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Abstract

It is becoming increasingly popular in applications of synthetic control methods to include the

entire pre-treatment path of the outcome variable as economic predictors. We demonstrate both

theoretically and empirically that using all outcome lags as separate predictors renders all other

covariates irrelevant. This finding holds irrespective of how important these covariates are for

accurately predicting post-treatment values of the outcome, potentially threatening the estima-

tor’s unbiasedness. We show that estimation results and corresponding policy conclusions can

change considerably when the usage of outcome lags as predictors is restricted, resulting in other

covariates obtaining positive weights.
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1 Introduction

In their seminal papers, Abadie and Gardeazabal (2003) & Abadie et al. (2010) introduced

the application of synthetic control methods (SCM) to comparative case studies. Since then,

these methods have been applied to diverse research topics, rapidly establishing a new and

intuitive alternative for constructing counterfactuals.1 Athey and Imbens (2017) even state

that SCM “is arguably the most important innovation in the policy evaluation literature in

the last 15 years”.

SCM involve the comparison of outcome variables between a unit representing the case

of interest, i.e., a unit affected by an intervention, and otherwise similar but unaffected units

reproducing an accurate counterfactual of the unit of interest in absence of the intervention. An

algorithm-derived combination of precisely weighted comparison units is supposed to better

depict the characteristics of the unit of interest than either any single comparison unit alone

or an equally weighted combination of all or several available control units.

It is key for SCM that the synthetic control unit provides a good approximation of how the

variable of interest of the treated unit would have developed if no treatment had taken place.

In order to achieve this goal, it is clear that the counterfactual pre-treatment values of the

outcome variable, provided by the synthetic control unit, must be close to the corresponding

actual values (“outer optimization”). In addition, according to Abadie et al. (2010) and Abadie

et al. (2015), it is also vital that the synthetic control unit and the treated unit resemble

one another with respect to pre-intervention values of predictors of the outcome variable

1 After Abadie et al. (2010), which builds on an initial idea in Abadie and Gardeazabal (2003), SCM
were applied, i.a., by Nannicini and Billmeier (2011) as well as Billmeier and Nannicini (2013) (economic
growth), Coffman and Noy (2012) as well as Cavallo et al. (2013) (natural disasters), Hinrichs (2012) (college
affirmative action bans), Hosny (2012) (free trade), Jinjarak et al. (2013) (capital inflows), Kleven et al.
(2013) (taxation of athletes), Bauhoff (2014) (school nutrition), Belot and Vandenberghe (2014) (educational
attainment), Bohn et al. (2014) (Arizona’s 2007 LAWA), Abadie et al. (2015) (Germany’s reunification), Bilgel
and Galle (2015) (organ donations), Liu (2015) (spillovers from universities), Stearns (2015) (maternity leave),
Acemoglu et al. (2016) (political connections), Eren and Ozbeklik (2016) (right-to-work laws), Gobillon and
Magnac (2016) (enterprise zones), Kreif et al. (2016) as well as O’Neill et al. (2016) (health improvements due
to pay-for-performance schemes), and Kaestner et al. (2017) (effects of ACA medicaid expansions). Eventually,
Gardeazabal and Vega-Bayo (2017) find that the SCM estimator performs well as compared to alternative
panel approaches, and Klößner and Pfeifer (2017) extend SCM to the forecasting context.
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(“inner optimization”).2 These predictors consist of lagged values of the outcome, or linear

combinations thereof, and other economic variables that have predictive power for explaining

the dependent variable (also called “covariates” subsequently).

As stated by Cavallo et al. (2013, p. 1552), it seems an obvious choice to include the entire

pre-treatment path of the outcome variable as economic predictors. This is exactly what is

done in, e.g., Bilgel and Galle (2015), Billmeier and Nannicini (2013), Bohn et al. (2014),

Hinrichs (2012), Kreif et al. (2016), Liu (2015), Nannicini and Billmeier (2011), O’Neill et al.

