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Abstract. In this paper we borrow from Ciarreta and Gutiérrez-Hita (2012)

a duopolistic industry structure with cost asymmetry and demand uncertainty,

and using this structure we build a bargaining model to study the division of

collusion profits –obtained from the joint selection of supply functions– under

the possibility of side payments. In our model, we consider potential disagree-

ment points obtained from the non-cooperative equilibrium of either the quan-

tity competition or the supply function competition, and potential bargaining

solutions splitting the gains from agreement either equally or proportionally

according to the relative disagreement payoffs of the duopolists. Given any of

these disagreement points and any of these bargaining solutions, we find that

each duopolist has always incentive to join a collusive agreement. On the other

hand, irrespective of whether the bargaining solution splits the gains from agree-

ment equally or proportionally respecting the relative disagreement payoffs, the

more efficient firm (the less efficient firm) in the cartel always obtains a higher

agreement payoff when the disagreement point is obtained from the equilibrium

of supply function competition (quantity competition). Given the studied dis-

agreement points and bargaining solutions, we also find that bargaining over

collusion profits always makes the more efficient firm worse off and the less

efficient firm better off in comparison to a collusive agreement equalizing the

marginal costs of these two firms.

Keywords: Duopoly; collusion; bargaining; Cournot competition; supply func-

tion competition; uncertainty
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1 Introduction

A voluminous literature has extensively studied the basic problem of oligopolis-

tic cartels as to how to divide collusion profits under cost asymmetries. While

a strand of this literature followed Patinkin’s (1947) efficiency concern that the

cartel should allocate the collusive outcome to equalize the marginal costs of

oligopolists, another strand accepted Bain’s (1948) criticism that the division of

collusion profits must respect the relative bargaining power of the oligopolists

obtained from the threat of playing their non-cooperative equilibrium strate-

gies (see, for example, Osborne and Pitchik, 1983, and Schmalansee, 1987).

On the other hand, both strands of literature have mainly focused on types of

collusion where the oligopolistic firms compete in prices or in quantities. An

exception is the recent work of Ciarreta and Gutiérrez-Hita (2012), which al-

lows collusive firms in a duopolistic industry to compete in supply functions,

as well. However, since that type of competition may yield uncountably many

equilibria in deterministic environments (as shown by Grossman, 1981), Cia-

rreta and Gutiérrez-Hita (2012) had to ensure the uniqueness of equilibrium

by allowing in their model for the possibility of demand uncertainty as well,

a remedy which was earlier proposed by Klemperer and Meyer (1989). One of

the results Ciarreta and Gutiérrez-Hita (2012) obtained from their sophisticated

model suggests that the less efficient firm has no incentive to reach a collusive

agreement in either supply functions or in quantities when the cost asymmetry

in the duopoly is sufficiently high, because in that case the expected profits

of this firm are higher at the non-cooperative equilibria of these two types of

competition. This result, though quite interesting, may not be general, as it is

based on the assumed impossibility of side payments between duopolists, forcing

them to share the collusive outcome according to cost efficiency considerations.

In this paper we replace this assumption with an opposite assumption that al-

lows for side payments between the duopolists, enabling them to freely bargain

over collusion profits within the cooperative framework of Nash (1950b).

In our bargaining model, the bargaining set consists of all possible (not
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necessarily efficient) divisions of the collusion profits obtained from the joint se-

lection of supply functions of the duopolists. Given a bargaining set, we consider

potential disagreement points obtained from the non-cooperative equilibrium of

either the quantity competition or the supply function competition, and poten-

tial bargaining solutions splitting the gains from agreement either equally or

proportionally according to the relative disagreement payoffs of the duopolists.

Given any of these disagreement points and any of these bargaining solutions,

we find that each duopolist has always incentive to join a collusive agreement.

On the other hand, irrespective of whether the bargaining solution splits the

gains from agreement equally or proportionally respecting the relative disagree-

ment payoffs, the more efficient firm (the less efficient firm) in the cartel always

obtains a higher agreement payoff when the disagreement point is obtained from

the equilibrium of supply function competition (quantity competition). Given

the studied disagreement points and bargaining solutions, we also find that bar-

gaining over collusion profits always makes the more efficient firm worse off and

the less efficient firm better off in comparison to a collusive agreement equalizing

the marginal costs of these two firms.

