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Abstract

We study the effect of consolidation on airline network connectivity using three mea-
sures of centrality from graph theory: Degree, Closeness, and Betweenness. Changes
in these measures from 1990 to 2015 imply: i) the average airport services a greater
proportion of possible routes, ii) the average origin airport is fewer stops away from any
given destination, and iii) the average hub is less often along the shortest route between
two other airports. Yet, we find the trend toward greater connectivity in the national
network structure is largely unaffected by consolidation, in the form of mergers and
codeshare agreements, during this period.
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1 Introduction

Forty years after its deregulation, the airline industry continues to be the focus of research,

antitrust cases, and public policy debates. For the most part this is because the US airline

industry continues to evolve in ways that are complex and consequential for many people.

In this paper we contribute to the evolving debate by examining how mergers and alliances

have shaped the entire industry’s U.S. network. Our objective is to shed light on important

trends in the network structure, which have direct consequences for service convenience and

quality experienced by consumers.

In 1993 there were eight fully independent legacy carriers (American, America West, Con-

tinental, Delta, Northwest, Trans World Airlines, United, US Airways), some very localized

airlines, such as Alaska and Hawaiian, and few small low cost carriers. The legacy carriers

served all the largest cities of the U.S., but they operated mostly at the regional level.1

A wave of consolidations began when Continental and Northwest signed an agreement to

codeshare flights in 1998.2 This agreement was followed in 2001 by the acquisition of Trans

World Airlines by American and in early 2003, by the codeshare agreement between United

and US Airways and the inclusion of Delta in the codeshare agreement with Continental

and Northwest. Finally, in 2005, America West acquired US Airways. Another wave of con-

solidation started with Northwest and Delta merging in 2008, and was followed by United

and Continental in 2010, Southwest and AirTran in 2011, and American and US Airways

in 2013.3 As a result, today there are three legacy carriers (American, Delta, and United)

and Southwest with fully national networks; Alaska and JetBlue with regional networks (the

former with a strong presence on the West coast and the latter with a strong presence on

1For example, US Airways had a strong presence in the East coast, while United had a strong presence
in the West coast.

2America West and Continental had a code-sharing agreement from 1994 to 2002. The agreement was
signed as part of the restructuring plan of America West, while it was under Chapter 11 protection from 1991
to 1994. Northwest and Alaska had a codesharing agreement in the early 1990s as well. Both agreements
were limited in scope. For research on these early agreements, see Bamberger et al. (2004) and Ito and Lee
(2007).

3These are the mergers for which each merging party made up more than 1% domestic scheduled-service
passenger revenues prior to merging
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the East coast),4 and a sparse group of ultra low cost carriers (e.g. Spirit, Frontier).

The effect of consolidation on network structure is ambiguous a priori because there are

competing forces that determine which routes will be served after consolidation of two air-

lines. On the one hand, reduced price competition in routes previously serviced by two

consolidating airlines should increase profitability in those routes. The increased profitabil-

ity in these routes could encourage expanded service on connecting routes due to network

effects, and may also create opportunities for new entrants. On the other hand, economies of

density suggest decreased service, as the new consolidated entity (consolidated either through

codesharing or merger) may drop routes that compete with each other.5

To investigate the relationship between mergers and network structure, we use three mea-

sures of centrality from graph theory: Degree, Closeness, and Betweenness. These three

notions of centrality highlight the role of indirect links between airports, a salient charac-

teristic of networks (Jackson, 2008). Specifically, Degree is the fraction of all possible links

that are actually served by at least one airline out of an airport, Closeness is the inverse of

the average distance (i.e., number of links) from an airport to every other airport, and Be-

tweenness is the frequency with which an airport is found to be on the shortest path between

two other airports. Our focus is on the paths that passengers need to travel through the

network to go from one airport to another airport, and our analysis seeks to understand how

consolidation has influenced the number and structure of links in those paths, as captured

by these three measures of centrality.

We construct the measures of Degree, Closeness, and Betweenness centrality for the na-

tional airline network from 1990 to 2015 using the Bureau of Transportation Statistics’ T-100

Domestic Segment for U.S. carriers. Then, we run regressions that study the relationship

between the three measures and the process of consolidation, through alliances and mergers.

Our regressions include a large set of fixed effects to control for unobserved heterogeneity

that might affect both the merger decision and decisions that determine the national network

4Alaska completed its acquisition of Virgin American at the end of 2016.
5For more a detailed theoretical treatment of competition and network effects in the airline industry, see

Breuckner and Spiller (1991), Hendricks et al. (1997) and Hendricks et al. (1999).
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structure.

We find that the domestic industry-wide network has evolved in complex ways. On one

hand, each airport services a greater proportion of possible routes (direct links), and is fewer

stops away from any given destination. On the other hand, each airport is less frequently

found along the shortest route between any two other airports. We interpret these findings

as evidence that there are fewer airport that serve as hubs, and each origin airport is more

likely to have a direct connection to its potential destination airports. We find that on

average, mergers and codeshares are not an important driver of these trends.

Our work is related to the vast literature on the effects of consolidation in the airline

industry. The earlier literature on mergers in the airline industry has largely shown that

mergers are associated with price increases (Borenstein, 1990; Kim and Singal, 1993; Mor-

rison, 1996; Hergott, 1997; Kwoka and Shumilkina, 2010), though two recent studies find

that the effects on prices are mixed (Luo, 2014; Carlton et al., 2016). Richard (2003) took a

different approach and provided evidence that mergers were associated with increased flight

frequency — thereby suggesting that the overall effect of mergers on welfare is complex

and varies by market. Other important contributions used the airline industry to evaluate

the performance of merger simulations (Peters, 2006), to illustrate potential cost efficiencies

from mergers (White, 1979), and to develop a retrospective analysis on U.S. enforcement ac-

tions and merger outcomes (Kwoka, Jr., 2013). There is also a rich literature on the effects

of codesharing on prices and traffic of passengers (Bamberger et al., 2004; Armantier and

Richard, 2005, 2008; Ito and Lee, 2007; Gayle, 2007, 2008, 2013; Gilo and Simonelli, 2015).

Generally, these studies suggest that average prices drop and traffic increases with code-

sharing, although the prices of the codeshare nonstop tickets increase. Our work is different

from these because it focuses on different outcomes, specifically, the Degree, Closeness, and

Betweenness centrality measures as variables that summarize the national network structure.

Our work is also related to airline papers that have studied the importance on the di-

rect links (number of spokes) out of an airport as a determinant of demand (Berry, 1990),

entry decisions (Berry, 1992; Ciliberto and Tamer, 2009), and market power (Borenstein,
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1989; Ciliberto and Williams, 2010). In contrast, our focus is on the indirect links, as their

importance is being captured by the notions of Closeness and Betweenness.

Finally, our work is also related to the empirical literature on network structure as an

outcome. Much of this literature studies formation of social networks, for example Jackson

and Rogers (2007) and Mayer and Puller (2008). In the context of airlines, Aguirregabiria

and Ho (2010) estimate dynamic games of network competition to study entry deterrence

in hub-and-spoke networks, while Aguirregabiria and Ho (2012) also estimate a dynamic

game of network competition to run policy experiments that show economies of density

explain airlines’ propensity towards hubbing. Recently, (Yuan, 2016) investigated a model

of network competition in the airline industry, where firms can choose the network structure,

the capacities, and the prices of nonstop and one-stop connections. These are ambitious and

important steps to the understanding of the economics of airline networks, and should be

thought of as complementary to our more reduced-form approach to the same questions.6

Our paper is organized as follows. In Section 2, we define and illustrate the network

measures used in our empirical analysis. In Section 3, we discuss our data source and

summarize the network measures. Section 4 describes the development of the airline industry

network over the period 1990-2015. Section 5 presents the empirical model used to analyze

the effects of mergers and codeshares, and the associated results. Section 6 concludes.

2 The Economics of Networks in the Airline Industry

In this section we use examples from the airline industry to introduce notions from graph

theory and show how they can be applied to analyze the airline industry. The treatment of

these concepts will therefore be very much ad hoc, and we refer the reader to Jackson (2008)

for a more detailed and comprehensive discussion.

6Related literature is largely concerned with characterizing properties of equilibrium networks either
when a single agent (usually a firm) controls an entire network, or when individual nodes choose when to
form links with other nodes (see Jackson and Wolinsky (1996), Bala and Goyal (2000) and Hendricks et al.
(1999)). Another set of literature studies the effects of an existing network structure on agent decision-
making. For example, Mossel et al. (2015) and citations within their paper study how network structure
affects information flow.
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2.1 Basic Notations and Concepts

An airline network (or graph) consists of airports (nodes) and routes (spokes, links or edges).

An airport is denoted by i = 1, ..., N and the total number of airports is denoted by N .7 The

network is denoted by a pair (N, g), where g is a real-valued N ×N matrix, whose elements

gik are either 1 or 0, depending on whether the airline serves the route between airports i

and k. If gik = 1 (or there is a nonstop route between airports i and k), airports i and k

are said to be adjacent. Because we consider a market a nonstop flight in either direction,

the airline network is said to be undirected and the matrix g is symmetric. A path between

airports i and k in the network g is one sequence of distinct routes that a passenger can

take to fly between those two airports. The networks in our analysis are connected networks,

meaning that there exists at least one path between any two airports.8

A network can also be represented graphically. For example, in Figure 1 we consider

the national airline network restricted to the airports of Cleveland (CLE) and Albuquerque

(ABQ) and the nonstop routes served from these airports in 2015. In this network, Cleveland

and San Diego (SAN) are not adjacent ( gCLE−SAN = 0) while Albuquerque and San Diego

are (gABQ−SAN = 1). There are 48 nodes in the network pictured, thus N = 48.