(2016), and Stearns (2015): they use all lagged outcome values as separate predictors in

addition to several covariates when applying SCM. Potentially, many more researchers (will)

do so.

This paper makes two contributions. First, we prove theoretically that if one uses all

lagged outcome variables as separate predictors, then all other economic outcome predictors

(covariates) become irrelevant. More precisely, we show that including all pre-intervention

values of the outcome as economic predictors implies that only the pre-treatment fit with

respect to the variable of interest is optimized. This holds true independent of the data-driven

procedure used to obtain predictor weights, i.e., both for the so-called nested and regression

based approaches. Consequently, in the SCM application we mainly focus on throughout this

paper—Billmeier and Nannicini (2013), who analyze the impact of economic liberalization on

GDP—the covariates taken from the literature do not affect the synthetic control. The authors

obtain the very same counterfactual that would have followed if they had used economically

meaningless covariates—or even none at all.3 We further discuss that solely optimizing the pre-

treatment fit of the dependent variable and ignoring the covariates can be harmful: the more

the covariates are truly influential for future values of the outcome, the larger a potential bias

of the estimated treatment effect can become, possibly leading to wrong policy conclusions.

Our second contribution is to show that, allowing for only one pre-treatment measure of

2 Abadie et al. (2010) show that if both optimizations are pursued, one obtains asymptotically unbiased
estimates of the treatment effect, which under certain conditions are even unbiased in small samples.

3 Evidently, the same happens throughout the research done in Bilgel and Galle (2015), Bohn et al. (2014),
Hinrichs (2012), Kreif et al. (2016), Liu (2015), Nannicini and Billmeier (2011), O’Neill et al. (2016), and
Stearns (2015).
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GDP per capita in addition to the set of other covariates used in Billmeier and Nannicini

(2013), the estimated impact of economic liberalization on GDP can change drastically. With

such a restriction on the outcome lags, other covariates with predictive power for explaining the

dependent variable obtain positive weights in order to build the—now differently weighted—

synthetic control unit. As a result, we measure significantly different treatment effects for

certain cases. While such examples correspond to the data used in Billmeier and Nannicini

(2013), the core issue and its implications carry over to several other applications making use

of all pre-treatment outcomes as separate economic predictors.

The remainder proceeds as follows: Section 2 briefly outlines the synthetic control approach

by Abadie et al. (2010). Section 3 theoretically proves that using all pre-treatment values

of the outcome as separate predictors leaves other outcome predictors completely ignored.

It further discusses why this might lead to biased estimation results. Section 4 illustrates

practical implications of this matter by discussing how economic interpretations of several

liberalization examples in Billmeier and Nannicini (2013) change when not all pre-treatment

values of the outcome are used as separate predictors and, as a consequence, covariates are

accounted for. Section 5 discusses and concludes.

2 SCM Approach

In the SCM approach, the synthetic control unit is created out of a collection of J control units,

the so-called donor pool. The comparability of the synthetic control unit to the treated unit in

the pre-intervention period is determined by a set of predictors from T pre-treatment periods.

Two kinds of predictors are introduced. The first kind is given by M linear combinations

of Y in the pre-treatment periods, while the second kind consists of r other covariates with

explanatory power for Y . All k predictors (with k = r + M) are combined in a (k × 1) vector

X1 for the treated unit and in a (k × J) matrix X0 for all control units.

In one part of the optimization process (the inner optimization), one tries to find a linear

combination of the columns of X0 that represents X1 best, i.e., one searches for a combina-
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tion of the donor units such that the difference of the predictors’ values of the treated and

the counterfactual becomes as small as possible. The distance metric used to measure this

difference is:

‖X1 − X0W‖V =
√

(X1 − X0W )′

V (X1 − X0W ), (1)

where the weights used to construct the synthetic control unit are denoted by the vector W

and the weights of the predictors are given by the nonnegative diagonal matrix V . The latter

takes into consideration that not all predictors have the same predictive power for the outcome

variable Y .

