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Abstract

Informational asymmetries have long been recognized as one of the causes of wasteful

conflicts. Signaling has been found to be an effective tool for interested parties to truthfully

communicate private information. Can signaling help reduce the risk of conflict? I study this

question in a model in which a Sender sends a signal about his privately known cost of conflict,

a Receiver makes an offer, and the Sender decides whether or not to start a conflict. I find

that when the outcomes of a conflict do not depend on previous actions such as wars where the

winner gains the disputed territory, signaling does not permit any information transmission.

In turn, when the outcomes of a conflict depends on the Receiver’s offer, signaling can help

avoid war, but only under specific conditions. In all cases, the shadow of conflict looms large

and renders signaling totally or relatively ineffective in preventing conflict.

∗London School of Economics. Email: s.wolton@lse.ac.uk
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From wars to trials via strikes, conflicts occur various forms despite their cost and the risk they

involve all interested parties. This puzzle has led a large literature to investigate the sources of a

conflict. One commonly recognized cause is informational asymmetry. But are these informational

asymmetries inescapable? Are there means to eliminate them?

In this paper, I consider one potential decentralized mechanism to reduce asymmetry of in-

formation: costly signaling. I find that signaling facilitates information transmission only under

restrictive conditions on the form of conflict and distribution of private information. Importantly,

wars, as they are usually modeled, do not meet these conditions. Signaling never allows for any

information transmission prior to military action: the unique equilibrium is a pooling equilibrium.

These results contrast with dozens of studies which find that signaling helps information transmis-

sion even when players have strong incentives to misrepresent themselves. They, however, can be

explained by a single factor: the shadow of conflict.

Formally, I build upon bargaining models of war. A Sender has private information about his

cost of conflict, whereas the Receiver’s cost is commonly known. In a first stage, the Sender can

send a signal at a cost satisfying increasing differences (i.a., increasing his signal becomes more

costly as the Sender’s cost of conflict increases). After observing the Sender’s signal, a Receiver

makes an to the Sender. The latter then decides whether to start a conflict. A conflict takes the

form of a lottery over various potential outcomes.

In the paper, I distinguish between two different forms of lottery: fixed-outcome and offer-

dependent lotteries. In fixed-outcome lotteries, the possible outcomes of the conflict do not depend

on the Receiver’s offer. This corresponds to several well-known situations. Armed conflicts are

usually modeled as winner-takes-all lotteries in which the payoff from victory does not depend on

a country’s prior concessions (Ramsay, 2017). Signaling here assumes the form of staging military

parade, missile tests, demonstrations, or protestations at the United Nation organization. This

representation of conflicts also applies to trials as plea bargain offers do not constraint future legal

proceedings (Silveira, 2017). Here, delaying tactics can be thought as signals. Another possible

example is strikes whose successes or failures have little to do with the wage offer prior to collective

action and for which trade unions can use tracts and posters to signal their ability to mobilize their

members. In turn, in offer-dependent lotteries, one or more possible outcomes strictly increases

with the Receiver’s offer. This type of conflict is less common, but not unknown. Wolton (2017)

2



models outside lobbying activities as an offer-dependent lottery (the Receiver’s offer is a bill which

is either enacted or abandoned) with informative lobbying and contributions serving as signals.

The form of conflict plays a critical role for information transmission. If the conflict is a fixed-

outcome lottery, then the unique equilibrium is a pooling equilibrium. To understand this result,

suppose that the Sender’s cost can take only two values: high or low. If the Sender were to reveal

his cost, the Receiver would make a compromise offer which leaves the Sender indifferent between

starting a conflict and accepting the offer (any other offer, I show, is dominated). Now suppose that

a low-cost Sender pretends to be a high-type Sender. The Receiver’s offer is then less attractive

than the compromise offer for a low-cost, and the Sender starts a conflict. Because the conflict is

a fixed-outcome lottery, a low-cost Sender’s expected payoff from imitating a high-cost is exactly

the same as his payoff from revealing his type: the expected payoff from a conflict. A low-cost

Sender has thus no gain from differentiating himself from a high type and is not willing to pay any

signaling cost. Let us now turn to a high-cost Sender. If he pretends to be a low-cost, he obtains

a compromise offer which makes the low-cost Sender indifferent between conflict and peace. This

is always more attractive that the compromise offer he obtains from truthfully revealing his type.

In other words, a high-cost Sender has a positive benefit from imitating a low-cost Sender and the

signaling cost must be positive to avoid him mimicking a low type. Of course, the two conditions

cannot be satisfied simultaneously, and information transmission is impossible. The reasoning

above applies to all informative equilibria for all possible fixed-outcome lotteries, all (additively

separable) continuous utility functions, and all distribution of the Sender’s costs. In all cases, there

is no information transmission in equilibrium.

When the conflict takes the form of an offer-dependent lottery, a low-cost Sender gets some

benefit from differentiation since the outcome of the conflict depends on the offer on the table

to begin with. Because of the possibility of conflict, however, a low-cost Sender’s benefit from

differentiation is strictly lower than a high-cost Sender’s benefit from imitation. A low-cost Sender

then is only willing to send a relatively low costly signal to reveal his type. For separation to oc-

cur, it must be that even this relatively low signal is too expensive for a high-cost Sender. This is

possible only if the two types are sufficiently apart (taking advantage of the increasing difference in

signaling costs). The reasoning above thus implies that a separating equilibrium never exists when

the set of possible Sender’s cost contains an interval (as types are too close) and exists only under

restrictive conditions when the Sender’s costs take discrete values. While information transmission
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is possible with offer-dependent lottery, it does not occur generically.

A large literature studies the relationship between uncertainty and conflict (for two excellent

recent reviews, see Baliga and Sjöström, 2013 and Ramsay, 2017). Few papers, however, consider

whether signaling can alleviate informational asymmetries and reduce the risk of conflict. Baliga

and Sjöström (2004) and Kydd (2005) show how cheap talk can be effective in term of reducing

the risk of arm races. However, their results rely on arm races being a form of prisoner’s dilemma

and thus players having some commonality of interest. This is not the case in bargaining model

of war. In such context, my paper extends the signaling analysis in Arena (2013). While Arena

considers a single utility function (linear), single lottery (winner-takes-all), and binary signals,

I look at the effectiveness of signaling for all continuous utility functions, all lotteries, and all

possible signals. Finally, my finding can be related to recent works on mediation (Hörner, Morelli,

and Squintani, 2015; Meirowitz et al., 2017). These papers show that in the optimal mediation

equilibrium, the probability of war is strictly positive to induce participants to truthfully reveal

their private information. In turn, I establish that there is no decentralized mechanism which

guarantees information revelation because of the shadow of war.

1 Set-up

I study a one-period game with a Sender (S) and a Receiver (R). The receiver makes an offer

aR ∈ [a, a], with (without loss of generality) 0 ≤ a < a. Depending on contexts, the offer is a

division of a disputed territory, a plea bargain offer, a wage rise, or the content of a bill. After

observing aR, the Sender can decide whether to start a conflict: fS ∈ {0, 1}, with 1 denoting

conflict. The conflict corresponds to a war, going to trial, going on strike, or outside lobbying

activities. A conflict has two consequences. First, a conflict affects the outcome of the game,

denoted z: no conflict leads to outcome z = aR with probability 1, whereas conflict generates a

lottery L(aR) over possible outcomes. Second, a conflict imposes a cost on both players. I describe

these two aspects in turn.

Denote z(aR) = {z1(aR), . . . , zN(aR)} ∈ [a, a]N , N ≥ 2, the set of possible outcomes in a conflict

(fS = 1) with zj(·) < zj+1(·) for all j ∈ {1, . . . , N−1}. Denote as well p = {p1, . . . , pN} ∈ ∆(z(aR))

the associated probability distribution over outcomes (i.e., Pr(z = zj(·)) = pj for all j). The lottery
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L can be represented as L(aR) =< z(aR),p >. Throughout, I suppose that L(·) is non-degenerate

(i.e., there exists j ∈ {1, . . . , N} such that pj ∈ (0, 1)). I distinguish between a fixed-outcome

lottery in which zj(aR) is constant in aR for all j ∈ {1, . . . , N} and an offer-dependent lottery

in which there exists j ∈ {1, . . . , N} such as zj(aR) is strictly increasing in aR. A commonly

used fixed-outcome lottery in the literature is the winner-takes-all lottery: z(aR) = {a, a} and

p = {p, 1 − p} for all aR ∈ [a, a]. An example of offer-dependent lottery is z = {a, aR} and

p = {p, 1− p} so that the Receiver either obtains a or his offer aR.

The cost of conflict for the Receiver is common knowledge and equals kR > 0. The cost for

the Sender is his private information (type) and denoted kS. Types are drawn from a commonly

known type space KS ⊆ [kS, kS] with 0 < kS < kS according to the common knowledge cumulative

distribution function F (·). Throughout, I assume that F (·) is non-degenerate and without loss of

generality kS, kS ∈ K2
S. Note that KS can be an interval (i.e., F (·) is continuous) or a discrete set

(i.e., F (·) exhibits discontinuities). At the beginning of the game, the Sender can send a signal

sS ∈ R+ to reveal his type. The cost of signal sS is C(sS, kS). I assume that C(·, kS) is strictly

increasing in sS with lim
sS→∞

C(sS, kS) = ∞ for all kS ∈ KS.