2.2 Network Measures

We use three statistics that capture the centrality of an airport in the network of an airline:

Degree, Closeness, and Betweenness. As Jackson (2008) points out, the use of multiple

summary statistics is helpful to understand the complexity of network structures, as each

one of the three measures provides a different perspective. In this paper we study the national

network, or what we call the union of all the individual airlines’ networks.

We start from the notion of Degree Centrality. The Degree Centrality of airport i in

7In our analysis we will have a time dimension, which is here omitted for sake of simplicity.
8We repeated our analysis treating MSAs as network nodes, rather than airports, by aggregating the

network across airports within a metropolitan area. We treat the airports in Washington DC, New York
City, Chicago, Dallas, and Houston each as a single node. We find that this has no qualitative effect and
a negligible quantitative effect on our results and conclusions. However, we expect if the analysis went
beyond just the network structure and examined consumer welfare more directly, there could be interesting
differences depending on the substitutability of airports within a MSA.
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Figure 1: Network Example: Cleveland and Albuquerque in 2015

network g can be written as:

di(g) =
#{k : gik = 1}

N − 1
. (1)

The numerator is the count of airports that are served out of airport i, and the denominator

is the number of airports in the network, excluding airport i. Thus the Degree Centrality is

the proportion of possible connections that are served out of airport i. The normalization

(division by N − 1) is important when we add a time dimension to our analysis, as the total

number of airports in the network will change over time. The normalization ensures that

variation in the Degree Centrality over time reflects variation in the density of the network,

as opposed to variation in the size of the network.

In Figure 1, the Degree Centrality of San Diego (SAN) is 1/47, or dSAN(g) = 0.021, the

Degree Centrality of Chicago O’Hare (ORD) is 2/47, or dORD(g) = 0.043, and the Degree

Centrality of Cleveland is 39/47, or dCLE(g) = 0.830. Therefore, Cleveland is much more
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(Degree) central to this simplified network than are San Diego and Chicago O’Hare.

The measure of Degree Centrality is related to the network measures previously used in

the airline literature, and it captures how directly connected an airport is. For example,

Berry (1992) uses the number of destinations served out of the airport by an airline as a

measure of the network of the airline at that airport, and Ciliberto and Williams (2014) use

the measure proposed by Berry (1992) divided by the total number of destinations served by

at least one airline out of the airport. Here, the denominator is given by the total number of

possible routes that could be served out of the airport, given the total number of airports in

the network. Related measures have been used in numerous studies of the airline industry

to capture the market presence of a carrier. Of the three measures we consider, the Degree

Centrality is the least novel in our analysis because it does not capture the importance of

indirect links.

Before formally defining our second centrality measure, Closeness Centrality, we need to

introduce an appropriate notion of distance. The shortest path between two airports is called

a geodesic path. We denote the number of links in the geodesic path between airports i and k

by ℓ(i, k), and refer to this as the distance between the two airports. Thus, for example, the

distance between Pittsburgh (PIT) and Baltimore (BWI) in Figure 1 is ℓ(PIT,BWI) = 2,

while the distance between Pittsburgh (PIT) and San Diego (SAN) is ℓ(PIT, SAN) = 4 .

The Closeness Centrality can be written as follows:

Ci(g) =
(N − 1)∑
k 6=i ℓ(i, k)

. (2)

This measure exploits the distance between nodes and captures the role of connecting flights

in the airline network. The denominator is the sum of all shortest distances from airport i

to every other airport in the network, and the numerator is the number of other airports.

Thus, the Closeness Centrality is the reciprocal of the average shortest distance to every

other airport. The connectedness of an entire network can be studied using the average

Closeness Centrality of a network. When the average Closeness is low, many nodes will not

have a direct connection between them; when the average Closeness Centrality is equal to

one, the network is fully connected. While this pattern is also true for Degree Centrality, the
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distinction between Closeness Centrality and Degree Centrality is that Closeness Centrality

is affected by the layout of the network (i.e., specifically which direct links are available),

while Degree Centrality will be affected only by the number of links relative to the number

of potential links.

For the simplified network in Figure 1, the Closeness Centrality of San Diego is 47/140,

or CSAN(g) = 0.336, while CCLE(g) = 0.758, and CORD(g) = 0.511. To illustrate the dif-

ference between the Degree and Closeness Centrality measures, we compare the Degree and

Closeness of San Diego and Chicago O’Hare to the Degree and Closeness of Cleveland, re-

spectively. The Degree Centrality of San Diego is 2.5% of the Degree Centrality of Cleveland

(dSAN (g)
dCLE(g)

= 0.021
0.830

= 0.025) , while the Degree Centrality of Chicago O’Hare is 5.2% of the De-

gree Centrality of Cleveland. In contrast, the Closeness Centrality of San Diego was 44.6%

(0.338/0.758) of that of Cleveland, while the Closeness Centrality of Chicago O’Hare was

67.4% of that of Cleveland.

This comparison demonstrates two points. First, both San Diego and Chicago O’Hare

seem more “central” when compared to Cleveland by Closeness Centrality than when com-

pared by Degree Centrality. Closeness Centrality captures the fact that in this network,

every destination is within fairly close reach from every origin (no geodesic contains more

than four distinct links); thus, the Closeness Centrality will be fairly high for every airport.

Degree Centrality simply captures the proportion of destinations that can be reached di-

rectly from each airport. Using this measure, San Diego and O’Hare pale in comparison to

Cleveland. The second point we learn from this comparison is that the Closeness Centrality

for Chicago is much higher than that of San Diego, but the Degree Centrality is essentially

the same. This captures the fact that Chicago O’Hare is located between two hubs in the

middle of the graph, while San Diego is directly adjacent to only one hub at the outskirts of

the graph.

The last centrality measure we utilize is Betweenness Centrality, which captures how

frequently an airport is found on the shortest path between two other airports. It is calculated

as follows:
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Bi(g) =
∑

k 6=l i/∈{k,l}

Pi(k,l)
P (k,l)

(N − 1)(N − 2)
, (3)

where Pi(k, l) represents the number of shortest paths between airports k and l with a stop at

i, and P (k, l) represents the total number of shortest paths between k and l. Note that there

is not necessarily a unique shortest path: there could be a number of paths of equal length

connecting k and l though different airports. If there is a unique shortest path, Pi(k,l)
P (k,l)

= 1,

but if there are multiple paths tied for shortest, the division by P (k, l) gives equal weight

to each path and ensures that the total weight of the pair k, l sums to one. For example,

in Figure 1, there are 16 shortest paths that can carry a traveler between San Diego (SAN)

to Cleveland (CLE), each one consisting of three links. Thus, each of the 16 shortest paths

receives a weight of 1/16 in the calculation of the Betweenness Centrality of ORD, DEN,

etc.

The Betweenness Centrality of San Diego is BSAN(g) = 0, since there are no paths between

other airports that go through SAN. Now consider the Betweenness Centrality of Chicago

O’Hare (ORD). There are 8 airports to the right of ORD, and 24 to the left. Each pair

of these airports has a shortest path through ORD, making the number of shortest paths

through ORD equal to 384 = 2 ∗ 8 ∗ 24.9 However, because ORD is one of 16 possible

connecting airports on paths of equal length between the 8 on the right and the 24 on the

left, divide by 16 to get 384/16 = 24. Finally, after dividing by the total number of paths

that begin and end at airports other than ORD (48 ∗ 47), we get BORD(g) = 0.01. A similar

calculation reveals that Cleveland is a significant hub in this example, with BCLE(g) = 0.8.

The three measures described above complement each other to provide a clear picture

of the network in Figure 1. While San Diego and Chicago O’Hare only slightly differ in

Degree Centrality, their roles in the network are clearly different. Chicago O’Hare is closer

to all the other airports than San Antonio is, a difference which is captured by Closeness

Centrality. Betweenness Centrality captures hubbing behavior in a way that is not reflected

9The definition counts each pair of airports twice to account for paths in both directions. If you re-write
the formula to count each airport pair once in both the numerator and denominator, you get the same result.
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in Closeness Centrality or Degree Centrality. While the Closeness Centrality of Chicago

O’Hare and Cleveland are not that different, there is a stark difference in the Betweenness

Centrality. The Betweenness measure most strongly reflects Cleveland’s function as a hub

in this network.

3 Data

Our main data source is the Bureau of Transportation Statistics’ T-100 Domestic Segment

for U.S. carriers. The data contain information on domestic non-stop segment monthly data

reported by U.S. carriers. Because we are interested in the overall network, and not in

the networks of individual airlines, we look at whether any carrier served a specific route.

We further reduce the data by considering only routes between airports that are located

in proximity of a Metropolitan Statistical Area in the U.S.10 We combine this data with

information on each MSA’s annual per-capita income and population from the Bureau of

Economic Analysis (BEA).

We construct a dataset for our analysis with the airport-month as the unit of observation.

There are 190 airports and 53,324 airport-month observations in our dataset. There are on

average 174 airports in each year, with some dropped or added to the network over time as

service at individual airports starts or ends. For each airport- month we construct the Degree,

Closeness, and Betweenness centrality measures as described in Subsection 2.2.11 Table 1

reports summary statistics for the original variables, and for the corresponding standardized

values that will be used in the empirical analysis.

