values in the second row are significance level. * denotes the correlation coefficients

are significant at 1%.

Table 1.2: Spearman’s rank correlation coefficients

EPU EPUN VXO MCI RSS JLN1 JLN3 JLN12 CDM

EPU 1

EPUN 0.9339* 1

0.0000

VXO 0.3557* 0.4306* 1

0.0000 0.0000

MCI 0.6776* 0.5364* -0.0111 1

0.0000 0.0000 0.8681

RSS 0.7800* 0.7621* 0.3465* 0.6748* 1

0.0000 0.0000 0.0000 0.0000

JLN1 0.2887* 0.2222* 0.2327* 0.4453* 0.3144* 1

0.0000 0.0007 0.0004 0.0000 0.0000

JLN3 0.2562* 0.2047* 0.2706* 0.3946* 0.2964* 0.9907* 1

0.0001 0.0019 0.0000 0.0000 0.0000 0.0000

JLN12 0.1453 0.1206 0.3314* 0.2321* 0.1888* 0.9209* 0.9552* 1

0.0282 0.0692 0.0000 0.0004 0.0055 0.0000 0.0000

CDM 0.3853* 0.3114* 0.2449* 0.3892* 0.3972* 0.4474* 0.4260* 0.3481* 1

0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Sample period is 1996m1-2014m12, except RSS (1996m1-2013m11). JLN1 denotes JLN macroeconomic

uncertainty measured based on 1-month-ahead forecast errors. Similarly, JLN3 and JLN12 denotes the measure

based on 3-months- and 12-months-ahead forecast errors. The values in the first row of each variable is the cor-

relation coefficients and the values in the second row are significance level. * denotes the correlation coefficients

are significant at 1%.
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1.2.2 Trend and cyclical behaviours of uncertainty measures

Followed by the descriptive analysis, the uncertainty measures can be further inves-

tigated considering trend and cycle.11 The common principle of the data preparation for

time series estimation is the symmetric treatment of the actual data and the theoretical

model (DeJong and Dave, 2011). In the conventional theoretical models, covariance-

stationarity of data is often required because most macroeconometric models, such as

VAR, aim to estimate the impact of a shock as deviations from steady states. To obtain

covariance-stationary series, trend removal and isolation of cycles in log level original

variables are involved.12 Therefore, investigating the patterns of trend and fluctuations

around the trend is critical step ahead of the estimation.

There are three types of transformation techniques depending on the assumptions

of trend and cyclical behaviour: (i) linear detrending, (ii) differencing, and (iii) filtering.

If a series is characterised by deterministic time trend, detrending by fitting a linear

trend to logged variable with OLS regression is suffice to yield stationarity. In this

case, the series is said to be trend stationary. For unit root processes, differencing

the series will induce stationarity. The choice between two treatment hinges on the

assumptions regarding which process, either deterministic trend or unit root, provides

more reasonable representation for logged variables. As Hamilton (1994) noted, if a

series yt follows unit root process, subtracting linear time trend from yt would fail to

remove the time trend in variance although the time dependence in the mean can be

removed by the treatment. In addition, if a trend stationary series are to be differenced,

the differenced series becomes stationary, but there will be a unit root process in the

moving average representation, resulting non-invertibility. A widely accepted remedy

for this problem is to try both specifications and evaluate the relative sensitivity (see

DeJong and Dave, 2011).

Other potential problem of trend removal lies when there are structural breaks in

trend. If this is the case, the detrended series would show spurious persistence, causing

the inferences based on transformed data become invalid (see Perron, 1989). To account

for this problem, filtering techniques can be used for removal of such trend behaviour.

The most widely used technique is Hodrick-Prescott (H-P) filter, which is designed to

remove trend from cycle, given slowly evolving trend. In particular, decomposing log yt

as

log yt = gt + ct

where gt is the growth component and ct is cyclical components. The H-P filter esti-

11The theoretical background for the analysis of trend and cycle is heavily drawn from the textbooks,

such as Hamilton (1994), DeJong and Dave (2011).

12In general practice, take logarithm of the original variables first. Taking logarithm before trend

removal has two implications in general: log-linear approximation to represent the growth rate of the

variables and the reduction in cascade effects in raw data.
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mates gt and ct by minimising the following objective function:

T∑

t=1

ct
2 + λ

T∑

t=3

[(1− L)2gt]
2

The parameter λ determines the smoothness of evolving trend. If λ = 0, all fluctuations

in log yt will be assigned to the growth component. On the other hand, if λ = ∞, the

weight on the trend component in the objective function becomes maximal so that all

variations in log yt will be assigned to the cyclical component. In general, λ is set to

1,600 for quarterly data and 129,600 for monthly data.

These three different versions of transformed uncertainty measures are illustrated

in Figure 1.4. By examining the persistence of linearly detrended series, one may find

potential structural breaks. Most of uncertainty measures except CDM, the linearly

detrended series exhibit persistent positive values during 2001-04 and the subsequent

reversal to negative values during 2005-07. After recent crisis, the pattern of the per-

sistent large departure above zero followed by negative values was repeated. Broadly

speaking, these patterns provide the evidence of structural breaks in 2005, 2008 and

2014.13 The linearly detrended series of RSS and VXO show similar movements as EPU

except the absence of extended period of below linear trend after 2014. The detrended

CDM seems more random, showing quite a few negative spikes before the recent crisis

in 2008.

In addition, spectral analysis can be implemented (DeJong and Dave, 2011).14

First, B-P filtered series are generated to look at business cycle fluctuations. Then, the

autocorrelation functions and spectra of four types of transformed series are examined.

The left panels of Figure 1.14 and 1.15 in Appendix 1.6.4 demonstrate the auto-

correlation functions against the time horizons. The autocorrelation function indicates

the persistence of innovations and cyclical patterns of uncertainty measures. As dis-

cussed, linearly detrended series show high degree of persistence due to several struc-

tural breaks. Slowly decaying autocorrelation suggests that the dynamics of linearly

detrended series have MA components as well as AR components. The duration of

having positive correlation is longer in MCI (33 months) and EPU (24 months) than

RSS (18 months) and VXO (22 months). The two types of filtered data reveal some

hints of cyclical behaviour. In particular, B-P filtered data exhibit repeated rotation

of positive and negative autocorrelation. For instance, B-P filtered EPU index shows

positive autocorrelation over the first six months and then negative autocorrelation

13The possibility of breaks in uncertainty and volatility measures as well as other macro variables

are widely acknowledged and crucial in estimating uncertainty effects on macroeconomics. To my

knowledge, however, the recent literature on uncertainty rarely consider structural breaks explicitly

yet, except Göktaş and Dişbudak (2014). Therefore, as a starting point, Chow’s breakpoint test for

detecting structural breaks is conducted for each equations in plain vanilla VAR estimation (described

in Section 1.3-1.4.) in Appendix 1.6.3.

14See Appendix 1.6.4 for details.
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Figure 1.4: Detrended output of uncertainty measures

Notes: Detrended output is computed by author.

Source: Thomson Reuters Datastream (VXO, MCI), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS),

Charemza, Dı́az, and Makarova (2015, CDM)
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for 10 months. The phase of positive autocorrelations followed by negative phase is

repeated afterwards. The H-P filtered data of EPU shows long term cycle compared

to the H-P filtered RSS. The autocorrelation of differenced series are very small and

insignificant.

The estimated spectrum densities are illustrated in the right panels of Figure

1.14 and 1.15. The x-axis of the spectrum density is frequency, denoted as cycles per

unit period (month). The linearly detrended series peak at zero frequency, reflecting

persistence. The period of a cycle for linearly detrended series approaches infinity,

meaning that the cycle is never repeated. Likewise, the spectra spike at zero for H-P

filtered series. This also indicate evident persistence in the H-P filtered series. The

comparison of the height of spectrum provides relative importance of variations at

the chosen frequency. For H-P filtered VXO and EPU, the level of spectrum at zero

frequency is relatively large among other uncertainty indices. That is, the variations at

low frequency are important in explaining total variations in VXO and EPU. For RSS,

the height at zero is the smallest, meaning that the variations at low frequency are less

important. For B-P filtered series, the peaks in the spectra lie in [1/96, 1/18] ≃ [0.010,

0.056] by construction.15 Comparing the level of spectra at the peak, two sentiment

indices, RSS and MCI, are higher than EPU and VXO. This may confirm the findings

of existing literature that the variations in sentiment indices are highly associated with

business cycle fluctuations.

To sum up, the institutional aspects and the dynamics of different uncertainty

measures are important for the application of data transformation. It is more desirable

if the high frequency fluctuations in the original series in uncertainty measures are

retained after the transformation because the influence of high frequency fluctuations

on the overall dynamics is important. In addition, it is preferable to avoid spuriousness

in persistence of detrended data. Overall, H-P filtered uncertainty measures seem to

comply with the criteria for empirical analysis.16

15The frequencies at peaks are 0.045 (EPU), 0.043 (RSS), 0.047 (VXO), 0.036 (MCI), respectively.

16Notice that there are some critiques on H-P filtering. For example, Cogley and Nason (1995)

argued that H-P filter can generate spurious business cycle even if the underlying raw data of a model

do not exhibit cyclicality. Moreover, Phillips and Jin (2015) showed that H-P filter can capture long

run behaviour, which includes stochastic trend and combination of deterministic and stochastic trend

that allows breaks by choosing an appropriate smoothing parameter (λ).
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1.3 The Impact of Macroeconomic Uncertainty on Eco-

nomic Activity

1.3.1 Theoretical backgrounds

Numerous studies have investigated the channels of uncertainty impact on real

economy. Demand side of uncertainty channel was investigated by both firm- and

household-level approach. Real options theory borrowed the concept of financial deriva-

tive, option, to explain the countercyclicality of uncertainty due to the irreversibility of

firms’ investment (Bernanke, 1983; Dixit and Pindyck, 1994). Others (Carroll, 1996;

Romer, 1990) focused on the household-level explanation. They noted that households

might build up a buffer stock of savings to draw on in periods of temporarily low in-

come when they face with uncertainty about their future labour income. One of the

seminal paper to analyse the impact of macroeconomic uncertainty is Bloom (2009).

He adopted real option theory to evaluate wait-and-see effect of uncertainty by setting

Real Business Cycle (RBC) model with frictions in capital and labour.

Other studies have examined the supply side channel of uncertainty. Bentolila

and Bertola (1990) argued that hiring plans are negatively affected by uncertainty due

to high adjustment costs in labour market. Bloom (2009) also mentioned that the

uncertainty may affect hiring and firing decisions to be postponed. More recently,

Lazear and Spletzer (2011) pointed out that uncertainty reduces productivity growth

through less efficient matching of skills to jobs. In terms of the link between uncertainty

and productivity shocks, Disney, Haskell and Heden (2003) suggested that in times of

high uncertainty, companies may be more reluctant to enter new export markets, which

may prevent the most productive use of resources and consequently reduce supply.

Bachmann, Elstner and Sims (2013) hypothesized the wait-and-see effect incorporated

with the endogenous growth mechanism and argued that this mechanism may induce

the persistent and prolonged negative responses of real macro variables. They suggested

that the determinants of endogenous growth, such as R&D investment, human capital

investment and technological progress, can be affected by the initial innovations in

uncertainty and strengthen the demand channel that has persistent but not permanent

impact on the real economy.

Others have built the theoretical models for alternative channels of uncertainty,

mainly focusing on financial frictions. Gilchrist, Sim, and Zakraǰsek (2014) demon-

strated that uncertainty about the macroeconomic outlook is likely to have a negative

effect on asset prices because investors require compensation for the risk of holding the

asset. They explained that high uncertainty with financial market imperfection leads to

reductions in banks’ incentives to provide loans for households and companies, tighten-

ing in credit conditions. Arellano, Bai and Kehoe (2012) similarly emphasised the role
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of endogenous credit tightening for the channel of uncertainty in the imperfect financial

market setting. Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek (2016) also found

that financial and uncertainty shocks are often hard to distinguish and the interactions

between these two shocks are important in explaining the Great Recession.

Some of the theoretical and empirical papers have demonstrated the uncertainty

channels can be explained under the context of international economics. Fernandez-

Villaverde et al. (2009) indicated that domestic uncertainty shocks may lead agents

to increase their savings abroad, which is often called capital flight. They estimated a

stochastic volatility process for real interest rate using T-bill rates and country spreads.

They employed Particle filter and Bayesian methods in order to evaluate the impact

of uncertainty via capital flows in international dimensions. Carriére-Swallow and

Céspedes (2011) explored heterogeneous responses of different countries when facing

high uncertainty. In comparison to advanced countries, emerging economies suffer se-

vere falls in investment and private consumption following an exogenous uncertainty

shock. It takes significantly longer to recover, and they do not experience a subsequent

overshoot in real activity. They argue that the dynamics of investment and consump-

tion are correlated with the depth of financial markets and monetary and fiscal policy

because the development of financial markets and effective policy reactions could alle-

viate the impact of credit constraints for firms and households.

Another transmission channel proposed by Hansen, Sargent and Tallarini (1999)

is the risk premia mechanism through confidence. Their model consists of consumers

with pessimistic beliefs, i.e. ‘consumers who fears model misspecification’. Due to the

representative agents inability to acknowledge a probabilistic distribution, the model

predicts the agents act based on the worst-case scenario, following Gilboa and Schmei-

dler (1989). As uncertainty increases, consumers expect that the worst outcome gets

worse so that they reduce investment and hiring.

Lastly but most importantly, there have been constant discussions about the dis-

tinction between endogenous and exogenous uncertainty effect. Some argues that the

wait-and-see effect is indeed the causal channel from macroeconomic uncertainty to

real activity and business cycle. For the empirical analysis, reduced form VAR or other

types of SVAR are implemented (see, for example, Bloom, 2009; Colombo; 2013; Baker,

Bloom and Davis, 2015; and Jurado, Ludvigson and Ng, 2015). Others claims the by-

product hypothesis, suggesting that countercyclicality of macroeconomic uncertainty

reflects endogeneity.17 They argue that the bad economic situation itself (first moment

shock) may cause increases in uncertainty (second moment shock). One of the earli-

est attempt is Van Nieuwerburgh and Veldkamp (2006). They proposed the theoretical

17Refer to Bachmann, Elstner, and Sims (2013) for the list of the literature on by-product hypothesis.

For recent development, see Ludvigson, Ma, and Ng (2015), Segal, Shaliastovich, and Yaron (2015),

Berger, Dew-Becker and Giglio (2016).
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model to illustrate the causal relationship from first moment shocks to higher volatility.

They highlighted the role of the learning process of economic agents on real business

cycle and constructed a model where information imprecision (or uncertainty) leads to

endogenously driven recession.

1.3.2 Empirical models

Most of previous attempts to build models for estimating the influence of uncer-

tainty on the macro variables focus on the VAR specification. For the US data, Bloom

(2009) identified uncertainty effects on the US economy with 5-variable VAR specifica-

tion with Cholesky ordering. Later research, such as Baker, Bloom and Davis (2015)

and Juardo, Ludvigson and Ng (2015), replicated the specification in Bloom (2009)

with their own uncertainty index with variations of the ordering of the variables in the

system. For the UK, Denis and Kannan (2013) built a low-dimensional VAR model

to quantify the effect of uncertainty shocks on monthly UK industrial production data

while Bank of England (2013) applied reduced form six-variable VAR with quarterly

data to estimate the impact of uncertainty on UK GDP. Colombo (2013) constructed

structural VAR to investigate the effects of a US economic policy uncertainty shock on

euro area macroeconomic variables.

The key issue in the estimation of uncertainty impact is the endogeneity among

macro variables in the VAR model. VAR requires restrictions for the identification

to trace out structural shocks and their dynamic effects. The literature varies across

different identification restrictions imposed in VAR systems. Bekaert, Hoerova, and

Duca (2013), for example, first uses standard Cholesky decomposition of the estimation

of covariance matrix. Then, they impose five contemporaneous restrictions with long

run restriction. It assumes that the effect of monetary policy on industrial production

is shut down in the long run. This assumption relies on theory of long-run money

neutrality. Caldara, Fuentes-Albero, Gilchrist, and Zakraǰsek (2016) further develop

empirical methodology by using penalty function approach within SVAR framework to

trace out the interaction between economic uncertainty and financial conditions.

The existing studies hinged on the conventional approach to construct the standard

errors for Impulse Response Function (IRF), which could be problematic if the model

is misspecified. Traditional VAR estimation represents a linear global approximation of

the true Data Generating Process (DGP). However, problem arises for the estimation of

IRFs based on the misspecified VAR. As IRFs are the functions of forecast horizon, the

estimation of IRFs naturally accumulates the errors in the coefficients and the inference

of impulse responses could suffer from low precision.

There are several approaches to detour the issues in estimating impulse responses.

In general, restricted VAR models or Bayesian technique are largely implemented to
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cope with large standard errors in the IRFs. In addition, local projection approach sug-

gested by Jordá (2005) can be employed. He proposed the estimation of IRF being local

projections to each forecast horizon instead of extrapolating the distant horizon esti-

mates from a globally estimated model. This approach essentially estimates the impulse

responses by sequential regressions with overlapping points in each adjacent regression.

Jordá (2005) also showed the Monte Carlo evidence of consistency and efficiency in the

local projections for the model under the true DGP and for the misspecification cases.

In addition to the large standard error in the impulse responses, the potential serial

correlation in the impulse response functions could be another issue for inferences about

the estimated IRFs in practice (see, for example, Sims and Zha, 1999; Lütkepohl, 2007).

Jordá (2009) focused on simultaneous confidence regions and proposed two methods for

presenting the insights. Using Scheffé’s S-method, Scheffé bands represent uncertainty

around the shape of the impulse responses. On the other hand, conditional bands can

be constructed to analyse the significance of individual coefficient conditional on the

past trajectory.

The two aforementioned issues on the estimation of impulse responses in VARs are

particularly significant when illustrating the impact of uncertainty on macroeconomic

variables. The DGPs for different uncertainty measures are unknown and potentially

non-Gaussian. Moreover, misspecification of underlying data generating processes could

aggravate the robustness of estimated errors in impulse responses which is non-linear

function of forecasts at distant horizons. Therefore, sequential local projections and

conditional confidence bands could provide crucial implications for impulse responses to

uncertainty disturbances. The estimated conditional confidence intervals for responses

to uncertainty shocks can be interpreted as the variability in impulse responses at h,

unaffected by the variability from history up to h − 1 periods. Overall, this approach

can equip us with a pertinent tool for assessing the significance of the shape of the

dynamic transmission mechanisms of uncertainty shocks to real economy.

Throughout this section, Jordá’s approach (2005) of local projection is outlined.

In addition, the construction of the simultaneous confidence intervals (Jordá, 2009) is

demonstrated. Based on the conventional reduced form VAR structure,18 the generic

notation for the impulse response function is as follows.

IR(t, s, di) = E(yt+s|vt = dt;Xt)–E(yt+s|vt = 0;Xt) (1.1)

where the operator E(.|.) denotes the best mean squared error predictor; yt is an n×1

random vector; Xt ≡ (yt−1, yt−2, . . . )
′; 0 is a zero vector with dimension n×1; vt is the

n×1 vector of reduced form disturbances; and D is the matrix that contains shocks,

such that the ith column, di, represents the disturbances to the ith element in yt.

18See Appendix 1.6.5 for the sketch of the general VAR model. Its orthogonalised Impulse Response

Function (IRF) and Forecast Error Variance Decomposition (FEVD) for the baseline VAR model

estimation are also derived.
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In order to identify the contemporaneous causal structure in the variance-covariance

matrix, the traditional approach suggests the Wold decomposition after estimating VAR

system. The triangular factorisation in Cholesky decomposition (Ω = AD1/2D1/2A′ =

PP ′) is equivalent to setting D = P−1, so that the ith column of the disturbance matrix

represents the structural shocks to the ith element in yt. The estimation in conven-

tional VAR model is meaningful only if the original DGP is well-represented by the

VAR model specification. Without making any assumptions on the DGP, the natural

alternative to the Wold decomposition is to project yt+s locally to the linear space of

past values of yt up to p lags, (yt−1, yt−2, . . . , yt−p)
′.

yt+s = αs +Bs+1
1 yt−1 +Bs+1

2 yt−2 + · · ·++Bs+1
p yt−p + ust+s (1.2)

for s = 0, 1, 2, . . . , h. αs is an n×1 vector of constants; Bs+1
i ’s are the matrices of

coefficients for lag i and forecast horizon s+ 1; and ust+s is the residual.

The impulse responses from the local projection in equation (1.2) can be demon-

strated using the generic function of equation (1.1).

IR(t, s, di) = Bs
1di (1.3)

The representation for the estimated impulse response function is

ÎR(t, s, di) = B̂s
1di (1.4)

for s = 0, 1, 2, . . . , h, with normalinsation of B̂0
1 = I. It can be undoubtedly estab-

lished that the estimates B̂s
1 are consistent because the residuals, ust+s, are the mov-

ing average of the forecast errors from t to t + h uncorrelated with the regressors,

(yt−1, yt−2, . . . , yt−p)
′.

Local projections can provide the expression for the forecast error variance decom-

position, straight from the definition of forecast errors in equation (1.2).

yt+s − E(yt+s|Xt) = ust+s (1.5)

for s = 0, 1, 2, . . . , h. Normalisation for mean squared error (MSE) with the disturbance

matrix, D, yields

MSE(E(yt+s|Xt)) = D
−1E(ust+su

s′

t+s)D
′−1 (1.6)

for s = 0, 1, 2, . . . , h.

It might be interesting to examine the relationship between the local projections

and conventional VARs. In conventional VAR specification in Appendix 1.6.5, equation

(1.38) can be written as follows, unfolding the matrix notations into vector notations.
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ξt+s = νt+s + Fνt+s−1 + F 2νt+s−2 + · · ·+ F s−1νt+1 + F sξt + F s+1ξt−1

⇒

yt+s − µ =εt+s + F 1
1 εt+s−1 + F 2

1 εt+s−2 + · · ·+ F s
1 εt

+ F s+1
1 (yt−1 − µ) + · · ·+ F s+1

p (yt−p − µ)
(1.7)

where F s
i is the ith upper (n×n) block of the matrix F s in equation (1.34) of reduced

form VAR.

Assuming the covariance stationarity of yt, the original VAR system has the rep-

resentation of infinite sum of moving averages.

yt = γ + εt + F 1
1 εt−1 + F 2

1 εt−2 + · · ·+ F s
1 εt−s + · · · (1.8)

This is equivalent to equation (1.45) in conventional reduced form VAR with different

notations for the coefficient matrices and error. Accordingly, the impulse response

function is given by

IR(t, s, di) = F s
1di (1.9)

Suppressing the constant terms and rearranging equation (42) gives the expression that

can be directly comparable with the local projections in equation (38).

yt+s =α
s + F s+1

1 yt−1 + · · ·+ F s+1
p yt−p

+ εt+s + F 1
1 εt+s−1 + · · ·+ F s

1 εt
(1.10)

where Bs+1
i = F s+1

i for i = 1, . . . , p; and ust+s = εt+s + F 1
1 εt+s−1 + · · · + F s

1 εt. The

equivalence is established by the assumption that the original VAR system with iid

disturbances, εt, is indeed the data generating process of the time series yt.

Considering the h−period ahead joint estimation with local projections by stacking

the forecasts in the following way.

Yt = XtG+ VtH (1.11)

where Yt ≡ (yt+1, · · · , yt+h); Xt ≡ (yt−1, · · · , yt−p); and Vt ≡ (εt+1, · · · , εt+h). The

restrictions on the matrices, G and H implied by reduced form VAR, are as follows.

G ≡




F 1
1 F 2

1 · · · F h
1

F 1
2 F 2

2 · · · F h
2

...
... · · · ...

F 1
p F 2

p · · · F h
p




H ≡




In F 1
1 · · · F h

1

0 In · · · F h−1
1

...
... · · · ...

0 0 · · · In



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Defining E(εtε
′
t) = Ωε, E(VtV

′
t ) = H(Ih ⊗ Ωε)H

′ ≡ Σ. The maximum likelihood

estimation associated with GLS is given by

vec(Ĝ) = [(I ⊗X)′Σ−1(I ⊗X)]−1 × (I ⊗X)′Σ−1vec(Y ) (1.12)

Then the impulse responses and standard errors can be obtained from the estimates

of Ĝ directly and the ML estimation would achieve exact asymptotic formulas for single

and joint inference on the impulse response coefficients provided the DGP being the

implied VAR. In more general cases where the DGP and the specific structure of G

are unknown, the impulse responses can still be computed by univariate regressions

with a heteroskedasticity and autocorrelation (HAC) robust errors, Σ̂L. The confidence

intervals for 95 percent significance level would then be constructed as 1.96 ± (d′iΣ̂Ldi).

This is possible because the structure of the error terms of the local projections, ust+s,

is a moving average of forecast errors whose order is dependent on the forecast horizon,

s. In practice, the recursive regressions would help improving the efficiency.

Although having constructed the local projections for the coefficients of VAR spec-

ification and the associated impulse responses, the inference of the impulse responses

can be contested on different dimensions. The inference about the impulse responses

is associated with the multiple testing of the shape of the impulse response functions,

which often accompanied by the serial correlation. To take account for the serial corre-

lation in the estimated coefficients, Jordá (2009) proposed the simultaneous inferences

for the impulse responses, namely, Scheffé bands and conditional error bands, which I

will describe below.19

For constructing the simultaneous confidence regions, suppose the system of im-

pulse responses over h = 1, 2, . . . , H, where yt, the n × 1 vector, is the original time

series considered in VAR.

Θ(1, H) =




Θ1

...

ΘH


 (1.13)

Θh is n × n matrix of the coefficients in impulse response functions and the (i, j)

element in Θh indicates the impulse response of ith variable to a shock in jth variable

at horizon h. By stacking the Θh from h = 1 to h = H, Θ(1, H) becomes nH × n

matrix. Obviously, in reduced form VAR, the initial non-stochastic shocks for the

impulse responses are set as Θ0 = In, because there is no contemporaneous correlation.

Suppose the estimates of Θ(1, H) based on the sample of T observations of yt are

n2H × 1 matrix, Θ̂T = vec(Θ̂(1, H)) and assume the asymptotic distribution of the

19In addition, there are interesting studies which address the serial correlation issues, for example,

Sims and Zha (1999) and Lütkepohl (2007).
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estimates as follows.

√
T (Θ̂T −Θ0)

d−→ N(0,Ωθ) (1.14)

Traditionally, the significance of the impulse response estimates is reported by display-

ing 2 standard error bands, rectangular interval around each coefficient estimate.

P

[∣∣∣∣
θ̂h(i, j)

σ̂h(i, j)

∣∣∣∣ ≤ zα/2

]
= 1− α (1.15)

where θ̂h(i, j) denotes the estimates of (i, j) element in Θh; σ̂h(i, j) denotes the estimate

of the standard error of θ̂h(i, j), which is the square root of the diagonal entry of the

variance-covariance matrix, Ω̂h. The associated t-ratio is

t̂h(i, j) =
θ̂h(i, j)− θh(i, j)

σ̂h(i, j)
→ N(0, 1) (1.16)

Suppose the shape of the path of impulse responses being our interest, not the particular

value of coefficients. Then the Wald principle and the delta method can be applied with

g(·) : RH → Rk, for k ≤ H, a first-order differentiable function with invertible Jacobian,

G(·).

Ŵ (i, j) = (g(θ̂(i, j))− g0)
′(Ĝ′Ω̂(i, j)Ĝ)−1(g(θ̂(i, j))− g0)

d−→ χ2
k (1.17)

where Ĝ denotes the Jacobian evaluated at θ̂(i, j). The resulting confidence region is

multidimensional ellipsoid, which cannot be easily depicted in two-dimensional spaces.

P

[
Ŵ (i, j) ≤ c2α

]
= 1− α (1.18)

where c2α is the critical value of a χ2
k distributed random variable.

Scheffé’s S-Method of simultaneous inference exploits the Cauchy-Schwarz inequal-

ity to transform Wald statistic to be demonstrated easily in two-dimensional spaces

(Scheffé, 1953, cited in Jordá, 2009, p.629) . Consider less general case first where the

elements of θ̂(i, j) are uncorrelated, so that Ω(i, j) is diagonal. The null hypothesis of

joint significance H0 : θ(i, j) = 0 for any i, j = 0, · · · , n. The Wald statistic is the sum

of the squared t statistics because of the assumption of uncorrelated θ̂(i, j).

Ŵ (i, j) = θ̂(i, j)′Ω̂(i, j)−1θ̂(i, j)
d−→ χ2

H

=
H∑

h=1

t̂2h(i, j)
(1.19)

Therefore, the confidence region is given by

P

[
Ŵ (i, j) ≤ c2α

]
= P

[ H∑

h=1

t̂2h(i, j) ≤ c2α

]
(1.20)

The Bowden’s (1970, cited in Jordá, 2009, p.631) lemma implied by the Scheffé’s S-

method yields

max

[
|
∑H

h=1
t̂h(i,j)

h |√∑H
h=1

1
h

; |h| <∞
]
=

√√√√
H∑

h=1

t̂2h(i, j) (1.21)
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By applying the previous lemma directly, the resulting confidence bands for uncorre-

lated impulse responses are as follows.

P

[∣∣∣∣
H∑

h=1

t̂h(i, j)

h

∣∣∣∣ ≤
√
c2α
H

]
≃ P

[ H∑

h=1

t̂2h(i, j) ≤ c2α

]
= 1− α (1.22)

The 100(1−α)% confidence bands are guided by the critical values computed from χ2
H .

In more general cases where there might be possible serial correlations in impulse

responses, local projection can be utilised to address the problem. Orthogonalising the

impulse response by projecting h-th impulse response conditional on its past path from

1 to h− 1, which gives additional interpretation to resulting IRFs. The Wald principle

and the Cholesky decomposition of the variance-covariance matrix, Ω, for the (i, j)

elements are as follows.

Ω̂(i, j) = ÂijD̂ijÂ
′
ij (1.23)

for i, j = 1, . . . , n. Âij is a lower triangular matrix with 1s in the diagonal entries and

D̂ij is a diagonal matrix whose elements in the diagonal are the variances of the local

projections. More specifically, define

ψ̂h(i, j) = E[θ̂h(i, j)|θ̂h−1(i, j), · · · , θ̂0(i, j)]

i, j = 1, . . . , n;h = 1, . . . , H.
(1.24)

where E(.|.) is the linear projection operator. Denote the variances of ψ̂h(i, j) as σ̃h(i, j),

being the diagonal elements in D̂ij . Here, the Cholesky ordering is neither arbitrary

nor ambiguous. The reasoning behind the ordering involves the time frame of the

transmission of shocks; the impulse responses evolve from the earlier time horizon to

the future. This throws contrasts to the Cholesky ordering for the reduced form VAR

or structural VAR which often requires debatable theoretical backgrounds.

The Wald statistic for testing the hypothesis of joint significance in the impulse

responses coefficients, H0 : θ̂(i, j) = 0H×1, can be constructed as

Ŵ (i, j) = θ̂(i, j)′Ω̂(i, j)−1θ̂(i, j)
d−→ χ2

H (1.25)

with Ω̂(i, j)
p−→ Ω(i, j).

The Cholesky decomposition of Ω̂(i, j) yields,

Ŵ (i, j) = θ̂(i, j)′(ÂijD̂ijÂ
′
ij)

−1θ̂(i, j)

= (Â−1
ij θ̂(i, j))

′D̂−1
ij (Â−1

ij θ̂(i, j))

=

H∑

h=1

(
ψ̂h(i, j)

σ̃h(i, j)

)2
(1.26)

Notice that the decision problem of testing the joint null of significance of correlated

impulse response coefficients into the sum of the t-statistics of the individual nulls of
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significance of the conditional impulse response function.

Ŵ (i, j) =
H∑

h=1

(
ψ̂h(i, j)

σ̃h(i, j)

)2

=
H∑

h=1

t̂2h|h−1,...,0(i, j)
d−→ χ2

H

t̂h|h−1,...,0(i, j)
d−→ N(0, 1)

(1.27)

where ψh(i, j) is the linear projection of θ̂h(i, j) conditional on its past, and σ̃h(i, j)

denotes the corresponding variances. By asymptotic normal distribution, the confidence

region for the conditional impulse response coefficients is given as

P [|th|h−1,...,0(i, j)| ≤ zα/2] = 1− α (1.28)

The corresponding error bands for impulse responses can be established in two ways:

Sheffé bands derived from equation (1.21) and the conditional bands derived from

equation (1.27). First, Sheffé bands are simply

θ̂(i, j)± ÂijD̂
1/2
ij

√
c2α
H

iH (1.29)

where iH is a H × 1 vector of ones. The computation requires the Cholesky decompo-

sition of Ω̂, which is not restricted to the local projection described earlier. Hence, the

Scheffé bands could be tainted by the serial correlations in the impulse responses. To

address the inaccuracy of the 100(1− α)% confidence regions due to serial correlation,

fan chart is considered where the different values of α can be illustrated.

The conditional bands from the orthogonalisation using local projections are cal-

culated as

θ̂(i, j)± zα/2diag(D̂
1/2
ij ) (1.30)

Notice that the variability in the conditional bands represents the variability in the

estimated coefficients of impulse responses sterilised from serial correlation. The diag-

onal terms in D̂ij are obtained by linear projections of the h-period horizon forecasts

of impulse response coefficients on to the past values of the estimated coefficients.

1.3.3 Data

For estimating the orthogonalised Impulse Response Function (IRF), the order

of variables in the VAR system bears important implication as well as the choice of

variables. The selection of variables in the VAR systems is overlapping among the

existing studies. Bachmann, Elstner and Sims (2013) mainly compared the several

bivariate VAR models with a certain selection of an uncertainty measure and a macro

variable. Baker, Bloom and Davis (2015) included their measure of uncertainty (EPU),

S&P 500 index, the federal funds rate, employment, real industrial production and
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place them in this order. Jurado, Ludvigson and Ng (2015) investigated the VAR with

8 variables, ordering from S&P 500 index, uncertainty measure, the federal funds rate,

wages, CPI, hours or work, employment, to industrial production.

As for the ordering of variables in a chosen reduced form VAR model, discussions

are based on the contrasting views on exogeneity (or endogeneity) of uncertainty in-

novations. The wait-and-see effect hypothesis supports the ordering that starts from

uncertainty followed by other financial and real macro variables. On the other hand,

the by-product hypothesis would argue that such ordering is invalid and exaggerate

the impact of uncertainty. Bachmann, Elstner and Sims (2013) claimed that the rela-

tive importance of the two channels can be further investigated by comparing different

countries with different institutional aspects, such as the frictions in the labour market.

One of the recent example of the development in the area to uncover the endogeneity

problem in VAR for policy uncertainty shocks is the paper by Mertens and Ravn (2013).

They investigated the impact of an unanticipated change in taxes on the economy using

proxy structural VAR.

Acknowledging the potential endogeneity of both EPU and RSS uncertainty mea-

sures, a 5-variable VAR model with the following ordering is suggested to estimate the

impact of uncertainty on the US economy.

yt =




Uncertainty

Stock Market Index

Interest Rate

Production

Employment




This benchmark model implicitly assumes that the wait-and-see effect is predom-

inant in the US economy because uncertainty shocks contemporaneously affect other

macro variables but not vice versa in the VAR system. It is relatively simple and

straightforward to compare the effects of different uncertainty measures but the endo-

geneity cannot be fully overlooked. Obviously, there must be large potential for further

studies regarding the choice of appropriate model, not restricted to reduced VARs, to

investigate the causal effect of macroeconomic uncertainty. However, as the first step

of such efforts, this study looks at reduced form VAR with different specification to

check robustness of the estimation.

The uncertainty measures and proxies for the estimation are EPU, EPUN, RSS,

VXO, MCI and CDM. RSS is, by construction, standardised with mean 0 and stan-

dard deviation of 1. CDM is defined as CDM = log(
√
(forecast error× 100)2). Other

uncertainty measures are H-P filtered series of the logarithm of raw data. EPU index

is retrieved from the website, http://www.policyuncertainty.com/. RSS is obtained

from the UCL Centre for Study of Decision-Making Uncertainty with permission and

CDM from Charemza, Dı́az, and Makarova (2015).
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The macroeconomic variables are stock returns from S&P500 index to account for

short-term dynamics in stock market; the federal funds rate as a proxy for short-run

interest rate (i); manufacturing industrial production as a proxy for business cycle (IP);

the number of people employed in manufacturing sector as a proxy for labour market

conditions (EMP). Stock return is the first difference of logged stock market index,

employment and industrial production are in log level and detrended using H-P filter

in order to transform the variables as a deviation from the steady states. The Federal

Funds Rate is in percent level and also detrended by H-P filter. All macroeconomic

variables (monthly data from January 1996 to June 2015) are collected from FRED

economic database and Thomson Reuters Datastream.

As for the initial step for VAR estimation, the detrended-GLS test and feasible

point optimal test (Ng and Perron, 2001; Perron and Qu, 2007) are implemented for

different uncertainty indicies and macroeconomic variables.20 Table 1.9-1.10 in Ap-

pendix 1.6.6 illustrate the results of the stationarity test for uncertainty measures and

macroeconomic variables allowing for the potential structural breaks or linear time

trend. The results show the prevalence of the stationarity hypothesis, depending on

the different assumptions of trend and structural breaks. The result is consistent with

the Augmented Dickey Fuller (ADF) test results.

Finally, the lag length is chosen based on the information criteria (AIC C) sug-

gested by Hurvich and Tsai (1993).

1.4 Estimation Results and Robustness Checks

The plan for this section is as follows. First, the impulse responses and the 2

standard error bands from traditional reduced form VAR are illustrated in parallel

with the estimates of impulse responses with local projections (Jordá, 2005). Next,

the results of the impulse responses estimated from local projections with marginal

and conditional bands proposed by Jordá (2009) are analysed. For the robustness

check, several different specifications are estimated: a 3-variable model (uncertainty,

industrial production, and employment), and a 5-variable model replacing the stock

return with the VXO stock market volatility index. In addition, Scheffé fan charts for

various uncertainty shocks are demonstrated. Finally, it concludes with the analysis of

Forecast Error Variance Decomposition (FEVD) for the conventional VAR model.

Figure 1.5 illustrates the impulse responses obtained by local projections (red lines)

20In Appendix 1.6.6, the various stationary tests statistics are summarised. The test statistics con-

sidered are ADFGLS , Zα,MZGLS
α ,MSBGLS ,MZGLS

t , PT ,MPT , respectively. The Gauss code by

Carrion-i-Silvestre et al., 2009, (http://www.eco.ub.edu/~carrion/Welcome.html) is used for com-

putation.
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and by reduced form VAR (blue lines) with 2 standard error bands.21 It shows that

the impulse responses of two different uncertainty shocks, EPU and RSS, on industrial

production (IP) and employment (EMP) exhibit the negative effects as anticipated in

the literature. The impulse responses of local projections provide similar trajectories

as those of conventional reduced form VAR estimations. All of the impulse responses

estimated by local projections are inside the 2 standard error bands of the IRFs from

reduced form VAR, indicating the robustness of the estimation. The IRFs from local

projections are considerably similar to the IRFs from orthogonalised VAR for the RSS

shocks. However, for the EPU shocks, the estimated IRFs from local projections show

some deviations from the classical IRFs. The local projections and the Cholesky de-

composition of reduced form VAR would produce identical impulse responses only if the

actual data generating process (DGP) of yt follows the multivariate process as assumed.

Therefore, the wider gap for the EPU surprises suggests potential misspecification of

the reduced form VAR model, in particular the assumption about the contemporaneous

dynamics among the variables.

Figure 1.5: IRFs of the reduced form VAR vs. local projections

Notes: The estimates of reduced form VAR by author using STATA. The local projection is estimated

using Gauss (codes retrieved from Jordá’s personal webpage, http://www.econ.ucdavis.edu/faculty/

jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index),

FRED economic database (federal funds rate), Economic Policy Uncertainty website, http://www.

policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS).

21See Appendix 1.6.7 for the estimation results of the canonical reduced form VAR coefficients.

Appendix 1.6.8. presents the IRFs of the all 5 variables in the VAR system, using Jordá’s (2005, 2009)

approach.
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In addition, the wait-and-see effect for EPU surprises, which can be depicted as

the short lived negative effect accompanied by quick bouncing back afterwards, is more

salient in the local projections than the reduced form VAR estimation. In general, the

longer horizon impulse responses from the VAR coefficient estimates would produce

compounded errors as it is optimal for one-period ahead forecasts. Assuming that the

local projection results boil down to more precise impulse responses, the overshooting

effect in longer term horizon for both industrial production and employment to EPU

shocks would be meaningful. EPU shocks are sensitive to political events and sometimes

characterisd by natural disasters because economic policies would response to those

exogenous factors. The political events and natural calamities would have short lived

negative effects on economy as they are identified as exogenous, one-off events, unlike

financial events. Nevertheless, it is not sufficient to affirm that EPU is strictly exogenous

to other economic situations. Economic policy can be largely unpredictable when facing

adverse economic conditions, which may introduce potential endogeneity. Therefore,

the causal interpretation of the estimated responses to EPU shocks needs to be carefully

treated.

What stands out from the estimation results is the persistent and protracted effects

of RSS surprises on the real economy. RSS tends to capture financial events as shown in

Section 1.2. Theoretically, it is also closely related to economic agents’ decision making

process since it is drawn from the emotional words. RSS might interact contempora-

neously with other macroeconomic variables, which suggests that there might be more

chances of being affected by alternative channels other than wait-and-see effect. The

channel of financial frictions, endogenous growth mechanism and by-product hypothesis

would be easily interpreted within RSS uncertainty measure.

Figure 1.6 displays the estimated impulse response functions by Jordá’s (2005) local

projections along with marginal 2 standard error bands and the conditional 2 standard

error bands (Jordá, 2009) for EPU shock on industrial production and employment.

While the marginal bands show that the impact of uncertainty shocks is insignificant

after approximately 17 months, the narrower conditional bands suggest that the effect

of uncertainty remains significantly negative for approximately over than 2 years after

the shock. Employment impulse response functions and their bands show the similar

results with the conditional bands being narrower in employment than in production.

The effects on employment is more protracted then those of production, suggesting the

frictions in the labour market require larger adjustment costs than in the capital market.

The conditional bands provide another interesting implication. As the past realisations

are entirely considered in estimating the confidence region in the next horizon, the

conditional bands offer the joint significance of the impulse responses given the past

values.
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Figure 1.6: IRFs of local projections and conditional bands: EPU

Notes: The IRFs are estimated by author using Gauss (codes retrieved from Jordá’s personal webpage,

http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index

and VXO), FRED economic database (federal funds rate), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU).

Figure 1.7 illustrates the impulse responses for RSS disturbances. Interestingly,

the shock in RSS uncertainty affects both production and employment negatively for

longer period than EPU shock. For example, RSS shock leads employment to decline

almost for 3 years. As mentioned, the difference comes from the institutional aspects

of two different measures. Combining with the findings from the analysis of different

measures, the persistent negative impact of RSS is related to the methodology that is

used to construct the index. The perceived sentiment measured by the relative shift

from excitement to anxiety could directly influence alternative channels, such as en-

dogenous growth mechanism, financial frictions, and by-product hypothesis, as well as

the main channel from real options theory. RSS represents the collective information

about the agents’ sentiments towards uncertainty and determines the crucial factors for

the endogenous growth mechanism. For example, the level of human capital investment

and/or R&D investment can be adjusted according to the collective sentiments regard-

ing the decision-making under uncertainty. Financial frictions exacerbate the initial

negative effect of uncertainty and RSS captures the financial factors better which had

not been successfully picked up with EPU index. Moreover, RSS is constructed by

analysing the emotional words in the news article that would have contemporaneous

interactions with other macroeconomic variables. The endogeneity of RSS suggests
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that the by-product hypothesis plays more significant role in the model with RSS.

Figure 1.7: IRFs of local projections and conditional bands: RSS

Notes: The IRFs and conditional bands are estimated by author using Gauss (codes retrieved from

Jordá’s personal webpage, http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index

and VXO), FRED economic database (federal funds rate), UCL Centre for Study of Decision-Making

Uncertainty (RSS).

In order to check the robustness of the impulse responses by local projection, two

additional specifications are estimated (see the bottom panels of Figure 1.6 and 1.7).

First, the dotted line is estimated with more parsimonious model, 3-variables VAR of

uncertainty, production and employment. The negative effect of EPU uncertainty in

this specification is slightly exaggerated for both production and employment but the

shape of the trajectory is similar to the baseline model. For RSS shocks, the difference

between the 5-variable VAR and 3-variable VAR is not sizeable. The impulse responses

of the shock in RSS uncertainty in low-dimension model tend to move similar to the

baseline model in the short run but exhibit slightly stronger bounce-back effects after

approximately 11
2 years. Second, the 5-variable VAR specification that replaces the

stock market index with VXO is estimated. For both production and employment, the

negative effects of uncertainty are alleviated and the IRFs show stronger wait-and-see

aspects.

The interpretation of the second specification requires additional reasoning about

the underlying notions of different uncertainty measures and endogeneity. When inter-

preting the impact of uncertainty, it is important whether we estimate the impact of the

mean preserving variance or that of bad economic situation. The narrative uncertainty
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measures, EPU and RSS, may be affected by both pure second moment shocks and

first moment shocks by construction. These measures are the variables that gauge the

level of unobservable (Knightian) uncertainty in the economy. The blurriness is getting

even worse because the periods with high volatility often coincide with the periods

with bad economic situation. Indeed, it is hard to trace out whether the estimated

effect of uncertainty is solely due to mean preserving variance. The baseline specifi-

cation include S&P stock market index to separate out the effect of changes in future

expectation of business cycle, assuming stock market returns are forward-looking. The

VAR model with VXO instead of stock market returns is designed to capture the effect

of pure second moment shocks in general. Controlling for volatility instead of stock

returns, the magnitude of the estimated coefficients in impulse responses mitigated and

the wait-and-see effects becomes stronger. In other words, the benchmark model may

overstate the prolonged negative effects of uncertainty shocks on real economy. The

result is consistent with the theoretical predictions as the volatility is more relevant

for the short run negative effect and quick overshooting while the expectation of the

adverse state of economy in the stock market is associated with the persistent downside

phase in real activities.

Figure 1.8-1.9 illustrate the impulse responses and their confidence regions for the

shock in the different uncertainty measures and proxies, EPUN, VXO, MCI and CDM,

respectively. The shape of IRFs and the conditional confidence bands for EPUN show

similar trajectories as EPU does simply because EPUN is one of the components in

EPU. VXO shocks create negative influences on real macro variables, for nearly up to

3 years based on the conditional bands. The relatively persistent negative impact is

inconsistent with the theory that anticipated wait-and-see effect for one-shot volatility

innovations. Although it is difficult to uncover the reason, the preliminary explanation

would also be drawn from the feature of VXO index. Implied stock market volatility

is not a measure for uncertainty itself and merely captures the narrow perception of

uncertainty at most. In addition, the model specification containing both first and

second moments which are formed in the stock market would have contemporaneous

influences among variables, which may result in the prolonged impulse responses.

The negative shock in Michigan consumer sentiment (MCI) leads production to

decline for nearly 2 years but comparing to other uncertainty shock, it is less persistent

with a notable rebound. For CDM uncertainty shock, the impulse response of produc-

tion increases up to approximately 7-8 months. Then the impulse response decreases

until it rebounds approximately at h = 30. The distinctive trajectory for the impulse

response for CDM shock can be partially explained by the lowest correlation (both

linear and rank correlation) with other uncertainty measures.
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Figure 1.8: IRFs of local projections and conditional bands: EPUN, VXO

Notes: The IRFs and conditional bands are estimated by author using Gauss (codes retrieved from

Jordá’s personal webpage, http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index

and VXO), FRED economic database (federal funds rate), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPUN).

Figure 1.9: IRFs of local projections and conditional bands: MCI, CDM

Notes: The IRFs and conditional bands are estimated by author using Gauss (codes retrieved from

Jordá’s personal webpage, http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index

and MCI), FRED economic database (federal funds rate), Charemza, Dı́az, and Makarova, 2015 (CDM).
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Figure 1.10-1.12 illustrate Scheffé fan charts for all uncertainty shocks considered.

It shows 95th, 50th and 25th percentiles of the Wald test of joint significants and the

impulse responses are calculated by local projections. The results is mostly consistent

with the previous findings. 50th and 25th percentile fan charts predict short run nega-

tive effects of uncertainty. To all of the uncertainty shocks, employment tends to have

long term damages than industrial productions.

Figure 1.10: Scheffé Fan Chart: EPU, RSS

Notes: The IRFs and Sheffé bands are estimated by author using Gauss (codes retrieved from Jordá’s

personal webpage, http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index),

FRED economic database (federal funds rate), Economic Policy Uncertainty website, http://www.

policyuncertainty.com/ (EPU) and UCL Centre for Study of Decision-Making Uncertainty (RSS).
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Figure 1.11: Scheffé Fan Chart: EPUN, VXO

Figure 1.12: Scheffé Fan Chart: MCI, CDM

Notes: The IRFs and Sheffé bands are estimated by author using Gauss (codes retrieved from Jordá’s

personal webpage, http://www.econ.ucdavis.edu/faculty/jorda/pubs.html).