Turning to payoffs, the Receiver, without loss of generality, prefers higher outcome z. Her

utility can be represented as:

UR(aR, fS) = r(z)− fS × kR, (1)

In turn, the Sender prefers lower outcome and his utility assumes the following form:

US(aR, fS, sS) = −v(z)− fS × kS − C(sS, kS), (2)

I impose that both r(·) and v(·) are bounded, and strictly increasing over [a, a]. Further, I

assume that v(·) is C1 over [a, a] (the reasoning can be extended to a semi-continuous v(·) or

v′(·) at the cost of complicating the analysis). Observe that the model allows for players to be

risk-seeking on some subset of [a, a] (i.e., r(·) convex and/or v(·) concave).

To summarize, the game proceeds as follows:

0. Nature draws kS from KS according to the distribution F (·);

1. Sender privately observes kS and sends signal sS ≥ 0;

2. Receiver observes sS and chooses aR ∈ [a, a];

3. Sender chooses fS ∈ {0, 1};
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4. Nature determines outcome, the game ends, and payoffs are realized.

The equilibrium concept is Perfect Bayesian Equilbrium (henceforth ‘equilibrium’). Observe that

I do not impose any equilibrium refinement (e.g., Intuitive Criterion). This means that out-of-

equilibrium beliefs are unrestricted to facilitate information transmission. I also assume that the

cost of signaling C(·, ·) is C1 and exhibits strict increasing differences. That is, for all kl
S, k

h
S ∈

K2
S, kl

S < kh
S and slS, s

h
S ∈ R

2
+, slS < shS:

C(shS, k
h
S)− C(slS, k

h
S) > C(shS, k

l
S)− C(slS, k

l
S)

This assumption is meant to increase the chances that the Sender has incentives to truthfully

signal his type at the signaling stage (stage 1.) and thus goes against the paper’s main findings

(Malaith, 1987). An example of signaling cost function satisfying strict increasing differences is

C(sS, kS) = sS × kS.

For the Sender, a signaling strategy takes the form of a mapping from his type to some real

positive value sS : [kS, kS] → R+. Following the usual definition, a strategy is separating if for all

kl
S, k

h
S ∈ K2

S, kl
S < kh

S, sS(k
l
S) 6= sS(k

h
S). A conflict strategy is a mapping from R’s offer and S’s

type to a conflict decision fS : [a, a]×KS → {0, 1}. For the Receiver R, his strategy is a mapping

from the sender’s signal to an offer aR : R+ → [a, a]. Throughout, I use the subscript ∗ to denote

equilibrium actions.

2 Analysis

I study whether signaling can resolve informational asymmetries at the source of wasteful conflicts.

To do so, I focus on the most interesting cases for which conflicts would be avoided, should

information asymmetries be eliminated.

Formally, denote acR(kS) the Receiver’s offer which leaves the Sender indifferent between starting

a conflict (fS = 1) or peace (fS = 0). I label acR(kS) the compromise offer and assume it is unique

in the text (the Online Appendix deals with the general case). I assume that the Sender’s potential

cost of conflicts are such that compromise is always necessary and possible: a ≤ acR(kS) ≤ a for

all kS ∈ KS.
1 Further, I assume that if the Receiver learns the Sender’s type, he is willing to

1Note that if a > acR(kS) for some kS ∈ KS , then conflict is unavoidable for some types. In turn, if acR(kS) > a,
some types never start a conflict. The two restrictions are with little loss of generality since we can always focus
on the subset of types for which they hold.
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compromise: r(acR(kS)) ≥ EL

(
r(z)|aR = a

)
− kR for all kS ∈ KS (where the left-hand side is

the payoff from compromise and the right-hand side the highest possible expected payoff from a

conflict with expectation over lottery outcomes). Finally, absent any information at the signaling

stage, I suppose that there is a risk of conflict: apR = argmaxaR∈[a,a] E
(
US(aR; fS)|kS ∈ KS

)
(with

expectation over Sender’s type and lottery outcomes) satisfies apR > acR(kS) for some kS ∈ KS.

I first consider fixed-outcome lottery. The first proposition states that signaling never reduces

by any amount the informational asymmetry.

Proposition 1. For all fixed-outcome lotteries and all type-space KS, in any equilibrium, the

Sender plays a pooling strategy: s∗S(kS) = spS for all kS ∈ KS.

Proof. All proofs are collected in the Online Appendix

To understand this result, recall that, under the assumptions, after learning that the Sender’s

cost is kS, the Receiver chooses the compromise offer acR(kS), which leaves the Sender indifferent

between conflict and peace. Since conflict is a fixed-outcome lottery, acR(kS) satisfies: −v(acR(kS)) =

−EL

(
v(z)

)
− kS for all kS ∈ KS. Consider now the strategy of two types kl

S, k
h
S ∈ K2

S, kl
S < kh

S.

For a separating equilibrium to exist, it must be that (i) a Sender with cost kh
S does not want to

imitate a Sender with cost kl
S and (ii) a type-kl

S is willing to differentiate himself from a type-kh
S.

When a high-cost Sender (kh
S) imitates a low-cost Sender (kl

S), he obtains a better compromise

offer and a strictly positive benefit from imitation v(acR(k
l
S)) − v(acR(k

h
S)). Thus, to discourage

imitation by a high-cost, it must be that mimicking a low cost is costly: sS(k
l
S) > sS(k

h
S). In turn,

if a low-cost pretends to be a high-cost, the Receiver offers acR(k
h
S) > acR(k

l
S) and the Sender starts

a conflict. His expected payoff is then EL

(
v(z)

)
− kl

S, the exact same payoff as from revealing

his type. A low-cost Sender’s benefit from differentiation is thus null and he is never willing to

pay a signaling cost to reveal his type. Consequently, we can never satisfy conditions (i) and (ii)

simultaneously. The result extends to all possible equilibria with information transmission at the

signaling stage since I can always find two types such that the reasoning above applies.

As noted in the introduction, many different forms of conflict can be understood as fixed-

outcome lotteries: trials, strikes, and especially wars. In all these cases, Proposition 1 indicates

that there is no decentralized mechanism which permits information transmission. This result may

provide a rationale for why armed conflict actually break out. One of the criticism of bargaining

models of war is that as we get closer to the onset of war, uncertainty should be resolved. Propo-

sition 1 shows that this need not be the case. Any action by a belligerent prior to his opponent’s
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final offer has no informative content. Only the beginning or not of military actions is informa-

tive about an interested party’s type (one—important—limitation to the whole analogy is that

the unique pooling equilibrium features no type engaging in costly signaling: s∗S(kS) = 0 for all

kS ∈ KS).

I now turn to offer-dependent lottery. First, I consider whether conflict can always be avoided,

that is, whether a separating equilibrium exists. Unlike fixed-outcome lotteries, the answer is

positive, though under specific conditions. In particular, it is necessary, but not sufficient, that

the type-space is discrete.

Proposition 2. Denote K the cardinality of KS. For all offer-dependent lotteries, a separating

equilibrium exists if and only if

1. The type-space KS is discrete;

2. There exist a K-dimension vector s∗
S
= (s∗S(k

1
S), . . . , s

∗
S(k

K
S )) satisfying for all j ∈ {1, . . . , K−1}:

C(s∗S(k
j
S), k

j
S)− C(s∗S(k

j+1
S ), kj

S) + (kj+1
S − kj

S) ≤ v(acR(k
j+1
S ))− v(acR(k

j
S))

≤ C(s∗S(k
j
S), k

j+1
S )− C(s∗S(k

j+1
S ), kj+1

S ) (3)

To understand this result, consider again he strategy of two types kl
S, k

h
S ∈ K2

S, kl
S < kh

S. As

above, a separating equilibrium exists only if a type-kh
S does not want to imitate a type-kl

S and a

type-kl
S is willing to distinguish himself from its higher cost counterpart. For a high-cost Sender, the

benefit of imitation is still the gain from a more favorable compromise offer: v(acR(k
l
S))−v(acR(k

h
S))

with acR(kS) such that −v(acR(kS)) = −EL

(
v(z)|aR = acR(kS)

)
−kS (note the dependence of lottery

outcomes on acR(kS)). In turn, if the low-cost Sender pretends to be a type kh
S, it starts a conflict

after the Receiver offers the compromise acR(k
h
S). This means that a low-cost Sender’s benefit from

differentiation is: v(acR(k
l
S)) −

(
EL

(
v(z)|aR = acR(k

h
S)
)
+ kl

S

)
< v(acR(k

l
S)) − v(acR(k

h
S)). Observe

that since conflict is an offer-dependent lottery, a low-cost Sender’s benefit from differentiation is

no longer null. Nonetheless, due to the possibility of starting a conflict, it is strictly lower than a

high-cost Sender’s benefit from imitation. The signaling cost to guarantee separation must thus

be sufficiently large to encourage a type-kh
S Sender not to imitate a lower cost, but also sufficiently

small to guarantee that a type-k − Sl Sender reveals his type. When the Senders’ possible costs

of conflict are very close (e.g., KS contains an interval), there never exists a signaling strategy

sS which satisfies both conditions. Hence, a separating equilibrium can only exist if the Sender’s

possible costs take discrete values. In addition, Condition 3 also needs to be satisfied. This
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condition imposes additional restrictions on the distance between the Sender’s possible costs. To

better interpret Condition 3, the next example provides a useful illustration.

