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Abstract

The increasing availability of high frequency data has initiated many new research
areas in statistics. Functional data analysis (FDA) is one such innovative approach
towards modelling time series data. In FDA, densely observed data are transformed
into curves and then each (random) curve is considered as one data object. A natural,
but still relatively unexplored, context for FDA methods is related to financial data,
where high-frequency trading currently takes a significant proportion of trading volumes.
Recently, articles on functional versions of the famous ARCH and GARCH models
have appeared. Due to their technical complexity, existing estimators of the underlying
functional parameters are moment based—an approach which is known to be relatively
inefficient in this context. In this paper, we promote an alternative quasi-likelihood
approach, for which we derive consistency and asymptotic normality results. We support
the relevance of our approach by simulations and illustrate its use by forecasting realised
volatility of the S&P100 Index.
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1 Introduction

Financial time series modelling is of great importance in monitoring the evolution of prices,
stock indexes or exchange rates and to predict future developments, such as the risk associated
to certain asset allocations. Risk is very much related to the volatility of the financial process
and, hence, models for volatility are of special importance. A milestone in volatility modelling
has been set by Engle (1982), with the introduction of the now-famous and widely-used
ARCH model. Many extensions followed this groundbreaking work, most notably the GARCH
model by Bollerslev (1986) which allows a more parsimonious fit in comparison to ARCH
processes. The success of these models is founded on their mathematical feasibility and on
their ability to feature many of the stylised facts that researchers have been observing in
empirical investigations of financial data. In particular, the models are able to capture a
non-constant conditional variance of time series. For details on GARCH models, see for
example, Francq and Zakoian (2011) and the references therein.

In practical applications, GARCH models and their variations are adequate for daily or
weekly return data. But, due to the availability of high-frequency financial time series and
their importance for the financial industry, it is desirable to provide corresponding models
and adequate statistical methodology for data that are given at a higher resolution. In this
paper, we adopt the theory of functional time series to approach this challenge. A functional
time series is a sequence of observations (Xt : 1 ≤ t ≤ n), where each random object Xt is a
curve (Xt(u) : u ∈ [0, 1]). The interval [0, 1] is chosen for convenience and does not impose
any restriction on generality. In our context it represents intraday time. For example, Xt(u)
might denote the price of an asset on day t at intraday time u. If we then consider the
log-returns yt(u) = logXt(u)− logXt(u−τ) on some τ -interval or the intraday log-increments
ỹt(u) = logXt(u) − logXt(0), then it seems plausible that such common transformations
yield stationary functional processes (as processes in the discrete time t), in which case a
variety of tools can be employed for inference on the intraday pattern.

Functional time series methods have received increasing attention during the past few
years. To give a small sample of some very recent articles with many further references
we refer to the following papers: Hörmann and Kokoszka (2010) and Eichler and van
Delft (2017) for structural results, Horváth et al. (2014) and Aue and Klepsch (2017) for
inferential procedures, Paparoditis (2017) and Zhu and Politis (2017) for functional time
series bootstrapping methods and Aue et al. (2015) and Klepsch and Klüppelberg (2017)) for
forecasting algorithms.

In this paper, we consider some adequate functional models to describe, for instance, the
functional time series (yt) or (ỹt) as defined above. The first attempt to generalise GARCH
models to functional time series was made in Hörmann et al. (2013), where a functional
version of the ARCH(1) was proposed. Later, this model was extended in Aue et al. (2016) to
a functional GARCH(1,1). Both models rely on recurrence equations with unknown operators
and curves. As for the estimation of these quantities, Hörmann et al. (2013) proposed a
moment-based estimator and showed its consistency. Their approach allows to deal with a
fully functional (and potentially infinite-dimensional) parameter space. The situation is more
complicated in the GARCH context. Aue et al. (2016) proposed a least squares estimator
based on the recursive empirical volatility. This approach comes at a price: the authors have
to reduce the functional model to a multivariate model via some dimension reduction to a
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fixed finite dimension. Moreover, it is know from scalar GARCH theory that the least-squares
estimators lack efficiency.

In this paper, we propose an estimator inspired by the classical GARCH QML (Quasi-
Maximum Likelihood) method (Section 3). The definition of a QMLE is far from straightfor-
ward in that context, because a likelihood cannot be written for curves. Our estimator is
based on the projection of the squared process onto a set of non-negative valued instrumental
functions. We give regularity conditions for consistency and asymptotic normality. As a
result that is aside from this study, we obtain the consistency and asymptotic normality of
a semi-strong (i.e. with non-iid innovations) multivariate CCC-GARCH. We also obtain a
sufficient condition for existence of stationary functional GARCH processes (Section 2.2)
which generalises Aue et al. (2016). We use the top Lyapunov exponent formulation, and our
condition is very similar to the sufficient and necessary condition that can be obtained in
the finite dimensional case. Our results also extend to higher order models, i.e. functional
GARCH(p, q). In terms of application, we use our model to predict realised volatility which
is an important risk measure (Section 5.2).

The rest of the paper is organised as follows: in Section 2, we introduce the model equations,
some notations and discuss the stationarity. In Section 3, we introduce our estimation
procedure and detail its asymptotic properties. In Section 4, we extend our consistency
results to infinite-dimensional models. The subsequent sections deal with practical aspects of
the implementation and some empirical illustrations which demonstrate the superiority of
the QMLE compared to existing methods. Technical results and most of the proofs are given
in the Appendix.

2 Functional GARCH(p,q) model

2.1 Preliminaries

For convenience we first review notation. We denote by H the Hilbert space of square
integrable functions with domain [0, 1]. It will serve as the basic space on which the functional
observation, that is considered in this paper, is defined. The Hilbert space is equipped
with inner product 〈·, ·〉 and the resulting norm ‖ · ‖. If x and y are both functions of H
(respectively, vectors of Rd), then we denote by xy their point-wise (resp. component-wise)
product. We denote by L(H) the space of bounded linear operators on H and use bold
notation for its elements. Hence, for α ∈ L(H), x ∈ H and u ∈ [0, 1] we have that α(x)
is the image in H of α applied to x, whereas x(u) is the real-valued image of the function
x evaluated at u. Moreover, we use the standard convention for combining operators, i.e.
that αβ := α ◦ β and α2 := α ◦ α for α,β ∈ L(H). We recall that L(H), equipped
with the usual operator norm ‖α‖ := sup‖x‖≤1 ‖α(x)‖, is a Banach space. This norm is
sub-multiplicative, i.e. ‖αβ‖ ≤ ‖α‖ ‖β‖. In some places we also make use of the supremum
norm: ‖x‖∞ = inf{a > 0, |x(u)| < a, for λ–almost every u ∈ [0, 1]}. For x, y ∈ H, we define
the operator x⊗ y := x〈·, y〉.

We define the subspaces H+ = {x ∈ H : x(u) ≥ 0, for almost every u ∈ [0, 1]} and
H+

∗ = {x ∈ H : x(u) > 0, for almost every u ∈ [0, 1]}. Let K(H) denote the space of kernel
operators on H, i.e. if α ∈ K(H) then there exists a function Kα : [0, 1] × [0, 1] → R such
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that α(x)(u) =
∫
Kα(u, v)x(v)dv. For simplicity, we will often write

∫
instead of

∫ 1
0 . Let

L+(H) denote the space of operators which map H+ onto H+ and note that an operator
α ∈ K+(H) := L+(H) ∩ K(H), if and only if its kernel Kα(·, ·) is non-negative.

For any integer k ≥ 2, the product space Hk = H × · · · ×H naturally inherits the Hilbert
space structure by defining its scalar product as 〈x, y〉 =

∑k
i=1〈xi, yi〉, for x, y ∈ Hk. In this

context, it will be useful to represent elements and operators as k-dimensional vectors with
values in H and k × k matrices with values in L(H), respectively. For example, if k = 2, we
consider the operator

α : x 7−→
(

α11 α12

α21 α22

)(
x1

x2

)
:=

(
α11(x1) + α12(x2)
α21(x1) + α22(x2)

)

where x = (x1, x2)
⊤ ∈ H2 and α11, α12, α21 and α22 ∈ L(H).

We are now ready to introduce our general model.