Source: Thomson Reuters Datastream (employment, industrial production, S&P stock market index),

FRED economic database (federal funds rate), Economic Policy Uncertainty website, http://www.

policyuncertainty.com/ (EPU) and UCL Centre for Study of Decision-Making Uncertainty (RSS).
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Table 1.3 shows the fraction of the uncertainty shocks in explaining the fluctua-

tions in macroeconomic variables, computed by the reduced form VAR model. The

left panel reports the forecasting error variance decomposition (FEVD) for industrial

production and employment in the VAR model with EPU uncertainty measure. The

lower panel compares the FEVD for the same macro variables in the VAR model with

RSS specification. The results of the contribution of the monetary policy shocks, repre-

sented by shocks in Federal Funds Rate, is also reported in each table denoted as FFR.

h is the forecasting horizon. The table includes the decomposition for several horizons

from 3 months up to 2 year. The ‘max h’ denotes the horizon h for which the fraction

of each shock that attributes to the variations in macro variables by the largest.

Table 1.3: Forecast Error Variance Decomposition

EPU shock RSS shock

Production Employment Production Employment

EPU FFR EPU FFR RSS FFR RSS FFR

h=3 3.45 2.89 2.62 2.49 2.68 0.61 0.64 0.24

h=6 12.55 3.55 13.43 5.28 9.50 2.20 7.08 2.16

h=12 19.26 6.48 20.91 9.96 17.28 9.75 19.96 8.01

h=18 22.11 8.37 23.85 12.76 22.80 16.10 28.35 13.36

h=24 22.96 9.04 25.30 14.17 25.87 17.68 33.58 15.64

max h 27 53 35 63 29 48 34 55

h=max 23.02 9.26 26.05 14.83 26.47 20.08 36.64 17.76

Notes: max h indicates the horizon h for which the fraction of each shock that attributes to the

variations in macro variables by the largest.

The uncertainty shocks explain much larger proportion of the short-term fluctu-

ations in macro variables than the monetary policy (FFR) shocks do. The relative

importance of EPU uncertainty shocks for production fluctuations is around 19% for

one-year forecast horizon and 23% at maximum for h = 27. EPU uncertainty shocks

are associated with the employment variations by 20% for one-year horizon and 26% at

maximum for h = 35. However, shocks to the federal funds rate explains the variations

in production and employment by approximately 6% and 10%, respectively for h = 12.

Thus, the magnitude of relative importance of EPU uncertainty shocks in explaining

short-term production fluctuation is three times larger than that of monetary policy

shocks at 1-year horizon and twice larger in explaining employment fluctuations.

The right panel reports the results of the model with RSS uncertainty. Similarly,

the RSS uncertainty shocks explains the larger share of the variation in macro variables

than FFR shocks do. For one-year horizon, RSS innovations attributes the short-term

fluctuations in production by 17% while FFR explains 10% of the variation. Comparing

this with the upper panel results, the difference in the magnitude of decomposition
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between uncertainty and monetary policy shocks is smaller for RSS than EPU. The

relative importance of shocks in the variations in employment is more than twice larger

for RSS shocks (20%) than for the federal funds rate shocks (8%).

Comparing the two different measures of uncertainty, the dynamic correlation of

RSS uncertainty with the employment exhibit greater importance than the EPU un-

certainty at the maximum value of FEVD. Shocks to RSS uncertainty are associated

with a maximum of 26% of the forecast error variance in production, and 37% of the

forecast error variance in employment while shocks to EPU uncertainty are associated

with a maximum value at 23% and 26%, respectively.
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1.5 Conclusions

This paper investigated various measures of uncertainty and its impact on real

economy, focusing mainly on two measures of uncertainty, Economic Policy Uncer-

tainty (EPU) by Baker, Bloom and Davis (2015) and Relative Sentiment Shift (RSS)

by Tuckett et al. (2014), Tuckett, Smith, and Nyman (2014). Although EPU has

recently gained popularity for the analysis of policy-related disturbances, it fails to

provide a rationale for decision-making process. RSS rather focuses on assessing the

changes in economic agents’ confidence about the future, where two domains of emo-

tion, excitement and anxiety, play an important role for either promoting or inhibiting

decisions in real activity. Although the two measures show similar trend and high cor-

relation, both linearly and non-linearly, there exist distinctive features among measures

due to the differences in the methodology to construct the indices: EPU is sensitive

to political events or natural disasters whereas RSS responds more to financial events.

Empirical analysis covers the estimation of impulse responses of uncertainty shock to

real activity.

Both reduced form VAR and local projections (Jordá, 2005) were applied to esti-

mate the impulse responses. The existing studies hinged on the conventional approach

to construct the standard errors for Impulse Response Function (IRF), which could

be problematic if the model is misspecified. By estimating the impulse responses with

sequential regressions of overlapping points in each adjacent regression, the local pro-

jection (Jordá, 2005) could provide consistency and efficiency even in case of misspec-

ification. In addition, simultaneous confidence regions (Jordá, 2009) of the impulse

responses are implemented by computing the conditional bands and Sheffé bands. The

conditional bands lead the interpretation of confidence bands as the joint significance

of the impulse response conditional on the past trajectories.

Results show significant differences in the impact of two different uncertainty mea-

sures on the real economy. The magnitude of the RSS shocks on both production and

employment is larger and the responses persist longer than EPU. Putting differently,

the rebound and overshoot after the downturn of the real activity, wait-and-see effect,

is more noticeable in EPU than in RSS. It suggests that RSS captures contemporaneous

structures among variables in VAR model and consequently explains alternative chan-

nels other than wait-and-see effect. To account for whether the effect evolves from mean

preserving variance, not from bad economic situation itself, the baseline specification

includes stock market index to separate out the effect of changes in future expectation

of business cycle, assuming stock market returns are forward-looking. The specification

of 5 variables with VXO instead of stock market returns captures the second moment

shocks. The result is consistent with the theoretical predictions as the volatility is more

relevant for the short run negative effect while the expectation of the state of economy

is for the persistent negative effects.
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1.6 Appendix

1.6.1 Construction of Relative Sentiment Shift (RSS) Index

A Relative Sentiment Shift measure developed in Tuckett et al. (2014), Tuckett,

Smith, and Nyman (2014) uses Directed Algorithmic Text Analysis (DATA), which

assesses shifting economic confidence about the future by assessing the shifts in the

relative quantities of excitement and anxiety in relevant texts. This approach selects

text variables, directed by the conviction narrative theory of decision making without

making any distributional assumptions. Unlike other text analysis methods, the se-

lection of relevant words is drawn from the context-independent algorithm directed by

the underlying theory and validated in laboratory settings. Emotionally-charged words

used to construct RSS are grounded upon the social psychological theory of action

under uncertainty.

Table 1.4: Examples of emotional words for extracting RSS

Positive Domain Negative Domain

Amaze Anxiety

Amazed Anxious

Attracted Avoids

Beneficial Bother

Confident Distress

Boost Doubt

Perfect Threat

The laboratory experiment done by Strauss (2013) back up the idea of word choice.

In the experiment, random samples of words from the two domains were shown in

the general context to financially-literate individuals so that they could give rates on

whether the words match the anxiety about the loss or excitement about gain. The

findings strongly suggests that the two lists well represent the two distinctive emotional

domains. The summary statistic of a collection of texts, ‘T’ is calculated by counting

the number of words for each domain and scaling these numbers by the total text size

in number of characters.

Sentiment[T ] =
|Excitement| − |Anxiety|

size[T ]

RSS is not influenced by any unintended double counting of documents as it mea-

sures the difference between the count of excitement-driven words and anxiety-driven

words. The deliberate simplicity of RSS measurement structure helps to retain consis-

tency for extracting sentiment from big data throughout the time period.
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1.6.2 Correlation coefficients between CDM and other measures

Table 1.5 illustrates linear correlation between CDM based on different forecasting

horizon, from 1 to 12 months, and other uncertainty measures. Table 1.6 summarises

Spearman’s rank correlation. 1-year-ahead CDM exhibits strongest correlation with

other uncertainty measures. This implies that short-term forecast errors are not as

much informative as 1-year-horizon forecast errors. Rank correlations between CDM

and other measures range from 0.18 to 0.45. The weakest correlation among them is the

correlation between RSS and CDM. Unlike other measures show the largest correlation

with 1-year-ahead CDM, RSS shows the largest correlation with CDM uncertainty

based on 5-month-ahead forecast errors.

Table 1.5: Pearson’s correlation coefficients: CDM and other uncertainty measures

horizon EPU EPUN VXO MCI RSS JLN1 JLN3 JLN12

1 0.01 -0.02 -0.01 0.19 0.04 0.28 0.28 0.27

2 0.03 0.03 -0.02 0.09 0.02 0.15 0.15 0.15

3 0.10 0.06 0.02 0.21 -0.01 0.26 0.26 0.25

4 0.22 0.17 0.06 0.27 0.14 0.32 0.32 0.31

5 0.28 0.19 0.13 0.33 0.18 0.37 0.37 0.36

6 0.23 0.12 0.11 0.34 0.04 0.40 0.40 0.39

7 0.28 0.18 0.11 0.28 0.06 0.33 0.33 0.32

8 0.31 0.21 0.16 0.35 0.08 0.39 0.39 0.37

9 0.31 0.23 0.19 0.35 0.07 0.40 0.40 0.39

10 0.32 0.23 0.23 0.33 0.03 0.37 0.37 0.37

11 0.33 0.25 0.25 0.31 0.03 0.41 0.41 0.41

12 0.34 0.26 0.21 0.32 0.02 0.37 0.37 0.37

Notes: Sample period is 1996m1-2014m12, except RSS (1996m1-2013m11). JLN1 denotes JLN macroe-

conomic uncertainty based on 1-month-ahead forecast errors. Similarly, JLN3 and JLN12 denotes the

measure based on 3-months- and 12-months-ahead forecast errors.

Table 1.6: Rank correlation coefficients: CDM and other uncertainty measures

horizon EPU EPUN VXO MCI RSS JLN1 JLN3 JLN12

1 0.01 -0.04 -0.09 0.17 0.05 0.31 0.31 0.32

2 0.08 0.05 -0.08 0.16 0.06 0.30 0.30 0.29

3 0.14 0.09 -0.07 0.25 0.01 0.29 0.29 0.28

4 0.22 0.15 -0.02 0.31 0.12 0.31 0.31 0.30

5 0.26 0.18 0.03 0.36 0.18 0.39 0.39 0.38

6 0.24 0.16 0.04 0.35 0.12 0.42 0.42 0.40

7 0.27 0.20 0.03 0.34 0.13 0.40 0.40 0.37

8 0.29 0.21 0.09 0.38 0.15 0.42 0.42 0.39

9 0.28 0.22 0.19 0.37 0.11 0.40 0.40 0.38

10 0.30 0.24 0.24 0.34 0.11 0.39 0.39 0.37

11 0.34 0.27 0.23 0.36 0.12 0.44 0.44 0.42

12 0.39 0.31 0.24 0.39 0.15 0.45 0.45 0.43

Notes: Sample period is 1996m1-2014m12, except RSS (1996m1-2013m11). JLN1 denotes JLN macroe-

conomic uncertainty based on 1-month-ahead forecast errors. Similarly, JLN3 and JLN12 denotes the

measure based on 3-months- and 12-months-ahead forecast errors.
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1.6.3 Structural break test for baseline VAR

Chow’s breakpoint test attempts to fit the equation separately for each subsample

to see whether there are significant differences in estimated equation. This is a simple

test for detecting structural break at given date of break. We assume Great Financial

Crisis is a major event that may change the behaviour of economic agents. Therefore,

by carefully examining time series plots of different uncertainty proxies, July 2008

is set to a given date for Chow’s test. In order to conduct tests, each equation in

VAR systems (either EPU or RSS as dependent variables) are taken separately. The

estimation results with test statistics and significance level is presented in Table 1.7

and 1.8.

Table 1.7: Chow’s breakpoint test: EPU

Equation EPU Stock FFR EMP IP

F-stat 1.7920 ** 1.5706 ** 1.4749 * 1.7671 ** 1.9756 ***

0.0122 0.0416 0.0680 0.0141 0.0041

Wald 53.7596 *** 47.1186 ** 44.2460 ** 53.0121 *** 59.2674 ***

0.0049 0.0242 0.0453 0.0059 0.0011

Notes: The values of the second row of each statistics are significance levels.The symbols ***, **, * denote

significance level at 1%, 5% and 10%, respectively.

Table 1.8: Chow’s breakpoint test: RSS

Equation RSS Stock FFR EMP IP

F-stat 1.7583 ** 2.1171 *** 1.5797 ** 1.9290 *** 2.0351 ***

0.0149 0.0017 0.0396 0.0055 0.0029

Wald 52.7494 *** 63.5135 *** 47.3920 ** 57.8695 *** 61.0545 ***

0.0063 0.0003 0.0228 0.0017 0.0007

Notes: The values of the second row of each statistics are significance levels. The symbols ***, **, * denote

significance level at 1%, 5% and 10%, respectively.

Results reject the null hypothesis of no break in July 2008 at 5% significance level.

There are many tests for the presence of structural breaks, which are less restrictive

and using advanced techniques (see, for example, Quandt-Andrews Breakpoint Test or

Global Maximizer Test by Bai and Perron (1998). We leave the further analysis that

addresses potential breaks for the future research.
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1.6.4 Spectrum analysis

Cramér representation or the spectral representation of a time series yt is written

as follows.

yt =

∫ π

0
α(ω) cos(ωt)dω +

∫ π

0
β(ω) sin(ωt)dω

Where ω denotes the radian angle of z = x+ iy in (x, y) space. Given α(ω), β(ω), any

time series yt can be represented by the above equation. Spectrum is a closely related

concept to Cramér representation which measures the contribution to the overall fluc-

tuations in yt made by the cyclical components, yt
ω over [0, π], in particular, specified

in terms of frequency. The autocovariance of yt is defined

γ(τ) = E(yt − µt)(yt+τ − µt+τ )

where E(yt) = µt. Applying Fourier transformation,

fy(ω) =

∞∑

τ=−∞

γ(τ)e−iωτ

Applying inversion formula,

γ(τ) =
1

2π

∫ π

−π
fy(ω)e

iωτdω

The power spectrum of yt is defined as

sy(ω) =
1

2π
fy(ω)

Therefore, the comparison of the height of sy(ω) for ω indicates the relative impor-

tance of variations at the chosen frequencies in influencing the variation in yt. For an

alternative representation of the spectrum, apply DeMoivre’s Theorem to obtain,

sy(ω) =
1

2π

∞∑

τ=−∞

γ(τ)(cosωτ − i sinωτ)

The autocorrelation function satisfies, γ(τ) = γ(−τ), and using the properties of sin

and cos functions, such as sin(−ω) = − sin(ω), cos(−ω) = cos(ω), spectrum can be

expressed as follows.

sy(ω) =
1

2π

[
γ(0) + 2

∞∑

τ=1

γ(τ)(cosωτ)

]

The following relation is connecting ω, radiance, and p, a unit of time period necessary

for yt
ω = α(ω) cos(ωt) + β(ω) sin(ωt) to complete a cycle.

p =
2π

ω

Thus, the inverse of p (1/p = ω/2π) is the number of cycles completed by yt
ω per

period. Business cycles often consider from 6-quarters to 40-quarters cycles which is

associated with ω ranging [2π/40, 2π/6].
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Filters can be reflected in frequency domain. Filters are designed to remove the

effect of cyclical variation at certain frequencies. First-difference and H-P filters focus

on low frequencies and seasonal filters target seasonal frequencies. Suppose linear filter

is the linear combination of the original series yt,

yt
f =

s∑

j=−r

cjyt−j ≡ C(L)yt

Replacing lag operator with frequency domain expression, e−iωj , C(L) is expressed by

the frequency response function, C(e−iω). Deriving the spectrum of yt
f , where {yt} is

mean-zero process with autocovariance, {γ(τ)}∞τ=−∞.

syf (ω) = C(e−iω)C(eiω)sy(ω)

Define the gain function,

G(ω) = |C(e−iω)|

where |C(e−iω)| =
√
C(e−iω)C(eiω). Thus, the spectrum of the filtered series can be

linked to the spectrum of the original series by gain function,

syf (ω) = G(ω)2sy(ω)

where G(ω)2 is the squared gain of the filter. Filters reduce or increase the spectrum

of the raw data on a frequency basis. For example, Kaiser and Maravall (2001) proved

that the gain function for H-P filter is given by

G(ω) =

[
1 +

(
sin(ω/2)

sin(ω0/2)

)]−1

where

ω0 = 2arcsin

(
1

2λ1/4

)
.

Band pass (B-P) filter is designed to shut down all fluctuations outside chosen frequency

band, between pl and pu. The squared gain function satisfies,

G(ω)2 =




1, ω ∈ [2π/pu, 2π/pl]

0, otherwise

Let the ideal symmetric B-P filter for a given frequency range be

α(L) =
∞∑

j=−∞

αjL
j

The Fourier transformation gives,

α(e−iω) ≡ α(ω) =

∞∑

j=−∞

αje
−iωj

= α0 + 2
∞∑

j=1

αj cos(ω)

58



It is not feasible to obtain the ideal B-P filter because we need infinite number of

observations. Baxter and King (1999) proposed an approach to approximate the ideal

B-P filter.

A(ω) = a0 + 2

K∑

j=1

aj cos(ω)

where

A(0) =
K∑

j=−K

aj = 0

A(ω) is obtained from the solution for the minimization problem,

min
aj

∫ π

−π
|α(ω)−A(ω)|2dω

subject to A(0) = 0. The solution is given by

aj = αj + θ, j = −K, · · · ,K

αj =





2π/pl−2π/pu
π , j = 0

sin(ω2j)−sin(ω1j)
πj , j = ±1, · · · ,±K

θ =
−
∑K

j=−K αj

2K + 1

For quarterly data, Baxter and King (1999) recommend the Burns–Mitchell (1946, cited

in Baxter and King, 1999)’s settings of 6 and 32 quarters for pl, pu, and k=12. For

monthly data, they recommend 18 and 96 months, with k=12.

The logged series of uncertainty measures are applied for computing the Baxter

and King’s B-P filtered series. In Figure 1.13, B-P filtered and H-P filtered series

of uncertainty indices and proxies are illustrated. The B-P filtered series are much

smoother than the H-P filtered ones in all of the uncertainty measures. This result is

easily anticipated because Baxter and King’s B-P filter is designed to intentionally shut

down all other fluctuations outside the business cycle frequency.
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Figure 1.13: H-P filtered and B-P filtered uncertainty measures

Notes: Estimation by author.

Source: Thomson Reuters Datastream (VXO, MCI), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS),

Charemza, Dı́az, and Makarova (2015, CDM)

60



The spectrum density summarises the persistence and cyclical behaviours of each

uncertainty series. Recall previously derived population spectrum of yt.

sy(ω) =
1

2π

[
γ(0) + 2

∞∑

τ=1

γ(τ)(cosωτ)

]

Given the autocovariance function, γ(τ), the spectrum associated with frequencies

(ω) can be computed. To obtain the parametric estimation of spectrum, let yt can be

specified by ARMA(p, q) model.

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

Using the autocovariance-generating function, the population spectrum is given by

sy(ω) =
σ2

2π

(1 + θ1e
−iω + · · ·+ θqe

−iqω)

(1− φ1e−iω − · · · − φpe−ipω)

(1 + θ1e
iω + · · ·+ θqe

iqω)

(1− φ1eiω − · · · − φpeipω)

The estimates are obtained by estimating ARMA models for each series with Max-

imum Likelihood Estimation and plugging the estimates, (σ̂2, θ̂i, φ̂j) for i = 1, · · · , q
and j = 1, · · · , p into the population spectrum equation, sy(ω). If the ARMA model is

correctly specified, the estimates of population spectrum will have the same property

as the population. The ARMA(p, q) models are specified with small values of p, q as it

is known to perform better than big models.
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Figure 1.14: Autocorrelation and spectrum of detrended uncertainty measures (1)

Notes: Estimation by author.

Source: Thomson Reuters Datastream (VXO, MCI), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS),

Charemza, Dı́az, and Makarova (2015, CDM)
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Figure 1.15: Autocorrelation and spectrum of detrended uncertainty measures (2)

Notes: Estimation by author.

Source: Thomson Reuters Datastream (VXO, MCI), Economic Policy Uncertainty website, http:

//www.policyuncertainty.com/ (EPU), UCL Centre for Study of Decision-Making Uncertainty (RSS),

Charemza, Dı́az, and Makarova (2015, CDM) **

63



1.6.5 VAR model

The general VAR model is constructed as follows (Hamilton, 1994). The equation

for a common representation of the VAR(p) is

yt = c+Φ1yt−1 +Φ2yt−2 + · · ·+Φpyt−p + εt (1.31)

where εt ∼ iidN(0,Ω). c denotes (n×1) vector of constants, Φj denotes (n×n) matrix

of autoregressive coefficient for j = 1, 2, · · · , p. εt is (n× 1) vector of white noise with

E(εt) = 0

E(εtε
′
τ ) =

{
Ω for t = τ

0 otherwise

where Ω is (n× n) symmetric positive definite matrix.

(1.32)

Using lag operator, VAR can be written in the form

[In − Φ1L− Φ2L
2 − · · · − ΦpL

p]yt = c+ εt

Φ(L)yt = c+ εt
(1.33)

VAR(p) can be rewritten as VAR(1 ) process by defining

ξt ≡




yt − µ

yt−1 − µ
...

yt−p+1 − µ




F ≡




Φ1 Φ2 · · · Φp−1 Φp

In 0 · · · 0 0

0 In · · · 0 0
...

... · · · ...
...

0 0 · · · In 0




νt ≡




εt

0
...

0




(1.34)

where µ is the mean of the vector process, yt. Then VAR(p) can be written as the

following:

ξt = Fξt−1 + νt (1.35)

where

E(νtν
′
τ ) =

{
Q for t = τ

0 otherwise
(1.36)
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where

Q ≡




Ω 0 · · · 0

0 0 0 0
...

... · · · ...

0 0 0 0




(1.37)

Recursively expanding equation (1.34) implies

ξt+s = νt+s + Fνt+s−1 + F 2νt+s−2 + · · ·+ F s−1νt+1 + F sξt + F s+1ξt−1 (1.38)

Proposition 1.1 : The eigenvalues of F satisfy

|Inλp − Φ1λ
p−1 − Φ2λ

p−2 − · · · − Φp| = 0 (1.39)

Therefore, a VAR(p) is covariance stationary if |λ| < 1 for all values of λ satisfying

equation (9).

Proposition 1.2 : A VAR(p) is covariance stationary if all values of z satisfying

|In − Φ1z − Φ2z
2 − · · · − Φpz

p| = 0 (1.40)

lie outside the unit circle.

For the standard maximum likelihood estimation (MLE) and hypothesis testing,

assume the Gaussian error. Suppose we observe (T + p) time periods and define Π =

[c Φ1 Φ2 · · · Φp], so that the likelihood function of observed data y0:T conditional

on parameters θ = (Π,Ω) can be expressed as follows by recursively applying the joint

Gaussian densities (denote as f):

f(yT , yT−1, · · · y1|y0, · · · , y−p+1; θ) =

T∏

t=1

f(yt|yt−1, · · · , y−p+1; θ) (1.41)

The sample log likelihood is

L (θ) =

T∑

t=1

log f(yt|yt−1, · · · , y−p+1; θ)

= −(Tn/2) log (2π) + (T/2) log |Ω−1|

− (1/2)

T∑

t=1

[(yt −Π′xt)
′Ω−1(yt −Π′xt)]

(1.42)

where xt denotes a vector of constant term and p lags of yt:

xt ≡




1

yt−1

yt−2

...

yt−p




(1.43)

65



Then the maximum likelihood estimator can be obtained by solving the first-order

condition for the maximization problem of

θ̂MLE = argmax
θ∈Θ

f(yT , yT−1, · · · y1|y0, · · · , y−p+1; θ) (1.44)

The Π̂MLE becomes the sample analogue of the population linear projection of yt on a

constant and xt and apply these results to find the Ω̂MLE , which gives us the maximum

likelihood estimators identical to OLS estimator.

Π̂MLE =

[
T∑

t=1

ytx
′
t

][
T∑

t=1

xtx
′
t

]−1

Ω̂MLE =
1

T

T∑

t=1

ε̂tε̂t
′

(1.45)

Hypothesis testing and the lag length determination, can be conducted using Likelihood

Ratio test of estimators as in conventional cases for the ML estimation.

For constructing the impulse response function, recall the MA(∞) representation

of the first n rows of the equation with covariance stationarity22 is as follows:

yt = µ+ εt +Ψ1εt−1 +Ψ2εt−2 + · · · = µ+Ψ(L)εt (1.46)

∂yt+s

∂εt′
= Ψs (1.47)

Thus, the row i and column j element of the matrix Ψs has the interpretation of a

one unit increase in the jth variable’s innovation at t for the value of the ith variable

at time t + s, holding other innovations constant. More precisely, impulse response

function is defined as a plot of the row i and column j element of Ψs,

∂yi,t+s

∂εj,t′
(1.48)

as a function of s. However, this cannot be interpreted as causal effect because the

shocks εi,t and εj,t are contemporaneously correlated. Suppose ε1,t changed by δ1, and

ε2,t changed by δ2, and so on, then combined effect of these effects on the vector yt+s

can be expressed by

∆yt+s =
∂yt+s

∂ε1,t
δ1 +

∂yt+s

∂ε2,t
δ2 + · · ·+ ∂yt+s

∂εn,t
δn = Ψsδ (1.49)

where δ = (δ1, δ2, · · · , δn)′. Given the information received about the system as of t−1,

suppose we are then received the information about the first variable in VAR system

at t, e.g. a positive ε1,t. This leads to revision of our expectation on yi,t+s and because

the errors are contemporaneously correlated, the new information about ε1,t affects the

values of ε2,t, ε3,t, · · · , εn,t, which affects the forecast of yi,t+s .

22If the eigenvalues of F all lie inside the unit circle, i.e. covariance stationary, then F s → 0 as

s → ∞.
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In order to back out the causal effect, eliminating the cross-effect by orthogonali-

sation of the shocks can be considered. For any real symmetric positive definite matrix

Ω, there exists a unique lower triangular matrix A with 1’s along the diagonal and a

unique diagonal matrix D with positive elements along the principal diagonal such that

Ω = ADA′ (1.50)

With matrix A, construct orthogonalise residuals where

ut ≡ A−1εt (1.51)

Since εt is uncorrelated with its own lags or lagged values of y, so does ut. Furthermore,

the elements of ut are uncorrelated with each other,

E(utu
′
t) = E(A−1εtε

′
tA

−1′)

= A−1ΩA′−1

= A−1ADA′A′−1

= D

(1.52)

D is diagonal, so that the elements of ut are mutually uncorrelated.

Rewriting equation (1.50),

Aut = εt




1 0 0 · · · 0

a21 1 0 · · · 0

a31 a32 1 · · · 0
...

...
... · · · ...

an1 an2 an3 · · · 1







u1t

u2t

u3t
...

unt




=




ε1t

ε2t

ε3t
...

εnt




(1.53)

The jth row of the above equation is,

ujt = εjt − aj1u1t − aj2u2t − · · · − aj,j−1uj−1,t (1.54)

Since u′ts are uncorrelated, ujt can be interpreted as the residuals from a linear projec-

tion of εjt on u1t, u2t, · · · , uj−1,t.

Ê(εjt|u1t, u2t, · · · , uj−1,t) = aj1u1t + aj2u2t + · · ·+ aj,j−1uj−1,t (1.55)

The coefficient from on y1t in a linear projection of yjt on y1t and previous information

about y′ts is the same as the coefficient on ε1t in a linear projection of εjt on ε1t by the

formula updating linear projections (see proof in Hamilton (1994) p.321).

∂Ê(εjt|y1t, xt−1)

∂y1t
= aj1 (1.56)

where x′t−1 = (y′t−1, y
′
t−2, · · · , y′t−p). Combining these for j = 1, 2, · · · , n into a vector,

∂Ê(εt|y1t, xt−1)

∂y1t
= a1 (1.57)
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where

a1 =




1

a21

a31
...

an1




(1.58)

Rewriting equation (1.56) using equation (1.45) and (1.46) gives,

∂Ê(yt+s|y1t, xt−1)

∂y1t
= Ψsa1 (1.59)

Due to the recursive structure, the above function can be written in general for j =

1, 2, · · · , n as follows:

∂Ê(yt+s|yjt, yj−1,t, · · · , yjt, xt−1)

∂y1t
= Ψsaj (1.60)

where aj denotes the jth column of the matrix A. The sample estimates of equation

(1.59), Ψ̂sâj, are obtained by estimating Φ̂1, Φ̂2, · · · , Φ̂j and Ω̂ by OLS and constructing

Ψ̂s by simulating the system. Matrices Â and D̂ satisfying Ω̂ = ÂD̂Â′ can be con-

structed from estimated Ω̂ using the factorisation algorithm. Practically, the Cholesky

decomposition of the matrix Ω is often considered.

Ω = AD1/2D1/2A′ = PP ′ (1.61)

where P = AD1/2 and D1/2 is the diagonal matrix whose (i, j) element is the standard

deviation of ujt.

Recall equation for MA(∞) representation of VAR model and take the s-period-

ahead forecast,

yt+s − ŷt+s|t = εt+s +Ψ1εt+s−1 +Ψ2εt+s−2 + · · ·+Ψs−1εt+1 (1.62)

The mean squared error of the s-period-ahead forecast is

MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)
′]

= Ω + Ψ1ΩΨ
′
1 +Ψ2ΩΨ

′
2 + · · ·+Ψs−1ΩΨ

′
s−1

(1.63)

where Ω = E(εtε
′
t). Now consider how the orthogonalised disturbances (u1t, · · · , unt)

contribute to the MSE. Recall and rewrite equation (1.52) and consider the variance-

covariance matrix of the errors.

εt = Aut = a1u1 + a2u2 + · · ·+ anun,

Ω = E(εtε
′
t)

= a1a1
′V ar(u1t) + · · ·+ anan

′V ar(unt)

(1.64)

where V ar(ujt) is the (j, j) element of the matrix D. Incorporating this equation with

equation (1.62) yields,

MSE(ŷt+s|t) =

n∑

j=1

V ar(ujt) · [ajaj′ +Ψ1ajaj
′Ψ′

1 + · · ·+Ψs−1ajaj
′Ψ′

s−1] (1.65)
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Then with this expression, the Forecast Error Variance Decomposition (FEVD)

can be calculated. FEVD reflects the contribution of the jth orthogonalised innovation

of the MSE of the s-period-ahead forecasts. For covariance stationary VAR, as s→ ∞,

MSE(ŷt+s|t) converges to the unconditional variance of the vector yt, thus this can be

asymptotically the portion of the total variance in yt that is due to the disturbance uj .

The choice of the orders of polynomials in Φ(L) is vital to specify and estimate

parametric VAR model. Traditionally, one way of addressing the trade-off of fit of a

model and its degree of parsimony is to select a model that minimises the value of

information-theoretic criteria of the form

IC(i) = log(σ̂2i ) + kicT (1.66)

Where ki is the number of parameters in the candidate (nested) model i = 1, · · · ,M ,

and σ̂2i is the corresponding maximum likelihood estimate of the residual variance.

The penalty term cT is defined as cT = 2/T in Akaike Information Criteria (AIC),

and as cT = ln(T )/T in Schwarz Information Criteria (SIC). In addition, Lütkepohl

(1993) indicates that overfitting (selecting a higher order lag length than the true lag

length) causes an increase in the mean-square forecast errors of the VAR and that

underfitting the lag length often generates autocorrelated errors. Hafer and Sheehan

(1989) find that the accuracy of forecasts from VAR models varies substantially for

alternative lag lengths.

69



1.6.6 Stationary tests

Assume the following dynamic model for a set of time series:

yt = z′tγ + νt

νt = ανt−1 + ut

where ut =
∑∞

j=0 cjet−j with
∑∞

j=0 j|cj | <∞, et ∼ iid(0, σ2e). In general, the vector zt

is a set of deterministic components, for example, zt = (1, t, . . . , tp)
′ and p = 0 for no

trend data or p = 1 for linear trending data. The long-run variance for the time series

is

σ2 = lim
t→∞

T−1E(

T∑

t=1

ut)
2

The GLS estimate of γ, γ̂GLS , can be obtained by the Least Squares regression of

detrended variables. In particular, the regression of yᾱt on zᾱt , where all the variables

in the regression are the quasi-differenced series.

yᾱt = yt − ᾱyᾱt

zᾱt = zt − ᾱzᾱt

where ᾱ = 1 + c̄/T , with c̄ = −7 for p = 0 and c̄ = −13.5 for p = 1.23 ADFGLS (Aug-

mented Dickey-Fuller) test statistics can be constructed using t-statistics associated

with b̂0 in the GLS regression estimation.

Assume y1 = Op(1), then the null hypothesis of unit root is H0 : α = 1 which can

be tested against the alternative, H1 : |α| < 1, using the following test statistics (Ng

and Perron, 2001).

Zα =
T−1yT

2 − S2
AR

2T−2
∑T

t=1 yt−1
2

MZGLS
α =

T−1ỹ2T − S2
AR

2T−2
∑T

t=1 ỹ
2
t−1

MSBGLS =

(
T−2

∑T
t=1 ỹ

2
t−1

S2
AR

) 1

2

MZGLS
t =MSBGLS ·MZGLS

α

23The corresponding values of c̄ are given by Elliott, Rothenberg, and Stock (1996, cited in Ng and

Perron, 2001, p.1519).
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where ỹt = yt − z′tγ̂
GLS and γ̂GLS is the GLS estimate of γ obtained from the Least

Squares regression of detrended variables and S2
AR is the autoregressive spectral density

estimate of σ2.

S2
AR =

σ̂2ek
(1−

∑k
i=1 b̂i)

2

where

σ̂2ek = T−1
T∑

t=k+1

ê2tk

b̂i, êtk are obtained from OLS regression of

∆ỹt = b̂0ỹt−1 +
k∑

i=1

b̂i∆ỹt−1 + êtk

Based on the primary statistics calculated, the feasible point optimal test statistic

(Ng and Perron, 2001) can be constructed as follows:

PT =
S(ᾱ)− ᾱS(1)

SAR
2

where S(α) = infγ
∑T

t=1(y
α
t − γzαt )

2 and ᾱ = 1 + c̄/T as defined earlier.

The modified point optimal test statistic, MPT , also proposed by Ng and Perron

(2001), is

MPT =





c̄2T−2
∑T

t=1 ỹ
2
t−1 − c̄T−1ỹ2T

SAR
2 for p = 0

c̄2T−2
∑T

t=1 ỹ
2
t−1 + (1− c̄)T−1ỹ2T
SAR

2 for p = 1

The key decision for constructing the stationarity test statistics is to select the

autoregressive order, k. Ng and Perron (2001) found that the exact size is close to

nominal size even when there is negative MA (moving average) components and the

power of the test for local alternatives is approximately the Gaussian local asymptotic

power envelop. Followed by their findings, Ng and Perron (2001) suggested MAIC

(modified AIC) for choosing the lag length, which can be summarised as follows24:

kMAIC = argmink∈[0,kmax]MAIC(k)

24One potential issue regarding the implement of the MAIC is the power reversal problem where the

power can be very small for non-local alternatives. Perron and Qu (2007) solve the potential power

reversal problem by using GLS detrended data for constructing the autoregression spectral density but

for the selection of the autoregressive order k, they proposed using OLS detrended data.The complete

elucidation of MAIC would possibly lead to a digression outside the focus of this chapter. For the

details of the method, refer to the Ng and Perron (2001) and Perron and Qu (2007).
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where

MAIC(k) = ln (σ̂2k) +
2(τT (k) + k)

(T − kmax)

τT (k) = (σ̂2k)
−1b̂0

2
T∑

k=kmax+1

ỹ2t−1

σ̂2k = (T − kmax)
−1

T∑

k=kmax+1

ê2tk

kmax = int(12(T/100)1/4)

Table 1.9: Unit root test statistics: Macroeconomic variables

Stock FFR

SB1 SB2 NS1 NS2 SB1 SB2 NS1 NS2

PT test 10.34 2.91 4.92 2.48 15.41 14.95 9.28 2.56

MPT test 10.13 2.59 4.96 2.48 15.36 14.69 9.36 2.57

ADF test -1.90 -5.81 -5.61 -5.20 -2.22 -2.28 -2.27 -2.25

ZA test -19.56 -156.20 -145.85 -129.62 -9.31 -9.73 -9.75 -9.64

MZA test -5.99 -52.50 -45.12 -35.25 -9.30 -9.72 -9.74 -9.63

MSB test 0.28 0.10 0.11 0.12 0.23 0.23 0.23 0.23

MZT test -1.70 -5.12 -4.75 -4.20 -2.15 -2.20 -2.21 -2.19

IP EMP

SB1 SB2 NS1 NS2 SB1 SB2 NS1 NS2

PT test 37.17 5.59 4.13 2.17 6.44 4.97 4.25 1.94

MPT test 35.05 5.46 4.01 1.94 6.17 5.02 4.19 1.79

ADF test -1.40 -3.25 -3.11 -2.39 -3.17 -3.44 -3.24 -2.75

ZA test -3.97 -25.68 -22.79 -14.09 -22.45 -26.83 -22.98 -17.98

MZA test -3.92 -25.63 -22.75 -14.07 -22.44 -26.82 -22.97 -17.96

MSB test 0.35 0.14 0.15 0.18 0.15 0.14 0.15 0.16

MZT test -1.38 -3.57 -3.37 -2.60 -3.34 -3.65 -3.39 -2.95

Notes: SB1 denotes the linear time trend that is affected by one structural break, which affects both

the level and the slope of the time trend. SB2 is the linear time trend that is affected by one structural

break, which affects the slope of the time trend. NS1 denotes the linear time trend case, without

structural breaks. NS2 denotes the constant case, without structural breaks. PT and MPT test

statistics are computed by setting max k = 14, min k = 0, all other test statistics with max k = 5, min

k = 0. Bold letters imply rejecting the null hypothesis of unit root at 5% significance level.
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Table 1.10: Unit root test statistics: Uncertainty measures

EPU EPUN

SB1 SB2 NS1 NS2 SB1 SB2 NS1 NS2

PT test 14.95 18.32 10.83 6.93 10.34 10.90 8.26 5.88

MPT test 14.77 16.83 10.62 6.23 10.13 9.91 8.04 5.26

ADF test -3.92 -3.68 -3.52 -2.56 -4.79 -4.55 -4.30 -3.16

ZA test -39.44 -34.32 -30.58 -16.83 -58.17 -52.44 -45.94 -24.53

MZA test -29.75 -26.12 -23.35 -13.28 -44.90 -40.42 -35.50 -19.66

MSB test 0.13 0.14 0.15 0.19 0.11 0.11 0.12 0.16

MZT test -3.84 -3.60 -3.41 -2.49 -4.74 -4.49 -4.21 -3.08

RSS VXO

SB1 SB2 NS1 NS2 SB1 SB2 NS1 NS2

PT test 8.87 7.60 4.17 2.09 21.44 11.18 9.32 6.67

MPT test 8.89 6.95 4.16 1.94 19.38 10.29 8.92 5.85

ADF test -3.92 -3.74 -3.61 -3.07 -4.82 -3.74 -3.09 -2.17

ZA test -47.35 -42.95 -39.46 -29.30 -42.31 -34.61 -22.78 -11.00

MZA test -27.77 -24.97 -22.98 -16.92 -38.32 -28.91 -19.35 -9.71

MSB test 0.13 0.14 0.15 0.16 0.11 0.13 0.16 0.22

MZT test -3.68 -3.49 -3.36 -2.78 -4.36 -3.78 -3.11 -2.13

MCI CDM

SB1 SB2 NS1 NS2 SB1 SB2 NS1 NS2

PT test 6.05 5.46 4.31 2.39 1.10 3.83 1.97 0.56

MPT test 5.88 5.44 4.20 2.14 1.09 3.63 1.98 0.57

ADF test -3.80 -3.59 -3.29 -2.53 -5.32 -4.96 -5.24 -5.19

ZA test -33.49 -29.78 -24.51 -14.80 -110.58 -96.06 -106.83 -105.01

MZA test -29.41 -26.32 -21.87 -13.51 -50.43 -41.34 -48.23 -46.99

MSB test 0.13 0.14 0.15 0.19 0.10 0.11 0.10 0.10

MZT test -3.82 -3.60 -3.30 -2.51 -5.00 -4.54 -4.89 -4.83

Notes: SB1 denotes the linear time trend that is affected by one structural break, which affects both

the level and the slope of the time trend. SB2 is the linear time trend that is affected by one structural

break, which affects the slope of the time trend. NS1 denotes the linear time trend case, without

structural breaks. NS2 denotes the constant case, without structural breaks. PT and MPT test

statistics are computed by setting max k = 14, min k = 0, all other test statistics with max k = 5, min

k = 0. Bold letters imply rejecting the null hypothesis of unit root at 5% significance level.
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1.6.7 The canonical reduced form VAR estimation results

The choice of lag length (p = 6) is decided by checking the absence of autocorrela-

tion in residuals and cross-autocorrelation among the residuals for all the equations in

VAR system.

For the robustness check, several different specifications have been estimated:

benchmark model with lag length variation (p = 3, p = 9), bivariate model (uncertainty

and industrial production), and additional volatility variable (VXO) in the benchmark

model (see Figure 1.16).

Table 1.11: Statistics of VAR model: EPU

Equation No. of parameters RMSE R2 χ2 P > χ2

EPU 32 0.531 0.7469 923.46 0.000

Stock (S & P) 32 0.040 0.8908 2553.55 0.000

FFR (Federal Reserve Rate) 32 0.158 0.9841 19361.08 0.000

EMP (Employment) 32 0.002 0.9954 67205.40 0.000

IP (Production) 32 0.006 0.9731 11311.31 0.000

Table 1.12: Statistics of VAR model: RSS

Equation No. of parameters RMSE R2 χ2 P > χ2

RSS 32 0.576 0.7146 443.23 0.000

Stock (S & P) 32 0.038 0.9294 2329.84 0.000

FFR (Federal Reserve Rate) 32 0.120 0.9909 19183.92 0.000

EMP (Employment) 32 0.002 0.9966 52590.69 0.000

IP (Production) 32 0.006 0.9810 9152.25 0.000
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Table 1.13: The estimates of VAR coefficients: EPU

EPU eq. Stock eq.

β se(β) β se(β)

EPU L1 0.7102 0.0576 *** -0.0241 0.0044 ***

L2 -0.0474 0.0713 0.0015 0.0054

L3 0.0046 0.0702 0.0175 0.0053 ***

L4 0.1691 0.0715 ** -0.0010 0.0054

L5 0.0285 0.0732 0.0057 0.0055

L6 0.0452 0.0635 0.0010 0.0048

Stock L1 -0.7441 0.7579 0.8853 0.0574 ***

L2 0.3110 1.0174 -0.0410 0.0771

L3 0.4508 1.0108 0.0811 0.0765

L4 2.3935 1.0032 ** -0.0521 0.0760

L5 -1.8253 1.0031 * 0.0956 0.0760

L6 0.4817 0.7428 -0.0550 0.0563

FFR L1 0.1546 0.1862 -0.0302 0.0141 **

L2 -0.0196 0.3083 0.0340 0.0234

L3 0.0167 0.3154 0.0076 0.0239

L4 -0.1586 0.3104 0.0053 0.0235

L5 0.1276 0.3025 0.0155 0.0229

L6 -0.0762 0.1840 -0.0252 0.0139 *

EMP L1 -15.2066 21.4835 -0.4576 1.6270

L2 -12.9173 29.3617 1.0064 2.2237

L3 33.7067 29.5530 -6.5011 2.2381 ***

L4 7.6558 30.0578 4.9904 2.2764 **

L5 -20.4243 29.5553 0.7868 2.2383

L6 2.5274 19.1359 -0.5662 1.4492

IP L1 -7.3275 6.4036 -0.2703 0.4850

L2 2.9126 7.9970 1.3236 0.6056 **

L3 1.4113 8.3590 0.7397 0.6331

L4 6.1330 8.4305 -1.1334 0.6385 *

L5 -1.0259 8.2182 -0.3980 0.6224

L6 -2.6789 6.2589 0.2831 0.4740

trend 0.000 0.000 0.0000 0.0000

const -0.132 0.140 0.0003 0.0106

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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[Table Continued]

FFR eq. EMP eq. IP eq.

β se(β) β se(β) β se(β)

EPU L1 -0.0786 0.0172 *** -0.0002 0.0002 -0.0006 0.0006

L2 0.0285 0.0213 0.0002 0.0002 -0.0004 0.0007

L3 0.0102 0.0209 -0.0003 0.0002 -0.0005 0.0007

L4 0.0084 0.0213 -0.0001 0.0002 -0.0003 0.0007

L5 0.0041 0.0218 0.0002 0.0002 0.0013 0.0008 *

L6 0.0097 0.0190 0.0001 0.0002 0.0000 0.0007

Stock L1 0.0707 0.2260 0.0078 0.0024 *** 0.0158 0.0079 **

L2 -0.2790 0.3035 0.0023 0.0032 0.0100 0.0106

L3 0.4879 0.3015 -0.0043 0.0031 -0.0158 0.0105

L4 -0.9300 0.2992 *** -0.0037 0.0031 -0.0088 0.0104

L5 0.7590 0.2992 ** 0.0016 0.0031 0.0106 0.0104

L6 -0.3645 0.2216 0.0012 0.0023 0.0045 0.0077

FFR L1 1.3017 0.0556 *** 0.0000 0.0006 0.0031 0.0019

L2 -0.3674 0.0920 *** 0.0016 0.0010 * -0.0013 0.0032

L3 0.1127 0.0941 -0.0009 0.0010 -0.0002 0.0033

L4 -0.0526 0.0926 -0.0006 0.0010 -0.0042 0.0032

L5 0.0814 0.0902 0.0004 0.0009 0.0072 0.0032 **

L6 -0.1326 0.0549 ** -0.0003 0.0006 -0.0037 0.0019 *

EMP L1 -5.8883 6.4080 0.9439 0.0666 *** 0.0382 0.2237

L2 -1.1437 8.7579 0.1557 0.0911 * -0.0584 0.3057

L3 17.6075 8.8149 ** -0.0418 0.0917 -0.4118 0.3077

L4 -2.3508 8.9655 -0.0125 0.0932 0.3485 0.3130

L5 1.7541 8.8156 -0.1067 0.0917 0.0312 0.3077

L6 -7.8210 5.7078 -0.0163 0.0593 -0.0434 0.1993

IP L1 7.2557 1.9100 *** 0.0867 0.0199 *** 0.8798 0.0667 ***

L2 -3.0587 2.3853 -0.0183 0.0248 0.2617 0.0833 ***

L3 -3.2644 2.4933 -0.0192 0.0259 0.1199 0.0870

L4 -3.0988 2.5146 -0.0244 0.0261 -0.2341 0.0878 ***

L5 -1.8037 2.4513 -0.0153 0.0255 -0.0960 0.0856

L6 4.0019 1.8669 ** 0.0257 0.0194 0.0314 0.0652

trend 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

const -0.0119 0.0419 -0.0004 0.0004 -0.0007 0.0015

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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Table 1.14: The estimates of VAR coefficients: RSS

EPU eq. Stock eq.

β se(β) β se(β)

EPU L1 0.4129 0.0765 *** 0.0314 0.0051 ***

L2 0.0389 0.0911 -0.0082 0.0061

L3 0.1724 0.0900 * -0.0074 0.0060

L4 0.1428 0.0909 -0.0032 0.0061

L5 0.1201 0.0907 -0.0056 0.0061

L6 0.0419 0.0847 0.0067 0.0057

Stock L1 -0.9544 1.1486 0.8546 0.0767 ***

L2 0.1507 1.5299 -0.0544 0.1021

L3 -1.5766 1.5161 0.0671 0.1012

L4 -0.9524 1.4907 -0.0047 0.0995

L5 -0.5166 1.4602 0.0018 0.0975

L6 1.4684 1.0794 0.0016 0.0721

FFR L1 -0.2998 0.3525 -0.0133 0.0235

L2 0.2348 0.6203 0.0625 0.0414

L3 -0.4747 0.6457 -0.0713 0.0431 *

L4 1.1235 0.6352 * 0.0277 0.0424

L5 0.1503 0.6150 0.0085 0.0411

L6 -0.7649 0.3551 ** -0.0058 0.0237

EMP L1 -10.1961 29.3256 -0.0441 1.9580

L2 -6.7989 39.3691 1.6461 2.6286

L3 35.9032 39.3936 -5.9441 2.6303 **

L4 -55.5313 40.4758 3.8090 2.7025

L5 31.3698 40.2891 -0.8115 2.6901

L6 4.3136 25.7794 0.8302 1.7213

IP L1 6.4427 8.7022 -0.0325 0.5810

L2 13.6124 10.8248 1.6236 0.7228 **

L3 -15.4878 11.2962 0.1674 0.7542

L4 -0.1857 11.3995 -1.6773 0.7611 **

L5 5.0641 11.1655 -0.0560 0.7455

L6 -1.5251 8.5759 0.4918 0.5726

trend -0.001 0.001 0.0001 0.0001 *

const 0.351 0.519 -0.0577 0.0346 *

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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[Table Continued]

FFR eq. EMP eq. IP eq.