The inner optimization is then, for given predictor weights V , the task of finding non-

negative control unit weights W summing up to unity such that:

√
(X1 − X0W )′

V (X1 − X0W )
W
→ min . (2)

Denote the solution to this problem by W ∗(V ).

The other part of the optimization (the outer optimization) deals with finding optimal

predictor weights. It often follows a data-driven approach proposed by Abadie and Gardeaz-

abal (2003) and Abadie et al. (2010): V is chosen among all positive definite and diagonal

matrices such that the mean squared prediction error (MSPE) of the outcome variable Y is

minimized over the pre-intervention periods. For convenience, let Z1 denote the subset of Y

for the treated unit over the chosen pre-intervention periods, while Z0 denotes the analogous

matrix for the control units. This results in the outer optimization problem:

(Z1 − Z0W
∗(V ))′ (Z1 − Z0W

∗(V ))
V
→ min . (3)

Eventually, there is a second data-driven way to determine the predictor weights, the so-

called regression based method, used, e.g., by Bohn et al. (2014).4 This method proceeds as

4 To determine V using the “SYNTH” package for Stata, the regression based option is the default; see
the help page of the package, available online at http://fmwww.bc.edu/RePEc/bocode/s/synth.html.
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follows: first, for every time t prior to the intervention, the corresponding dependent variable,

Zj,t (j = 1, . . . , J + 1), is regressed on all economic predictors, yielding regression coefficients

βt,k (k = 1, . . . , K). Second, vk is then set as

vk :=

∑
t

β2
t,k

∑
k=1...,K

∑
t

β2
t,k

. (4)

Thus, the larger the squared regression coefficients of economic predictor k, the more weight

vk is given to this predictor.

3 Using All Pre-Intervention Outcomes as Predictors

Determining Predictor Weights by Nested Optimization

To demonstrate the effect of using all lagged values of the dependent variable as predictors,

it proves helpful to partition the predictor data matrices X1 and X0 into

X1 =




C1

Z1


 , X0 =




C0

Z0


 , (5)

with C0 and C1 containing the values of the covariates of the non-treated and treated units,

respectively. We correspondingly partition the predictor weights V :

V =




VC 0

0 VZ


 , (6)

with VC containing the weights for the covariates, while VZ collects the weights of the pre-

treatment values of the dependent variable. Using equations (5) and (6), it is easy to see that

equation (2) becomes

√
(C1 − C0W )′

VC (C1 − C0W ) + (Z1 − Z0W )′

VZ (Z1 − Z0W ). (7)
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Denoting by

W ∗∗ := argmin
W

(Z1 − Z0W )′ (Z1 − Z0W ) (8)

the weights W that produce the best fit with respect to the outcome variable alone, then by

the definition of W ∗∗, we have:

(Z1 − Z0W
∗∗)′ (Z1 − Z0W

∗∗) ≤ (Z1 − Z0W
∗(V ))′ (Z1 − Z0W

∗(V )) (9)

for all V . On the other hand, if we choose V ∗ with V ∗

C equal to zero and V ∗

Z equal to the

identity matrix, then inspection of equation (7) entails

W ∗(V ∗) = W ∗∗. (10)

In the outer optimization, therefore, it will be optimal to choose the predictor weights such

that the covariates are annihilated and only the lagged values of the outcome variable are

taken into account. Put differently, although the inner objective function (2) explicitly takes

the covariates into account, the synthetic control resulting after optimizing the outer objective

function (3) will be calculated by ignoring the covariates completely. In the literature, many

authors have failed to recognize this and thus inadvertently ignored their carefully chosen

covariates, inter alia Bilgel and Galle (2015), Billmeier and Nannicini (2013), Bohn et al.

(2014), Hinrichs (2012), Kreif et al. (2016), Liu (2015), Nannicini and Billmeier (2011), O’Neill

et al. (2016), and Stearns (2015). There is a reason why researchers probably did not recognize

that they unwittingly rendered the covariates irrelevant: in SCM applications, it is often the

case that there exist several different combinations of predictor weights V minimizing the

outer objective function (3), see Klößner et al. (2017). Thus, solutions for V with positive

weights for the covariates may be reported, seemingly indicating that the covariates are being

taken into account, although they are actually ignored.