The variable Degree takes the mean value of 0.121, with substantial variation. Degree

has a minimum of 0.006 and a maximum of 0.786. Remember that in the definition of

Degree given in equation 1, the denominator is equal to the number of airports belonging

to the network in a given year, minus 1. Thus, the 0.121 also means that on average there

were approximately 21 (0.121 × 172) routes out of an airport. In other words, 12% of all

10We use the U.S. Department of Commerce’s 2012 data to identify Metropolitan Statistical Areas in the
U.S.

11We use the network analysis program prepared by Grund (2015).
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possible direct connections are served by any airline at an average airport. To facilitate the

interpretation of the results and the comparison across years, we standardize the measure

of Degree so that the mean is 0 and the standard deviation is 1. This variable ranges from

-.808 at the minimum to 4.655 at the maximum, which implies that the maximum value is

4.655 standard deviations away from the mean value.

The variable Closeness also exhibits substantial variation, which is clear from its stan-

dardized value that varies from -2.827 to 4.289. Closeness takes the mean value of 0.491,

which means that on average, an airport is approximately 2 (1/.491) links away from every

other destination in the network.

Finally, we summarize the variable Betweenness in three ways. First, we define the variable

IsBetween, which is equal to 1 if an airport is found along the shortest path between at least

two other airports in a given month. The mean of IsBetween is equal to 0.655, which means

that 65.5 percent of the airport-month observations are for airports that were between at least

two other airports. Second, we define the variable AlwaysBetween, which is equal to 1 if an

airport was between at least two other airports for the entire period 1990-2015. The mean of

AlwaysBetween is 0.421, which means that 42.1 percent of the airport-month observations are

for airports that have always been between two other airports. Then, we report the summary

statistics of the Betweenness Centrality for the whole population, and for the airports for

which AlwaysBetween is equal to 1. We see that there is a large variation in both samples,

suggesting again substantial heterogeneity in the way that individual airports function within

the national network. Finally, we report the standardized value of Betweenness Centrality

for the airport for which AlwaysBetween is equal to 1, and we see that the maximum is

8.087, while the minimum is -0.490.

Next, we report the standardized measures at the top 20 airports ranked from top to

bottom. This provides some insight into how the different measures capture different aspects

of network connectivity and hubbing. Table 2 provides the rank in the first column followed

by the rank-holder airport and the value of the centrality measure for each of the three

measures.
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Table 1: Summary Statistics

Count Mean St. Dev. Min Max
Number of Airports per Year 26 173.538 4.292 161.000 181.000
Degree 53,324 0.121 0.143 0.006 0.786
Standardized Degree 53,324 -0.002 0.998 -0.808 4.655
Closeness 53,324 0.491 0.078 0.272 0.824
Standardized Closeness 53,324 -0.004 1.000 -2.827 4.289
IsBetween 53,324 0.655 0.476 0.000 1.000
AlwaysBetween 53,324 0.421 0.494 0.000 1.000
Betweenness 53,324 0.006 0.021 0.000 0.261
Betweenness*1[If AlwaysBetween=1] 22,464 0.015 0.030 0.000 0.261
Standardized Betweenness*1[If AlwaysBetween=1] 22,464 0.001 1.002 -0.490 8.087

Note: This table presents summary statistics of variables used in analysis. Statistics are computed for the

entire period 1990-2015.

There are several observations that can be made. First, the three variables do a fine job

identifying the main hubs, such as Atlanta (Delta Airlines), Chicago O’Hare (American and

United), and Dallas Fort-Worth (American). Second, Degree and Closeness provide largely

the same information, as far as hubs are concerned, as the rankings in the first columns are

identical in the first 18 spots. Third, there are substantial differences between the rankings by

Degree and Closeness, versus the rankings by Betweenness (as before, restricted to airports

for which AlwaysInBetween is equal to 1), with the exception of the first three spots. The

differences are both in the ordinal sequence of the airports, as well in the magnitude of the

differences across airports.

The ranking by Betweenness provides a very interesting description of the airline industry,

where there are few airports that are clearly hubs of connectivity: Atlanta, Chicago O’Hare,

Dallas Fort-Worth, Houston International, Charlotte, and Detroit Wayne. These airports

have a Betweenness Centrality that is well over one standard deviation above the mean value.

Other airports, such as Las Vegas, Minneapolis/St. Paul, Denver, San Francisco, Pittsburgh

have a Betweenness that is 1/2 of a standard deviation away from the mean. Finally, there

is third group that has a Betweenness that is less than 1/2 from the mean: St Louis, Los

Angeles, Cincinnati, Philadelphia, Seattle, and Newark. Thus, there are really three sets of

13



Table 2: Top 20 Airports by Standardized Degree, Closeness, and Betweenness

Rank Degree Closeness Betweenness

1 ATL 3.79 ATL 3.31 ATL 4.69
2 ORD 3.55 ORD 3.06 ORD 3.23
3 DFW 3.16 DFW 2.69 DFW 2.92
4 DTW 2.67 DTW 2.28 IAH 1.77
5 IAH 2.52 IAH 2.15 CLT 1.45
6 CLT 2.49 CLT 2.12 DTW 1.33
7 MSP 2.24 MSP 1.93 LAS 0.97
8 DEN 2.22 DEN 1.92 MSP 0.85
9 LAS 2.04 LAS 1.81 DEN 0.78
10 CVG 2.01 CVG 1.78 SFO 0.69
11 EWR 1.92 STL 1.69 PIT 0.62
12 STL 1.90 EWR 1.69 STL 0.49
13 PHL 1.85 PHL 1.64 LAX 0.39
14 MCO 1.71 MCO 1.53 CVG 0.30
15 PHX 1.65 PHX 1.50 PHL 0.18
16 PIT 1.59 PIT 1.48 SEA 0.15
17 LAX 1.51 LAX 1.41 EWR 0.05
18 CLE 1.50 CLE 1.38 PHX -0.02
19 DCA 1.39 IAD 1.32 MCO -0.03
20 IAD 1.37 BOS 1.26 IAD -0.04

Note: This table shows the top 20 airports ranked by their average standardized Degree, Closeness, and

Betweenness over the entire period 1990-2015.

hubs. In the remainder of the paper, we will investigate how their role has changed over

time.

Overall, we learn that the measures of Degree, Closeness, and especially Betweenness,

provide consistent and clear measures to identify hubs in the airline industry.12 Next, we use

these measures to understand how the network structure of the airline industry has changed

from 1990 to 2015.

12See Borenstein (1992) for a comparison of the hubs of the airline industry in the early 1990s, and the
ones that the network measures here presented identify.
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4 Twenty-five Years of Airline Networks: The Big Pic-

ture

We now investigate how the network structure of the airline industry overall has developed

since 1990. Table 3 summarizes the network measures by year every five years. Just looking

at this table, we would conclude that the average Degree and Closeness measures generally

increased between 1990 and 2005, then declined moderately since 2005. Betweenness (for

airports that have non-zero Betweenness) tends to move opposite the other two measures.

Table 3: Summary Statistics by Year

Year Degree Standardized Closeness Standardized Betweenness Standardized
Degree Closeness AlwaysBetween=1 Betweenness

AlwaysBetween=1

1990 0.119 -0.012 0.477 -0.180 0.015 0.016
1995 0.105 -0.113 0.475 -0.210 0.016 0.039
2000 0.118 -0.024 0.491 -0.007 0.015 0.004
2005 0.135 0.098 0.505 0.178 0.014 -0.022
2010 0.128 0.052 0.500 0.108 0.014 -0.015
2015 0.129 0.057 0.502 0.145 0.014 -0.028

Note: This table presents summary statistics of variables used in analysis, by year.

These are simply summary statistics and do not control for any unobservable characteris-

tics of individual airports, which may fall in and out of the network. To address this problem

and to control for seasonality, we regress each of the standardized network measures on year,

month, and airport fixed effects, and present the year fixed effects in Figure 2.13 The figure

shows an upward trend in both Degree and Closeness until 2007, confirming the conclusions

we reach by looking at Table 3. While the measures decline since 2007, the average Degree

and Closeness are higher in 2015 than in 1990, indicating that the network as a whole features

relatively more links from the average airport than it did in 1990, and (on average) fewer

connections required to travel between any two airports. The average Betweenness among

13In the Betweenness regression we have included only airports for which Betweenness is non-zero.
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airports for which Betweenness is nonzero has decreased. Together, these results imply that

the average hub airport is less critical to linking other airports than it was in 1990 — in

other words, there are more direct flights and/or more options for connecting routes between

any two airports.

Figure 2: Degree, Closeness and Betweenness over Time

Note: This figure presents the year fixed effects and associated confidence intervals from separate OLS

regressions of standardized Degree, Closeness, and Betweenness on a constant along with year, month, and

airport fixed effects.

While the average Degree and Closeness have increased and the average Betweenness has

decreased over time, these effects are not uniform across airports.

Table 4 shows the average Degree Centrality by airport by year for selected years. A few

points are noteworthy here: first, there is substantial variation, second, Degree does give us

an indication of hubbing within the national network. For example, we see Chicago O’Hare,

Atlanta, and Dallas with relatively large Degree measures. St. Louis (STL), which is in the

top 5 airports by degree in 1990, drops off the top 20 by 2010. Cincinnati (CVG) rises to

rank 5 in 2000, but is 19th in 2010 and drops off the top 20 in 2015. Pittsburgh (PIT) falls

off the top 20 by 2010. Meanwhile, a few airports have gained rank. For example, Las Vegas
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(LAS) is not in the top 20 in 1990 or 2000, but rises to rank 5 by 2015.

