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Abstract

This paper shows that oil shocks primarily impact economic growth through
the conditional variance of growth. We move beyond the literature that focuses on
conditional mean point forecasts and compare models based on density forecasts.
Over a range of dynamic models, oil shock measures and data we find a robust
link between oil shocks and the volatility of economic growth. A new measure
of oil shocks is developed and shown to be superior to existing measures and
indicates that the conditional variance of growth increases in response to an
indicator of local maximum oil price exceedance. The empirical results uncover
a large pronounced asymmetric response of growth volatility to oil price changes.
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1 Introduction

This paper provides new results to the debate on how oil shocks impact real economic

growth. We find no evidence that oil shocks affect the conditional mean of economic

growth using a variety of oil shock measures. However, oil shocks display a strong

robust impact on the conditional variance of growth. Related to initial studies (Mork

1989, Hamilton 1996) that find oil price increases are relevant when they exceed the

maximum oil price we find that they lead to increases in the conditional variance of

growth and provide the best density forecasts for future growth.

The importance of oil price movements and their impact on economic growth was

raised in Hamilton (1983). However, the subsequent literature is unclear on the role

if any that oil plays in predicting economic growth. The initial findings from Mork

(1989) and Hamilton (1996) were that oil price increases are relevant when they exceed

the maximum oil price and oil price decreases have no significant effects on economic

growth. These stylized facts were further confirmed by Hamilton (2003), Hamilton

(2011) and Ravazzolo & Rothman (2013) among others.

This asymmetric response to oil shocks was challenged by Kilian & Vigfusson

(2011a) and Kilian & Vigfusson (2011b). In lieu of testing the coefficients from a

regression model, these papers focus on impulse response functions and found no signif-

icant difference between positive shocks and negative shocks. Hamilton (2011) argued

that their results are caused by different data sets, measures of oil price and price

adjustment.

The recent study by Kilian & Vigfusson (2013) performs a comprehensive predictive

analysis of the effect of oil price shocks on economic growth. Among several economi-

cally plausible nonlinear specifications, they find that including negative oil price shocks

further improves economic growth forecasting. In addition, the best predictive model

preserves symmetry between positive and negative shocks.

One common feature for the majority of the literature is that the predictive models

are nonlinear in oil prices, but linear in oil price shocks. First, a measure of oil price

shocks is constructed such as net oil price increase (Hamilton 1996) or large oil price

change (Kilian & Vigfusson 2013). Then, the constructed variable enters into a linear

model as one regressor to have its predictive performance examined in a homoskedastic

setting. One exception is Hamilton (2003), who has modelled the nonparametric condi-

tional mean function to study the nonlinear marginal effect of the oil price on economic

growth.
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Although this is the first paper to explore the impact oil shocks have on economic

uncertainty, other papers by Lee et al. (1995) and Elder & Serletis (2010) have in-

vestigated second order moments from oil prices. Lee et al. (1995) argue that an oil

shock standardized by a GARCH model is more important to the conditional mean of

growth. This two step estimation approach is extended to a bivariate GARCH-in-mean

specification in Elder & Serletis (2010). The latter paper finds volatility in oil prices

have a negative effect on several measures of output.

The most significant contribution of this paper is to demonstrate that oil shocks

primarily affect economic growth through a volatility channel. We find little to no

gains by including oil shocks into the conditional mean but very significant forecast

improvements when oil shocks enter the conditional variance of real growth. Of course,

this volatility channel does not show up in point forecasts of the conditional mean as

the literature has focused on but becomes readily apparent in density forecasts.

Working with density forecasts have several advantages. First, a density forecast

contains a complete description of future outcomes of growth, including the predictive

mean. Second, a density forecast can provide a measure of economic uncertainty about

the future and will be sensitive to models with different conditional moment specifica-

tions. For example, volatility measures and density intervals from the predictive density

will be sensitive to heteroskedasticity. Lastly, density-forecasting based model compar-

ison leads to standard Bayesian methods of model comparison based on Bayes factors.

Predictive or marginal likelihoods automatically penalize complex models that do not

improve predictions. From a classical perspective, density forecasts can be evaluated

through scoring rules (Gneiting & Raftery 2007, Elliott & Timmermann 2008) which

have a close equivalence to Bayesian predictive likelihoods and Bayes factors.

This volatility channel is shown to be robust to different oil shock measures and the

use of industrial production index for output. We consider five measures of oil price

shocks, four from the academic literature and one developed in this paper. The analysis

also consider a range of different lag structures for the dependent variable and the oil

shock measures.

One oil shock measure, an indicator variable on the net oil price increase, results in

the best density forecasts. This specification dominates a GARCH model for growth as

well as a hybrid GARCH model that includes these shocks. This implies that economic

uncertainty increases in response to a local maximum oil price exceedance. However,

the impact of this exceedance is independent of the shock size and we discuss some

possible reasons for this. When an exceedance occurs the standard deviation on real
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growth shocks, 2 quarters ahead, almost doubles. Thus our empirical results uncover a

large pronounced asymmetric response of growth volatility to net oil price increases. An

implication of our findings is that the uncertainty about future growth is considerably

lower compared to a benchmark AR(1) model when no oil shocks are present.

The remainder of the paper is organized as follows. Section 2 reviews the data. Sec-

tion 3 explains out-of-sample density forecasts and the computation method. Different

lag structures are reviewed in Section 4. Oil price shocks are defined in Section 5 while

Section 6 introduces the model that allows oil shocks to affect the conditional mean

and conditional variance of growth. The empirical results are discussed in Section 7

while Section 8 reports robustness checks. Section 9 concludes and this is followed by

an Appendix that provides details on posterior simulation methods.

2 Data

The paper restricts attention to two popular series: U.S. real GDP growth rate and Re-

finers’ Acquisition Cost composite index (RAC). The first represents economic growth

and the latter represents oil price.1 For the oil price information, there is a fair amount

of discussion regarding whether using real or nominal oil price data is appropriate. We

use the nominal price following Hamilton (2003), because we believe that a nominal

price shock is conceptually more related to behavioural responses from the economy.

Define Ot as the U.S. RAC composite index at time t.2 The change in oil price,

denoted by rt, is defined as the log difference of Ot, scaled by 100. The economic growth

rate, denoted by gt, is defined as the log difference of the real GDP level scaled by 100.3

The data spans from 1974Q1 to 2015Q3 with 166 observations in total. Figure 1 shows

their time series plot.

3 Out-of-Sample Density Forecast

To the best of our knowledge, all existing papers on the predictive relationship between

oil prices and economic growth compare point forecasts. In this paper, we evaluate the

predictive relationship from a more general perspective. Models can produce better

density forecasts due to a more accurate predictive mean, as the literature has focused

1Section 8 considers other variables.
2Obtained from https://www.eia.gov/dnav/pet/pet pri rac2 dcu nus m.htm.
3Data is from https://fred.stlouisfed.org/series/GDPC1.
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on, but improvements may come from other higher order moments that affect the

shape the density forecast. Although our focus is on density forecasts we also report

the accuracy of models’ predictive mean forecasts.

From a Bayesian perspective, density forecasts or the predictive density, integrates

out parameter uncertainty. Model comparison is based on the predictive likelihood,

which is the evaluation of the predictive density function at the realized data. Models

with better density forecasts will have large predictive likelihood values. Predictive like-

lihoods are the main input to construct Bayes factors. Although we conduct Bayesian

inference the predictive likelihoods are equivalent to a log-scoring rule for density fore-

casts and there are well defined classical methods to compare models (Amisano &

Giacomini 2007).

The predictive density at period t is defined as the distribution of the random vari-

able of interest, in this case gt, conditional on the past information It−1 = {g1:t−1, r1:t−1},

for model M as,

p(gt | It−1,M). (1)

The predictive mean is derived from the predictive density function as

E(gt | It−1,M) =

∫

gtp(gt | It−1,M)dgt. (2)

If we are only interested in the mean forecast and use it as a measure for model compari-

son, we can compare the observed growth data gt to the predictive mean E(g̃t | It−1,M)

for model M. A quadratic loss function implies the root mean squared forecast error

(RMSFE) for M, which is a traditional measure of fitness:

RMSFEM =

√

√

√

√

1

T − t0 + 1

T
∑

t=t0

(gt − E(gt | It−1,M))2, (3)

where t0 is the first period in the out-of-sample data and T is the total number of

observations. The data from period t = 1 to t0 − 1 are used as a training sample.