Definition 1. Let (ηt)t∈Z be a sequence of i.i.d. random elements of H. A functional
GARCH(p,q) process (yt)t∈Z is defined as a stationary solution of the equations

yt = σtηt,(2.1)

σ2
t = δ +

q∑

i=1

αi(y
2
t−i) +

p∑

j=1

βj(σ
2
t−j),(2.2)

where δ ∈ H+
∗ and α1, . . . ,αq,β1, . . . ,βp ∈ K+(H). Such a solution is called non-anticipative

if σt = σ(ηt−1, ηt−2, . . .) for some measurable function σ.

Under the assumption that E(ηt(u)) = 0 and E(η2
t (u)) = 1, the variable σ2

t (u) can be
interpreted as the volatility at day t and intraday time u, i.e. the variance of the return
yt(u) conditional upon the sigma algebra Ft generated by (ηs)s≤t. Note that this volatility
may depend on all past returns, not only on those corresponding to intraday time u of the
previous days. For instance, let p = 0, q = 1 (ARCH(1)), and suppose that α is a kernel
operator, with constant kernel Kα(u, v) := a, then the pattern of the intraday volatility
σ2

t (u) = δ(u) + a
∫
y2

t−1(v)dv is essentially given by that of δ. Moreover, it depends on the
previous day through the so-called ’integrated volatility’ given by the integral. If now, the
kernel has the form Kα(u, v) = aφ(u− v), where φ denotes a density function with mode at
zero, we have σ2

t (u) = δ(u) + a
∫
φ(u − v)y2

t−1(v)dv and the volatility of intraday-time u is
mainly driven by the volatility of the previous day ’around’ time u. It is, thus, clear that
Model (2.1) allows for a great flexibility through the choice of the operators α and β, and
the pattern of the intercept δ.

A key feature of the GARCH model is that it captures well the dynamics of volatility
observed in financial data. In our functional setting, we propose the following interpretation
of the volatility curves. For any fixed u ∈ [0, 1], we have that

P (|yt(u)| < c | Ft−1) = P (|ηt(u)| < c/σt(u) | Ft−1) = 1 − α,(2.3)

if we take c = σt(u) · Qη(u)
1−α/2. Consider, for example, a process with Gaussian innova-

tions (ηt) such that Var(ηt(u)) = 1 for all u ∈ [0, 1]. We can then interpret the region
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{[−2σt(u), 2σt(u)] : u ∈ [0, 1]} as the prediction interval of yt(u) at (approximate) level
α = .05. We show these curves and their estimation in Figure 1 (in a setting that will be
described below) at two different scales: 7 and 100 days, respectively. The data generating
process is described in Section 5.1.2. On the first figure we observe the sensitivity to shocks
of the volatility curves. On the second figure we can observe the persistence of the volatility
curves on a larger scale.

One interest of the functional GARCH model is that it allows for prediction of the next
day’s volatility curve. At the end of day t − 1, the whole volatility curve of day t can be
predicted. It is, thus, possible to predict the realised volatility

∑⌊1/τ⌋
j=1 y2

t (jτ) for some given
time unit τ ∈ (0, 1), or any other realised measure of volatility. This will be illustrated in
Section 5.2.

2.2 Existence of stationary solutions

In light of Definition 1, an evident question concerns the existence of a strictly stationary and
non-anticipative solution to the functional GARCH equations. To respond to this problem,
we first observe that our model equations can be conveniently summarised in the following
state-space form:

zt = bt + Ψt(zt−1),(2.4)

where bt, zt ∈ Hp+q and Ψt ∈ L(H
p+q

) are defined as

bt =
(
η2

t δ, 0, . . . , 0, δ, 0, . . . , 0
)′
, zt =

(
y2

t , . . . , y
2
t−q+1, σ

2
t , . . . , σ

2
t−p+1

)′
,

and

Ψt =




Υtα1 . . . Υtαq−1 Υtαq Υtβ1 . . . Υtβp−1 Υtβp

IH · · · 0 0 0 · · · 0 0

0
. . . 0 0 0 · · · 0 0

0 · · · IH 0 0 · · · 0 0
α1 . . . αq−1 αq β1 . . . βp−1 βp

0 · · · 0 0 IH · · · 0 0

0 · · · 0 0 0
. . . 0 0

0 · · · 0 0 0 · · · IH 0




.

Here, the operator Υt is the pointwise multiplication by η2
t , i.e. H ∋ x 7−→ xη2

t . All 0’s in
the definition of the matrix Ψt are meant to be zero-operators.

Now, we introduce a mild technical assumption which we impose for the rest of the paper:

(2.5) E log+ ‖η2
0‖∞ < ∞,

where log+(u) = log(max(1, u)). By this assumption, it follows that ‖η2
t ‖∞ < ∞ a.s. and,

hence, the linear operator Υt is almost surely bounded. Indeed, we have that

‖Υt(x)‖ = ‖xη2
t ‖ =

(∫
x2(u)η4

t (u)du
)1/2

≤ ‖η2
t ‖∞ ‖x‖, for any x ∈ H,
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Figure 1: Solid lines represent the simulated process yt, the shaded area is the region
{[−2σt(u), 2σt(u)] : u ∈ [0, 1]}. The dashed lines are estimators ±2σ̃t(θ̂)(u).
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thus

(2.6) ‖Υt‖ ≤ ‖η2
t ‖∞.

For the sake of a light notation, we will now also use ‖ · ‖ for the norm on Hp+q as well
as for the operator norm of L(Hp+q). Its respective meaning will be clear from the context.
From assumption (2.5) it is easily deduced that E log+ ‖Ψ1‖ < ∞. Moreover, the sequence
(Ψt) is i.i.d. and our norm on L(Hp+q) is sub-multiplicative. Hence, according to Theorem 6
in Kingman (1973) we have that, almost surely,

γ := lim
t→∞

1

t
E(log ‖ΨtΨt−1 · · · Ψ1‖) = inf

t≥1

1

t
E(log ‖ΨtΨt−1 · · · Ψ1‖)(2.7)

= lim
t→∞

1

t
log ‖ΨtΨt−1 · · · Ψ1‖.(2.8)

The coefficient γ ∈ [−∞,+∞) is called the top Lyapunov exponent of the sequence (Ψt)t∈Z.

Theorem 1. Under (2.5), a sufficient condition for the existence of a unique strictly sta-
tionary and non-anticipative solution to (2.1)–(2.2) is γ < 0.

Proof. By iterating (2.4), we formally get that

zt = bt +
∞∑

k=1

ΨtΨt−1 · · · Ψt−k+1(bt−k).(2.9)

The series converges almost surely, since using (2.8), we deduce that

lim sup
t→∞

1

t
log ‖ΨtΨt−1 · · · Ψt−k+1(bt−k)‖ ≤ γ + lim sup

t→∞

1

t
log ‖bt−k‖, a.s.(2.10)

Since E log+ ‖bt−k‖ < ∞ by (2.5), and ‖bt−k‖ ≥ ‖δ‖ > 0 the second summand is zero and,
thus, we can apply the Cauchy rule to show convergence. In addition, it is easy to see that
the q + 1-th component of zt defines a non-anticipative and stationary solution of (2.2). The
proof of the existence is complete.

It remains to prove that the solution is almost surely unique. To this end, let us assume
that z̃∗

t is another solution. By iterating (2.4), we get that

z∗
t = zN

t + Ψt · · · Ψt−N(z∗
t−N−1), where zN

t = bt +
N∑

k=1

Ψt · · · Ψt−k+1(bt−k).

We then deduce that

‖z∗
t − zt‖ ≤ ‖zN

t − zt‖ + ‖ΨtΨt−1 · · · Ψt−N‖ · ‖z∗
t−N−1‖.(2.11)

We already know that since γ < 0, we have ‖zN
t − zt‖ → 0 and ‖Ψt · · · Ψt−N‖ → 0, almost

surely when N → ∞. Furthermore, the law of ‖z∗
t−N−1‖ is independent of N . Hence, the

right-hand side of (2.11) tends to zero in probability. Therefore, P (z∗
t = zt) = 1.
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Remark 1. It would be interesting to see if the condition γ < 0 is also necessary for the
existence of a strictly stationary solution to (2.1)–(2.2). The situation in the functional
context is more complicated when compared to multivariate analysis. In the multivariate
setup, one would argue that for some appropriately chosen matrix norm ‖ · ‖∗ we have
that ‖ΨtΨt−1 · · · Ψt−k+1(bt−k)‖∗ → 0 (which is, of course, necessary for the convergence of
the series in (2.9)) will imply ‖ΨtΨt−1 · · · Ψt−k+1‖∗ → 0. In the infinite-dimensional setup,
however, norms are not equivalent, and choosing a different norm will also give a different
value for the exponent γ. In a second step, one uses contraction properties of random matrices
in order to conclude. To extend such results to linear operators is beyond the scope of this
paper.