β se(β) β se(β) β se(β)

EPU L1 0.0467 0.0159 *** 0.0000 0.0002 0.0012 0.0008

L2 -0.0039 0.0189 -0.0001 0.0003 -0.0004 0.0009

L3 0.0231 0.0187 0.0000 0.0003 0.0003 0.0009

L4 -0.0179 0.0189 0.0004 0.0003 0.0002 0.0009

L5 -0.0014 0.0188 -0.0001 0.0003 -0.0005 0.0009

L6 -0.0108 0.0176 -0.0001 0.0003 -0.0008 0.0008

Stock L1 0.2108 0.2386 0.0113 0.0035 *** 0.0187 0.0114

L2 -0.0132 0.3178 0.0030 0.0046 0.0101 0.0152

L3 -0.1695 0.3149 -0.0061 0.0046 -0.0256 0.0150 *

L4 0.0835 0.3096 -0.0047 0.0045 -0.0010 0.0148

L5 -0.0667 0.3033 0.0014 0.0044 0.0193 0.0145

L6 0.1872 0.2242 0.0012 0.0032 -0.0063 0.0107

FFR L1 1.4153 0.0732 *** -0.0007 0.0011 0.0010 0.0035

L2 -0.3930 0.1288 *** 0.0031 0.0019 * 0.0055 0.0061

L3 -0.0137 0.1341 -0.0010 0.0019 -0.0037 0.0064

L4 0.0015 0.1319 -0.0025 0.0019 -0.0095 0.0063

L5 0.0064 0.1277 0.0024 0.0018 0.0153 0.0061 **

L6 -0.0760 0.0738 -0.0012 0.0011 -0.0073 0.0035 **

EMP L1 -12.4838 6.0909 ** 0.8921 0.0882 *** -0.0755 0.2905

L2 2.1610 8.1769 0.1881 0.1184 -0.0399 0.3900

L3 20.7904 8.1820 ** -0.0361 0.1184 -0.5177 0.3902

L4 -1.0214 8.4068 0.0210 0.1217 0.5020 0.4009

L5 2.4893 8.3680 -0.0780 0.1211 0.2175 0.3991

L6 -10.2379 5.3544 * -0.0505 0.0775 -0.1770 0.2554

IP L1 5.7601 1.8074 *** 0.1062 0.0262 *** 0.8783 0.0862 ***

L2 -2.0744 2.2483 -0.0287 0.0325 0.2969 0.1072 ***

L3 -1.2667 2.3462 -0.0316 0.0340 0.1203 0.1119

L4 -4.6239 2.3677 * -0.0162 0.0343 -0.1755 0.1129

L5 -2.8735 2.3191 -0.0032 0.0336 -0.1321 0.1106

L6 4.0146 1.7812 ** 0.0029 0.0258 -0.0253 0.0849

trend 0.0004 0.0002 * 0.0000 0.0000 0.0000 0.0000

const -0.1770 0.1078 -0.0014 0.0016 -0.0002 0.0051

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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Figure 1.16: The IRFs of different specification
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1.6.8 The effects of uncertainty shocks

Figure 1.17-1.18 illustrate the responses to 1 standard deviation increase in uncer-

tainty measures estimated by Jordá’s local projection and conditional bands.
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Figure 1.17: The effects of EPU shocks
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Figure 1.18: The effects of RSS shocks
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Chapter 2

The Probabilistic Approach of

Dependence Structure in

Inflation Uncertainty between

the UK and the Euro Area

Abstract

This chapter analyses the dependence structure in inflation uncertainty for the

countries bordering a major currency area, in particular, the UK and the euro area.

The inflation uncertainty is measured by square forecast errors from bivariate VAR

GARCH model using the data from January 1997 to March 2016. The findings suggest

that the estimated uncertainty may well be characterised with non-Gaussian density

with skewed, heavy tail properties, Two Piece Normal (TPN) and Weighted Skewed

Normal (WSN). The goodness-of-fit tests supports the choice of WSN against TPN

for both the UK and the euro area inflation uncertainty. The results of estimation of

dependence structure suggest that the inflation uncertainty of the UK and the euro area

contemporaneously affect one another. Moreover, the simultaneous spillover effects get

stronger if it is the uncertainty about the distant future rather than the near future.

As for dynamic aspects of spillover effects, the UK inflation uncertainties are highly

associated with the leading series of the euro area inflation uncertainty and the euro

inflation uncertainties with the lagged series of the UK uncertainty. Without any

distributional assumptions, it suggests that the UK inflation uncertainty might contain

relevant information for predicting the euro inflation uncertainty with lags, even though

it cannot be interpreted solely by causality. Finally, the conditional probability based

on the dependence structure is computed using the estimation results. The result

suggests that the left tail events of inflation are positively correlated between the two

regions. This implies that the appropriate timing of the monetary policy can be driven
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if policymakers consider the interconnectedness of the two economies. Since the extra

information about the euro inflation uncertainty can lead to a different prediction of the

odds of the left tail event for the UK inflation and vice versa, the monetary authority

can react pre-emptively against the potential influence of the inflation uncertainty of

bordering countries.

2.1 Introduction

Inflation in most advanced countries fell significantly and became more stable since

late 1980s after experiencing high inflation with high volatility during the period from

1970s to early 1980s. Influenced by Friedman’s (1977) paper, Ball (1992) proposed a

model where high inflation produces high uncertainty around future inflation through

monetary policy channel. Since then, numerous empirical papers have tried to find

the evidence that high inflation is associated with high volatility in inflation. The

underlying assumption in such empirical studies is that uncertainty in inflation can be

well-proxied by volatility. Among them, ARCH-GARCH type econometric framework

is widely adopted to investigate that high inflation is associated with higher volatility

in inflation.1

Facing the Great Moderation in many advanced economies, the discussions about

inflation and its volatility were extended to international dimension. For example,

Alan Greenspan (2005), the former president of the Federal Reserve Board of the US,

pointed out in his speech that globalization and innovation may be important deter-

minants for the lowered inflation and its volatility after mid-1980s in many countries.

Since late 1980s and early 1990s, disinflation trend in advanced countries prompted

numerous studies (see Rogoff (2003), Levin and Piger (2004) and many more). In

particular, Rogoff (2003) underscores the contribution of changes in the conduct of

monetary policy across the world in this era.2 More recently, a large number of stud-

ies have contributed to comprehensive understandings of the dependence structure of

inflation among countries. They explain such co-movement in inflation by various chan-

1For example, Brunner and Hess (1993), Grier and Perry (2000), Elder (2004), Kontonikas (2004),

Elder et al. (2005) examined that high inflation leads to high volatility in inflation. On the other hand,

Cukierman and Meltzer (1986) suggested the opposite channel that high inflation volatility results in

high inflation. Among many, Caporale, Onorante and Paesani (2010), Neanidis and Savva (2011) are

the most recent papers on the relationship between inflation uncertainty and inflation level in European

countries employing GARCH-type models. Berument, Yalcin and Yildirim (2009) adopted a Stochastic

Volatility in Mean model and found that a positive shock in inflation volatility tends to raise inflation

level persistently.

2The recognition of common trend in inflation was indeed not a novel discovery at that time.

After experiencing the acceleration of inflation during 1960-1980, the common trend in inflation among

countries was largely investigated as well (see McKinnon (1982), Darby and Lothian (1983), among

others).
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nels: common macroeconomic shocks (oil price shocks, technological spillovers), trade

openness, labour market channel via migration, and exchange rate regimes.3

The discussions about the inflation and its uncertainty mainly dealt with inflation

volatility, but failed to address how to measure inflation uncertainty per se. Whilst

volatility measures remained most popular in the literature, there have been some

alternative measures suggested. These approaches highlighted that the initial hypoth-

esis of Friedman’s (1997) paper was, in fact, that high inflation causes high unpre-

dictability, not high volatility.4 This approach underscores that economic agents care

about whether inflation becomes less predictable, but are not so much concerned about

whether inflation becomes more volatile.

Broadly speaking, unpredictability measures in the previous literature can be

drawn from two different sources: (i) forecast error by model, and (ii) disagreement

among individual forecasters. The first identification strategy is based on the assump-

tion that uncertainty in a variable can be measured by the ex post forecast errors, the

components that were not predictable at the moment of forecast (for recent develop-

ments, see Jordà, Knüppel and Marcvellino, 2013; Knüppel, 2014; Charemza, Dı́az

and Makarova, 2014 among others). The second approach considers the dispersion

of expectation among individuals as a proxy for uncertainty.5 If inflation becomes

more unpredictable, individuals are likely to have dispersed stance about future path

of inflation.

Both measures are intuitively straightforward and useful when constructing uncer-

tainty measure of a specific variable. However, the disagreement measures rely on the

survey data with somewhat demanding details because it is essentially density forecast.

In order to construct a dispersion index, the data should contain survey responses with

distributions, which is unavailable for many countries.6 Uncertainty by model seems

to be less restrictive in terms of obtaining the relevant data. In addition, the selection

of forecast model is flexible and researchers can be as explicit as possible in specifying

their choice of model.

Upon constructing uncertainty measure by forecast error, one may use conditional

volatility of the purely unforecastable components of future values of inflation. It

is important to remove entire forecastable components both in mean and variances.

After eliminating all the forecastable variations, up to the second moments in this

case, one can construct the uncertainty of a variable of choice. Measuring uncertainty

by model assumes that if conditional variance of forecasting errors increases, inflation

3See Appendix 2.8.1. for related literature.

4See Appendix 2.8.1. for related literature.

5See Appendix 2.8.1. for related literature.

6The Survey of Professional Forecasters (SPF) for the US is widely used for disagreement measure.
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uncertainty increases. Furthermore, the desirable forecast model should allow time-

varying volatilities in the original series of inflation. This can be resolved by applying

ARCH-GARCH type forecasting model.

It is also crucial to take account for the potential dependence structure in in-

ternational dimensions. In particular, the illustration of the dependence in inflation

between the UK and the euro area may provide interesting insights. The UK inflation

uncertainty might be related with euro area inflation uncertainty because of the close

trade partnership, financial connectedness, and political bonds as the members of the

European Union (EU). For the UK, the EU is the largest trade partner, amounting to

approximately a half of total export and imports, respectively. Consequently, unprece-

dented fluctuations in demand in euro area affect UK’s exports. Financial linkages

between two economies are also very strong. The share of UK banks’ exposure to

eurozone debt is significantly large and vice versa. Thus, the uncertainty in financial

sector of the euro area may lead to disorders in UK financial market as we have seen

during European debt crisis in 2009. In addition, geopolitical uncertainties in euro area

and/or in the UK may be a common factor which increase the economic uncertainty

for both economies. Some examples of the recent important issues are (i) the flood of

European immigrants from Middle East and North Africa, (ii) Scottish Independence

referendum, and (iii) the UK referendum for leaving the EU (so-called ‘Brexit’). Geo-

graphical proximity and the fact that the UK is one of the EU member may enhance

the effect of the channel that transmits economic uncertainty between two economies.

Besides economic and political connectedness between the UK and the euro area,

changes in monetary policy of one economy can be reflected in inflation uncertainty of

another through various channels. Since the onset of the global financial crisis in 2008

and European debt crisis in 2009, interconnectedness of monetary policy among coun-

tries has been much elevated due to the ambiguous effect of unconventional monetary

policy. In order to prop up sluggish demand, both European Central Bank (ECB) and

Bank of England, like many other central banks in the world, adopted Quantitative

Easing (QE) facing the zero lower bound of policy interest rate. Moreover the negative

interest rate policy (NIRP) was adopted by ECB in 2015. In spite of central banks’

efforts and hopes, unconventional monetary policies led to the loss of credibility of

central banks and disanchoring from inflation target, which can be seen in the much

lowered long-term inflation expectation. In the presence of monetary policy uncertainty

in the euro area, the independence of the UK monetary policy might also be threatened,

which eventually increases monetary policy uncertainty in the UK.

This study aims to develop a simple but sensible measure for inflation uncertainty

of the UK and the euro area considering the economic and social linkages between them.

To take account for such high associations between two economies, the inflation uncer-

tainty measure is constructed by forecast errors from the bivariate VAR model allowing
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for time-varying volatility.7 This 2-variable GARCH type model is parsimonious but

could identify the linkages between them up to the second moments. Consequently, the

variances of forecasting errors captures conditional variances that is unpredictable at

the moment of forecast, ex post inflation uncertainty.

One remaining research question is whether the extension to the analysis of the

higher moments is possible. The conditional volatility of forecast errors only describes

the second moment properties. This can be extended by estimating entire distribu-

tion of forecast errors, i.e. probabilistic approach. In fact, the probabilistic approach

can bring interesting insights: whether the univariate distribution of forecast errors is

likely to be non-Gaussian, whether the joint distribution of the two countries’ inflation

uncertainty can be constructed.

One of the well-known example of probabilistic approach is inflation fan chart by

the Bank of England (2002). It summarizes mean, variance and skewness of inflation

forecasts by employing non-Gaussian distribution, Two Piece Normal (TPN) distribu-

tion (Britton, Fisher, and Whitley, 1998). Fan chart became a main communication

tool for central banks to provide information about their evaluation of future path of

inflation: it assess the possibility of the actual realization of inflation being deviated

from the mean forecast and the degree of asymmetry of distribution. The evaluation

of uncertainty is subject to the judgments of Monetary Policy Committee (MPC) and

the main risk factors are described in the Inflation Report: global growth, demand fac-

tors, commodity prices, and/or productivity growth. Although fan chart extends the

analysis to the higher moments of inflation, the risk factors affecting the moments of

inflation distribution cannot be separated out. In addition, the choice of the parametric

density, TPN, is rather arbitrary.

One of the novel attempts to shed light on the extension of probabilistic approach,

Charemza, Dı́az, and Makarova (2014, henceforth CDM) proposes Weighted Skewed

Normal (WSN) distributions where the parameters have monetary policy-related inter-

pretation. In the next paper by CDM (2015), they suggested multivariate extension

of probabilistic approach in inflation. In general, it is difficult to derive joint distri-

butions between potentially dependent non-Gaussian marginal densities analytically.

They overcame the difficulty by applying copula functions to estimate conditional in-

flation uncertainty for the US and Canada. Copula is the non-parametric technique

that has been widely used in finance to analyse dependence between two stock price

returns.

7By using the inflation data of the UK and the euro area for bivariate VAR GARCH model, we

assume closed Fisher effect. Admittedly, the analysis can be extended by considering international

Fisher Effect or Purchasing Power Parity index of inflation. However, it is reasonable to estimate

inflation uncertainty by CPI inflation since the CB’s inflation target is based on CPI inflation in both

countries.
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Influenced by the work of CDM (2015), this research aims at estimating the condi-

tional probability density function (pdf ) of inflation, explicitly concerning the interde-

pendence of uncertainty between two countries. The estimated joint density is expected

to answer some intriguing questions about the dependence structure of inflation uncer-

tainties between the euro area and the UK. The first question to be addressed is what

is the probability that UK inflation being inside its target band conditional on euro

inflation being also inside its own target? The computed conditional probability of the

UK inflation being inside the target can be compared to the unconditional probabil-

ity without considering the effect of uncertainty in the euro area. If the conditional

probability is larger then the unconditional probability, it may imply that monetary

policy target of the Bank of England can be effectively achieved provided that the ECB

anchors inflation successfully.

In addition, it may be of interest to discuss the so-called term-structure of the

inflation probability. The general conjecture on inflation term-structure may lead us

to the following hypothesis: as the forecast horizon increases, both unconditional and

conditional probability being inside the target are expected to decrease. This is simply

because uncertainty would increase as we predict the further future. The differences

between conditional and unconditional probability is also expected to decrease as fore-

cast horizon increases because the additional information about the euro area inflation

would no longer improve the predictability when considering distant future.

Moreover, it might be interesting to compare the conditional probability when one

of the countries experiences extreme events (either hitting upper limit or lower limit of

inflation target). In particular, this chapter focuses on the probability of maintaining

inflation target for the UK, considering the odds of hitting the lower bound of inflation

target (1%) in the euro area, reflecting the recent deflationary pressure in the region.

This leads us to analyse the tail dependence of the inflation between two economies.

The structure of the chapter is as follows. Section 2.2 estimates pseudo out-of-

sample forecasts with two-equation VAR BEKK GARCH (1,1) model to obtain mea-

sure for inflation uncertainty of the UK and the euro area, respectively. Section 2.3

outlines the estimation strategy of joint density of inflation uncertainty of two regions.

Following the sketch outlined in Section 2.3, Section 2.4 discusses the estimation of

univariate density of inflation uncertainty. The marginal distributions for each econ-

omy’s inflation uncertainty are chosen among two non-Gaussian parametric density

(Two Piece Normal and Weighted Skew Normal) based on the goodness-of-fit criteria.

In Section 2.5, the joint bivariate distribution is estimated using copulas. The cop-

ula parameter is estimated by plugging in the probability integral transforms of the

marginals into the copula density, using the maximum likelihood method. Section 2.6

conducts experiments using joint density derived in Section 2.5. In particular, condi-

tional probability of the UK inflation being well-anchored or below target rate given
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the euro area inflation is computed and compared with the unconditional probability.

Finally, Section 2.7 concludes with some discussions of future development in the field.

2.2 Estimating Inflation Uncertainty

In a large and growing number of studies, there have been empirical attempts to

measure uncertainty in macroeconomic context. The most frequently used proxy for

uncertainty is the implied or realised volatility of stock market index, VIX or VXO,

calculated by the Chicago Board Options Exchange.8 It is widely used because it is

relatively easy to access and provides high frequency data. However, as several recent

studies (see, for example, Bekaert, Hoerova, and Duca (2013), Jurado, Ludvigson and

Ng (2015), inter alia) pointed out, volatility fails to capture uncertainty per se because

market sentiment or risk aversion are also important determinant to change the level

of volatility. Time-varying volatility index can also be retrieved from the GARCH-type

models. The advantage of GARCH-type volatility measure is the potential application

to particular economic variables. Time series of volatility for GDP growth, inflation

or exchange rate can be constructed depending on the model specification and data

used for the estimation of the model. Such approach is shown in some recent papers,

including Fountas, Karanasos and Kim (2006) which applied bivariate GARCH model

of inflation and output growth to capture time variant nominal and real uncertainty.

Despite the broad extension that GARCH model can make, it cannot escape general

criticism that the volatility index is not a full representative of uncertainty.

Another stream of studies that pinpoints the measurement of uncertainty is news-

based approach. Such measures include Economic Policy Uncertainty (EPU) Index by

Baker, Bloom and Davis (2015) and Relative Shift of Sentiment (RSS) Index by Tuckett

et al. (2014).9 The news-based index directly or indirectly exploits the uncertainty-

related words presented in the massive archive of newspaper articles. Due to the de-

velopment in processing big data, this type of uncertainty indices became more easily

available for empirical studies. Moreover, the notion of perceived uncertainty by eco-

nomic agent, on which the index is based, is intuitively straightforward. It is attractive

also because researchers may related news-based index being exogenous for some cir-

cumstances. For instance, unexpected incidents such as natural disasters, wars and/or

other geopolitical events can reflect exogenous uncertainty shocks to the economy. How-

ever, the uncertainty-related key words in newspapers might be, in fact, endogenous as

uncertainty in economic policy tends to increase by other economic factors. Therefore,

one need to be careful about interpreting the effect of news-based index causally when

8The VIX is based on prices of S&P 500 Index options, whereas VXO is is based on prices of S&P

100 Index options

9Refer to the first chapter for the detailed structure of measurement and comparison of the indices.
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applying it to empirical models.

Unpredictability measures, mentioned earlier, are potential substitutes of volatility

or news-based index. Broadly, they can be classified by two categories: (i) ex post

forecast error from a model, or (ii) disagreement measure of professional forecasters.

Both measures can be constructed to represent inflation-specific uncertainty either by

evaluating inflation forecast error or by using inflation forecast data from individual

forecasters. Unpredictability measures follow the theoretical definition of uncertainty

most precisely.

As for the disagreement measures, the key assumption is that each professional

forecaster predicts the most likely outcome of economic variables in the future, given

all information available. Thus, the variability in the mean forecasts among forecasters

represents uncertainty in the prediction in aggregate level. In addition, if these fore-

casters provide point forecast along with its standard error (or variance), the mean of

such estimated variances can also be added up to capture the uncertainty in predic-

tion. The disagreement measures combine individual forecasts to compute uncertainty

by adding a variance of means of individual forecasts and a mean of their variances, as

initially proposed by Giordani and Söderlind (2003). The data used for constructing

uncertainty by disagreement is the Survey of Professional Forecasters (SPF). The over-

arching assumption for this approach is that each of the forecasters in the survey are

independent. However, professional forecasters often share crucial informations avail-

able in the market and hence forecasts tend to be centered around the mean. In spite

of increasing numbers of studies in this field, the disagreement measure of uncertainty

is heavily dependent on rather feeble assumptions.

The ex post forecast error from a forecasting model is the uncertainty component

which was not predictable at the moment of forecasting. Although the uncertainty

measure by forecast errors inherently depends on model selection, it is much more

parsimonious to construct compared to other measures, such as news-based index or

disagreement measure. The fundamental idea of uncertainty by error can be success-

fully applied by utilising Stock and Watson’s (2007) pseudo out-of-sample forecasting.

Pseudo out-of-sample forecasting simulates a real-time forecasting by estimating the

model with data up to t to obtain h-step ahead forecast and moving forward to repeat-

edly make forecasts at t+1, t+2, and so on, with either rolling or recursive estimation.10

Therefore, the distribution of forecast errors by such pseudo out-of-sample forecasts can

encapsulate uncertainty at each time period. Denote the ex post uncertainty measure

as follows.

Ut,h = Σ
1/2
t,h Σ

−1/2
t|t−het|t−h (2.1)

where et|t−h is forecast error conditional on the information available at the period of

10The rolling window refers to a fixed number of data for each iteration while the recursive window

denotes increasing number of data as forecasts moving forward.
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the prediction, i.e. the h-period ahead forecasts is made at time t− h. Σt,h and Σt|t−h

denote the unconditional and conditional variance-covariance matrix of et|t−h. The

square root of the unconditional and conditional variance-covariance matrices are used

to scale the uncertainty index. Following this conceptual framework, the uncertainty

measure for the inflation (π) is simply defined by

Ut,h = Σ
1/2
t,h Σ

−1/2
t|t−h(πt − πt|t−h) (2.2)

The inflation forecasts model is chosen by considering the interdependence of the two

economies, the UK and the euro area. The forecast errors are generated using bivariate

VAR BEKK GARCH (1,1) model. This model ensures the positive definiteness of

conditional variance while balancing the trade off between flexibility and parsimony

of estimation.11 Inflation data, retrieved from the Eurostat database (available on-

line: http://ec.europa.eu/eurostat/data/database), ranges from January 1997 to

March 2016 for both countries with 231 observations in total.12

Figure 2.1 shows the evidence of the conditional heteroskedasticity of the inflation

series. The inflation for both countries was less volatile and quite well-anchored before

the Financial Crisis in 2008. However, in the aftermath of the Great Recession, inflation

has become more volatile and the occasions of diverting from the central banks’ inflation

target have been more frequent. For both countries, inflation series are found to be

I(1), so the first differenced data are used for the VAR-GARCH maximum likelihood

estimation.13 Autoregressive order (p) of VAR model is determined by Ljung-Box

autocorrelation test for residuals. The minimal number of lags (p) is chosen to ensure

the residuals exhibit no autocorrelation at 5% significance level.

Based on the estimated VAR BEKK GARCH (1,1) model14, the h-step ahead

forecasts up to h = 24 months are estimated recursively with the initial recursion

11Silvennoinen and Teräsvirta’s (2009) four classes of multivariate GARCH models are (i) models

which directly specify conditional covariance matrix, (ii) factor models, (iii) constant conditional cor-

relation models, (iv) semi or nonparametric models. Among the four classes of multivariate GARCH

models, the BEKK GARCH model belongs to the first category.

12Hwang and Valls Pereira (2006) studied small sample properties of GARCH estimates and sug-

gested 500 observation are needed for GARCH(1,1) models. They found that the maximum likelihood

estimator of the GARCH(1,1) model can suffer from negative bias in small sample cases. However,

inflation data for euro area are only available from January 1997. In order to robustifying the analysis,

acknowledging the limitation of data availability, Appendix 2.8.2 discusses the nonparametric proxies

for volatility and compares the uncertainty index by VAR GARCH(1,1) and nonparametric proxy.

13Detailed Augmented Dickey-Fuller test results are presented in Appendix 2.8.3.

14Notice that there might be breaks in the mean and/or volatility dynamics in the data and, by

neglecting the possibility of breaks except 2008 crisis period, misspecification problem may arise. Lam-

oureux and Lastrapes (1990) argued that the high degree of persistence can be estimated by GARCH

due to the failure to account for structural breaks. As for the method of addressing this issues, Clements

and Hendry (1999) found that second- or over-differencing the dependent variable can improve the per-

formance of AR models in the case of structural breaks. We leave this for further extension of the

thesis.
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Figure 2.1: Inflation of the UK and the euro area

Source: Eurostat database (http://ec.europa.eu/eurostat/data/database). The inflation targets

(2%) are obtained based on the announcement of Bank of England (www.bankofengland.co.uk), and

ECB (https://www.ecb.europa.eu). The Bank of England explicitly announces the inflation target

band of 1 percentage point from 2% but the European Central Bank does not. In this chapter, the

same target band is assumed for both central banks to calculate the conditional probability.

using the first 80 observations in the dataset. Therefore, the forecast yields 151 (=

231 − 80) one-step-ahead forecast errors, 150 two-step-ahead forecast errors, ... up to

128 24-step-ahead forecast errors. The resulting conditional and unconditional variance-

covariance matrices (Σt|t−h and Σt,h, respectively) are also obtained recursively. The

h-step forecasts by maximum likelihood estimation can suffer from spurious dependence

when h > 1. In order to tackle this issue, Vector Moving Average (VMA) decomposition

is used for the estimation of the MSE (Mean Squared Error) matrix of the forecasts

(see, for example, Lütkepohl, 2007, p.94).

Table 2.1 shows the descriptive statistics of estimated inflation uncertainty for the

selected forecast horizons (h = 3, 6, 12, 18, 24).15 The positive inflation uncertainty im-

plies that the realisation of inflation had not been predicted at the time of forecast and

this unanticipated element causes inflation to move upwardly. Similarly, the negative

inflation uncertainty measure implies that the realised inflation was much lower than

the predicted level from the two-country VAR-GARCH model. The standard devia-

tions of inflation uncertainty are larger for the euro area than those of the UK except

6-month-ahead uncertainty series. For the UK, one-year-ahead inflation uncertainty

has the largest second moment with no systematic pattern along increased forecast

horizons. However, the euro area inflation uncertainty shows clear tendency of increas-

ing second moments. It exhibits larger standard deviations for the longer horizons.

15The table of the descriptive statistics for all forecast horizons is presented in Appendix 2.8.4.
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The UK inflation uncertainty shows negative skewness (long left tail) only for short

horizons (h = 3, 6) but positive skewness when forecast horizons get longer. However,

euro area inflation uncertainty exhibits negative skewness for most of the forecast hori-

zons (h = 3, 6, 12, 18). Excess kurtosis is evident for the euro inflation uncertainty

with horizon 6 and 12 whereas the UK inflation uncertainty exhibits rather moderate

magnitude of excess kurtosis only at h = 12. These findings suggest that the estimated

inflation uncertainty may be better characterised with non-Gaussian density functions

that can represent skewness and/or heavy tails.

Table 2.1: Descriptive statistics of inflation uncertainty

UK Euro Area

h Mean SD Skewness Excess Mean SD Skewness Excess

Kurtosis Kurtosis

3 -0.06 1.00 -0.13 1.12 -0.15 0.69 -0.24 1.82

6 -0.13 1.58 -0.02 1.63 -0.26 1.51 -1.13 4.66

12 -0.09 2.00 0.29 3.48 -0.51 2.95 -1.10 4.98

18 -0.10 1.28 0.36 0.00 -0.83 2.54 -0.35 1.44

24 0.03 1.44 1.19 2.97 -0.76 2.47 0.60 1.63

Figure 2.2: Inflation uncertainty index

Note: Each number at the end of the series stands for the forecast horizon. For example, uk 3 is the

UK inflation uncertainty based on three-month-ahead forecasts.

The estimated inflation uncertainty measures (levels) for the selected forecast hori-

zons (h = 3, 6, 12, 18, 24) are plotted in Figure 2.2. The inflation uncertainty accelerated

in the onset of the Financial Crisis in 2008 for both countries, followed by the significant

decline below the average level. Combined with the effect of the Financial Crisis, the
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surge in commodity price might influence the heightened inflation uncertainty during

this period. Similarly, the decline in the inflation uncertainty might be affected by the

rapid drop in commodity price after mid-2008 and the European Debt Crisis at the end

of 2009. Considering time series of the crude oil price and inflation uncertainty measure

for h = 12, the decline of oil price in 2009 leads the drop in inflation uncertainty. The

lowest level of inflation uncertainty in the euro area occurs earlier than the UK and

the magnitude is larger. Although the commodity price could materially explain the

inflation uncertainty, the differences in dynamics of inflation uncertainties and oil price

might imply that inflation uncertainty cannot be explained solely by the commodity

price.

In order to relate important changes in business cycle to the inflation uncertainty,

Table 2.2 lays out the date of peaks and troughs in inflation uncertainty for each coun-

try. The inflation uncertainty measure computed from short forecast horizon (h = 3)

fails to distinguish the surge in inflation uncertainty in 2008 due to relatively small

variability of the uncertainty series. The maximum level of uncertainty measure oc-

curred approximately in the third quarter of 2008. However, the lowest level of inflation

uncertainty was rather diversely situated from 2009 to 2010 depending on the forecast

horizons. Since the second upswing of inflation uncertainty after 2009 is observed for

several horizons, the dates of the second peak are examined. Comparing the longer hori-

zons (h = 12, 18, 24) with similar date of the first peak, the UK inflation uncertainty

reached its second peak at around early- to mid-2011. For the euro area, however, the

second peaks range from September 2010 to September 2011. The relative size of infla-

tion uncertainty in the second peak is lower than the uncertainty level of the first peak

in 2008. For all horizons, the relative size of uncertainty in the second peak compared

to the first peak is larger for the euro area than the UK.

The usual (Pearson’s) correlation coefficient captures only linear correlation and

is known to be not sufficient measure for dependence in cases where there is heavy

tail or asymmetric dependences. (Cont, 2001; Boyer et al., 1999). Therefore, the rank

correlation coefficients between two countries are computed and presented in Figure

2.3. The average Spearman’s correlation coefficient is 0.29 while Kendall’s correlation

coefficient is 0.21. The uncertainty measure with longer forecast horizon shows higher

correlation for both of the coefficients.
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Table 2.2: Peak and tough of inflation uncertainty

UK h=3 h=6 h=12 h=18 h=24

Global max (date, A) Jan 2010 Jun 2008 Sep 2008 Sep 2008 Sep 2008

Global min (date) Dec 2008 May 2009 Oct 2009 Feb 2010 Sep 2010

Max after 2009 (date, B) Jan 2010 Apr 2010 Feb 2011 Sep 2011 Oct 2011

Relative size (B/A) 1.000 0.393 0.254 0.518 0.327

Euro h=3 h=6 h=12 h=18 h=24

Global max (date, C) Nov 2007 Jun 2008 Sep 2008 Jul 2008 Sep 2008

Global min (date) Jan 2009 Mar 2009 Sep 2009 Feb 2010 Sep 2009

Max after 2009 (date, D) Oct 2009 Mar 2010 Sep 2010 Apr 2011 Sep 2011

Relative size (D/C) 0.723 0.732 0.363 0.646 0.491

Note: Global max indicates the date on which the maximum of inflation uncertainty occurs during the

whole forecasting periods (September 2003-March 2016). Global mim indicates the date on which the

minimum of inflation uncertainty occurs during the whole forecasting periods (September 2003-March

2016). Max after 2009 indicates the date on which the maximum of inflation uncertainty happens

after January 2009 to account for the second peak after the financial crisis. Relative size indicates

the fraction of the uncertainty level at the second peak over the uncertainty level at the initial peak

immediately after the Financial Crisis in 2008.

Figure 2.3: Correlation of inflation uncertainty between the UK and the euro area

Notes: Spearman’s rank correlation can be defined as ρS(X,Y ) = ρ(F1(X), F2(Y )). Kendall’s rank

correlation is defined as ρτ (X,Y ) = Pr[(X1 −X2)(Y1 − Y2) > 0]− Pr[(X1 −X2)(Y1 − Y2) < 0].
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2.3 The Outline of the Estimation Strategy

With the estimated inflation uncertainties of two economies, the joint probability

density is to be drawn for examining the probabilistic aspects of inflation uncertainty.

In particular, the final aim of the research is to study the density function of inflation

uncertainty for one economy conditional on the uncertainty distribution for the other

economy. In order to step forward, it is worthwhile to emphasize that the inflation

uncertainty measures derived previously exhibit non-Gaussian behaviours. To solve this

issue, copula estimation will be adopted. Copulas are well-known, mostly in finance,

tools for modeling extremal events, such as risks, and uncertainties. In addition, the

multivariate extension in copulas is convenient compared to deriving analytical solutions

for combining non-Gaussian densities.

Having such motivation in mind, it might be helpful to sketch the estimation steps

because the estimation involves several complex procedures. First, denote inflation

uncertainty for the UK and the euro area as U1 and U2, respectively. The subscript

t and h are omitted for simplicity. Consider continuous bivariate joint cumulative

density function (cdf ) of inflation uncertainties, F (U1, U2). The univariate marginals

for each inflation uncertainty are denoted as F1(U1) and F2(U2) with inverse quantile

functions, F1
−1 and F2

−1. Applying the proposition of probability integral and quantile

transformation, the joint cdf can be written as follows.16

F (U1, U2) = F (F1
−1(y1), F2

−1(y2))

= Pr[Y1 ≤ y1, Y2 ≤ y2]

= C(y1, y2) (2.3)

where y1 = F1(U1), y2 = F2(U2) with a uniform distribution, U(0, 1).17 C(·) is a copula

function that maps the two-dimension support [0, 1]2 into the unit interval [0,1].18

16Let X be a random variable with density FX . Let F−1

X be the inverse quantile function of FX :

F−1

X (α) = inf{x|FX(x) ≥ α}

α ∈ (0, 1). Then,

(1) If FX is continuous, the random variable Y , defined as FX(X), has a uniform distribution.

(FX(X) ∼ U(0, 1)).

(2) For any uniform distribution Y ∼ U(0, 1), we have F−1

X (Y ) ∼ FX .

17This implies U1 = F1
−1(y1)∼ F1, U2 = F2

−1(y2)∼ F2.

18An m-dimensional copula is a function C(·): [0, 1]m → [0,1] which satisfies the following conditions:

(1) C(1, . . . , 1, an, 1, . . . , 1) = an for every n ≤ m;

(2) C(a1, . . . , am) = 0 if an = 0 for any n ≤ m;

(3) C is m-increasing.
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Rewriting the joint cdf of inflation uncertainty to obtain the resulting joint pdf,

F (U1, U2) = C(F1(U1), F2(U2)) (2.4)

then the joint density (pdf ) of F is given by the following equation.

f(U1, U2) = c(F1(U1), F2(U2)) · f1(U1) · f2(U2) (2.5)

where c is the density of the copula, partial derivative of C(·) with respect to y1, y2.

Denote θ = (θ1, θ2, α) be all the parameters of F1, F2 and C, respectively. Let U =

{(U1t, U2t)}Tt=1 denote a sample. The log likelihood function can be written as follows.

l(θ) =
T∑

t=1

ln (c(F1(U1; θ1), F2(U2; θ2);α))+

T∑

t=1

[
ln (f1(U1t; θ1))+ln (f2(U2t; θ2))

]
(2.6)

Then the Maximum Likelihood Estimator is

θ̂MLE = arg max
θ

l(U1t, U2t; θ) (2.7)

In theory, the copula parameters can be estimated simultaneously with the parameters

in marginal distribution by the maximum likelihood estimation. However, in multi-

dimension cases, this might lead to high complexity in computation. Hence, the two-

step estimation method or the Inference Function for Margins (IFM) method by Joe and

Xu (1996) is applied. As the first step, estimate the univariate marginal distributions.

θ̂1 = arg max
θ1

T∑

t=1

ln (f1(U1t; θ1)) (2.8)

θ̂2 = arg max
θ2

T∑

t=1

ln (f2(U2t; θ2)) (2.9)

and then given the estimated parameters in the univariate densities, estimate the copula

parameter, γ.

γ̂ = arg max
γ

T∑

t=1

ln (c(F1(U1; θ̂1), F2(U2; θ̂2); γ)) (2.10)

The IFM estimator obtained by the two-step estimation, θIFM := (θ̂1, θ̂2, γ̂), is known

to have asymptotically Normal distribution (Joe and Xu, 1996).

The next step is to evaluate the estimated inflation uncertainty measures by fitting

them with the marginal (parametric) distributions for each country separately (step 1 )

and eventually to model the dependency of two countries’ inflation uncertainty using

copula (step 2 ). The detailed estimation procedure is explained in Section 2.4 (step 1 )

and 2.5 (step 2 ).

2.4 Estimating Marginal Density of Inflation Uncertainty

As the first step of IFM method, previously generated inflation uncertainty for

individual countries is to be fitted to the marginal density functions. Potential candi-

dates for parametric density functions considered in the research are Two Piece Normal
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(TPN; see Wallis, 2004) and Weighted Skewed Normal (WSN; see Charemza, Dı́az, and

Makarova, 2015). The choice of TPN density follows from the convention of central

banks’ fan chart. Starting from the Bank of England, fan chart is well-known presen-

tation of the probabilistic forecasts. Fan chart considers both the degree of uncertainty

and the balance of uncertainty around the forecast using TPN distribution (Britton,

Fisher, and Whitley, 1998). The pdf of TPN distribution is defined by (see Wallis,

2004).

fTPN (x;σ1, σ2, µ) =




Aexp{−(x− µ)2/2σ21} if x ≤ µ

Aexp{−(x− µ)2/2σ22} if x > µ

where A = (
√
2π(σ1 + σ2)/2)

−1.19 If σ1 = σ2, it collapses to Normal distribution. If

σ1 < σ2, the distribution is positively skewed (long right tail).

As an alternative density function, WSN is considered. WSN is the customised dis-

tribution which aims at decomposing uncertainty into epistemic and ontological com-

ponents. Ontological uncertainty refers to complete randomness whereas epistemic

uncertainty indicates the uncertainty based on expert knowledge (see Walker et al.,

2003). Denote the inflation uncertainty by forecast errors (estimated in Section 2.2)

as U , omitting the subscripts, t, h, for simplicity. Decompose U by two components,

namely, the baseline forecast error (X) and the signal parts based on revised forecast

error (Y ) from expert knowledge.

U = X︸︷︷︸
baseline forecast error

+ α · Y · IY >m + β · Y · IY <k︸ ︷︷ ︸
Signal part based on revised forecast error

where IY >m is an indication function that gives 1 if revised forecast error is larger than

a certain threshold, m ≥ 0. Similarly, IY <k is an indication function that gives 1 if

revised forecast error is smaller than a certain threshold, k ≤ 0. Hence, the signal

part will be switched on for either (i) Y > m ≥ 0 or (ii) Y < k ≤ 0. X and Y are

bivariate Normal distributions with mean zero, constant and identical variances (σ2),

and correlation coefficient, ρ. This implies that if α = β = 0, WSN reduces to Normal

distribution. (
X

Y

)
= N

[(
0

0

)
,

(
σ2 ρσ2

ρσ2 σ2

)]
(2.11)

19Another representation of the TPN by Britton, Fisher, and Whitley (1998) is as follows.

fTPN (x; γ, µ) =
2

(1/
√
1− γ) + (1/

√
1 + γ)

1√
2πσ2

exp

[

− 1

2σ2

{

(x− µ)2 + γ

(

x− µ

|x− µ|

)

(x− µ)2
}]

where γ is skewness (−1 < γ < 1). It can be shown that the two representations are equivalent by

setting the relationship among parameters.

σ2 = σ2

1(1 + γ) = σ2

2(1− γ)

γ =
σ2 − σ1

σ2 + σ1
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The key assumption is that the ex post inflation uncertainty is the realised uncer-

tainty, once formed by public knowledge and revised based on the expert knowledge

through monetary policy decisions. The further underlying assumption is that the

central bank makes policy decisions upon the expert knowledge, which will eventually

affect the realised uncertainty. For example, assume that baseline forecast error (X)

is initially established. If the expert knowledge predicts that forecast error will be, in

fact, positive and larger than a threshold (Y > m ≥ 0), the signal will be turned on and

central bank tend to implement hawkish policies (αY < 0 with α < 0). The magnitude

of the central bank’s hawkish response to upside risks of uncertainty is summarised in

the parameter, α. Similarly, β depicts the magnitude of the dovish response to down-

side risks of uncertainty. Furthermore, the comparison between α and β in absolute

value will provide interesting intuition. If |α| is greater than |β|, it implies that the

central bank tends to react more aggressively towards the upside risks of inflation un-

certainty than downside risks. Figure 2.4 summarises the logics of the decomposition

of uncertainty in WSN density.

Figure 2.4: Weighted skewed normal distribution

The pdf of WSN distribution is as follows (Charemza, Dı́az, and Makarova, 2015).

fWSN (x;α, β,m, k, ρ) =
1√
Aα

φ

(
x√
Aα

)
Φ

(
Bαx−mAα√
Aα(1− ρ2)

)

+
1√
Aβ

φ

(
x√
Aβ

)
Φ

(−Bβx+ kAβ√
Aβ(1− ρ2)

)

+ φ(x) ·
[
Φ

(
m− ρx√
1− ρ2

)
− Φ

(
k − ρx√
1− ρ2

)]
(2.12)

where φ and Φ are the pdf and cdf of standard normal distribution. Aτ = 1+2τρ+ τ2

and Bτ = τ + ρ for τ = α, β. Notice that the WSN density function in equation (2.12)

has five parameters (omitting σ) as it is expressed with the standardised uncertainty

series.
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The estimation of skewed normal distributions, such as TPN or WSN, by the max-

imum likelihood is known to be inefficient and numerically very complex (see, for ex-

ample, Azzalini and Capitanio, 1999, Sartori, 2006, Franceschini and Loperfido, 2014).

Therefore, simulation based methods has been largely suggested in the previous studies

(see Charemza, Dı́az, and Makarova (2014) for related literature). The simulated min-

imum distance estimators method (SMDE) by Charemza, Dı́az, and Makarova (2015)

will be applied further on. The SMDE method fits the empirical histograms of inflation

uncertainty data to the simulation density function with the chosen minimum distance

criterion. The SMDE estimator is defined as follows.

θ̂SMDE = arg min
θ

[
ξ

(
HD(dn, fr,θ)

)R

r=1

]
(2.13)

where dn is the empirical histogram from the original data, fr,θ is the simulated Monte

Carlo approximation of theoretical densities with total R replications. HD is Hellinger

distance measure20 and ξ denotes the aggregating operator.

Since the number of parameters to be estimated in WSN (α, β,m, k, ρ) is larger

than that of TPN (σ1, σ2, µ), it is necessary to impose restrictions on WSN estimation

for comparison. In this section and onwards, only α, β, σ in WSN will be estimated by

imposing restrictions on ρ and m = −k = σ. In terms of the restriction on ρ, I consider

two different cases: constant ρ (= 0.75) and ρ decaying exponentially from 0.75 to 0.25

as forecast horizon increases.21 While the first assumption on ρ is straightforward, the

second assumption is rather realistic because the covariance between the public and

expert knowledge tends to decrease along with the forecast horizons. For the longer

term forecasts, the expert knowledge might contain more information uncorrelated to

the publicly available information.

Table 2.3 shows the results of the estimation of two marginal distributions with

the selected horizons (h = 6, 12, 18, 24) and under the assumption of exponentially

decreasing ρ.22 First, the estimated UK WSN parameters for the monetary policy

responses to the risks of uncertainty show balanced results. For a shorter horizon

(h = 6), the absolute value of α is greater than the absolute value of β, implying

relatively hawkish monetary policy reactions. For h = 18 and 24, the results are the

opposite, indicating relatively dovish monetary policy responses in the longer term.

For one-year-ahead uncertainty, the responses are balanced. On the contrary, the euro

area’s WSN result shows |α| > |β| for all forecast horizons. It suggests the ECB’s

the tendency towards hawkish monetary policy in response of upside risk of inflation

uncertainty. The estimated σ’s of the UK are larger than those of the euro area in

20See Basu et al. (2002) for the definition of Hellinger distance measure.

21In particular, the computation is based on ρh = 0.25 + exp [ln (0.75− 0.25) · h] where h =

1, 2, . . . , 24.

22See Appendix 2.8.5 for the complete results of all forecast horizons and both restrictions on ρ.
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shorter horizons (h = 6, 12). However, in the longer horizons (h = 18, 24), the second

moments of the euro area’s uncertainty are estimated larger than those of the UK. In

particular, the two-year-ahead estimates show a large increase in σ for the euro area

whereas the σ stays in the similar level for the UK. This result is consistent with the

descriptive statistics results in Section 2.2.

Table 2.3: The estimated parameters of marginal densities

h=6 h=12 h=18 h=24

UK Euro UK Euro UK Euro UK Euro

WSN α -1.81 -3.61 -1.47 -3.19 -0.84 -3.19 -1.00 -0.96

(0.36) (1.29) (0.42) (0.54) (0.90) (0.49) (0.37) (0.01)

β -0.98 -2.72 -1.38 -0.21 -0.95 0.00 -1.10 -0.01

(0.46) (1.01) (0.69) (0.17) (1.54) (0.00) (1.09) (0.02)

σ 0.99 0.56 1.22 1.47 1.13 1.74 1.07 2.28

(0.08) (0.29) (0.29) (0.08) (0.51) (0.10) (0.31) (0.12)

MD 1.99 13.56 14.13 22.70 12.64 46.18 6.65 24.86

TPN σ1 1.70 0.56 1.58 1.61 3.91 1.07 0.54 1.84

(0.71) (0.27) (0.42) (1.51) (0.27) (0.31) (0.67) (0.75)

σ2 1.03 2.76 1.78 1.83 0.23 3.99 1.78 2.60

(0.21) (1.12) (0.47) (0.71) (0.20) (0.03) (0.03) (0.89)

µ 0.35 -1.12 -0.26 -0.32 -2.59 -1.18 -0.96 -1.38

(0.40) (2.02) (0.70) (1.51) (0.62) (0.83) (0.51) (1.20)

MD 4.64 39.19 15.37 39.97 6.56 55.71 3.05 18.38

Sample size 146 140 134 128

Note: MD denotes the minimum distance statistics for the equiprobable null hypothesis against the

alternative hypothesis of bumps or dips in the probability. Under the null hypothesis, the MD statistic

has an asymptotic χ2 distribution (Cressie and Read, 1984).

Turning to our attention to the estimated parameters of TPN, the UK TPN shows

either σ1 < σ2 or σ1 > σ2 depending on the forecast horizons without any systematic

trend. It is noticeable that σ1 is much larger than σ2 for h = 18, implying the long

left tail. For the euro area, σ1 is smaller than σ2 for all horizons, indicating positively

skewed (or long right tail) TPN distribution.

Finally, MD statistics can be further analysed as a criterion for the selection of

distributions. For the UK, WSN has smaller MD than TPN in the shorter horizons

(h = 6, 12) while TPN is preferable for the longer horizons. For the euro area, WSN is

selected for most horizons with an exception of the case of h = 24.

With the estimated parameters of each marginal density, the probability integral

transform (pit’s) are computed in order to examine the goodness-of-fit. The pit’s are the

probability of observing values of random variable being not greater than its realization
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values. If the forecast density is close to the true but unknown density (either WSN

or TPN in this study), pit’s will be uniform on the interval [0,1]. Figure 2.5 is the

box plot of pit’s for both WSN and TPN as graphical diagnostics. At first glance, the

UK inflation uncertainty fits well by WSN density for all horizon. The euro inflation

uncertainty data are well matched with the estimated WSN density. TPN distribution

seems to be compatible with the UK data for most of horizons with the exception of

particular horizons (h = 1, 2, 14, 15, 18). The euro inflation uncertainty is not suitable

for fitting to TPN density for most of the horizons.

Figure 2.5: The box plot of probability integral transformation

Note: h is horizon of uncertainty index, ranging from 1 to 24. The boxes of each plot indicate IQR

(interquantile range) with median. The whiskers are stretched in both sides to 1.5 IQR and the outliers

are presented in dots.

In order to formally check the compatibility of the data with the uniform distri-

bution, a simple goodness-of-fit test (the Cramér-von Mises test) using empirical cdf

is performed further.23 Table 2.4 presents the test statistics for the selected forecast

23Let X1, · · · , Xn be iid samples from unknown density F . Then whether this empirical density

comes from the hypothesized density, F0, can be tested.

H0: F = F0 vs. HA: F 6= F0

Under H0, the Glivenko-Cantelli theorem is satisfied.

sup
t

|F̂n(t)− F0(t)| → 0

as n → ∞. Thus, discrepancy measures can be used as a test statistics.
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horizons (h = 6, 12, 18, 24).24 The simple empirical goodness-of-fit test results support

the robustness of parametric estimation. For both WSN and TPN at all of the horizons,

the null hypothesis cannot be rejected. Comparison of test statistics also confirms that

better fit of WSN over TPN for both economies at most of the forecast horizons.