In order to evaluate density forecasts, we compute the predictive likelihood which is

the value of the predictive density for a model evaluated at the observed data gt. Models

can be compared based on predictive likelihood values. A model with a larger value

implies that the density forecast is more plausible, while a model with a smaller value
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indicates that the model has less support from the data. Of course model comparison

cannot be based on any single observation but over a range of out-of-sample density

forecasts models’ predictive likelihoods become informative.

The log-predictive likelihood (LPL) for gt, t = t0, . . . , T can be decomposed into a

sequence of the one-period ahead predictive likelihoods

log p(gt0:T | It0−1,M) =
T
∑

t=t0

log p(gt | It−1,M). (4)

The predictive likelihood is an out-of-sample measure and its calculation is discussed

below. The predictive likelihood favors parsimony and more complex models only

deliver higher predictive likelihood values if their predictions are more accurate and

otherwise leads to smaller values.

For illustration, consider two models under consideration: M0 and M1, which

may or may not nest each other. The log-predictive likelihoods of these models are

LPL0 = log p(gt0:T | It0−1,M0) and LPL1 = log p(gt0:T | It0−1,M1). The log-Bayes

factor for these data is defined as logBF01 = LPL0 − LPL1. If logBF01 > 0, the data

support model M0 and vice versa. Values of logBF01 > 5 are considered very strong

support for M0 (Kass & Raftery 1995).

Log-Bayes factors are related to model probabilities (p(Mi|IT ), i = 0, 1) or odds

ratios. If the prior probabilities of the models are equal after observing the training

sample from t = 1 to t0 − 1, applying Bayes’ rule gives,

log
p(M0 | IT )

p(M1 | IT )
= log

p(gt0:T | It0−1,M0)p(M0 | It0−1)

p(gt0:T | It0−1,M1)p(M1 | It0−1)

= log
p(gt0:T | It0−1,M0)

p(gt0:T | It0−1,M1)

= log
exp(LPL0)

exp(LPL1)

= LPL0 − LPL1.

To account for sensitivity to prior elicitation, we let t0 = 10 in the application to

include a training sample of size 10. The rest, 156 observations, are used for out-of-

sample forecasts. Because we have many models, we report the log-predictive likelihood

LPLi, and for any pair of models, their log-predictive Bayes factors can be inferred

easily from these.
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Now the only problem is to compute the predictive likelihood values. All models in

this paper are parametric, so we use θ to represent the parameter vector of a model.

The predictive likelihood at period t is obtained by integrating out the parameter

uncertainty as follows:

p(gt | It−1,M) =

∫

p(gt | θ, It−1,M)p(θ | It−1,M)dθ.

The first part in the integral p(gt | θ, It−1,M) is the data density for model M. The

second part p(θ | It−1,M) is the posterior density given data It−1 for model M. The

posterior density is generally of an unknown form but with Markov chain Monte Carlo

(MCMC) methods draws can be obtained from this distribution. Given a large sam-

ple {θ(i)}Mi=1 of MCMC draws from the posterior distribution p(θ | It−1) a simulation

consistent estimate of the predictive likelihood is calculated as

̂p(gt | It−1,M) =
1

M

M
∑

i=1

p(gt | θ
(i), It−1,M).

We choose M = 20, 000 after discarding 20, 000 burnin samples to remove initial value’s

influence. Additional details on posterior simulation for the models is found in the

Appendix.

4 Lag Structure

Before investigating the impact of oil shocks on the conditional variance of growth it is

important to have a well specified conditional mean. Although some papers mentioned

this matter such as Kilian & Vigfusson (2011a) and Hamilton (2011), none provide

a detailed study on the importance of lag structure for prediction. Below we discuss

several different models of the conditional mean for economic growth in a homoskedastic

setting.
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4.1 ARX

Define q and p as the number of lags for economic growth and oil price change, respec-

tively. In the ARX model, real GDP growth rate gt, is modelled as,

gt = µ+

q
∑

j=1

αjgt−j +

p
∑

j=1

βjrt−j + σet, et
iid
∼ N(0, 1). (5)

The maximum values of q and p are 4.

4.2 Almon Lag on ARX (ARX-A)

For the second model, we use a parsimonious Almon lag structure on the parameters

(Almon 1965), which can be viewed as restricted ARX models. The recent literature on

mixed frequency data models applies exponential Almon lag structure such as Clements

& Galvão (2008). Because the exponential Almon lag structure imposes positivity on

the coefficients, we use the original Almon lag specification instead. In this specification

(ARX-A) the coefficients on the lag variables are a polynomial function of the lag period

as follows,

αj = a0 + a1j + a2j
2 + · · ·+ afj

f

βj = b0 + b1j + b2j
2 + · · ·+ bfj

h,

where f < q and h < p. After simplification the model for economic growth is,

gt = µ+

f
∑

i=0

aiz(q, i) +
h
∑

i=0

bis(p, i) + σet, et
iid
∼ N(0, 1), (6)

where z(q, i) =
∑q

j=1 gt−jj
i and s(p, i) =

∑p

j=1 rt−jj
i. The model reduces the number

of coefficients from the ARX by q + p− f − h. The maximum values of f and h are 4.

4.3 ARX with a Single Lag (ARX-1)

This method aims to locate the single best predictor from the individual lags. Because

the lag variables in a time series inevitably suffer from a certain degree of collinearity,

focusing on one lag may improve forecasting accuracy. Specifically the ARX-1 model

with only one lag of growth and one lag of oil is,

gt = µ+ αgt−q + βrt−p + σet, et
iid
∼ N(0, 1). (7)
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The maximum values of q and p are 4.

4.4 ARX with a Moving Average Lag (ARX-MA)

The ARX and ARX-A models use all the lags up to q and p, whereas ARX-1 only uses

one of the lags up to q and p. In between these two extremes is a 3-quarter moving

average (ARX-MA) model,

gt = µ+ α
1

3

q+2
∑

j=q

gt−j + β
1

3

p+2
∑

j=p

rt−j + σet, et
iid
∼ N(0, 1). (8)

The maximum values of q and p are 4. This means that the furthest lag used is 6.

4.5 Results

Tables 1 – 4 show the log-predictive likelihood (LPL) and RMSFE of the models ARX,

ARX-A, ARX-1 and ARX-MA, respectively. The results are from 156 one-period ahead

out-of-sample forecasts for each of the model specifications. The first out-of-sample

forecast is for 1976Q4. Each model is re-estimated at each time period in the out-of-

sample data. Each row of the table is associated with the number of lags of economic

growth and each column is associated with the number of lags of oil price change. The

values of the RMSFE are in brackets. A bold number means the best performance

in each table. A common feature in these tables is that lags of rt do not add value

to prediction when the lags of economic growth is controlled for. The best model is

a simple AR(1) model. These results indicate that oil price changes do not predict

economic growth when oil changes enter the conditional mean in a linear framework.

In the following the AR(1) will serve as a benchmark model for comparison.

5 Oil Price Shock Measures

Consistent with the literature, the previous section confirms the non-existence of a

linear relationship between the oil price changes and economic growth. This section

defines a number of nonlinear oil shock measures used in the literature as well as a new

one. We follow the prevailing papers to adopt four types of oil price shocks: net price

increase (Hamilton (1996)), symmetric/asymmetric net price change and large price
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change (Kilian & Vigfusson (2013)). The new measure we propose uses the sign of the

net price increase and provides robustness to the magnitude of oil price changes.

Recall that Ot is the U.S. RAC composite index at time t. The following oil price

shocks are constructed.

1. Net price increase

This is probably the most popular way to define an oil price shock, which is

developed by Hamilton (1996) as

d+t = 100max

{

0, log
Ot

O∗
t

}

,

where O∗
t = max{Ot−1, ..., Ot−12} is the highest oil price in the past three years.