In the next proposition, we specialise to the case of the functional GARCH(1,1) process
in order to obtain a slightly more explicit result.

Proposition 1. When p = q = 1, a sufficient condition for existence of a strictly stationary
and non-anticipative solution to (2.1)–(2.2) is that

E log
∥∥∥(αΥt−1 + β) · · · (αΥ1 + β)

∥∥∥ < 0, for some t ≥ 1.

Proof. First, note that

ΨtΨt−1 · · · Ψ1 =

[
Υt

IH

] [
α β

] [Υt−1

IH

]
· · ·

[
α β

] [Υ1

IH

] [
α β

]

=

[
Υt

IH

]
(αΥt−1 + β) · · · (αΥ1 + β)

[
α β

]
,

from which we can deduce a bound for the top Lyapunov exponent:

γ ≤ lim
t→∞

1

t

{
E log(

∥∥∥η2
t

∥∥∥
∞

+ 1)1/2 + E log
∥∥∥(αΥt−1 + β) · · · (αΥ1 + β)

∥∥∥+ E log
∥∥∥
[
α β

] ∥∥∥
}

= lim
t→∞

1

t
E log

∥∥∥(αΥt−1 + β) · · · (αΥ1 + β)
∥∥∥

= inf
t≥1

1

t
E log

∥∥∥(αΥt + β) · · · (αΥ1 + β)
∥∥∥.

The first inequality is in fact an equality since the two side terms are vanishing in the limit
and the last equality follows from the Fekete’s lemma.

In their recent paper, Aue et al. (2016) obtained the condition

(2.12) E log ‖αΥ0 + β‖S < 0

to guarantee a strictly stationary solution of functional GARCH(1,1) equations. Here, ‖γ0‖S

is the Hilbert-Schmidt norm. Note that the Hilbert-Schmidt norm is dominating the operator
norm and, hence,

γ ≤ 1

t
E log

∥∥∥(αΥt + β) · · · (αΥ1 + β)
∥∥∥ ≤ E log

∥∥∥αΥ0 + β
∥∥∥ ≤ E log ‖αΥ0 + β‖S .

This shows that our condition is milder than that of Aue et al. (2016).
In the next proposition, we provide a sufficient condition for E[y2

t (u)] < ∞ and equivalently
E[σ2

t (u)] < ∞, for all u ∈ [0, 1]. We denote by ρ(A) the spectral radius of the operator A.

8



Proposition 2. If γ < 0, then a sufficient condition for the existence of a pointwise second-
order stationary solution to (2.1)–(2.2) is that ρ(EΨ0) < 1.

Proof. Since γ < 0, we deduce from Theorem 1 that there exists a strictly stationary and
non-anticipative solution (yt)t∈Z to (2.1)–(2.2). Using stationarity and independence we
deduce

Ezt = Ebt +
∞∑

k=1

(EΨ0)
k Eb0,(2.13)

which converges, since by assumption ρ(EΨ0) < 1. This implies that E[σ2
t (u)] < ∞ and

E[y2
t (u)] < ∞ for all u ∈ [0, 1].

We conclude this section with a result, which will be useful for statistical inference, but it
also has its own interest.

Proposition 3. Assume that E‖η2
0‖τ

∞ < ∞ for some τ ∈ (0, 1), γ < 0 and that (yt)t∈Z is a
stationary solution to (2.1)–(2.2). Then there exists s ∈ (0, τ) such that E‖y2

t ‖s < ∞ and
E‖σ2

t ‖s < ∞.

Proof. Using (2.7), there exists an integer t0 such that E log ‖Ψt0Ψt0−1 · · · Ψ1‖τ < 0. Fur-
thermore, we have that

E‖Ψt0Ψt0−1 · · · Ψ1‖τ ≤ E‖Ψt0‖τ ‖Ψt0−1‖τ · · · ‖Ψ1‖τ = (E‖Ψ1‖τ )t0 ,

where we used the fact that (Ψt)t∈Z are i.i.d. in the last equality. Note that E‖Ψ1‖τ < ∞ by
(2.6). From Lemma 2.2 in Francq and Zakoian (2011), we then deduce that there exists an
0 < s < τ such that ς := E‖ΨtΨt−1 · · · Ψ1‖s < 1. From (2.9) we get that

E‖zt‖s ≤ E‖b0‖s

{
1 +

∞∑

k=1

E‖ΨkΨk−1 · · · Ψ1‖s

}

≤ E‖b0‖s

{
1 +

∞∑

k=0

ςk
t0∑

i=1

(E‖Ψ1‖s)i

}
.

Furthermore, we have that

E‖b0‖s ≤ E‖η2
0δ‖s + ‖δ‖s ≤

(
E‖η2

0‖s
∞ + 1

)
‖δ‖s < ∞.

Thus E‖zt‖s < ∞ and the conclusion follows.

3 Estimation

A difficulty in estimating FDA models is that the concept of likelihood does not exist. For this
reason, QML estimation cannot be straightforwardly defined in this framework. We propose
an estimator which, though it cannot be related to any likelihood for the aforementioned
reason, is directly inspired from the QMLE in the standard GARCH model. As regards the
latter, the functional QMLE will be shown to be consistent in a semi-parametric framework
in which the distribution of ηt does not need to be specified.
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3.1 Parametrisation

From observations (yt)1≤t≤n of curves satisfying Model (2.1)–(2.2), we consider inference on
the parameters δ, α1, . . . ,αq and β1, . . . ,βp. In order to guarantee identifiability of the
model, we impose

(3.1) E[η2
0(u)] = 1, ∀u ∈ [0, 1].

An example of a stationary Gaussian process (η0(u))u∈[0,1] satisfying (3.1) is the Ornstein-
Uhlenbeck process given by η0(u) = e−u/2W0(e

u), where W0(·) is the standard Brownian
motion. This process has autocovariance function Cov(η0(u+ v), η0(v)) = e−u/2. In general,
however, we do not require either Gaussianity or “intraday–stationarity” of ηt.

We begin by assuming a specific parametrisation for Model (2.1)–(2.2). Let ϕ1, . . . , ϕM

be linearly independent functions in H+. We assume that there exists a non-negative valued
vector d = (d1, . . . , dM )′ in R

M , and non-negative valued matrices Ai = (a
(i)
k,ℓ) and Bj = (b

(j)
k,ℓ)

in R
M×M such that

δ =
M∑

k=1

dkϕk, αi =
M∑

k,ℓ=1

a
(i)
k,ℓ ϕk ⊗ ϕℓ and βj =

M∑

k,ℓ=1

b
(j)
k,ℓ ϕk ⊗ ϕℓ,(3.2)

for i = 1, . . . q, j = 1, . . . p. Note that αi and βj belong to K+
H .1 We define the parameter

θ = vec
(
d,A1, . . . , Aq, B1, . . . , Bp

)
∈ R

M+(p+q)M2

.(3.3)

The model (2.1)–(2.2) is obtained for the value θ0. By convention, we index by zero all
quantities evaluated at θ0. It is clear that the parametrisation is one-to-one in the sense that

θ 6= θ0 =⇒ (δ,α1, . . . ,αp,β1, . . . ,βq) 6= (δ0,α01, . . . ,α0p,β01, . . . ,β0q),

for i = 1, . . . q, j = 1, . . . p. To avoid confusion with the parameter θ we refer to δ,
α1, . . . ,αq,β1, . . . ,βp as the functional parameters of the model. We assume that θ0 belongs

to a compact subset Θ of R
M+(p+q)M2

+ .

Remark 2. The implication of (3.2) is that the volatility process (σ2
t )t∈Z belongs to the

M -dimensional subspace of H spanned by ϕ1, . . . , ϕK . This is also assumed in Aue et al.
(2016). An alternative nonparametric approach will be developed in Section 4.