Table 4: Top 20 Airports by Standardized Degree, by Year

Rank 1990 2000 2010 2015

1 ORD 3.64 ATL 3.97 ATL 3.88 ATL 4.13
2 ATL 3.07 ORD 3.25 ORD 3.66 ORD 3.98
3 DFW 2.88 DFW 3.15 DFW 3.43 DFW 3.56
4 PIT 2.35 IAH 2.96 DTW 3.26 CLT 3.44
5 STL 2.21 CVG 2.77 LAS 2.87 LAS 2.82
6 CLT 2.20 DTW 2.63 CLT 2.85 IAH 2.80
7 DEN 1.99 STL 2.45 IAH 2.84 DTW 2.77
8 DTW 1.70 CLE 2.21 DEN 2.60 DEN 2.74
9 MSP 1.65 EWR 2.05 MSP 2.53 MSP 2.54
10 IAD 1.62 MSP 2.01 MCO 2.27 PHL 2.43
11 IAH 1.61 DEN 1.95 PHL 2.20 DCA 2.18
12 BWI 1.57 CLT 1.93 EWR 1.95 EWR 2.07
13 PHX 1.51 PIT 1.92 IAD 1.95 IAD 1.90
14 CVG 1.51 PHX 1.66 MEM 1.93 LAX 1.83
15 EWR 1.47 LAS 1.63 PHX 1.83 MCO 1.78
16 MEM 1.45 MCO 1.58 LAX 1.76 BWI 1.76
17 LAX 1.45 PHL 1.54 DCA 1.75 PHX 1.76
18 SFO 1.43 LAX 1.52 LGA 1.74 MDW 1.73
19 PHL 1.33 LGA 1.13 CVG 1.66 LGA 1.65
20 LGA 1.29 MDW 1.12 BWI 1.62 BOS 1.54

Note: This table shows the top 20 airports in selected years, ranked by their average standardized Degree

in each year.

Some of these examples have interesting back stories. For example, service at Cincinnati

(CVG) suffered substantial cuts between 2006 and 2009 in the midst of Delta’s bankruptcy

and subsequent merger with Northwest Airlines. At the time of the merger, Delta stated

that it did not intend to close any hubs in the merged airline, but years after the merger,

we find that the Degree of the Cincinnati airport has declined substantially, suggesting that

Delta was unable to follow through on its original intention (Delta News Hub, 2008).

Service at St. Louis Lambert International Airport (STL) was affected by two significant

events in 2001: the merger of Trans World Airlines with American Airlines in early 2001, and

the terrorist attacks of September 11, 2001, which decreased demand for all airline travel.
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According to some sources, American initially intended to send more traffic through STL

after the merger to avoid congestion at its hub in Chicago O’Hare (ORD), but plans changed

after September 11, when reduced demand for air travel ended concerns over congestion at

ORD (Schoenberger, 2010).14

The analysis is very similar for the Closeness Centrality by airport over time. We refer

the reader to the appendix for the top 20 airports by Closeness Centrality in selected years.

Table 5 illustrates how Betweenness separates major hubs from non-hubs. By this mea-

sure, Chicago O’Hare (ORD) was the most important hub in 1990, but by 2000 Atlanta had

overtaken Chicago. By 2010, Cinncinnati and St. Louis had stopped functioning as hubs

(as discussed above), and by 2015, Charlotte became a significant hub. Overall, the Table

confirms the finding in Figure 2 that Betweenness has decreased.

Notice that the standardized value of Betweenness are more volatile than for the other

measures. This is because only the airports with non-zero Betweenness for the entire data

period are included, prior to the standardization, and because the Betweenness measure is

designed to be quite sensitive to changes throughout the network.15

There are two noteworthy changes in Table 5 that deserve mention: first, Cleveland’s

(CLE) appearance as rank 12 in year 2000 and noticeable absence in the other years, and

Atlanta’s (ATL) dramatic increase in Betweenness from 1990 to 2000. The movement of CLE

is consistent with efforts made by Continental to build its hub capacity at CLE throughout

the 1990s, and subsequent challenges in the 2000s. Continental expanded their operation

in 1999, so much that in 1999 a new concourse was completed to accommodate the new

growth. After 2000, the Sept 11th attacks affected demand for the entire network, so it is

likely this demand shock affected Continental’s need for the hub in CLE in the early 2000s.

The merger of Continental and United in 2010 arguably introduced new incentives for the

network structure. In Atlanta, the Betweenness measure jumps substantially between 1990

14In our regression analysis of the effect of mergers, we leave out the merger of Trans World and American,
because it will be impossible to distinguish the effect of this merger from the effect of the September 11th
attacks, as the two events occurred within the same year.

15Per Table 1, we include approximately 42 percent of the airports when we analyze the Betweenness
measure.
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Table 5: Top 20 Airports by Standardized Betweenness, by Year

Rank 1990 2000 2010 2015

1 ORD 4.79 ATL 6.39 ATL 3.64 ATL 3.79
2 ATL 3.29 DFW 2.99 ORD 2.87 ORD 3.49
3 SFO 2.40 DTW 2.52 DFW 2.79 DFW 3.33
4 DFW 2.24 IAH 2.45 LAS 2.59 CLT 2.86
5 PIT 2.01 ORD 2.17 IAH 1.86 LAS 1.91
6 CLT 1.92 CVG 1.25 DTW 1.73 IAH 1.32
7 DEN 0.90 STL 0.92 CLT 1.62 DEN 0.74
8 MSP 0.88 MSP 0.81 DEN 0.77 DTW 0.74
9 IAD 0.83 DEN 0.75 MSP 0.71 MSP 0.68
10 STL 0.70 LAX 0.71 SFO 0.68 PHL 0.52
11 IAH 0.66 PIT 0.65 MCO 0.48 LAX 0.52
12 BWI 0.59 CLE 0.57 PHL 0.34 SEA 0.20
13 MEM 0.44 SEA 0.36 MEM 0.30 IAD 0.17
14 LAX 0.41 CLT 0.35 LAX 0.24 DCA 0.05
15 DTW 0.20 EWR 0.12 SEA 0.14 SFO 0.03
16 PHX 0.17 MIA -0.03 BWI 0.10 BOS 0.02
17 SEA 0.08 SFO -0.04 BOS 0.09 EWR 0.00
18 EWR -0.05 LAS -0.04 IAD 0.04 PHX -0.00
19 CVG -0.09 MCO -0.08 PHX 0.01 MCO -0.11
20 SLC -0.15 PHX -0.17 LGA -0.12 LGA -0.16

Note: This table shows the top 20 airports in selected years, ranked by their average standardized Between-

ness in each year.

and 2010. This is also consistent with historical anecdotes. In 1990-92 Eastern Airlines

ceased operations in Atlanta. In 1993, ValueJet started service out of Atlanta. Meanwhile,

Delta expanded operations in Atlanta throughout the 1990s.

Another way to see the change in Betweenness by airport over time is presented in Figure

3, where the non-standardized values of Betweenness are displayed for all airports. The hubs

are clearly distinguished from the rest of the airports in the network, and the patterns over

time that we discussed above can also be seen in the Figure.

In this section we have provided more intuition about the network measures, along with

examples to show that mergers have affected the network measures at specific airports,

such as CVG and STL. From the description of the network as a whole, we have learned
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that national airline network became more connected between 1990 and 2015, with a trend

towards more connectedness until approximately 2007, when the trend reversed slightly to

bring us to current levels. Connectedness here has three interpretations, corresponding to

our three network measures. The analysis of Degree over time shows that the average airport

services a greater proportion of possible routes now than in 1990. Similarly, the analysis of

Closeness shows that the average origin airport is fewer stops away from any given destination

than in 1990, and the analysis of Betweenness shows that the average hub is less frequently

found along the shortest route between two other airports than in 1990. In the next section,

we analyze the role of mergers and codeshares in the evolution of the airline network over

time.
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Figure 3: Betweenness by Airport Over Time

Note: These maps show the average Betweenness (not standardized) by airport by year for years 1990, 2000, 2010, and 2015. Darker color

and larger size correspond to airport locations with a higher Betweenness measure in that year.
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5 The Effect of Mergers on the Network Structure: An

Empirical Analysis

In this section we present an empirical framework to estimate the direction and magnitude

of the effect of merger and codeshare agreements on network structure. We present baseline

results and several extensions here, and refer the reader to the Appendix for additional

specifications.

5.1 Empirical Model

The airline industry has undergone a notable process of consolidation in recent years. Table

6 lists the five recent mergers studied here, along with the month of announcement, month

of completion, and the month the carriers began flying under a single carrier code (the

“Single Code Month”).16 There have also been many codeshare agreements among major

U.S. airlines since 1990. The ones we use in our analysis are listed in Table 7.

For the mergers, we present the results using the merger completion month as the month

that the merger occurred. In the Appendix we include tables that show the results with six

different specifications of the merger month. We first use the Announcement, Completion,

and Single Code months individually, then we have three specifications in which we drop

the period of time between Announcement and Completion, between Completion and the

Single Code month, and between Announcement and the Single Code month. The results

are analogous.