Hamilton (1996) used one year history to construct O∗
t . Hamilton (2011) and Kil-

ian & Vigfusson (2013) found that the three-year history is better for prediction.

We report the results based on the three year net price increase in this paper.

2. Asymmetric net price change

Kilian & Vigfusson (2013) showed that a negative oil price shock may also improve

prediction, but in an asymmetric way. Therefore, we include both positive and

negative shocks to our predictive models in this paper. A positive shock d+t is

defined the same as the net price increase. A negative shock is defined as

d−t = 100min

{

0, log
Ot

O∗∗
t

}

,

where O∗∗
t = min{Ot−1, ..., Ot−12} is the lowest oil price in the past three years.

Notice that there are two shock variables in this setting d+t and d−t .

3. Symmetric net price change

This is the best predictor in Kilian & Vigfusson (2013). They found that restrict-

ing a positive and a negative shock to have the same effect can further improve

out-of-sample prediction. The new shock measure is

d∗t = d+t + d−t ,

where d+t is the net price increase and d−t is the net price decrease. This variable

treats positive and negative shock symmetrically. It is 0 when the price Ot is
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between the highest (O∗
t ) and the lowest (O∗∗

t ) historical price.

4. Large price increase

A shock may impact the economy only when it is unexpected, which is proxied

by the “large deviation” in Kilian & Vigfusson (2013). We consider large price

increase as

d
large
t = rtI

(

rt > std({rt−1, ..., rt−12})
)

,

where I is the indicator function and equals 1 if its argument is true and 0

otherwise. The shock d
large
t is positive if the oil price change rt is larger than the

standard deviation of the oil price change in the past three years. Notice that

this measure is asymmetric. If the price decreases, the shock d
large
t is zero.

5. Net price increase indicator

We construct a 0/1 indicator to signal an exceedance of Ot over O
∗
t defined as

dIt = I(d+t > 0),

where d+t is the net price increase. This indicator contains less information than

the net price increase d+t but does not suffer from the large magnitudes that d+t can

have for outliers and may be more robust in capturing an asymmetric response.

6 The Volatility Link

In this section we extend the literature to investigate the transition of oil shocks to

the conditional variance of economic growth. Our starting point is the best benchmark

model from Section 4 which was an AR(1) without exogenous variables (q = 1 and

p = 0). We augment the AR(1) model by the aforementioned various types of oil

price shocks to compare their predictive performance. The general heteroskedastic

specification is

gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et, et
iid
∼ N

(

0, 1
)

. (9)

The shock dt−p will be replaced by the previously defined measures: rt−p, d
+
t−p, d

∗
t−p, d

large
t−p

or dIt−p. For the asymmetric net price change, dt−p = (d+t−p, d
−

t−p)
′ is a vector. The sub-

script t− p means a p period lag. Model (9) incorporates the lag effects from oil shocks
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on both the conditional mean and variance. The coefficient λ represents the impact

of an oil shock dt−p on the conditional mean of economic growth gt. The coefficient δ

measures the impact of an oil price shock on the conditional variance of gt. The λ and

δ are vectors when the shock dt−p is a vector.

In this model the oil price shocks are transmitted to economic growth through two

channels. The first one follows the existing literature to incorporate the shock in the

conditional mean function. The second channel is the impact of an oil price shock on

the volatility of economic growth. To the best of out knowledge, no one has investigated

this issue before.4 This latter channel will display little to no impact on predictive mean

forecasts and it is critical to evaluate model forecasts from the more general metric of

density forecasts.

In (9) the oil shock dt−p, affects the mean and variance of economic growth at the

same lag time p. Given the weak evidence for oil shock appearing in the conditional

mean we do not consider different lag lengths for dt in the two moments. Nevertheless

our analysis does investigate this possibility indirectly. This is done by considering

restricted modes. One is to shut down the conditional mean transmission channel by

restricting λ = 0. The other is to restrict δ = 0 to turn off the volatility transmission

channel. If we restrict both λ and δ to be zero, we have the models in Section 4. By

comparing the unrestricted and restricted models, we are able to assess oil price shocks

impact on the conditional mean and conditional variance and which channel is more

relevant.

7 Empirical Results

Table 5 summaries the best models based on out-of-sample density forecasts. This table

reports the best models based on LPL values from the more extensive results contained

in Tables 6-11. As before each model is re-estimated in the out-of-sample period and

the forecast data is the same as in Section 4.5. Different oil shock measures are included

along with restricted versions of the models and GARCH models. The final column of

the Table 5 reports the log-predictive likelihood (LPL) values for the 156 out-of-sample

periods.

Moving from the LPL of −173.6 for the benchmark AR(1) model in Table 5 we

see large improvements from most of the other specifications. Ignoring the model with

4Elder & Serletis (2010) study the volatility/uncertainty of the oil price shock on the mean of
economic growth. We, instead, check the oil price shock on the volatility of economic growth.
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dt−1 set to the large net price increase every other model improves upon the benchmark

model. The log-Bayes factors for the new models against the benchmark model range

from −2.6 to 17. Each of the improved models feature an oil shock measure that enters

the conditional variance of real growth. With one exception, the best specification for

each given oil measure occurs with the restriction of λ = 0. That is, density forecasts are

better when the oil shock enters the conditional variance only. The transmission from

the oil market to the conditional variance of real growth occurs with mostly 3 quarters

lag, although, the top model has a lag of 2 quarters and is an important exception.

These results document an important transmission from the oil market to economic

growth through the conditional variance of growth with a significant lag effect. This

result is robust to different oil shock measures as well. Consistent with the existing

literature, oil shocks in the conditional mean are not generally important nor does

allowing heteroskedasticity alter those findings.

The model with the largest LPL value includes the new oil shock, net price increase

indicator. The log-Bayes factor for this model against the AR model is 17 and is decisive

evidence in favor of it. This measure works much better than the other shock measures.

The predictive Bayes factor between this model and the best model with the other oil

price measures (symmetric net price change) is 7.7 which is strong evidence in favor of

the new measure.

In order to learn more about where the gains from using oil shock measures in the

conditional variance of growth come from we plot the cumulative log-predictive Bayes

factors. It is calculated as

cumlogBF 01
t = log p(yt0:t | y1:t0−1,M0)− log p(yt0:t | y1:t0−1,M1),

to compare M0 to M1. An increase (decrease) in cumlogBF 01
t at time t is support for

model M0 (M1). Cumulative log-Bayes factors appear in Figure 2. This is the Bayes

factor of the model in (9) with different oil shock measures against the AR(1) benchmark

models at each time in the out-of-sample period. Except for the one oil shock all models

make regular gains against the AR(1). The improvements these models offer are not

due to a few observations but are widespread over the out-of-sample period.

An expanded set of forecasts results are reported in Tables 6-11. These tables report

a range of forecast results for different oil shock measures, lag lengths and parameter

restrictions. Included in each of the tables is the RMSFE in parentheses. These tables

confirm our findings that oil shocks do predict economic growth through a volatility
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channel. We can observe that 4 out of 5 shock measures (the exception is the net

price increase) have larger LPL when restricting λ = 0. Incorporating oil price shocks

directly into the conditional mean of economic growth is not supported by the data.

Turning to the RMSFE from point forecasts of the conditional mean and comparing

the second columns (δ 6= 0, λ 6= 0) in Tables 6-11 to the baseline AR(1) model, the best

specification in each table does result in a lower RMSFE. However, the gains are small,

the AR(1) model has a RMSFE of 0.7354 while the best heteroskedastic model (large

net price increase) delivers 0.7266.

In conclusion, oil price shocks affect the volatility of economic growth. From both

LPL and RMSFE, we can conclude that the best models are always associated with

δ 6= 0, which means that an oil price shock predicts the volatility of economic growth. In

addition, Table 12 shows the full sample posterior summary of δ from the best models

for each type of oil price shock. None of their 90% density intervals include 0.