Our estimator is defined as follows:

(3.4) θ̂n := argmin
θ∈Θ

Q̃n(θ),

where

Q̃n(θ) =
1

n

n∑

t=1

ℓ̃t(θ), ℓ̃t(θ) =
M∑

m=1

{
〈y2

t , ϕm〉
〈σ̃2

t , ϕm〉 + log〈σ̃2
t , ϕm〉

}
,(3.5)

1Note that Kαi
(u, v) =

∑M

k,ℓ=1 a
(i)
k,ℓϕk(u)ϕℓ(v) and Kβ

i
(u, v) =

∑M

k,ℓ=1 b
(i)
k,ℓϕk(u)ϕℓ(v).
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and where the empirical volatility σ̃2
t is computed recursively as

σ̃2
t = σ̃2

t (θ) = δ +
q∑

i=1

αi(y
2
t−i) +

p∑

j=1

βj(σ̃
2
t−j), for t = 1, . . . , n(3.6)

with some initial values y0, . . . , y−q+1 and σ̃0, . . . , σ̃−p+1 in H. Note that the positivity of the
baseline functions ϕk ensures that the scalar products in (3.5) are positive and, thus, Q̃n(θ)
is well defined and reaches its minimum on the compact set Θ. This estimator is clearly
inspired by the QMLE for standard GARCH models, and thus, we will refer to θ̂n as the
QML estimator.

3.2 Asymptotic results

Under (3.2), Model (2.1)-(2.2) admits a multivariate representation. More precisely, under
the invertibility Assumption A5 below, we define the process (ht(θ))t∈Z as the stationary and
ergodic solution of the following equation

ht(θ) = d +
q∑

i=1

AiY
<2>

t−i +
p∑

j=1

Bjht−j(θ),(3.7)

where Y <2>
t = (〈y2

t , ϕ1〉, . . . 〈y2
t , ϕM〉)′, d = Φd and for i = 1, . . . , q and j = 1, . . . , p, Ai = ΦAi

and Bj = ΦBj with Φ = (〈ϕi, ϕj〉)) being the Gram-matrix of the functions ϕ1, . . . , ϕM .
Note that ht(θ0) = (〈σ2

t , ϕ1〉, . . . , 〈σ2
t , ϕM〉)′.

We are able to deduce our main asymptotic results under the following assumptions:

A1 θ0 ∈ Θ, Θ is a compact set.

A2 E‖η2
0‖τ

∞ < ∞ for some τ ∈ (0, 1), (yt)t∈Z is a strictly stationary and non-anticipative
solution of Model (2.1)-(2.2).

A3 For any function ψ ∈ H and any non-random constant κ,

〈η2
t , ψ〉 = κ a.s. ⇒ ψ ≡ 0 and κ = 0.

A4 If p > 0, A0(z) =
∑q

i=1 ΦA0iz
i and B0(z) = IM − ∑p

j=1 ΦB0iz
i, are left co-primes and

[A0q, B0p] has full rank M .

A5 infθ∈Θ d > 0 componentwise, and for all θ ∈ Θ, the matrix B(z) = IM −∑p
j=1 ΦBiz

i is
invertible for |z| ≤ 1.

Theorem 2. Under (3.1)–(3.2) and Assumptions A1-A5, the QMLE of θ0 is strongly
consistent, i.e. we have θ̂n → θ0 almost surely.

In order to derive the asymptotic law of our estimator we make the following assumptions:

A6 θ0 ∈ Int(Θ).

A7 E‖η0‖4
∞ < ∞.
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Letting NK(µ,Σ) denote a K-variate normal random vector with mean µ and covariance
matrix Σ, we get the following asymptotic normality result. Define ℓt(θ) by replacing 〈σ̃2

t , ϕm〉
by ht,m (the m-th component of ht(θ)) in ℓ̃t(θ).

Theorem 3. Under (3.1)–(3.2) and Assumptions A1-A7 we have that

√
n(θ̂n − θ0)

d−→ NM+(p+q)M2

(
0, J−1IJ−1

)
,(3.8)

where I = Var
(

∂ℓt(θ0)
∂θ

)
and

J = E

[
∂2ℓt(θ0)

∂θ∂θ′

]
=

M∑

m=1

E

[
1

h2
t,m

∂ht,m

∂θ

∂ht,m

∂θ′
(θ0)

]
.(3.9)

We remark that, unlike in the scalar case, it is not possible to factorise the matrix I in
the asymptotic variance of Theorem 3. However, we have that

I =
M∑

m,m′=1

E

[(∫∫
E[η2

t (u)η2
t (v)]

σ2
t (u)σ2

t (v)

ht,m(θ0)ht,m′(θ0)
ϕm(u)ϕm′(v)dudv − 1

)

× 1

ht,mht,m′

∂ht,m

∂θ

∂ht,m′

∂θ′
(θ0)

]
.

Using this, it is not difficult to obtain estimates for I and J .

3.3 Choice of instrumental functions

The instrumental functions ϕ1, . . . , ϕM must satisfy the positivity constraints. We can
consider any family of non-negative and linearly independent functions in H, such as the
power basis 1, u, u2, . . . the exponential basis eu, e2u, . . . or some polynomial basis that is
non-negative on [0, 1], for example the popular B-splines bases. Since the latter are thought
to perform well with functional data, we will consider them in our empirical study. More
precisely, we will use the Bernstein polynomials. For more details on the use of B-splines and
smoothing methods for functional data, see Ramsay and Silverman (2006).

In order to avoid using a specific set of instrumental functions, we propose a heuristic
data-driven method. Direct use of functional PCA (which is by far the most common practice
in many applications) is not possible in this framework, due to the positivity constraints.
Under the further assumption that E‖yt‖4 < ∞, we represent the squared process through
its functional principal components, i.e.

y2
t (u) = µ(u) +

∞∑

j=1

〈y2
t − µ, ψj〉ψj(u),

where µ(u) = E[y2
t (u)] and (ψj)j≥1 are the eigenfunctions of the covariance operator of y2

t

(see, e.g. Horváth and Kokoszka (2012) for more details on functional principal components).
Then, since σ2

t = E[y2
t |Ft−1] and in view of (2.2), it seems natural to assume that δ, αi and

βj are spanned by the finite set of functions µ, ψ1, . . . , ψM−2. However, these functions are

12



not non-negative. We, thus, propose to modify them according to the following routine. Take
ϕ1(u) = 1, ϕ2(u) = µ(u), which is necessarily non-negative, and shift the other principal
components, if necessary:

ϕm(u) := ψm−2(u) − inf
u∈[0,1]

ψm−2(u) ∧ 0, for all m = 3, . . . ,M.(3.10)

We have observed in our simulations (see Section 5.1.2) that this empirical choice performs
relatively well, even when we compare it to the settings where the true (but unknown) basis
functions in the data-generating process were used.

4 Extension to infinite-dimensional parameter space

Assuming a finite-dimensional parametrisation (3.2) may appear to be not entirely satisfactory
from the theoretical standpoint. In this section, we show that the QML estimator remains
strongly consistent in a more general setting, permitting an infinite-dimensional specification.
For simplicity, we only consider the case when p = q = 1. We assume that δ, α and β can be
parametrised by some infinite-dimensional parameter θ ∈ Θ, in other words we let M = ∞
in (3.2). This parameter space is assumed to be a compact subset of l2 (the set of square
summable sequences).

Our new estimator is defined as

θ̂N
n := argmin

θ∈ΘN

Q̃n(θ),

where ΘN ⊂ Θ is the subspace of all sequences with zero entries in components k > N .
Furthermore, Q̃n(θ) is defined as in (3.5) and we set

ℓ̃t(θ) =
∞∑

m=1

wm

{
〈y2

t , ϕm〉
〈σ̃2

t (θ), ϕm〉 + log〈σ̃2
t (θ), ϕm〉

}
,(4.1)

where (wm)m≥1 is a non-negative and summable sequence of numerical weights.

Let α∗ denote the adjoint operator of α, i.e. the unique operator such that 〈α∗(x), y〉 =
〈x,α(y)〉 for all x, y ∈ H. The following technical assumptions will be used.