To investigate the average effect across all of the mergers and, separately, of the code-

sharing agreements, we run the following regression:

Yij,t =α + β1PostConsolidationjt + β2GDPt + β3JetFuelPricet

+ β4Incomeit + β5Populationit + uij,t,
(4)

where time (in months) is indexed by t, i indexes the airport, and j indexes the merger or

code-sharing agreement. The variable PostConsolidationjt is equal to 1 if the observation

16Note that we exclude the merger of Transworld and American in 2001, because the merger and the
terrorist attacks on September 11, 2001 both affected the industry in that year.
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Table 6: Airline Mergers Included in Analysis

Announcement Merger Completed Single Code Merging Airlines

May, 2005 Sep, 2005 Oct, 2007 America West and US Airways
Apr, 2008 Oct, 2008 Jan, 2009 Delta and Northwest
May, 2010 Oct, 2010 Jan, 2012 Continental and United
Sep, 2010 Mar, 2011 Jan, 2015 AirTran and Southwest
Feb, 2013 Dec, 2013 Apr, 2015 American and US Airways

Note: This is a list of mergers used in analysis, along with dates of announcement, completion, and the

date the carriers began flying under the same carrier code.

Table 7: Codeshare Agreements Included in Analysis

Month of Codeshare Agreement End Airlines Involved

October 1994 May 2002 CO and HP
January 1998 NW-DL Merger AS and NW
May 1998 Ongoing AA and AS
January 1999 CO-DL-NW Codeshare CO and NW
April 1999 March 2010 AS and CO
January 2003 March 2014 US and UA
February 2003 NW-DL Merger CO, DL, and NW
January 2005 May 2017 DL and AS
October 2009 CO-UA Merger CO and UA

Note: This is a list of codeshare agreements used in analysis, along with corresponding begin and end

months. The last column denotes the airlines involved in the codeshare, where AA is American, AS is

Alaska, CO is Continental, DL is Delta, HP is America West, NW is Northwest, UA is United Airlines, and

US is US Airways.
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is for a time period after the merger or code-share agreement, and 0 otherwise.

The dependent variable Yij,t will be one of four different variables: the standardized

Degree or Closeness measures, the standardized Betweenness measure for airports that have

non-zero Betweenness in all periods, or a dummy variable indicating whether or not the

airport has a non-zero Betweenness. In the last case, β1 can be interpreted as the effect of

consolidation on the probability that an airport serves as a link between at least one pair of

airports. In all other cases, β1 will be interpreted as the average effect of consolidation on

the network measure.

There are two main concerns for the identification of the causal effect of consolidation

on the network measures. First, the effects of consolidation might be confounded by other

factors if we consider a time span around the merger or codesharing agreement that is too

wide.

We address this concern in two ways. We start by utilizing data from one year before

the merger (or codesharing agreement) to one year after the merger, trying to isolate the

effect of the merger from other possible factors.17 We then repeat the exercise by looking at

the data from one year before the merger to three years after the merger, and compare the

results with the previous ones, to allow for the possibility that the merger (or codesharing

agreement) takes time to be fully implemented. In addition, include controls for aggregate

GDP, Jet Fuel Prices, and Population and Income per Capita in the MSA surrounding each

airport. These are included to alleviate concern that external cost and demand conditions

might drive both the decision to merge and the network changes that occur in the period

surrounding the merger.18

Our second concern is that the direction of causality could be reversed, whereby the

structure of the networks could be what determines why two firms consolidate, rather than

17We drop the month of the merger, as it is not clear whether this month belongs to the pre- or post-
period.

18U.S. Bureau of Economic Analysis, Gross Domestic Product [GDP] , retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDP, June 11, 2017. JetFuelPricet is
the U.S. Gulf Coast Kerosene-Type Jet Fuel price in dollars per gallon from the U.S. Energy Information
Administration, retrieved from https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=eer_

epjk_pf4_rgc_dpg&f=m.

24



the other way around. First, we include airport-merger (or airport-codeshare) fixed effects.

For example, we will have one dummy variable indicating whether or not the observation

comes from DCA during the year before or after the Continental-United merger date, and a

separate dummy indicating DCA during the year before or after the American-US Airways

merger date. Recall that the airports are the nodes of the network, and the network measures

that we use are constructed at the airport level. The airport-merger fixed effects control for

any unobserved heterogeneity at the airport level that could have induced two firms to

consolidate their operations nationally. For example, if the hub of an airline is at a city that

is in economic and population decline (e.g. Trans World Airlines at St. Louis), then the

airline at that hub could consider merging with another one that has its hub in cities that are

growing (e.g. American at Dallas, Miami, and Chicago). The inclusion of the airport-merger

fixed effects means that we will identify the effect of the mergers from the within variation

in the network measures at each airport for that merger over one or three years after the

merger. Second, we include airport-specific time trends, which are obtained by interacting a

trend variable with airport specific fixed effects. The airport-specific trends control for any

unobserved heterogeneity that changes over time, such as an historical decline or increase in

the demand for travel out of an airport. Thus, while the airport-merger fixed effects control

for the average unobserved heterogeneity at the airport level that might induce a merger

of two airlines, the airport-specific trends control for long run trends in the unobserved

heterogeneity at each airport. We also include fixed effects for quarter of the year to control

for the possibility that airlines may serve different routes at different times of year.

This discussion leads to the following specification for the unobservable term:

uij,t = ǫij + ǫi ∗ trendt + ǫt + ǫij,t (5)

where ǫij is the airport-merger fixed effect, ǫi ∗ trendt is the airport-specific trend, ǫt is the

quarter fixed effect, and ǫij,t is an idiosyncratic shock.

One last concern is that an individual merger or code-sharing agreement might be driving

the result. For this reason, we also present the results when the regression is estimated

separately for each merger and codesharing agreement. In practice, instead of stacking the

25



data and measuring time relative to the merger date, we estimate the effect using the data

on each merger period separately. We will then have multiple regressions of the following

type:

Yi,t =α + β1PostConsolidationt + β2GDPt + β3JetFuelPricet

+ β4Incomeit + β5Populationit + ui,t,
(6)

where ui,t = ǫi + ǫi ∗ trendt + ǫt + ǫi,t.

5.2 The Effect of Mergers on Network Structure

Table 8 presents the estimation results for the regression in Equation 4. We only present

the results for β1, and refer the reader to the Appendix for the results for the complete set

of parameters.

The estimates for β1 in equation 4 are all statistically insignificant and small in magnitude.

We estimate β1 = −0.00493 for the case when the dependent variable is the Degree Centrality,

and β1 = −0.0024 for the case when the dependent variable is the Closeness Centrality. The

point estimates imply that the mergers studied here have led to a decline of less than a

one percent of a one standard deviation in both centrality measures. These results suggest

that mergers have largely not had any meaningful effect on the long term trend of more

connectedness that was described in Section 4. The results that mergers have minimal effects

on the aggregate network are confirmed by the estimation results when the dependent variable

is the standardized Betweenness for airports that have positive Betweenness throughout the

data period. We find that the coefficient estimate is -0.00121, corresponding to a decrease of

less than 0.1 percent of a standard deviation. The last row of Table 8 presents the results for

a linear probability model where the dependent variable takes the value 0 if Betweenness is

equal to 0, and 1 if Betweenness is greater than 0. We see that mergers are associated with

a non-statistically significant increase of less than one percent (0.00779) in the probability

that an airport serves as a connection along the shortest route between two other airports.

The remaining columns of Table 8 present the results for the mergers separately, as in

equation 6.
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Row 1 of Column 2 shows the effect of the merger on the standardized Degree measure for

the merger of US Airways and America West. We find a statistically significant coefficient

estimate equal to -0.0389, or approximately 4 percent of a one standard deviation, which

means that in the case of US Airways and America West, the merger decreased the average

airport’s Degree Centrality. Similarly, the merger of United and Continental also decreased

the average airport’s Degree centrality by 2 percent (0.0202) of a one standard deviation,

although the estimate is only marginally statistically significant. The other mergers (South-

west with AirTran, American with US Airways, and Delta with Northwest) did not have any

statistically significant effect on Degree centrality. In Row 2, we find that the only merger

that had a significant effect on Closeness was the merger of Delta and Northwest. In this

case, average Closeness increased by just under 6 percent of a standard deviation (0.0588).

In Row 3 we find no evidence that any individual merger had an effect on Betweenness.

In Row 4 we find that the mergers of United with Continental, Delta with Northwest, and

American with US Airways increased the probability that an airport acts as a connection

between two other airports, respectively by 4.44, 7.67 and 4.24 percentage points.

We now investigate how the results change if we increase the span of the time window.19

To do this, we include data on the year before and the third year after each merger. The

results are presented in Table 9. Again, the average effects are all statistically insignificant

and very small, consistent with the findings in the first column of Table 8.

Columns 2 through 6 show the results for individual mergers. In Row 1, we see that

the merger of US Airways and America West is associated with a decrease in Degree of

4 percent (0.0368) of one standard deviation, while the merger of Delta and Northwest is

associated with an increase in Degree of 12.9 percent (0.129) of one standard deviation.

The remaining three mergers had no statistically significant effect on Degree. These results

are broadly consistent with those in Table 8, although the substantially increased coefficient

(from a statistically insignificant 0.0209 to a highly significant 0.129) for Delta and Northwest

suggests that growth in the Degree measure picked up in years two and three after that

19This is in the same spirit as Morrison (1996), who looks at the effects of mergers 8 and 9 years after
they were completed.
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merger.

The effects of individual mergers on Closeness can be seen in Row 2. We find significant

and positive effects for the mergers of Southwest with AirTran and Delta with Northwest, but

a significant negative effect for the merger of American with US Airways. Thus, the average

effect of a merger on Closeness (seen in Column 1) is not very meaningful for predicting the

long-term effect of any individual merger.