7.1 Volatility of Growth

Our results indicate that oil shocks predict volatility changes in real growth. To further

investigate this we estimate an AR(1)-GARCH(1,1) model for heteroskedasticity for

comparison,

gt = µ+ αgt−1 + et, (10a)

et ∼ N
(

0, σ2
t

)

, (10b)

σ2
t = ω0 + ω1e

2
t−1 + ω2σ

2
t−1. (10c)

See the Appendix for additional details on this specification including estimation. Fig-

ure 3 displays the full-sample posterior mean of the standard deviations over time for

the best models of each shock type using (9). The black line in each panel is the

standard deviation from the GARCH model. The first four panels clearly show that

the oil price shock associated with the Gulf War in 1990Q3 exaggerates the volatility

of the economic growth compared to GARCH. The worst two measures based on the

LPL, asymmetric net price change and large price increase, are plotted in the second

and fourth panel. It is obvious that the volatilities are distorted relative to the AR(1)-

GARCH(1,1) model. The final panel of this figure shows the model with the net price

increase indicator to be the closest to the GARCH implied standard deviation.

In attempt to disentangle the time series effect and the oil shock effect on the
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volatility of growth, we propose a hybrid model to incorporate both impacts into the

second moment. Specifically, the AR-GARCH-Shock model is define as,

gt = µ+ αgt−1 + exp(δdt−2)et, (11a)

et ∼ N
(

0, σ2
t

)

, (11b)

σ2
t = ω0 + ω1e

2
t−1 + ω2σ

2
t−1. (11c)

In this model dt−2 is the net price increase indicator. The volatility now has two parts:

the oil shock effect exp(δdt−2) and the GARCH component σ2
t .

The LPL for the density forecasts from the two GARCH specification are found

in the final two entries in Table 5. The GARCH models do improve upon the AR

benchmark model but they are still inferior to the best specification which only has

oil shocks directing the conditional variance. For instance, the log-Bayes factor for

the model with the net price increase indicator entering the conditional variance in (9)

against the AR(1)-GARCH(1,1) is 10.6 while it is 7.8 against the AR(1)-GARCH(1,1)-

shock. We conclude that the GARCH parameterization is not a proxy for oil shock

effects on the conditional variance. Oil price shocks contain additional information

value for forecasting output.

These results can be seen from Figure 4. These are cumulative log-Bayes factors for

each specification against the AR(1)-GARCH(1,1) model. The figure shows an upward

trend of the log-Bayes factor of the best model with the net price increase indicator

against the benchmark (red line). One exceptional period is between 2005-2007, when

several oil price shocks are identified but the economic growth is tranquil. But the

drop in the Bayes factor during that period is quickly compensated during the financial

crisis in 2008-2009, when the GARCH model predicts a large volatility but the oil price

shocks do not.

Figure 5 displays the cumulative log-Bayes factors of three models (the AR(1), the

model with the net price increase indicator in the volatility, the AR(1)-GARCH(1,1))

against the AR(1)-GARCH(1,1)-Shock model. Interestingly, model (9) with the net

price increase indicator is still the best except for the period around 2007.

7.2 Net Price Increase Indicator

This section discusses in more detail the net price increase indicator and the implication

of the best forecasting model.
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First, the indicator function is critical to the improved performance of this oil shock

measure. Although the net price increase shock does improve the LPL (Table 5) it

is nowhere near as good as the indicator version. Figure 6 shows a histogram of the

shocks measured by net price increase. The largest shock is associated with the Gulf

War in 1990. It is about 10 times larger than the shocks in the left tail. An exponential

transformation implies that the variance change associated with this shock is e10 times

larger than a small shock! Given the heterogeneous nature of net price increase shocks

it is not surprising that the indicator function performs better.

The effect of these two oil shocks on the conditional standard deviation can be

seen in the top and bottom panels of Figure 3. While the net price increase leads to

some extreme measures of volatility the indicator function preserves the direction of

the measure but removes the extreme values.

Full sample estimates of the best forecasting model are reported in Table 13 along

with the AR(1) model. Adding oil shocks into the conditional variance causes important

changes. First, when no oil shock is present the conditional standard deviation is

much smaller (0.2854 versus 0.5265), meaning that we are much more certain about

growth that the AR model would lead us to conclude. On the other hand, when

an oil shock is present the conditional standard deviation doubles (0.2854 to 0.5705 =

0.2854 exp(0.6927)). Thus our empirical results uncover a large pronounced asymmetric

response of growth volatility to net oil price increases. The impact of this oil shock

happens with a two quarter lag.

8 Robustness

This section considers robustness checks from three perspectives: priors, structural

stability and data.

8.1 Prior Sensitivity Check

We did a prior sensitivity check on the best model (9) with net price increase indicator

when λ = 0 and δ 6= 0. By changing the prior parameters relative to the original prior,

we propose four alternative settings: loose, tight, very loose and very tight. Details

and results are shown in Table 14. Except for the very tight prior, all other settings

shows that the log-predictive likelihoods are robust to prior changes. Even for the very

tight case, the log-predictive likelihood is still strongly supported by the data against
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the benchmark linear model.

8.2 Structural Instability

We estimated the benchmark linear model AR(1) with a 5-year rolling window to control

for structural instability. The log-predictive likelihood and RMSFE are −171.6 and

0.7734, respectively. In comparison to the AR(1) model without a rolling window

(LPL = −173.6 and RMSFE = 0.7354), the gain on the density forecast is not

prominent and there is even a loss in precision of the point forecasts.

For the other models we perform a subsample analysis. The data are split into three

periods 1976Q4− 1989Q4 (before Gulf War), 1990Q1− 2002Q4 (before oil price surge)

and 2003Q1 − 2015Q3. Table 15 shows the forecast results in each subsample along

with the full sample result as a reference. The rank of the models is stable over time.

Using the net price increase indicator as a shock measure is always competitive in each

subsample.

8.3 Data

The shocks are constructed by using the 3-year window according to the standard

literature such as Hamilton (2003) and Kilian & Vigfusson (2013). As a robustness

check, we also reconstruct these measures by using only a one year window. These

results favor the same heteroskedasticity model with the net price increase indicator

shock.

By using industrial production as another proxy for output (https:// fred.stlouisfed.org

/series/INDPRO), we carried out the same analysis as we did on the real GDP. Indus-

trial production growth is monthly data with a full sample size of 499. We use 10

observations as a training sample and the out-of-sample period has 479 observations.

The best of the homoskedastic specifications was the ARX-MA which has an out-

of-sample LPL of 471.9 and RMSFE of 0.6354. As in the GDP case, Table 16 shows

there is strong evidence that oil shocks impact the conditional variance of industrial

production growth. The best model favors the net price increase indicator.
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9 Conclusion

This paper shows that the primary channel in which oil shocks effect real growth is

thorough the conditional variance of real growth and not the conditional mean. The

paper performs an extensive forecasting analysis using different models, oil shock mea-

sures as well as real growth measures to demonstrate the robustness of this volatility

link.

Incorporating oil shocks into the conditional variance of real growth leads to large

improvements in density forecasts but little to no improvement in conditional mean

point forecasts. A new shock measure, net price increase indicator, produces the best

density forecasts. An implication of our findings is that the uncertainty about future

growth is considerably lower compared to a benchmark AR(1) model when no oil shocks

are present.
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A Sampling Steps for ARX, ARX-A, ARX-1 and

ARX-MA

The sampling method is straightforward when we confront models of equations (5), (6),

(7), and (8). The posterior distribution is conjugate and we apply Gibbs sampler. For

simplicity, we use the following matrix form to represent models of equations of (5),

(6), (7), and (8).

g = Xβ + u u ∼ NID(0, σ2I),

where g is a vector growth rates with dimension of T, which is total number of obser-

vations. Let β denote the parameter vector we are interested. Let X = [X1, . . . , Xt]
′

and the input of each element various according to the following models.

ARX: Let β =[µ, α1:q, β1:p]
′ with dimension of p + q + 1, and corresponding Xt =

[1, gt−1, . . . , gt−q, rt−1, . . . , rt−p] for t = 1, . . . , T .

ARX-A: Let β =[µ, a1:f , b1:j]
′ with dimension of f + h+ 1. Let Xt = [1, z(q, 0), . . .

, z(q, f), s(p, 0), . . . , s(p, h)] for t = 1, . . . , T , and the X has T rows and f + h + 1

columns. Please refer to section 4.2 for details of the polynomial construction.