The rest of the paper is organized as follows: In Section 2, we present some

preliminaries, involving the duopolistic model of Ciarreta and Gutiérrez-Hita

(2012) and some of their results relevant for our purpose. Using these prelim-

inaries, we construct in Section 3 a bargaining model for collusive duopolists.

Section 4 contains our results and Section 5 concludes. Finally, the Appendix

contains the proofs of all results in Section 4.

2 Preliminaries

We will present here the duopolistic industry structure considered by Ciarreta

and Gutiérrez-Hita (2012) along with some of their results that will be relevant

for our bargaining model and results in Sections 3 and 4 respectively. This

structure involves a duopolistic industry model with a single homogeneous good

3



produced under the possibility of cost asymmetry and demand uncertainty. The

duopolistic firms have quadratic cost functions such that firm i = 1, 2 producing

a quantity of output qi ≥ 0 incurs the cost

Ci(qi) = (1 + θi(c)) q
2
i/2, (1)

where 0 ≤ c ≤ 1 and

θi(c) =







−c if i = 1,

+c if i = 2,
(2)

implying that firm 1 is (generally) more efficient than firm 2. The industry

demand curve is given by

D(p, α(µ)) = α(µ)− p, (3)

where p ≥ 0 is the market price of the good and α(µ) is a scalar random variable

that takes the values 1−µ and 1+µ with equal probability.1 It is assumed that

0 ≤ µ ≤ 1. The distribution of α(µ), the curves C(q) and D(p, α(µ)), and the

ranges of the parameters c and µ are all common knowledge.

2.1 Two Types of Competition

For the duopolistic industry described above, two types of competition will

be considered. In one of the types, the duopolistic firms compete in supply

functions. That is, a strategy for firm i = 1, 2 is to non-cooperatively choose -

before it learns the realization of the demand uncertainty α(µ)- a linear function

mapping price into a quantity of output, i.e., Si = vip where vi ≥ 0.2 Given

1In Ciarreta and Gutiérrez-Hita (2012), α(µ) can take (with equal probability) the values

α − µ and α + µ, where α ∈ R+. We set α = 1 because the parameter α does not affect our

results qualitatively.
2In Ciarreta and Gutiérrez-Hita (2012), the supply functions are affinely linear; however, in

both collusive and non-cooperative equilibria the constant part of the supply function equals

zero for each firm. Given this fact, in order to simplify the notation and analysis, we will

proceed with linear supply functions.
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the supply functions of the firms, the market clears at a realization α(µ) of the

demand uncertainty if

D(p(α(µ)), α(µ)) = S1(p(α(µ)) + S2(p(α(µ)) = (v1 + v2)p(α(µ)). (4)

So, inserting (3) into (4) yields the market clearing price

p(α(µ), v1, v2) =
α(µ)

1 + v1 + v2
. (5)

We say that a pair of linear supply functions (S∗
1 (p), S

∗
2 (p)) = (v∗1p, v

∗
2p) consti-

tutes a Nash equilibrium (Nash, 1950a) if for each i = 1, 2 the function S∗
i (p)

maximizes the expected profits of firm i when the remaining firm j 6= i pro-

duces according to its supply function S∗
j (p). Formally, this implies that for

each i, j ∈ {1, 2} with j 6= i, the parameter v∗i solves

max
vi≥0

1

2

∑

α(µ)

[

p(α(µ), vi, v
∗
j )S

∗
i (p(α(µ), vi, v

∗
j ))−

(1 + θi(c))
(

S∗
i (p(α(µ), vi, v

∗
j )
)2
/2
]

. (6)

Proposition 1 (Ciarreta and Gutiérrez-Hita, 2012). Competition in linear

supply functions has a unique Nash equilibrium characterized by S∗
i (p) = v∗i p

for each i = 1, 2, where

v∗i =
1

2

(

v(c)− 2θi(c)

3− c2
− 1

)

, (7)

with

v(c) =
√

45− c2(14− c2). (8)

At this equilibrium, the expected profits of firm i = 1, 2 are given by

πS
i (c, µ) =

1 + µ2

4

(

(9− c2) + θi(c)(5− c2)

v(c)
− (1 + θi(c))

)

. (9)

Proposition 1 implies that the equilibrium supply function of the more ef-

ficient firm (firm 1) in the duopoly is always steeper. Therefore, the more

efficient firm always has higher output and expected profits in equilibrium. On
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the other hand, demand uncertainty affects the two firms in the same direction:

the equilibrium expected profits of both firms become higher when the demand

uncertainty becomes higher.