Example 1. Suppose z(aR) = {a, aR}, with Pr(z = aR) = 1−p ∈ (0, 1), and C(sS, kS) = sS ×kS.

The compromise offer acR(k
j
S) satisfies v(acR(k

j
S)) = v(a) +

k
j
S

p
. A separating equilibrium exists if

and only if for all j ∈ {1, . . . , K − 1} kj
S ≤ (1− p)kj+1

S .

Under the assumptions, a separating equilibrium guarantees no conflict. Can we obtain a

similar outcome when we allow for coarser information transmission at the signaling stage (i.e.,

the Sender plays a semi-separating strategy)? As the next proposition shows, in addition to an

amended Condition 3, conflict is avoided in a semi-separating equilibrium only if the Receiver is,

in some sense, conflict-adverse and compromises with all types playing the same signaling strategy.

Before stating formally the result, it is useful to introduce the following notation. For allKm
S ⊆ KS,

denote km
S := minKm

S .

Proposition 3. For all offer-dependent lottery, there exists a semi-separating equilibrium with no

conflict if and only if there exists a partition of the type space KS into M ≥ 2 subsets K1
S, . . . , K

M
S

and sss
S
= {s1S, . . . , s

M
S } such that for all m ∈ {1, . . . ,M − 1}:

1. maxKm
S < minKm+1

S

2. v(acR(k
m+1
S ))− v(acR(k

m
S )) ≤ C(smS , k

m+1
S )− C(sm+1

S , km+1
S );

3. For all kS ∈ Km
S , C(smS , kS)− C(sm+1

S , kS) + km+1
S − kS ≤ v(acR(k

m+1
S ))− v(acR(k

m
S ));

4. For all smS , a
c
R(k

m
S ) ∈ argmaxE

(
UR(aR, fS)|kS ∈ Km

S

)
.

Condition 1 in Proposition 3 documents that in any semi-separating equilibrium, partition sets

are ordered. Condition 2 establishes a simple condition so that a high-cost Sender does not imitate

a Sender with a lower cost. More interestingly, Condition 3 highlights the difficulty to sustain a

semi-separating equilibrium (an appropriately modified Condition 3 applies to all semi-separating

equilibria). A Sender’s incentive compatibility constraint must be satisfied not just for the extrema

in the partition sets of the type space, but also for almost all interior costs (i.e., for all kS ∈ Km
S ,

m ∈ {1, . . . ,M − 1}) . This result boils down again to the shadow of conflict. As in traditional

signaling games, the cost of differentiation—i.e., signaling cost—is increasing with a Sender’s cost

of conflict kS: C(smS , kS)−C(sm+1
S , kS) is increasing in kS by the increasing differences assumption.

In addition, unlike traditional signaling games, in this set-up, the benefit from differentiation is

also strictly increasing in the Sender’s cost of conflict kS since a relatively low-cost Sender starts
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a conflict when it mimics a relatively high type (i.e., send signal sm+1
S instead of smS ): km+1

S − kS

decreases with kS. The combination of these two effects imply that it is a priori unclear which

type in the set Km
S has the greatest incentive to imitate a relatively high-cost Sender. Finally,

Condition 4 stresses that a no-conflict semi-separating equilibrium requires strong assumption

on the Receiver’s utility function. There must exist a partition which satisfies Conditions 1-3

and induces full compromise on the Receiver’s part. Overall, Proposition 3 suggests that only

separating equilibria (when they exist) can be expected to bring peace.

3 Conclusion

This paper establishes that signaling is unlikely to resolve one of the main sources of conflict:

informational asymmetries. A separating equilibrium exists only under restrictive conditions in-

cluding: (i) the outcome of the conflict must depend on the Receiver’s previous offer and (ii) the

Sender’s privately known cost of conflict must take discrete values. Conditions for existence of

a semi-separating equilibrium are no less stringent and such equilibria are unlikely to guarantee

no conflict on path. I further establish a strong negative result. If the outcomes of conflict are

independent of previous actions, no information is ever revealed in equilibrium for all possible form

of uncertainty and payoffs. This suggest that in various settings, such as war or plea bargaining, no

decentralized mechanism permits any form of information transmission between interested parties.

In Online Appendix B and C, I explore the robustness of this striking result. I show that

the impossibility to transmit any information with signaling remains when the Sender has better

information about his winning probabilities rather than his cost of conflict (Proposition B.1). A

similar negative conclusion holds when both the Sender and Receiver face a positive recognition

probability to make a take-it-or-leave-it offer (Proposition C.1). Some information can be trans-

mitted, however, if we allow for a bargained solution between the Sender and Receiver, though

much depends on the Sender’s bargaining power (Propositions C.2 and C.3). This last finding

provides an interesting counterpoint to Banks (1990). In his seminal contribution, Banks estab-

lishes general properties of bargained outcomes in the shadow of wars for all possible bargaining

protocols. My results highlight that no such general property exists when it comes to information

transmission.
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A Proofs

Define Ac(kS) := {aR ∈ [a, a] : −v(aR) = −EL

(
v(z)|aR

)
− kS} the set of actions which leave a

type-kS Sender indifferent between conflict (fS = 1) and no conflict (fS = 0). Further, define

Ap :=
{
apR ∈ [a, a] : apR ∈ arg max

aR∈[a,a]
E
(
UR(aR, fS)|kS ∈ KS

)}
the set of offers which maximize the

Sender’s expected utility when no information is transmitted at the signaling stage. I formalise

the assumptions in the main text as:

Assumption 1. −EL

(
v(z)|aR = a

)
− kS ≤ −v(a)

Assumption 2. −EL

(
v(z)|aR = a

)
− kS ≥ −v(a)

Assumption 3. For all kS ∈ KS, maxAc(kS) satisfies r(maxAc(kS)) ≥ EL

(
r(z)|aR = a

)
− kR

Assumption 4. There exist kS ∈ KS such that minAp > maxAc(kS).

Assumption 1 guarantees that there always exists a Receiver’s action aR that the Sender prefers to

a conflict. Assumption 2 implies that the Receiver can (almost) never offer the highest action and

avoids a conflict. Assumption 3 guarantees that the Receiver is willing to compromise after learning

the Sender’s cost of conflict. These three assumptions are necessary for a separating equilibrium to

exist at least when the type-space is an interval (see Lemma A.1). Finally, Assumption 4 implies

that informational asymmetries are a source of conflict. These assumptions guarantee that I focus

on cases when signaling plays an important role to avoid a conflict. As explained in the main text,

these assumptions are with little loss of generality since I can always redefine the type space so

they hold.

Lemma A.1. Suppose KS = [kS, kS] and Assumption 1, 2, or 3 does not hold, then there is no

equilibrium in which the Sender plays a separating strategy.

Before proving the result, I prove two preliminary claims.

Claim 1. In a separating equilibrium, after signal s∗S(kS), the Receiver’s best response a∗R(s
∗
S(kS))

is either a∗R(s
∗
S(kS)) ∈ Ac(kS) or a∗R(s

∗
S(kS)) = a.

12



Proof. To see that, observe first that if −EL

(
v(z)|aR = a

)
− kS ≤ −v(a), the Sender does not

start a conflict when the Receiver chooses her preferred action. The Receiver’s best response is

then a∗R(s
∗
S(k

1
S)) = a.

Assume now that−EL

(
v(z)|aR = a

)
−kS < −v(a) and Ac(kS) is non-empty. We now show that any

action aR /∈ Ac(kS)∪{a} is (weakly) dominated by some other offer. First take aR /∈ Ac(kS)∪{a} so

that fS(aR; kS) = 0. Under the assumption ad by definition of Ac(kS), there exists a
c
R(kS) ∈ Ac(kS)

such that (i) acR(kS) > aR and (ii) f(acR(kS); kS) = 0 and so provides a higher payoff than aR.

Now take aR /∈ Ac(kS) ∪ {a} so that fS(aR; kS) = 1. Recall that EL

(
r(z)|aR

)
is increasing in aR

(strictly if the lottery is offer-dependent) so that offer a dominates aR (strictly if the lottery is offer-

dependent). In a fixed-outcome lottery, the Receiver may be indifferent between aR /∈ Ac(kS)∪{a}

so that fS(aR; kS) = 1 and a. However, it is without loss of generality to impose a∗R(s
∗
S(kS)) = a.

Suppose now that Ac(kS) is empty. This means that the Receiver cannot avoid a challenge with

the Sender. By the reasoning above, her best response is then a∗R(s
∗
S(kS)) = a.

Claim 2. In a separating equilibrium, the Receiver’s best response a∗R(s
∗
S(kS)) must be such that

for all kl
S, k

h
S ∈ K2

S, k
l
S < kh

S, a
∗
R(s

∗
S(k

l
S)) < a∗R(s

∗
S(k

h
S)).

Proof. The proof proceeds by contradiction.