Table 2.4: Cramér-von Mises statistics for testing uniformity of pit’s

h=6 h=12 h=18 h=24

UK Euro UK Euro UK Euro UK Euro

WSN 0.173 0.134 0.194 0.139 0.212 0.140 0.224 0.147

TPN 0.198 0.127 0.223 0.158 0.331 0.177 0.278 0.166

Note: Asymptotic critical values for the Cramér-von Mises statistics are 0.347 at 10% significance level,

0.461 at 5% significance level.

To sum up, the empirical results (including minimum distance statistics, graphical

diagnostics of pit’s, and goodness-of-fit tests) support the choice of WSN against TPN

for both the UK and the euro area. Therefore, WSN is chosen as the marginal density

for estimating joint density of inflation uncertainty in the next section.

2.5 Estimating Joint Density of Inflation Uncertainty with

Copulas

As the second stage of the IFM method, the copula parameters are estimated by

maximum likelihood estimation. Recall the equation (2.10) in Section 2.3.

γ̂ = arg max
γ

T∑

t=1

ln (c(F1(U1; θ̂1), F2(U2; θ̂2); γ))

where θ̂1, θ̂2 are the estimated parameters from the marginal densities, F1, F2. Thus,

the IFM estimator is simply the maximum likelihood estimator of the copula parameter

by plugging the parameters of marginal distributions estimated in the first stage. It

is widely known that the IMF estimators usually perform well and have asymptotic

efficiency (Joe, 2005). It is also worthwhile to notice the limitation of the estimator.

The IFM estimator, by its set up, heavily relies on the choice of the marginals.

Frank copula is chosen among other bivariate parametric families, such as Gaus-

The Cramér-von Mises test statistic is

Cn ≡
∫

(F̂n(t)− F0(t))
2dF0(t)

If the statistics are larger than the critical value, reject the null that the data come from the specific

distribution in the null hypothesis.

24See Appendix 2.8.6 for the complete results.
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sian, Gumbel, Clayton (see Appendix 2.8.7 for the details of the functional forms and

the statistical properties of other copulas). Frank copula is a symmetric Archimedean

copula25 and its cdf is given by

C(y1, y2; γ) = −1

γ
ln

(
1 +

(e−γy1 − 1)(e−γy2 − 1)

e−γ − 1

)
(2.14)

where γ ∈ (−∞,+∞). If γ = 0, it leads to the independence copula. The copula

generator for Frank copula, ϕ(·), is

ϕγ(t) = − ln

(
e−γt − 1

e−γ − 1

)
(2.15)

The pdf of Frank copula is

c(y1, y2; γ) =
−γ(e−γ − 1)e−γ(y1+y2)

((e−γy1 − 1)(e−γy2 − 1) + (eγ − 1))2
(2.16)

The dependence structure of the estimated copula can be clearly illustrated by the rank

correlations: Kendall’s tau (τ) and Spearman’s rho (ρ). The analytical closed forms

of these rank correlations, which depend on the parameter value, γ, are available for

Frank copula as follows.

gτ (γ) = 1− 4(1−D1(γ))

γ
(2.17)

gρ(γ) = 1− 12(D1(γ)−D2(γ))

γ
(2.18)

where Dk = kx−k
∫ x
0 t

k(et − 1)−1dt is the Debye function. Frank copula is a symmet-

ric Archimedean copula while other two candidates of copulas, Gumbel and Clayton,

are considered as asymmetric Archimedean copulas. Gumbel copula exhibits greater

dependence in the positive tail than in the negative tail and Clayton exhibits greater

dependence in the negative tail than in the positive tail. Based on the properties of

each copula, I chose Frank copula because it can identify the asymmetric dependence

structure without favouring either upper or lower tail dependence.

The estimation strategy for the comprehensive study of dependence structure in

copula is as follows: the copula parameter is estimated (i) by plugging the marginals

of the same forecast horizons, and (ii) by plugging the marginals that gives highest

rank correlation. The dependence of the inflation uncertainty of two economies can be

initially drawn from the forecasts made at the same horizon. This implicitly assumes

25A copula C is Archimedean if there exists a convex, decreasing function ϕ(·) : (0, 1] → [0, ∞) such

that

C(y1, y2) = ϕ−1(ϕ(y1) + ϕ(y2))

where ϕ(·) is copula generator and ϕ(1) = 0. The examples of Archimedean copulas are Gumbel,

Frank, and Clayton.
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that the uncertainty of one country influences the uncertainty of the other contempora-

neously.26 However, the uncertainty specific to one region may affect the uncertainty of

the other region with either some lags or leads. In those circumstances, the joint distri-

bution of the inflation uncertainty of two regions should be driven from the marginals

that have the highest explanatory power. Therefore, the latter analytical frame can be

viewed as a natural extension to the former. In order to find the matching horizons,

the marginal distributions of the UK inflation uncertainty is taken as a benchmark.

That is, for each horizons (h = 1, . . . , 24) of the UK inflation uncertainty, the rank cor-

relation coefficients are computed pairing with lagged, current, and leading uncertainty

of the euro inflation. To facilitate the non linear dependence structure, the Kendall’s

tau and the Spearman’s rho are computed rather than the Pearson’s correlation which

only accounts for the linear relationships. For copula estimation, the distributions of

the UK inflation uncertainty with each horizon will be matched with those of the euro

inflation uncertainty with the horizons that deliver the maximum rank correlation.

Several results from this copula estimation can be predicted in advance. The esti-

mated γ will be positive if two uncertainties are related and the increased uncertainty

of one economy leads to the higher uncertainty of the other. Considering the term

structure of copula parameter, γ may increase as the forecast horizon increases if the

uncertainties about the future father away from the time of the forecast are highly

dependent as opposed to the uncertainties about the near future being less dependent

between two economies. On the other hand, if the uncertainties about the near fu-

ture is more highly dependent than the uncertainties about the distant future, γ will

decrease along with the increasing forecast horizons. Since the rank correlations are

increasing functions of γ, the Kendall’s tau and the Spearman’s rho will also exhibit

similar dynamics across horizons as the estimated γ. Comparing the copula estimation

of same horizon densities to that of the different horizon densities, it is expected that

estimates of γ will be larger in the latter case because the former estimation selects the

matching horizons that have the highest rank correlation.

Table 2.5 and Figure 2.6 shows the estimated γ parameter of Frank copula and

the rank correlation coefficients estimated according to the first strategy. The copula

parameters for all the horizons (h = 1, . . . , 24) are estimated to be positive and mostly

statistically significant. In particular, for the longer horizons that is larger than h = 10,

the estimated γ′s are highly significant. As expected, γ increases, by and large, across

26The contemporaneous impact of the inflation uncertainty refers to the rank correlation between

two inflation uncertainty indices of the same horizon. We use the word ‘contemporaneous’ to highlight

the comparison between the forecast errors of the same horizon, not different horizons, which will

be also discussed from p.105. In most papers discussing VAR models, the contemporaneous effect of

SVAR often refers to the case where the coefficient matrix that is multiplied by the right hand side

variable (yt) is not identity matrix, so that the variables in vector yt could be correlated at the same

time. Notice that they share the same word ‘contemporaneous’ but the usage here is different from the

conventional notion of contemporaneous effects in VAR models.
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Table 2.5: The estimated parameters of Frank copula

h γ se(γ) CvM τ ρ

1 1.886 0.783 0.091 0.203 0.300

2 1.022 0.784 0.094 0.112 0.168

3 0.823 0.751 0.083 0.091 0.136

4 1.783 0.800 0.120 0.192 0.285

5 1.984 0.837 0.219 0.212 0.315

6 1.878 0.830 0.193 0.202 0.299

7 1.341 0.820 0.151 0.146 0.218

8 1.539 0.848 0.201 0.167 0.249

9 1.273 0.830 0.332 0.139 0.208

10 1.684 0.858 0.425 0.182 0.271

11 2.167 0.874 0.311 0.230 0.340

12 2.307 0.876 0.202 0.244 0.360

h γ se(γ) CvM τ ρ

13 2.297 0.838 0.194 0.243 0.358

14 2.552 0.849 0.210 0.267 0.392

15 2.401 0.833 0.253 0.253 0.372

16 2.713 0.841 0.286 0.282 0.413

17 2.777 0.819 0.333 0.287 0.421

18 3.017 0.856 0.395 0.309 0.451

19 3.252 0.860 0.374 0.329 0.478

20 3.354 0.868 0.460 0.337 0.490

21 3.326 0.873 0.354 0.335 0.487

22 3.665 0.893 0.419 0.362 0.523

23 3.654 0.872 0.463 0.362 0.522

24 3.784 0.913 0.256 0.372 0.536

Note: Table shows only the results from the assumption that the ρ’s in WSN marginals decays expo-

nentially as the forecast horizon increases. See Appendix 2.8.8 for the case of constant ρ for the WSN

marginals.

Figure 2.6: Copula parameters and rank correlation: same horizon

Note: r denotes γ parameter of Frank copula based on the assumption of decaying ρ in WSN marginal

densities. r const denotes γ parameter of Frank copula assuming constant ρ (=0.75) for the WSN

marginal densities. tau and rho are estimated rank correlation coefficients using the analytical form

given in equation (2.17), (2.18).
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forecast horizons. In the short term, there are some exceptions. For example, the

estimated γ decreases at first and bounces back at around h = 6, giving a decrease

once again afterwards. However, the longer horizons larger than h = 12, show mostly

monotonic increase. The uniformity of the estimated joint distribution is also confirmed

by the Crémer-von Mises test. The rank correlation coefficients, τ and ρ, exhibit the

same trend as the copula parameter. There was no substantial difference in the copula

parameter in both cases of assumptions on WSN marginals (decaying ρ and constant

ρ), even though the case of constant ρ in WSN marginals seems to be more volatile.

The results imply that the inflation uncertainty of the UK and the euro area con-

temporaneously affect one another and the simultaneous spillover effects get stronger if

it is the uncertainty about the distant future rather than the near future. In the shorter

run, there is no systematic relationship between the correlation (or the magnitude of

the estimated copula parameter) and forecast horizon. The uncertainties at the forecast

horizons h = 1 and h = 5 exhibit relatively high correlation while the uncertainties at

the forecast horizons h = 3 being the minimum.

As discussed, a natural extension is to fit copula function with marginals of differ-

ent horizons which gives highest rank correlation. First, the UK uncertainty is set as a

benchmark, from 1-month to 2-years ahead index and then the euro uncertainty as a

benchmark in turn. The results reveal certain dynamic aspects of spillover effects be-

tween the inflation uncertainties of two economies. Table 2.6 shows the forecast horizons

of the euro area inflation uncertainty that have the highest rank correlation coefficients

with given horizons of the UK inflation uncertainty.27 In terms of the Kendall’s tau, the

short term UK inflation uncertainty series (with forecast horizons less than one year)

depends highly on the euro inflation uncertainty series with the forecast horizons from

12 to 14. One-year ahead inflation uncertainty in the UK has the highest correlation

with approximately 11
2 year ahead uncertainty in the euro area. From 16-months to

2-years ahead inflation uncertainty series of the UK have the highest correlation with

23- to 24-months ahead uncertainty series of the euro area. Spearman’s rho criterion

yields fairly similar results to the Kendall’s tau criterion with a few exceptions in the

short term horizons (h = 1, 3).

Table 2.7 shows the results by setting the euro area as a benchmark. Both Kendall’s

tau and Spearman’s rho criteria produce quite similar results. Except the horizons,

h = 2, 3, the euro inflation uncertainty indices at most forecast horizons have the

highest correlation with the lagged UK inflation uncertainty series. For example, the

6-months ahead euro inflation uncertainty is highly related to the 3-months ahead UK

inflation uncertainty series, the 12-months ahead euro uncertainty to the 7-months

ahead UK uncertainty, and 2-years ahead euro uncertainty to the 19-months ahead UK

27See Appendix 2.8.9 for the rank correlation coefficients between the UK and the euro area inflation

uncertainties across all different horizons.
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Table 2.6: The forecast horizons of the euro area inflation uncertainty returning the

highest correlation to the UK inflation uncertainty

Kendall Spearman

UK h1 τ h2 ρ

1 12 (0.223) 6 (0.316)

2 12 (0.261) 12 (0.358)

3 12 (0.259) 8 (0.369)

4 13 (0.268) 13 (0.378)

5 14 (0.273) 14 (0.384)

6 14 (0.303) 14 (0.418)

7 14 (0.322) 14 (0.450)

8 14 (0.326) 14 (0.448)

9 14 (0.321) 14 (0.435)

10 14 (0.306) 16 (0.430)

11 14 (0.307) 17 (0.435)

12 17 (0.299) 17 (0.424)

Kendall Spearman

UK h1 τ h2 ρ

13 19 (0.307) 20 (0.436)

14 20 (0.324) 20 (0.457)

15 20 (0.331) 20 (0.474)

16 23 (0.330) 23 (0.472)

17 23 (0.349) 23 (0.492)

18 23 (0.364) 23 (0.520)

19 23 (0.370) 24 (0.515)

20 24 (0.356) 24 (0.492)

21 24 (0.328) 24 (0.457)

22 24 (0.311) 24 (0.432)

23 23 (0.315) 23 (0.440)

24 24 (0.298) 24 (0.418)

Note: h1 refers to the horizons of the euro inflation uncertainty that give the highest Kendall’s tau

correlation with the UK uncertainty of the given horizon. τ is the Kendall’s tau at the horizon h1. h2

refers to the horizons of the euro inflation uncertainty that give the highest Spearman’s rho correlation

with the UK uncertainty of the given horizon. ρ is the Spearman’s rho at the horizon h2.

Table 2.7: The forecast horizons of the UK inflation uncertainty returning the highest

correlation to the euro area inflation uncertainty

Kendall Spearman

Euro h1 τ h2 ρ

1 1 (0.199) 1 (0.289)

2 10 (0.210) 10 (0.305)

3 10 (0.226) 10 (0.322)

4 1 (0.197) 1 (0.289)

5 2 (0.234) 2 (0.339)

6 3 (0.249) 3 (0.358)

7 3 (0.246) 3 (0.346)

8 3 (0.258) 3 (0.369)

9 3 (0.246) 3 (0.348)

10 4 (0.255) 4 (0.359)

11 7 (0.293) 7 (0.394)

12 7 (0.307) 7 (0.422)

Kendall Spearman

Euro h1 τ h2 ρ

13 8 (0.321) 8 (0.439)

14 8 (0.326) 7 (0.450)

15 9 (0.304) 8 (0.429)

16 10 (0.305) 10 (0.430)

17 11 (0.306) 11 (0.435)

18 13 (0.288) 13 (0.407)

19 13 (0.307) 15 (0.432)

20 15 (0.331) 15 (0.474)

21 18 (0.312) 18 (0.447)

22 18 (0.345) 18 (0.487)

23 19 (0.370) 18 (0.520)

24 19 (0.369) 19 (0.515)

Note: h1 refers to the horizons of the UK inflation uncertainty that give the highest Kendall’s tau

correlation with the euro uncertainty of the given horizon. τ is the Kendall’s tau at the horizon h1. h2

refers to the horizons of the UK inflation uncertainty that give the highest Spearman’s rho correlation

with the euro uncertainty of the given horizon. ρ is the Spearman’s rho at the horizon h2.
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uncertainty. The difference of the horizon (lag) is 3 for the shorter horizons (h = 4, 5, 6)

euro inflation uncertainty data and becomes little larger for the longer horizons, ranging

from 4 to 6.

Bringing the results together, the UK inflation uncertainties are most highly associ-

ated with the leading series of the euro area inflation uncertainty and the euro inflation

uncertainties with the lagged series of the UK uncertainty. The exact horizon that

returns maximum value of rank correlation differs by selecting different benchmarks

because the range given for defining maximum changes. Without any distributional

assumptions, it suggests that the UK inflation uncertainty might contain relevant in-

formation for predicting the euro inflation uncertainty with lags, even though it cannot

be interpreted solely by causality.

Figure 2.7: Copula parameters and rank correlation coefficients: combined marginals

that have highest correlation

Note: r denotes γ parameter of Frank copula based on the assumption of decaying ρ in WSN marginal

densities and combining the same horizon. r cross denotes γ parameter of Frank copula assuming

decaying ρ for the WSN marginal densities and combining different horizons that gives highest correla-

tion. tau and rho are estimated rank correlation coefficients using the analytical form given in equation

(2.17), (2.18).

The copula parameters are estimated with the pair that gives the highest correla-

tion. Figure 2.7 presents the results of the estimation in terms of matching horizons

based on the Kendall’s tau with the UK benchmark.28 Comparing to the previous

results where the copula function is fitted by the same horizon uncertainties for two

regions, the γ̂ is larger for all forecasting horizons. This is reasonable and anticipated

result because the matching horizons for two countries’ uncertainty are selected to re-

flect the higher dependence structure. Unlike the same horizon results, γ̂ increases in

the short term as the horizon increases until h = 10. The strength of non linear depen-

dence of two uncertainties that is depicted by the copula parameter weakens until it

28Even if the benchmark rank correlation coefficients are different, the results for the copula estima-

tion do not change materially. The complete results are in Appendix 2.8.10.

107



reaches the local minimum at h = 13. The maximum value of the estimated γ occurs

at h = 20.

2.6 Probabilistic Approach: Investigating Inflation De-

pendence Structure

Based on the estimated marginal and joint densities of inflation uncertainty, one

can compute the conditional probability of certain scenarios of inflation outcomes. The

subscript for the density functions (f and F ) and uncertainty index (U) indicates each

region: 1 for the UK and 2 for the euro area. Then, the unconditional probability for

the UK inflation being inside [a,b] is computed as follows.

∫ b

a
f̂1(U1) dU1 (2.19)

The conditional probability of the UK inflation inside [a,b] given that the euro

inflation is inside the same region is

∫ b

a

∫ b

a
c(F̂1, F̂2; α̂) f̂1 · f̂2 dU1dU2

∫ b

a
f̂2(U2) dU2

(2.20)

Table 2.8 and Figure 2.8 shows two different scenarios, (i) the inflation below

1% and (ii) the inflation within [1%, 3%] for both economies. The former scenario

represents the case of hitting the lower bound of the central banks’ target29 and the

latter depicts the case of well-anchored inflation. Each of the horizons, the probabilities

are computed by averaging the probabilities across the most recent forecasts, starting

from the forecasts made at July 2013. For example, for the forecast horizon h = 1,

the probabilities of hitting the lower bound (1%) computed at July 2013, August 2013,

up to February 2016, are averaged out. Therefore, the total number of entries for the

average is 31. The forecasts can be made up to January 2016 for the forecast horizon

h = 2, thus the total number of entries for the average is 30. Table 2.8 presents both

the unconditional and conditional probability of each given scenario with the selected

horizons and the complete results are given in Appendix 2.8.11.

29The Bank of England and the European Central Bank publish the inflation target on their web-

site. Both set the inflation target of 2% in the medium term. The Bank of England explicitly an-

nounces the inflation target band of 1 percentage point from 2% but the European Central Bank

does not. In this chapter, the same target band is assumed for both central banks to calculate the

conditional probability. See Monetary Policy Framework of the Bank of England (Available from:

http://www.bankofengland.co.uk/monetarypolicy/Pages/framework/framework.aspx) and Mone-

tary Policy Strategy for the European Central Bank (Available from: https://www.ecb.europa.eu/

mopo/strategy/html/index.en.html) for the details.
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Table 2.8: The unconditional and conditional probability of the UK inflation

I. The probability of the UK inflation below 1%

Unconditional Conditional Conditional eu h

(same h) (different h)

h=6 0.4867 0.5095 0.5238 14

h=12 0.3863 0.4163 0.4281 17

h=18 0.2663 0.3184 0.3289 23

h=24 0.2387 0.3036 0.3036 24

II. The probability of the UK inflation within [1%, 3%]

Unconditional Conditional Conditional eu h

(same h) (different h)

h=6 0.4224 0.4942 0.5337 14

h=12 0.4150 0.4523 0.4488 17

h=18 0.4457 0.4127 0.3884 23

h=24 0.4179 0.3483 0.3483 24

Note: Conditional (same h) indicates the conditional probability calculated using the estimated joint

distribution combined by the same horizon univariate densities of the UK and the euro inflation uncer-

tainty. Conditional (different h) indicates the conditional probability calculated using the estimated

joint distribution combined by the matching univariate densities of the UK and the euro inflation

uncertainty which give the highest Kendall’s tau rank correlation with each given horizon of the UK

inflation uncertainty. eu h refers to the selected horizons for the euro inflation uncertainty that gives

the highest Kendall’s tau correlation with each given horizon of the UK inflation uncertainty.

Figure 2.8: The unconditional and conditional probabilities of the UK inflation

Note: The left panel shows the results when the UK inflation is below 1%, and the right panel shows the

results when the UK inflation is within target [1%, 3%]. The blue lines are unconditional probability and

the red lines are conditional probability computed for the same horizons. The green lines are conditional

probability computed for the different horizons when when pairing the two marginal densities.
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Both unconditional and conditional probability of the UK inflation below 1% de-

creases as we forecast further future. This is clearly observed by the downward sloping

graphs in the left panel of Figure 2.8. The unconditional probability is lower than the

conditional probability for all horizons in the first scenario. For example, the proba-

bility of the UK inflation below 1% in two years without considering the dependence

structure is approximately 24% while this increases to 31% if it is known that the euro

area inflation will also become below 1% in two years. This suggests that the left tail

events of inflation are positively correlated between the two regions. The uncertainty

of potential downward pressure to the euro inflation below its monetary policy target

might create additional downward pressure to the UK inflation.

One important finding of the probabilistic analysis is about when the left tail

event is most likely. The unconditional probability of the UK inflation below 1% is at

its maximum at h = 1 and decreases. However, the conditional probability of the same

event computed using the joint density of matching different horizons reaches its largest

level at h = 7. This implies that the model of univariate inflation density using most

recent data anticipates that the UK inflation could be below 1% next month by the

highest probability whereas the model which directly takes account for the interaction

between the UK and the euro area inflation uncertainty predicts that the same event is

most likely to occur 7 months later. The dynamic analysis can suggest the appropriate

timing of the monetary policy considering the interconnectedness of the two economies.

Since the extra information about the euro inflation uncertainty can lead to a different

prediction of the odds of the left tail event for the UK inflation, the monetary authority

can react pre-emptively against the potential influence of the euro inflation uncertainty

to the UK inflation.

The second case of the UK inflation within the target band yields quite a different

picture (see the right panel of Figure 2.8). Unlike the previous scenario, the probabil-

ities do not decrease monotonically as forecast horizon increases. The unconditional

probability appears to be flat across all forecast horizons, roughly between 40 and 50

percent. The conditional probabilities are either flat (copula estimated with marginals

of the same horizons) or increasing (copula estimated with marginals of the different

horizons) for the short forecast horizons. For the longer horizons, the conditional prob-

abilities tend to decline as the forecast horizon increases. Comparing the unconditional

and conditional probabilities, unconditional probability of the UK inflation inside the

target band is significantly lower than the conditional probability in the short and

medium term. However, the long term unconditional probability is larger than the

conditional probability. This implies that, for the short forecast horizons, the odds of

the UK inflation being within the target range is more likely if the euro inflation is

also predicted to be inside the range. Considering the future further ahead (17 months

ahead), on the contrary, the odds of the UK inflation inside the target is less likely once

it is known that the euro inflation will be well-anchored. It suggests that if the news
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about the euro area is given, the uncertainty around the inflation in the UK decreases

in the near future, but increases in the far future.

2.7 Conclusions

This paper analyses the dependence structure in inflation uncertainty for the coun-

tries bordering a major currency area, in particular, the UK and the euro area. The

inflation uncertainty is measured by square forecast errors from bivariate VAR GARCH

model using the data from January 1997 to March 2016. The findings suggest that

the estimated uncertainty may well be characterised with non-Gaussian density with

skewed, heavy tail properties. Following the two-step estimation (Inference Functions

for Margins, IFM), the uncertainty measures are evaluated by fitting with two different

parametric skewed density functions, Two Piece Normal (TPN) and Weighted Skewed

Normal (WSN). The goodness-of-fit tests supports the choice of WSN against TPN

for both the UK and the euro area inflation uncertainty. The estimated parameters in

WSN suggests that the UK monetary policy reactions in the short run show relatively

hawkish while in the longer term the responses are rather dovish. For the euro area,

the estimation results suggest that the ECB tends to be hawkish in response of upside

risk of inflation uncertainty regardless of the forecast horizons.

As the second stage of IFM, the copula parameters are estimated by maximum

likelihood estimation. The results imply that the inflation uncertainty of the UK and

the euro area contemporaneously affect one another and the simultaneous spillover ef-

fects get stronger if it is the uncertainty about the distant future rather than the near

future. In the shorter run, there is no systematic relationship between the correlation

and forecast horizon. In order to reveal dynamic aspects of spillover effects between the

inflation uncertainties of two economies, I fit copula function with marginal densities of

different horizons which gives highest rank correlation. The UK inflation uncertainties

are most highly associated with the leading series of the euro area inflation uncer-

tainty and the euro inflation uncertainties with the lagged series of the UK uncertainty.

Without any distributional assumptions, it suggests that the UK inflation uncertainty

might contain relevant information for predicting the euro inflation uncertainty with

lags, even though it cannot be interpreted solely by causality.

Finally, the conditional probability accounting for the dependence structure in in-

flation uncertainties is computed using the estimation results. In particular, I consider

the conditional probability of the UK inflation inside a certain interval given that the

euro inflation is inside the same interval with two different scenarios: (i) the inflation

hitting the lower bound of the central banks’ target and (ii) the case of well-anchored in-

flation. The result suggests that the left tail events of inflation are positively correlated

between the two regions. The uncertainty of potential downward pressure to the euro
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inflation below its monetary policy target might create additional downward pressure

to the UK inflation. In addition, the appropriate timing of the monetary policy can be

driven if policymakers consider the interconnectedness of the two economies. Since the

extra information about the euro inflation uncertainty can lead to a different prediction

of the odds of the left tail event for the UK inflation, the monetary authority can react

pre-emptively against the potential influence of the euro inflation uncertainty to the

UK inflation.
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2.8 Appendix

2.8.1 Related literature

I. Literature on international co-movement of inflation

Henriksen, Kydland and Sustek (2011) highlighted the possibility that common

macroeconomic shocks, such as oil price shock, can lead to similar responses of central

banks, resulting inflation co-movement. Henriksen, Kydland, and Sustek (2013) inves-

tigated the link between inflation and productivity growth. They found that the inter-

national business cycle model with technological spillovers can generate co-movement

in inflation across countries. Clearly, trade openness can influence the level of inflation

dependence across countries. Melitz and Ottaviano (2008) suggested a model where

trade openness decreases firms’ mark-ups and lowers inflation. In terms of labour mar-

ket channel, migration with heterogeneous labour supply elasticities between domestic

and foreign labour force can create the dependence of inflation among countries. Ben-

tolila, Dolado, and Jimeno (2008) develop a theoretical model exhibiting downward

pressure on inflation when there is a migration boom in a country. Finally, exchange

rate regime can be another potential channel for inflation co-movement. Either a fixed

exchange rate system or an exchange rate system subject to the stable exchange rates

could produce similar monetary policies (see, for example, Canzoneri and Gray, 1985;

Calvo and Reinhart, 2002; Devereux and Engel, 2007). In addition, there are some

recent empirical studies that has revealed international links of inflation among devel-

oped countries (Monacelli and Sala 2009; Ciccarelli and Mojon 2010; Neely and Rapach,

2011; Mumtaz and Surico, 2012).

II. Literature on unpredictability measures of uncertainty

One of the earliest attempt that explores (un)predictability measure as a proxy

for uncertainty was Pourgerami and Maskus (1987). They investigated Latin American

countries which experienced high inflation and discovered that it is often more likely

to fail to predict inflation precisely in countries with high inflation. Ungar and Zilber-

farb (1993) proposed three unpredictability measures, such as Absolute Forecast Error

(AFE), Squared Forecast Error (SFE) followed by Pagan, Hall, and Trivedi (1983) and

Mean Squared Error (MSE) from survey of inflation expectation.

III. Literature on disagreement measures of uncertainty

Holland (1995) explored the dispersion of expectation as a proxy for uncertainty.

He suggested that increases in inflation is likely to be followed by the divergence of

expectation among individuals, provided that central banks’ objective is to minimise

welfare losses. For recent work, see Giordani and Söderlind (2003), Engelberg, Manski

and Williams (2009), Clements and Harvey (2011), Lahiri, Peng and Sheng (2014).
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2.8.2 Nonparametric proxy of inflation volatility

Among nonparametric proxy of volatility, realised variance (or volatility) and stan-

dard deviation of rolling windows are discussed here. First, realised variance (RV) is the

most widely used proxy for volatility (see Barndorff-Nielsen et al. (2004) for the devel-

opment of this measure using kernel estimation). RV is defined as the sum of squared

returns. For example, the RV of monthly stock market return can be defined as the

sum of squared daily returns during a certain month. Therefore, RV is a nonparametric

(without assuming any distribution for computing) and a measure of variation over a

certain period of time. RV of monthly inflation uncertainty can be measured only if

there exist high frequency data for inflation.

Second, standard deviation of rolling windows of certain period can measure volatil-

ity without parametric assumptions. This proxy is simple and easily constructed with-

out high frequency data. Therefore, we computed standard deviations of rolling 3-,

6-, 12- and 24-month windows of year-on-year inflation, SD3, SD6, SD12 and SD24,

respectively.

In order to compare SD proxies to the inflation uncertainty index constructed

using parametric model, bivariate VAR GARCH(1,1), the correlation coefficients are

computed in Table 2.9. Mostly, inflation uncertainty is significantly correlated with

nonparametric proxy of similar horizon or leading horizons. Figure 2.9-10 plot inflation

uncertainty (by VAR GARCH) and nonparametric proxies (by SD). For comparison,

inflation uncertainty series are squared and standardised. As seen in the graphs, the

two measures of uncertainty are at least showing similar dynamics.

Table 2.9: Correlation coefficients between inflation uncertainty index and nonpara-

metric proxy of inflation volatility

UK EURO

SD3 SD6 SD12 SD24 SD3 SD6 SD12 SD24

uncer3 0.4253* 0.4933* 0.4536* 0.3412* 0.3268* 0.2521* 0.3380* 0.2305*

0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0000 0.0047

uncer6 0.3226* 0.3826* 0.5952* 0.3562* 0.2190* 0.4266* 0.3838* 0.2655*

0.0001 0.0000 0.0000 0.0000 0.0079 0.0000 0.0000 0.0012

uncer12 0.2622* 0.2074 0.3759* 0.3870* 0.1996 0.3104* 0.5416* 0.3337*

0.0018 0.0140 0.0000 0.0000 0.0180 0.0002 0.0000 0.0001

uncer24 0.1475 0.0533 0.1206 0.1308 0.3012* 0.3422* 0.5169* 0.3772*

0.0966 0.5503 0.1749 0.1412 0.0005 0.0001 0.0000 0.0000

Notes: SD3, SD6, SD12 and SD24 refer to the standard deviations of rolling 3-, 6-, 12- and 24-month windows

of year-on-year inflation. uncer3, uncer6, uncer12, and uncer24 denote inflation uncertainty series computed in

Section 2.2.

114



-2
0

2
4

6

2003m9 2007m9 2011m9 2015m9

GARCH SD(3m)

SD(6m)

uk_3

-2
0

2
4

6

2003m9 2007m9 2011m9 2015m9

GARCH SD(6m)

SD(12m)

uk_6

-2
0

2
4

6
8

2003m9 2007m9 2011m9 2015m9

GARCH SD(12m)

SD(24m)

uk_12

-2
0

2
4

6
8

2003m9 2007m9 2011m9 2015m9

GARCH SD(24m)

SD(3m)

uk_24

Figure 2.9: The UK inflation uncertainties: Parametric vs nonparametric measures

Notes: GARCH refers to squared and strandardised inflation uncertainty series of different horizons.

SD refers to rolling standard deviation. The plots include the SD with same horizon and the ones with

highest correlations in Table 2.9.
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Figure 2.10: The euro area inflation uncertainties: Parametric vs nonparametric mea-

sures

Notes: GARCH refers to squared and strandardised inflation uncertainty series of different horizons.

SD refers to rolling standard deviation. The plots include the SD with same horizon and the ones with

highest correlations in Table 2.9.

115



2.8.3 The unit root test results

Table 2.10: Augmented Dickey-Fuller test results

(1) (2) Observations

UK −0.844 (0.806) −0.224 (0.991) 218

Euro −1.870 (0.347) −2.161 (0.512) 218

D.UK −6.028∗∗∗ (0.000) −6.158∗∗∗ (0.000) 217

D.Euro −5.742∗∗∗ (0.000) −5.877∗∗∗ (0.000) 217

Notes: D. denotes the first differenced series. (1) assumes the null hypothesis of random walk without drift. (2)

assumes the null hypothesis of random walk with or without drift. Both (1) and (2) include 12 lagged differenced

terms. MacKinnon approximate p-values are in the parenthesis. ∗∗∗ indicates that the null hypothesis of unit

root is rejected at 1% significance level with critical value -3.471.

2.8.4 Descriptive statistics of inflation uncertainty

Table 2.11: The descriptive statistics of inflation uncertainty (all horizons)

UK Euro

Horizon mean stdv skewness kurtosis mean stdv skewness kurtosis

1 -0.05 0.43 -0.19 0.35 -0.02 0.41 -0.25 0.42

2 -0.09 0.69 -0.06 0.61 -0.10 0.52 -0.01 0.41

3 -0.06 1.00 -0.13 1.12 -0.15 0.69 -0.24 1.82

4 -0.02 1.20 -0.08 1.24 -0.16 0.90 -0.81 2.95

5 -0.06 1.43 -0.06 1.21 -0.28 1.23 -1.10 4.06

6 -0.13 1.58 -0.02 1.63 -0.26 1.51 -1.13 4.66

7 -0.13 1.75 -0.01 2.22 -0.33 1.81 -1.23 4.99

8 -0.09 1.89 0.09 2.58 -0.45 2.14 -1.17 4.75

9 -0.10 1.97 0.25 3.53 -0.51 2.45 -1.15 5.13

10 -0.13 1.99 0.10 2.84 -0.59 2.68 -1.22 5.14

11 -0.16 2.03 0.09 2.86 -0.63 2.82 -1.32 5.33

12 -0.09 2.00 0.29 3.48 -0.51 2.95 -1.10 4.98

13 -0.14 1.93 0.23 2.81 -0.59 2.97 -1.07 4.66

14 -0.13 1.81 0.45 2.88 -0.73 2.98 -0.96 3.72

15 -0.09 1.70 0.48 3.23 -0.80 2.88 -0.78 3.50

16 -0.06 1.57 0.39 1.77 -0.81 2.76 -0.72 2.79

17 -0.08 1.45 0.40 1.12 -0.90 2.67 -0.59 1.94

18 -0.10 1.28 0.36 0.00 -0.83 2.54 -0.35 1.44

19 -0.08 1.21 0.43 -0.20 -0.85 2.45 -0.12 1.29

20 -0.03 1.24 0.65 0.84 -0.89 2.46 0.24 1.59

21 -0.03 1.24 0.65 1.15 -0.90 2.45 0.30 1.83

22 -0.02 1.33 0.94 2.19 -0.92 2.52 0.51 2.21

23 -0.03 1.37 0.95 1.75 -0.91 2.51 0.57 1.67

24 0.03 1.44 1.19 2.97 -0.76 2.47 0.60 1.63
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2.8.5 The estimation results of WSN, TPN distributions

The pdf of WSN distribution is as follows (Charemza, Dı́az, and Makarova, 2015).

fWSN (x;α, β,m, k, ρ) =
1√
Aα

φ

(
x√
Aα

)
Φ

(
Bαx−mAα√
Aα(1− ρ2)

)

+
1√
Aβ

φ

(
x√
Aβ

)
Φ

(−Bβx+ kAβ√
Aβ(1− ρ2)

)

+ φ(x) ·
[
Φ

(
m− ρx√
1− ρ2

)
− Φ

(
k − ρx√
1− ρ2

)]

where φ and Φ are the pdf and cdf of standard normal distribution. Aτ = 1+2τρ+ τ2

and Bτ = τ+ρ for τ = α, β. The estimation is based on the assumption ofm = −k = σ.

The pdf of TPN distribution is defined by (see Wallis, 2004)

fTPN (x;σ1, σ2, µ) =




Aexp{−(x− µ)2/2σ21} if x ≤ µ

Aexp{−(x− µ)2/2σ22} if x > µ

where A = (
√
2π(σ1 + σ2)/2)

−1.

Table 2.12: The estimated parameters of the UK WSN distribution (ρ = 0.75)

h α β σ se(α) se(β) se(σ) Distance

1 -0.806 -0.413 0.542 0.488 0.719 0.336 4.693

2 -0.921 -0.587 0.872 0.123 0.167 0.302 5.534

3 -2.104 -2.000 0.656 0.076 0.254 0.025 3.031

4 -2.035 -1.454 0.944 0.363 0.046 0.074 4.483

5 -2.607 -1.744 1.012 0.357 0.556 0.140 5.807

6 -2.050 -1.460 1.204 0.094 0.443 0.243 2.496

7 -1.924 -1.268 1.393 0.518 0.039 0.170 2.694

8 -0.409 -0.001 1.747 0.224 0.002 0.059 5.058

9 -2.205 -1.721 1.259 0.396 0.889 0.594 8.627

10 -0.278 -0.011 1.718 0.134 0.035 0.151 9.595

11 -0.807 -0.554 2.070 0.022 0.273 0.046 3.101

12 -1.745 -1.746 1.485 0.047 0.043 0.121 15.053

13 -0.632 -0.351 1.895 0.482 0.603 0.409 6.271

14 -0.877 -0.485 1.922 0.244 0.523 0.496 7.797

15 -0.463 -0.312 1.693 0.559 0.530 0.230 6.182

16 -1.182 -1.140 1.579 0.309 0.442 0.420 3.886

17 -0.906 -0.569 1.733 0.169 0.225 0.103 11.971

18 -1.271 -1.465 1.368 0.029 0.587 0.249 11.305

19 -0.841 -0.583 1.622 1.649 0.832 0.555 10.826

20 -0.679 -0.393 1.577 1.136 0.229 0.413 13.577

21 -1.336 -1.507 1.171 0.176 0.293 0.138 7.297

22 -0.904 -0.602 1.548 0.177 0.121 0.321 14.855

23 -0.913 -0.594 1.604 0.149 0.144 0.511 6.438

24 -1.383 -1.505 1.306 0.326 0.713 0.444 5.935
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Table 2.13: The estimated parameters of the UK WSN distribution (ρ decaying expo-

nentially)

h α β σ se(α) se(β) se(σ) Distance

1 -0.806 -0.413 0.542 0.488 0.719 0.336 4.693

2 -0.663 -0.280 0.729 0.074 0.886 0.255 5.978

3 -1.981 -1.816 0.553 0.698 0.683 0.301 3.323

4 -1.911 -1.227 0.764 0.534 1.179 0.367 4.462

5 -2.495 -1.473 0.812 0.808 1.117 0.492 4.797

6 -1.806 -0.976 0.992 0.361 0.456 0.077 1.987

7 -1.758 -0.868 1.099 0.514 0.797 0.414 2.994

8 -1.064 -0.542 1.426 0.835 0.311 0.066 5.038

9 -1.945 -1.321 1.048 0.932 0.375 0.255 8.282

10 -1.046 -0.679 1.417 0.778 0.123 0.093 8.932

11 -0.646 -0.376 1.539 0.487 0.327 0.293 3.350

12 -1.466 -1.383 1.219 0.423 0.687 0.291 14.130

13 -0.662 -0.297 1.480 0.437 0.073 0.105 6.696

14 -0.531 -0.122 1.456 0.160 0.387 0.031 8.555

15 -0.527 -0.210 1.399 0.655 0.157 0.151 6.572

16 -0.263 -0.058 1.361 0.179 0.323 0.270 4.345

17 -0.501 -0.148 1.338 0.571 0.038 0.344 12.369

18 -0.837 -0.952 1.129 0.896 1.544 0.511 12.637

19 -0.700 -0.618 1.170 1.328 1.588 0.640 12.052

20 -0.908 -0.741 1.111 0.670 1.199 0.452 14.756

21 -0.650 -0.616 1.106 0.475 1.593 0.439 7.900

22 -0.777 -0.956 1.069 0.074 0.519 0.321 16.175

23 -1.022 -1.245 1.000 0.310 0.617 0.103 7.701

24 -1.004 -1.096 1.067 0.368 1.089 0.313 6.649

Table 2.14: The estimated parameters of the UK TPN distribution

h σ1 σ2 µ se(σ1) se(σ2) se(µ) Distance

1 2.597 0.676 -2.537 0.610 0.088 1.590 17.413

2 0.077 3.772 3.942 0.200 0.206 0.174 16.090

3 0.967 0.864 0.014 0.003 0.176 0.461 6.142

4 1.350 0.724 0.443 0.305 0.239 0.116 5.415

5 1.606 0.975 0.405 0.503 0.024 0.237 14.083

6 1.700 1.033 0.354 0.712 0.205 0.399 4.644

7 2.000 0.912 0.674 0.235 0.176 0.613 2.931

8 2.028 1.087 0.611 0.324 0.633 0.415 3.607

9 1.884 1.256 0.370 0.130 0.096 0.348 12.083

10 1.799 1.342 0.278 0.398 0.175 0.638 9.475

11 1.468 1.623 -0.245 0.068 0.957 0.744 3.087

12 1.580 1.778 -0.259 0.422 0.466 0.700 15.373

13 1.125 1.829 -0.721 0.512 0.202 0.762 5.273

14 3.932 0.338 -3.960 0.216 0.533 0.887 6.548

15 3.620 0.506 -3.736 0.313 0.054 0.178 4.996

16 0.988 1.612 -0.570 0.063 0.523 0.284 3.788

17 0.571 1.927 -1.170 0.245 0.510 0.158 7.094

18 3.914 0.234 -2.595 0.272 0.205 0.616 6.562

19 0.357 1.797 -1.210 0.087 0.100 0.283 4.448

20 0.506 1.671 -1.013 0.560 0.298 0.339 9.599

21 0.492 1.582 -0.860 0.515 0.579 0.823 3.460

22 0.163 1.806 -1.350 0.526 0.127 0.729 5.726

23 0.334 1.810 -1.204 0.016 0.140 0.266 1.398

24 0.542 1.775 -0.959 0.673 0.031 0.509 3.049
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Table 2.15: The estimated parameters of the euro area WSN distribution (ρ = 0.75)

h α β σ se(α) se(β) se(σ) Distance

1 -1.711 -1.779 0.362 0.353 0.566 0.104 4.124

2 -1.393 -0.674 0.619 0.357 0.108 0.094 8.297

3 -1.666 -0.632 0.682 0.209 0.479 0.107 8.677

4 -2.240 -1.784 0.582 0.506 0.583 0.211 10.511

5 -2.577 -0.531 0.898 0.561 0.343 0.219 15.702

6 -3.630 -2.824 0.671 0.159 0.176 0.072 13.538

7 -3.712 -2.819 0.731 0.910 0.194 0.262 7.505

8 -3.396 -2.477 0.915 0.114 0.748 0.167 8.838

9 -3.577 -0.468 1.534 0.327 0.467 0.276 33.642

10 0.000 -2.536 2.368 0.000 1.089 0.392 29.984

11 -0.001 -2.600 2.395 0.003 1.391 0.478 33.260

12 -3.920 -3.362 1.259 0.758 0.005 0.591 14.295

13 -3.999 -2.402 1.403 0.002 0.513 0.138 29.535

14 -3.997 -2.422 1.633 0.011 0.438 0.419 37.545

15 -3.924 -0.363 1.804 0.240 0.135 0.122 32.202

16 -0.005 -2.242 2.573 0.017 1.007 0.029 47.987

17 -3.122 -0.302 1.782 0.753 0.058 0.052 35.742

18 -3.339 -2.740 1.519 0.068 0.571 0.230 44.232

19 -2.833 -3.843 1.646 0.356 0.498 0.377 49.468

20 -2.617 -0.383 2.161 0.180 0.200 0.265 52.892

21 -2.466 -0.381 2.191 0.209 0.194 0.170 53.796

22 -1.242 -0.174 2.971 0.625 0.460 0.280 54.737

23 -2.110 -0.174 2.005 0.095 0.044 0.254 18.471

24 -1.196 -0.270 2.845 0.242 0.157 0.118 21.635

Table 2.16: The estimated parameters of the euro area WSN distribution (ρ decaying

exponentially)

h α β σ se(α) se(β) se(σ) Distance

1 -1.711 -1.779 0.362 0.353 0.566 0.104 4.124

2 -1.019 -0.270 0.537 1.198 0.159 0.351 7.906

3 -1.310 -0.081 0.562 1.106 0.250 0.272 8.560

4 -1.701 -0.473 0.613 0.319 0.484 0.112 8.655

5 -2.441 -0.035 0.730 1.389 0.112 0.259 16.172

6 -3.607 -2.720 0.557 1.288 1.013 0.291 13.557

7 -3.877 -2.855 0.583 0.624 0.933 0.206 7.453

8 -3.665 -2.587 0.716 1.059 0.084 0.214 8.767

9 -1.847 -2.738 0.874 0.781 1.069 0.295 32.560

10 -1.874 -2.807 0.959 0.146 0.275 0.028 38.249

11 -3.592 -0.018 1.464 0.277 0.057 0.055 36.263

12 -3.190 -0.215 1.471 0.537 0.174 0.077 22.704

13 -3.883 -0.035 1.420 0.136 0.112 0.084 32.817

14 -3.800 -0.011 1.574 0.631 0.035 0.403 37.003

15 -3.977 -0.007 1.510 0.434 0.024 0.201 35.622

16 -3.696 -0.009 1.606 0.556 0.029 0.505 50.812

17 -3.015 -0.009 1.479 0.586 0.029 0.102 39.693

18 -3.194 -0.001 1.735 0.488 0.002 0.097 46.176

19 -2.703 -0.013 1.781 0.957 0.040 0.048 50.807

20 -2.189 -0.004 1.817 0.161 0.012 0.161 55.351

21 -1.888 -0.005 1.906 0.102 0.017 0.443 56.032

22 -1.164 -0.003 2.294 0.368 0.009 0.157 58.366

23 -1.781 -0.001 1.731 0.066 0.002 0.109 21.862

24 -0.956 -0.007 2.282 0.012 0.021 0.119 24.855
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Table 2.17: The estimated parameters of the euro area TPN distribution

h σ1 σ2 µ se(σ1) se(σ2) se(µ) Distance

1 3.978 0.938 -3.722 0.435 0.094 0.879 13.664

2 3.995 0.672 -2.521 0.016 0.075 0.382 11.391

3 0.878 3.982 3.925 0.284 0.057 0.238 12.053

4 0.788 0.654 -0.037 0.568 0.486 0.622 12.447

5 0.556 3.813 -0.537 0.214 0.086 0.831 38.173

6 0.563 2.759 -1.119 0.269 1.122 2.021 39.192

7 1.775 1.130 0.056 0.535 0.496 0.682 41.988

8 0.073 3.990 -4.000 0.178 0.027 0.000 17.248

9 1.371 3.638 -0.760 0.772 1.378 3.161 28.764

10 1.646 3.834 -0.364 0.631 0.021 2.391 28.387

11 1.581 3.973 -0.639 0.585 0.084 0.503 30.421

12 1.607 1.831 -0.319 1.512 0.713 1.514 39.968

13 1.937 3.912 0.327 0.468 0.280 1.496 31.465

14 2.032 3.732 -0.270 0.337 0.343 1.675 41.709

15 1.890 1.655 -0.292 1.120 0.155 0.418 55.842

16 1.607 3.981 -0.963 0.503 0.445 1.527 40.106

17 1.286 3.992 -1.918 0.503 0.024 1.526 53.318

18 1.067 3.989 -1.179 0.313 0.035 0.825 55.714

19 2.413 2.532 -0.846 1.485 0.911 1.156 58.693

20 2.180 2.316 -0.902 0.807 0.226 0.688 58.963

21 2.271 2.302 -0.950 0.084 0.827 0.538 55.974

22 0.086 4.000 -4.000 0.214 0.000 0.000 17.927

23 2.192 2.011 -0.925 0.166 0.737 0.618 17.931

24 1.843 2.601 -1.381 0.748 0.891 1.199 18.385

2.8.6 The Cramér-von Mises test results

Let X1, · · · , Xn be iid samples from unknown density F . Then whether this empirical

density comes from the hypothesized density, F0, can be tested.