We now turn to the consequences of using all lagged values of the dependent variable as

separate economic predictors when the regression based method is used to form V .
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Regression Based Predictor Weights

When Zj,t (j = 1, . . . , J +1) is regressed on all economic predictors, then one of the regressors

for the lagged values of the dependent variable is the regressand itself. Therefore, the regression

coefficients βt,k will equal unity if k corresponds to the respective lagged dependent variable,

and vanish for all other economic predictors. Then, vk will be zero for all true covariates, while

vk = 1
T

for all k corresponding to lags of the dependent variable. Consequently, determining the

predictors’ weights by using the regression based option will also lead to the covariates being

irrelevant, while lagged values of the dependent variable are the only economic predictors that

matter. Thus, when using regression-based predictor weights, the resulting synthetic control

unit will again be determined by solely optimizing the fit with respect to the outcome’s pre-

treatment values, an approach which is called “constrained regression” by Doudchenko and

Imbens (2016).

Potential Consequences of Ignoring the Covariates

Above, we have proven that using all pre-treatment values of the outcome variable as separate

predictors inevitably leads to every single covariate being ignored, i.e., the synthetic control

unit will be determined by minimizing the outer objective function (3). This finding holds no

matter what the covariates actually are and how important and helpful these might be in order

to predict post-treatment values of the outcome variable. What is more, it holds regardless

of the data-driven method used to determine the predictor weights.5 When ignoring relevant

covariates, the statistician’s principle of using all available data is violated and synthetic

controls are not applied as they are intended to be (Gardeazabal and Vega-Bayo, 2017): “the

synthetic control is primarily designed to use any covariates that help explain the outcome

variable as predictors, and not only pre-treatment values of the outcome variable”.

To address the implications of disregarding the covariates, we introduce some additional

notation: we denote by Yjt the dependent variable’s value at time t for unit j, with j = 1

5 For an empirical affirmation, see Bohn et al. (2014, fn. 11).
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for the treated unit and j = 2, . . . , J + 1 for the donor units. While t ≤ T indicates pre-

treatment values, t > T refers to post-treatment values, with Y1t for t > T being understood

as the counterfactual values that would have been observed in absence of the intervention.

Usually, YjT = Ỹjt + αtCj, is assumed to depend additively on the covariates by αtCj, with

αt ∈ R
1×r, and Ỹ denoting how the dependent variable would evolve if it was not influenced

by the covariates. Given weights W = (w2, . . . , wJ+1)
′ for synthesizing, the difference between

treated unit and its synthetic control with respect to the outcome then is

Y1t −
J+1∑

j=2

wjYjt = Ỹ1t −
J+1∑

j=2

wjỸjt + αt

(
C1 −

J+1∑

j=2

wjCj

)
. (11)

If the covariates obtain positive weights during the inner optimization, irrespective of the

actual method used to determine V , then C1 −
J+1∑
j=2

wjCj will be close to or ideally even ex-

actly zero. Therefore, if the estimator W is such that C1 −
J+1∑
j=2

wjCj is always zero, then the

additional term αt

(
C1 −

J+1∑
j=2

wjCj

)
appearing in (11) vanishes. However, if the estimator W—

which is a random variable as it depends on Y —ignores the covariates, then C1−
J+1∑
j=2

wjCj may

be arbitrarily large, and its expectation might be significantly different from zero. Therefore,

ignoring the covariates introduces an additional uncontrolled small-sample bias to the estima-

tion which is likely to be significant, especially when αt takes large values.6 Correspondingly,

as can be seen from the Monte Carlo studies of O’Neill et al. (2016), the SCM estimator

ignoring the covariates performs quite poorly as compared to other non-SCM estimators that

make good use of covariates, with rather large values for relative bias and root mean squared

error.