In Row 3, we see that all mergers have statistically insignificant effects on Betweenness

in the long term. In Row 4, we find that most mergers have no statistically significant effect

on the probability that an airport serves as a connecting airport between two others. There

are only marginally significant effects for the mergers of Southwest with Airtran (a decrease

of 0.0517 standard deviations) and of Delta with Northwest (and increase of 0.147 standard

deviations).

Overall, the results in in Table 9 confirm the conclusion we drew from Table 8: mergers

did not have any meaningful effect on the long term trend of more connectedness that was

described in Section 4.

5.3 The Effect of Codeshare Agreements on Network Structure

In this section we look at codesharing agreements, using the same methodological approach

as in the previous section. Like mergers, codeshare agreements present a tradeoff between

market power and cost efficiencies that make it difficult a priori to reach a conclusion re-

garding the effect on existing networks and subsequent entry.

Recall that in the previous subsection, we saw that on average, mergers have no statisti-

cally significant effects on any of the centrality measures. In Table 10, we find similar results

for codeshares, although codeshares on average have a statistically significant effect at the

10% level for the Degree and Closeness centrality measures. The first entry in Column 1

suggests that the average effect of a codeshare is to slightly increase the Degree centrality,

by about 0.3 percent of a standard deviation. In Row 2 of 10, we see that the average

effect of codeshares on Closeness is about -0.004, or a decrease of 0.4 percent of a standard
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deviation.20 The last two rows (first column) suggest that codeshares have no statistically

significant effect on Betweenness, either when measured as the standardized Betweenness

for airports with non- zero Betweenness, or when coded as a binary variable that indicates

whether or not Betweenness is greater than zero.

Looking across Row 1, we see that the average obscures some variation in effects by

individual codeshare. The many of the estimated coefficients are not statistically significant,

the codeshare agreements of Alaska and Continental, Delta and Alaska, and Continental

and United are associated with a statistically significant decrease in Degree — 3.4 percent

(0.0344), 14.2 percent (0.142), and 1.8 percent (0.0179) of a standard deviation, respectively.

Two codeshare agreements are associated with statistically significant increases in Degree.

The codeshare agreement between US Airways and United is associated with an increase

in Degree of 12.5 percent (0.125) of one standard deviation, and the agreement between

Continental, Delta, and Northwest is associated with an increase of about 2 percent (0.0215)

of a standard deviation. We conclude that while the average effect is slightly positive and

significant, the sign of the effect of an arbitrary code share agreement is ambiguous, as the

effects of actual agreements in the past have gone both directions.

In Row 2, we see that effects of individual mergers on Closeness vary from negative

and significant (in the case of Alaska and Continental, Delta and Alaska, and Continental

and United) to positive and significant (for the codeshares of US Airways and United, and

Continental, Delta and Northwest). We conclude that the effect of codeshare agreements on

Closeness centrality is ambiguous.

In Rows 3 and 4, there is only one statistically significant result. The codeshare of Con-

tinental and America West is estimated to increase the likelihood of an airport serving as

a connection on the shortest route between two other airports by 18.6 percentage points.

However, because we find no other significant results for Betweenness, we conclude that in

general, the effect of codesharing on hubbing within the aggregate network is indistinguish-

20So far in our analysis, we have seen Degree and Closeness trend together. This is intuitive, but is not
necessarily always the case because — given a fixed number of nodes— average Closeness will reflect both
the number and layout of links in a network, while average Degree is affected only by the number of links.

29



able from zero.

Finally, we see if our conclusions change when we expand the time window after the

codeshare is in place. In Table 11, we display the β1 coefficients for the same regressions

as in Table 10, except that we include only data from the year before and the third year

after each codeshare. The average effects displayed in Column 1 suggest a positive but

small effect on Degree (1.31 percent of a standard deviation), and insignificant effects on

Closeness and Betweenness (measured in standard deviations for airports that have positive

Betweenness). There is a small but positive effect (4.87 percent of a standard deviation) on

the probability of positive Betweenness for all airports). These findings are consistent with

the results displayed in Table 10.

Comparing the results for the individual codeshares to those displayed in Table 10, we see

some similar results, although some effects are now significant that were not before, and vice-

versa. For Degree, we find positive and at least marginally significant results for the codeshare

agreements involving American and Alaska, US Airways and United, and Continental, Delta

and Northwest. The codeshare of Continental and Northwest is associated with a statistically

significant decrease in Degree of 13.5 percent of a standard deviation; when we looked at

the smaller time window, the effect was statistically insignificant. The codeshares of Alaska

and Continental, Delta and Alaska, Continental and United are no longer associated with a

significant effect on Degree, as they were in Table 10. In Row 2, the results for Closeness show

that all codeshares except the ones between Continental and America West, American and

Alaska, and Continental and Northwest are either statistically insignificant or only marginally

significant. Row 3 shows no significant results for Betweenness (for airports with non-zero

Betweenness), but in Row 4 we see that the codeshares of Alaska and Continental, US

Airways and United, and Continental, Delta, and Northwest are associated with statistically

significant increases in the probability that an airport serves as a connection between two

others.

Overall, we conclude as before, that the effect of codesharing on the industry network is

economically small and often statistically indistinguishable from zero.
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6 Conclusion

The U.S. airline industry has undergone a process of consolidation and transformation in

the years since 1990. In this paper, we investigate how the network structure of the industry

evolved from 1990 to 2015. We use three centrality measures from graph theory to describe

the network structure of the industry: Degree, Closeness and Betweenness. Using these mea-

sures, we find that the industry network has become more connected, where connectedness

has three interpretations: 1) that the average airport services a greater proportion of possible

routes, 2) that the average origin airport is fewer stops away from any given destination, and

3) that the average hub is less frequently found along the shortest route between two other

airports.

We described how each airport’s centrality to the network can be measured by Degree,

Closeness and Betweenness, and described how these measures have changed at individual

airports over time. Specific examples — such as CVG (Cinncinati), which ceased to behave

as a hub in the years following the merger of Delta and Northwest — demonstrate that

mergers can affect network centrality of individual airports.

Using a simple empirical framework, we find that the evolution in the national network

structure is largely independent of the process of consolidation that has occurred over the

same period of time. The average effect of a merger or codeshare on all three centrality

measures is statistically insignificant and nearly zero in magnitude in nearly all specifications,

and variation in results across individual mergers and codeshare agreements highlights the

ambiguity of the estimated effects.

Our results cast some doubt on the ability of mergers to expand overall network connec-

tivity. That mergers could increase network connectivity was an argument made by each

of the merging carriers in the past 10 years, and was a factor cited by the DOJ in some

of its closing statements explaining why they cleared various mergers. Our conclusions, of

course, do not either contradict or support an argument that mergers expand the network

connectivity of the two merging parties. Instead, our findings show that the entire industry

network was not affected by the mergers.
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There are few limitations of our analysis. First, our analysis focuses on the architecture

of networks, and does not capture passenger experience in terms of frequencies, better con-

nections, and so on. Those would be measured by consumer-driven traffic data, not network

architecture. One way to address this limitation is to build measures of distance that are

weighted by the traffic data along the links Opsahl et al. (2010). We leave this to future

work.

Another limitation is that, while we can show that mergers did not lead to expanded

connectivity, we cannot say anything on what determined the expanded network connectivity

described by Figure 2. One hypothesis is that the demand for air travel has increased and

changed over time. We also leave the analysis of this question to future work.

Finally, we find that some codeshare and merger agreements had positive effects on net-

work connectivity, while others had negative effects. We can only speculate here that some

codeshares and mergers were indeed driven by network considerations, while others might

have been driven by other economic objectives. An interesting line of research could com-

pare the effect on prices and quality of service of these codeshare agreements and mergers,

and relate the findings to how they differed with respect to their effect on the network

architecture.
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Table 8: Estimates of Merger Effects

Avg. Effect US & HP UA & CO SW & FL DL & NW AA & US

Degree

-0.00493 -0.0389*** -0.0202* 0.00229 0.0209 0.00986
Closeness

-0.00244 0.00102 -0.0158 -0.000126 0.0588** -0.00779
Betweenness*1[AlwaysBetween=1]

-0.00121 0.00519 -0.000528 -0.00121 0.0255 0.00439
IsBetween

0.00779 -0.0251 0.0444* 0.00591 0.0767** 0.0424**

Note: This table presents the estimated coefficients on the Post-Merger indicator after running the OLS

regressions described in the text, using one year of data before and after each merger. The first column is the

average effect of all mergers. In this regression, we include fixed effects for each airport-merger combination,

along with quarter dummies and controls for GDP (in trillions), jet fuel prices, per capita income (in

thousands), population (in one-hundred thousands), and airport-specific monthly trends. All monetary

values are adjusted to 2015 dollars. In the remaining columns, the effect of each merger is estimated

separately. Controls remain the same, except that we include airport fixed effects instead of airport-merger

fixed effects. The headings denote the airlines involved in the relevant merger, where AA is American,

CO is Continental, DL is Delta, HP is America West, FL is AirTrain, NW is Northwest, UA is United

Airlines, US is US Airways, and SW is Southwest. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Estimates of Merger Effects 1 Year Before, 3 Years After

Avg. Effect US & HP UA & CO SW & FL DL & NW AA & US

Degree

-4.05e-05 -0.0368*** 0.0462 0.0162 0.129*** -0.0129
Closeness

-0.0108 0.0158 0.0247 0.0462*** 0.348*** -0.117**
Betweenness*1[AlwaysBetween=1]

-0.00931 -0.0124 -0.0276 -0.0151 0.000756 0.0651
IsBetween

-0.0110 0.0153 0.0192 -0.0517* 0.147* -0.0771

Note: This table presents the estimated coefficients on the Post-Merger indicator after running the OLS

regressions described in the text, using data from the year before and the third year after each merger.