H0: F = F0 vs. HA: F 6= F0

Under H0, the Glivenko-Cantelli theorem is satisfied.

sup
t

|F̂n(t)− F0(t)| → 0

as n → ∞. Thus, discrepancy measures can be used as a test statistics. The Cramér-

von Mises test statistic is

Cn ≡
∫
(F̂n(t)− F0(t))

2dF0(t)
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Table 2.18: Cramer-von Mises test statistics

UK Euro

Horizon WSN1 WSN2 TPN WSN1 WSN2 TPN

1 0.185 0.185 0.333 0.164 0.164 0.333

2 0.190 0.190 0.333 0.146 0.147 0.333

3 0.202 0.202 0.194 0.135 0.135 0.333

4 0.202 0.201 0.201 0.148 0.145 0.145

5 0.199 0.201 0.198 0.145 0.144 0.188

6 0.201 0.203 0.198 0.145 0.144 0.127

7 0.206 0.208 0.203 0.148 0.148 0.133

8 0.210 0.211 0.210 0.158 0.158 0.133

9 0.216 0.217 0.211 0.139 0.152 0.142

10 0.218 0.219 0.219 0.159 0.156 0.157

11 0.227 0.228 0.228 0.163 0.144 0.155

12 0.226 0.227 0.223 0.149 0.151 0.158

13 0.245 0.246 0.243 0.154 0.154 0.184

14 0.251 0.254 0.326 0.151 0.152 0.162

15 0.262 0.263 0.326 0.148 0.148 0.157

16 0.270 0.269 0.270 0.178 0.148 0.158

17 0.269 0.268 0.263 0.154 0.156 0.144

18 0.265 0.266 0.331 0.153 0.143 0.177

19 0.267 0.268 0.270 0.150 0.145 0.142

20 0.269 0.271 0.276 0.151 0.153 0.152

21 0.276 0.273 0.279 0.149 0.151 0.148

22 0.276 0.276 0.281 0.151 0.155 0.150

23 0.275 0.276 0.280 0.172 0.175 0.168

24 0.274 0.274 0.278 0.165 0.166 0.166

Notes: WSN1 denotes the computed statistics assuming ρ = 0.75. WSN2 denotes the computed

statistics assuming ρ decaying exponentially.
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2.8.7 Copula functions

The discussions in this section are based on Durrelman, Nikeghbali and Roncalli (2000).

Gaussian copula

C(y1, y2; ρ) =

∫ Φ−1(y1)

−∞

∫ Φ−1(y2)

−∞

1

2π(1− ρ2)1/2
exp

{−(s2 − 2ρst+ t2)

2(1− ρ2)

}
dsdt

Where −1 < ρ < 1 and Φ is the univariate standard normal distribution function. Two

Gaussian marginal variables with Gaussian copula dependence structure, CGa
ρ (Φ(y1),Φ(y2))

is standard bivariate normal density with correlation coefficient ρ. The copula density

is given by

c(y1, y2; ρ) : =
∂2

∂y1∂y2

=
1√

1− ρ2
exp

{
2ρΦ−1(y1)Φ

−1(y2)− ρ2(Φ−1(y1)
2 +Φ−1(y2)

2)

2(1− ρ2)

}

Archimedean copulas

A copula C is Archimedean if there exists a convex, decreasing function ϕ(·) : (0,
1] → [0, ∞) such that

C(y1, y2) = ϕ−1(ϕ(y1) + ϕ(y2))

where ϕ(·) is copula generator and ϕ(1) = 0. (Archimedean: Gumbel, Frank, Clayton)

Frank copula

The Frank copula is a symmetric Archimedean copula given by:

C(y1, y2; θ) = −1

θ
ln

(
1 +

(e−θy1 − 1)(e−θy2 − 1)

e−θ − 1

)

The generator for Frank copula is

φθ(t) = − ln

(
e−θt − 1

e−θ − 1

)

The pdf of Frank copula is

c(y1, y2; θ) =
−θ(e−θ − 1)e−θ(y1+y2)

((e−θy1 − 1)(e−θy2 − 1) + (eθ − 1))2

Gumbel copula

The Gumbel copula is an asymmetric Archimedean copula, exhibiting greater de-

pendence in the positive tail than in the negative.

C(y1, y2; θ) = exp

[
−
{
(− log y1)

1/θ + (− log y2)
1/θ

}θ]
(2.21)
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where θ is a dependent parameter, such that 0 < θ ≤ 1. For θ = 1, the Gumbel

copula tends to independece case, i.e. product copula, while θ → ∞, it tends to be

comonotonic. The generator for Gumbel copula is

φθ(t) = (− ln t)θ

The density of Gumbel copula is

c(y1, y2; θ) = C(y1, y2; θ)

where ỹ1 = − ln y1.

Clayton copula

The Clayton copula is an asymmetric Archimedean copula, exhibiting greater de-

pendence in the negative tail than in the positive. The Clayton copula can be written

as

C(y1, y2; θ) = max

{
(y−θ

1 + y−θ
2 − 1)−1/θ, 0

}
(2.22)

where θ ∈ (0,∞). As θ approaches to zero, it tends to be independent copula, whereas

if θ → ∞, it tends to Frechet-Hoeffding upper bound, i.e. perfect negative dependence.

The generator for Clayton copula is

φθ(t) =
1

θ
(t−θ − 1)

The pdf of Clayton copula is

c(y1, y2; θ) = (1 + θ)(y1y2)
−1−θ(y−θ

1 + y−θ
2 − 1)−2−1/θ (2.23)
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2.8.8 The estimation results of Frank copula assuming ρ is constant

Table 2.19: Frank copula parameter and rank correlation coefficients

Horizon γ se(γ) CvM Kendall Spearman

1 1.886 0.783 0.091 0.203 0.300

2 1.024 0.785 0.090 0.113 0.168

3 0.830 0.754 0.087 0.092 0.137

4 1.640 0.794 0.138 0.178 0.264

5 1.995 0.839 0.214 0.213 0.316

6 1.939 0.835 0.211 0.208 0.308

7 1.401 0.828 0.154 0.153 0.228

8 1.594 0.853 0.202 0.173 0.257

9 1.449 0.858 0.329 0.158 0.235

10 1.614 0.868 2.060 0.175 0.260

11 1.732 0.829 2.374 0.187 0.278

12 2.632 0.901 0.326 0.274 0.403

13 2.441 0.862 0.358 0.257 0.378

14 2.624 0.872 0.487 0.274 0.402

15 2.355 0.829 0.242 0.248 0.366

16 2.025 0.764 2.936 0.216 0.320

17 2.769 0.819 0.238 0.287 0.420

18 2.915 0.834 1.279 0.300 0.438

19 2.773 0.857 1.210 0.287 0.421

20 3.341 0.873 0.354 0.336 0.488

21 3.197 0.861 0.325 0.324 0.472

22 3.566 0.899 0.261 0.355 0.513

23 3.578 0.876 0.183 0.356 0.514

24 3.708 0.906 0.218 0.366 0.528
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2.8.9 The rank correlation coefficients between the UK and the euro

inflation uncertainty across all different horizons

Table 2.20: Kendall’s τ correlation coefficients

UK/Euro 1 2 3 4 5 6 7 8

1 0.199 0.170 0.119 0.197 0.214 0.218 0.180 0.215

2 0.151 0.093 0.121 0.191 0.234 0.232 0.226 0.236

3 0.084 0.028 0.096 0.184 0.228 0.249 0.246 0.258

4 0.031 -0.043 0.014 0.159 0.202 0.214 0.211 0.232

5 -0.013 -0.086 -0.052 0.069 0.154 0.184 0.168 0.208

6 -0.034 -0.104 -0.070 0.028 0.085 0.151 0.152 0.183

7 -0.081 -0.143 -0.131 -0.038 0.011 0.058 0.111 0.153

8 -0.101 -0.182 -0.171 -0.092 -0.050 -0.002 0.038 0.121

9 -0.094 -0.201 -0.188 -0.139 -0.098 -0.080 -0.037 0.038

10 -0.097 -0.210 -0.226 -0.173 -0.150 -0.127 -0.108 -0.029

11 -0.063 -0.179 -0.199 -0.177 -0.157 -0.149 -0.119 -0.059

12 -0.100 -0.185 -0.197 -0.174 -0.153 -0.154 -0.146 -0.078

13 -0.063 -0.167 -0.179 -0.151 -0.135 -0.149 -0.155 -0.100

14 -0.100 -0.163 -0.199 -0.150 -0.129 -0.140 -0.155 -0.108

15 -0.073 -0.166 -0.205 -0.180 -0.124 -0.134 -0.153 -0.117

16 -0.090 -0.159 -0.201 -0.190 -0.147 -0.136 -0.156 -0.126

17 -0.074 -0.157 -0.204 -0.177 -0.166 -0.164 -0.167 -0.139

18 -0.070 -0.146 -0.200 -0.156 -0.146 -0.165 -0.171 -0.133

19 -0.050 -0.116 -0.167 -0.136 -0.115 -0.130 -0.161 -0.125

20 -0.054 -0.100 -0.126 -0.099 -0.077 -0.085 -0.118 -0.102

21 -0.051 -0.091 -0.115 -0.042 -0.044 -0.051 -0.076 -0.063

22 -0.028 -0.063 -0.067 0.000 0.013 -0.004 -0.025 -0.003

23 -0.069 -0.088 -0.091 0.007 0.044 0.034 -0.002 0.027

24 -0.071 -0.079 -0.081 0.027 0.057 0.061 0.031 0.048

Notes: The top row of the table shows forecast horizons of the euro area inflation uncertainty and the

first column shows forecast horizons of the UK inflation uncertainty. Table 2.19 is continued to the

next page so that the euro area forecast horizon ranges from 1 to 24.
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[Table continued]

UK/Euro 9 10 11 12 13 14 15 16

1 0.176 0.173 0.189 0.223 0.164 0.162 0.129 0.116

2 0.232 0.208 0.226 0.261 0.244 0.204 0.176 0.154

3 0.246 0.243 0.227 0.259 0.251 0.225 0.174 0.173

4 0.235 0.255 0.239 0.259 0.268 0.250 0.216 0.184

5 0.213 0.255 0.266 0.261 0.269 0.273 0.237 0.222

6 0.206 0.243 0.286 0.282 0.296 0.303 0.266 0.243

7 0.180 0.251 0.293 0.307 0.317 0.322 0.287 0.267

8 0.153 0.217 0.283 0.301 0.321 0.326 0.302 0.290

9 0.104 0.180 0.250 0.298 0.306 0.321 0.304 0.302

10 0.022 0.131 0.209 0.256 0.300 0.306 0.293 0.305

11 -0.014 0.071 0.184 0.239 0.279 0.307 0.275 0.295

12 -0.036 0.042 0.130 0.213 0.257 0.281 0.271 0.289

13 -0.069 0.002 0.102 0.165 0.232 0.265 0.248 0.288

14 -0.085 -0.013 0.079 0.148 0.199 0.251 0.236 0.270

15 -0.090 -0.044 0.048 0.118 0.167 0.205 0.220 0.259

16 -0.115 -0.058 0.020 0.088 0.144 0.180 0.183 0.243

17 -0.140 -0.095 -0.012 0.049 0.100 0.136 0.147 0.206

18 -0.132 -0.101 -0.021 0.043 0.087 0.126 0.139 0.203

19 -0.113 -0.087 -0.028 0.019 0.077 0.105 0.107 0.174

20 -0.118 -0.076 -0.044 0.000 0.039 0.077 0.072 0.123

21 -0.093 -0.088 -0.046 -0.014 0.017 0.038 0.029 0.080

22 -0.041 -0.034 -0.010 0.014 0.038 0.056 0.027 0.062

23 0.008 0.001 0.024 0.050 0.063 0.077 0.059 0.073

24 0.025 0.029 0.037 0.055 0.071 0.086 0.052 0.076

[Table continued]

UK/Euro 17 18 19 20 21 22 23 24

1 0.143 0.110 0.130 0.101 0.126 0.127 0.122 0.098

2 0.160 0.148 0.136 0.144 0.128 0.155 0.149 0.129

3 0.148 0.138 0.138 0.134 0.131 0.145 0.158 0.141

4 0.175 0.159 0.160 0.151 0.141 0.147 0.149 0.134

5 0.176 0.164 0.170 0.167 0.152 0.145 0.151 0.129

6 0.214 0.166 0.173 0.170 0.153 0.147 0.144 0.118

7 0.233 0.196 0.176 0.176 0.165 0.152 0.158 0.130

8 0.264 0.222 0.212 0.192 0.169 0.163 0.167 0.148

9 0.288 0.260 0.242 0.226 0.186 0.179 0.183 0.162

10 0.299 0.270 0.263 0.250 0.210 0.191 0.187 0.175

11 0.306 0.286 0.273 0.272 0.232 0.220 0.201 0.188

12 0.299 0.286 0.290 0.278 0.240 0.236 0.223 0.198

13 0.294 0.288 0.307 0.305 0.269 0.267 0.255 0.232

14 0.295 0.282 0.301 0.324 0.293 0.300 0.289 0.270

15 0.283 0.285 0.300 0.331 0.307 0.316 0.319 0.303

16 0.276 0.275 0.294 0.322 0.305 0.321 0.330 0.322

17 0.266 0.271 0.289 0.313 0.309 0.338 0.349 0.341

18 0.247 0.282 0.301 0.318 0.312 0.345 0.364 0.362

19 0.215 0.234 0.300 0.323 0.308 0.338 0.370 0.369

20 0.169 0.187 0.229 0.300 0.286 0.318 0.354 0.356

21 0.131 0.149 0.188 0.236 0.258 0.288 0.320 0.328

22 0.105 0.133 0.167 0.212 0.218 0.276 0.308 0.311

23 0.099 0.122 0.158 0.201 0.206 0.251 0.315 0.311

24 0.073 0.087 0.122 0.163 0.175 0.219 0.262 0.298
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Table 2.21: Spearman’s ρ correlation coefficients

UK/Euro 1 2 3 4 5 6 7 8

1 0.289 0.250 0.180 0.289 0.312 0.316 0.270 0.312

2 0.216 0.136 0.173 0.279 0.339 0.341 0.332 0.343

3 0.119 0.044 0.132 0.282 0.334 0.358 0.346 0.369

4 0.043 -0.066 0.012 0.234 0.289 0.312 0.297 0.337

5 -0.020 -0.123 -0.083 0.110 0.227 0.266 0.241 0.294

6 -0.042 -0.153 -0.104 0.048 0.138 0.225 0.220 0.262

7 -0.117 -0.211 -0.184 -0.049 0.031 0.100 0.165 0.220

8 -0.140 -0.261 -0.244 -0.125 -0.058 0.010 0.058 0.169

9 -0.135 -0.289 -0.271 -0.190 -0.133 -0.096 -0.040 0.060

10 -0.150 -0.305 -0.322 -0.245 -0.205 -0.160 -0.135 -0.029

11 -0.100 -0.262 -0.292 -0.253 -0.218 -0.197 -0.161 -0.073

12 -0.146 -0.273 -0.286 -0.254 -0.219 -0.206 -0.193 -0.098

13 -0.098 -0.247 -0.263 -0.223 -0.196 -0.207 -0.210 -0.138

14 -0.143 -0.238 -0.291 -0.226 -0.190 -0.204 -0.222 -0.156

15 -0.110 -0.235 -0.293 -0.259 -0.194 -0.198 -0.223 -0.173

16 -0.137 -0.228 -0.286 -0.276 -0.223 -0.205 -0.231 -0.184

17 -0.110 -0.225 -0.287 -0.253 -0.249 -0.238 -0.237 -0.198

18 -0.105 -0.209 -0.286 -0.230 -0.213 -0.234 -0.248 -0.179

19 -0.069 -0.163 -0.239 -0.200 -0.176 -0.190 -0.231 -0.183

20 -0.081 -0.150 -0.190 -0.150 -0.125 -0.132 -0.177 -0.145

21 -0.077 -0.132 -0.179 -0.072 -0.076 -0.083 -0.120 -0.096

22 -0.046 -0.095 -0.106 -0.009 0.016 -0.005 -0.036 -0.011

23 -0.103 -0.128 -0.134 0.009 0.044 0.047 -0.007 0.036

24 -0.099 -0.111 -0.117 0.037 0.078 0.082 0.046 0.067

Notes: The top row of the table shows forecast horizons of the euro area inflation uncertainty and the

first column shows forecast horizons of the UK inflation uncertainty. Table 2.20 is continued to cover

all of the forecast horizons (h = 1, · · · , 24) for the UK and the euro area.
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[Table continued]

UK/Euro 9 10 11 12 13 14 15 16

1 0.258 0.247 0.270 0.315 0.234 0.230 0.177 0.169

2 0.335 0.301 0.311 0.358 0.332 0.279 0.247 0.214

3 0.348 0.348 0.318 0.361 0.351 0.313 0.249 0.245

4 0.331 0.359 0.341 0.366 0.378 0.348 0.302 0.263

5 0.299 0.353 0.371 0.376 0.383 0.384 0.331 0.312

6 0.292 0.338 0.390 0.390 0.414 0.418 0.364 0.343

7 0.253 0.340 0.394 0.422 0.436 0.450 0.399 0.379

8 0.214 0.293 0.375 0.411 0.439 0.448 0.429 0.414

9 0.147 0.249 0.331 0.404 0.416 0.435 0.421 0.428

10 0.041 0.186 0.289 0.354 0.408 0.418 0.405 0.430

11 -0.004 0.111 0.262 0.333 0.379 0.417 0.385 0.413

12 -0.043 0.069 0.185 0.298 0.354 0.384 0.374 0.402

13 -0.090 0.013 0.139 0.232 0.326 0.367 0.344 0.402

14 -0.124 -0.016 0.109 0.203 0.280 0.351 0.334 0.377

15 -0.136 -0.055 0.065 0.165 0.236 0.293 0.312 0.369

16 -0.163 -0.078 0.021 0.121 0.199 0.258 0.262 0.348

17 -0.195 -0.122 -0.016 0.074 0.145 0.202 0.223 0.299

18 -0.177 -0.121 -0.025 0.071 0.129 0.185 0.208 0.291

19 -0.154 -0.109 -0.039 0.034 0.112 0.156 0.163 0.254

20 -0.160 -0.092 -0.049 0.011 0.066 0.123 0.120 0.192

21 -0.128 -0.106 -0.047 -0.007 0.031 0.067 0.063 0.131

22 -0.057 -0.041 -0.010 0.026 0.056 0.087 0.059 0.113

23 0.012 0.013 0.036 0.078 0.100 0.116 0.105 0.127

24 0.036 0.049 0.062 0.088 0.117 0.138 0.094 0.128

[Table continued]

UK/Euro 17 18 19 20 21 22 23 24

1 0.193 0.144 0.184 0.145 0.182 0.173 0.170 0.139

2 0.215 0.202 0.186 0.200 0.186 0.218 0.209 0.182

3 0.207 0.198 0.198 0.187 0.193 0.204 0.226 0.194

4 0.247 0.226 0.230 0.227 0.208 0.213 0.219 0.197

5 0.254 0.236 0.247 0.246 0.225 0.218 0.225 0.195

6 0.304 0.236 0.251 0.256 0.225 0.226 0.222 0.187

7 0.341 0.281 0.262 0.268 0.244 0.243 0.246 0.203

8 0.380 0.323 0.311 0.289 0.259 0.260 0.261 0.232

9 0.407 0.365 0.349 0.337 0.279 0.277 0.283 0.252

10 0.430 0.387 0.384 0.366 0.315 0.295 0.295 0.275

11 0.435 0.403 0.394 0.394 0.339 0.325 0.305 0.283

12 0.424 0.403 0.412 0.404 0.353 0.342 0.332 0.299

13 0.415 0.407 0.429 0.436 0.384 0.384 0.375 0.342

14 0.418 0.398 0.431 0.457 0.410 0.417 0.417 0.387

15 0.405 0.403 0.432 0.474 0.430 0.439 0.454 0.428

16 0.392 0.385 0.427 0.466 0.439 0.455 0.472 0.461

17 0.382 0.382 0.411 0.458 0.440 0.475 0.492 0.484

18 0.355 0.388 0.417 0.451 0.447 0.487 0.520 0.513

19 0.315 0.336 0.413 0.450 0.427 0.476 0.508 0.515

20 0.263 0.277 0.332 0.423 0.401 0.445 0.492 0.492

21 0.206 0.223 0.273 0.344 0.364 0.410 0.445 0.457

22 0.170 0.201 0.241 0.309 0.316 0.394 0.432 0.432

23 0.167 0.189 0.230 0.296 0.302 0.360 0.440 0.434

24 0.135 0.150 0.196 0.253 0.259 0.321 0.379 0.418
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2.8.10 The estimation results of Frank copula with matching horizons

Table 2.22: The estimates of Frank copula parameters: matching the same horizons

Constant ρ Decaying ρ

hUK hEU γ se(γ) Kendall Spearman γ se(γ) Kendall Spearman

1 1 1.886 0.783 0.203 0.300 1.886 0.783 0.203 0.300

2 2 1.024 0.785 0.113 0.168 1.022 0.784 0.112 0.168

3 3 0.830 0.754 0.092 0.137 0.823 0.751 0.091 0.136

4 4 1.640 0.794 0.178 0.264 1.783 0.800 0.192 0.285

5 5 1.995 0.839 0.213 0.316 1.984 0.837 0.212 0.315

6 6 1.939 0.835 0.208 0.308 1.878 0.830 0.202 0.299

7 7 1.401 0.828 0.153 0.228 1.341 0.820 0.146 0.218

8 8 1.594 0.853 0.173 0.257 1.539 0.848 0.167 0.249

9 9 1.449 0.858 0.158 0.235 1.273 0.830 0.139 0.208

10 10 1.614 0.868 0.175 0.260 1.684 0.858 0.182 0.271

11 11 1.732 0.829 0.187 0.278 2.167 0.874 0.230 0.340

12 12 2.632 0.901 0.274 0.403 2.307 0.876 0.244 0.360

13 13 2.441 0.862 0.257 0.378 2.297 0.838 0.243 0.358

14 14 2.624 0.872 0.274 0.402 2.552 0.849 0.267 0.392

15 15 2.355 0.829 0.248 0.366 2.401 0.833 0.253 0.372

16 16 2.025 0.764 0.216 0.320 2.713 0.841 0.282 0.413

17 17 2.769 0.819 0.287 0.420 2.777 0.819 0.287 0.421

18 18 2.915 0.834 0.300 0.438 3.017 0.856 0.309 0.451

19 19 2.773 0.857 0.287 0.421 3.252 0.860 0.329 0.478

20 20 3.341 0.873 0.336 0.488 3.354 0.868 0.337 0.490

21 21 3.197 0.861 0.324 0.472 3.326 0.873 0.335 0.487

22 22 3.566 0.899 0.355 0.513 3.665 0.893 0.362 0.523

23 23 3.578 0.876 0.356 0.514 3.654 0.872 0.362 0.522

24 24 3.708 0.906 0.366 0.528 3.784 0.913 0.372 0.536
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Table 2.23: The estimates of Frank copula parameters: matching the horizons with

highest Kendall’s τ

Constant ρ Decaying ρ

hUK hEU γ se(γ) Kendall Spearman γ se(γ) Kendall Spearman

1 12 2.429 0.889 0.255 0.376 2.285 0.867 0.242 0.357

2 12 2.885 0.887 0.297 0.435 2.715 0.872 0.282 0.413

3 12 2.921 0.862 0.300 0.439 2.678 0.835 0.279 0.409

4 13 2.924 0.878 0.301 0.439 2.975 0.859 0.305 0.446

5 14 3.154 0.912 0.321 0.467 3.147 0.883 0.320 0.466

6 14 3.510 0.904 0.350 0.507 3.452 0.874 0.345 0.501

7 14 3.647 0.900 0.361 0.522 3.782 0.884 0.372 0.536

8 14 3.864 0.919 0.378 0.544 4.052 0.902 0.392 0.562

9 14 3.988 0.931 0.387 0.556 4.003 0.903 0.388 0.557

10 14 4.040 0.948 0.391 0.561 4.002 0.924 0.388 0.557

11 14 3.700 0.926 0.365 0.527 3.695 0.910 0.365 0.527

12 17 3.709 0.889 0.366 0.528 3.704 0.887 0.366 0.528

13 19 2.878 0.851 0.297 0.434 3.381 0.863 0.340 0.493

14 20 3.493 0.863 0.349 0.505 3.487 0.857 0.348 0.504

15 20 3.589 0.859 0.356 0.515 3.581 0.857 0.356 0.515

16 23 3.544 0.834 0.353 0.511 3.530 0.836 0.352 0.509

17 23 3.771 0.853 0.371 0.534 3.783 0.857 0.372 0.536

18 23 4.000 0.871 0.388 0.557 4.090 0.880 0.395 0.566

19 23 4.035 0.893 0.391 0.561 4.082 0.894 0.394 0.565

20 24 4.126 0.931 0.397 0.569 4.181 0.933 0.401 0.574

21 24 3.820 0.894 0.375 0.539 4.033 0.922 0.391 0.560

22 24 3.768 0.913 0.371 0.534 3.858 0.908 0.377 0.543

23 23 3.578 0.876 0.356 0.514 3.654 0.872 0.362 0.522

24 24 3.708 0.906 0.366 0.528 3.784 0.913 0.372 0.536
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2.8.11 The unconditional and conditional probability of the UK in-

flation in two different cases

Table 2.24: The probabilities of the UK inflation below 1%

Decaying ρ Constant ρ

hUK ProbI ProbII ProbIII hEU ProbI ProbII ProbIII hEU

1 0.470 0.487 0.490 12 0.470 0.487 0.492 12

2 0.457 0.474 0.500 12 0.457 0.475 0.503 12

3 0.454 0.480 0.523 12 0.455 0.471 0.511 12

4 0.424 0.493 0.526 13 0.424 0.486 0.522 13

5 0.419 0.496 0.524 14 0.418 0.497 0.525 14

6 0.422 0.494 0.534 14 0.423 0.496 0.534 14

7 0.416 0.471 0.534 14 0.416 0.473 0.534 14

8 0.402 0.457 0.509 14 0.404 0.461 0.509 14

9 0.422 0.463 0.520 14 0.422 0.469 0.502 14

10 0.412 0.465 0.513 14 0.412 0.453 0.526 14

11 0.424 0.481 0.498 14 0.418 0.462 0.523 14

12 0.415 0.452 0.449 17 0.413 0.463 0.475 17

13 0.440 0.491 0.498 19 0.438 0.499 0.507 19

14 0.449 0.492 0.495 20 0.439 0.500 0.518 20

15 0.455 0.483 0.480 20 0.455 0.473 0.463 20

16 0.458 0.474 0.468 23 0.461 0.492 0.531 23

17 0.449 0.449 0.432 23 0.450 0.454 0.436 23

18 0.446 0.413 0.388 23 0.441 0.433 0.425 23

19 0.447 0.412 0.393 23 0.446 0.469 0.479 23

20 0.443 0.398 0.377 24 0.440 0.407 0.388 24

21 0.456 0.406 0.388 24 0.462 0.393 0.373 24

22 0.444 0.389 0.385 24 0.452 0.434 0.431 24

23 0.435 0.345 0.345 23 0.440 0.380 0.380 23

24 0.418 0.348 0.348 24 0.415 0.336 0.336 24

Notes: ProbI denotes unconditional probability, ProbII conditional probability with same horizons

matched between the UK and euro area, and ProbIII conditional probability with different horizons

matched that yield the highest rank correlation. hEU denotes the matching horizons for euro area.
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Table 2.25: The probabilities of the UK inflation between [1%, 3%]

Decaying ρ Constant ρ

hUK ProbI ProbII ProbIII hEU ProbI ProbII ProbIII hEU

1 0.520 0.520 0.520 12 0.520 0.520 0.520 12

2 0.513 0.513 0.514 12 0.512 0.513 0.514 12

3 0.490 0.492 0.494 12 0.489 0.491 0.494 12

4 0.512 0.519 0.523 13 0.516 0.525 0.530 13

5 0.496 0.507 0.512 14 0.496 0.506 0.511 14

6 0.487 0.509 0.524 14 0.481 0.505 0.520 14

7 0.483 0.502 0.527 14 0.482 0.501 0.525 14

8 0.471 0.496 0.526 14 0.468 0.494 0.522 14

9 0.444 0.467 0.502 14 0.441 0.454 0.474 14

10 0.438 0.471 0.504 14 0.435 0.503 0.578 14

11 0.414 0.445 0.460 14 0.422 0.510 0.560 14

12 0.386 0.416 0.428 17 0.385 0.432 0.452 17

13 0.381 0.415 0.426 19 0.382 0.434 0.444 19

14 0.352 0.399 0.410 20 0.366 0.438 0.458 20

15 0.330 0.373 0.387 20 0.319 0.357 0.369 20

16 0.311 0.363 0.373 23 0.298 0.416 0.444 23

17 0.311 0.357 0.367 23 0.319 0.361 0.370 23

18 0.266 0.318 0.329 23 0.263 0.329 0.343 23

19 0.273 0.329 0.337 23 0.296 0.379 0.391 23

20 0.265 0.323 0.331 24 0.287 0.342 0.349 24

21 0.249 0.304 0.311 24 0.235 0.280 0.284 24

22 0.241 0.305 0.307 24 0.279 0.346 0.347 24

23 0.228 0.283 0.283 23 0.269 0.322 0.322 23

24 0.239 0.304 0.304 24 0.237 0.295 0.295 24

Notes: ProbI denotes unconditional probability, ProbII conditional probability with same horizons

matched between the UK and euro area, and ProbIII conditional probability with different horizons

matched that yield the highest rank correlation. hEU denotes the matching horizons for the euro area.
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Chapter 3

The Uncertainty and Capital

Flows: Evidence of Spillover

Effect

Abstract

This chapter examines the long run relationship between gross capital flow and its

determinants, focusing on the impact of uncertainty as global and contagion factors.

We apply bounds testing approach by Pesaran, Shin, and Smith (2001) allowing for

the underlying regressors being either I(0), I(1) or mutually cointegrated. Both gross

capital inflows and outflows exhibit significant level relationship with global, contagion

and domestic factors and uncertainty spillovers through financial linkages between the

UK and the euro area play crucial role in predicting capital flows of the UK.

3.1 Introduction

A seminal paper by Bloom (2009) has provoked burgeoning literature on uncer-

tainty and its effects on real activities in closed economy models. Literature explores

the issues of measurement, countercyclicality and theoretical mechanisms behind un-

certainty shocks (see, among others, Baker, Bloom and Davis, 2015; Jurado, Ludvigson

and Ng, 2015; Clements, 2014; Gilchrist, Sim, and Zakraǰsek, 2014). At the same time,

a large number of attempts to explain the uncertainty effect on financial markets have

been made.1 However, until most recently, the study of uncertainty in the open econ-

omy setting has been strikingly underdeveloped relative to the importance of the role

of uncertainty in the dynamics of cross-border capital flows.

1See Appendix 3.6.1. for related literature.
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Most of existing studies of uncertainty and capital flows mainly focused on setting

up theoretical models of portfolio capital flows, some of which built on the general

equilibrium model of international portfolio allocations.2 However, they mostly failed

to adopt elaborate notions of uncertainty that has recently developed. Theoretical

papers overlooked the substantial differences among the various concepts of risk and

uncertainty. Moreover, empirical papers largely relied on financial volatility measures

as a proxy for uncertainty, which may not reflect precise concept of uncertainty per se.3

The recent development in measuring different types of uncertainty may shed lights

on examining the uncertainty effect on capital flows. Such measures include Economic

Policy Uncertainty (EPU) index by Baker, Bloom and Davis (2015), macroeconomic

uncertainty by Jurado, Ludvigson and Ng (2015), professional forecasters’ disagreement

measures by Clements (2014), inter alia.4 Among many, this chapter pay attention to

a novel uncertainty measure, Geopolitical Risk (GPR) index by Caldara and Iacoviello

(2016).

The econometric models using GPR index have a potential to identify the causal

relationship between the geopolitical uncertainty and cross-border capital flows. GPR

index is a news-based index that captures worldwide geopolitical tensions and threats.

Caldara and Iacoviello found empirical evidence of economic links between GPR index

and financial markets (and cross-border flows). That is, an increase in GPR index is

associated with an increase in financial market volatility and has adverse effects on

global economic activities and cross-border capital flows. In addition, the index is

relatively less disturbed by endogeniety problem because it measures the episodes of

geopolitical tensions which cannot be predicted directly by macroeconomic conditions

contemporaneously.

This study is also related to the traditional literature on capital flows. Literature

on push-pull factors of capital flows often distinguishes external (push) and domestic

(pull) factors of capital flows. For emerging countries, the influence from monetary

and fiscal policies of advanced economies has considered as important sources of push

factors. In addition, the divergence in macroeconomic fundamentals between emerg-

ing and advanced countries (i.e. domestic pull factors) are crucial drivers of capital

flows. Among recent development in the literature, Forbes and Warnock (2012a) made

a clear distinction between global and contagion factors among external (or push) fac-

tors. Global factors are external determinants that have universal effect on capital

flows worldwide and contagion factors are defined over certain regions connected via

2See Appendix 3.6.1. for related literature.

3See Chapter 1 of this thesis for the discussions about the difference between risk and uncertainty.

Makarova (2014) also discussed extensively about the different notions of uncertainty and related con-

cepts.

4In general, different measures capture different aspects of uncertainty and the implications of

empirical results might vary across the measures.
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bilateral relationships. The distinction between the two concept of push factors are

crucial because the transmission channels and the effect of global shocks and regional

shocks may differ significantly. In the literature, global uncertainty often refers to the

uncertainty changes stemming from the United States which has dominant power in the

international financial market. The interconnectedness in trade and financial transac-

tions between two countries are common measures for contagion factors from one region

to the other. Therefore, we disentangle the impact of contagion factors from that of

global uncertainty (geopolitical uncertainty). Furthermore, we identify the contagion

in uncertainty and estimate its effect on capital flows.

The other important contribution of the study is that it looks into gross capital

flows rather than net capital flows. Numerous studies analysed determinants of net

capital flows and examined episodes of sudden and large reversals of net capital flows

(the mirror image of current account imbalances).5 Lately, a substantial number of

studies have paid more attention to the gross international investment positions rather

than the net positions of capital flows.6 Forbes and Warnock (2012a) found that, de-

spite well-managed net international investment position, large changes in gross assets

and liabilities could damage financial stability in crisis episodes. As Fratzscher (2012)

pointed out, the incentive of gross capital inflows by foreign investors might differ from

the ones of gross capital outflows by domestic investors.7 In order to study such dif-

ferent underlying forces of capital movement, this research focuses on the gross capital

flows.

This chapter particularly examines the dynamics of capital flows in the United

Kingdom, acknowledging the close relationship between the UK and the other European

Union (EU) countries. As one of the member state of the EU, the UK economy shares

the Single Market that allows free movement of goods, services and labour forces while

it opted out of the adoption of common currency, euro. As a consequence of such bond,

trade between the UK and EU countries constitutes the largest proportion of the total

exports and imports.8 Moreover, the UK takes up the key position of international

financial centre within Europe. The UK financial institutions’ exposure to the euro

area poses great risk to the stability of the financial system in the UK and to the

sudden reversal of cross-border capital flows. Thus, the bilateral trade and financial

links between the euro area and the United Kingdom might be of a great importance

to understand the uncertainty contagion effects on capital flows of the area. Although

5See Appendix 3.6.1. for related literature.

6See Appendix 3.6.1. for related literature.

7Gross capital inflows is defined as net of foreign purchase of domestic assets and foreign sales of

domestic assets. Similarly, gross capital outflows can be defined as net of residents’ purchase of foreign

assets and sales of foreign assets. Obviously, net capital flows is the sum of those two.

8In 2015, 44% of the UK’s goods and services were exported to the EU, while 53% of imports came

to the UK from the EU.
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it may be too early to appraise the consequences of the decision of the UK leaving the

Single Market (so called, Brexit) by the referendum in June 2016, the examination of

uncertainty contagion effects on capital flows would provide meaningful insights.

In terms of the empirical emphasis, this research intends to shed light on the

long run relationship of uncertainty factors (both global uncertainty and contagions in

uncertainty) and capital flows in the UK. To my knowledge, the long run relationship of

the capital flows and uncertainty is less explored in the literature. We employ bounds

testing approach of testing level relationship by Pesaran, Shin, and Smith (2001). The

model allows for the testing of the existence of a relationship between variables in level

irrespective of the underlying regressors being either I(0), I(1), or mutually cointegrated.

The conditional error correction model estimation is to be followed to examine the short

run dynamics.

Briefly, the research questions to be addressed are as follows. In the long run, does

geopolitical uncertainty contain any marginal information about the dynamics of capital

flows in the UK, controlling for contagion and domestic factors? Do contagion factors

help understanding the Britain’s gross capital flows? How to measure the uncertainty

contagion due to trade and financial linkages between the UK and the euro area? Does

the measured contagion play a significant role in predicting the long run capital flows,

holding other factors constant? Do the effects differ by different dependent variables,

inflows and outflows? What are other domestic factors that exhibit long run relationship

with gross capital flows?

To answer the questions, Section 3.2 examines the definitions and channels of

contagion effect. Section 3.3 discusses the empirical strategy and data. Section 3.4

presents the main results and provides robustness checks. Section 3.5 concludes.

3.2 Contagions: Definitions and Channels

Among push factors, it has gained more recognition in the literature that contagion

factors among a certain group of countries needs to be taken account for separately

from global factors that have worldwide effect. Forbes and Warnock (2012a) clearly

drew such a distinction. They defined that global factors are external determinants

that have universal effect on international capital flows. Contagion is defined as the

consequences due to the shocks from another country or group of countries often with

bilateral trade and/or financial relationships. The transmission channels of global and

contagion factors may be quite different. For example, changes in global risk appetite

may lead to overall contraction of capital inflows in emerging countries while changes

in drivers of contagion among the region may have diverse outcomes in capital flows

depending on the situation and the degree of linkages among countries. Therefore, the
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distinction allows the estimation of differential effects from global or contagion factors

separately.

Contagion is initially studied by Claessens, Dornbusch and Park (2001) and Claessens

and Forbes (2001). The three main issues in the literature are how to define contagion,

what is the underlying channel through which the spillover occurs, and how to measure

the degree of contagion empirically. In fact, the definition of contagion is a contentious

issue.9 Spillover and interdependence is also related concepts, which are used quite in-

terchangeable with contagion in the literature.10 Table 3.1. summarises the definition,

channels and measures of contagion and other related notions describing dependence

structure.

Table 3.1: Definitions, channels and measures of contagion

Paper Definition Channels Measures

Claessens,

Dornbusch,

and Park

(2001)

the spread of market

disturbances from one

country to the other, a

process observed through

co-movement in asset

prices

(1) Fundamental-based

contagion

(2) Contagion resulted

from the behaviour of

investors

(1) Correlation of asset

prices

(2) Conditional

probabilities

(3) Volatility spillover

(4) Capital flows tests

Forbes

(2012)

(1) Interdependence:

high correlations across

markets during all states

of the world

(2) Contagion: the

spillovers from extreme

negative events

(1) Trade channel

(2) Bank lending

(3) Portfolio investors

(4) Wake-up calls

(1) Probability analysis

(2) Cross-market

correlations

(3) VAR models

(4) Latent

factor/GARCH models

(5) Extreme values/Co-

exceedance/Jump

approach

Rigobon

(2016)

(1) Contagion/spillovers:

the phenomenon in

which a shock from one

country is transmitted to

another (contagion tends

to be more relevant

during crises.)

(2) Shift-contagion:

contagion when there

exists parameter

instability

(1) Fundamental view:

real channels

(2) Financial view: bank,

capital market, network

(3) Coordination view:

investors’ actions

(learning or herding

behaviour, multiple

equilibrium, political

contagion)

(1) Non-parametric

methods: correlation,

principal components

(2) Linear regression

models: VAR,

ARCH/GARCH models

(3) Event studies

(4) Probability models

(5) New methods: under

parameter stability or

instability

Spillover and contagion refer to similar phenomenon but contagion is used when

the spillover occurs with crises or negative events. The notion of interdependence is

more neutral as it simply means high correlation during all states of economy while

contagion implicitly (or explicitly) contains negative connotation. Recent paper by

Rigobon (2016) defines shift-contagion, which assumes parameter instability.

9See Forbes and Rigobon (2002) and Forbes (2012) for the comprehensive summary of various

definitions of spillover and/or contagion.

10In fact, one very recent paper by Rigobon (2016) is titled “Contagion, Spillover and Interdepen-

dence”, comprising all three related concepts.
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The main focus here is to examine the channels of contagion between two economies

and its effect on capital flows while keeping the issue of definition as simple as possible.

In the capital flows literature, the main interest is simply to estimate the association

between various contagion factors and capital flows controlling for other global and

domestic factors. To elaborate on this, I will illustrate the channels of such contagions

that are largely discussed in recent studies: trade channel, bank lending channel, and

channels that emphasize investors’ behavioural aspects.

A large number of theoretical studies have been striving to explain contagion by

bilateral trade (see, for example, Glick and Rose, 1999; Forbes, 2002; Abeysinghe

and Forbes, 2005; IMF, 2016). The conventional explanation of how bilateral trade

linkages affect capital flows (without introducing co-movement in uncertainty) is as

follows. Assume country A and B exhibit high economic connection via bilateral trade.

Suppose that country A faces significant exogenous negative shock while the economic

conditions of country B (and other countries) remain unchanged. Due to adverse

prospects of economic growth in A along with weaker home currency, it is likely that

portfolio investment shifts abroad and the performance in domestic equity and bond

market can be worse off in country A relative to other economies. This may lead

to a potential increase in capital inflow to country B like any other countries. It is

important to point out that increased capital inflows to country B followed by the

initial adverse shock in country A have nothing to do with trade links between two

countries. Higher trade share between A and B implies that a large proportion of firms

in the stock market in country B export to country A. Therefore, weak demand of A due

to unanticipated negative shocks may lead to capital flights from B without any changes

in macroeconomic fundamentals of B. If the contagion effect due to trade linkages is

significant and larger then the initial effects, capital inflows stops and outflows increases.

In the medium term, country A would regain competitiveness due to the devaluation

of its currency. As a result, the adjustment in equity market of B takes place, putting

more adverse pressure on the dynamics of capital flows.

Besides the adjustment through trade channel, an uncertainty shock to country A

can trigger financial market turbulence in country B via bank lending channel. Initial

uncertainty shock to country A leads to a rapid reduction in bank credit supply, dete-

riorating liquidity and causing the upturn of domestic interest rates. These changes in

the situations of domestic banking sector can spread to other economies through vari-

ous means. Banks in the country hit by uncertainty shocks can be forced to diminish

lending to foreign borrowers in order to meet capital requirement and other regulations.

In addition, domestic banks in other countries can directly reduce lending in the home

markets because their balance sheets can be deteriorated by the initial shocks in coun-

try A due to cross-border lending. The negative impacts through bank lending channel

can be aggravated even more with higher banking leverage. For example, Shin (2012)

showed that the leveraging/deleveraging cycle of global banks can play an important
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role for global financial stability. The universal contraction in bank lending raises cost

of capital, impeding firms’ investment for both the country where the initial shocks

were originated and other foreign countries. Consequently, capital flows can be mainly

driven by flight-to-quality incentives, as initially proposed by Bernanke, Gertler, and

Gilchrist (1996).11

Recent studies have also found that the role of end investors and asset managers is

important for explaining contagion effect on global portfolio investments (see IMF, 2015

for comprehensive theoretical background and empirical evidence). Among various ex-

planation of such channels, portfolio rebalancing effect has been widely recognized in

the literature. A shock in one country can cause domestic asset prices to drop, leading

to redemption threat or actual run by the end investors in other countries. Facing such

withdrawals (and/or potential withdrawals), portfolio managers would reduce invest-

ments so that the fund can comply with its mandates to maintain certain level of total

risk exposures. Through this portfolio rebalancing effect, the asset prices tend to fall

in both the stressed country and the other countries, even if they are seemingly unre-

lated. One recent example other than the US being the origin of uncertainty shock is

the spillover effect of Britain’s referendum results on leaving the EU (so called ‘Brexit’).

The decision has significantly influenced the dynamics of international capital flows of

neighbouring European countries as well as other large advanced countries such as the

US and Japan.

Studies of herding behaviour among investors is one of the earliest attempts fo-

cusing on the investors’ behaviour. Calvo and Mendoza (2000) suggested that herding

behaviour can worsen the condition when the global financial market is hit hard by a

negative shock. There have been a large number of theoretical developments in recent

studies. Hau and Rey (2008) demonstrated the model where the fund managers have

incentives of rebalancing portfolios in order to manage foreign exchange rate risk and

equity risk. Bacchetta, Tille and Van Wincoop (2012) and Bacchetta and Van Win-

coop (2013) studied risk panics in investor behaviour with an emphasis of self-fulfilling

panics and multiple equilibria.

In addition, the wake-up call effect (Goldstein, 1998; Ahnert and Bertsch, 2015) has

been largely mentioned as a potential channel of financial spillover. After an extreme

event occurs in one country, investors tend to reassess the fundamentals of the whole

region which the stressed country is located in and/or is more similar to. As a result

of uncertainty shock to one country, a wake-up call for the other related countries can

stimulate the immediate capital outflows followed by equity market downside risks and

increased credit spreads. In the empirical papers, dummy variables of countries’ credit

ratings (Forbes, 2012) or the similarities between countries (Dasgupta, Leon-Gonzalez,

11Other recent literature in the field are Bruno and Shin (2015), Cerutti, Claessens, Ratnovski (2014),

Bordo, Duca, and Koch (2016).
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and Shortland, 2011; IMF, 2016) were used to capture the wake-up call effect.

To expand the discussion, contagion in uncertainty and its effect on capital flows

can be further introduced. That is, co-movement in uncertainty among a certain group

of countries due to trade and financial linkages may also be associated with changes

in capital flows. Assume now an increase in uncertainty in country A. An uncertainty

shock about the fundamentals of A can halt the firms’ investment decision and cause

contractions in output and income of country A (wait-and-see effect). An accelerated

level of uncertainty of A can prompt hardships in predicting demands for goods and

services that are produced domestically and imported alike. This could lead to spillover

in uncertainty of country B via trade channel. Uncertainty of two counties may move

in tandem also because of financial links via bank lending and/or portfolio investments

channel. As a result, wait-and-see effect also applies to country B, slowing down eco-

nomic activities and potentially resulting in capital movements. The recent examples of

such contagion effect can be found without much efforts. Unstable political situations

of leading economies in the European Union (EU) brought about increased uncertainty

in the region as a whole since the Brexit discussion.

However, it is unclear about the outcomes of the changes in individual contagion

factors on co-movement in uncertainty and capital flows. First, it has not been ex-

plored in the literature whether and how the economic and financial linkages affect the

synchronization of uncertainties of two economies. In addition, the degree of contagion

in uncertainty may have heterogeneous effects on capital flows depending on the un-

derlying economic relationship between two countries. This research aims at offering

empirical evidence of such associations in contagions in uncertainty and capital flows.

3.3 Empirical Strategy and Data

3.3.1 Empirical models

To address the long run relationship between the gross captial flows and global,

contagion and domestic factors, I will employ ARDL model with the bounds testing for

the analysis of level relationships by Pesaran, Shin and Smith (2001), henceforth PSS.12

First, consider a VAR(p) model augmented with deterministic variables such as an in-

tercept and time trends. Notice that PSS model allows the underlying regressors to be

either I(0), I(1), or mutually cointegrated. Let zzzt = (ct,xxx
′
t)
′, where ct is either gross

capital inflows (CFIt) or gross capital outflows (CFOt), xxxt is a vector that contains de-

terminants of capital flows. Determinants consist of three parts: global (GGGt), contagion

12Related recent literature that applied ARDL model for aggregate bank lending is Bordo, Duca,

and Koch (2016). However, this paper does not consider bounds testing for the existence of long run

relationship.
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(CCCt), and domestic factors (DDDt), so that xxx′t = (GGGt,CCCt,DDDt). The list of determinants in

the benchmark model is summarised in Table 3.2.13 A dummy variable is also included

to take account for the potential structural break after the Great Financial Crisis in

2008. The dummy variable is defined by D2008,t = 1 after 2008q2, 0 otherwise.

∆ct = α+ β1t+ β2D2008,t + πccct−1 + πππcx.xxxxt−1 +

p∑

i=1

ΠΠΠ′
i∆∆∆zzzt−i + δδδ′∆∆∆xxxt + ut (3.1)

Table 3.2: Determinants of capital flows

Global Factors (GGGt) Contagion factors (CCCt) Domestic factors (DDDt)

Global uncertainty Trade linkages Domestic growth

Risk-free interest rate Financial linkages Inflation

Global growth International investors’ behaviour Public debt

Several specifications are considered with regards to how contagion factors (CCCt)

are identified in the regression. Initially, three contagion factors (trade linkages, finan-

cial linkages and international investors’ behavioural aspects) are included directly in

the regression equation as appeared in existing capital flows literature (Spec 1 ). In

addition to this benchmark model, a novel approach is proposed based on the poten-

tial association of uncertainty co-movement with contagion factors (listed above) and

capital flows movement.

Uncertainty co-movement index (Comov) is measured with the negative of diver-

gence in Economic Policy Uncertainty index (U) by Baker, Bloom and Davis (2015).

The co-movement is defined as the absolute value of uncertainty index differences be-

tween the UK (i) and other core EU countries (j) in quarter t.

Comovt ≡ −|(lnUi,t − lnUi,t−1)− (lnUj,t − lnUj,t−1)| (3.2)

The choice of co-movement index follows the methodology of constructing the busi-

ness cycle synchronization by Kalemli-Ozcan, Papaioannou and Perri (2013), consider-

ing its advantage over the correlation coefficient in the presence of structural breaks.

The correlation coefficient on a rolling average basis is likely to be sensitive to the

structural breaks and problematic if the number of observations after the break are

insufficient (see Doyle and Faust, 2005).

Upon constructing uncertainty co-movement index, a natural conjecture is to infer

that co-movement in uncertainty itself is a prospective contagion factor. Grounded on

this assumption, the raw series of uncertainty co-movement index can replace the three

individual contagion factors in the benchmark model (Spec 2 ). In terms of the notation

in equation (3.1), xxx′t = (GGGt,CCCt,DDDt), where CCCt is Comovt, defined by equation (3.2).