First, suppose that a∗R(s
∗
S(k

l
S)) ∈ Ac(kl

S) and a∗R(s
∗
S(k

h
S)) ∈ Ac(kh

S), with a∗R(s
∗
S(k

l
S)) > a∗R(s

∗
S(k

h
S))

(this is possible since the set Ap(kS) may not be a singleton).2 A type-k1
S and a type-kh

S Sender’s

incentive compatibility (IC) constraints must then satisfy respectively:

−v(a∗R(s
∗
S(k

l
S)))− C(s∗S(k

l
S), k

l
S) ≥ −EL

(
v(z)|aR = a∗R(s

∗
S(k

h
S))

)
− kl

S − C(s∗S(k
h
S), k

l
S)

−v(a∗R(s
∗
S(k

h
S)))− C(s∗S(k

h
S), k

h
S) ≥ −v(a∗R(s

∗
S(k

l
S)))− C(s∗S(k

l
S), k

h
S)

By definitions of Ac(kS), a type-kl
S Sender engages in a challenge when he mimics a type-kh

S; that

is, −EL

(
v(z)|aR = a∗R(s

∗
S(k

h
S))

)
− kl

S > −v(a∗R(s
∗
S(k

h
S))). A necessary conditions for the two (IC)

2If a∗R(s
∗

S(k
l
S)) = a∗R(s

∗

S(k
h
S)), then it can be checked that both types should send the same signal, contradicting

the equilibrium is separating.

13



constraints to simulatenously hold is then:

C(s∗S(k
h
S), k

h
S)− C(s∗S(k

l
S), k

h
S) ≤ v(a∗R(s

∗
S(k

l
S)))− v(a∗R(s

∗
S(k

h
S))) < C(s∗S(k

h
S), k

l
S)− C(s∗S(k

l
S), k

l
S)

Given v(a∗R(s
∗
S(k

l
S))) − v(a∗R(s

∗
S(k

h
S))) > 0 under the assumption, we must have s∗S(k

h
S) > s∗S(k

l
S)

and C(s∗S(k
h
S), k

h
S) − C(s∗S(k

l
S), k

h
S) < C(s∗S(k

h
S), k

l
S) − C(s∗S(k

l
S), k

l
S), which is impossible by the

increasing differences assumption.

Second, suppose that a∗R(s
∗
S(k

l
S)) = a and a∗R(s

∗
S(k

h
S)) ∈ Ac(kh

S). The (IC) constraints of respec-

tively a type-kl
S and a type-kh

S senders are, respectively:

−EL

(
v(z)|aR = a

)
− kl

S − C(sS(k
l
S), k

l
S) ≥ −EL

(
v(z)|aR = a∗R(sS(k

h
S))

)
− kl

S − C(sS(k
h
S), k

l
S)

−EL

(
v(z)|aR = a

)
− kh

S − C(sS(k
l
S), k

h
S) ≤ −v(a∗R(sS(k

h
S)))− C(sS(k

h
S), k

h
S)

Using the definition of Ac(kS), the second inequality is equivalent to:

−EL

(
v(z)|aR = a

)
− kh

S − C(sS(k
l
S), k

h
S) ≤ −EL

(
v(z)|aR = a∗R(sS(k

h
S))

)
− kh

S − C(sS(k
h
S), k

h
S)

Both (IC) constraints are satisfied only if

C(sS(k
h
S), k

h
S)− C(sS(k

l
S), k

h
S) ≤ EL

(
v(z)|aR = a

)
−EL

(
v(z)|aR = a∗R(sS(k

h
S))

)

≤ C(sS(k
h
S), k

l
S)− C(sS(k

l
S), k

l
S)

Given EL

(
v(z)|aR = a

)
− EL

(
v(z)|aR = a∗R(sS(k

h
S))

)
≥ 0, we must have s∗S(k

h
S) > s∗S(k

l
S) (if

the signals are equal, the equilibrium cannot be separating) and C(s∗S(k
h
S), k

h
S)− C(s∗S(k

l
S), k

h
S) <

C(s∗S(k
h
S), k

l
S)− C(s∗S(k

l
S), k

l
S), which is impossible by the increasing differences assumption.

Finally, suppose a∗R(s
∗
S(k

′
S)) = a = a∗R(s

∗
S(k

′′
S)). The equilibrium then cannot be separating since

both types send the same signal.

14



Proof of Lemma A.1

If Assumption 1 does not hold, then there exists kf
S > kS such that in any equilibrium, for all

kS ∈ [kS, k
f
S) and aR ∈ [a, a], f ∗

S(aR; kS) = 1. As a result, the Receiver’s best response to s∗S(kS)

for all kS ∈ [kS, k
f
S) is a

∗
R(s

∗
S(kS)) = a leading to a contradiction by Claim 2.3

If Assumption 2 is violated, there exists knf
S < kS such that for all kS ∈ [knf

S , kS], the Receiver’s

best response to s∗S(kS) for all kS ∈ [kS, k
f
S) is a

∗
R(s

∗
S(kS)) = a leading to a contradiction by Claim

2.

Finally, suppose Assumption 3 is violated. First note that the strategy profile aR(s
∗
S(kS)) = a

and aR(s
∗
S(kS)) < a for all kS < kS and kS ∈ KS cannot be an equilibrium strategy profile if As-

sumption 2 holds. Indeed, if the Receiver prefers to generate a conflict after learning the Sender’s

type is kS, she also prefers to generate a conflict for kS < kS since she then must offer a lower

offer aR to avoid a challenge. So if there is a positive ex-ante probability of conflict on the equi-

librium path, it must be that for some kS ∈ int(KS), a
∗
R(s

∗
S(kS)) = a. But this violates Claim 2.

Corollary 1. If Assumptions 1-3 hold, in a separating equilibrium, the Receiver’s best response is

a∗R(s
∗
S(kS)) = maxAc(kS) for all kS ∈ KS.

Proof. Given Assumption 3, if Ac(kS) is not empty, then a∗R(s
∗
S(kS)) ∈ Ac(kS). By Assumption

1 and 2, Ac(kS) is not empty. The Receiver then obviously chooses the highest possible offer in

Ac(kS).

In what follows, I use the shorthand acR(kS) := maxAc(kS) to denote the Receiver’s best-response

after signal s∗S(kS)—a∗R(s
∗
S(kS))—in a separating equilibrium. Recall that I label acR(kS) the com-

promise offer.

Proof of Proposition 1

The proof proceeds in three steps. First, I prove that the Sender never plays a separating strategy

in equilibrium. Second, I establish that there never exists a semi-separating equilibrium. Finally,

3Note that if the conflict is a fixed-outcome lottery, all types kS ∈ [kS , k
f
S) gets the same expected payoff for all

aR ∈ [a, a] and no separation is possible.
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I show that there does not exist any mixed strategy equilibrium.

Step 1. The proof proceeds by contradiction. Suppose first that there exists a separating equilib-

rium and denote a type-kS Sender’s signal s∗S(kS) for all kS ∈ KS and all possible type-space KS.

Consider two types kl
S, k

h
S ∈ K2

S with kl
S < kh

S. The (IC) constraint of a type-kh
S Sender relative to

a type kl
S is:

−v(acR(k
h
S))− C(s∗S(k

h
S), k

h
S) ≥ −v(acR(k

l
S))− C(s∗S(k

l
S), k

h
S) (4)

Since acR(k
h
S) > acR(k

l
S), it is necessary that s∗S(k

′′
S) > s∗S(k

′
S) to satisfy the high type’s (IC)

constraint.

Consider now the (IC) constraint of a type-kl
S relative to a type-kh

S.

−v(acR(k
l
S))− C(s∗S(k

l
S), k

l
S) ≥ −EL

(
v(z)

)
− kl

S − C(s∗S(k
h
S), k

l
S) (5)

Observe that since acR(k
l
S) < acR(k

h
S) (Claim 2 and Corollary 1), when a type-kl

S mimics a type-kh
S

Sender by sending signal s∗S(k
h
S), he starts a conflict after the Receiver offers acR(k

h
S) and obtains

−EL

(
v(z)

)
−kl

S since the conflict is a fixed-outcome lottery. By definition of acR(k
l
S), −v(acR(k

l
S)) =

−EL

(
v(z)

)
− kl

S. Hence, we can rewrite Equation 5 as:

−EL

(
v(z)

)
− kl

S − C(s∗S(k
l
S), k

l
S) ≥ −EL

(
v(z)

)
− kl

S − C(s∗S(k
h
S), k

l
S)

⇔ C(s∗S(k
l
S), k

l
S) ≤ C(s∗S(k

h
S), k

l
S)

It is thus necessary that s∗S(k
h
S) ≤ s∗S(k

l
S) to satisfy the low-type’s (IC) constraint. Both (IC)

constraints cannot be satisfied simultaneously and a separating equilibrium does not exist.

Step 2. Consider the following semi-separating assessment in which there exists a partition of the

type space KS into M ≥ 2 subsets—K1
S, . . . , K

M
S —such that for all kS ∈ Km

S , m ∈ {1, . . . ,M}

sS(kS) = smS . Denote Kc
S := {Km

S : there exists kS ∈ intKm
S s.t. a∗R(s

m
S ) = acR(kS)}. That is, Kc

S

is the set of subsets Km
S such that the Receiver compromises with some of the types in Km

S . Using

the same reasoning as in step 1, it can be checked that if a semi-separating assessment is an equilib-
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rium, the cardinality of Kc
S is 1 (using the types {kS} such that a∗R(s

m
S ) = acR(kS)). Hence, in any

semi-separating equilibrium, M = 2 and a∗R(s
m
S ) = a form ∈ {1, 2}. However, by Assumption 3, for

any m ∈ {1, 2}, r(acR(minKm
S )) ≥ EL

(
r(z)|aR = a

)
− kR = EL

(
r(z)|aR = acR(maxKm

S )
)
− kR (us-

ing the fixed-outcome property of the lottery L). Hence, a∗R(s
m
S ) < acR(maxKm

S ) for all m ∈ {1, 2}

which implies cardKc
S > 1, a contradiction.