A8 Identifiability. For all m ≥ 1 and θ ∈ Θ we have that

(a) 〈δ0, ϕm〉 = 〈δ, ϕm〉 implies δ = δ0.

(b) α∗
0(ϕm) = α∗(ϕm) implies α = α0.

(c) (α∗
0 ◦ β∗

0)(ϕm) = (α∗
0 ◦ β∗)(ϕm) implies β = β0.

A9 There exists a sequence (am)m≥1 such that wm/a
2
m is summable and am ≤ ∫ |ϕm(u)|du ≤

‖ϕm‖ ≤ 1 for all m ≥ 1. Furthermore, for all θ ∈ Θ, the function δθ is uniformly
bounded from below by some constant c > 0.

Remark 3. Note that, if M < ∞, p = q = 1, and A0 is invertible then (3.2) implies A8.
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Proposition 4. Under (3.1) and assumptions A1−A3, and A8 −A9, the QMLE of θ0 is
strongly consistent: θ̂Nn

n → θ0 almost surely in l2, for any sequence Nn ր ∞.

To illustrate this result, we present an example of a functional GARCH process which is
not included in the multivariate and linearly parametrised setting of Section 3.

Let (ψk)k≥1 be an orthonormal basis of H. We assume that the volatility recursion is of
the form

σ2
t (u) = exp

(
∞∑

k=1

dkψk(u)

)
+ a

∫
y2

t−1(v)dv + b
∫
σ2

t−1(v)dv.(4.2)

Here, the parameter is θ = (a, b, d1, d2, . . . ) ∈ R
2
+ × R

∞. The exponential function is used
to guarantee a positive intercept, but other positive valued functions could be used instead
of it. This model provides a very simple interpretation of the function δ. Indeed, we can
show that the curve of δ parallels that of the expected intraday-volatility. More precisely, if
Ey2

t (u) < ∞, then we have that

Eσ2
t (u) = Ey2

t (u) = δ(u) +
a+ b

1 − a− b

∫
δ(v)dv.

We can also compute explicitly the top Lyapunov exponent which only depends on a, b and
the law of η0:

γ = lim
t→∞

1

t
E log

∥∥∥∥(αΥt−1 + β) · · · (αΥ1 + β)
∥∥∥∥

= lim
t→∞

1

t
E log sup

‖x‖≤1

t−1∏

s=2

(a
∫
η2

s(v)dv + b)
∫

(aη2
1(v) + b)x(v)dv

= E log
(
a
∫
η2

0(v)dv + b
)
.

Finally, Proposition 4 can be applied to model (4.2). Indeed, we can easily choose a compact
subset Θ of ℓ2 and an innovation process (ηt)t∈Z such that Assumptions A1−A3 are satisfied.
Let (ϕm)m≥1 be any family of non-negative functions spanning H. If we further assume
that (dk)k≥1 is absolutely summable and that κ = supk≥1 ‖ψk‖∞ < ∞, then we get that
δ(u) = exp (

∑∞
k=1 dkψk(u)) ≥ exp (−κ∑∞

k=1 |dk|) > 0. Now, since α = α∗ and β = β∗, it
easy to see that A8 (b) is satisfied as well as A8 (c), provided that a0 6= 0. Assumption
A8 (a) follows from the fact that (ϕm)m≥1 is a basis of the space H. Then, for any weight
sequence (wm)m≥1 which satisfies A9 we get by Proposition 4 that the QMLE of model (4.2)
is strongly consistent.

5 Empirical results

5.1 Simulations

We will first compare the Least Squares Estimator (LSE) of Aue et al. (2016) and our QMLE

that is defined in (3.4). Next, we compare the QML with given instrumental functions ϕm to
the data-driven procedure described in Section 3.3 (we then refer to QMLE*).
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d a b
sd 2.4e-05 0.01 0.031

bias 1.6e-05 0.0041 0.011

Table 1: Performance of LSE.

d a b
sd 7.7e-06 0.0051 0.0093

bias 3.1e-06 0.0017 0.0036

Table 2: Performance of QMLE.
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Figure 2: Estimates of a and b, with ∗ LSE and ◦ QMLE, and + indicates the true values.

5.1.1 Example 1

The first setup is taken from Aue et al. (2016). They consider a GARCH(1,1) model with

δ(u) = .01, Kα(u, v) = Kβ(u, v) = 12u(1 − u)v(1 − v),(5.1)

for u, v ∈ [0, 1]. For the innovations, Ornstein-Uhlenbeck processes are chosen. They are
defined as η0(u) = e−u/2W0(e

u), where (W0(u))u∈[0,1] is a Brownian motion.
The recursion starts at initial value σ2

0 := δ, and the first 1000 curves are discarded. Aue
et al. (2016) project on one basis function ϕ1(u) =

√
30u(1 − u), u ∈ [0, 1]. It follows that

Kα(u, v) = aϕ1(u)ϕ1(v), with a = 0.4 and Kβ(u, v) = b ϕ1(u)ϕ1(v), with b = 0.4. Note that
δ is not spanned by ϕ1(u) and that d = 〈δ, ϕ1〉 ≈ .009. It is assumed that ϕ1 is known and
we estimate d, a and b. For the LSE we impose |b| ≤ .99, whereas, for the QMLE we impose
that a ≥ 0 and 0 ≤ b ≤ .99. In order to compare the performance of the two procedures,
we consider 100 Monte-Carlo replications of our estimation experiment. The results of our
simulations are displayed in Tables 1–2 and in Figure 2. We see that standard deviation and
bias differ by a factor of 2 to 3 in favour of the QMLE methods.
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5.1.2 Example 2

We now illustrate our estimator in a slightly more complex example. We consider a functional
GARCH(1,1) model with δ(u) = (u− .5)2 + .1,

Kα(u, v) = (u− .5)2 + (v − .5)2 + .2, and Kβ(u, v) = (u− .5)2 + (v − .5)2 + .4.(5.2)

As in the previous example, we take for the innovations an i.i.d. sequence of Ornstein-
Uhlenbeck processes, the recursion starts at initial value σ2

0 := δ, and the first 1000 curves
are discarded.

For the instrumental functions ϕ1, . . . , ϕM we consider the following families:

1. QMLE: Bernstein polynomials, which are a special case of B-spline functions defined by
ϕk(u) =

(
M−1
k−1

)
uk−1(1 − u)M−k, for k = 1, . . . ,M and u ∈ [0, 1].

2. QMLE*: The functions defined in Section 3.3.

We fix M = 4, then the subspace spanned by the Bernstein polynomials (of order 3)
contains the true parameters defined in (5.2). We have constrained the parameters as follows:
dk ≥ 10−5, akℓ ≥ 0 and to avoid an explosive solution, 0 ≤ bkℓ ≤ (M · max1≤m≤M ‖ϕm‖)−1,
for all k, ℓ = 1, . . . ,M .

We have represented the functional parameters δ and α (its kernel Kα) in Figure 3
together with their QMLE. In order to compare the performance of the two procedures, we ran
N = 100 Monte-Carlo replications of our estimation experiment with sample size n = 1000.
The results of our simulations are displayed in Table 3. We show the relative mean squared
deviations, defined as

1

N1/2‖δ‖

(
N∑

ν=1

‖δ̂(ν) − δ‖2

)1/2

,
1

N1/2‖α‖

(
N∑

ν=1

‖α̂(ν) − α‖2

)1/2

,

and analogously for β. As aforementioned in Section 3.3 it is interesting that both procedures
perform similarly, despite the fact that QMLE* does not require prior knowledge of instrumental
functions.