On the other hand, observed covariates that are ignored are not different from unobserved

confounders, and the synthetic control method is—under certain conditions—known to be

asymptotically unbiased even in the presence of the latter, where “asymptotically” refers to

6 Exemplarily, Stearns (2015) decides on a specification using all pre-treatment outcomes as separate pre-
dictors. Additionally, she includes certain demographic covariates which she considers particularly important
for capturing the true effect of interest, i.e., αt can be expected to be large.
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the pre-treatment timespan growing to infinity (see Abadie et al., 2010; Ferman and Pinto,

2017). Thus, ignoring the covariates and optimizing only the fit with respect to many lags of

the outcome may to some part be beneficial, as by fitting with respect to lagged outcomes

alone, the synthetic control might do a better job in capturing the unobserved confounders.

Overall, there exists a trade-off: (inadvertently) ignoring the covariates reduces efficiency of

the synthetic control due to introducing a small-sample bias, but improves efficiency due to

taking more care of unobserved confounders. Therefore, to what extent ignoring the covariates

is harmful depends on the length of the pre-treatment timespan as well as the unobserved

confounders’ and observed covariates’ importance for explaining the outcome.

4 Empirical Illustration

In the following, we use the data from Billmeier and Nannicini (2013) to illustrate the issue

of separately using all pre-treatment values of the outcome variable as economic predictors.

Even though we could have just as well used data from one of the several other studies

also using every single pre-treatment observation of the dependent variable as a separate

economic predictor, we make use of the specific data from Billmeier and Nannicini (2013).

This is because, when the authors analyze whether liberalizing the economy of a country

leads to higher GDP per capita, they are able to examine treatment effects of a huge battery

of different units of interest.

Billmeier and Nannicini (2013) use two different selections of control units: in about 30

so-called “Type A experiments”, they restrict the donor pool to eligible countries in the

macroregion of those treated; in the analogous “Type B experiments”, they allow the donor

pool to consist of all eligible countries. To construct synthetic controls, the authors use every

single value of GDP per capita before the treatment as predictors. Furthermore, they rely on

the following set of covariates (if available): investment as a share of GDP, population growth,

secondary school enrollment, average inflation rate, and a democracy dummy.

We contrast Billmeier and Nannicini (2013)’s results against two types of rigorous restric-
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tions on the pre-treatment outcome lags. First, we apply a widely used SCM approach—solely

including the average of the pre-intervention outcomes in addition to the covariates, as do,

e.g., Abadie and Gardeazabal (2003), Abadie et al. (2015), and Kleven et al. (2013).7 Second,

we opt for the last pre-treatment value to be included in addition to the set of covariates, by

arguing that it is especially important to achieve a good fit at the treatment cutoff.8 Certainly,

one might also opt for using more than one linear combination of the outcome, but we refrain

from doing so as with increasing number of pre-treatment outcomes, it becomes more and

more probable to run into the case discussed above, particularly if the number of covariates

is small.9 For a detailed discussion on specifications regarding pre-treatment outcome usage,

including the case of all values and only one single value, respectively, see Ferman et al. (2017).

Example 1: Guinea-Bissau

As a first example for the consequences of using all pre-treatment outcomes as separate pre-

dictors, Figure 1 shows the Type B Experiment for Guinea-Bissau. While the black solid line

depicts the actual GDP-per-capita trajectory of Guinea-Bissau, the red dashed line shows the

synthetic control as calculated by Billmeier and Nannicini (2013). A comparison of these two

lines seemingly reveals a negative, and therefore counterintuitive, treatment effect of liberaliza-

tion in Guinea-Bissau. This result relies on the following donor units: Burkina Faso (16.3%),

Burundi (40.8%), China (15.8%), Congo (0.7%), Malawi (25.8%), and Pakistan (0.6%). How-

ever, in line with our theoretical results of the previous section, the corresponding weighting

scheme is characterized by zero weights for all predictors except the pre-treatment observa-

tions of GDP per capita. As a consequence, the chosen synthetic control unit’s covariates, i.e.,

school enrollment, population growth, investment, and democracy do not compare well to the

covariates of the treated unit (see Table 1). To illustrate how policy conclusions about the

7 Note that this is the default of the statistical software package “SYNTH” (see Abadie et al. (2011)).
8 One could also think about this as an “Ashenfelter’s dip”-type argument. A treatment might be more

likely to be triggered in period t if the preceding period (t − 1) was somewhat an outlier. Hence, it might be
important to capture that particular lag. A similar approach is taken by Montalvo (2011), who uses the last
two outcome lags as economic predictors.