Step 3.For a mixed strategy equilibrium to exist, the Sender must be indifferent between two sig-

nals. Hence, there must exist a partition of the type space with cardinality greater than 1. But

we have seen that this is impossible by step 2.

Combining the three steps, the unique equilibrium is a pooling equilibrium.4

In what follows, I consider offer-dependent lottery. Recall that KS is not discrete if there exist

ka
S < kb

S such that [ka
S, k

b
S] ⊂ KS. I first state a preliminary lemma which states some properties

of the Sender’s signaling strategy.

Lemma A.2. Suppose KS is not discrete. For all offer-dependent lotteries, in a separating

equilibrium, the Sender’s signaling strategy s∗S(kS) is continuous and strictly increasing for all

kS ∈ [ka
S, k

b
S].

Proof. Consider two types kl
S, k

h
S ∈ [ka

S, k
b
S]

2 with kl
S < kh

S. The (IC) constraint of a type-kh
S

relative to a type-kl
S Sender is Equation 4. The (IC) constraint of a type-kl

S relative to a type kh
S.

−v(acR(k
l
S))− C(s∗S(k

l
S), k

l
S) ≥ −EL

(
v(z)|aR = acR(k

h
S)
)
− kl

S − C(s∗S(k
h
S), k

l
S) (6)

by a similar reasoning as in the proof of Proposition 1 (note, however, that the outcome of the

lottery now depends on the Receiver’s offer aR).

Observe that −v(acR(k
l
S)) > −v(acR(k

h
S)) (Corollary 1) so to satisfy Equation 4, it is neces-

sary that s∗S(k
l
S) > s∗S(k

h
S). Further, by definition of acR(k

l
S), lim

kl
S
↑kh

S

−E
(
v(z)|aR = acR(k

h
S)
)
− kl

S =

−v(acR(k
h
S). Using Equation 4 and Equation 6, it can then be checked that if sS(kS) is not contin-

uous, there exists a profitable deviation for types close enough to the discontinuity.

4Notice that given the Sender’s signaling strategy, the Receiver may mix between different actions. However,
this does not affect the proposition.
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Proof of Proposition 2

The proof proceeds in three steps. I first prove that Condition 1 is necessary. Second, I show that

Condition 2 is necessary. I finally prove sufficiency.

Step 1. The proof proceeds by contradiction. Suppose KS is not discrete and a separating equilib-

rium exists with a type-kS Sender’s signal denoted s∗S(kS). From Lemma A.2, s∗S(kS) is continuous

and strictly increasing, so it is differentiable almost everywhere for all kS ∈ [ka
S, k

b
S].

Take kmid
S ∈ (ka

S, k
b
S) such that s∗S(·) is differentiable at kmid

S . Further define: kh
S = kmid

S + δ and

kl
S = kmid

S − δ with δ > 0. A necessary condition for existence of a separating equilibrium is that

a type-kmid
S Sender does not want to mimic a type-kh

S and a type-kl
S. The (IC) constraints of a

type-kmid
S Sender must satisfy using Equation 4 and Equation 6:

−v(acR(k
mid
S ))− C(s∗S(k

mid
S ), kmid

S ) ≥ −v(acR(k
l
S))− C(s∗S(k

l
S), k

mid
S )

−v(acR(k
mid
S ))− C(s∗S(k

mid
S ), kmid

S ) ≥ −EL

(
v(z)|aR = acR(k

h
S)
)
− kmid

S − C(s∗S(k
h
S), k

mid
S )

Using −v(acR(kS)) = −EL

(
v(z)|aR = acR(kS)

)
− kS, we can rewrite the (IC) constraints as:

−EL

(
v(z)|aR = acR(k

mid
S )

)
− kmid

S − C(s∗S(k
mid
S ), kmid

S ) ≥ −EL

(
v(z)|aR = acR(k

l
S)
)
− kl

S − C(s∗S(k
l
S), k

mid
S )

−EL

(
v(z)|aR = acR(k

mid
S )

)
− kmid

S − C(s∗S(k
mid
S ), kmid

S ) ≥ −EL

(
v(z)|aR = acR(k

h
S)
)
− kmid

S − C(s∗S(k
h
S), k

mid
S )

Rearranging and using the definitions of kl
S and kh

S, I obtain:

C(s∗S(k
mid
S − δ), kmid

S )− C(s∗S(k
mid
S ), kmid

S ) ≥ EL

(
v(z)|aR = acR(k

mid
S )

)
− EL

(
v(z)|aR = acR(k

mid
S − δ)

)
+ δ

(7)

C(s∗S(k
m
S ), k

mid
S )− C(s∗S(k

mid
S + δ), kmid

S ) ≤ EL

(
v(z)|aR = acR(k

mid
S + δ)

)
− EL

(
v(z)|aR = acR(k

mid
S )

)

(8)

Recall that EL

(
v(z)|aR

)
=

N∑
j=1

pjv(zj(aR)) and is differentiable in aR since v(·) is C1. This also

implies that acR(kS) is differentiable in kS for kS ∈ [ka
S, kS

b]. Further, by definition, s∗S(·) is
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differentiable at kmid
S so lim

kS↑k
mid
S

∂s∗S(kS)

∂kS
= lim

kS↓k
mid
S

∂s∗S(kS)

∂kS
:=

∂s∗S(k
mid
S )

∂kS
. Dividing both Equation 7 and

Equation 8 by δ, taking the limits as δ goes to 0, and using the definition of derivatives, I obtain:

−
∂s∗S(k

mid
S )

∂kS

∂C(s∗S(k
mid
S ), kS)

∂sS
≥

∂EL

(
v(z)|aR = acR(k

mid
S )

)

∂aR

∂acR(k
mid
S )

∂kS
+ 1

−
∂s∗S(k

mid
S )

∂kS

∂C(s∗S(k
mid
S ), kS)

∂sS
≤

∂EL

(
v(z)|aR = acR(k

mid
S )

)

∂aR

∂acR(k
mid
S )

∂kS

Both inequalities clearly cannot be satisfied simultaneously, and I have thus reached a contradic-

tion.

Step 2. Suppose that KS := {k1
S, . . . , k

K
S }. Using Equation 6 with kl

S = kj
S and kh

S = kj+1
S yields

the following (IC) constraint of a type-kj
S relative to a type-kj+1

S for all j ∈ {1, . . . , K − 1}:

EL

(
v(z)|aR = acR(k

j+1
S )

)
− v(acR(k

j
S)) ≥ C(s∗S(k

j
S), k

j
S)− C(s∗S(k

j+1
S ), kj

S)− kj
S

⇔ v(acR(k
j+1
S ))− v(acR(k

j
S)) ≥ C(s∗S(k

j
S), k

j
S)− C(s∗S(k

j+1
S ), kj

S) + kj+1
S − kj

S (9)

The second line uses EL

(
v(z)|aR = acR(k

j+1
S )

)
= v(acR(k

j+1
S ))− kj+1

S .

In turn, Equation 4 yields the following (IC) constraint of a type-kj+1
S relative to a type-kj

S:

C(s∗S(k
j
S), k

j+1
S )− C(s∗S(k

j+1
S ), kj+1

S ) ≥ v(acR(k
j+1
S ))− v(acR(k

j
S)) (10)

The only choice variable in Equation 9 and Equation 10 is the signaling strategy: s∗
S
= (s∗S(k

1
S), . . . , s

∗
S(k

K
S )).

Hence, it is necessary that there exist signals s∗S(k
j
S) for all j ∈ {1, . . . , K} satisfying Equation 3

as claimed.

Step 3. I now show sufficiency. First, I show that if the local (IC) constraint (i.e., type-kj
S and

type-kj+1
S ’s incentives to deviate) holds for all j ∈ {1, . . . , K − 1}, then all other (IC) constraints

are satisfied.