13See Appendix 3.6.2. for the examples of push-pull factors in the literature.
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Furthermore, two stage estimation is suggested by hypothesizing that uncertainty

of two economies with strong economic and financial linkages may be highly synchro-

nized (Spec 3 ). The first step is to show that contagion variables predict synchroniza-

tion (or co-movement) of uncertainty between two regions. To reveal the association

between uncertainty co-movement and traditional contagion factors, the following first-

stage regressions are estimated:

Comovt = β0D2008,t + β1CoBCt +

p∑

i=0

ΦΦΦiCCCt−i + εt (3.3)

where Comovt is a time-varying measure of co-movement of uncertainty as defined in

equation (3.2). D2008 is a dummy variable indicating the structural break after the

Great Financial Crisis in 2008, CoBC is the co-movement index of leading indicator of

business cycle, and CCCt is a vector including three contagion factors. The regression is

simple Finite Distributed Lag (FDL) model augmented by business cycle component to

control for general macroeconomic fundamentals, expecting to ensure contemporaneous

exogeneity. For OLS estimator in FDL model being asymptotically consistent, all vari-

ables are required to satisfy weak dependence and stationarity assumption. Therefore,

I(0) variables are included as in levels while I(1) variables are first differenced.14 The

appropriate lags of regressors are chosen by information criteria (AIC) and the absence

of serial correlation in error term. In addition, the model imposes the restriction on con-

stant term being zero before the 2008 Financial Crisis by excluding intercept term but

including dummy variable (D2008). The rationale for implementing regression through

the origin (RTO) is based on the assumption that uncertainty is purely random for

both countries when there is no changes in contagion factors and other macroeconomic

conditions. It is not entirely unjustifiable to assume that the direction and size of the

changes in uncertainty of two economies are identical, so that the co-movement index

is zero in such cases. The statistical inference of the coefficient on the dummy variable

indicates whether there is a significant structural break regarding this assumption after

2008.

Then, in the second stage, the impact of the predicted uncertainty co-movement

on capital flows is examined. Instead of three individual contagion factors (Spec 1 )

or the raw series of uncertainty co-movement (Spec 2 ), the fitted value of uncertainty

co-movement is included in the vector of regressors, xxxt. Therefore, the determinants

vector for two stage approach becomes xxx′t = (GGGt, ĈCCt,DDDt) in equation (3.1), where ĈCCt

is obtained by projecting uncertainty co-movement on contagion factors. If contagion

factors are indeed an effective predictor of uncertainty co-movement, it could uncover

the link between contagion, proxied by uncertainty co-movement, and capital flows.

For all three different specifications in equation (3.1), the next step is to test the

long-run level relationship among variables. In order to test the existence of the long

14The statistical descriptions of all variables are detailed in Section 3.3.2.
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run relationship, it is crucial to define different scenarios for the deterministic intercept

and trends. Referring to the notation of PSS, the scenarios are as follows.15

Case III: unrestricted intercepts and no trends

∆ct = α+ πccct−1 + πππcx.xxxxt−1 +

p−1∑

i=1

ΠΠΠ′
i∆∆∆zzzt−i + δδδ′∆∆∆xxxt + ut (3.4)

Case IV: unrestricted intercepts and restricted trends

∆ct = α+ πcc(ct−1 − γct) + πππcx.x(xxxt−1 − γγγxt) +

p−1∑

i=1

ΠΠΠ′
i∆∆∆zzzt−i + δδδ′∆∆∆xxxt + ut (3.5)

Case V: unrestricted intercepts and unrestricted trends

∆ct = α+ β1t+ πccct−1 + πππcx.xxxxt−1 +

p−1∑

i=1

ΠΠΠ′
i∆∆∆zzzt−i + δδδ′∆∆∆xxxt + ut (3.6)

Based on each scenario, the test statistics are defined. FIII is the F-statistic for

testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with c1 set equal to zero. FIV is

the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without

a deterministic trend in Case III model. tV is the t-ratio for testing πcc = 0 with

a deterministic trend in Case IV model. The critical value bounds for the statistics

are given in the paper by PSS. In testing the coefficients on level relationship, the

appropriate lag structure is searched by information criteria and the absence of serial

correlation, remaining the coefficients of ECM model unrestricted.

Once hypothesis testing results confirm the long run relationship, the short run

dynamics of capital flows adjustment is estimated. For the estimation of the conditional

ECM regression associated with the level relationship, the lag orders of an ARDL model

are chosen by the AIC criterion without restrictions on coefficients. The regressions

are further examined by diagnostic tests for no residual serial correlation, normal er-

rors, heteroscedasticity, and no functional form misspecification test. Based on the

estimation results of the conditional ECM, the statistical inference can be performed

to provide evidence on the short run dynamics between capital flows and determinants.

For example, the estimated coefficient on the equilibrium correction term illustrates the

link between long run and short run dynamics. The dynamic stability of the auxiliary

equation of the AR (autoregressive) components can be tested to provide information

of whether the process converges to long run equilibrium.

15For simple representation, dummy variables for structural breaks are omitted in each equations,

equation (3.4)-(3.6), but included in the actual estimation
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3.3.2 Data

I construct a comprehensive dataset of gross capital flows of the United Kingdom,

inflows by foreign agents and outflows by residents, and determinants. As detailed in

Table 3.2, the list of determinants are as follows: (i) global factors (global uncertainty,

risk-free interest rate, global output growth), (ii) contagion factors (trade linkages,

financial linkages, international investors’ behaviour), and (iii) domestic factors (GDP

growth, inflation, public debt). In addition, I will discuss how to build uncertainty

co-movement index for the two stage estimation using Economic Policy Uncertainty

index for the UK and the other European countries. Considering the availability of the

data, the sample period is set from 1985q1 to 2016q2. The sample period is selected to

capture the average long run effect over three decades.16

The data of gross capital flows (see Figure 3.1) come from the IMF’s Balance

of Payments Statistics (BOPS). BOPS includes aggregate and detailed time series of

transactions between residents and non-residents. It comprises the goods and services

account, the primary income account, the secondary income account, the capital ac-

count, and the financial account. The dataset reports the financial flows involving the

reporting country’s assets and liabilities vis-à-vis non-residents. IMF’s Balance of Pay-

ment data covers a comprehensive range of financial flows (including FDIs, debt and

equity in portfolio flows as well as other investment intermediaries) but captures capital

flows between a given country and the rest of the world. Therefore, it is impossible to

track bilateral flows using BOPS data.

The gross capital outflows by domestic investors (COF) and inflows by foreign

agents (CIF) are computed using the financial account of BOPS data. In particular, it

is retrieved by the table of Balance of Payments Analytic Presentation by country for

the United Kingdom. COF is equal to the net purchase of foreign assets by domestic

agents and CIF is equal to the net purchase of domestic assets by foreign agents. In

terms of the sub categories in the Balance of Payments table, COF is the sum of direct

investment abroad, portfolio investment assets, other investment assets, and reserve

assets. Similarly, CIF is the sum of direct investment in recipient economics, portfolio

investment liabilities, and other investment liabilities. Net capital (in)flows equals to

the difference of gross capital inflows and gross capital outflows.

As for the determinants of capital flows, global uncertainty is one of the important

global factors in the literature. Volatility measures, such as VOX by the Chicago Board

16Admittedly, during this 30 years of period, there might be more than one breaks other than recent

Financial Crisis. The empirical model in Section 3.3.1. introduced only one dummy variable starting

from 2008q2 and, consequently, tends to average out the effect of other breaks. However, we focus

more on the structural changes after the Financial Crisis, in search of more parsimonious model. The

model is already quite heavy with nine explanatory variables except constant, linear time trend, and a

dummy.
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Figure 3.1: Gross and net capital flows

Note: Gross outflows are reported using standard BOP definitions, so that a negative number indicates

a gross outflows. Net capital flows equal to gross capital inflows minus gross capital outflows.

Source: IMF BOPS (http://data.imf.org).

Options Exchange, are the most commonly used proxy in the capital flows literature.

However, it appears to have some drawbacks. Volatility captures both risk and un-

certainty that have clearly different implication for economic agents’ decision-making.

Furthermore, changes in volatility reflects the reactions to shocks in uncertainty or risk,

rather than captures the changes in uncertainty itself.17 Various alternative measures

of uncertainty have been proposed in the literature, ranging from news-based index to

forecasters’ disagreement measures. In general, the decision of which measure to be

adopted is largely dependent on the characteristics of a measure and how the chosen

measure achieves the aim of the research. In this study, Geopolitical Risk index (GPR)

by Caldara and Iacoviello (2016) is selected to capture the uncertainty effect in the in-

ternational political domain. Increases in instability of international political situation

may agitate cross-border movements of capital.

The GPR index is developed based on the assumption that geopolitical risks, such

as wars, terrorism, and regional tensions, reflect the exogenous source of uncertainty.

It is constructed by counting the words related to geopolitical tensions in major news-

papers as a share of total number of articles.18 The search criteria consists of eight

categories, broadly ranging from geopolitical threats and tension to actual events and

acts related to geopolitical environment. GPR index is monthly data available from

January 1985 to July 2016. As dependent variables are quarterly data, the monthly

17See Baker, Bloom and Davis (2015), Jurado, Ludvigson and Ng (2015) for critiques on the use of

volatility index as a proxy of uncertainty. Also see Makarova (2014) for detailed discussion of different

notion between risk and uncertainty.

18For detailed description of methodology, see Caldara and Iacoviello (2016). The list includes 11

national and international newspapers: The Boston Globe, Chicago Tribune, The Daily Telegraph,

Financial Times, The Globe and Mail, The Guardian, Los Angeles Times, The New York Times, The

Times, The Wall Street Journal, and The Washington Post.
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Figure 3.2: Geopolitical Risk Index

Note: The raw data of GPR index is the normalised index to a mean of 100 from 2000 to 2009. Monthly

raw data is converted to quarterly data using the last observation of each quarter.

Source: Caldara and Iacoviello. (2016). Measuring Geopolitical Risk, Working paper, Board of Gover-

nors of the Federal Reserve Board. (https://www2.bc.edu/matteo-iacoviello/gpr.htm).

GPR index is converted using the last observation of each quarter.19 See Figure 3.2 for

quarterly time series plot of GPR index.

As an alternative measure, Global Economic Policy Uncertainty (GEPU) index

can be considered. GEPU index is GDP weighted EPU index of 16 countries based

on the methodology of Baker, Bloom and Davis (2015).20 Individual series of EPU is

also a news-based index like GPR index, but the search criteria for EPU is the words,

‘economic’, ‘policy’ and ‘uncertainty’, which can be criticized to exhibit endogeneity

problem. That is, changes in EPU index may be a consequence of changes in economic

condition, not vice versa. Comparing to GEPU index, GPR index is relatively less

subject to the economic condition, reflecting mostly exogenous variations. Moreover,

GEPU index is only available from January 1997 to December 2016. Therefore, the

GEPU index is used for robustness checks later.

The other key global factors are risk-free interest rate and global output growth.

As a risk-free rate of investment, the US long term interest rate often used in the

literature. The time series of the US 10-year Treasury yield with constant maturity (not

seasonally adjusted) is retrieved from Federal Reserve Economic Data (FRED). Global

output growth is also an important global factor of capital flows. Several theoretical

19The uncertainty indices (GPR, EPU and GEPU) are converted using last observation. Averaging

uncertainty (or volatility) proxy may lead to unintended smoothing effect. In order to see the robust-

ness, we computed the long run estimates of the benchmark model (Spec 1 ) with average GPR index

and found the estimates are not much different (see Appendix 3.6.8).

20The composite index includes 16 countries: Australia, Brazil, Canada, China, France, Germany,

India, Ireland, Italy, Japan, Russia, South Korea, Spain, the United Kingdom, and the United States.
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paper discussed the role of global growth through innovations in global productivity

(see, for example, Albuquerque et al, 2009). The quarterly data of global GDP growth

are taken from International Financial Statistics (IFS) dataset by IMF. Both interest

rate and global growth rate are available throughout the sample period of 1985q1 to

2016q2. See Figure 3.3 for time series plots of these two global variables.

Figure 3.3: Interest rate and global growth

Source: Interest rate data are retrieved from Federal Reserve Economic Data (FRED), (https://fred.

stlouisfed.org/), global growth from IMF’s IFS dataset (http://data.imf.org).

The contagion factors are trade linkages, financial linkages and international in-

vestors’ behaviour. The first two variables can be measured only after specifying coun-

tries over which the bilateral relationship is defined. While the UK’s bilateral trade

data are widely available for most European countries, bilateral banking data is acces-

sible only for some core European countries.21 Therefore, the countries are limited to

seven core European countries where the complete bilateral banking data since 1985 is

available: Belgium, Germany, Finland, France, Ireland, Luxembourg, and Netherlands.

Trade linkages (TL) are measured by the share of UK’s exports to the seven core

European countries out of UK’s total exports to the rest of the world.22 The bilateral

trade data in domestic currency are obtained from the website of the UK Office for

National Statistics (ONS). The data for total exports of the UK to the rest of the

world are from IFS database (nominal, seasonally adjusted and in national currency).

Due to the availability of bilateral trade data, the time series of trade linkages starts

from 1996q1.

TL =
Sum of bilateral exports of the UK to each seven core European countries

Total UK exports to the rest of the world

21The BIS bilateral banking data are not available between the UK and peripheral European coun-

tries, such as Spain, Italy, and Greece.

22Alternative measures of trade linkages are bilateral exposure of imports and that of the sum of

export and import. However, the time series of these measures are largely similar to the export measure.
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Figure 3.4: Trade linkages and financial linkages

Source: Bilateral exports (ONS, https://www.ons.gov.uk/), total exports (IMF IFS, http://data.

imf.org), bilateral banking flows (Locational Banking Statistics from BIS Statistics Warehouse, http:

//stats.bis.org/bis-stats-tool/), GDP (OECD Statistics, http://stats.oecd.org/).

The measures of financial linkages (FL) is constructed based on Locational Bank-

ing Statistics (LBS) data by the Bank of International Settlement (BIS). These statistics

provide information about outstanding bilateral claims and liabilities of banks located

in BIS reporting countries on the unconsolidated basis. The importance of external

debt available in the LBS has been emphasized since the GFC. It reports cross-border

banking transactions comprising positions within offices under the same global finan-

cial institution and many studies found that the expansion in cross-border bank credit

explains significant part of financial boom-bust cycle and the vulnerability of financial

system. Thus, the contagion effect owing to financial linkages can be effectively sum-

marised by using the LBS statistics. Financial linkages (FLt) are measured using the

sum of bilateral assets and liabilities for all pairs of countries divided by the sum of

two countries’ GDP.

FLt =
Assetsi,j,t + Liabilitiesi,j,t +Assetsj,i,t + Liabilitiesj,i,t

GDPi,t +GDPj,t

The international investors’ behavioural aspects (re-balancing effect, herding be-

havior and/or wake-up call effect) are captured by the ratio of international portfolio

flows relative to nominal GDP of the UK economy. The international portfolio flows is

measured as the sum of gross inflows and gross outflows in portfolio investment. Both

portfolio flows (IMF’s BOPS) and nominal GDP (OECD Statistics) is in million US

dollars. Although this proxy is a broad measure of the share of the UK’s cross-border

portfolio investments vis-à-vis the rest of the world, it is not restricted to bilateral

relationship between the UK and core European countries like the other two contagion

factors.

Among various domestic factors, GDP growth, inflation and public debt are con-

sidered to keep the model as parsimonious as possible. GDP growth and inflation data
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Figure 3.5: International investors’ behavioural aspects

Source: Portfolio flows (IMF BOPS database, http://data.imf.org) and GDP (OECD statistics,

http://stats.oecd.org/).

are retrieved from the IMF’s IFS database and plotted in Figure 3.6.23 The public debt

to GDP ratio corresponds to quarterly general government consolidated debt data re-

trieved from the ONS website. Public debt is defined in the Maastricht Treaty as

consolidated general government gross debt at nominal (face) value, outstanding at the

end of the year. Data for the general government sector are consolidated between sub

sectors at the national level and non-seasonally adjusted. Time series of public debt to

GDP is plotted in Figure 3.7.

Figure 3.6: GDP growth and inflation

Source: IMF IFS (http://data.imf.org).

To examine contagions in uncertainty, uncertainty co-movement index is computed

using EPU index. As EPU index is individual country’s uncertainty measure, the com-

posite uncertainty index of core EU countries is defined as the GDP-weighted average

of national EPU indices. First, I normalise each national-level EPU index to a mean

of 100 from 1997 to 2015. Then, using GDP data from the IMF’s World Economic

23I use Producer Price Index for inflation because Consumer Price inflation data was not available

from 1985.
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Figure 3.7: Government debt

Source: General government consolidated debt (ONS, https://www.ons.gov.uk/), GDP (OECD statis-

tics, http://stats.oecd.org/).

Outlook Database, the GDP-weighted average is computed. The left panel of Figure

3.8 shows the EPU index of the UK and the composite EPU index for seven European

countries. Monthly EPU data is converted to quarterly data using the last observation

of each quarter. Following the definition in equation (3.2), I compute the negative of

the absolute value of differences in uncertainty between two regions for each period.

The larger the co-movement index is, the greater the uncertainty co-moves.

Figure 3.8: Economic Policy Uncertainty index and uncertainty co-movement

Notes: EPUU is the raw data of UK news-based EPU index. EPUE is a composite index of seven

countries using the current price GDP weight (computed by author). Co-movement index is computed

by author using the definition in equation (3.2).

Source: EPU (Baker, Bloom and Davis (2015), http://www.policyuncertainty.com/), GDP

(IMF, World Economic Outlook Database, https://www.imf.org/external/pubs/ft/weo/2016/02/

weodata/index.aspx).

The co-movement of the business cycle (Figure 3.9) is constructed using the same

definition of uncertainty co-movement with OECD Composite Leading Indicator (CLI).

The OECD CLI is designed to summarize the qualitative information of short run

economic dynamics. The components are the time series with leading relationship with
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output growth that are selected based on economic significance, cyclical behaviour, and

data quality. The country-level CLIs of six core European countries are retrieved from

OECD Statistics and averaged out with equal weights to compute the composite CLI.24

Figure 3.9: OECD Composite Leading Indicator and business cycle co-movement

Notes: BCU is the raw time series of UK CLI retrieved from OECD database. BCE is a composite

index of six countries (except Luxembourg) using equal weight (computed by author). Co-movement

index is computed by author using the definition in equation (3.2).

Source: CLI (OECD statistics, http://stats.oecd.org/).

24Luxembourg CLI is not available from OECD Statistics Database.
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3.4 Estimation Results and Robustness Checks

3.4.1 The long run level relationships between capital flows and de-

terminants

For the estimation of capital flows in the model specification using all individual fac-

tors (Spec 1 ), I consider both entire sample (1985q1–2016q2) and sub sample (1997q1–

2016q2). The estimation of entire sample excludes trade linkage variable because the

data is only available from 1997. Therefore, the determinants are xxx′t = (GGGt,CCCt,DDDt) =

(GPRt, it, WGDPt, FLt, invt, DGDPt, ppit, debtt) in the entire sample model and

(GPRt, it, WGDPt, TLt, FLt, invt, DGDPt, ppit, debtt) in the sub sample model.

Each group of factors are as follows. GPRt is Geopolitical Risk index, it is long term

US interest rate,WGDPt is global output growth. TLt and FLt are trade and financial

linkages between the UK and the core European countries, invt is international port-

folio investment to GDP of the UK. DGDPt is domestic GDP growth, ppit is inflation,

and debtt is public debt to GDP ratio. To make sure that none of the variables are

I(2), I conduct Augmented Dickey Fulluer (ADF) and Phillips Perron (PP) unit root

test for both entire sample and sub sample period. There is strong evidence of all the

variables are either I(0) or I(1).25 Details of unit root test results by different sample

range is provided in Appendix 3.6.3.

In order to test the existence of level relationship, the appropriate lag structure

of the unrestricted ECM in equation (3.1) is determined based on information criteria

and ensuring the absence of serial correlation in errors. To avoid pre-testing problem,

I follow the approach in PSS, holding the coefficients of lagged changes unrestricted.

The statistics are shown in Appendix 3.6.4.

First, the appropriate lag length for capital inflows estimation is considered. Akaike’s

Informationi criteria (AIC) suggest the appropriate lag order is 7 while Schwarz’s

Bayesian Information Criteria (SBC) suggest 1, irrespective of whether the model in-

cludes deterministic trends. However, the LM test for serial correlation does not support

the choice of p = 7 as the null hypothesis of no autocorrelation is rejecte at 1%. Based

on both information criteria and the absence of serial correlation, it seems reasonable

to select p to be either 4, 5 or 6. In the sub sample case, the appropriate lags are

selected from p = 1 to p = 4 because the model with higher lags cannot be effectively

estimated due to the limited number of observations (i.e. the curse of dimensionality).

25Notice that, in Chapter 2, the inflation is I(1) while inflation data in Chapter 2 is found to be

I(0). The order of integration of inflation data is different in Chapter 2 and Chapter 3 because of the

differences in (1) price index on which the computation of inflation is based and (2) data frequency and

coverage. In Chapter 2, we use Consumer Price Index (CPI) to compute inflation. The price index is

monthly data, ranging from January 1997 to March 2016. The UK inflation data used in Chapter 3 is

Producer Price Index (PPI), quarterly data, and the coverage is much wider, 1985q1-2016q2.
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According to information criteria, either p = 4 or p = 1 is the appropriate choice. Sim-

ilar to the entire sample estimation, the results shows the evidence of autocorrelation

in p = 4. The SBC statistics of p = 2 is not largely different from minimum value of

p = 1. All in a nutshell, the appropriate lags for the sub sample model is chosen to be

p = 1, 2, 3. For gross capital outflows estimation, AIC suggests that the appropriate

lag order is 7 while SBC suggests 1 for the entire sample case, irrespective of whether

the model includes deterministic trends. However, the LM test suggests that errors

contain autocorrelation for the lag length p = 1, 2, 3, 7. Therefore, the appropriate lag

order can be selected among p = 4, 5, 6. In the sub sample estimation, the results are

similar to the inflows estimation results. The most suitable lag length for both with

and without trend can be chosen among p = 1, 2, 3.

To test the existence of long run relationships in the level variables, F- and t-tests

are performed as constructed in Section 3.3. Table 3.3 shows the F- and t-statistics for

chosen lag orders.

Table 3.3: F- and t-statistics for testing the existence of levels equation (Spec 1 )

Gross Capital Inflows

Sample: 1985q1 - 2016q2 Sample: 1997q1 - 2016q2

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

4 9.90c 9.78c −8.96c 9.11c −8.56c 1 12.80c 12.73c −10.55c 12.97c −10.63c

5 7.08c 7.07c −8.01c 6.36c −7.58c 2 10.53c 10.34c −9.00c 10.45c −9.04c

6 4.86c 4.64c −5.92c 3.96c −5.41c 3 3.76c 3.75c −5.05b 3.54c −5.18c

Gross Capital Outflows

Sample: 1985q1 - 2016q2 Sample: 1997q1 - 2016q2

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

4 6.84c 6.78c −7.31c 6.17c −6.88c 1 13.32c 13.16c −10.42c 13.57c −10.51c

5 4.06c 4.05c −6.01c 3.77c −5.77c 2 8.97c 8.87c −8.12c 8.84c −8.19c

6 3.50c 3.25b −4.88b 3.01b −4.57b 3 5.14c 5.14c −4.60b 4.82c −4.70b

Notes: FIII is the F-statistic for testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with β1 set equal

to zero. FIV is the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without a deterministic trend.

tV is the t-ratio for testing πcc = 0 with a deterministic trend. a indicates the statistic is smaller than

the 0.05 lower bound, b denotes the statistic is within the 0.05 bounds and c denotes the statistic is

greater than the 0.05 upper bound.

The FIV statistics are computed under the null hypothesis of no level relationship

and restricting the trend coefficient to zero, while the FV statistics without restriction

on the coefficients on trend. The F-test under case III (FIII) is simply based on the

estimation models without deterministic trends. The number of regressors used in the
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estimation of entire sample is eight (k = 8). According to the tables provided by PSS

(Tables CI and CII), the critical value bounds for FIII , FIV and FV with k = 8 at

5% significance level are (2.22, 3.39), (2.38, 3.41) and (2.55, 3.68), respectively. When

k = 8, the critical value bounds for tIII and tV are (-2.86, -4.72) and (-3.41, -5.10),

respectively. The estimation using sub sample from 1997q1, the trade linkage variable

is added so it becomes the case of k = 9. The critical value bounds for F-tests with

k = 9 are (2.14, 3.30), (2.30, 3.33), and (2.43, 3.56), respectively for FIII , FIV and FV .

The critical value bounds for t-tests (tIII , tV ) are (-2.86, -4.88) and (-3.41, -5.15).

For gross capital inflows estimation model with p = 4, 5, 6, the null hypotheses

under all three different scenarios are rejected at the 0.05 level, irrespective of whether

the regressors are I(0)’s, I(1)’s or mutually cointegrated. Both t-test and F-test results

confirm the existence of level relationships between capital flows and determinants at

0.05 level, regardless of lag orders for the entire sample capital inflows model. For the

sub sample estimation with lag length, p = 1, 2, the null hypothesis of no long run

relationship is rejected. However, tV statistics fall in between the upper and lower

bound where p = 3.

Gross capital outflows results for the entire sample case with lag length p = 4, 5

show strong evidence of level relationship of capital outflow and its determinants, irre-

spective of whether the model has deterministic trend. For p = 6, F- and t-statistics

indicate that the decision of hypothesis testing is inconclusive. In the sub sample esti-

mation, a model with deterministic trend and lag length p = 1, 2 strongly suggests that

there exist a long run relationship. However, the test for single hypothesis of πcc = 0

in the model with p = 3 suggests that we fail to reject the null at 0.05 level.

To sum up, the suitable lag lengths of unrestricted models are selected based on

information criteria and autocorrelation test. There exists strong evidence of long run

relationship when p = 4 for entire sample and p = 2 for sub sample, irrespective of the

model specification. Consequently, the levels relationship is formulated as follows and

the estimates are presented in Appendix 3.6.5.

Sample I (1985q1–2016q2)

ct = β1GPRt + β2it + β3WGDPt + β4FLt + β5invt + β6DGDPt + β7ppit + β8debtt

+c+ β9t+ β10d2008 + v̂1t

Sample II (1997q1–2016q2)

ct = β1GPRt + β2it + β3WGDPt + β4TLt + β5FLt + β6invt + β7DGDPt + β8ppit + β9debtt

+c+ β10t+ β11d2008 + v̂2t

where v̂1t and v̂2t are the equilibrium correction term.

The estimated long run relationship for capital inflows using entire sample indicates

that global uncertainty, world output growth are significant among global factors. The
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coefficients on uncertainty variables are positive, suggesting procyclicality of global un-

certainty shock to gross capital inflows. As geopolitical risk increase globally, the gross

capital inflow to the United Kingdom by foreign investors increases, in other words, cap-

ital surges. This suggests the flight-to-quality type capital movement considering that

the UK financial market is one of the largest international financial centre. In the cap-

ital outflows models, the coefficient on geopolitical uncertainty is also significant and

positive. Capital outflow by residents increases as the geopolitical tension increases

worldwide, i.e. capital flight happens. This might reflect the capital movements to-

wards the US financial market that is relatively safer than the small open economy like

the UK from the perspective of the UK residents. The magnitude of estimated effects

are smaller than that of the capital inflows estimation, implying that global geopolitical

uncertainty is associated with increases in net capital inflows to the UK. The global

economic growth is correlated with increases in gross capital inflows and outflows but

the coefficients are larger for the capital outflows. Hence, in terms of net capital flows,

the stable global economic growth is countercyclical, being associated with net capital

outflows. Assuming that the domestic growth rate in the UK is generally lower than

the growth rate of other emerging economies, the countercyclicality is simply reflecting

the investors’ incentive to position a portfolio into the higher return assets. In sum-

mary, the two global factors are significant but have different influences on investment

motives depending on whether they are either foreign or domestic investors.

In terms of contagion factors, both financial linkages and international investors’

behavioural aspects are shown to be highly significant in explaining long run equilib-

rium of gross capital inflows. The coefficients are positive, implying that gross capital

inflows are correlated with higher level of financial connection to the core European

countries and increasing role of international portfolio investors’ in the financial mar-

kets. The contagion are pivotal in determining investment decision by foreign investors

and they tend to invest more in the UK assets when the bank lending exposures to

the core European countries and the proportion of international investors to portfolio

cross-border investment are higher. As for the gross capital outflows estimation, both

contagion factors are also significant and positively correlated with capital outflows.

Comparing the relative size of the estimated coefficients to the inflows estimation re-

sults, the financial linkages with the core European countries via banking sector is

procyclical (likely to induce net capital inflows) while the international investors’ rel-

ative position in total cross-border investment is countercyclical (likely to induce net

capital outflows). These findings are in line with the existing studies regarding conta-

gions, e.g. the leveraging/deleveraging cycle of global banks, the portfolio rebalancing

effect, and the wake-up call effect and potentially extend the scope of the domain of

research by differentiate investment motivations of foreigners from that of domestic

investors.

Among domestic factors, government debt to GDP ratio is statistically significant
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for both gross capital inflows and outflows. According to the existing theoretical and

empirical studies, adverse fiscal positions of a country is often correlated with net capital

inflows. When sovereign debt is accumulated above the sustainable level, there is a

tendency of stop (decreases in gross capital inflows) and flight (increases in gross capital

outflows) due to the increased likelihood of sovereign default. The estimated coefficients

are positive for both inflows and outflows controlling for the structural changes after

2008. While the positive coefficients for capital outflows seem to be consistent with the

literature, the result for inflows is rather counterintuitive and cannot be supported by

the existing literature.

In order to explain the results, it can be further examined by comparing the results

from the models without the dummy, D2008. Once the structural break after 2008 being

ignored, the effect of public debt on capital inflows becomes negative as predicted by

most existing theories. Applying simple analysis of omitted variable bias, it is easily

deduced that there is a positive correlation between sovereign debt and the dummy.26

The data also confirms that the level of government debt suddenly escalated after the

global crisis in 2008. This finding may help explaining the estimation results that

predicts capital surges, not stops, when there is an increase in sovereign debt level in

the long run. The seemingly unreasonable estimation results may be due the potential

confounding factors that is positively correlated with both the level of sovereign debt

and capital inflows.

One possible confounder is the successful implementation of the unconventional

monetary and fiscal policy measures after the GFC. In reaction to the unprecedented

financial crisis, most of the central banks in advanced economies, including the United

Kingdom, adopted Quantitative Easing (QE), allowing for the purchase of assets by the

creation of central bank reserves. The public debt data under the EU standard statistics

include the recorded gross financial liabilities of central and local governments. That is,

it includes liquid assets, such as official reserve assets and other cash or cash-like assets.

Therefore, the large increase in public debt to GDP ratio may reflect the enlarged

balance sheet of the central bank after QE. In addition, some fiscal measures were

implemented throughout the course of crisis, including income tax cut for base rate,

a temporary cut in Value Added Tax, and Small Enterprise Loan Guarantee Scheme.

These measures may have been effective in repairing the financial system, increasing

demand and restoring investors’ confidence, and consequently leading to capital inflows

to the UK financial market. Therefore, the level of debt to GDP ratio may have positive

correlation with gross capital inflows in the long run level equation, controlling for the

structural break after the GFC. There may also exist a possibility that the capital flows

behaves differently in reaction to changes in public debt after the crisis. The model

26The OVB is negative (= −3.64 − 12.20 comparing (1) and (2). The coefficient on the omitted

variable (D2008) is negative in the long regression. Thus, the correlation between the omitted and

public debt is positive.
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with interaction term between public debt and dummy variable is estimated in the

Section 3.4.3. for robustness check.

As noted previously, the level of public debt is positively correlated with capital

outflows by domestic investors, implying that domestic investors actually escaped from

its own financial markets when government debt to GDP ratio increases. Combined

with the positive coefficients on the public debt in the gross capital inflows model, this

clearly shows that the underlying motivation of investment decisions by residents may

differ from foreign investors. The heterogeneous effects between foreign and domestic

investors on capital flows cannot be distinguished in the estimation model for net capital

flows. The magnitudes of such effects on gross inflows are larger than the effects on gross

outflows, suggesting that the capital net inflows as government debt level increases.

However, the difference in magnitude of the effects is minimal, especially in case of the

specification including deterministic trend.

The model with trade linkages variable (using sub sample) shows some evidence

of significant effects of the contagion factors but not the trade linkages itself. Compar-

ing the relative size of the estimated coefficients between inflows and outflows model

estimates, the effect of contagion factors on net capital flows is similar to the entire

sample case: the financial linkages is procyclical while the international investors’ role

is countercyclical. The global factors are mostly insignificant in the sub sample model.

Similar to the entire sample estimation, the coefficients on public debt are positive and

statistically significant for both gross capital inflows and outflows. However, the coef-

ficients are larger in outflows than in inflows, suggesting that an increase in sovereign

debt level is associated with net capital outflows. In the model without the dummy

variable, two contagion factors (except trade linkages) and domestic inflation are impor-

tant determinants for gross capital inflows. Inflation is associated with stops in capital

inflows. Similarly, contagion factors and domestic inflation are significant factors for

gross capital outflows. The only difference between the results of inflows and outflows

is that world output growth is significant at 10% level for capital outflows. This sug-

gests that the residents’ cross-border investment decision is more likely to be affected

by the global economic growth whereas the decision by foreign investors is relatively

less influenced.

In the following, the long run relationship between capital flows and determinants

is estimated using the co-movement index as a new proxy for contagion in uncertainty.

(Spec 2 ) denotes the model with the raw data of uncertainty co-movement defined in

equation (3.2) and (Spec 3 ) denotes the two stage estimation. Notice that the sample

period of both specification is 1997q1–2016q2 because the country-level EPU index for

constructing the uncertainty co-movement index is available from 1997. In order to

check whether any of the variables in the model are I(2), ADF and PP unit root test

are conducted (see Appendix 3.6.3). Uncertainty co-movement index and the business
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cycle co-movement are both I(0) in levels.

Table 3.4: F- and t-statistics for testing the existence of levels equation (Spec 2 )

Gross capital inflows Gross capital outflows

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

5 5.23c 5.10c −4.77b 2.41b −2.84a 3 7.02c 7.00c −6.42c 3.70c −4.21b

Notes: FIII is the F-statistic for testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with β1 set equal

to zero. FIV is the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without a deterministic trend.

tV is the t-ratio for testing πcc = 0 with a deterministic trend. a indicates the statistic is smaller than

the 0.05 lower bound, b denotes the statistic is within the 0.05 bounds and c denotes the statistic is

greater than the 0.05 upper bound.

By information criteria and the absence of serial correlation, the appropriate lag

order for gross capital inflows and outflows estimation is p = 5 and p = 3.27 The

test results of the existence of levels relationship are shown in Table 3.4. From PSS,

the critical value bounds are FIV (2.50, 3.50), FV (2.69, 3.83), tV (-3.41, -4.85). The

case without deterministic trend, the critical values are FIII(2.32, 3.50), and tIII(-

2.86, -4.57) at 5% significance level. The result suggest weak evidence for long run

relationship between the gross capital flows and determinants, especially for the capital

inflows model with deterministic trend where the null of no level relationship is either

cannot be rejected or remain indecisive.

The levels relationship is formulated as follows:

ct = β1GPRt + β2it + β3WGDPt + β4Comovt + β5DGDPt + β6ppit + β7debtt

+c+ β8t+ β9d2008 + v̂t

where v̂t is the equilibrium correction term.

Although the long run relationship is likely to be absent in (Spec 2 ), the estimates

of the long run level relationship for (Spec 2 ) models are given in Appendix 3.6.5 Table

3.23-3.24. The uncertainty contagion factor is no longer significant in any specifications.

Including the dummy variable for recent financial crisis, global output growth is the

only factor that is highly significant except the dummy itself. World GDP growth is

positively correlated with both gross inflows and outflows. Comparing the magnitude

of effects between gross inflows and outflows, it is suggested that the increased level of

world growth rate is likely to be associated with net capital outflows. This is identical

to the results in (Spec 1 ).

In addition to global output growth, public debt to GDP ratio is significant in the

27In Appendix 3.6.4, Table 3.15 shows the statistics for selecting the lag order in (Spec 2 ).
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long run level of gross capital flows in the models without the dummy. The coefficients

for gross inflows model are negative, supporting the countercyclicality argument: the

higher the sovereign debt is, the more the capital inflows decreases. However, the gross

capital outflows also decreases (retrenchment) as the government debt increases. The

coefficients are larger in absolute value for inflows than outflows, suggesting decreases

in net inflows. In case of the capital outflows, the estimation results differ with respect

to different specifications. For example, The model with trend only indicates that

world output growth, domestic inflation and public debt to GDP ratio are important

determinants.

In (Spec 3 ), the two stage estimation is introduced to uncover the relationship

between traditional contagion factors and uncertainty co-movement index and to con-

nect this relationship with capital flows dynamics. The first stage estimation results

is presented below with estimates and the standard errors in parentheses. Based on

AIC and the absence of serial correlation, the suitable lag of the prediction model is

selected (p = 4).28 The estimation method is least squares with HAC standard errors

and covariances. In order to capture the bilateral contagion between the UK and the

core European countries, the international investors’ behavioural factor is excluded in

the estimation.29

̂Comovt =−0.215
(0.067)

D2008,t + 29.723
(8.356)

CoBCt

+ 0.012
(0.023)

∆TLt + 0.026
(0.048)

∆TLt−1 + 0.042
(0.034)

∆TLt−2 + 0.028
(0.025)

∆TLt−3 + 0.002
(0.033)

∆TLt−4

−0.009
(0.010)

∆FLt −0.016
(0.009)

∆FLt−1 −0.011
(0.009)

∆FLt−2 −0.020
(0.007)

∆FLt−3 −0.016
(0.007)

∆FLt−4

After controlling for the current business cycle component, only financial linkages

are significant. Although the trade linkages variable and its lags are insignificant, they

are not excluded in the first stage linear projection to keep the variations from the

real economic connections between the two regions. The financial linkages and its lags

are jointly significant and the coefficients are negative. This implies that increases in

the exposure to the core European countries via bank lending are likely to reduce the

degree of uncertainty dependence. This is a notable finding. Most literature suggests

that financial integration may smoothen the uncertainty faced by the individual parts

of the system by providing the cross-ownership structure to share the risks. The first

stage estimation results also suggest that the dependence in uncertainty among the

individual components in the system gets weaker as financial integration is developed,

28There could be numerous alternatives for the suitable first stage models. I compared AIC among

different unrestricted models and choose the ones that have minimum AIC statistics with no evidence

of autocorrelation.

29In addition, the coefficients on inv are all insignificant empirically.
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at least for the example of the banking system among the UK and the core European

countries.

The second stage estimation is the long run equilibrium estimation while replacing

Comovt in (Spec 2 ) with the projected co-movement index in the first stage ̂Comovt.
The statistics for selecting the lag orders for the two stage estimation (Spec 3 ) are shown

in Appendix 3.6.4 Table 3.16. The appropriate lag length for the two stage estimation

is p = 3 for both capital inflows and outflows based on the AIC while ensuring there is

no autocorrelation in the errors.

Table 3.5: F- and t-statistics for testing the existence of levels equation (Spec 3 )

Gross capital inflows Gross capital outflows

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

3 7.52c 7.38c −5.96c 3.97c −4.58c 3 9.10c 9.00c −6.31c 5.38c −4.56b

Notes: FIII is the F-statistic for testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with β1 set equal

to zero. FIV is the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without a deterministic trend.

tV is the t-ratio for testing πcc = 0 with a deterministic trend. a indicates the statistic is smaller than

the 0.05 lower bound, b denotes the statistic is within the 0.05 bounds and c denotes the statistic is

greater than the 0.05 upper bound.

The test statistics for the level relationship is provided in Table 3.5. In (Spec 3 ),

the evidence of the existence of long run relationship is stronger than (Spec 2 ) case.

Based on the bounds of critical values provided by PSS, the null hypothesis of absence

of long run relationship is rejected at 5% significance level.

The levels relationship is formulated as follows:

ct = β1GPRt + β2it + β3WGDPt + β4 ̂Comovt + β5DGDPt + β6ppit + β7debtt

+c+ β8t+ β9d2008 + v̂t

where v̂t is the equilibrium correction term.

The estimates of the long run equilibrium for (Spec 3 ) are presented in Appendix

3.6.5 Table 3.25-3.26. Both gross capital inflows and outflows are mainly explained by

global output growth, uncertainty contagion and sovereign debt. The coefficient on

the uncertainty contagion factor is negative and significant at 10% level for the models

with the dummy and trend. This implies that the foreign investors’ capital movements

towards the UK decreases and the residents’ cross-border investments decreases as

the uncertainty co-movement increases. In other words, uncertainty contagion due to

trade and financial links within European countries is associated with stops in capital

inflows and retrenchment in capital outflows. The coefficient of gross outflows model is
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relatively larger in absolute value than that of gross inflows model, suggesting that net

capital inflows. This seems consistent with the results in (Spec 1 ): financial linkages

are procyclical in terms of net capital flows.

Among global factors, only world output growth is positively correlate to gross

capital flows. The size of the coefficients is bigger in gross capital outflows than inflows

and consequently suggesting that global economic growth is likely to induce increases

net capital outflows. The countercyclicality of global growth to net capital flows is con-

sistent with the findings in (Spec 1 ). However, geopolitical uncertainty is no longer sig-

nificant determinant for capital flows after controlling for the uncertainty co-movement

as a contagion factor. This is because EPU index may capture important variations in

the geopolitical uncertainty.

Domestic factors, GDP growth and public debt, are also significantly associated

with capital flows in the long run. The effect of fiscal position on the capital flows

is similar to the benchmark model (Spec 1 ). In the models with dummy variable, the

coefficients are significantly different from zero and positive. Comparing the magnitude

of such effects, the higher sovereign debt ratio is associated with net capital outflows

in the model with both trend and the dummy. In the model with only the dummy

but without trend, the implication to net capital flows are the same as (Spec 1 ). The

estimation results suggest that domestic output growth is negatively correlated with

gross capital flows, but only significant to gross capital outflows. As domestic output

grows stronger, residents are likely to retrench, increasing domestic asset positions

relative to foreign asset positions. In terms of net capital flows, the domestic GDP

growth is procyclical: increased level of domestic output growth is associated with net

capital inflows.

In short, uncertainty contagion becomes significant and positively correlated with

capital flows in (spec 3 ) while the raw uncertainty contagion factor is insignificant in

(Spec 2 ). Individual contagion factors are significant in (Spec 1 ). Global growth is

important for both inflows and outflows estimation of long run levels equilibrium in all

specifications (Spec 1-3 ). Among the pull factors, sovereign debt is the crucial factors on

both capital inflows and outflows. The further theoretical and empirical investigation

may uncover the underlying mechanism of the long run relationship between gross

capital flows and various factors.

3.4.2 The short run dynamics between capital flows and determinants

For the subsequent estimation, ARDL approach in Pesaran and Shin (1999) is

adopted. Setting the lag length for unrestricted model as p, the appropriate orders

of autoregressive components in an conditional ARDL model are selected among the

p(k+1), where k is the number of variables excluding the dependent variable. Therefore,
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the orders of an ARDL model are selected among the 49 models for entire sample in

(Spec 1 ) and 210 for sub sample in (Spec 1 ). In case of (Spec 2 ) and (Spec 3 ), the lag

length for unrestricted model is p = 5 for the model of capital inflows in (Spec 2 ) and

p = 3 for the model of outflows in (Spec 2 ), inflows and outflows in (Spec 3 ). Therefore,

the orders of ARDL models are selected among 58 models and 38 models, respectively.

The selection criteria is AIC. Appendix 3.6.6 Table 3.31-3.32 indicates the resulting lag

lengths for each case.

After deciding the appropriate lag lengths for each regressors, the conditional error

correction model (ECM) is estimated including the one-period lagged residual, v̂t−1,

from the long run equilibrium. The regression results are given in Table 3.33-3.40 in

Appendix 3.6.7. To check whether the capital flows converge towards the equilibrium

described by the long run relationships, the inverse roots of AR components are also

provided in the notes under corresponding tables.

For the estimation of capital inflows in (Spec 1 ) using the entire sample, error cor-

rection terms are all significant as expected. The two contagion factors and domestic

GDP growth are significant, irrespective of the inclusion of the dummy and determin-

istic trend. In the model with the dummy, lags of capital inflows and inflation are

significant in short term correction in addition to the contagion and domestic GDP

growth. In the model without the dummy, the first lag of world GDP and government

debt are significant. The sub sample estimation of gross capital inflows shows that

error correction terms are all significant. Risk-free interest rate and contagion factors

(excluding trade linkages) are important short term determinants in models with and

without the dummy. In the case of no dummy model, global uncertainty, world GDP

and domestic GDP growth are significant. Trade linkage variable is significant in the

model that contains dummy and deterministic trend.

In case of capital outflows estimation in (Spec 1 ) using the entire sample, error

correction term is only significant for the models without the dummy. Contagion factors

and domestic output growth are significant in all specification while lags of capital

outflows and inflation is significant in the models with the dummy only. Public debt is

significant in the models without dummy. Finally, capital outflows estimation using sub

sample, error correction terms, contagion factors (except trade linkages), global risk-

free interest rates are significant in all specification. In the models without dummy, the

lags of capital outflows, global uncertainty, world GDP and domestic GDP growth are

significant.

To sum up the results from the benchmark model (Spec 1 ), financial linkages and

international investors’ behavioural factors are significant regardless of sample range

and model specification whether the dummy and/or deterministic trend are included.

This suggest that contagion factors are important not only in determining the long run

equilibrium but also in adjustment in the short run dynamics. Domestic output growth
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is a crucial short-term determinant in the entire sample cases while global long term

interest rate is a key short-term factor in the sub sample estimation. Sovereign debt is

clearly important factor in long run equilibrium but it does not play a key role in the

short run.

The conditional ECM results of (Spec 2 ) shows that the error correction terms are

mostly insignificant in inflows model except for the models without the dummy vari-

able. The significant short term factors of gross capital inflows are global interest rate,

domestic GDP growth, and inflation. Co-movement in uncertainty seems insignificant

in all specifications. In the capital outflows model, the error correction terms are sig-

nificant. The lags of public debt are also significant in all specifications. In the model

without the dummy, global uncertainty and world GDP growth are significant short

term factors. Inflation is significant in the model with the dummy. The co-movement

index is insignificant for all specifications.

As for the conditional ECM estimation results in (Spec 3 ), both capital inflows and

outflows model have significant error correction terms. Co-movement in uncertainty is

insignificant in all specifications. In the long run, however, uncertainty contagion is one

of the important factors. In the capital inflows models without the dummy variable,

the important short-term factors are global interest rate, world GDP growth, domestic

GDP, inflation, and government debt. In addition to the error correction terms, the

lags of public debt to GDP are significant in explaining short-term changes in capital

outflows in all different specifications. In (Spec 3 ), the sovereign debt is important in

long- and short-run dynamics of capital outflows.

Finally, comparing (Spec 3 ) results with the benchmark results, uncertainty con-

tagions in (Spec 3 ) are important in the long run relationships but insignificant in the

short run movements in capital flows whereas contagion factors in (Spec 1 ) are crucial

in both long- and short-term movements in capital flows. The sovereign debt in (Spec

3 ) is important for both long- and short-run dynamics of capital flows but, in (Spec

1 ), it matters only in the long run.

3.4.3 Robustness Checks

For the robustness check, the benchmark model is re-estimated using the Global

EPU (GEPU) index instead of geopolitical risk (GPR) index. Denote this specification

as (Spec 4 ). The sample range for (Spec 4 ) is 1997q1–2016q2 due to the limited

availability of the GEPU index. The model includes trade linkages variable to be

compared with the sub sample case of (Spec 1 ). In addition, the differential effect of

public debt before and after the Great Financial Crisis is estimated by introducing an

interaction term between the dummy (D2008) and public debt variable. Denote this

specification as (Spec 5 ). The sample range is from 1985q1 to 2016q2. Therefore, the

163



estimates of (Spec 5 ) can be compared with the entire sample case of (Spec 1 ).

Appendix 3.6.4 Table 3.17 presents the statistics for choosing an appropriate lag

order in (Spec 4 ). The suitable lag length is p = 2 selected by minimizing the informa-

tion criteria while ensuring no serial correlation in the error term. For the test of long

run level relationship, the critical value bounds when k = 9 in PSS is used. Table 3.6

shows that joint and single hypotheses of no level relationship in different scenarios are

rejected at 5% significance level. This implies that the significant long run equilibrium

exists between gross capital flows and global, contagion and domestic factors even by

changing the proxy for global uncertainty from GPR index to GEPU index.

Table 3.6: F- and t-statistics for testing the existence of levels equation (Spec 4 )

Gross capital inflows Gross capital outflows

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

2 11.85c 11.78c −9.51c 10.30c −8.97c 2 10.46c 10.44c −8.96c 8.99c −8.44c

Notes: FIII is the F-statistic for testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with β1 set equal

to zero. FIV is the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without a deterministic trend.

tV is the t-ratio for testing πcc = 0 with a deterministic trend. a indicates the statistic is smaller than

the 0.05 lower bound, b denotes the statistic is within the 0.05 bounds and c denotes the statistic is

greater than the 0.05 upper bound.