9 The case of utilizing only very few covariates—while considering all available outcome lags as separate
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Figure 1: Trends in Per Capita (%) GDP: Guinea-Bissau vs. Synthetic Guinea-Bissau (Type B Experiment)

treatment effect of liberalization change by effectively incorporating the covariates, we now

restrict the lags of the dependent variable within the inner optimization to the pre-treatment

average of GDP per capita.10 As a consequence, optimal weights for school enrollment, popula-

tion growth, investment, and democracy now are given by 1.000212·10−06%, 3.570276·10−05%,

84.9756%, and 7.4437% respectively. Basically, the investment share and the democracy in-

dicator are the predictors gaining noticeable weights. These new weights lead to a completely

new mix of donor units representing the new synthetic Guinea-Bissau: Burundi (19.18%),

Chad (1.04%), China (12.08%), and Malawi (67.70%). Additionally, the predictor values of

our new synthetic Guinea-Bissau are mostly closer to the values of actual Guinea-Bissau. As

depicted in Table 1, this is especially true for the important, i.e. highly weighted, predictors

“investment share” and “democracy”, which are fitted exactly, but also for “secondary school”.

With regard to the empirical consequences of this issue, first note that the fit of GDP

per capita before the treatment—the blue dashed-dotted line of the new synthetic Guinea-

predictors—occurs, e.g., in Hinrichs (2012).
10 Note that we constructed corresponding v-weights by using the nested optimization, not by the regression

based approach.
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Table 1: v Weights and Covariates for Guinea-Bissau (Type B Experiment)

’All’ (v) ’Av.’ (v) ’Last’ (v) ’All’ ’Av.’ ’Last’ Actual
Secondary School 0 0.0000 0.4221 8.79 7.92 7.25 7.25
Population growth 0 0.0000 0.0000 2.19 2.53 2.55 1.90
Investment share 0 84.9756 99.3814 0.10 0.13 0.13 0.13
Democracy 0 7.4437 0.1959 0.02 0.00 0.00 0.00

Note: Calculations are based on data from Billmeier and Nannicini (2013). The first column reports the four covariates,
columns two to four report predictor weights v (in percent) for the three estimators (explained below), columns five to
seven report respective covariate values for the pre-treatment period, and the last column reports analogous covariate
values for the Actual Guinea-Bissau. The counterfactual All is calculated using the four covariates appearing in the
table as well as all lagged values of GDP per capita as separate economic predictors—as do Billmeier and Nannicini
(2013). The counterfactual Av. is calculated using the four covariates appearing in the table and only the average
pre-treatment value of GDP per capita as economic predictors. The counterfactual Last is calculated using the four
covariates appearing in the table and only the last pre-treatment value of GDP per capita as economic predictors.
The Type B Experiment is constructed using a donor pool of all eligible countries.

Bissau—behaves very similar to the one in Billmeier and Nannicini (2013) (the red dashed

line). However, it becomes evident that there is a remarkable change in the estimated treat-

ment effect. The difference in Figure 1 between the black solid line and the blue dashed-dotted

line post treatment now reveals a rather non-existent effect of economic liberalization on GDP.