The first column is the average effect of all mergers. In this regression, we include fixed effects for each

airport-merger combination, along with quarter dummies and controls for GDP (in trillions), jet fuel prices,

per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly

trends. All monetary values are adjusted to 2015 dollars. In the remaining columns, the effect of each

merger is estimated separately. Controls remain the same, except that we include airport fixed effects

instead of airport-merger fixed effects. The headings denote the airlines involved in the relevant merger,

where AA is American, CO is Continental, DL is Delta, HP is America West, FL is AirTrain, NW is

Northwest, UA is United Airlines, US is US Airways, and SW is Southwest. Significance is denoted by ***

p<0.01, ** p<0.05, * p<0.1.
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Table 10: Estimates of Codeshare Effects

Avg. Effect CO & HP AS & NW AA & AS CO & NW AS & CO US & UA CO, DL & NW DL & AS CO & UA

Degree
0.00302* -0.00297 0.0411 -0.00733 -0.0304 -0.0344** 0.125*** 0.0215*** -0.142*** -0.0179***

Closeness
-0.00407* 0.00935 -0.00606 -0.00751 -0.203 -0.0538*** 0.0702*** 0.0207*** -0.106*** -0.0521***

Betweenness*1[AlwaysBetween=1]

0.000760 -0.0616 -0.00247 0.00220 0.0493 0.0282 0.0394 -0.00428 0.0715 0.0157
IsBetween

-0.00227 0.186** 0.114 0.00427 0.0995 -0.0556 0.0327 -0.00891 -0.0750 0.0104

Note: This table presents the estimated coefficients on the Post-Codeshare indicator after running the OLS regressions described in the text,

using one year of data before and after each codeshare. The first column is the average effect of all codeshares. In this regression, we include

fixed effects for each airport-codeshare combination, along with quarter dummies and controls for GDP (in trillions), jet fuel prices, per

capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends. All monetary values are adjusted

to 2015 dollars. In the remaining columns, the effect of each codeshare is estimated separately. Controls remain the same, except that we

include airport fixed effects instead of airport-codeshare fixed effects. The headings denote the airlines involved in the relevant codeshare,

where AA is American, AS is Alaska, CO is Continental, DL is Delta, HP is America West, NW is Northwest, UA is United Airlines, and

US is US Airways. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 11: Estimates of Codeshare Effects 1 Year Before, 3 Years After

Avg. Effect CO & HP AS & NW AA & AS CO & NW AS & CO US & UA CO, DL & NW DL & AS CO & UA

Degree
0.0131* 0.105 -0.128 0.0648** -0.135** -0.0674 0.389*** 0.118*** 0.0302 -0.00429

Closeness
0.000621 -0.419*** -0.128 0.171*** -0.322*** -0.111* -0.0875 -0.0149 -0.0284 -0.0231

Betweenness*1[AlwaysBetween=1]

0.00216 0.247 0.0595 -0.0320 0.129 -0.00122 0.188 -0.0191 -0.0233 0.0375
IsBetween

0.0487** -0.530 -0.0964 -0.0451 0.223 0.255** 0.523*** 0.171** -0.0472 0.0499

Note: This table presents the estimated coefficients on the Post-Codeshare indicator after running the OLS regressions described in the

text, using data from the year before and the third year after each codeshare. The first column is the average effect of all codeshares. In this

regression, we include fixed effects for each airport-codeshare combination, along with quarter dummies and controls for GDP (in trillions),

jet fuel prices, per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends. All monetary

values are adjusted to 2015 dollars. In the remaining columns, the effect of each codeshare is estimated separately. Controls remain the

same, except that we include airport fixed effects instead of airport-codeshare fixed effects. The headings denote the airlines involved in the

relevant codeshare, where AA is American, AS is Alaska, CO is Continental, DL is Delta, HP is America West, NW is Northwest, UA is

United Airlines, and US is US Airways. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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7 Appendix

Table 12: Top 20 Airports by Standardized Closeness, by Year

Rank 1990 2000 2010 2015

1 ORD 3.16 ATL 3.50 ATL 3.40 ATL 3.64
2 ATL 2.62 ORD 2.78 ORD 3.18 ORD 3.48
3 DFW 2.42 DFW 2.69 DFW 2.96 DFW 3.05
4 PIT 1.99 IAH 2.52 DTW 2.79 CLT 2.94
5 STL 1.88 CVG 2.40 LAS 2.45 LAS 2.37
6 CLT 1.87 DTW 2.25 CLT 2.43 IAH 2.35
7 DEN 1.70 STL 2.10 IAH 2.42 DTW 2.32
8 DTW 1.49 CLE 1.88 DEN 2.22 DEN 2.30
9 MSP 1.49 EWR 1.80 MSP 2.17 MSP 2.14
10 IAH 1.44 MSP 1.77 MCO 1.96 PHL 2.05
11 PHX 1.37 DEN 1.72 PHL 1.91 DCA 1.85
12 IAD 1.37 CLT 1.71 EWR 1.73 EWR 1.77
13 EWR 1.36 PIT 1.70 MEM 1.70 IAD 1.66
14 CVG 1.35 PHX 1.52 IAD 1.69 LAX 1.61
15 LAX 1.35 LAS 1.50 PHX 1.64 PHX 1.56
16 SFO 1.33 MCO 1.44 LAX 1.59 MCO 1.55
17 MEM 1.31 PHL 1.44 CVG 1.52 BWI 1.55
18 PHL 1.21 LAX 1.42 DCA 1.50 BOS 1.41
19 BWI 1.19 BOS 1.15 BWI 1.47 TPA 1.33
20 BOS 1.11 MDW 1.11 CLE 1.41 SEA 1.32

Note: This table presents the top 20 airports in 1990, 2000, 2010, and 2015, ranked by their standardized

closeness. For each year, the first column is the airport code and the second is the airport’s average

standardized Closeness within the respective calendar year.
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Table 13: Average Merger Effects: Degree

(1) (2) (3) (4) (5) (6)

Post Merger -0.00933*** -0.00493 0.0122*** -0.0166*** -0.0147* -0.0434***
(0.00284) (0.00327) (0.00284) (0.00447) (0.00770) (0.00990)

quarter = 2 -0.00169 0.00708*** -0.00102 -0.00249 -0.000169 -0.00664***
(0.00184) (0.00171) (0.00205) (0.00177) (0.00195) (0.00192)

quarter = 3 -0.00349 0.00692*** -0.00799** -0.00425* -0.00537* -0.00969***
(0.00259) (0.00249) (0.00312) (0.00244) (0.00324) (0.00296)

quarter = 4 -0.0117*** 0.00187 -0.0160*** -0.00784*** -0.0119*** -0.0182***
(0.00269) (0.00241) (0.00287) (0.00249) (0.00338) (0.00320)

GDP 0.0304*** -0.00777 0.0608*** 0.0257*** 0.0402*** 0.0561***
(0.00686) (0.00680) (0.00810) (0.00732) (0.00777) (0.00776)

Jet Fuel Price Dollars per Gal 0.0204*** 0.0127*** 0.00979*** 0.0275*** 0.00228 0.00405
(0.00258) (0.00260) (0.00254) (0.00310) (0.00265) (0.00332)

Per Capita Income ($1,000s) -0.000921 -0.00327** -0.00299* 0.000802 0.00579*** 0.00868***
(0.00152) (0.00166) (0.00160) (0.00175) (0.00183) (0.00226)

Population (100,000s) -0.0125* -0.0123 -0.00506 -0.0237*** -0.0113 -0.0172
(0.00682) (0.00816) (0.00731) (0.00910) (0.00985) (0.0111)

Constant -0.169 0.553** -0.742*** 0.0387 -0.595** -0.850***
(0.195) (0.223) (0.208) (0.232) (0.283) (0.314)

Observations 19,707 19,728 19,208 19,731 19,160 19,163
R-squared 0.490 0.523 0.543 0.595 0.741 0.771
Number of panelid 865 865 866 867 864 866
Merger Date A C SC A to C C to SC A to SC

Note: This table presents the estimated coefficients on the Post-Merger indicator after running the OLS regressions described in the text

with standardized Degree as the outcome variable, using one year of data before and after each merger, and all five mergers together.