The estimates of the long run equilibrium is listed in Appendix 3.6.5 Table 3.27-

3.28. Comparing to the sub sample estimates of (Spec 1 ), global uncertainty, proxied

by GEPU index, becomes significant in both capital inflows and outflows estimation.

The coefficient is positive, implying that an increase in global uncertainty is associ-

ated with surges of capital inflows by foreign investors and capital flight by domestic

investors. These findings coincide with the results in (Spec 1 ) entire sample case: the

flight-to-quality incentives can form different cross-border investment dynamics among

foreign and domestic investors. However, the coefficients of GEPU on capital outflows

are larger than capital inflows, suggesting net capital outflows. This is the opposite to

the findings in (Spec 1 ), where global geopolitical uncertainty is likely to induce net

capital inflows to the UK financial market. The results may reflect the difference in

the aspects of uncertainty that are captured distinctively by each index. It is largely

recognised in the recent literature that country-level EPU index might be endogenous

to domestic economic conditions. GEPU index is constructed using GDP weight and

the UK is one of the largest economy in the world. Therefore, the GEPU index may

be largely correlated with the UK’s domestic economic fundamentals. If GEPU is posi-

tively correlated with recessionary pressure in the UK economy, the domestic investors’

incentive of reducing the exposures to domestic assets may become stronger than the

foreign investors’ incentive of flight-to-quality.
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The two contagion factors, financial linkages and international investors’ aspects,

are significant and have positive sign. The increased level of financial contagion factor

is likely to be associated with net capital inflows while the increased proportion of in-

ternational investors associated with net capital outflows. All of the findings regarding

the contagion factors are unchanged from the estimation results in benchmark models

with GPR index.

Among domestic factors, increases in sovereign debt level is correlated to increased

level of gross capital inflows and outflows. The effect of sovereign debt on gross outflows

is larger than gross inflows, suggesting net outflows when the government debt increases.

This is also the same findings as (Spec 1 ) estimated using sub sample data.

To estimate the conditional ECM with ARDL(ct, GEPUt, it, WGDPt, TLt, FLt,

invt, DGDPt, ppit, debtt), the lag orders of autoregressive terms are selected based on

AIC. The resulting lags of the conditional ECM is ARDL(2, 1, 2, 2, 1, 2, 2, 1, 1, 2)

for capital inflows equation and ARDL(2, 1, 2, 2, 1, 2, 2, 2, 1, 2) for capital outflows

equation.

In terms of the short term dynamics (see Table 3.41-3.42 in Appendix 3.6.7), the

error correction terms are significant in both capital inflows and outflows estimation.

GEPU and contagion factors (excluding trade linkages) are important factors in the

short run. On the contrary, in the benchmark model, GPR index is only significant for

some specification. Instead, risk-free interest rate and contagion factors are significant

in the conditional ECM in the benchmark model (Spec 1 ).

In the ECM specifications without the dummy, other variables are also significant.

World output growth and public debt are significant in the capital inflows equations of

(Spec 4 ), whereas global uncertainty (GPR index), world output growth and domestic

output growth are important in (Spec 1 ). As for capital outflows equations in (Spec

4 ), world GDP and all three domestic factors are found to be significant while lags of

capital outflows, global uncertainty, world GDP growth and domestic GDP growth in

(Spec 1 ).

To summarize, the choice of the proxy for global uncertainty does not decay the

significance of contagion factors on gross capital movements both in the long-run and

the short-run. However, the effect of other global and domestic factors on the capital

flows may change by switching between different measures for global uncertainty. GPR

and GEPU captures different aspects of uncertainty and as discussed previously. Since

EPU index can suffer from potential endogeniety by construction, the estimation results

in (Spec 4 ) should be interpreted with caution.

Finally, the entire sample estimation with an interaction term is performed (Spec
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5 ).30 Define pdebtt ≡ D2008 × debtt, so that the variables included in the model are

(ct, GPRt, it, WGDPt, FLt, invt, DGDPt, ppit, debtt, pdebtt). Based on information

criteria and the absence of the autocorrelation, the appropriate lag lengths are chosen

as p = 2, 4. The relevant statistics are presented in Table 3.18 in Appendix 3.6.4. To

test the existence of long run relationships in the level variables, F- and t-tests are

performed. The critical value bounds are the same as (Spec 4 ) as k = 9 as it includes

pdebtt but excludes TLt. The test statistics in Table 3.7 confirms the existence of long

run relationship when p = 2, regardless whether the model has deterministic trend or

not.

Table 3.7: F- and t-statistics for testing the existence of levels equation (Spec 5 )

Gross capital inflows Gross capital outflows

With trend Without trend With trend Without trend

p FIV FV tV FIII tIII p FIV FV tV FIII tIII

2 10.25c 10.04c −9.53c 9.28c −9.10c 2 7.86c 7.65c −8.25c 7.01c −7.84c

4 5.06c 5.04c −6.22c 4.65c −5.95c 4 4.09c 4.05c −5.10c 3.55c −4.71b

Notes: FIII is the F-statistic for testing the null hypothesis, H0 : πcc = 0, πππcx.x = 000′ with β1 set equal

to zero. FIV is the F-statistic for testing H0 : πcc = 0, πππcx.x = 000′, and β1 = 0. FV is the F-statistic

for testing H0 : πcc = 0,πππcx.x = 000′. tIII is the t-ratio for testing πcc = 0 without a deterministic trend.

tV is the t-ratio for testing πcc = 0 with a deterministic trend. a indicates the statistic is smaller than

the 0.05 lower bound, b denotes the statistic is within the 0.05 bounds and c denotes the statistic is

greater than the 0.05 upper bound.

The long run relationships are summarised in Appendix 3.6.5. Table 3.29-3.30.

The contagion factors are still significant in explaining the changes in gross capital

flows. The differential effect of public debt before and after the GFC is captured by the

estimated coefficient on pdebtt term. It is significant and positive. That is, in the post-

crisis period, the increased level of public debt is correlated with higher level of gross

capital inflows while the correlation is nearly zero in the pre-crisis period. As discussed

in the benchmark model, this might reveal the effectiveness of expansionary monetary

and fiscal policies in response to the global financial crisis to retain investment from

abroad. The gross capital outflow estimation result (positive coefficient) suggests that

the elevated level of domestic government debt might stimulate capital flight of domestic

investors. The difference in the magnitude of the coefficients on pdebt between inflows

and outflows indicates that the increased level of sovereign debt is likely to induce net

capital inflows after the GFC. However, there is no significant long run relationship

between sovereign debt and net capital flows before the GFC.

For the estimation of short-term dynamics, the lag orders of autoregressive terms

30Admittedly, we cannot rule out the potential slope differential effect on other variables, such as

political risk. The extension could be further investigated by introducing an interaction term of dummy

and GPR index, in this case.
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in the conditional ECM are selected based on AIC: ARDL(2, 1, 1, 2, 2, 2, 2, 1, 1, 1) for

capital inflows and ARDL(2, 1, 1, 2, 2, 2, 1, 1, 1, 1) for capital outflows. The estimates

of the conditional ECM are shown in Appendix 3.6.7. Table 3.43-3.44. The results of

capital inflows and outflows are mostly homogeneous: the error correction terms and

contagion factors are significant, domestic GDP growth and the interaction between

dummy and public debt to GDP (pdebtt) are significant. In (Spec 1 ), government debt

does not have significant short run impact on both gross capital inflows and outflows.

This suggest the changes of how government debt is associated with short run dynamics

of capital flows.

3.5 Conclusions

The research on the effect of uncertainty in open economy setting is rapidly grow-

ing area after the Great Financial Crisis in 2008. However, most studies are limited by

focusing on theoretical models of cross-border portfolio asset allocation. Empirically,

volatility measures are largely employed for uncertainty proxy, failing to incorporate

recent developments in measuring uncertainty based on appropriate definition. This

research aims at making a contribution towards the on-going discussions in empirical

literature on uncertainty and capital flows. It emphasized the impact of geopolitical un-

certainty and uncertainty co-movement among major European countries on the UK’s

gross capital movements. In particular, it implemented the bounds testing approach

by Pesaran, Shin and Smith (2001) to examine whether there is long run relationship

between uncertainty factors and gross capital flows. The main findings are summarised

as follows.

First, in the long run, global uncertainty, proxied by Geopolitical Risk (GPR)

index, contains important information about cross-border investments after control-

ling for other factors. The correlation can be interpreted causally because GPR index

reflects exogenous source of uncertainty. The results suggest that higher level of geopo-

litical uncertainty increases inflows by foreign investors but leads to capital flight by

domestic investors. In terms of net capital flows, the flight-to-quality motives of foreign

investors (a large-scale surge in capital inflows) tend to be stronger than the incentives

of residents’ capital flight to safer assets.

Second, contagion factors, such as financial linkages and end investors’ behavioural

aspects, are important long run factors of cross-border investment decisions in the UK.

Gross capital inflows and outflows are positively correlated with the degree of financial

links to the core European countries and with the end portfolio investors’ proportion.

The higher degree of banking sector integration among the UK and other European

countries may induce net capital inflows to the UK in the long run while the increased

role of international end investors and asset managers may prompt net capital outflows

167



from the UK financial market. These findings may draw some key policy implications

regarding the recent Brexit decision. Due to the potential loss of access to EU single

financial market, the UK’s financial linkages to other core European countries may

weaken and, therefore, it may experience large stops in gross capital inflows in the long

run.

Third, contagion in uncertainty measured by the co-movement of EPU between the

UK and core European countries has significant and positive correlation with capital

flows in the two stage estimation. Uncertainty contagion due to trade and financial links

within European countries is associated with stops in capital inflows and retrenchment

in capital outflows. In terms of the net flows, as the uncertainty contagion between the

two economies increases, net capital inflows increases. The theoretical mechanism of

how the economic and financial linkages affect the co-movement in uncertainty is left

to the future research.

Finally, in the short run, capital flows dynamics are mostly stable and help con-

vergence towards the long run equilibrium. In the benchmark model, contagion factors

are crucial to long- and short-term dynamics of gross capital flows while sovereign

debt is only important for long run relationships. On the contrary, in the model with

uncertainty co-movement index, contagions in uncertainty matters only for long run

relationship and sovereign debt is important for both long- and short-run movements

in gross capital flows.
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3.6 Appendix

3.6.1 Related literature

I. Literature on uncertainty effect on financial markets

Pástor and Veronesi (2013) showed that political uncertainty can affect asset prices

and volatility by reducing the value of the implicit put protection that government

provides to the financial market. Ulrich (2013) analysed the uncertainty effect on

bond markets with a focus on fiscal policy uncertainty. Brogaard and Detzel (2015)

documented the relationship between news-based measure of policy uncertainty and

equity risk premium. Bordo, Duca, and Koch (2016) examined the bank credit channel

of economic policy uncertainty using the US aggregate and individual bank data. In

terms of the linkages between real activities and financial market frictions, Alfaro,

Bloom and Lin (2016) developed a model that elucidates firms’ investment and financial

decision making problems in highly uncertain economic situations.

II. Literature on uncertainty and international portfolio allocation

Pástor and Veronesi (2013) showed that, with higher policy uncertainty, agents

are less favourable for taking risks, leading to safe-haven capital flows in equity mar-

ket. Jotikasthira, Lundblad, and Ramadorai (2012) found that the funds domiciled

in advanced economies tend to change their asset allocations in emerging markets fol-

lowed by uncertainty shocks. Gauvin, McLoughlin, and Reinhardt (2014) documented

that the spillover effect in portfolio capital flows due to the policy uncertainty shocks

in advanced countries differs with respect to the orientation of the policy uncertainty,

whether it is from the US or the EU. Gourio, Siemer, and Verdelhan (2013) built a real

business cycle model that can explain time-varying aggregate uncertainty, and excess

co-movement of asset prices. Recently, Gourio, Siemer, and Verdelhan (2016) extended

Gourio, Siemer, and Verdelhan (2013) and Carrière-Swallow and Céspedes (2013) by

setting up a model that can unveil the causal relationship of political uncertainty, fi-

nancial market volatility and capital flows.

III. Literature on net capital flows

A great number of existing literature studied the behaviour of net capital flows.

Traditionally, the external factors that affect net capital flows were referred as push

factors and domestic determinants as pull factors (Calvo, Leiderman and Reinhart,

1993, 1996; Fernandez-Arias, 1996; Chuhan, Claessens and Mamingi, 1998; Griffin,

Nardari and Stulz, 2004, among others). Among many, one of the important advance

in the studies of net capital flows is the study of the determinants of sudden stops (or

surges) of net capital flows. They are particularly interested in the abrupt reversals in

capital flows and its impact on the small open economies. Key discussions are about
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the definition of sudden stops and how to identify those highly damaging episodes from

country-level panel data. The definition of sudden stops of net capital flows varies

among researchers. For example, Calvo (1998) defined sudden stops as episodes of a

sharp decrease in net capital flows, Calvo, Izquierdo, and Mejia (2004) in terms of

output contraction, and Calvo, Izquierdo, and Mejia (2008) a sharp increase in interest

rate spread. On the mirror concept of sudden stops, Reinhart and Reinhart (2008)

defined bonanzas as a sharp increase in net capital flows.

IV. Literature on gross capital flows

Rothenberg and Warnock (2011) distinguished true sudden stop (gross capital

inflow decreases more than gross outflow increase) form sudden flight (gross capital

outflows increase more than gross capital inflow decrease). In addition, the study of link

between sudden gross capital flows and crisis has been prompted by several researchers

in the aftermath of financial crisis in 2008. Milesi-Ferretti and Tille (2011) studied the

recent crisis episodes of extreme events in gross capital flows and Broner et al. (2013)

examined the relationship between business cycle and capital flows. Among others,

Forbes and Warnock (2012a, 2012b) focused on the different incentives of movement

in capital flows depending on the type of investors. Incentives of cross-border capital

movements may vary by different types of investors with regards to their residence, i.e.

domestic or foreign investors. They characterised four extreme episodes of gross capital

flows depending on changes in gross outflows and inflows, respectively, and analysed

different factors contribute to different extreme events. Surge is defined as a sharp

increase in gross capital inflows by foreign investors, stop as a sharp decrease in gross

capital inflows by foreign investors, flight as a sharp increase in domestic investors’ gross

capital outflows and retrenchment as a sudden decrease in gross outflows of domestic

investors.

3.6.2 Determinants of capital flows in the literature

Table 3.8: Determinants of capital flows in the traditional literature (push-pull factors)

Push factors Pull factors

Real
Global output growth, commodity

prices

GDP growth, inflation, fiscal balance,

public debt, short-term external debt

Financial

(Implied or realised) US stock market

volatility, global liquidity, long-term

interest rate

Domestic short-term interest rate,

bank credit growth, domestic equity

market returns, volatility, sovereign

CDS speads

Structural/Institutional International investors’ behaviour

Market capitalisation (the ratio of

equity market capital to GDP),

capital account openness (Chinn and

Ito Index), financial risk index by

International Country Risk Guide

(ICRG)
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3.6.3 Unit root test results

Table 3.9: Augmented Dickey Fuller (ADF) test, Sample I

Level First differences

None Intercept Trend, None Intercept Trend, Decision

Intercept intercept

CFI −1.719∗ −2.349 −2.319 −8.078∗∗∗ −8.041∗∗∗ −8.008∗∗∗ I(1)

CFO −1.844∗ −2.319 −2.288 −8.322∗∗∗ −8.283∗∗∗ −8.254∗∗∗ I(1)

GPR −1.198 −4.146∗∗∗ −4.366∗∗∗ −12.732∗∗∗ −12.681∗∗∗ −12.641∗∗∗ I(0)

i −2.862∗∗∗ −2.209 −5.453∗∗∗ −8.311∗∗∗ −6.734∗∗∗ −6.666∗∗∗ I(0)

WGDP −0.997 −6.315∗∗∗ −6.288∗∗∗ −7.545∗∗∗ −7.511∗∗∗ −7.479∗∗∗ I(0)

FL 0.288 −1.310 −0.216 −9.501∗∗∗ −9.539∗∗∗ −9.651∗∗∗ I(1)

inv −2.301∗∗ −3.756∗∗∗ −3.721∗∗ −14.822∗∗∗ −14.761∗∗∗ −14.721∗∗∗ I(0)

DGDP −1.416 −3.057∗∗ −3.160∗ −8.779∗∗∗ −8.740∗∗∗ −8.702∗∗∗ I(0)

ppi −1.471 −2.035 −2.636 −9.318∗∗∗ −9.300∗∗∗ −9.266∗∗∗ I(1)

debt 0.655 −0.658 −2.231 −2.483∗∗ −2.684∗ −2.807 I(1)

Table 3.10: Augmented Dickey Fuller (ADF) test, Sample II

Level First differences

None Intercept Trend, None Intercept Trend, Decision

Intercept intercept

CFI −2.932∗∗∗ −3.500∗∗ −3.671∗∗ −6.484∗∗∗ −6.438∗∗∗ −6.395∗∗∗ I(0)

CFO −1.512 −3.414∗∗ −3.642∗∗ −6.684∗∗∗ −6.638∗∗∗ −6.598∗∗∗ I(0)

GPR −0.846 −3.501∗∗ −3.503∗∗ −10.062∗∗∗ −10.009∗∗∗ −9.944∗∗∗ I(0)

i −1.823∗ −1.128 −3.958∗∗ −4.318∗∗∗ −7.463∗∗∗ −7.408∗∗∗ I(0)

WGDP −1.154 −4.933∗∗∗ −4.903∗∗∗ −6.154∗∗∗ −6.112∗∗∗ −6.069∗∗∗ I(0)

TL −1.251 −1.046 −3.998∗∗ −9.529∗∗∗ −9.623∗∗∗ −9.546∗∗∗ I(1)

FL 0.100 −1.321 −0.194 −7.474∗∗∗ −7.455∗∗∗ −7.778∗∗∗ I(1)

inv −1.914∗ −7.328∗∗∗ −7.485∗∗∗ −11.885∗∗∗ −11.813∗∗∗ −11.746∗∗∗ I(0)

DGDP −1.041 −2.083 −2.416 −8.402∗∗∗ −8.345∗∗∗ −8.288∗∗∗ I(1)

ppi −1.757∗ −4.068∗∗∗ −4.080∗∗∗ −7.096∗∗∗ −7.088∗∗∗ −7.040∗∗∗ I(0)

debt 0.638 −0.613 −2.334 −2.025∗∗ −2.230 −2.357 I(1)

Comov −1.791∗ −7.152∗∗∗ −7.170∗∗∗ −8.601∗∗∗ −8.555∗∗∗ −8.622∗∗∗ I(0)

coBC −1.659∗∗ −3.014∗∗ −2.989 −9.056∗∗∗ −8.992∗∗∗ −8.937∗∗∗ I(0)

Notes: Sample I denotes the period 1985q1–2016q2 and Sample II denotes the period 1997q1–2016q2.

The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively. MacKinnon (1996)

critical values are used for rejection of the null hypothesis of unit root. Lag lengths are selected based

on Schwarz information criterion.
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Table 3.11: Phillips Perron (PP) test, Sample I

Level First differences

None Intercept Trend, None Intercept Trend, Decision

Intercept intercept

CFI −9.459∗∗∗ −10.158∗∗∗ −10.146∗∗∗ −29.706∗∗∗ −29.577∗∗∗ −28.411∗∗∗ I(0)

CFO −9.423∗∗∗ −9.907∗∗∗ −9.880∗∗∗ −28.707∗∗∗ −28.582∗∗∗ −28.492∗∗∗ I(0)

GPR −2.312∗∗ −6.794∗∗∗ −6.983∗∗∗ −41.908∗∗∗ −41.684∗∗∗ −45.261∗∗∗ I(0)

i −2.597∗∗∗ −2.195 −4.553∗∗∗ −8.059∗∗∗ −8.224∗∗∗ −8.182∗∗∗ I(0)

WGDP −1.066 −3.318∗∗ −3.306∗ −7.114∗∗∗ −7.046∗∗∗ −6.970∗∗∗ I(0)

FL −0.015 −1.397 −0.852 −9.905∗∗∗ −9.924∗∗∗ −9.987∗∗∗ I(1)

inv −6.963∗∗∗ −9.883∗∗∗ −9.932∗∗∗ −48.314∗∗∗ −48.077∗∗∗ −53.336∗∗∗ I(0)

DGDP −2.005∗∗ −3.326∗∗ −3.444∗ −7.576∗∗∗ −7.544∗∗∗ −7.542∗∗∗ I(0)

ppi −2.638∗∗∗ −3.183∗∗ −3.350∗ −6.208∗∗∗ −7.113∗∗∗ −7.018∗∗∗ I(0)

debt 1.757 0.398 −1.328 −6.505∗∗∗ −7.033∗∗∗ −7.416∗∗∗ I(1)

Table 3.12: Phillips Perron (PP) test, Sample II

Level First differences

None Intercept Trend, None Intercept Trend, Decision

Intercept intercept

CFI −6.846∗∗∗ −7.886∗∗∗ −8.104∗∗∗ −25.642∗∗∗ −25.467∗∗∗ −25.316∗∗∗ I(0)

CFO −6.908∗∗∗ −7.654∗∗∗ −7.954∗∗∗ −22.730∗∗∗ −22.581∗∗∗ −22.444∗∗∗ I(0)

GPR −1.861∗ −5.369∗∗∗ −5.399∗∗∗ −20.675∗∗∗ −20.839∗∗∗ −20.988∗∗∗ I(0)

i −1.749∗ −1.128 −3.161∗ −7.538∗∗∗ −7.633∗∗∗ −7.573∗∗∗ I(0)

WGDP −1.365 −3.380∗∗ −3.371∗ −4.955∗∗∗ −4.912∗∗∗ −4.871∗∗∗ I(0)

TL −2.186∗∗ −0.655 −3.955∗∗ −10.146∗∗∗ −12.077∗∗∗ −12.632∗∗∗ I(0)

FL −0.064 −1.422 −0.452 −7.593∗∗∗ −7.574∗∗∗ −7.824∗∗∗ I(1)

inv −5.261∗∗∗ −7.765∗∗∗ −7.882∗∗∗ −29.377∗∗∗ −29.232∗∗∗ −29.573∗∗∗ I(0)

DGDP −2.044∗∗ −3.056∗∗ −3.237∗ −5.439∗∗∗ −5.407∗∗∗ −5.375∗∗∗ I(0)

ppi −2.180∗∗ −2.700∗ −2.691 −5.116∗∗∗ −5.088∗∗∗ −5.055∗∗∗ I(0)

debt 1.718 0.357 −1.828 −4.586∗∗∗ −5.087∗∗∗ −5.703∗∗∗ I(1)

Comov −3.640∗∗∗ −7.152∗∗∗ −7.170∗∗∗ −30.983∗∗∗ −32.436∗∗∗ −34.516∗∗∗ I(0)

coBC −2.357∗∗ −3.556∗∗∗ −3.534∗∗ −11.716∗∗∗ −11.539∗∗∗ −11.428∗∗∗ I(0)

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively. MacKinnon

(1996) critical values are used for rejection of the null hypothesis of unit root. Bartlett kernel is

used to estimate the frequency zero spectrum. The method of selecting the bandwidth is Newey-West

automatic variable bandwidth selection.
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3.6.4 Statistics for selecting the lag order

Table 3.13: Statistics for selecting the lag order: Gross capital inflows (Spec 1 )

Sample: 1985q1 - 2016q2

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 12.07 12.73 0.07 2.15 12.07 12.71 0.57 2.28

2 11.95 12.81 1.79 0.38 12.00 12.85 4.65∗∗ 0.08

3 11.97 13.05 1.43 3.14∗ 12.04 13.09 1.22 1.36

4 11.90 13.19 0.12 0.19 11.94 13.21 0.18 0.01

5 11.88 13.39 1.07 0.39 11.93 13.42 1.79 0.38

6 11.70 13.43 0.13 1.73 11.80 13.50 0.18 1.52

7 11.41 13.36 0.91 8.33∗∗∗ 11.47 13.40 0.68 7.26∗∗∗

Sample: 1997q1 - 2016q2

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 12.48 13.45 0.01 0.97 12.46 13.40 0.00 0.99

2 12.23 13.52 0.22 0.40 12.23 13.49 0.06 0.37

3 12.25 13.85 0.99 0.31 12.28 13.86 0.92 0.11

4 11.71 13.64 3.21∗ 3.45∗ 11.70 13.60 3.71∗ 3.57∗

Notes: p is the order of lag in the underlying VAR model for equation (1), without any restrictions on

the coefficients of lagged changes in determinants. AIC ≡ −2(l/T ) + 2(k/T ) and SBC ≡ −2(l/T ) +

k ln(T )/T denote Akaike’s and Schwarz’s Bayesian Information Criteria for a given lag order, where l is

the value of the log likelihood function, k is number of parameters and T is the sample size. χ2
SC(1) and

χ2
SC(4) are the LM statistics for testing autocorrelation in the errors for the models including 1 lag and

4 lags, respectively. The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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Table 3.14: Statistics for selecting the lag order: Gross capital outflows (Spec 1 )

Sample: 1985q1 - 2016q2

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 12.13 12.79 2.25 4.63∗∗ 12.12 12.76 3.86∗∗ 4.53∗∗

2 12.04 12.91 3.70∗ 0.38 12.09 12.93 7.73∗∗∗ 0.53

3 12.07 13.15 3.96∗∗ 0.30 12.13 13.19 3.45∗ 0.01

4 12.05 13.35 2.22 0.00 12.10 13.37 1.35 0.09

5 12.12 13.63 2.28 0.00 12.14 13.63 2.14 0.00

6 11.87 13.60 0.15 0.30 11.92 13.63 0.30 0.32

7 11.54 13.49 1.88 5.69∗∗ 11.57 13.49 1.22 5.73∗∗

Sample: 1997q1 - 2016q2

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 12.45 13.42 0.33 0.25 12.42 13.37 0.35 0.26

2 12.30 13.59 0.06 0.75 12.30 13.56 0.00 0.95

3 12.19 13.80 1.45 0.39 12.24 13.82 1.32 0.32

4 11.66 13.59 2.74∗ 2.82∗ 11.63 13.53 2.98∗ 2.81∗

Notes: p is the order of lag in the underlying VAR model for equation (1), without any restrictions on

the coefficients of lagged changes in determinants. AIC ≡ −2(l/T ) + 2(k/T ) and SBC ≡ −2(l/T ) +

k ln(T )/T denote Akaike’s and Schwarz’s Bayesian Information Criteria for a given lag order, where l is

the value of the log likelihood function, k is number of parameters and T is the sample size. χ2
SC(1) and

χ2
SC(4) are the LM statistics for testing autocorrelation in the errors for the models including 1 lag and

4 lags, respectively. The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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Table 3.15: Statistics for selecting the lag order (Spec 2 )

Gross capital inflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 13.16 13.97 2.27 5.78∗∗ 13.27 14.04 0.75 5.84∗∗

2 12.76 13.82 2.41 0.06 13.16 14.19 0.29 7.81∗∗∗

3 12.62 13.94 0.01 0.70 13.01 14.30 0.04 0.00

4 12.41 13.99 3.91∗∗ 0.92 12.73 14.28 1.80 0.43

5 11.71 13.56 2.61 0.49 12.30 14.11 0.00 0.76

Gross capital outflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 13.24 14.05 2.14 5.88∗∗ 13.28 14.06 1.18 6.00∗∗

2 12.81 13.87 2.85∗ 0.12 13.08 14.11 0.28 5.85∗∗

3 12.56 13.87 0.32 0.45 12.94 14.23 0.06 0.08

4 12.20 13.78 5.24∗∗ 1.14 12.63 14.18 1.72 0.23

5 11.37 13.21 4.24∗∗ 0.85 12.13 13.95 0.03 0.65

Table 3.16: Statistics for selecting the lag order (Spec 3 )

Gross capital inflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 13.02 13.84 4.73∗∗ 5.67∗∗ 13.06 13.85 1.65 4.95∗∗

2 12.62 13.70 2.90∗ 0.49 13.06 14.11 1.04 3.32∗

3 12.37 13.72 1.19 0.31 12.79 14.10 1.49 0.22

4 11.83 13.45 3.43∗ 0.42 12.21 13.79 2.41 0.13

Gross capital outflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 13.06 13.88 3.47∗ 5.00∗∗ 13.05 13.84 2.19 4.48∗∗

2 12.68 13.76 2.93∗ 0.31 12.96 14.01 0.34 1.51

3 12.28 13.62 3.08∗ 0.16 12.65 13.96 2.18 0.04

4 11.58 13.20 4.25∗∗ 0.30 11.98 13.57 3.82∗ 0.00

Notes: p is the order of lag in the underlying VAR model for equation (1), without any restrictions on

the coefficients of lagged changes in determinants. AIC ≡ −2(l/T ) + 2(k/T ) and SBC ≡ −2(l/T ) +

k ln(T )/T denote Akaike’s and Schwarz’s Bayesian Information Criteria for a given lag order, where l is

the value of the log likelihood function, k is number of parameters and T is the sample size. χ2
SC(1) and

χ2
SC(4) are the LM statistics for testing autocorrelation in the errors for the models including 1 lag and

4 lags, respectively. The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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Table 3.17: Statistics for selecting the lag order (Spec 4 )

Capital inflows

With deterministic trends Without deterministic trends

1 12.64 13.62 0.14 1.07 12.66 13.61 0.00 1.07

2 12.30 13.60 0.15 0.18 12.41 13.67 0.25 0.01

3 12.30 13.92 0.27 0.09 12.55 14.14 0.25 0.14

4 11.66 13.61 2.62 1.45 11.86 13.78 1.40 4.61∗∗

Capital outflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 12.66 13.64 0.04 0.91 12.68 13.63 0.45 0.94

2 12.38 13.67 0.01 0.01 12.48 13.75 0.72 0.09

3 12.27 13.89 0.67 0.04 12.58 14.16 0.21 0.34

4 11.54 13.49 2.75∗ 0.62 11.97 13.88 0.98 3.70∗

Table 3.18: Statistics for selecting the lag order (Spec 5 )

Capital inflows

With deterministic trends Without deterministic trends

1 11.97 12.70 4.06∗∗ 2.74∗ 11.97 12.67 2.58 2.28

2 11.89 12.85 0.40 0.49 11.94 12.88 4.77∗∗ 0.00

3 11.92 13.12 0.95 1.91 11.96 13.13 5.95∗∗ 0.00

4 11.90 13.34 2.73∗ 0.07 11.93 13.34 1.96 1.46

Capital outflows

With deterministic trends Without deterministic trends

p AIC SBC χ2

SC
(1) χ2

SC
(4) AIC SBC χ2

SC
(1) χ2

SC
(4)

1 11.96 12.69 2.31 4.61∗∗ 11.96 12.67 0.44 4.79∗∗

2 11.93 12.89 0.38 0.23 11.97 12.91 1.93 0.56

3 11.94 13.13 4.09∗∗ 0.18 11.98 13.16 2.64 0.06

4 11.94 13.38 2.29 0.08 11.99 13.40 1.94 0.03

Notes: p is the order of lag in the underlying VAR model for equation (1), without any restrictions on

the coefficients of lagged changes in determinants. AIC ≡ −2(l/T ) + 2(k/T ) and SBC ≡ −2(l/T ) +

k ln(T )/T denote Akaike’s and Schwarz’s Bayesian Information Criteria for a given lag order, where l is

the value of the log likelihood function, k is number of parameters and T is the sample size. χ2
SC(1) and

χ2
SC(4) are the LM statistics for testing autocorrelation in the errors for the models including 1 lag and

4 lags, respectively. The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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3.6.5 Long run estimation results

Table 3.19: Long run estimation: Capital inflows, Sample I (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.51 0.26 * 0.21 0.29 0.45 0.25 * 0.20 0.27

it -4.43 18.87 -4.52 21.44 2.96 14.75 -2.44 16.70

WGDPt 27.96 13.06 ** 40.99 14.62 *** 25.90 12.62 ** 40.38 14.03 ***

FLt 3.31 1.24 *** 1.84 1.38 2.85 1.00 *** 1.71 1.12

invt 16.76 3.97 *** 18.05 4.50 *** 16.72 3.96 *** 18.03 4.48 ***

DGDPt -4.61 8.66 10.28 9.41 -3.34 8.40 10.60 9.14

ppit 2.53 8.84 -12.57 9.61 4.06 8.48 -12.10 9.10

debtt 12.20 3.29 *** -3.64 2.16 * 11.34 2.98 *** -3.84 1.69 **

c -415.40 176.13 ** -44.47 186.85 -468.34 154.47 *** -60.20 156.47

t -1.03 1.64 -0.29 1.85 - - - -

D2008 -515.84 87.58 *** - - -511.57 87.09 *** - -

Table 3.20: Long run estimation: Capital inflows, Sample II (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.47 0.42 0.29 0.48 0.42 0.39 0.17 0.44

it -14.15 40.38 -10.32 45.84 -8.46 36.12 2.94 41.03

WGDPt 23.26 20.17 32.38 22.78 21.83 19.55 29.20 22.17

TLt 6.45 16.68 6.15 18.94 8.87 14.82 11.76 16.85

FLt 4.72 2.21 ** 5.58 2.50 ** 4.43 2.01 ** 4.92 2.29 **

invt 18.26 5.44 *** 17.57 6.17 *** 18.28 5.40 *** 17.60 6.15 ***

DGDPt -0.84 17.17 28.75 18.02 -0.70 17.05 29.54 17.91

ppit -2.60 17.50 -34.13 18.22 * -1.89 17.25 -32.96 18.06 *

debtt 16.48 5.36 *** 0.31 4.53 15.91 5.03 *** -1.26 3.83

c -708.03 707.99 -303.54 797.44 -854.83 540.54 -638.10 613.00

t -1.29 3.97 -2.96 4.49 - - - -

D2008 -612.54 135.68 *** - - -616.65 134.18 *** - -

Notes: (1) includes constant term, deterministic trend and dummy, (2) excludes dummy, (3) excludes

deterministic trend, and (4) excludes both deterministic trend and dummy. The symbols ***, **, *

denote significance level at 1%, 5% and 10%, respectively.
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Table 3.21: Long run estimation: Capital outflows, Sample I (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.48 0.26 * 0.20 0.29 0.41 0.25 * 0.17 0.28

it -5.26 19.08 -5.34 21.50 4.30 14.94 -0.96 16.76

WGDPt 34.00 13.21 ** 46.72 14.67 *** 31.34 12.77 ** 45.43 14.08 ***

FLt 2.99 1.26 ** 1.56 1.39 2.40 1.02 ** 1.29 1.12

invt 18.77 4.01 *** 20.03 4.51 *** 18.71 4.00 *** 20.00 4.49 ***

DGDPt -7.40 8.75 7.13 9.43 -5.76 8.50 7.81 9.17

ppit 0.51 8.94 -14.22 9.65 2.49 8.59 -13.24 9.13

debtt 12.14 3.33 *** -3.31 2.16 11.02 3.02 *** -3.74 1.70 **

c -402.28 178.12 ** -40.42 187.44 -470.69 156.38 *** -73.60 157.01

t -1.34 1.66 -0.61 1.86 - - - -

D2008 -503.23 88.57 *** - - -497.71 88.17 *** - -

Table 3.22: Long run estimation: Capital outflows, Sample II (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.51 0.43 0.34 0.47 0.43 0.39 0.20 0.44

it -16.51 40.84 -12.87 45.73 -7.73 36.58 3.17 40.99

WGDPt 33.85 20.40 42.52 22.73 * 31.64 19.79 38.67 22.16 *

TLt 12.09 16.87 11.81 18.89 15.82 15.00 18.59 16.84

FLt 4.70 2.24 ** 5.52 2.50 ** 4.26 2.04 ** 4.73 2.29 **

invt 20.87 5.50 *** 20.21 6.16 *** 20.90 5.47 *** 20.25 6.14 ***

DGDPt -7.16 17.37 20.99 17.98 -6.95 17.27 21.94 17.89

ppit -7.06 17.70 -37.05 18.18 ** -5.95 17.46 -35.64 18.05 *

debtt 17.31 5.42 *** 1.93 4.51 16.44 5.09 *** 0.03 3.83

c -867.20 716.09 -482.38 795.52 -1094.06 547.31 ** -887.00 612.45

t -1.99 4.02 -3.58 4.48 - - - -

D2008 -582.75 137.23 *** - - -589.10 135.86 *** - -

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes

dummy and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level

at 1%, 5% and 10%, respectively.
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Table 3.23: Long run estimation: Capital inflows, Sample II (Spec 2 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt -0.08 0.46 -0.31 0.51 0.08 0.45 -0.16 0.50

it -3.01 45.72 -3.31 50.79 -48.78 35.49 -45.82 39.21

WGDPt 40.42 22.46 * 49.34 24.84 * 59.08 19.23 *** 66.59 21.15 ***

Comov 55.17 95.99 7.29 105.85 62.90 96.88 14.93 106.23

DGDPt -16.13 19.14 15.93 19.43 -28.86 17.51 3.80 17.15

ppit 7.72 14.32 -20.84 13.91 7.59 14.47 -20.69 13.98

debtt 7.52 5.78 -11.09 4.00 *** 10.31 5.55 * -8.31 3.40 **

c -417.42 415.24 -11.54 448.09 49.61 291.55 418.40 305.86

t 5.08 3.25 4.72 3.61 - - - -

D2008 -642.70 156.23 *** - - -636.04 157.82 *** - -

Table 3.24: Long run estimation: Capital outflows, Sample II (Spec 2 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt -0.07 0.47 -0.29 0.51 0.05 0.46 -0.18 0.50

it -2.63 46.80 -2.92 51.45 -36.52 36.03 -33.65 39.48

WGDPt 51.12 23.00 ** 59.76 25.16 ** 64.94 19.52 *** 72.23 21.30 ***

Comov 103.17 98.27 56.74 107.23 108.89 98.34 62.26 106.97

DGDPt -22.49 19.60 8.59 19.68 -31.92 17.77 * -0.18 17.27

ppit 2.94 14.66 -24.75 14.09 * 2.85 14.69 -24.64 14.08 *

debtt 8.16 5.92 -9.88 4.05 ** 10.23 5.64 * -7.88 3.43 **

c -352.84 425.08 40.72 453.94 -7.04 295.94 351.44 307.98

t 3.76 3.33 3.41 3.66 - - - -

D2008 -623.19 159.93 *** - - -618.26 160.20 *** - -

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes

dummy and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level

at 1%, 5% and 10%, respectively.
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Table 3.25: Long run estimation: Capital inflows, Sample II (Spec 3 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.45 0.51 -0.20 0.55 0.57 0.48 0.00 0.53

it 38.38 49.81 3.94 56.19 24.18 45.86 -21.81 51.40

WGDPt 45.30 23.23 * 47.55 26.51 * 55.10 19.09 *** 64.60 21.78 ***

̂Comovt -397.04 206.08 * -132.62 225.65 -428.30 201.07 ** -178.07 222.44

DGDPt -33.73 21.90 16.08 21.65 -42.59 18.33 ** 2.36 17.92

ppit 11.64 14.34 -21.16 14.15 12.20 14.27 -21.27 14.18

debtt 16.64 7.52 ** -10.36 5.27 * 19.31 6.59 *** -6.63 4.11

c -810.68 448.43 * -93.88 479.15 -649.42 391.43 209.27 396.82

t 2.67 3.58 4.56 4.06 - - - -

D2008 -751.82 165.34 *** - - -766.15 163.66 *** - -

Table 3.26: Long run estimation: Capital outflows, Sample II (Spec 3 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.53 0.52 -0.10 0.56 0.58 0.49 0.03 0.53

it 43.55 51.10 9.83 57.01 37.91 46.88 -6.61 51.86

WGDPt 58.38 23.83 ** 60.58 26.90 ** 62.27 19.51 *** 71.46 21.97 ***

̂Comovt -411.08 211.43 * -152.23 228.97 -423.48 205.54 ** -181.23 224.41

DGDPt -42.75 22.47 * 6.01 21.97 -46.26 18.74 ** -2.74 18.08

ppit 7.49 14.71 -24.62 14.36 * 7.71 14.59 -24.69 14.30 *

debtt 18.15 7.72 ** -8.28 5.35 19.21 6.74 *** -5.90 4.14

c -798.60 460.08 * -96.87 486.20 -734.66 400.13 * 96.62 400.33

t 1.06 3.67 2.91 4.12 - - - -

D2008 -736.02 169.64 *** - - -741.70 167.29 *** - -

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes

dummy and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level

at 1%, 5% and 10%, respectively.
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Table 3.27: Long run estimation: Capital inflows, Sample II (Spec 4 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GEPUt 1.26 0.69 * 1.28 0.78 1.26 0.68 * 1.27 0.78

it 7.08 42.25 14.38 47.87 6.70 36.52 27.26 41.19

WGDPt 21.63 19.73 31.54 22.23 21.70 19.22 29.39 21.76

TLt 4.08 16.48 2.72 18.68 3.95 14.77 7.03 16.77

FLt 4.78 2.15 ** 5.84 2.43 ** 4.80 2.00 ** 5.39 2.27 **

invt 21.09 5.64 ** 20.66 6.39 ** 21.09 5.59 ** 20.75 6.36 **

DGDPt 5.88 16.71 33.71 17.59 * 5.90 16.56 33.71 17.50 *

ppit -10.06 17.30 -40.19 18.08 ** -10.12 16.85 -38.72 17.77 **

debtt 13.68 4.75 ** -1.24 3.84 13.70 4.62 ** -2.10 3.47

c -854.46 701.57 -459.13 789.17 -845.76 511.81 -743.64 581.06

t 0.07 3.64 -2.19 4.09 - - - -

D2008 -596.77 133.00 ** - - -596.44 130.73 ** - -

Table 3.28: Long run estimation: Capital outflows, Sample II (Spec 4 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GEPUt 1.33 0.70 * 1.35 0.78 * 1.33 0.69 * 1.33 0.77 *

it 5.56 42.71 12.47 47.70 8.40 36.92 27.97 41.08

WGDPt 32.02 19.95 41.42 22.16 * 31.50 19.43 38.83 21.70 *

TLt 9.69 16.66 8.40 18.62 10.66 14.94 13.59 16.73

FLt 4.75 2.18 ** 5.75 2.42 ** 4.64 2.02 ** 5.21 2.26 **

invt 23.83 5.70 ** 23.42 6.37 ** 23.85 5.66 ** 23.54 6.34 **

DGDPt 0.07 16.89 26.44 17.53 -0.05 16.75 26.44 17.46

ppit -15.03 17.49 -43.58 18.01 ** -14.57 17.04 -41.81 17.73 **

debtt 14.26 4.80 ** 0.12 3.83 14.13 4.67 ** -0.92 3.46

c -1021.68 709.19 -647.02 786.37 -1086.64 517.44 ** -989.38 579.57 *

t -0.50 3.68 -2.64 4.07 - - - -

D2008 -565.56 134.44 ** - - -568.07 132.17 ** - -

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes

dummy and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level

at 1%, 5% and 10%, respectively.
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Table 3.29: Long run estimation: Capital inflows, Sample I (Spec 5 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.13 0.27 0.57 0.29 * 0.07 0.26 0.54 0.27 *

it 1.14 17.98 -6.97 20.29 10.73 14.19 -2.48 15.81

WGDPt 13.81 12.99 38.95 13.85 ** 11.31 12.65 37.65 13.30 **

FLt 5.54 1.33 ** 1.79 1.31 4.90 1.11 ** 1.52 1.06

invt 16.97 3.77 ** 17.12 4.26 ** 16.91 3.76 ** 17.10 4.25 **

DGDPt 2.20 8.43 -2.37 9.49 3.77 8.22 -1.62 9.22

ppit -2.52 8.51 -0.57 9.62 -0.45 8.16 0.38 9.21

debtt -0.84 4.73 12.42 4.67 ** -1.79 4.59 11.90 4.42 **

pdebtt 20.34 5.53 ** -9.14 2.39 ** 20.07 5.51 ** -9.10 2.38 **

c -115.76 186.03 -418.04 202.03 ** -188.92 165.75 -450.23 179.87 **

t -1.35 1.56 -0.62 1.76 - - - -

D2008 -1254.74 217.38 ** - - -1239.37 216.43 ** - -

Table 3.30: Long run estimation: Capital outflows, Sample I (Spec 5 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

GPRt 0.13 0.27 0.55 0.29 * 0.06 0.26 0.50 0.28 *

it -0.09 18.36 -7.77 20.39 11.48 14.51 -0.99 15.89

WGDPt 20.87 13.25 44.70 13.91 ** 17.86 12.93 42.74 13.37 **

FLt 5.06 1.35 ** 1.51 1.31 4.30 1.13 ** 1.10 1.06

invt 18.96 3.85 ** 19.11 4.28 ** 18.89 3.85 ** 19.07 4.27 **

DGDPt -1.08 8.60 -5.41 9.54 0.81 8.40 -4.27 9.27

ppit -4.18 8.69 -2.33 9.67 -1.69 8.34 -0.91 9.26

debtt 0.04 4.82 12.61 4.70 ** -1.12 4.69 11.82 4.45 **

pdebtt 18.88 5.64 ** -9.06 2.41 ** 18.56 5.64 ** -9.00 2.39 **

c -124.15 189.88 -410.61 202.98 ** -212.36 169.41 -459.16 180.83 **

t -1.63 1.59 -0.94 1.77 - - - -

D2008 -1189.11 221.88 ** - - -1170.58 221.20 ** - -

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes

dummy and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level

at 1%, 5% and 10%, respectively.
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3.6.6 Lag orders of autoregressive terms in the conditional ECM

Table 3.31: Lag orders of autoregressive terms in the conditional ECM (Spec 1 )

Capital inflows Capital outflows

Sample I Sample II Sample I Sample II

ct 4 2 4 2

GPRt 1 1 1 1

it 2 2 2 2

WGDPt 4 2 4 2

TLt - 2 - 1

FLt 2 2 2 2

invt 4 2 4 2

DGDPt 4 1 4 1

ppit 2 1 2 1

debtt 1 1 1 1

Table 3.32: Lag orders of autoregressive terms in the conditional ECM (Spec 2, 3 )

(Spec 2 ) (Spec 3 )

Inflows Outflows Inflows Outflows

ct 4 2 ct 2 2

GPRt 4 1 GPRt 1 1

it 5 3 it 3 3

WGDPt 4 3 WGDPt 3 3

Comovt 5 1 ̂Comovt 3 2

DGDPt 4 1 DGDPt 3 3

ppit 5 2 ppit 3 3

debtt 2 3 debtt 3 3

Notes: Spec 2 denotes the modle with contagion in uncertainty using raw series of uncertainty co-

movement index. Spec 3 denotes the modle with contagion in uncertainty using projected uncertainty

co-movement index. The selection criteria is AIC.

3.6.7 Short run estimation results
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Table 3.33: Equilibrium correction: Capital inflows, Sample I, (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 4.91 29.89 -24.86 22.81 -4.28 15.32 0.04 11.68

∆ct−1 -0.63 0.24 ** -0.01 0.24 -0.61 0.23 ** -0.02 0.24

∆ct−2 -0.52 0.21 ** -0.05 0.21 -0.51 0.20 ** -0.05 0.21

∆ct−3 -0.35 0.17 ** -0.05 0.17 -0.34 0.17 ** -0.04 0.17

∆ct−4 0.05 0.11 0.16 0.10 0.05 0.11 0.16 0.10

∆GPRt -0.12 0.28 -0.16 0.25 -0.12 0.27 -0.16 0.25

∆GPRt−1 -0.14 0.29 -0.24 0.26 -0.14 0.29 -0.22 0.26

∆it -14.84 34.40 -22.80 31.03 -14.55 33.97 -19.90 30.98

∆it−1 1.92 34.95 -3.37 31.51 -1.80 34.48 -3.73 31.53

∆it−2 45.98 34.48 33.26 31.18 41.60 34.45 34.96 31.13

∆WGDPt 16.11 26.14 8.27 23.73 15.82 25.85 6.86 23.76

∆WGDPt−1 0.52 23.27 -38.98 22.98 * -0.58 23.13 -39.84 23.04 *

∆WGDPt−2 21.40 22.27 -8.33 21.35 20.96 22.05 -7.53 21.35

∆WGDPt−3 23.79 22.03 -8.82 21.43 22.95 21.88 -8.19 21.45

∆WGDPt−4 24.84 23.56 -0.81 22.21 24.54 23.33 0.06 22.21

∆FLt 17.38 5.26 *** 17.49 4.27 *** 16.54 4.99 *** 17.20 4.27 ***

∆FLt−1 -6.04 5.37 -2.25 4.48 -6.48 5.12 -2.49 4.48

∆FLt−2 1.84 5.50 5.06 4.69 1.34 5.24 4.67 4.68

∆invt 15.84 4.08 *** 15.27 3.64 *** 15.83 4.04 *** 15.19 3.65 ***

∆invt−1 13.11 6.98 * -0.78 6.83 12.82 6.88 * -0.80 6.84

∆invt−2 8.03 7.31 -3.54 6.95 7.73 7.23 -3.74 6.96

∆invt−3 5.70 6.17 -2.01 5.69 5.44 6.09 -2.32 5.69

∆invt−4 -3.50 4.54 -5.64 4.06 -3.63 4.49 -5.85 4.06

∆DGDPt 53.67 19.14 *** 54.01 16.88 *** 54.80 18.78 *** 54.47 16.88 ***

∆DGDPt−1 33.04 18.77 * 30.69 16.99 * 33.83 18.64 * 30.83 17.00 *

∆DGDPt−2 -34.91 17.85 * -24.31 16.28 -34.00 17.76 * -23.89 16.31

∆DGDPt−3 -15.30 17.70 -6.19 16.18 -14.76 17.57 -6.01 16.20

∆DGDPt−4 -2.72 16.00 0.94 14.52 -1.78 15.86 0.48 14.52

∆ppit 4.97 21.46 -7.22 19.42 6.59 21.07 -5.69 19.39

∆ppit−1 24.04 22.47 28.70 20.35 24.35 22.26 28.20 20.36

∆ppit−2 -37.57 20.55 * -23.51 18.83 -38.28 20.24 * -24.83 18.81

∆debtt -28.49 21.89 -39.26 18.26 ** -27.97 21.64 -36.57 18.15 **

∆debtt−1 17.10 22.12 12.84 19.35 18.13 21.68 17.49 19.06

v̂t−1 -0.57 0.30 * -1.25 0.27 *** -0.59 0.29 ** -1.23 0.27 ***

t -0.21 0.62 0.41 0.32

D2008 39.43 62.56 21.18 35.30

(1) R̄2 = 0.7483, AIC = 12.70, SBC = 13.53, χ2
SC(4) = 8.07[0.089], χ2

H = 51.03[0.039]

Inverted AR Roots = −.01,−.21 + .81i,−.21− .81i,−.88.