Our conclusion of no treatment effect is confirmed by looking at our results for the esti-

mator where we make use of the last pre-treatment observation of the dependent variable as

additional economic predictor (see the magenta dotted timeline in Figure 1). As one might

expect, we observe the W weights of the two corresponding synthetic control units being very

close to each other.11 With respect to the pre-treatment fit of the covariates, Table 1 shows

again that predictor values of the new synthetic Guinea-Bissau are almost all closer to those

of actual Guinea-Bissau than the ones by Billmeier and Nannicini (2013), with even three out

of four covariates fitted exactly.

Example 2: Barbados

When there is a notable and meaningful, i.e. positive, effect of liberalizing a respective coun-

try’s economy on GDP per capita, the question arises whether this estimated treatment effect

is, in fact, significant. In this respect, we look at the case of the Type A Experiment for Bar-

bados, which is given in Figure 2. As becomes evident from visual inspection, treatment effect

11 For the “average estimator” we have Burundi 19.18%, Chad 1.04%, China 12.08%, and Malawi 67.70%,
for the “last estimator” we have Burundi 18.91%, Chad 2.01%, China 9.93%, and Malawi 69.15%.
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Figure 2: Trends in Per Capita (%) GDP: Barbados vs. Synthetic Barbados (Type A Experiment)

estimation results can be significantly inflated by using all pre-treatment observations of GDP

separately versus using its average or its last value in addition to the set of covariates. Again,

our two alternative estimators provide quite resembling solutions based on a very similar W

weighting mix.12

For simplicity, we therefore exclusively focus on the first estimator (using the average) when

comparing the significance of the estimated effect to the results from Billmeier and Nannicini

(2013) using a standard SCM placebo check.13 More precisely, in this placebo study, one

reassigns the treatment to a comparison unit so that the treated unit moves into the donor

pool while one of the control units is synthesized instead. Applying this idea to each country

from the original donor pool allows to compare the estimated effect for Barbados to the

distribution of placebo effects obtained for other countries.

As a consequence, when checking the effect’s significance by comparing the post-treatment

12 The “average estimator” uses Argentina with 26.73% and Trinidad & Tobago with 73.27%, while the
“last estimator” makes use of the same countries with 24.89% and 75.11% respectively.

13 Corresponding results for the estimator using the last outcome lag as additional predictor are available
upon request.
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Figure 3: Per Capita (%) GDP Gaps for Barbados (Type A Experiment) and Placebo Countries

difference of the actual and the synthetic trajectory (the “gap”) between Barbados and other

control units in Figure 3, we come to a conclusion very different from Billmeier and Nannicini

(2013). While solely relying on lags of the dependent variable throughout the inner optimiza-

tion, the authors find a significant treatment effect, since the red dashed gap timeline clearly

stands out of the mass of placebos. Billmeier and Nannicini (2013) call it a “positive and

robust impact of economic liberalization”, since their placebo tests confirm that “none of the

fake experiments in the potential controls is above the effect in the treated country”.14 How-

ever, when one restricts the numbers of outcome lags, the corresponding blue dashed-dotted

gap trajectory mainly lies within the “confidence band”, not revealing a significant effect of

economic liberalization on GDP for Barbados.

Example 3: Gambia

Even though, throughout the many empirical applications in Billmeier and Nannicini (2013),

we rarely find cases where the use of the pre-treatment average leads to markedly different

14 Note that the mass of placebos look nearly identical for the “All’ and the “Average” case.
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Figure 4: Trends in Per Capita (%) GDP: Gambia vs. Synthetic Gambia (Type B Experiment)

results than the use of the last pre-treatment value as additional economic predictor,15 such

circumstances exist. As Figure 4 demonstrates, corresponding W weights can be distinctly

disparate, leading to treatment effect estimation results which significantly differ across the

three alternatives. Since Billmeier and Nannicini (2013) only rely on lags of the dependent

variable throughout the inner optimization, they conclude that Gambia experienced a huge

negative impact on GDP from economic liberalization. As for the case of Guinea-Bissau, this is

at odds with economic theory. Moreover, this result cannot be confirmed by using an estimator

relying on only the average of outcome lags as additional predictor. Here, we do not observe

any difference between actual and synthetic Gambia. Using the last value of pre-treatment