δ α β

QMLE 0.45 0.46 0.55
QMLE* 0.51 0.33 0.44

Table 3: Relative mean squared deviations for the corresponding functional parameters.
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Figure 3: From left to right: the intercept function δ (solid line) compared to its estimation

δ̂ (dashed line), the theoretical kernel Kα(u, v) and the estimated kernel Kα̂(u, v).
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5.2 Real data illustration

We applied our estimators to the minutely recorded S&P100 Index for a ten-year period
between 1997 and 2007. The return series is displayed in Figure 4. The functional GARCH

1998 2000 2002 2004 2006

4
0
0

6
0
0

8
0
0

Figure 4: Raw data for S&P 100 index between 1997 and 2007.

model has been implemented on two different types of return data. Denoting by Xt(u) the
price at time u of the day t, we considered the τ -minute returns yt(u) and the intraday
returns ỹt(u) defined by

yt(u) = logXt(u) − logXt(u− τ), and ỹt(u) = logXt(u) − logXt(0).(5.3)

For yt(u) we used τ = 20 min2. For the instrumental functions we used, as in Section 5.1.2
the Bernstein polynomials with M = 4. We computed the LSE estimator to get an initial
value of the parameter in the optimisation routine. The resulting empirical volatility curves
are displayed in Figures 5 and 6 for yt and in Figures 7 and 8 for ỹt. In light of (2.3) and

the related discussion, we plotted the curves σ̃t(θ̂n)(u) · Q̂η̂(u)
1−α/2. The required quantiles were

estimated from the residuals η̂t(u) := yt(u)/σ̃t(θ̂n)(u), for t = 1, . . . , n. On both processes
we can observe the sensitivity to shocks of the volatility process and its persistence. The
persistence seems stronger in Figure 8 than in Figure 6, whereas the rise of the volatility
after a shock is more evident Figure 5 than in Figure 6. This is in line with a large value of
‖β̂‖ for ỹt (see Table 4).

2Note that the functional approach is not very appropriate when τ is less than, say 10 min, since then,
the curves become very irregular and, thus, there is no chance to capture the intraday dynamic by smoothing
the signal.
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‖δ̂‖ ‖α̂‖ ‖β̂‖
y 1e-06 0.46 0.46
ỹ 5e-06 0.15 0.89

Table 4: Norms of the estimated parameters.

492 494 496 498 500

−
0
.0

1
0

−
0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

Figure 5: Predicted volatility (shaded area) for yt (8 days).

Realised volatility

Practitioners often use the so-called realised volatility as a measure of the daily risk. Typically,
it is defined as follows:

RVt =
⌊1/τ⌋∑

j=1

| logXt(jτ) − logXt(jτ − τ)|2.(5.4)

If we choose the same τ as in the definition of yt in (5.3) we remark that

RVt =
⌊1/τ⌋∑

j=1

|y2
t (jτ)| =

⌊1/τ⌋∑

j=1

σ2
t (jτ)η2

t (jτ).

At time t− 1, the optimal predictor of RVt is

E[RVt|Ft−1] =
⌊1/τ⌋∑

j=1

σ2
t (jτ),

which can be estimated by

R̃Vt =
⌊1/τ⌋∑

j=1

σ̃2
t (θ̂)(jτ),(5.5)
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Figure 6: Predicted volatility (shaded area) for yt (31 days).

where θ̂ is the QMLE computed with the sub-sample y1, . . . , yt−1. In Figure 9, we have plotted
41 one-day ahead predictions of R̃Vt against RVt.
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Figure 7: Predicted volatility (shaded area) for ỹt (8 days).
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Figure 8: Predicted volatility (shaded area) for ỹt (61 days).
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Figure 9: Predicted (+) and true realised volatility (o).
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Appendix

We start to show asymptotic results for CCC-GARCH models which will be used to prove
Theorems 2 and 3. Similar results exist in the literature but with independent innovations. The
convergence and asymptotic properties of semi-strong GARCH models has been considered
by Escanciano (2009) in the scalar case. We provide a multivariate generalisation of this
result to semi-strong CCC-GARCH models.

5.3 Asymptotics of semi-strong CCC-GARCH models

We recall the definition of a CCC-GARCH(p, q) process. It is an R
M -valued process (ǫt)t∈Z

with ǫt = (ǫt,1, . . . , ǫt,M) which satisfies the following equations:

ǫt = H
1/2
t νt,(5.6)

Ht = DtRDt with Dt =
(
diag(ht)

)1/2
,(5.7)

ht = d +
q∑

i=1

Aiǫ
[2]
t−i +

p∑

j=1

Bjht−j,(5.8)

where ǫ
[2]
t = (ǫ2

t,1, . . . , ǫ
2
t,M). Here R is an M ×M correlation matrix, Ai and Bj are M ×M

matrices with positive elements, the components of the M -vector d are strictly positive. We
set

ξ =
(
vec′

(
d,A1, . . . ,Aq,B1, . . . ,Bp

)
, r′
)′
,

where r is the vector of the subdiagonal elements of R. The QMLE ξ̂n of ξ0 is defined by

ξ̂n = arg min
ξ∈Ξ

1

n

n∑

t=1

ℓ̃t(ξ), ℓ̃t(ξ) = ǫ′
tH̃

−1
t ǫt + log | det(H̃t)|,(5.9)

where H̃t is defined recursively using (5.8) and some initial values.
We define the matrix-valued polynomials A(z) =

∑q
i=1 Aiz

i and B(z) = IM −∑p
j=1 Bjz

j,
for z ∈ C and any ξ belonging to a compact parameter set Ξ. Let (Ft)t∈Z be some filtration.
The following technical assumptions are needed:

A∗0 E‖ǫ[2]
t ‖s < ∞, for some s > 0.

A∗1 ξ0 ∈ Ξ, where Ξ is a compact set.

A∗2 (ǫt) is a strictly stationary and ergodic solution of Model (5.6)-(5.8), with ǫt ∈ Ft.

A∗3 (νt)t∈Z is an ergodic, stationary martingale difference sequence with respect to (Ft)t∈Z

such that E[νtν
′
t|Ft−1] = IM . There exists no vector x 6= 0 ∈ R

M such that x′ǫ
[2]
t is

Ft−1-measurable.

A∗4 If q > 0, A0(z) and B0(z), are left co-primes and [A0q,B0p] has full rank M .
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A∗5 infξ∈Ξ d > 0 componentwise; B(z) is invertible for |z| ≤ 1, for all ξ ∈ Ξ; R is a positive
definite correlation matrix for all ξ ∈ Ξ.

A∗6 ξ0 ∈ Int(Ξ).

A∗7 E‖νtν
′
t‖2(1+w) < ∞, for some w > 0.

Let ℓt(ξ) = ǫ′
tH

−1
t (ξ)ǫt + log | det(Ht(ξ))|.

Theorem 4. Under Assumptions A∗0–A∗5 the QMLE of ξ0 as defined in (5.9) is strongly
consistent, i.e. ξ̂n → ξ0 a.s.

Theorem 5. Under Assumptions A∗0–A∗7, we have that

√
n(ξ̂n − ξ0)

d−→ NM+(p+q)M2+M(M−1)/2

(
0, J−1IJ−1

)
(5.10)

where I = Var
(

∂ℓt(ξ0)
∂ξ

)
and J = E

[
∂2ℓt(ξ0)

∂ξ∂ξ′

]
.

Proof of Theorem 4. A close look into the proof of Theorem 11.7 in Francq and Zakoian
(2011) shows that independence of the innovations is only needed to show the existence
of some small order moments and for the identifiability. The existence of moments is now
imposed in A∗0. To show the identifiability, we have to prove that if there exists a matrix
P1 ∈ R

M×M such that P1ǫ
[2]
t = Zt−1, a.s. where the vector Zt−1 is Ft−1 measurable, then

P1 = 0. Using the second part of our assumption A∗3 we may conclude.

Proof of Theorem 5. As one can see in the proof of Theorem 11.8 in Francq and Zakoian
(2011), the independence of the innovations is only used to show the existence of moments of
the theoretical criterion ℓt, or of its derivative at ξ0 or at a neighbourhood of it. For example,
in order to prove the existence of I, we first compute for i ≤ s := M + (p+ q)M2,

∂ℓt(ξ0)

∂ξi

= −Tr

{
(ǫtǫ

′
tD

−1
t R−1 +R−1D−1

t ǫtǫ
′
t)D

−1
t

∂Dt(ξ0)

∂ξi

D−1
t

}
+ 2Tr

{
D−1

t

∂Dt(ξ0)

∂ξi

}

= Tr

{
(IM −R−1/2νtν

′
tR

1/2)
∂Dt(ξ0)

∂ξi

D−1
t + (IM −R1/2νtν

′
tR

−1/2)D−1
t

∂Dt(ξ0)

∂ξi

}
.