In this regression, we include fixed effects for each airport-merger combination, along with quarter dummies and controls for GDP (in

trillions), jet fuel prices, per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends. All

monetary values are adjusted to 2015 dollars. The fixed effects and airport-specific trends are not displayed. Each column presents the

results using a different definition of the merger date: “A” is the annoucement date, “C” is the completion date, and “SC” is the single

code date. In the last three columns, the time between the noted dates is dropped. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 14: Average Merger Effects: Closeness

(1) (2) (3) (4) (5) (6)

Post Merger -0.00515 -0.00244 0.0145*** -0.00907 -0.0291*** -0.0450***
(0.00395) (0.00415) (0.00464) (0.00552) (0.00949) (0.0121)

quarter = 2 -0.00401 0.0123*** 0.000724 -0.00255 0.000966 -0.0115***
(0.00266) (0.00293) (0.00309) (0.00238) (0.00312) (0.00279)

quarter = 3 -0.000808 0.0165*** -0.00151 0.000821 -0.00443 -0.00976**
(0.00358) (0.00379) (0.00468) (0.00320) (0.00471) (0.00410)

quarter = 4 -0.0190*** 0.00211 -0.0219*** -0.0180*** -0.0200*** -0.0291***
(0.00365) (0.00383) (0.00446) (0.00316) (0.00484) (0.00439)

GDP 0.0793*** 0.0235** 0.120*** 0.0936*** 0.0957*** 0.125***
(0.00965) (0.00985) (0.0119) (0.00959) (0.0118) (0.0116)

Jet Fuel Price Dollars per Gal 0.0141*** 0.00321 0.00194 0.0306*** -0.0127*** -0.00273
(0.00287) (0.00310) (0.00303) (0.00396) (0.00321) (0.00410)

Per Capita Income ($1,000s) -0.00240 -0.00603*** -0.00926*** 0.00127 0.00275 0.00745***
(0.00187) (0.00209) (0.00226) (0.00192) (0.00224) (0.00256)

Population (100,000s) -0.00825 -0.00513 -0.00101 -0.0124 -0.00734 -0.0112
(0.00728) (0.00853) (0.00843) (0.00887) (0.0103) (0.0127)

Constant -0.898*** 0.108 -1.436*** -1.248*** -1.339*** -1.949***
(0.240) (0.259) (0.256) (0.268) (0.313) (0.335)

Observations 19,707 19,728 19,208 19,731 19,160 19,163
R-squared 0.483 0.490 0.442 0.567 0.636 0.680
Number of panelid 865 865 866 867 864 866
Merger Date A C SC A to C C to SC A to SC

Note: This table presents the estimated coefficients from the OLS regressions described in the text with standardized Closeness as the

outcome variable, using one year of data before and after each merger, and all five mergers together. In this regression, we include fixed

effects for each airport-merger combination, along with quarter dummies and controls for GDP (in trillions), jet fuel prices, per capita

income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends. All monetary values are adjusted to

2015 dollars. The fixed effects and airport-specific trends are not displayed. Each column presents the results using a different definition of

the merger date: “A” is the annoucement date, “C” is the completion date, and “SC” is the single code date. In the last three columns, the

time between the noted dates is dropped. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 15: Average Merger Effects: Betweenness*1[AlwaysBetween=1]

(1) (2) (3) (4) (5) (6)

Post Merger 0.00239 -0.00121 -0.000982 0.00165 -0.00516 -0.000476
(0.00515) (0.00619) (0.00602) (0.00921) (0.0173) (0.0218)

quarter = 2 0.000297 -0.00201 -0.000255 0.000376 0.00144 0.00295
(0.00313) (0.00314) (0.00356) (0.00317) (0.00425) (0.00406)

quarter = 3 -0.000738 -0.00350 -0.000594 -0.000576 0.00130 0.00207
(0.00454) (0.00470) (0.00570) (0.00455) (0.00695) (0.00640)

quarter = 4 0.00127 -0.00154 0.00165 0.000981 0.00431 0.00494
(0.00493) (0.00539) (0.00611) (0.00562) (0.00828) (0.00733)

GDP -0.00272 -0.00101 -0.0193 -0.00748 -0.0189 -0.0184
(0.0144) (0.0147) (0.0187) (0.0179) (0.0202) (0.0194)

Jet Fuel Price Dollars per Gal -0.00361 -0.00128 2.90e-05 -0.00467 -0.00210 -0.00217
(0.00661) (0.00588) (0.00581) (0.00646) (0.00675) (0.00786)

Per Capita Income ($1,000s) 0.00236 0.00150 0.00160 -0.000364 0.00414 0.00182
(0.00290) (0.00308) (0.00290) (0.00260) (0.00375) (0.00387)

Population (100,000s) 0.00446 -0.00214 -0.00769 0.00300 -0.00140 0.00509
(0.00560) (0.00634) (0.0107) (0.00557) (0.0118) (0.0131)

Constant -0.246 0.0117 0.519 0.0173 0.152 0.00624
(0.352) (0.366) (0.604) (0.397) (0.638) (0.684)

Observations 8,280 8,280 8,064 8,280 8,064 8,064
R-squared 0.628 0.611 0.553 0.711 0.740 0.782
Number of panelid 360 360 360 360 360 360
Merger Date A C SC A to C C to SC A to SC

Note: This table presents the estimated coefficients from the OLS regressions described in the text with standardized Betweenness (for

airports with non-zero betweenness) as the outcome variable, using one year of data before and after each merger, and all five mergers

together. In this regression, we include fixed effects for each airport-merger combination, along with quarter dummies and controls for GDP

(in trillions), jet fuel prices, per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends.

All monetary values are adjusted to 2015 dollars. The fixed effects and airport-specific trends are not displayed. Each column presents the

results using a different definition of the merger date: “A” is the annoucement date, “C” is the completion date, and “SC” is the single

code date. In the last three columns, the time between the noted dates is dropped. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 16: Average Merger Effects: IsBetween

(1) (2) (3) (4) (5) (6)

Post Merger -0.00727 0.00779 -0.00526 0.00214 0.0271 0.0262
(0.00490) (0.00620) (0.00654) (0.00899) (0.0184) (0.0202)

quarter = 2 0.00281 0.00440 -0.00158 0.00537 1.74e-05 0.00217
(0.00342) (0.00345) (0.00353) (0.00329) (0.00380) (0.00341)

quarter = 3 -0.00821* -0.00375 -0.0155** -8.82e-05 -0.00738 -0.00215
(0.00477) (0.00555) (0.00659) (0.00512) (0.00650) (0.00565)

quarter = 4 0.000741 0.00664 -0.0134* 0.00627 0.00661 0.00624
(0.00493) (0.00622) (0.00715) (0.00563) (0.00784) (0.00689)

GDP -0.0260** -0.0411** 0.00217 -0.0411*** -0.0323** -0.0285**
(0.0131) (0.0165) (0.0143) (0.0156) (0.0143) (0.0140)

Jet Fuel Price Dollars per Gal 8.08e-05 0.00299 -0.00352 0.00263 0.00630 0.00363
(0.00327) (0.00327) (0.00421) (0.00540) (0.00451) (0.00582)

Per Capita Income ($1,000s) -0.000647 0.000729 -0.000771 -0.000971 0.000918 0.00256
(0.00249) (0.00228) (0.00309) (0.00230) (0.00232) (0.00309)

Population (100,000s) -0.0112** -0.0123** -0.0223*** -0.00822 -0.0114* -0.00488
(0.00564) (0.00546) (0.00795) (0.00536) (0.00632) (0.00655)

Constant 1.347*** 1.542*** 1.149*** 1.533*** 1.368*** 1.111***
(0.327) (0.352) (0.277) (0.325) (0.266) (0.266)

Observations 19,707 19,728 19,208 19,731 19,160 19,163
R-squared 0.324 0.284 0.220 0.360 0.344 0.395
Number of panelid 865 865 866 867 864 866
Merger Date A C SC A to C C to SC A to SC

Note: This table presents the estimated coefficients from the OLS regressions described in the text with an indicator for non-zero

betweenness as the outcome variable, using one year of data before and after each merger, and all five mergers together. In this

regression, we include fixed effects for each airport-merger combination, along with quarter dummies and controls for GDP (in trillions),

jet fuel prices, per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly trends. All

monetary values are adjusted to 2015 dollars. The fixed effects and airport-specific trends are not displayed. Each column presents the

results using a different definition of the merger date: “A” is the annoucement date, “C” is the completion date, and “SC” is the single

code date. In the last three columns, the time between the noted dates is dropped. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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Table 17: Average Codeshare Effects: All Outcomes

(1) (2) (3) (4)
Degree Closeness Betweenness*1[AlwaysBetween=1] IsBetween

Post Codeshare 0.00302* -0.00407* 0.000760 -0.00227
(0.00168) (0.00233) (0.00513) (0.00509)

quarter = 2 0.00309*** 0.00691*** -0.00347 0.00959***
(0.00110) (0.00146) (0.00384) (0.00319)

quarter = 3 0.00258 0.0113*** -0.00641 0.00925*
(0.00183) (0.00249) (0.00605) (0.00532)

quarter = 4 0.00991*** 0.00971*** -0.00455 0.0149**
(0.00324) (0.00355) (0.0129) (0.00682)

GDP -0.0470*** -0.0218** -0.0115 -0.0805***
(0.0105) (0.0111) (0.0422) (0.0225)

Jet Fuel Price Dollars per Gal 0.00413 0.00525 -0.000170 -0.00433
(0.00296) (0.00440) (0.00795) (0.00811)

Per Capita Income ($1,000s) -0.000450 -0.00668*** 0.00220 0.00482*
(0.00116) (0.00142) (0.00256) (0.00250)

Population (100,000s) 0.00784 0.0122** -0.0262** -0.0107
(0.00534) (0.00494) (0.0129) (0.00870)

Constant 0.514*** 0.325* 0.981* 1.785***
(0.162) (0.166) (0.577) (0.343)

Observations 35,837 35,837 15,552 35,837
R-squared 0.582 0.536 0.543 0.325
Number of panelid 1,523 1,523 648 1,523

Note: This table presents the estimated coefficients from the OLS regressions described in the text, using one year of data before and after

each codeshare. In this regression, we include fixed effects for each airport-codeshare combination, along with quarter dummies and controls

for GDP (in trillions), jet fuel prices, per capita income (in thousands), population (in one-hundred thousands), and airport-specific monthly

trends. All monetary values are adjusted to 2015 dollars. The fixed effects and airport-specific trends are not displayed. Each column

presents the results using a different outcome variable, noted in the column header. Significance is denoted by *** p<0.01, ** p<0.05, * p<0.1.
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