ARX-1: Let β =[µ, α, β]′. The X has a dimension of T by 3, where each Xt =

[1, gt−1, rt−1] for t = 1, . . . , T .

ARX-MA: Let β =[µ, α, β]′. The X has a dimension of T by 3, where each Xt =

[1, 1
3

∑q+2
j=q gt−j,

1
3

∑p+2
j=p rt−j] for t = 1, . . . , T .

The p(.) and I respectively denote the conditional posterior density and information

set. The following is a generalization of each steps of sampler. At each ith MCMC draw,

1. Draw σ−2(i) ∼ p(σ−2|β
(i−1)

, I)

2. Jointly Draw β
(i)

∼ p(β|σ−2(i), I)

For models of (5), (6) (7), and (8), the priors are β ∼ MN(b, B) and σ−2 ∼

Gamma(χ, ν). The MN denotes multivariate normal distribution. We set b and B

be respectively a vector of zeros and an identity matrix. We set χ = 3 and ν = 1

correspondingly for the prior of σ−2. Let I denote as information set. The conditional

posterior distribution for β and σ−2 are the following:

β|σ2, I ∼ MN(M,V −1) V = (σ−2X ′X +B−1) M = V −1(σ−1X ′g +B−1b)
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σ−2|β, I ∼ Gamma

(

χ+
T

2
, ν +

1

2
u′u

)

B Sampling Steps for the Shock Model

B.1 Net Price Increase, Symmetric Net Price Change, Large

Price Increase, Net Price Increase Indicator

The sampling steps on µ, β, λ, σ of shock model5 are similar as they are sampled in

previous section. Besides, we apply the Metropolis-Hasting (MH) algorithm on δ due

to its non-conjugate feature.

gt = µ+ βgt−1 + λdt−p + σ exp(δdt−p)et et
iid
∼ N

(

0, 1
)

(µ, β, λ) ∼ MN(b, B), δ ∼ N(a,A), σ−2 ∼ Gamma(χ, ν)

The I is the information set. Let b be a vector of zeros and B be an identity matrix.

We set a = 0, A = 1, χ = 3 and ν = 1. At each ith MCMC draw, the parameter space

is sampled by the following conditional posterior density:

1. Draw σ−2(i) ∼ p(σ−2|µ(i−1), β(i−1), λ(i−1), δ(i−1), I)

2. Jointly Draw µ(i), β(i), λ(i) ∼ p(µ|β(i−1), λ(i−1), δ(i−1), σ−2(i), I)

3. Draw δ(i) ∼ p(δ|µ(i), β(i), λ(i), σ−2(i), I)

Step 1 and 2 are sampled through the following transformations:

gt

exp (δdt−p)
=

µ

exp (δdt−p)
+

βgt−1

exp (δdt−p)
+

λdt−p

exp (δdt−p)
+ σet (13a)

g∗t = µx∗

t−1 + βg∗t−1 + λd∗t−p + σet (13b)

where the x∗
t−1 is 1

exp (δdn
t−p

)
. The equation (13b) is derived with given δ. Then, we

can easily sample the {µ, β, λ, σ2} under perfect conjugacy. For simplicity, the equation

(13b) is rewritten in the following matrix form:

g = Xβ + u u ∼ NID(0, σ2I)

5Equation (9)
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The g and X are respectively a vector of g1:T and T by 3 matrix. Let X = [X1, . . . , XT ]
′

andXt = [x∗
t−1, g

∗
t−1, d

∗
t−p] for t = 1, . . . , T . We set β = [µ, β, λ]′ and I as the information

set. The conditional posterior distribution of β and σ−2 are the following:

β|σ−2, I ∼ MN(M,V −1) V = (σ−2XTX +B−1) M = V −1(σ−1XT g +B−1b)

σ−2|β, I ∼ Gamma

(

χ+
T

2
, ν +

1

2
u′u

)

As mentioned early, the δ is sampled through the Metropolis-Hastings algorithm of

random walk. To simplify the notations, we set mt(µ, β, δ) = µ + βgt−1 + λdnt−p. The

step 3 is then sampled by the following density function,

p(δ|σ2, µ, β, λ, x) ∝ exp
(

−
(δ − a)2

2A

)

exp (−δ

T
∑

t=1

dt−p) exp
(

−
1

2σ2

T
∑

t=1

(

gt −mt(µ, β, δ)
)2

exp(2δdt−p)

)

with given µ(i), β(i), λ(i) and σ−2(i), the δ(i) at ith MCMC iteration is sampled such

as: We first draw δnew = δ(i−1)+N(0, s), where s is the tuning parameter for adjusting

the acceptance probability and set δold = δ(i−1). Then, we decide on accepting δnew or

keeping δold according to the following rule,

θ = min
[p(δnew|µ(i), β(i), λ(i), σ−2(i), I)

p(δold|µ(i), β(i), λ(i), σ−2(i), I)
, 1
]

(14)

Next, we draw u ∼ Uniform(0, 1), if u ≤ θ, set δ(i) = δnew, otherwise set δ(i) = δold.

B.2 Asymmetric Net Price Change

gt = µ+ αgt−1 + λ1d
+
t−p + λ2d

−

t−p + σ exp(δ1d
+
t−p + δ2d

−

t−p)et et
iid
∼ N

(

0, 1
)

(15a)

(µ, β, λ1, λ2) ∼ MN(b, B), δ1 ∼ N(a1, A1), δ2 ∼ N(a2, A2), σ−2 ∼ Gamma(χ, ν)

(15b)

Let b and B be respectively a vector of zeros and an identity matrix. We set

a1 = a2 = 0 and A1 = A2 = 1 correspondingly. The I denotes information set. At each

ith MCMC draw, we apply the Gibbs sampler to the following conditional posterior

density:

1. Draw σ−2(i) ∼ p(σ−2|µ(i−1), β(i−1), λ
(i−1)
1 , λ

(i−1)
2 , δ

(i−1)
1 , δ

(i−1)
2 , I)
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2. Jointly Draw µ(i), β(i), λ
(i)
1 .λ

(i)
2 ∼ p(µ, β, λ1, λ2|δ

(i−1)
1 , δ

(i−1)
2 , σ−2(i), I)

3. Draw δ
(i)
1 ∼ p(δ1|µ

(i), β(i), λ
(i)
1 .λ

(i)
2 , σ−2(i), δ

(i−1)
2 , I)

4. Draw δ
(i)
2 ∼ p(δ2|µ

(i), β(i), λ
(i)
1 .λ

(i)
2 , σ−2(i), δ

(i)
1 , I)

Step 1 and 2 can be sampled under perfect conjugacy if all variables of equation

(15a) are divided by exp(δ1d
+
t−p + δ2d

−

t−p) such as:

g∗t = µx∗

t−1 + βg∗t−1 + λ1d
+∗

t−p + λ2d
−∗

t−p + σet (16)

The x∗
t−1 is denoted as 1

exp(δ1d
+

t−p
+δ2d

−

t−p
)
. Again, for simplicity, we rewrite the equation

(16) as the following matrix form:

g = Xβ + u u ∼ NID(0, σ2I)

Let the g and X denote respectively a vector of g1:T and X = [X1, . . . , Xt]
′, a T by 4

matrix such as Xt = [x∗
t−1, g

∗
t−1, d

+∗

t−p, d
−∗

t−p] for t = 1, . . . , T . Let β = [µ, β, λ1, λ2]
′ as the

parameter space.