First, I show that if Equation 9 holds for all j ∈ {1, . . . , K − 1} then

v(acR(k
j+m
S ))− v(acR(k

j
S)) ≥ C(s∗S(k

j
S), k

j
S)− C(s∗S(k

j+m
S ), kj

S) + kj+m
S − kj

S,
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for all m ∈ {1, . . . , K − j}. To see this, suppose j < K − 1 and m = 2:

v(acR(k
j+2
S ))− kj+2

S −
(
v(acR(k

j
S))− kj

S

)
=
(
v(acR(k

j+2
S ))− kj+2

S −
(
v(acR(k

j+1
S ))− kj+1

S

))

+
(
v(acR(k

j+1
S ))− kj+1

S −
(
v(acR(k

j
S))− kj

S

))

≥
(
C(s∗S(k

j+1
S ), kj+1

S )− C(s∗S(k
j+2
S ), kj+1

S )
)

+
(
C(s∗S(k

j
S), k

j
S)− C(s∗S(k

j+1
S ), kj

S)
)

=C(s∗S(k
j
S), k

j
S)− C(s∗S(k

j+2
S ), kj

S)

+
(
C(s∗S(k

j+1
S ), kj+1

S )− C(s∗S(k
j+2
S ), kj+1

S )
)

+
(
C(s∗S(k

j+2
S ), kj

S)− C(s∗S(k
j+1
S ), kj

S)
)

The inequality comes from the assumption that Equation 9 holds for all j. By a similar reasoning

as in the proof of Lemma A.2, in a separating equilibrium s∗S(k
j
S) > s∗S(k

j+1
S ) for all j. Using the

assumption that C(·, ·) exhibits strict increasing differences, we thus have:

(
C(s∗S(k

j+1
S ), kj+1

S )− C(s∗S(k
j+2
S ), kj+1

S )
)
−

(
C(s∗S(k

j+1
S ), kj

S)− C(s∗S(k
j+2
S ), kj

S)
)
> 0

This implies that

v(acR(k
j+2
S ))− kj+2

S −
(
v(acR(k

j
S))− kj

S

)
>C(s∗S(k

j
S), k

j
S)− C(s∗S(k

j+2
S ), kj

S).

I can then use the same reasoning for m > 2 to prove the claim.

Finally, I show that if Equation 10 holds for all j ∈ {1, . . . , K − 1} then

C(s∗S(k
j
S), k

j+m
S )− C(s∗S(k

j+m
S ), kj+m

S ) ≥ v(acR(k
j+m
S ))− v(acR(k

j
S)),
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for all m ∈ {1, . . . , K − j}. To see this, suppose again j < K − 1 and m = 2:

v(acR(k
j+2
S ))− v(acR(k

j
S)) =

(
v(acR(k

j+2
S ))− v(acR(k

j+1
S ))

)

+
(
v(acR(k

j+1
S ))− v(acR(k

j
S))

)

≤
(
C(s∗S(k

j+1
S ), kj+2

S )− C(s∗S(k
j+2
S ), kj+2

S )
)

+
(
C(s∗S(k

j
S), k

j+1
S )− C(s∗S(k

j+1
S ), kj+1

S )
)

=C(s∗S(k
j
S), k

j+2
S )− C(s∗S(k

j+2
S ), kj+2

S )

+
(
C(s∗S(k

j+1
S ), kj+2

S )− C(s∗S(k
j
S), k

j+2
S )

)

+
(
C(s∗S(k

j
S), k

j+1
S )− C(s∗S(k

j+1
S ), kj+1

S )
)

Using again the strict increasing difference properties of C(·, ·), I obtain:

(
C(s∗S(k

j
S), k

j+1
S )− C(s∗S(k

j+1
S ), kj+1

S )
)
−

(
C(s∗S(k

j
S), k

j+2
S )− C(s∗S(k

j+1
S ), kj+2

S )
)
< 0.

Therefore,

v(acR(k
j+2
S ))− v(acR(k

j
S)) < C(s∗S(k

j
S), k

j+2
S )− C(s∗S(k

j+2
S ), kj+2

S )

I can then use the same reasoning for m > 2 to prove the claim.

Second, I show that a separating equilibrium exists if there exists a vector of signals such that

Equation 3 holds. Consider the following assessment:

• For all j ∈ {1, . . . , K}, a type-kj
S Sender sends signal sS(k

j
S) with sS(k

K
S ) = sS(kS) = 0;

• sS = {sS(k
1
S), . . . , sS(k

K
S )} is such that Equation 3 holds;

• Upon observing sS(k
j
S) for all j, the Receiver’s belief is that the Sender’s type is kj

S with

probability 1 and her strategy is aR(sS(k
j
S)) = acR(k

j
S);

Upon observing ŝS /∈ sS, the Receiver’s out-of-equilibrium is that the Sender’s type is kS

with probability 1 and her strategy is then aR(ŝS) = acR(kS);

• For all j, a type-kj
S Sender chooses fS = 0 if and only if aR ≤ acR(k

j
S) and fS = 1 otherwise.
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It can be checked that (i) the Receiver’s beliefs satisfy Bayes’ Rule on the equilibrium path,

(ii) the Receiver’s strategy is a best response given her (in or out-of-equilibrium) belief, (iii) the

Sender’s (IC) constraints hold for all types (in particular, the Receiver’s strategy implies that for

all j ∈ {1, . . . , K}, any signal ŝS /∈ sS is not a profitable deviation if Equation 3 holds), and (iv)

the Sender’s conflict strategy is a best response to any Receiver’s offer aR.
5 Hence, the assessment

described above is a PBE.

Details for Example 1

Under the parametrization, the compromise offer for a type-kj
S satisfies: −v(acR(k

j
S)) = −pv(a) −

(1− p)v(acR(k
j
S))− kj

S, or equivalently v(acR(κ
j
S)) = v(a)+

k
j
S

p
. Plugging the value of v(acR(k

j
S)) into

Condition 3, I obtain that a necessary and sufficient condition for the existence of a separating

equilibrium is for all j ∈ {1, . . . , K − 1}:

kj
S(s

∗
S(k

j
S)− s∗S(k

j+1
S )) + kj+1

S − kj
S ≤

kj+1
S − kj

S

p
≤ kj+1

S (s∗S(k
j
S)− s∗S(k

j+1
S ))

This is equivalent to:

kj+1
S − kj

S

p

1

kj+1
S

≤ s∗S(k
j
S)− s∗S(k

j+1
S ) ≤

kj+1
S − kj

S

p

1− p

kj
S

Hence, we can always find signaling values s∗
S
such that a separating equilibrium exists if and only

if for all j ∈ {1, . . . , K − 1}:

1

kj+1
S

≤
1− p

kj
S

⇔ kj
S ≤ (1− p)kj+1

S

Proof of Proposition 3

I only prove necessity. Sufficiency follows from a similar argument as in the proof of Proposition

2.

Condition 1. I prove the result for all semi-separating equilibria. Under the assumption on

5Observe that the signaling strategy satisfies s∗S(kS) = 0 in any separating equilibrium.
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the Receiver’s utility function, after smS , the Receiver’s best response must satisfy assR (s
m
S ) ∈

[acR(k
m
S ), a

c
R(maxKm

S )). Denote kss
S (m) such that acR(k

ss
S (m)) = assR (sS(m)) (such kss

S (m) exists,

otherwise the Receiver can increase her offer without increasing the probability of conflict by a

similar reasoning as in Claim 1, a profitable deviation). Suppose that there exists a semi-separating

equilibrium in which there exists m ∈ {1, . . . ,M −1} such that maxKm
S > minKm+1

S = km+1
S . For

simplicity, assume that Km+1
S is a convex set and denote km

S = maxKm
S . We need to consider two

cases: (a) kss
S (m) < minKm+1

S and (b) kss
S (m) > minKm+1

S .

Case (a): For a semi-separating equilibrium to exist, it must be that kss
S (m+1) prefers signal sm+1

S

to signal smS , or equivalently: v(a
ss
R (m+1)))−v(assR (m)) ≤ C(smS , k

ss
S (m+1))−C(sm+1

S kss
S (m+1)).

In turn, a type-km
S must prefer smS to sm+1

S . Notice that a Sender with cost km
S does not start

a conflict when he sends signal smS or signal sm+1
S , hence his incentive compatibility constraint

is: v(assR (m + 1)) − v(assR (m)) ≥ C(smS , k
m
S ) − C(sm+1

S , km
S ). The two (IC) constraints imply

C(smS , k
ss
S (m + 1)) − C(sm+1

S , kss
S (m + 1)) ≥ C(smS , k

m
S ) − C(sm+1

S , km
S ), but this contradicts the

strict increasing differences assumption.

Case (b): Consider now types km
S and km+1

S . Their (IC) constraints are respectively:

−EL

(
v(z)|assR (m)

)
− km

S − C(smS , k
m
S ) ≥ −EL

(
v(z)|assR (m+ 1)

)
− km

S − C(sm+1
S , km

S )

−EL

(
v(z)|assR (m+ 1)

)
− km+1

S − C(sm+1
S , km+1

S ) ≥ −EL

(
v(z)|assR (m)

)
− km+1

S − C(smS , k
m+1
S )

as both start a conflict (or km+1
S is indifferent) after signals smS and signals sm+1

S . The two (IC)

imply that (i) smS < sm+1
S (since EL

(
v(z)|assR (m)

)
> EL

(
v(z)|assR (m + 1)

)
) and (ii) C(sm+1

S , km
S ) −

C(smS , k
m
S ) ≥ C(sm+1

S , km+1
S ) − C(smS , k

m+1
S ). But this last condition violates the strict increasing

differences assumption, a contradiction.