GDP, though, another synthetic Gambia arises lying somewhere in the middle between the

estimator used by Billmeier and Nannicini (2013) and the estimator using the average of

pre-treatment outcomes. Hence, when looking at this example, estimation results seem to be

15 Certainly, there are also several cases where there is no clear difference between the solution shown by
Billmeier and Nannicini (2013) and the two estimators outlined in this section. In such cases, one might even
think about choosing the alternative of using solely all outcome lags as predictors, since the covariates seem
not to play a role in predicting the dependent variable and, hence, can possibly be ignored in order to improve
efficiency.
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pretty sensitive to the specific inclusion of certain pre-treatment values of the outcome. In the

case of Gambia, we therefore cannot infer any stable economic conclusion since, depending on

the respective estimator, results differ drastically, reflecting an unstable weighting mix of the

synthetic control.16 Consequently, one might want to reconsider the data at hand, economic

theory, specific covariates, or even the method of identification, but should not simply proceed

with any of the many possible, and different, SCM estimation results.

5 Conclusion

When applying SCM, it is important to consider pre-treatment observations of the dependent

variable throughout the outer optimization to ensure a good fit prior to the intervention.

However, the prime objective of SCM is to build a synthetic control that properly reflects how

the treated unit would have evolved after the intervention if the latter had not taken place.

To achieve this goal, covariates with predictive power for the variable of interest should be

matched, too. As stated by Abadie et al. (2015), “it is of crucial importance that synthetic

controls closely reproduce the values that variables with a large predictive power on the

outcome of interest take for the unit affected by the intervention.” Thus, it is important that

the explicitly chosen covariates are allowed to influence the estimated synthetic control.

As shown theoretically, however, using all pre-treatment outcomes as separate predictors

leads to optimizing the pre-treatment fit of the outcome only, rendering all covariates irrele-

vant. The upside of this, i.e., the achievement of an optimal pre-treatment fit of the outcome,17

comes at the cost of ignoring the entire set of covariates, leading to a potentially biased esti-

mator. Empirically, then, when comparing results from Billmeier and Nannicini (2013), who

did not restrict the use of pre-treatment outcomes as predictors, to results when using only

one pre-treatment value of the outcome, estimated treatment effects can change drastically.

16This is similar in spirit to the issue addressed by Ferman et al. (2017), who analyze to what extent results
using synthetic control methods may be prone to “cherry picking” by searching for a specification that delivers
a significant treatment effect.

17 For instance, Nannicini and Billmeier (2011, fn. 21) even declare that each observation of the pre-treatment
outcome “is used as a separate predictor to improve the fit”.
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This is due to the fact that when restricting the usage of outcome lags within the inner op-

timization, other economic predictors eventually attain positive weights. Consequently, the

algorithm finds a differently weighted set of control units for synthesizing a respective unit of

interest, including a better fit with respect to the (observed) covariates. Similar issues can be

expected for various other pieces of research.

Nevertheless, one might still calculate the version that uses all lagged values of the out-

come as separate predictors. If this estimate is very close to corresponding specifications with

restrictions on the outcome lags, the covariates seem to be rather unimportant for predicting

the outcome, and ignoring them might lead to a variance reduction (see, e.g., Kaestner et al.,

2017). Moreover, researchers could also deliberately decide to construct their synthetic control

unit based on past values of the outcome variables alone, because, e.g., there is no theoret-

ical foundation for using covariates or simply because there are no covariates available due

to data restrictions. Then, as in a univariate time series approach, SCM rely exclusively on

pre-intervention outcomes to predict the post-intervention path (see, e.g., Klößner and Pfeifer,

2017).

However, if SCM are used as originally intended by Abadie and Gardeazabal (2003) &

Abadie et al. (2010), and as done in all previously mentioned studies throughout the paper,

namely where covariates are (deemed) important and should be taken into account, it should

not be a first-best solution to simply optimize the pre-treatment fit by using all pre-treatment

values of the outcome as separate economic predictors.
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