When independence between νt and the past holds, the existence of the second-order moments
of these derivatives only requires E‖νt‖4 < ∞. Under our martingale difference assumption
A∗3, the moment condition on νt has to be strengthened as in A∗7. More precisely, for
i, j ≤ s, we use Hölder’s inequality to get that

E

∣∣∣∣∣
∂ℓt(ξ0)

∂ξi

∂ℓt(ξ0)

∂ξj

∣∣∣∣∣ ≤ cst ·
(
1 + E‖νtν

′
t‖2(1+w)

) 1
1+w


E

∥∥∥∥∥D
−1
t

∂Dt(ξ0)

∂ξi

∂Dt(ξ0)

∂ξj

D−1
t

∥∥∥∥∥

1+w
w




w
1+w

≤ cst ·


E

∥∥∥∥∥D
−1
t

∂Dt(ξ0)

∂ξi

∥∥∥∥∥

2(1+w)
w

E

∥∥∥∥∥D
−1
t

∂Dt(ξ0)

∂ξj

∥∥∥∥∥

2(1+w)
w




w
2(1+w)

< ∞.

The case i > s, i.e. when deriving with respect to the coefficients of the matrix R, is actually
much simpler. The remainder of the proof works as in the classical CCC-GARCH by similar
arguments.
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5.4 Proofs of the results of Section 3

In view of representation (3.7), we build a sequence (ǫt) satisfying the CCC-GARCH model
of the previous section. Let (rt)t∈Z be an i.i.d. sequence of M -dimensional vectors, whose
components are independent Rademacher variables. Let ǫt = {diag(Y <2>

t )}1/2rt and let Ft

the σ-field generated by (rt, {ηt−u, u ≥ 0}). Let Dt = {diag(〈σ2
t , ϕm〉)}1/2 and let νt = D−1

t ǫt.

Note that ǫ
[2]
t = (ǫ2

t,1, . . . , ǫ
2
t,M) = Y <2>

t . It follows that (5.6)-(5.8) hold with R = IM . Let

ξ = vec
(
d,A1, . . . ,Aq,B1, . . . ,Bp

)
= (I1+M(p+q) ⊗ Φ)θ,

where ⊗ denotes the usual Kronecker product of matrices. Since Φ is non-singular (this
follows from the linear independence of the functions ϕ1, . . . , ϕM), the transformation T

which maps θ to ξ is bijective. By choosing Ξ = T (Θ), the QML estimator ξ̂n defined in (5.9)

satisfies ξ̂n = T (θ̂n). Clearly, Theorems 4-5 can be straightforwardly adapted when R = I is
not estimated. It, therefore, suffices to verify that the assumptions of these theorems are
satisfied.

Proof of Theorem 2. We start by verifying that the multivariate process (ǫt)t∈Z defined by
ǫt = {diag(Y <2>

t )}1/2rt satisfies assumptions A∗0–A∗5.

Assumption A∗0 follows from Proposition 3, noting that

‖ǫ[2]
t ‖ =

(
M∑

m=1

|〈y2
t , ϕm〉|2

)1/2

≤ ‖y2
t ‖
(

M∑

m=1

‖ϕm‖2

)1/2

,

where ‖.‖ denotes the euclidean norm. Assumption A∗1 is obviously satisfied. By construction
ǫt ∈ Ft and satisfies (5.6)-(5.8). The stationarity and ergodicity of ǫt readily follows from A2.
Thus A∗2 holds. The first part of A∗3 is obtained by noting that E(〈y2

t , ϕm〉1/2rt,m|Ft−1) = 0
and E(〈y2

t , ϕm〉|Ft−1) = 〈σ2
t , ϕm〉. For the second part of A∗3 we suppose that there exists

an x ∈ R
M , such that x′ǫ

[2]
t is Ft−1-measurable. Then, conditionally on Ft−1 we have that

x′ǫ
[2]
t =

M∑

m=1

xm〈y2
t , ϕm〉 = 〈η2

t , σ
2
t

M∑

m=1

xmϕm〉 = const, a.s.

Assumption A3 implies that the constant must be zero and that σ2
t (u)

∑M
m=1 xmϕm(u) = 0,

a.s. Furthermore, since σ2
t (u) ≥ δ0(u) > 0, for all u ∈ [0, 1] and the function ϕ1, . . . , ϕM are

linearly independent, we can conclude that x = 0. The remaining assumptions A∗4 and A∗5
are obviously satisfied.

Hence, we can apply Theorem 4 to the process (ǫt)t∈Z and, thus, we get that ξ̂n → ξ0, a.s.
To conclude, the continuity of T−1 implies that θ̂n → θ0, a.s.

Proof of Theorem 3. Since T is a bijection, it is obvious that assumption A6 implies that
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A∗6. Next, we have

E‖νtν
′
t‖2 ≤

M∑

k,m=1

Eν2
t,kν

2
t,m

≤
M∑

k,m=1

(
Eν4

t,kEν
4
t,m

)1/2

=
M∑

k,m=1

(
E
[
E[〈σ2

t η
2
t , ϕk〉2|Ft−1]/〈σ2

t , ϕk〉2
]
E
[
E[〈σ2

t η
2
t , ϕm〉2|Ft−1]/〈σ2

t , ϕm〉2
])1/2

≤ M2E‖ηt‖4
∞,

where we used Hölder’s inequality in the last step. By assumption A7 we obtain that
E‖νtν

′
t‖2 < ∞. This is slightly weaker than assumption A∗7, which would require more than

fourth order moments for the innovations process. However, in our situation we can avoid
this further assumption and the use of Hölder’s inequality as in Theorem 5. For example, to
prove that

E

∥∥∥∥∥
∂ℓt(θ0)

∂θ

∂ℓt(θ0)

∂θ′

∥∥∥∥∥ < ∞ and E

∥∥∥∥∥
∂2ℓt(θ0)

∂θ∂θ′

∥∥∥∥∥ < ∞,(5.11)

we compute

∂ℓt(θ)

∂θ
=

M∑

m=1

(
1 − Y <2>

t,m

ht,m

)
1

ht,m

∂ht,m

∂θ
,(5.12)

∂2ℓt(θ)

∂θ∂θ′
=

M∑

m=1

(
1 − Y <2>

t,m

ht,m

)
1

ht,m

∂2ht,m

∂θ∂θ′

+
M∑

m=1

(
2
Y <2>

t,m

ht,m

− 1

)
1

h2
t,m

∂ht,m

∂θ

∂ht,m

∂θ′
.(5.13)

At the true value of the parameter, θ = θ0, we have that

Y <2>
t,m

ht,m

=
〈y2

t , ϕm〉
〈σ2

t , ϕm〉 =

∫
σ2

t (u)η2
t (u)ϕm(u)du

∫
σ2

t (u)ϕm(u)du
≤ sup

u∈[0,1]
η2

t (u) = ‖η2
t ‖∞.(5.14)

This last quantity is independent of Ft−1, which readily implies that (5.11) reduces to prove
that

E

∣∣∣∣∣
1

ht,m

∂ht,m

∂θi

∣∣∣∣∣

2

< ∞,

for all m = 1, . . . ,M and i = 1, . . . ,M + (p+ q)M2. This can be established with Proposition
3.

Proof of Proposition 4. We first prove that θ̂n → θ0 almost surely, where θ̂n denotes the
minimiser of Q̂n over the whole space Θ. Let ℓt(θ) denote the theoretical criterion (involving
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the infinite past of yt), defined as ℓ̃t(θ), but with σ̃2
t replaced by σ2

t given by the model
recursion. Note that under (3.1) we have that

E
[
〈y2

t , ϕm〉 | Ft−1

]
= 〈σ2

t , ϕm〉.(5.15)

To show θ̂n → θ0 by standard arguments it suffices to verify the following:

(i) supθ∈Θ |Qn(θ) − Q̃n(θ)| −→
n→∞

0 a.s.

(ii) 〈σ2
t , ϕm〉 = 〈σ2

t , ϕm〉 a.s. for all m ≥ 1 implies θ = θ0;

(iii) Eℓt(θ) exists for all θ ∈ Θ, and is finite for θ = θ0, and Eℓt(θ) > Eℓt(θ0), for θ 6= θ0;

(iv) ∀θ 6= θ0, there exists a neighbourhood Vθ such that lim infn infθ′∈Vθ
Q̃n(θ′) > Eℓt(θ0),

a.s.