Condition 2. Observe that by the assumption of strict increasing difference, if v(acR(k
m+1
S )) −

v(acR(k
m
S )) ≤ C(smS , k

m+1
S ) − C(sm+1

S , km+1
S ), then for all kS ∈ Km+1

S , v(acR(k
m+1
S )) − v(acR(k

m
S )) ≤

C(smS , kS)− C(sm+1
S ), kS).
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Condition 3. By the now usual reasoning, the upward (IC) constraint of a type kS ∈ Km
S is for all

m ∈ {1, . . . ,M − 1} is (see the proof of Proposition 2):

−v(acR(k
m
S ))− C(smS , kS) ≥ −EL

(
v(z)|acR(k

m+1
S ))

)
− kS − C(sm+1

S , kS)

⇔ C(smS , kS)− C(sm+1
S , kS) + km+1

S − kS ≤ v(acR(k
m+1
S ))− v(acR(k

m
S ))

The second line uses −EL

(
v(z)|acR(k

m+1
S ))

)
= −v(acR(k

m+1
S )) + km+1

S . To see that it is not

enough that the (IC) constraint is satisfied by the extrema of set Km
S , suppose that KS is

continuous L =< {0, aR}, {p, 1 − p} > and C(s, kS) = s × g(kS) with g′(·) > 0. It can be

checked then that smS − sm+1
S =

km+1

S
−kmS
p

1
g(km+1

S
)
. The (IC) constraint of a type-kS ∈ Km

S is then:

km+1

S
−kmS
p

g(kS)

g(km+1

S
)
− kS ≤

(1−p)km+1

S
−kmS

p
. Denote K̂m

S = [km
S , k

m+1
S ] (the smallest closed interval con-

taining Km
S using Condition 1) and kmax

S (m) = argmax
kS∈K̂

m
S

km+1

S
−kmS
p

g(kS)

g(km+1

S
)
− kS. Depending on

g(·), kmax
S (m) can take any interior or extreme values in K̂m

S .

Condition 4. If the condition does not hold, then it must be that there exists m such that if

kS = km
S , the Sender’s best response is to start a conflict after signal smS and offer assR (s

m
S ). Hence,

conflict occurs on the equilibrium path.

B Uncertainty about winning probabilities

In this variation of the baseline model, I suppose that the Sender’s cost of conflict is common

knowledge and denoted kS. In turn, I suppose that the Sender has better information about the

probability that he wins the conflict. Formally, there exist a set Λ ⊆ [λ, λ], λ, λ ∈ Λ2 such that

the probability of outcome zj occurs is pj(λ), j ∈ {1, . . . , N} for all λ ∈ Λ. The lottery now takes

the form of L(aR;λ) =< z(aR),p(λ) >. Assume that λ’s are ordered such that for all λ, λ′ ∈ Λ

and λ < λ′, EL(v(z)|aR, λ) < EL(v(z)|aR, λ
′) for all aR. Further, the signaling cost now satisfies

C(sS, λ) with the strict increasing differences still holding on sS and λ. The amended timing

satisfies

0. Nature draws λ according to the distribution G(·);
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1. Sender privately observes λ and sends signal sS ≥ 0;

2. Receiver observes sS and chooses aR ∈ [a, a];

3. Sender chooses fS ∈ {0, 1};

4. Nature determines outcome, game ends, and payoffs are realized.

Denote acR(λ) the compromise offer as a function of λ. That is, in the amended setting, acR(λ)

satisfies −v(acR(λ)) = −EL

(
v(z)|acR(λ), λ

)
− kS. Throughout this appendix I assume without loss

of generality that acR(λ) is unique. Further, as in the main text, I impose acR(λ) ≥ a and acR(λ) ≤ a

so compromise is always possible and needed. Finally, as in the main text (Assumption 3), I also

assume that the Receiver is always willing to compromise: min
λ∈Λ

r(acR(λ)) −
(
EL

(
r(z)|acR(λ), λ

)
−

kR

)
≥ 0. The next result extends Proposition 1 to this setting.

Proposition B.1. For all fixed-outcome lotteries and all type-space Λ, in any equilibrium, the

Sender plays a pooling strategy: s∗S(λ) = spS for all λ ∈ Λ.

Proof. Suppose there exists an equilibrium in which there exists λl, λh ∈ Λ2 with λl < λh

such that s∗S(λ
l) 6= s∗S(λ

h). Assume without loss of generality that a∗R(s
∗
S(λ

l)) = acR(λ
l) and

a∗R(s
∗
S(λ

h)) = acR(λ
h) (such types must exist since the Receiver, otherwise, can increase her offer

without increasing the probability of conflict, a profitable deviation). A type-λl is willing to play

signaling strategy s∗S(λ
l) only if:

−v(acR(λ
l))− C(s∗S(λ

l), λl) ≥ −EL

(
v(z)|λl

)
− kS − C(s∗S(λ

h), λl)

⇔ −EL

(
v(z)|λl

)
− kS − C(s∗S(λ

l), λl) ≥ −EL

(
v(z)|λl

)
− kS − C(s∗S(λ

h), λl)

⇔ C(s∗S(λ
h), λl)− C(s∗S(λ

l), λl) ≥ 0

The first line comes from the fact that a type-λl starts a conflict when the Receiver proposes acR(λ
h)

after signal s∗S(λ
h). The second line comes from the definition of acR(λ

l).

In turn, a type-λh is willing to play signaling strategy s∗S(λ
h) only if:

−v(acR(λ
h))− C(s∗S(λ

h), λh) ≥ −v(acR(λ
l))− C(s∗S(λ

l), λh)

⇔ v(acR(λ
l))− v(acR(λ

h)) ≥ C(s∗S(λ
h), λl)− C(s∗S(λ

l), λh)
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Since acR(λ
l) < acR(λ

h), the two inequalities cannot be satisfied simultaneously, a contradiction.

C Different bargaining protocols

In this section, I assume as in the baseline model that the Receiver is uncertain about the cost

of conflict kS ∈ KS. Assumptions 1-4 of the baseline model hold in this Appendix. I further

impose that if the Sender were to make an offer, he would need to compromise as well: r(a) <

EL(r(z)|aR = a) − kR. I move away from tradition signaling games and consider two different

bargaining protocols in turn: 1) the Sender has a positive probability to make a take-it-or-leave-it

offer and 2) the offer is the result of some form of bargaining between the Receiver and Sender.

C.1 Different recognition probabilities

In this subsection, I assume that at the bargaining stage (stage 3 in the timing), there is a proba-

bility β ∈ (0, 1) (resp. 1−β) that the Receiver (resp. Sender) makes a take-it-or-leave-it offer (i.e.,

the bargaining protocol is a form of Rubinstein model with interior probability of recognition and

immediate breakdown into conflict upon offer rejection). If the offer is rejected, conflict ensues.

The baseline model corresponds to the case β = 1.

To account for the model amendment, I denote aB(J) ∈ [a, a] the offer as a function of the

player recognized to make an offer J ∈ {R, S}. After the offer of J ∈ {S,R}, the other player −J

decides whether to start a conflict: f−J ∈ {0, 1}. I denote acB(R; kS) the compromise offer when

R is recognized and a Sender’s cost is kS (i.e., acB(R; kS) = acR(kS)). The compromise offer when

S is recognized is: acB(S; kR) satisfying r(acB(S; kR)) = EL(r(z)|aR = acB(S; kR)) − kR (assuming

existence and uniqueness). Throughout, I impose the equivalent of Assumption 3 for the Sender:

−v(acB(S; kR)) > −EL(v(z)|a) − kS. The rest of the model remains the same and the amended

timing is:

0. Nature draws kS according to the distribution F (·);

1. Sender privately observes kS and sends signal sS ≥ 0;

2. Receiver observes sS. Nature recognizes player J ∈ {R, S} to make offer aB(J) ∈ [a, a];
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3. Player −J chooses f−J ∈ {0, 1};

4. Nature determines outcome, game ends, and payoffs are realized.

The next result shows that Proposition 1 extends to this setting.

Proposition C.1. For all fixed-outcome lotteries and all type-space KS, in any equilibrium, the

Sender plays a pooling strategy: s∗S(kS) = spS for all kS ∈ KS.

Proof. Denote aB(R; sS) the offer strategy of the Receiver if recognized as a function of the signal

sS. In turn, denote aB(S; kS) the strategy of the Sender if recognized as a function of his type.

Under the assumptions, aB(S; kS) = acB(S; kR).

Suppose there exists an equilibrium in which there exist kl
S, k

h
S ∈ K2

S with kl
S < kh

S such that

s∗S(k
l
S) 6= s∗S(k

h
S). Assume without loss of generality that a∗B(R; s∗S(k

l
S)) = acB(R; kl

S) and a∗B(R; s∗S(k
h
S)) =

acB(R; kh
S) (such types must exist since the Receiver, otherwise, can increase her offer without in-

creasing the probability of conflict, a profitable deviation). A type-kl
S is willing to play signaling

strategy s∗S(k
l
S) only if:

−
(
βv(acB(R; kl

S))+(1− β)v(acB(S; kR))
)
− C(s∗S(k

l
S), k

l
S)

≥ −
(
β
(
EL

(
v(z)

)
+ kl

S

)
+ (1− β)v(acB(S; kR))

)
− C(s∗S(k

h
S), k

l
S)

⇔ −β
(
EL

(
v(z)

)
+ kl

S

)
− C(s∗S(k

l
S), k

l
S) ≥ β

(
EL

(
v(z)

)
+ kl

S

)
− C(s∗S(k

h
S), k

l
S)

⇔ C(s∗S(k
h
S), k

l
S)− C(s∗S(k

l
S), k

l
S) ≥ 0

The first line comes from the fact that a type-kl
S starts a conflict when the Receiver proposes

acB(R; kh
S) after signal s

∗
S(k

h
S). The second line comes from acB(R; kl

S) = acR(k
l
S).