(2) R̄2 = 0.7931, AIC = 12.50, SBC = 13.30, χ2
SC(4) = 18.65[0.001], χ2

H = 40.91[0.193]

Inverted AR Roots = .80,−.16 + .88i,−.16− .88i,−.92.

(3) R̄2 = 0.7525, AIC = 12.67, SBC = 13.48, χ2
SC(4) = 7.03[0.134], χ2

H = 50.67[0.033]

Inverted AR Roots = −.00,−.21− .82i,−.21 + .82i,−.88.

(4) R̄2 = 0.7928, AIC = 12.49, SBC = 13.28, χ2
SC(4) = 17.80[0.001], χ2

H = 35.42[0.355]

Inverted AR Roots = .80,−.16 + .88i,−.16− .88i,−.92.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.34: Equilibrium correction : Capital inflows, Sample II, (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c -142.18 157.56 -162.99 72.75 ** 2.03 32.37 -4.77 18.61

∆ct−1 0.01 0.30 0.51 0.23 ** 0.05 0.30 0.46 0.22 **

∆ct−2 0.00 0.17 0.20 0.13 0.02 0.17 0.17 0.13

∆GPRt -0.11 0.41 -0.16 0.32 -0.17 0.41 -0.32 0.32

∆GPRt−1 -0.62 0.44 -0.79 0.34 ** -0.65 0.44 -0.76 0.35 **

∆it -178.91 86.63 ** -156.07 63.21 ** -160.91 83.08 * -131.55 63.34 **

∆it−1 -12.90 77.17 -9.90 58.42 0.31 74.70 -2.42 59.16

∆it−2 -1.28 83.20 20.54 62.42 8.27 81.27 27.33 63.18

∆WGDPt -24.65 41.27 -15.93 31.91 -31.01 40.52 -35.07 31.92

∆WGDPt−1 30.66 37.27 -34.84 31.16 27.49 37.01 -44.39 31.96

∆WGDPt−2 -24.90 28.38 -88.37 24.16 *** -24.24 28.14 -81.34 24.23 ***

∆TLt 36.56 25.10 11.40 18.87 35.65 24.77 10.34 18.94

∆TLt−1 41.41 23.15 * 19.94 17.64 34.32 22.13 10.24 17.96

∆TLt−2 10.95 22.36 8.67 17.33 7.10 21.92 -1.69 17.34

∆FLt 13.21 8.22 22.90 5.09 *** 15.46 7.50 ** 20.77 5.17 ***

∆FLt−1 -20.84 8.25 ** -6.65 5.45 -18.13 7.54 ** -7.41 5.51

∆FLt−2 -0.73 8.59 6.55 6.31 1.50 8.25 4.34 6.26

∆invt 23.87 6.51 *** 17.35 5.12 *** 22.89 6.33 *** 17.73 5.17 ***

∆invt−1 15.10 9.60 -8.04 8.27 12.64 9.20 -6.96 8.29

∆invt−2 9.96 7.15 -3.82 5.94 8.43 6.91 -3.45 6.00

∆DGDPt 35.89 32.55 77.45 24.08 *** 37.68 32.09 87.27 24.55 ***

∆DGDPt−1 33.47 33.76 23.39 26.12 37.76 33.67 36.96 26.61

∆ppit 2.53 36.44 -43.48 28.99 -1.16 35.90 -31.81 28.91

∆ppit−1 -5.78 32.91 38.17 26.88 -3.15 32.62 38.02 27.29

∆debtt 26.10 35.41 -28.47 24.78 28.37 35.30 -20.04 24.89

∆debtt−1 4.95 33.33 -21.73 25.87 3.36 32.81 -6.94 25.62

v̂t−1 -1.43 0.45 *** -2.04 0.30 *** -1.51 0.45 *** -1.96 0.30 ***

t 2.21 2.37 1.90 0.83 **

D2008 -139.37 137.07 -30.09 60.97

(1) R̄2 = 0.6998, AIC = 13.38, SBC = 14.26, χ2
SC(4) = 3.33[0.505], χ2

H = 37.19[0.115]

Inverted AR Roots = −.44 + .42i,−.44− .42i.

(2) R̄2 = 0.8167, AIC = 12.88, SBC = 13.74, χ2
SC(4) = 1.48[0.831], χ2

H = 31.03[0.270]

Inverted AR Roots = −.39− .48i,−.39 + .48i.

(3) R̄2 = 0.7045, AIC = 13.35, SBC = 14.21, χ2
SC(4) = 4.53[0.339], χ2

H = 33.07[0.195]

Inverted AR Roots = −.42− .42i,−.42 + .42i.

(4) R̄2 = 0.8108, AIC = 12.90, SBC = 13.73, χ2
SC(4) = 3.66[0.454], χ2

H = 30.28[0.256]

Inverted AR Roots = −.43− .42i,−.43 + .42i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.35: Equilibrium correction: Capital outflows, Sample I, (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 3.42 29.71 -22.82 22.99 -5.47 15.33 -2.78 11.67

∆ct−1 -0.72 0.25 *** -0.09 0.23 -0.69 0.25 *** -0.09 0.23

∆ct−2 -0.56 0.21 ** -0.10 0.20 -0.54 0.21 ** -0.10 0.20

∆ct−3 -0.36 0.18 * -0.07 0.17 -0.35 0.18 * -0.07 0.17

∆ct−4 0.06 0.11 0.16 0.10 0.07 0.11 0.16 0.10

∆GPRt -0.17 0.28 -0.18 0.25 -0.17 0.27 -0.19 0.25

∆GPRt−1 -0.03 0.30 -0.14 0.27 -0.03 0.29 -0.12 0.26

∆it 1.58 34.53 -9.96 31.31 1.37 34.06 -6.91 31.05

∆it−1 -0.78 35.23 -5.07 31.89 -4.25 34.70 -7.13 31.72

∆it−2 43.60 34.74 28.61 31.53 38.92 34.81 28.04 31.34

∆WGDPt 27.44 26.20 21.32 23.88 27.14 25.92 19.69 23.77

∆WGDPt−1 7.28 23.59 -31.56 23.35 5.80 23.46 -33.01 23.30

∆WGDPt−2 24.73 22.53 -6.34 21.69 23.73 22.34 -6.20 21.56

∆WGDPt−3 23.34 22.57 -8.71 21.89 21.99 22.45 -8.64 21.78

∆WGDPt−4 23.38 23.98 -0.76 22.51 22.71 23.75 -0.26 22.37

∆FLt 18.45 5.25 *** 18.48 4.29 *** 17.59 4.97 *** 18.16 4.27 ***

∆FLt−1 -6.64 5.44 -3.07 4.60 -7.14 5.16 -3.07 4.58

∆FLt−2 0.93 5.59 4.24 4.82 0.47 5.31 4.02 4.78

∆invt 18.42 4.04 *** 17.67 3.64 *** 18.37 4.00 *** 17.61 3.62 ***

∆invt−1 16.25 7.35 ** 1.32 7.04 15.58 7.24 ** 1.16 6.99

∆invt−2 10.04 7.60 -1.98 7.12 9.42 7.51 -2.15 7.07

∆invt−3 6.78 6.41 -1.18 5.85 6.32 6.31 -1.36 5.80

∆invt−4 -3.56 4.66 -5.94 4.16 -3.79 4.60 -6.05 4.13

∆DGDPt 50.37 19.39 ** 49.16 17.20 *** 51.04 19.00 *** 50.43 17.08 ***

∆DGDPt−1 26.30 18.99 27.30 17.26 27.19 18.87 28.06 17.18

∆DGDPt−2 -38.68 17.97 ** -24.78 16.51 -37.43 17.92 ** -23.77 16.47

∆DGDPt−3 -16.91 18.02 -5.57 16.53 -16.02 17.91 -5.12 16.47

∆DGDPt−4 -2.72 16.01 2.23 14.61 -1.66 15.89 2.20 14.53

∆ppit 12.96 21.81 0.18 19.86 14.22 21.37 1.73 19.69

∆ppit−1 11.85 22.95 16.84 20.89 12.35 22.74 16.47 20.78

∆ppit−2 -34.50 20.69 * -19.75 19.06 -34.96 20.37 * -20.90 18.91

∆debtt -32.75 21.61 -40.00 18.25 ** -31.68 21.38 -37.88 18.04 **

∆debtt−1 29.56 21.79 23.57 19.25 30.16 21.35 27.82 18.84

v̂t−1 -0.38 0.30 -1.11 0.26 *** -0.43 0.30 -1.11 0.26 ***

t -0.20 0.62 0.34 0.32

D2008 32.57 62.48 14.81 35.25

(1) R̄2 = 0.7506, AIC = 12.70, SBC = 13.53, χ2
SC(4) = 11.95[0.018], χ2

H = 55.56[0.015]

Inverted AR Roots = −.14,−.20− .81i,−.20 + .81i,−.87.

(2) R̄2 = 0.7927, AIC = 12.51, SBC = 13.32, χ2
SC(4) = 21.23[0.000], χ2

H = 45.54[0.089]

Inverted AR Roots = .79, .13,−.17− .83i,−.17 + .83i.

(3) R̄2 = 0.7547, AIC = 12.67, SBC = 13.48, χ2
SC(4) = 9.70[0.046], χ2

H = 55.59[0.011]

Inverted AR Roots = −.13,−.20− .82i,−.20 + .82i,−.88.

(4) R̄2 = 0.7948, AIC = 12.49, SBC = 13.28, χ2
SC(4) = 20.18[0.001], χ2

H = 42.34[0.128]

Inverted AR Roots = .84,−.15− .88i,−.15 + .88i,−.92.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.36: Equilibrium correction: Capital outflows, Sample II, (Spec 1 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c -113.45 148.96 -131.45 69.49 * -1.67 31.15 -6.05 18.05

∆ct−1 -0.04 0.30 0.46 0.22 ** 0.01 0.30 0.40 0.22 *

∆ct−2 -0.02 0.16 0.18 0.13 -0.01 0.16 0.14 0.12

∆GPRt -0.15 0.40 -0.20 0.31 -0.24 0.39 -0.39 0.31

∆GPRt−1 -0.59 0.45 -0.77 0.35 ** -0.63 0.44 -0.75 0.35 **

∆it -160.55 84.47 * -139.99 62.42 ** -149.78 81.15 * -120.73 62.07 *

∆it−1 -7.60 74.87 -2.17 57.68 1.46 72.36 1.45 57.90

∆it−2 -12.99 77.52 -5.12 59.15 -10.84 75.45 -8.76 59.43

∆WGDPt -7.88 40.65 0.47 31.89 -15.09 39.61 -18.94 31.59

∆WGDPt−1 33.43 36.76 -31.49 31.42 29.53 36.39 -38.81 31.80

∆WGDPt−2 -29.99 27.77 -86.84 23.71 *** -28.13 27.39 -78.77 23.43 ***

∆TLt 34.58 23.53 11.02 17.82 37.18 23.44 14.73 17.85

∆TLt−1 33.55 21.89 13.79 17.09 27.92 21.02 6.83 17.27

∆FLt 14.87 8.04 * 23.00 4.96 *** 16.35 7.21 ** 21.55 5.00 ***

∆FLt−1 -19.46 8.06 ** -6.42 5.48 -17.33 7.30 ** -6.92 5.48

∆FLt−2 -0.98 8.55 5.58 6.34 1.09 8.16 3.91 6.23

∆invt 25.85 6.32 *** 19.39 5.06 *** 25.30 6.14 *** 20.10 5.05 ***

∆invt−1 14.09 9.68 -9.90 8.58 12.21 9.32 -7.76 8.43

∆invt−2 8.79 7.04 -5.08 6.02 7.91 6.84 -3.66 5.96

∆DGDPt 28.43 31.57 70.13 24.11 *** 31.81 30.83 82.14 24.45 ***

∆DGDPt−1 31.64 32.87 24.68 25.40 37.90 32.80 36.82 25.70

∆ppit 6.07 36.31 -37.42 29.13 2.75 35.49 -26.02 28.65

∆ppit−1 -8.40 32.12 31.29 26.35 -6.64 31.62 27.56 26.26

∆debtt 20.48 34.21 -27.40 24.24 23.22 33.94 -22.26 24.14

∆debtt−1 11.47 32.55 -14.50 25.59 11.45 31.78 1.57 24.88

v̂t−1 -1.33 0.44 *** -1.96 0.30 *** -1.44 0.44 *** -1.88 0.29 ***

t 1.71 2.25 1.51 0.79 *

D2008 -113.95 133.25 -30.35 58.48

(1) R̄2 = 0.7092, AIC = 13.33, SBC = 14.18, χ2
SC(4) = 5.12[0.276], χ2

H = 38.61[0.069]

Inverted AR Roots = −.45− .36i,−.45 + .36i.

(2) R̄2 = 0.8178, AIC = 12.86, SBC = 13.68, χ2
SC(4) = 1.48[0.830], χ2

H = 33.56[0.147]

Inverted AR Roots = −.39 + .43i,−.39− .43i.

(3) R̄2 = 0.7168, AIC = 13.30, SBC = 14.12, χ2
SC(4) = 5.81[0.214], χ2

H = 34.65[0.120]

Inverted AR Roots = −.42− .36i,−.42 + .36i.

(4) R̄2 = 0.8160, AIC = 12.86, SBC = 13.65, χ2
SC(4) = 3.19[0.527], χ2

H = 34.49[0.098]

Inverted AR Roots = −.08 + .53i,−.08− .53i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.37: Equilibrium correction: Capital inflows, Sample II, (Spec 2 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 124.58 335.04 115.15 144.18 39.42 36.70 32.88 24.98

∆ct−1 -0.76 0.51 -0.13 0.43 -0.77 0.35 ** -0.12 0.36

∆ct−2 -0.73 0.44 -0.27 0.39 -0.77 0.34 ** -0.29 0.32

∆ct−3 -0.54 0.35 -0.23 0.31 -0.59 0.30 * -0.25 0.27

∆ct−4 0.07 0.22 0.18 0.20 0.03 0.21 0.16 0.18

∆GPRt -0.54 0.62 -0.83 0.53 -0.45 0.55 -0.75 0.49

∆GPRt−1 -0.53 0.85 -0.83 0.70 -0.51 0.70 -0.83 0.63

∆GPRt−2 0.90 0.86 0.54 0.76 0.88 0.78 0.56 0.69

∆GPRt−3 0.23 0.79 0.10 0.70 0.28 0.73 0.29 0.62

∆GPRt−4 0.03 0.80 -0.10 0.69 0.11 0.72 0.10 0.63

∆it -120.39 117.98 -130.26 103.26 -124.20 108.60 -138.36 95.90

∆it−1 119.01 127.03 127.22 110.78 125.63 118.98 154.62 104.87

∆it−2 179.04 125.31 182.61 106.31 * 184.70 113.06 214.21 99.96 **

∆it−3 -87.37 117.58 -10.64 104.62 -60.45 107.59 41.85 102.11

∆it−4 219.68 124.93 * 226.10 107.87 ** 231.14 111.63 ** 244.31 97.98 **

∆it−5 36.91 134.79 89.04 115.90 57.47 120.94 114.58 108.15

∆WGDPt 11.02 64.81 -24.30 55.00 20.40 55.85 -12.35 50.36

∆WGDPt−1 -15.15 61.38 -82.55 58.08 -21.71 55.52 -96.64 56.06 *

∆WGDPt−2 16.63 61.99 -25.30 55.16 8.78 54.54 -32.37 50.46

∆WGDPt−3 22.75 67.27 -27.12 58.84 19.00 57.79 -27.42 54.01

∆WGDPt−4 28.74 54.92 -36.66 55.08 24.54 51.85 -47.26 51.63

∆Comovt -12.28 142.19 -20.26 122.67 -16.38 133.22 -53.12 117.01

∆Comovt−1 -210.48 207.16 -195.89 161.06 -213.29 164.46 -240.40 145.92

∆Comovt−2 -174.52 241.06 -209.34 167.64 -180.89 163.03 -258.28 147.38 *

∆Comovt−3 -56.30 245.32 -88.85 186.86 -69.58 181.43 -129.73 161.23

∆Comovt−4 -26.15 207.83 -61.98 165.33 -27.74 158.70 -69.12 138.70

∆Comovt−5 109.02 171.50 61.54 146.58 113.46 146.12 80.99 126.32

∆DGDPt 97.22 55.13 * 102.53 48.11 ** 90.40 52.54 * 89.70 45.20 *

∆DGDPt−1 73.99 55.80 85.74 46.09 * 77.48 47.50 91.19 42.02 **

∆DGDPt−2 -67.41 52.17 -43.02 46.48 -58.94 48.79 -35.71 43.54

∆DGDPt−3 -35.27 53.51 -17.10 45.40 -33.31 48.11 -22.89 41.41

∆DGDPt−4 26.88 49.35 23.85 43.46 27.67 47.14 16.27 40.72

∆ppit 39.57 47.85 52.57 42.74 44.38 46.05 71.04 39.74 *

∆ppit−1 29.36 52.36 58.40 47.59 29.11 49.19 61.42 44.35

∆ppit−2 -137.90 51.79 ** -109.29 45.88 ** -134.11 47.96 *** -101.44 42.97 **

∆ppit−3 65.46 60.64 57.35 53.01 58.78 57.17 50.73 50.40

∆ppit−4 5.38 56.37 29.94 51.22 7.66 53.76 38.98 47.79

∆ppit−5 -26.60 54.64 -12.53 48.46 -25.74 49.75 -7.26 43.11

∆debtt -38.91 57.72 -80.39 45.74 * -31.81 52.98 -77.79 41.87 *

∆debtt−1 15.78 44.00 12.42 38.18 17.15 41.70 7.85 35.88

∆debtt−2 67.92 54.19 89.73 47.86 * 63.95 51.69 83.02 45.28 *

v̂t−1 -0.65 0.63 -1.31 0.46 *** -0.67 0.41 -1.36 0.39 ***

t -1.26 4.37 -1.08 1.57

D2008 -30.36 159.74 -83.39 63.41

(1) R̄2 = 0.6947, AIC = 13.45, SBC = 14.85, χ2
SC(4) = 14.91[0.005], χ2

H = 34.47[0.820]

Inverted AR Roots = −.06− .94i,−.06 + .94i,−.66,−.90.

(2) R̄2 = 0.7568, AIC = 13.23, SBC = 14.60, χ2
SC(4) = 0.45[0.978], χ2

H = 35.45[0.752]

Inverted AR Roots = .56− .32i, .56 + .32i,−.00 + .96i,−.00− .96i.

(3) R̄2 = 0.7194, AIC = 13.37, SBC = 14.74, χ2
SC(4) = 14.57[0.006], χ2

H = 29.50[0.927]

Inverted AR Roots = −.04− .93i,−.04 + .93i,−.66,−.91.

(4) R̄2 = 0.7798, AIC = 13.14, SBC = 14.48, χ2
SC(4) = 1.15[0.887], χ2

H = 33.98[0.773]

Inverted AR Roots = .52− .43i, .52 + .43i, .00 + .95i, .00− .95i.
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[Table 3.37 continued]

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].

Table 3.38: Equilibrium correction: Capital outflows, Sample II, (Spec 2 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 28.35 162.42 75.49 95.15 12.05 31.24 -0.24 23.97

∆ct−1 -0.02 0.24 0.17 0.21 -0.13 0.22 0.08 0.21

∆ct−2 0.01 0.16 0.07 0.14 -0.04 0.15 0.04 0.14

∆GPRt -0.45 0.52 -0.94 0.47 * -0.42 0.52 -0.84 0.48 *

∆GPRt−1 -0.21 0.53 -0.51 0.48 -0.24 0.53 -0.50 0.49

∆it -71.19 92.20 -130.76 83.44 -92.87 92.18 -143.55 85.28 *

∆it−1 79.10 98.50 106.10 88.27 123.00 95.54 136.83 88.64

∆it−2 -17.65 85.78 32.87 78.24 2.13 85.11 38.39 79.27

∆it−3 -11.73 84.26 67.33 72.68 26.07 81.98 87.61 73.22

∆WGDPt 26.64 47.18 -3.37 42.99 31.76 47.35 7.70 43.73

∆WGDPt−1 -18.91 41.64 -74.85 40.11 * -23.62 41.91 -72.77 41.12 *

∆WGDPt−2 -14.91 37.31 -52.12 35.04 -19.24 37.58 -52.44 35.95

∆WGDPt−3 6.91 34.77 -40.64 33.02 5.44 34.98 -36.29 33.65

∆Comovt 10.92 102.02 65.18 93.10 5.88 101.82 59.72 94.55

∆Comovt−1 -58.22 109.04 -85.42 98.32 -75.68 106.61 -88.80 99.04

∆DGDPt -7.19 38.76 44.23 35.24 -12.46 39.24 35.33 35.78

∆DGDPt−1 36.99 38.03 44.83 34.66 34.05 38.09 40.72 35.35

∆ppit -9.93 36.47 -13.17 32.84 -4.93 36.57 -6.42 33.64

∆ppit−1 42.28 43.68 66.08 40.57 35.93 43.67 58.61 41.21

∆ppit−2 -67.58 38.48 * -44.98 35.59 -68.55 38.54 * -46.43 36.20

∆debtt -27.01 39.26 -102.53 32.98 *** -29.72 39.46 -98.92 33.58 ***

∆debtt−1 0.25 41.27 -25.26 38.30 1.68 41.53 -21.22 39.07

∆debtt−2 58.02 40.08 69.74 36.69 * 54.32 40.36 60.84 37.17

∆debtt−3 77.56 42.36 * 84.63 38.49 ** 73.74 42.61 * 73.04 38.43 *

v̂t−1 -1.51 0.34 *** -1.62 0.28 *** -1.32 0.31 *** -1.48 0.26 ***

t -0.30 2.21 -0.95 1.09

D2008 -104.51 104.77 -109.78 57.02 *

(1) R̄2 = 0.6389, AIC = 13.57, SBC = 14.41, χ2
SC(4) = 7.56[0.109], χ2

H = 31.95[0.195]

Inverted AR Roots = −.55− .51i,−.55 + .51i.

(2) R̄2 = 0.6979, AIC = 13.39, SBC = 14.19, χ2
SC(4) = 4.86[0.302], χ2

H = 23.60[0.543]

Inverted AR Roots = .00 + .36i, .00− .36i.

(3) R̄2 = 0.6339, AIC = 13.58, SBC = 14.38, χ2
SC(4) = 9.59[0.048], χ2

H = 26.15[0.399]

Inverted AR Roots = −.51− .48i,−.51 + .48i.

(4) R̄2 = 0.6843, AIC = 13.43, SBC = 14.20, χ2
SC(4) = 7.42[0.115], χ2

H = 22.86[0.528]

Inverted AR Roots = .07 + .24i, .07− .24i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.39: Equilibrium correction: Capital inflows, Sample II, (Spec 3 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 26.84 203.06 103.66 109.53 24.13 34.02 14.52 24.35

∆ct−1 0.06 0.34 0.19 0.24 0.01 0.32 0.08 0.23

∆ct−2 0.02 0.19 0.07 0.15 0.00 0.18 0.03 0.15

∆GPRt 0.00 0.52 -0.51 0.43 0.08 0.51 -0.36 0.44

∆GPRt−1 -0.31 0.57 -0.35 0.48 -0.34 0.55 -0.38 0.49

∆it -78.73 102.12 -96.53 87.61 -87.78 100.42 -103.61 89.59

∆it−1 87.69 100.70 147.01 83.83 * 109.24 97.56 182.66 85.66 **

∆it−2 27.74 105.12 160.43 89.64 * 44.50 100.28 170.86 91.84 *

∆it−3 36.59 108.54 131.23 93.23 58.87 105.06 145.25 94.08

∆WGDPt 9.35 54.96 -23.49 45.84 13.11 53.94 -10.32 46.44

∆WGDPt−1 -16.55 48.19 -100.04 44.23 ** -25.03 47.17 -102.83 45.70 **

∆WGDPt−2 -28.44 52.85 -63.52 46.04 -34.24 52.47 -63.23 47.49

∆WGDPt−3 -7.82 44.42 -42.32 39.42 -10.72 44.08 -38.46 40.24

∆ ̂Comovt -0.76 287.32 -339.18 245.43 -34.97 278.82 -371.04 252.59

∆ ̂Comovt−1 -104.75 303.03 -326.96 257.54 -114.26 298.99 -314.15 262.87

∆ ̂Comovt−2 128.07 302.78 -196.99 257.88 112.33 296.52 -206.27 264.28

∆ ̂Comovt−3 240.17 300.38 -84.59 261.39 260.47 292.05 -29.32 265.47

∆DGDPt 3.17 43.94 48.90 37.19 -6.14 43.93 36.78 37.43

∆DGDPt−1 65.73 45.24 64.23 37.27 * 69.52 44.14 66.15 38.24 *

∆DGDPt−2 13.32 44.62 -9.12 35.99 16.61 44.47 -9.73 36.65

∆DGDPt−3 -0.27 40.26 -36.45 33.71 1.26 39.90 -37.42 34.08

∆ppit -22.97 41.61 -27.15 35.65 -21.15 41.16 -17.90 35.94

∆ppit−1 45.52 47.98 101.20 42.37 ** 44.43 46.94 93.98 43.15 **

∆ppit−2 -68.38 48.79 -34.61 42.30 -69.34 47.75 -37.63 43.08

∆ppit−3 27.89 50.28 11.13 40.97 23.41 49.32 14.24 40.06

∆debtt 12.93 52.69 -105.00 37.46 *** 15.71 52.51 -99.32 38.11 **

∆debtt−1 -4.35 51.50 -49.53 45.19 -4.05 50.56 -41.81 45.98

∆debtt−2 19.46 49.82 82.91 41.56 * 17.63 49.13 70.03 41.82

∆debtt−3 76.54 49.73 106.35 43.28 ** 72.41 49.10 88.27 43.18 **

v̂t−1 -1.68 0.48 *** -1.75 0.31 *** -1.60 0.45 *** -1.58 0.29 ***

t -0.10 2.70 -1.12 1.24

D2008 -115.45 121.31 -119.40 64.32 *

(1) R̄2 = 0.6394, AIC = 13.66, SBC = 14.69, χ2
SC(4) = 7.34[0.119], χ2

H = 40.64[0.115]

Inverted AR Roots = −.50 + .58i,−.50− .58i.

(2) R̄2 = 0.7331, AIC = 13.36, SBC = 14.35, χ2
SC(4) = 13.27[0.010], χ2

H = 39.38[0.117]

Inverted AR Roots = .03 + .74i, .03− .74i.

(3) R̄2 = 0.6476, AIC = 13.64, SBC = 14.63, χ2
SC(4) = 8.82[0.066], χ2

H = 39.14[0.123]

Inverted AR Roots = −.51− .56i,−.51 + .56i.

(4) R̄2 = 0.7204, AIC = 13.40, SBC = 14.36, χ2
SC(4) = 17.51[0.002], χ2

H = 35.37[0.193]

Inverted AR Roots = .05− .69i, .05 + .69i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.40: Equilibrium correction: Capital outflows, Sample II, (Spec 3 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c -6.68 195.27 91.44 108.41 18.05 33.88 9.22 24.50

∆ct−1 0.02 0.33 0.10 0.24 0.01 0.32 0.07 0.23

∆ct−2 0.00 0.19 0.04 0.15 0.00 0.18 0.03 0.15

∆GPRt 0.05 0.53 -0.42 0.45 0.07 0.52 -0.33 0.45

∆GPRt−1 -0.33 0.58 -0.33 0.49 -0.36 0.56 -0.33 0.49

∆it -49.49 101.58 -64.09 88.65 -52.70 100.13 -66.85 88.89

∆it−1 83.23 102.44 149.23 86.18 * 94.76 98.64 169.38 86.19 *

∆it−2 14.27 104.05 126.84 90.32 23.97 99.87 133.65 90.36

∆it−3 42.80 104.21 98.38 90.26 53.44 101.63 106.09 88.33

∆WGDPt 31.74 55.80 -2.89 47.21 31.83 54.07 7.73 46.55

∆WGDPt−1 -4.47 48.32 -89.15 45.69 * -8.76 47.04 -91.04 46.07 *

∆WGDPt−2 -39.14 51.42 -58.08 44.62 -41.69 51.02 -59.89 45.02

∆WGDPt−3 -4.43 45.16 -32.98 40.33 -5.35 44.66 -31.03 40.39

∆ ̂Comovt -25.44 288.47 -353.48 251.38 -43.10 280.67 -375.50 252.91

∆ ̂Comovt−1 -282.08 282.06 -352.12 241.24 -286.18 278.19 -350.28 240.49

∆ ̂Comovt−2 312.05 301.02 -59.30 263.64 302.93 293.39 -61.32 264.39

∆DGDPt 3.12 44.06 42.76 37.77 0.25 43.61 37.25 37.58

∆DGDPt−1 53.09 46.28 61.06 38.51 55.90 44.98 61.37 38.69

∆DGDPt−2 20.67 45.00 -5.28 36.49 22.11 44.60 -5.78 36.44

∆DGDPt−3 -10.47 39.50 -38.39 33.07 -10.67 38.98 -41.21 33.00

∆ppit -32.03 40.88 -22.15 35.34 -30.99 40.35 -15.66 34.96

∆ppit−1 45.97 48.59 87.42 43.25 ** 46.71 47.68 84.85 43.29 *

∆ppit−2 -67.63 49.76 -41.56 43.41 -68.73 48.65 -41.39 43.44

∆ppit−3 41.04 51.20 23.46 42.19 40.27 50.48 29.36 40.69

∆debtt 17.64 52.27 -96.57 38.36 ** 19.56 51.78 -93.61 38.03 **

∆debtt−1 -18.25 48.25 -39.03 42.43 -18.87 47.60 -36.11 42.35

∆debtt−2 14.44 49.37 69.63 41.81 12.98 48.78 60.32 41.56

∆debtt−3 91.24 47.91 * 98.89 41.30 ** 90.15 47.28 * 88.38 40.19 **

v̂t−1 -1.58 0.46 *** -1.59 0.30 *** -1.58 0.45 *** -1.54 0.29 ***

t 0.32 2.60 -1.00 1.23

D2008 -127.96 119.88 -114.68 64.34 *

(1) R̄2 = 0.6258, AIC = 13.69, SBC = 14.68, χ2
SC(4) = 8.36[0.079], χ2

H = 41.41[0.080]

Inverted AR Roots = −.55 + .56i,−.55− .56i.

(2) R̄2 = 0.7144, AIC = 13.42, SBC = 14.37, χ2
SC(4) = 13.14[0.011], χ2

H = 34.44[0.224]

Inverted AR Roots = .05 + .71i, .05− .71i.

(3) R̄2 = 0.6351, AIC = 13.66, SBC = 14.62, χ2
SC(4) = 9.10[0.059], χ2

H = 40.24[0.080]

Inverted AR Roots = −.55 + .56i,−.55− .56i.

(4) R̄2 = 0.7131, AIC = 13.42, SBC = 14.34, χ2
SC(4) = 14.39[0.006], χ2

H = 30.70[0.331]

Inverted AR Roots = .06 + .65i, .06− .65i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.41: Equilibrium correction: Capital inflows, Sample II, (Spec 4 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c -145.23 153.56 -136.54 77.90 * 6.04 32.59 -4.63 19.01

∆ct−1 0.08 0.30 0.42 0.22 * 0.09 0.30 0.36 0.22

∆ct−2 0.07 0.17 0.19 0.13 0.07 0.17 0.18 0.13

∆GEPUt 1.51 0.76 * 1.36 0.61 ** 1.54 0.76 ** 1.46 0.60 **

∆GEPUt−1 -0.39 0.82 -0.88 0.68 -0.34 0.81 -0.73 0.67

∆it -115.98 86.50 -78.24 68.18 -91.86 83.19 -51.43 67.35

∆it−1 -36.19 73.56 -27.32 59.04 -20.55 72.00 -21.97 59.24

∆it−2 52.33 79.12 79.26 63.84 66.06 78.03 84.69 63.93

∆WGDPt -8.08 38.76 2.04 31.61 -11.22 38.66 -10.98 31.34

∆WGDPt−1 37.27 36.52 -13.50 31.41 36.84 36.54 -18.44 31.77

∆WGDPt−2 -44.06 30.56 -99.66 27.09 ** -44.72 30.57 -98.84 27.15 **

∆TLt 16.70 24.18 -6.73 19.73 13.23 23.96 -7.45 19.51

∆TLt−1 35.76 22.69 17.86 18.33 30.15 22.00 11.36 18.41

∆FLt 10.44 8.34 20.98 5.36 ** 14.22 7.48 * 19.75 5.40 **

∆FLt−1 -22.42 8.26 ** -7.69 5.76 -19.30 7.66 ** -8.76 5.73

∆FLt−2 0.35 8.52 8.09 6.64 2.34 8.29 6.14 6.52

∆invt 27.24 6.68 ** 21.33 5.50 ** 26.09 6.59 ** 21.23 5.53 **

∆invt−1 14.98 9.47 -5.34 8.48 12.86 9.23 -3.92 8.45

∆invt−2 9.03 6.90 -2.74 6.02 7.71 6.78 -2.23 6.02

∆DGDPt 19.08 32.64 56.60 25.35 ** 19.56 32.66 60.11 25.53 **

∆DGDPt−1 30.32 31.75 11.78 25.97 29.23 31.75 21.03 26.08

∆ppit -8.30 36.87 -51.85 31.03 -11.57 36.74 -42.81 30.74

∆ppit−1 10.49 33.93 49.17 29.09 * 10.87 33.94 48.42 29.29

∆debtt 8.86 37.03 -53.42 28.84 * 7.89 37.04 -54.71 29.07 *

∆debtt−1 -0.64 33.49 -21.06 27.59 -2.39 33.47 -13.83 27.52

∆debtt−2 36.01 38.78 43.20 31.72 35.35 38.79 58.29 31.28 *

v̂t−1 -1.46 0.43 ** -1.82 0.29 ** -1.48 0.43 ** -1.74 0.28 **

t 2.32 2.30 1.58 0.89 *

D2008 -165.91 135.60 -44.53 63.04

(1) R̄2 = 0.8181, AIC = 13.34, SBC = 14.23, χ2
SC(4) = 9.71[0.046], χ2

H = 33.95[0.203]

Inverted AR Roots = −.34 + .41i,−.34− .41i.

(2) R̄2 = 0.8031, AIC = 12.95, SBC = 13.81, χ2
SC(4) = 8.18[0.085], χ2

H = 19.48[0.852]

Inverted AR Roots = −.33 + .50i,−.33− .50i.

(3) R̄2 = 0.7094, AIC = 13.34, SBC = 14.20, χ2
SC(4) = 11.23[0.024], χ2

H = 28.40[0.391]

Inverted AR Roots = −.33 + .40i,−.33− .40i.

(4) R̄2 = 0.8002, AIC = 12.96, SBC = 13.78, χ2
SC(4) = 9.83[0.043], χ2

H = 16.36[0.927]

Inverted AR Roots = −.31− .45i,−.31 + .45i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.42: Equilibrium correction: Capital outflows, Sample II, (Spec 4 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c -104.27 156.13 -126.92 77.03 2.91 32.51 -3.94 18.86

∆ct−1 -0.09 0.31 0.33 0.22 -0.08 0.31 0.26 0.22

∆ct−2 0.01 0.17 0.19 0.13 0.01 0.17 0.16 0.13

∆GEPUt 1.40 0.79 * 1.23 0.61 ** 1.39 0.78 * 1.32 0.60 **

∆GEPUt−1 -0.27 0.83 -0.90 0.68 -0.26 0.82 -0.73 0.67

∆it -79.70 88.47 -57.77 67.33 -61.97 83.93 -31.49 66.52

∆it−1 -17.03 76.52 -11.18 59.03 -5.19 73.63 -9.14 59.51

∆it−2 32.64 79.53 43.90 63.14 39.93 78.06 49.90 63.33

∆WGDPt -4.44 41.00 5.07 32.03 -8.65 40.26 -7.19 31.86

∆WGDPt−1 47.55 37.58 0.41 31.72 47.45 37.34 -4.43 32.26

∆WGDPt−2 -30.44 36.64 -69.75 30.44 ** -28.54 36.27 -71.30 30.70 **

∆TLt 20.60 25.11 7.06 20.08 19.83 24.88 5.97 19.86

∆TLt−1 28.64 22.89 12.54 18.10 24.23 21.99 6.46 18.26

∆FLt 14.77 8.54 * 22.04 5.28 ** 17.26 7.52 ** 20.88 5.34 **

∆FLt−1 -20.25 8.35 ** -8.20 5.71 -17.96 7.58 ** -9.12 5.70

∆FLt−2 -0.61 8.73 6.62 6.63 0.90 8.44 4.67 6.52

∆invt 29.00 6.74 ** 23.46 5.41 ** 28.23 6.58 ** 23.57 5.45 **

∆invt−1 16.51 9.99 -4.62 8.72 15.11 9.75 -2.47 8.65

∆invt−2 8.35 7.15 -3.97 6.12 7.46 6.97 -2.88 6.11

∆DGDPt 20.72 33.63 52.08 25.48 ** 22.42 33.28 55.35 25.71 **

∆DGDPt−1 31.43 32.15 23.64 25.70 32.22 31.97 31.81 25.96

∆DGDPt−2 -31.60 33.42 -48.96 25.36 * -34.62 32.76 -43.07 25.64 *

∆ppit -0.76 37.74 -45.50 31.07 -3.10 37.36 -35.60 30.74

∆ppit−1 8.82 35.44 54.94 29.93 * 9.97 35.18 51.29 30.09 *

∆debtt -0.91 36.75 -49.01 28.12 * -1.55 36.48 -50.63 28.43 *

∆debtt−1 2.06 34.29 -24.39 27.84 0.89 33.93 -15.19 27.77

∆debtt−2 37.38 39.66 46.94 31.77 37.65 39.39 60.59 31.44 *

v̂t−1 -1.18 0.44 ** -1.70 0.29 ** -1.20 0.44 ** -1.60 0.28 **

t 1.65 2.35 1.48 0.89

D2008 -117.73 140.70 -32.11 63.85

(1) R̄2 = 0.7100, AIC = 13.35, SBC = 14.27, χ2
SC(4) = 9.74[0.045], χ2

H = 36.77[0.152]

Inverted AR Roots = −.35 + .39i,−.35− .39i.

(2) R̄2 = 0.8118, AIC = 12.92, SBC = 13.81, χ2
SC(4) = 12.18[0.016], χ2

H = 23.78[0.693]

Inverted AR Roots = −.19 + .50i,−.19− .50i.

(3) R̄2 = 0.7140, AIC = 13.34, SBC = 14.23, χ2
SC(4) = 10.86[0.028], χ2

H = 32.02[0.274]

Inverted AR Roots = −.31 + .37i,−.31− .37i.

(4) R̄2 = 0.8081, AIC = 12.93, SBC = 13.79, χ2
SC(4) = 13.91[0.008], χ2

H = 21.89[0.743]

Inverted AR Roots = −.21 + .42i,−.21− .42i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.43: Equilibrium correction: Capital inflows, Sample I, (Spec 5 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 7.93 23.17 -11.09 20.29 -2.74 12.28 3.56 10.65

∆ct−1 0.31 0.20 -0.01 0.15 0.38 0.19 * 0.01 0.15

∆ct−2 0.17 0.10 * 0.06 0.09 0.19 0.10 ** 0.07 0.09

∆GPRt -0.02 0.22 0.05 0.22 -0.05 0.21 0.04 0.22

∆GPRt−1 -0.13 0.23 -0.28 0.24 -0.12 0.22 -0.28 0.24

∆it -22.94 27.60 -19.86 27.45 -20.97 26.49 -17.16 27.17

∆it−1 -24.58 27.17 -15.32 27.37 -38.36 26.61 -17.27 27.13

∆WGDPt -2.70 17.35 6.33 17.68 -6.59 17.02 4.14 17.51

∆WGDPt−1 -12.23 17.95 -21.59 18.49 -17.00 17.67 -23.96 18.39

∆WGDPt−2 -1.80 15.66 -17.48 16.59 -4.20 15.37 -17.92 16.49

∆FLt 16.39 4.23 ** 17.69 3.89 ** 14.70 3.98 ** 17.51 3.87 **

∆FLt−1 -10.23 4.54 ** -3.52 3.87 -11.14 4.17 ** -3.53 3.84

∆FLt−2 -4.66 4.34 -2.90 4.08 -4.78 4.10 -3.01 4.04

∆invt 15.61 3.11 ** 16.28 3.13 ** 15.76 3.03 ** 16.21 3.11 **

∆invt−1 -4.94 5.24 0.34 4.78 -5.83 5.12 -0.07 4.73

∆invt−2 -1.13 3.52 -0.15 3.53 -1.24 3.43 -0.28 3.50

∆DGDPt 31.78 13.23 ** 35.15 13.43 ** 36.96 12.94 ** 37.23 13.33 **

∆DGDPt−1 17.70 14.23 21.91 14.59 21.58 14.04 23.49 14.52

∆DGDPt−2 -7.60 13.04 -11.72 12.83 -2.26 12.81 -10.71 12.78

∆ppit 3.22 16.29 20.77 16.19 5.08 15.89 22.54 16.02

∆ppit−1 19.45 15.69 12.27 15.75 18.57 15.31 11.81 15.62

∆debtt -0.24 18.41 -14.09 18.15 0.97 18.03 -12.74 17.98

∆debtt−1 7.97 17.47 11.07 17.71 10.89 16.93 13.85 17.38

∆pdebtt -28.06 4.19 ** -24.91 4.13 ** -27.59 4.05 ** -24.52 4.08 **

∆pdebtt−1 25.66 6.27 ** 10.50 5.59 * 26.66 6.11 ** 10.80 5.53 *

v̂t−1 -1.53 0.26 ** -1.09 0.19 ** -1.64 0.26 ** -1.12 0.19 **

t -0.26 0.48 0.25 0.29

D2008 18.89 52.17 -8.30 30.82

(1) R̄2 = 0.8267, AIC = 12.26, SBC = 12.90, χ2
SC(4) = 17.59[0.002], χ2

H = 43.66[0.022]

Inverted AR Roots = −.34− .26i,−.34 + .26i.

(2) R̄2 = 0.8206, AIC = 12.29, SBC = 12.91, χ2
SC(4) = 23.82[0.000], χ2

H = 33.28[0.154]

Inverted AR Roots = −.35− .18i,−.35 + .18i.

(3) R̄2 = 0.8336, AIC = 12.22, SBC = 12.83, χ2
SC(4) = 16.33[0.003], χ2

H = 36.57[0.082]

Inverted AR Roots = −.34− .26i,−.34 + .26i.

(4) R̄2 = 0.8230, AIC = 12.27, SBC = 12.87, χ2
SC(4) = 24.27[0.000], χ2

H = 23.25[0.563]

Inverted AR Roots = −.35 + .19i,−.35− .19i.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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Table 3.44: Equilibrium correction: Capital outflows, Sample I, (Spec 5 )

(1) (2) (3) (4)

β se(β) β se(β) β se(β) β se(β)

c 5.28 22.52 -11.57 19.46 -5.54 12.00 0.27 10.16

∆ct−1 0.22 0.17 0.01 0.14 0.27 0.17 0.02 0.14

∆ct−2 0.16 0.09 * 0.08 0.08 0.17 0.09 * 0.09 0.08

∆GPRt -0.03 0.21 0.04 0.21 -0.07 0.21 0.03 0.21

∆GPRt−1 -0.03 0.23 -0.18 0.23 -0.03 0.22 -0.18 0.23

∆it -6.74 26.91 -5.93 26.43 -3.59 25.87 -2.63 26.01

∆it−1 -33.25 26.39 -27.00 26.27 -45.15 25.76 * -30.18 25.90

∆WGDPt 13.06 16.95 20.78 16.94 8.62 16.64 18.02 16.70

∆WGDPt−1 -13.23 17.32 -23.06 17.56 -16.59 17.02 -25.40 17.38

∆WGDPt−2 -7.52 14.02 -23.69 14.36 -7.27 13.72 -23.66 14.19 *

∆FLt 18.59 4.09 ** 19.39 3.75 ** 17.09 3.86 ** 19.10 3.71 **

∆FLt−1 -8.99 4.32 ** -3.77 3.76 -9.57 3.97 ** -3.66 3.72

∆FLt−2 -5.12 4.24 -4.09 3.97 -5.05 4.02 -4.01 3.91

∆invt 17.95 2.99 ** 18.19 2.98 ** 18.27 2.92 ** 18.21 2.93 **

∆invt−1 -4.23 5.06 -0.53 4.64 -4.59 4.90 -0.87 4.56

∆invt−2 -1.26 3.52 -0.62 3.47 -1.28 3.43 -0.72 3.42

∆DGDPt 26.10 12.89 ** 28.54 12.87 ** 32.24 12.66 ** 31.56 12.73 **

∆DGDPt−1 14.26 14.05 17.65 14.08 18.93 13.90 19.95 13.99

∆ppit 10.02 16.08 25.40 15.60 11.76 15.66 27.06 15.35 *

∆ppit−1 8.52 15.39 2.61 15.12 8.36 15.02 2.39 14.93

∆debtt -10.55 17.99 -21.25 17.48 -9.62 17.61 -19.96 17.24

∆debtt−1 20.37 16.87 20.85 16.83 23.52 16.35 23.73 16.40

∆pdebtt -28.72 4.09 ** -25.64 3.94 ** -28.25 3.95 ** -25.30 3.88 **

∆pdebtt−1 27.18 5.73 ** 15.22 5.32 ** 27.49 5.56 ** 15.32 5.24 **

v̂t−1 -1.32 0.23 ** -1.04 0.17 ** -1.39 0.22 ** -1.07 0.17 **

t -0.26 0.46 0.20 0.27

D2008 22.33 49.65 -2.34 29.25

(1) R̄2 = 0.8354, AIC = 12.21, SBC = 12.83, χ2
SC(4) = 20.20[0.001], χ2

H = 48.06[0.005]

Inverted AR Roots = −.32− .10i,−.32 + .10i.

(2) R̄2 = 0.8359, AIC = 12.20, SBC = 12.80, χ2
SC(4) = 23.22[0.000], χ2

H = 34.68[0.094]

Inverted AR Roots = −.20,−.44.

(3) R̄2 = 0.8421, AIC = 12.17, SBC = 12.76, χ2
SC(4) = 19.38[0.001], χ2

H = 41.47[0.021]

Inverted AR Roots = −.31− .09i,−.31 + .09i.

(4) R̄2 = 0.8395, AIC = 12.18, SBC = 12.75, χ2
SC(4) = 24.04[0.000], χ2

H = 24.19[0.451]

Inverted AR Roots = −.00,−.49.

Notes: (1) excludes deterministic trend and dummy, (2) excludes deterministic trend, (3) excludes dummy

and (4) includes constant, trend and dummy. The symbols ***, **, * denote significance level at 1%, 5% and

10%, respectively. R̄2 is the adjusted squared multiple correlation coefficient, AIC and SBC are Akaike’s and

Schwarz’s Bayesian Information Criteria, χ2
SC(4) and χ2

H denote the chi-squared statistics for no autocorrelation

test within 4 lags and the chi-squared statistics for homoskedasticity with p-values inside [·].
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3.6.8 Long run estimation with average GPR index

Table 3.45: Long run estimation: Sample I (Spec 1 )

Capital Inflows Capital Outflows

β se(β) β se(β)

GPRt 0.63 0.30 ** 0.59 0.30 *

it -4.60 18.82 -5.36 19.05

WGDPt 27.09 13.00 ** 33.16 13.16 **

FLt 3.32 1.23 *** 2.99 1.25 **

invt 16.47 3.95 *** 18.49 4.00 ***

DGDPt -3.37 8.54 -6.19 8.64

ppit 2.40 8.81 0.37 8.92

debtt 12.03 3.23 *** 11.95 3.27 ***

c -419.41 175.61 ** -404.96 177.77 **

t -1.04 1.62 -1.32 1.64

D2008 -510.39 86.68 *** -497.53 87.75 ***

Notes: The symbols ***, **, * denote significance level at 1%, 5% and 10%, respectively.
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