Relation (iv) can be proven in the same way as in the univariate case. In order to prove
(i), we recall that for all θ ∈ Θ, σ2

t ≥ δ. Hence, the non-negativity of the ϕm’s and A9
implies that there is a strictly positive constant c, such that 〈σ2

t , ϕm〉 ≥ cam for all m ≥ 1.
Furthermore, we have that ‖σ2

t − σ̃2
t ‖ ≤ Kρt, where ρ is the supremum of ‖βθ‖ over θ ∈ Θ

and K is a random constant. The compactness of Θ implies that ρ < 1. We then compute

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| ≤ 1

n

n∑

t=1

∞∑

m=1

wm sup
θ∈Θ

{∣∣∣∣
〈σ2

t , ϕm〉 − 〈σ̃2
t , ϕm〉

〈σ̃2
t , ϕm〉〈σ2

t , ϕm〉
∣∣∣∣〈y2

t , ϕm〉 − log
〈σ̃2

t , ϕm〉
〈σ2

t , ϕm〉

}

≤
∞∑

m=1

wmK

(
sup
θ∈Θ

1

〈δθ, ϕm〉2

)
1

n

n∑

t=1

ρt〈y2
t , ϕm〉 +

∞∑

m=1

wmK

(
sup
θ∈Θ

1

〈δθ, ϕm〉

)
1

n

n∑

i=1

ρt

≤ Kc−2
∞∑

m=1

wm

a2
m

1

n

〈 n∑

t=1

ρty2
t , ϕm

〉
+Kc−1

∞∑

m=1

wm

am

1

n

n∑

t=1

ρt

Consider the random function Y = lim
n→∞

↑ ∑n
t=1 ρ

ty2
t . The existence of moment of order s

for y2
t and its stationarity implies that E‖Y ‖s ≤ ∑∞

t=1 ρ
tsE‖y2

t ‖s < ∞ and, thus, that Y is
almost surely finite. We thus have that

sup
θ∈Θ

|Qn(θ) − Q̃n(θ)| ≤ K‖Y ‖
nc2

∞∑

m=1

wm

a2
m

+
K

nc(1 − ρ)

∞∑

m=1

wm

am

a.s.−→
n→∞

0.

We now turn to (iii). Although ℓt(θ) is not necessarily integrable, it is well defined in
R ∪ {∞}, since

Eℓt(θ) ≥ E
∞∑

m=1

wm log〈σ2
θt, ϕm〉 ≥

∞∑

m=1

wm(log c+log am) ≥ const−
∞∑

m=1

wm log
(

1

am

)
> −∞,

and at the true value of the parameter θ = θ0, we have that

E ℓt(θ0) =
∞∑

m=1

wmE
{
E
[ 〈y2

t , ϕm〉
〈σ2

t , ϕm〉
∣∣∣Ft−1

]
+ log〈σ2

t , ϕm〉
}

=
∞∑

m=1

wm

(
1 + E log〈σ2

t , ϕm〉
)

≤
∞∑

m=1

wm

(
1 + E log ‖σ2

10
‖
)
< ∞.
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We now have that

E[ℓt(θ)] − E[ℓt(θ0)] =
∞∑

m=1

wmE

{
〈σ2

t , ϕm〉
〈σ2

t , ϕm〉 − 1 + log
〈σ2

t , ϕm〉
〈σ2

t , ϕm〉

}

≥ 0,

with equality iff for all m ≥ 1

(5.16) 〈σ2
t , ϕm〉 = 〈σ2

t , ϕm〉, a.s.

The proof of (iii) will be completed using (ii). To show (ii) we suppose that (5.15) holds true.
We then have, for all m ≥ 1,

〈δ0, ϕm〉 + 〈α0(y
2
t−1), ϕm〉 + 〈β0(σ

2
t−1), ϕm〉

= 〈δθ, ϕm〉 + 〈αθ(y
2
t−1), ϕm〉 + 〈βθ(σ

2
t−1), ϕm〉 a.s.(5.17)

We have,

〈αθ(y
2
t−1), ϕm〉 = 〈σ2

t−10
η2

t−1,α
∗
θ(ϕm)〉 = 〈η2

t−1, σ
2
t−10

α∗
θ(ϕm)〉.

In view of (5.17) we have

〈η2
t−1, σ

2
t−10

[α∗
0(ϕm) − α∗

θ(ϕm)]〉 = Kt−2 a.s.,

where Kt−2 ∈ Ft−2. It follows immediately that Kt−2 must be constant and from A3, that

α∗
0(ϕm) = α∗

θ(ϕm), ∀m ≥ 1.

By A8 (b) we deduce that αθ = α0. From (5.17) we have, moreover, that

〈δ0, ϕm〉 + 〈β0(σ
2
t−10

), ϕm〉 = 〈δθ, ϕm〉 + 〈βθ(σ
2
t−1), ϕm〉 a.s.

or, equivalently, that

〈δ0, ϕm〉 + 〈σ2
t−10

,β∗
0(ϕm)〉 = 〈δθ, ϕm〉 + 〈σ2

t−1,β
∗
θ(ϕm)〉 a.s.

It follows that

〈δ0, ϕm〉 + 〈δθ0 + α0(y
2
t−2) + βθ0

(σ2
t−20

),β∗
0(ϕm)〉

= 〈δθ, ϕm〉 + 〈δθ + αθ(y
2
t−2) + βθ(σ

2
t−2),β

∗
θ(ϕm)〉 a.s.

Because αθ = α0 we deduce, with obvious notation, that

〈α0(y
2
t−2), [β

∗
0(ϕm) − β∗

θ(ϕm)]〉 = Kt−3, a.s.

or, equivalently, that

〈η2
t−2, σ

2
θ0t−2(α

∗
0 ◦ β∗

0)(ϕm)〉 = 〈η2
t−2, σ

2
θ0t−2(α

∗
0 ◦ β∗

θ)(ϕm)〉 +Kt−3, a.s.
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With similar arguments as in the above we, thus, obtain (α∗
0 ◦ β∗

0)(ϕm) = (α∗
0 ◦ β)(ϕm), for

all m ≥ 1. By A8 (c), this entails βθ = β0. Finally, (5.17) reduces to 〈δ0, ϕm〉 = 〈δθ, ϕm〉,
which, by A8 (a), implies that δ = δ0. We can conclude that θ = θ0.

Recall that θ̂n denotes the minimiser of Q̂n over the whole space Θ which is not computable
in practise due to our assumption that Θ is infinite dimensional. Let us denote by ‖x‖ the
ℓ2-norm of some square summable sequence x = (x1, x2, . . .). We have that

‖θ̂Nn

n − θ0‖ ≤ ‖θ̂Nn

n − θ̂n|ΘNn
‖ + ‖θ̂n|ΘNn

− θ̂n‖ + ‖θ̂n − θ0‖,(5.18)

where |ΘN
denotes the projection x 7→ (x1, . . . , xN). Up to now, we have shown that the

third term of (5.18) converges almost surely to zero. The second term is equal to
∑

j>Nn
θ̂n,j

where θ̂n,j simply denotes the j-th term of the sequence θ̂n, which is supposed to be in ℓ2.

We can further bound this quantity by supℓ≥1

∑
j>Nn

θ̂ℓ,j. To show that this converges to

zero we apply the tighness Lemma 14 in Cerovecki and Hörmann (2017) with p
(n)
j = θ̂n,j

and p
(0)
j = θ0,j. Finally, from the compactness of Θ we know that there exists a subsequence

(θ̂
Nnℓ
nℓ )ℓ≥1 that converges in ℓ2 to x, say, and observe that by definition

Q̃nℓ
(θ̂

Nnℓ
nℓ ) ≤ Q̃nℓ

(θ̂nℓ
|ΘNnℓ

), for all ℓ ≥ 1.

Now, we have already shown that θ̂nℓ
|ΘNnℓ

→ θ0 a.s. when ℓ → ∞. Since Q̃n(θ) → Q(θ) a.s.

and uniformly in θ, we obtain that Q(x) ≤ Q(θ0), a.s. This shows that x = θ0 and, thus, that
the first term on the right-hand side of (5.18) converges a.s. to zero.
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