β|σ−2, I ∼ MN(M,V −1) V = (σ−2XTX +B−1) M = V −1(σ−1XT g +B−1b)

σ−2|β, I ∼ Gamma

(

χ+
T

2
, ν +

1

2
u′u

)

Due to its lack of conjugacy, the δ1 and δ2 are sampled through the Metropolis-

Hastings algorithm of random walk. To simplify the notations, we set mt = µ+βgt−1+

λ1d
+
t−p + λ2d

−

t−p. The step 3 is sampled with the following joint density,

p(δ1|σ
2, µ, β, λ1, λ2, δ2, I)

∝ exp
(

−
(δ1 − a1)

2

2A1

)

exp (−δ1

T
∑

1

d+t−p) exp
(

−
1

2σ2

T
∑

t=1

(gt −mt)
2

exp(2δ1d
+
t−p + 2δ2d

−

t−p)

)

The following example shows posterior sampling steps of δ
(i)
1 : given µ(i), β(i), λ

(i)
1 , λ

(i)
2 ,

δ
(i−1)
2 and σ−2(i), we first draw δnew1 = δ

(i−1)
1 +N(0, s), where s is the tuning parameter

for adjusting the acceptance probability. Let δold1 = δ
(i−1)
1 . Then, we decide on accepting
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δnew1 or keeping δold1 according to the following rule,

θ = min
[p(δnew1 |µ(i), β(i), λ

(i)
1 , λ

(i)
2 , δ

(i−1)
2 σ−2(i), I)

p(δold1 |µ(i), β(i), λ
(i)
1 , λ

(i)
2 , δ

(i−1)
2 σ−2(i), I)

, 1
]

Next, we draw u ∼ Uniform(0, 1), if u ≤ θ, set δ
(i)
1 = δnew1 , otherwise set δ

(i)
1 = δold1 .

Sampling δ2 is exactly same manner as sampling the δ1 with the following joint

density:

p(δ2|σ
2, µ, β, λ1, λ2, δ1, I)

∝ exp
(

−
(δ2 − a2)

2

2A2

)

exp (−δ2

T
∑

t=1

d−t−p) exp
(

−
1

2σ2

T
∑

t=1

(gt −mt)
2

exp(2δ1d
+
t−p + 2δ2d

−

t−p)

)

C AR(1)-GARCH(1,1)

The AR(1)-GARCH(1,1) is introduced in section 7.1.

gt = µ+ βgt−1 + et (19a)

et
iid
∼ N(0, σ2

t ) (19b)

σ2
t = ω0 + ω1e

2
t−1 + ω2σ

2
t−1 (19c)

The sampling approach is the standard Metropolis-Hasting (MH) algorithm with

random walk. Each step is sampled through MH. The prior each of the parameter

(µ, β, ω0, ω1, ω2) follows a standard normal distribution under the constraints of ω0 > 0,

ω1 > 0, ω2 > 0 and ω1 + ω2 < 1. The joint posterior density is:

p(µ, β, ω0, ω1, ω2) ∝ p(µ)p(β)p(ω0)p(ω1)p(ω2)

T
∏

t=1

1
√

2πσ2
t

exp

(

−
(gt − µ− βgt−1)

2

2σ2
t

)

Iω0>0(ω0)Iω1>0(ω1)Iω2>0(ω2)Iω1+ω2<1(ω1, ω2)

The p(µ), p(β), p(ω0), p(ω1) and p(ω2) are the prior densities. Let I denote the

information set. A single move random walk sampler is applied and it is iterated in the

following steps:

1. Draw µ(i) ∼ p(µ|β(i−1), ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , I)

2. Draw β(i) ∼ p(β|µ(i), ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , I)

23



3. Draw ω
(i)
0 ∼ p(ω0|µ

(i), β(i), ω
(i−1)
1 , ω

(i−1)
2 , I)

4. Draw ω
(i)
1 ∼ p(ω1|µ

(i), β(i), ω
(i)
0 , ω

(i−1)
2 , I)

5. Draw ω
(i)
2 ∼ p(ω2|µ

(i), β(i), ω
(i)
0 , ω

(i)
1 , I)

The p(.) denotes the conditional posterior density. For each ith MCMC draw, the

µ can be sampled in such way: draw µnew = µ(i−1) + N(0, s), where s is a tuning

parameter used for adjusting the acceptance probability. We set µold = µ(i−1). Next

evaluate the following,

θ = min
[

1,
p(µnew|β(i−1), ω

(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , I)

p(µold|β(i−1), ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , I)

]

Draw a u ∼ Uniform(0, 1). If u ≤ θ set µ(i) = µnew, and otherwise set µ(i) = µold.

The other parameters are sampled in the exactly the same manner.

D AR(1)-GARCH(1,1)-Shock

This model is a hybrid model which incorporate both oil shocks and GARCH model.

It is introduced in section 7.1.

gt = µ+ βgt−1 + exp(δdt−p)et (21a)

et
iid
∼ N

(

0, σ2
t

)

(21b)

σ2
t = ω0 + ω1e

2
t−1 + ω2σ

2
t−1. (21c)

The sampling approach is exactly the same as AR(1)-GARCH(1,1) with one extra

step on δ. The prior for AR(1)-GARCH(1,1)-Shock is the same as AR(1)-GARCH(1,1)

with δ ∼ N(0, 1). The joint posterior density becomes:

p(µ, β, δ, ω0, ω1, ω2) ∝ p(µ)p(δ)p(β)p(ω0)p(ω1)p(ω2)

T
∏

t=1

1
√

2πσ2
t exp(2δdt−p)

exp

(

−
(gt − µ− βgt−1)

2

2σ2
t exp(2δdt−p)

)

Iω0>0(ω0)Iω1>0(ω1)Iω2>0(ω2)Iω1+ω2<1(ω1, ω2)

The p(µ), p(β), p(ω0), p(ω1)p(ω2) and p(δ) represent prior densities. Some restric-

tions on the sampling: ω0 > 0, ω1 > 0, ω2 > 0 and ω1 + ω2 < 1. Let I be the

information set. The sampling steps are iterated in the following ways:
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1. Draw µ(i) ∼ p(µ|β(i−1), ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , δ(i−1), I)

2. Draw β(i) ∼ p(β|µ(i), ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 , δ(i−1), I)

3. Draw ω
(i)
0 ∼ p(ω0|µ

(i), β(i), ω
(i−1)
1 , ω

(i−1)
2 , δ(i−1), I)

4. Draw ω
(i)
1 ∼ p(ω1|µ

(i), β(i), ω
(i)
0 , ω

(i−1)
2 , δ(i−1), I)

5. Draw ω
(i)
2 ∼ p(ω2|µ

(i), β(i), ω
(i)
0 , ω

(i)
1 , δ(i−1), I)

6. Draw δ(i) ∼ p(δ|µ(i), β(i), ω
(i)
0 , ω

(i)
1 , ω

(i)
2 , I)

The p(.) represents the conditional posterior density. For ith MCMC draw, the δ can

be sampled such that, we draw δnew = δ(i−1)+N(0, s), where s is a tuning parameter for

adjusting the acceptance probability. Let δold = δ(i−1). Next we evaluate the following,

θ = min
[

1,
p(δnew|µ(i), β(i), ω

(i)
0 , ω

(i)
1 , ω

(i)
2 , I)

p(δold|µ(i), β(i), ω
(i)
0 , ω

(i)
1 , ω

(i)
2 , I)

]

Draw a u ∼ Uniform(0, 1). If u ≤ θ set µ(i) = µnew, and otherwise set µ(i) = µold.

The other parameters are sampled in the exactly the same manner.
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Table 1: The Log-predictive Likelihood and RMSFE of ARX

p = 0 p = 1 p = 2 p = 3 p = 4

q = 0
-183.2
(0.7778)

-186.2
(0.8190)

-190.9
(0.8489)

-197.1
(0.97718)

-197.4
(0.9841)

q = 1
-173.6

(0.7354)
-176.2
(0.7646)

-180.9
(0.7950)

-185.7
(0.9214)

-188.8
(0.9550)

q = 2
-173.7
(0.7408)

-178.7
(0.7929)

-181.5
(0.8036)

-185.9
(0.9315)

-189.3
(0.9683)

q = 3
-176.4
(0.7662)

-182.2
(0.8399)

-186.1
(0.8931)

-188.5
(0.9590)

-192.0
(0.9956)

q = 4
-180.5
(0.7938)

-184.6
(0.8321)

-189.4
(0.93789

-190.8
(0.9939)

-194.3
(1.0099)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods
(RMSFE) in the table.
ARX: gt = µ+

∑q

i=1
αigt−i +

∑p

i=1
βirt−i + σet

Table 2: The Log-predictive Likelihood and RMSFE of ARX-A

b1:g = 0 g = 1 g = 2 g = 3

a1:f = 0
-222.96
(1.2559)

-220.87
(1.2196)

-219.63
(1.1409)

f = 1
-179.4

(0.7847)
-183.3
(0.8073)

-187.1
(0.8637)

-189.1
(0.9044)

f = 2
179.3
(0.8116)

-184.5
(0.8219)

-188.7
(0.8875)

-190.3
(0.9326)

f = 3
-180.6
(0.8275)

-185.3
(0.8260)

-189.6
(0.8956)

-191.3
(0.9409)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods

(RMSFE) in the table. ARX-A: gt = µ +
∑f

i=0
aiz(q, i) +

∑h

i=0
bis(p, i) + σet,

where z(q, i) and s(p, i) correspond to Almond lag polynomials. In the table q = 4
and p = 4.