In turn, a type-kh
S is willing to play signaling strategy s∗S(k

h
S) only if:

−
(
βv(acB(R; kh

S))+(1− β)v(acB(S; kR))
)
− C(s∗S(k

h
S), k

h
S)

≥ −
(
βv(acB(R; kl

S)) + (1− β)v(acB(S; kR))
)
− C(s∗S(k

l
S), k

h
S)

⇔ β
(
v(acB(R; kl

S))− v(acB(R; kh
S))

)
≥ C(s∗S(k

h
S), k

h
S)− C(s∗S(k

l
S), k

h
S)

By the usual reasoning, the two inequalities cannot be satisfied simultaneously, a contradiction.
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C.2 Bargained compromise offer

In this subsection, I exogenously assume that at the bargaining stage, the offer is some action

strictly between R’s preferred offer (conditional on his information) and S’s preferred offer. I leave

the protocol which leads to this offer unmodeled.

Using the notation aB(J ; ·), denote amax
B (R; sS) = arg max

a∈[a,a]
E(UR(aR, fS)|sS) the Receiver’s

optimal offer following signal sS (with expectations over types and conflict outcomes in case

of conflict). For simplicity and without loss of generality, I assume that amax
B (R; sS) is unique.

As in the previous section, we assume that the Sender’s optimal offer for all costs kS ∈ KS is

amax
B (S; kS) = acB(S; kR) the compromise offer. More formally, at stage 2, the offer on the table is:

aB(sS(kS)) = βamax
B (R; sS(kS)) + (1− β)acB(S; kR) for β ∈ (0, 1). The baseline model corresponds

to β = 1. Using the assumptions, if sS(kS) fully reveals the Sender’s type, I denote the bargained

offer asB(kS) := βacB(R; kS) + (1− β)acB(S; kR). The amended timing is:

0. Nature draws kS according to the distribution F (·);

1. Sender privately observes kS and sends signal sS ≥ 0;

2. Receiver observes sS. Nature offers aB(sS);

3. Sender and Receiver jointly choose fS, fR ∈ {0, 1}2;

4. Nature determines outcome, game ends, and payoffs are realized.

I now show that this form of bargaining protocol renders separation possible. The first result of

this subsection is that as long as the types are not too much apart and/or the bargained offer

does not vary much with the Sender’s cost of conflict (formally, asB(kS) ≤ acB(R; kS)), a separating

equilibrium always exists. The sufficient condition for existence, however, is relatively unsurprising

and quite stringent. It is relatively unsurprising because when the Sender has all bargaining power

(β → 0), there is never any conflict in equilibrium, and the condition stated in the Proposition

has the same spirit. It is quite stringent because it does not reduce the odds of conflict. Indeed,

as Corollary C.1 establishes, when the sufficient condition holds, there is no conflict on path in a

pooling equilibrium.

Proposition C.2. For all fixed-outcome lotteries and all type-spaces KS, a separating equilibrium

always exists if asB(kS) ≤ acB(R; kS).
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Proof. First, observe that the Receiver always chooses no conflict so we can focus on the Sender.

Suppose now the condition holds. This implies that for any two costs of conflict kl
S and kh

S > kl
S in

KS, the bargained offer satisfies: asB(k
h
S) ≤ acB(R; kl

S). Hence a type-kl
S Sender’s best response in

stage 3 when he imitates a type-kh
S is fS(a

s
B(k

h
S); k

l
S) = 0. In this case, a type-kl

S’s (IC) constraint

is:

−v(asB(k
l
S))− C(sS(k

l
S), k

l
S) ≥ −v(asB(k

h
S))− C(sS(k

h
S), k

l
S)

In turn, by the usual reasoning, a type-kh
S’s (IC) constraint is:

−v(asB(k
h
S))− C(sS(k

h
S), k

h
S) ≥ −v(asB(k

l
S))− C(sS(k

l
S), k

h
S)

Using the increasing differences assumption, it can be checked that we can always find a signaling

function sS(kS) which satisfies both (IC) constraints. Using a similar reasoning as Proposition 2,

I can then construct a separating equilibrium.

Corollary C.1. If asB(kS) ≤ acB(R; kS), for all fixed-outcome lotteries and all type-spaces KS, in

a pooling equilibrium, there is no conflict on path.

Proof. Consider a pooling equilibrium in which s∗S(kS) = spS. Observe that the Receiver’s optimal

offer amax
B (R; spS) = arg max

a∈[a,a]
E(UR(aR, fS)|s

p
S) satisfies amax

B (R; spS) ∈ [acB(kS), a
c
B(kS)) under As-

sumption 3. This implies that in a pooling equilibrium, the bargained offer satisfies for all kS ∈ KS,

aB(s
p
S) < asB(kS). Under the condition, this implies that there is no conflict on path. It remains

to show that a pooling equilibrium exists. To do so, I can construct a pooling equilibrium by

choosing appropriate out-of-equilibrium belief as in the proof of Proposition 2.

The next proposition considers whether a separating equilibrium can exist if asB(kS) > acB(R; kS).

Before stating the result, it is helpful to introduce some additional pieces of notation. Denote

kb
S(kS) the unique solution to asB(kS) = acB(R; kS) and Kb

S = [kS, k
b
S(kS)]. Notice that for all

kS < kb
S(kS), a type-kS Sender starts a conflict if he imitates the type-kS. In turn, for all kl

S ∈ Kb
S

denote kt
S(k

l
S) the unique solution to asB(kS) = acB(R; kl

S) and Kt
S(k

l
S) = [kt

S(k
l
S), kS]. Finally, natu-

rally extending kb
S(·) denote for all k

h
S ∈ Kt

S(kS) k
b
S(k

h
S) the unique solution to asB(k

h
S) = acB(R; kS).

I then obtain:
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Proposition C.3. Suppose asB(kS) > acB(R; kS). For all fixed-outcome lotteries and all type-spaces

KS, a separating equilibrium exists if and only if there exists a strictly decreasing signaling function

s∗S(kS) satisfying for all kl
S ∈ Kb

S ∩ KS and all kh
S ∈ Kt

S(kS) ∩ KS

C(s∗S(k
l
S), k

l
S)− C(s∗S(k

h
S), k

l
S) + kb

S(k
h
S)− kl

S ≤ v(asB(k
h
S))− v(asB(k

l
S))

≤ C(s∗S(k
l
S), k

h
S)− C(s∗S(k

h
S), k

h
S) (11)

Before proving the proposition, notice that Equation 11 takes a similar form as Equation 3

(or Condition 3 of Proposition 3). The presence of a bargained offer generates a benefit from

differentiation, which is absent when the Receiver makes a take-it-or-leave-it offer. However, when

a relatively low-cost Sender (kl
S ∈ Kb

S ∩KS) is willing to start a conflict after imitating a relatively

high-cost Sender (kh
S ∈ Kt

S(kS) ∩KS), this benefit is limited and is equal to v(asB(k
h
S))− kb

S(k
h
S)−

(
v(asB(k

l
S)) − kl

S

)
. In turn, the benefit from imitation for a relatively high-cost Sender is always

large and equal to v(asB(k
h
S)) − v(asB(k

l
S)) > v(asB(k

h
S)) − kb

S(k
h
S) −

(
v(asB(k

l
S)) − kl

S

)
. Hence, the

existence of a separating equilibrium is not always guaranteed when the shadow of conflict looms

large (i.e., asB(kS) > acB(R; kS)).

Proof. I start with necessity. Take two types kl
S ∈ Kb

S ∩ KS and kh
S ∈ Kt

S(kS) ∩ KS (the two sets

are not empty since kS, kS ∈ K2
S). A type-kl

S’s (IC) constraint is then:

−v(asB(k
l
S))− C(sS(k

l
S), k

l
S) ≥ −EL(v(z))− kl

S − C(sS(k
h
S), k

l
S)

⇔ −v(asB(k
l
S))− C(sS(k

l
S), k

l
S) ≥ −v(asB(k

h
S)) + kb

S(k
h
S)− kl

S − C(sS(k
h
S), k

l
S)

⇔ v(asB(k
h
S))− v(asB(k

l
S)) ≥ C(s∗S(k

l
S), k

l
S)− C(s∗S(k

h
S), k

l
S) + kb

S(k
h
S)− kl

S

The first line follows from a type-kl
S Sender starting a conflict after pretending to be a type kh

S. The

second line comes from the definition of kb
S(k

h
S): v(a

s
B(k

h
S)) = v(acB(R; kb

S(k
h
S)) = EL(v(z))+kb

S(k
h
S).

By the usual reasoning, a type-kh
S (IC) constraint is:

v(asB(k
h
S))− v(asB(k

l
S)) ≤ C(s∗S(k

l
S), k

h
S)− C(s∗S(k

h
S), k

h
S)
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For sufficiency, observe that if kl
S /∈ Kb

S ∩ KS or kh
S /∈ Kt

S(kS) ∩ KS, the (IC) constraints can be

satisfied by increasing differences following a similar reasoning as in the proof of Proposition C.2.

I can then use a similar argument as in the proof of Proposition 2 to finish the proof.
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