26



Table 3: The Log-predictive Likelihood and RMSFE of ARX-1

β1:p = 0 p = 1 p = 2 p = 3 p = 4

α1:q = 0
-183.2
(0.7778)

-186.2
(0.8190)

-185.5
(0.7961)

-186.9
(0.8652)

-186.1
(0.8161)

q = 1
-173.6

(0.7354)
-176.2
(0.7640)

-175.8
(0.7460)

-177.2
(0.8108)

-177.3
(0.7652)

q = 2
-186.1
(0.7658)

-185.8
(0.8302)

-182.8
(0.7831)

-183.9
(0.8557)

-183.8
(0.8097)

q = 3
-183.1
(0.7823)

-190.9
(0.8672)

-188.4
(0.8345)

-186.7
(0.8691)

-186.4
(0.8244)

q = 4
-187.7
(0.8030)

-191.0
(0.8479)

-192.2
(0.8470)

-189.4
(0.8751)

-189.3
(0.8380)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods
(RMSFE) in the table. ARX-1: gt = µ+ αgt−q + βrt−p + σet

Table 4: The Log-predictive Likelihood and RMSFE of ARX-MA

β = 0 p = 1 p = 2 p = 3 p = 4

α = 0
-183.2
(0.7779)

-186.3
(0.8048)

-184.9
(0.7970)

-184.0
(0.7929)

-182.9
(0.7774)

q = 1
-175.7

(0.7412)
-177.6
(0.7632)

-177.0
(0.7586)

-178.0
(0.7610)

-178.6
(0.7538)

q = 2
-181.0
(0.7684)

-183.3
(0.7890)

-182.5
(0.7866)

-183.2
(0.7884)

-183.6
(0.7752)

q = 3
-184.4
(0.7914)

-187.3
(0.8119)

-187.2
(0.8141)

-185.3
(0.8021)

-185.0
(0.7902)

q = 4
-187.8
(0.8007)

-190.6
(0.8386)

-189.1
(0.8233)

-186.8
(0.8204)

-186.6
(0.8000)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods

(RMSFE) in the table. ARX-MA: gt = µ+ α 1

3

∑q+2

i=q gt−i + β 1

3

∑p+2

i=p rt−i + σet.
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Table 5: Summary of the Best Forecasting Models

Benchmark Homoskedastic Model

gt = µ+ αgt−q + βrt−p + σet, et
iid
∼ N

(

0, 1
)

.

Model q p LPL

ARX 1 0 -173.6

Heteroskedastic Model: Oil Shock Enters Conditional Mean and Variance

gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et, et
iid
∼ N

(

0, 1
)

.

Oil Shock, dt−p Oil Shock-lag, p Restriction LPL

Net Price Increase 3 δ 6= 0, λ 6= 0 -165.5
Asymmetric Net Price Change 3 δ1:2 6= 0, λ1:2 = 0 -167.9
Symmetric Net Price Change 3 δ 6= 0, λ = 0 -164.3
Large Net Price Increase 3 δ 6= 0, λ = 0 -176.2

Net Price Increase Indicator 2 δ 6= 0, λ = 0 -156.6
Oil Price Log-difference 3 δ 6= 0, λ = 0 -169.4

GARCH Models

Model Type Shock Type Shock-lag LPL

AR(1)-GARCH(1,1) N/A N/A -167.2
AR(1)-GARCH(1,1)-Shock Net Price Increase Indicator 2 -164.4

This Table reports the largest log-predictive likelihoods (LPL) for a range of models and oil shock measures.
The top entry is the best homoskedastic model from Tables 1-4. The second set of results are the bold
entries for LPL from Tables 6-11. The GARCH models are defined in Section 7.1. The bold entry denotes
the largest LPL value.

Table 6: Forecasts from Heteroskedastic model. Shock: oil price log-difference

δ 6= 0, λ 6= 0 δ 6= 0, λ = 0 δ = 0, λ 6= 0

p = 1 -180.9 (0.7763) -174.7 (0.7372) -176.2 (0.7640)
p = 2 -172.7 (0.7490) -169.7 (0.7304) -175.8 (0.7460)
p = 3 -174.0 (0.7759) -169.4 (0.7468) -177.0 (0.8099)
p = 4 -177.8 (0.7985) -174.1 (0.7429) -177.3 (0.7656)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods

(RMSFE) in the table. Shock Definition: dt−p = rt−p = ln
Ot−p

Ot−p−1

. Model:

gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et.
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Table 7: Forecasts from Heteroskedastic model. Shock: net price increase

δ 6= 0, λ 6= 0 δ 6= 0, λ = 0 δ = 0, λ 6= 0

p = 1 -174.3 (0.7407) -171.3 (0.7378) -173.9 (0.7667)
p = 2 -171.3 (0.8103) -169.0 (0.7304) -176.1 (0.7665)
p = 3 -165.5 (0.7734) -166.1 (0.7443) -171.4 (0.7550)
p = 4 -170.0 (0.8408) -170.5 (0.7467) -175.2 (0.8241)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likeli-

hoods (RMSFE) in the table. Shock Definition: dt−p = max
{

0, ln
Ot−p

O∗

t−p

}

. Model:

gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et.

Table 8: Forecasts from Heteroskedastic model. Shock: asymmetric net price change

δ1:2 6= 0, λ1:2 6= 0 δ1:2 6= 0, λ1:2 = 0 δ1:2 = 0, λ1:2 6= 0

p = 1 -188.2 (0.7360) -174.5 (0.7432) -192.1 (0.7693)
p = 2 -186.4 (0.8169) -171.7 (0.7306) -185.8 (0.7688)
p = 3 -181.2 (0.7784) -167.9 (0.7405) -182.8 (0.7551)
p = 4 -183.0 (0.8379) -174.8 (0.7579) -186.1 (0.8223)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive like-

lihoods (RMSFE) in the table. Shock Definition: d+t−p = max
{

0, ln
Ot−p

O∗

t−p

}

,

d−t−p = min
{

0, ln
Ot−p

O∗∗

t−p

}

. Model: gt = µ+αgt−1+λ1d
+
t−p+λ2d

−
t−p+σ exp(δ1d

+
t−p+

δ2d
−
t−p)et.

Table 9: Forecasts from Heteroskedastic model. Shock: symmetric net price change

δ 6= 0, λ 6= 0 δ 6= 0, λ = 0 δ = 0, λ 6= 0

p = 1 -174.4 (0.7519) -170.5 (0.7444) -176.1 (0.7951)
p = 2 -170.2 (0.8525) -169.0 (0.7292) -177.2 (0.7714)
p = 3 -169.3 (0.7441) -164.3 (0.7399) -173.4 (0.8081)
p = 4 -174.9 (0.8493) -173.1 (0.7610) -176.8 (0.8468)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likeli-

hoods (RMSFE) in the table. Shock Definition: dt−p = max
{

0, ln
Ot−p

O∗

t−p

}

+

min
{

0, ln
Ot−p

O∗∗

t−p

}

. Model: gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et.
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Table 10: Forecasts from Heteroskedastic model. Shock: large net price increase

δ 6= 0, λ 6= 0 δ 6= 0, λ = 0 δ = 0, λ 6= 0

p = 1 -180.4 (0.7617) -177.3 (0.7311) -176.6 (0.7542)
p = 2 -182.9 (0.7467) -178.0 (0.7281) -178.2 (0.7428)
p = 3 -179.1 (0.7627) -176.2 (0.7266) -176.8 (0.7641)
p = 4 -184.5 (0.9459) -179.3 (0.7433) -179.4 (0.8812)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive like-
lihoods (RMSFE) in the table. Shock Definition: dt−p = rt−pI

{

rt−p >

std{rt−p−1, ..., rt−p−12}
}

, where I(·) is the indicator function and the symbol std
represents one standard deviation of past three years oil price change rates. Model:
gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et.

Table 11: Forecasts from Heteroskedastic model. Shock: net price increase indicator

δ 6= 0, λ 6= 0 δ 6= 0, λ = 0 δ = 0, λ 6= 0

p = 1 -170.2 (0.7699) -165.8 (0.7427) -178.9 (0.7625)
p = 2 -157.2 (0.7321) -156.6 (0.7318) -173.4 (0.7367)
p = 3 -159.2 (0.7446) -158.4 (0.7455) -173.9 (0.7381)
p = 4 -158.0 (0.7331) -158.6 (0.7536) -172.9 (0.7332)

This table reports log-predictive likelihood values and root mean squared fore-
cast errors (RMSFE) in parentheses for the 156 out-of-sample observations. A
bold number indicates the largest (smallest) value of the log-predictive likelihoods
(RMSFE) in the table. Shock Definition: dt−p = I(d+t > 0). I(·) is the indicator
function. Model: gt = µ+ αgt−1 + λdt−p + σ exp(δdt−p)et.

Table 12: Posterior Summary of δ

Shock, dt−p Mean 90% DI

Oil Price Log-difference 0.0172 (0.0106, 0.0234)
Net Price Increase 0.0416 (0.0226, 0.0627)

Asymmetric Net Price Change
δ1 0.0453 (0.0256, 0.0676)
δ2 0.0290 (0.0081, 0.0467)

Symmetric Net Price Change 0.0362 (0.0244, 0.0475)
Large Net Price Increase 0.0160 (0.0042, 0.0287)

Net Price Increase Indicator 0.6927 (0.4939, 0.8947)

This table reports full sample posterior statistics of δ from the best models ac-
cording to LPL values from Tables 6–11. The model is gt = µ + αgt−1 +
λdt−p + σ exp(δdt−p)et except for Asymmetric Net Price Change it is gt =
µ + αgt−1 + λ1d

+
t−p + λ2d

−
t−p + σ exp(δ1d

+
t−p + δ2d

−
t−p)et. 90% DI is the 90 %

density interval.
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Table 13: Posterior Summary of the Best Forecasting Model

Mean 90% DI Mean 90% DI

Best Shock Model AR(1)

µ 0.4536 (0.3472,0.5600) µ 0.4173 (0.2948,0.5382)
α 0.3995 (0.2902,0.5073) α 0.3764 (0.2577,0.4959)
σ 0.2854 (0.2298,0.3520) σ 0.5262 (0.4402,0.6262)
δ 0.6927 (0.4939,0.8947)

This table reports posterior estimates for gt = µ + αgt−1 + σ exp(δdt−2)et, et ∼
N(0, 1) with dt−2 equal to net price increase indicator and the benchmark AR(1),
(δ = 0).

Table 14: Prior Sensitivity Analysis

Priors LPL RMSFE

Very Loose A = 5I, χ = 10, ν = 2, B = 5 -156.2 0.7274
Loose A = 2I, χ = 5, ν = 1, B = 2 -156.2 0.7289

Original A = I, χ = 3, ν = 1, B = 1 -156.6 0.7316
Tight A = 0.5I, χ = 3, ν = 1.5, B = 0.5 -157.4 0.7339

Very Tight A = 0.25I, χ = 3, ν = 3, B = 0.25 -160.5 0.7368

This table reports log-predictive likelihood (LPL) values and root mean squared
forecast errors (RMSFE) for the best forecasting model using different prior set-
tings. The oil shock is the net price increase indicator with restrictions of λ = 0
and δ 6= 0.
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Table 15: Out-of-Sample Forecasts for Subsamples

Model LPL RMSFE

1976Q4 to 1989Q4

Net Price Increase -69.10 0.9742
Asymmetric Net Price Change -70.43 0.9732
Symmetric Net Price Change -67.35 0.9742
Large Net Price Increase -75.82 0.9476

Net Price Increase Indicator -67.77 0.9582
Benchmark AR(1) -74.53 0.9760
AR(1)-GARCH(1,1) -74.38 0.9779

1990Q1 to 2002Q4

Net Price Increase -49.55 0.5561
Asymmetric Net Price Change -49.96 0.5462
Symmetric Net Price Change -49.54 0.5443
Large Net Price Increase -51.13 0.5482

Net Price Increase Indicator -45.36 0.5553
Benchmark AR(1) -50.19 0.5430
AR(1)-GARCH(1,1) -46.36 0.5545

2003Q1 to 2015Q3

Net Price Increase -47.43 0.6268
Asymmetric Net Price Change -47.52 0.6236
Symmetric Net Price Change -47.43 0.6215
Large Net Price Increase -49.23 0.6124

Net Price Increase Indicator -43.43 0.6079
Benchmark AR(1) -48.88 0.6019
AR(1)-GARCH(1,1) -46.50 0.6183

1976Q4 to 2015Q3

Net Price Increase -166.1 0.7550
Asymmetric Net Price Change -167.9 0.7551
Symmetric Net Price Change -164.3 0.7714
Large Net Price Increase -176.2 0.7641

Net Price Increase Indicator -156.6 0.7332
Benchmark AR(1) -173.6 0.7352
AR(1)-GARCH(1,1) -167.2 0.7432

This table reports the log-predictive likelihood (LPL) and root-mean squared fore-
casts error (RMSFE) for different subsamples. Bold denotes the largest LPL
(smallest RMSFE) in a subsample. The heteroskedastic model with different oil
shocks (λ = 0 and δ 6= 0) is included along with a homoskedastic AR(1) and
AR(1)-GARCH(1,1).
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Table 16: Robustness Check under Industrial Production Index

Shock Type, dt−p δ 6= 0, λ = 0 δ = 0, λ 6= 0

Net Price Increase -450 (0.6352) -469 (0.6328)
Asymmetric Net Price Change -453 (0.6333) -487 (0.6385)
Symmetric Net Price Change -460 (0.6351) -469 (0.6369)
Large Net Price Increase -470 (0.6333) -471 (0.6385)

Net Price Increase Indicator -445 (0.6348) -469 (0.6384)

The table displays the log-predictive likelihood and RMSFE (parenthesis) for the
best heteroskedastic shock models using industrial production as economic growth.
The full sample size is 499 with the out-of-sample size of 480. The oil shock is
measured using the past 36 months. The best homoskedastic model (ARX-MA)
delivers a LPL of −471.9 and RMSFE of 0.6354.
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Figure 1: RAC Composite Quarterly Oil Price (Top)
RAC Composite Quarterly Percentage Change of Oil Price (Middle)

U.S Quarterly Real GDP Growth Rates (Bottom)
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Figure 2: Cumulative Predictive Bayes Factors

This figure plots the cumulative Bayes factor at each point in time in favour of a model against the
benchmark AR(1) model. Various dash lines represent model (9) with corresponding shock variables.
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Figure 3: Volatility of Real Growth

Every dashed line of each sub-figure represents the posterior mean of σ exp(δdt−p). For the case of asymmetric
net price change, it is the posterior mean of σ exp(δ1d

+
t−p + δd−t−p). Each plot has a different oil shock entering

the conditional variance and represents the best specification from Tables 7 - 11. The AR(1)-GARCH(1,1) model
is defined in Section 7.1.
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Figure 4: Cumulative Predictive Bayes Factors

This figure plots the cumulative Bayes factor at each point in time in favour of a model against the
AR(1)-GARCH(1,1) model of (10). Various dash lines represent model (9) with corresponding shock
variables.
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Figure 5: Cumulative Predictive Bayes Factors

This figure plots the cumulative Bayes factor at each point in time in favour of a model against the
AR(1)-GARCH(1,1)-Shock model of (11).
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Figure 6: Net Price Increase Shocks
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