The second type of competition we will consider is the well-known quantity

competition of Cournot (1838). Under this competition, a strategy for firm

i = 1, 2 is to choose –before it learns the realization of the demand uncertainty

α(µ)– a fixed quantity of output, qi ≥ 0. Given the quantities chosen by the

firms, the market clears at a realization α(µ) of the demand uncertainty if

D(p(α(µ)), α(µ)) = q1 + q2. (10)

Inserting the demand equation (3) into (10) yields the market clearing price

p(α(µ), q1, q2) = α(µ)− q1 − q2. (11)

We say that a pair of quantities (q∗1 , q
∗
2) constitutes a (Cournot) Nash equilib-

rium if for each i = 1, 2 the quantity q∗i maximizes the expected profits of firm i

when the remaining firm j 6= i produces according to the quantity q∗j . Formally,

for each i, j ∈ {1, 2} with j 6= i, the quantity q∗i solves

max
qi≥0

1

2

∑

α(µ)

[

p(α(µ), qi, q
∗
j )qi − (1 + θi(c)) qi

2/2
]

. (12)

Proposition 2 (Ciarreta and Gutiérrez-Hita, 2012). Competition in quan-

tities has a unique (Cournot) Nash equilibrium characterized by

q∗i (c) =

(

2− θi(c)

8− c2

)

, i = 1, 2. (13)

At this equilibrium, the expected profits of firm i = 1, 2 are given by

πC
i (c) =

1

2

[

(3 + θi(c))(2− θi(c))
2

(8− c2)2

]

. (14)

The above proposition shows that under the quantity competition, the more

efficient firm always produces more in comparison to the less efficient firm, like

in the supply function competition; hence, it obtains higher expected profits

in equilibrium. However, unlike under the supply function competition, the
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expected profits of the duopolistic firms are independent of the demand uncer-

tainty under the quantity competition. One may immediately ask whether any

of these two competitions can always yield more expected profits to the more ef-

ficient firm or to the less efficient firm in the duopoly. We will give a non-trivial

answer to this question in Section 4.

2.2 Two Types of Collusion

We will now consider two types of collusion. According to the first type, the

duopolistic cartel chooses the linear supply functions of the two firms jointly to

maximize the industry (cartel) profits. Let πI(α(µ), v1, v2) denote the industry

profits at the demand realization α(µ) when the supply functions chosen by the

cartel for firm 1 and firm 2 are S1(p) = v1p and S2(p) = v2p respectively. These

profits can be calculated as

πI(α(µ), v1, v2) =
∑

i=1,2

[

p(α(µ), v1, v2)Si(p(α(µ), vi))−

(1 + θi(c)) (Si(p(α(µ), vi))
2
/2
]

, (15)

where p(α(µ), v1, v2) is given by (5). We say that a pair of supply functions,

(Ŝ1(p), Ŝ2(p)) = (v̂1p, v̂2p), leads to collusion if for all i, j ∈ {1, 2} with j 6= i

the parameter v̂i solves

max
vi≥0

1

2

∑

α(µ)

πI(α(µ), vi, v̂j). (16)

Proposition 3 (Ciarreta and Gutiérrez-Hita, 2012). Collusion in linear

supply functions arises only if Ŝi(p) = v̂ip for each i = 1, 2, where

v̂i =
1− θi(c)

3− c2
. (17)

Under this collusion, the expected industry profits are equal to

πI,S−Col(c, µ) =
1 + µ2

5− c2
. (18)

7



Moreover, if the output is allocated between the firms to equalize their marginal

costs, then the expected profits of firm i = 1, 2 become

πS−Col
i (c, µ) =

1 + µ2

2

[

1− θi(c)

5− c2

]

. (19)

Note in the above proposition that the supply curve chosen by the duopolis-

tic cartel for the more efficient firm is always steeper than the supply curve

chosen for the less efficient firm. Consequently, the output allocated to, and the

expected profits obtained by, the more efficient firm in the cartel are higher. On

the other hand, the expected profits of both firms are increasing in the size of

demand uncertainty.

Now, we will consider the type of collusion where the duopolistic cartel

chooses the fixed quantities of the two firms jointly to maximize the industry

profits. Let πI(α(µ), q1, q2) denote the industry profits at the demand realization

α(µ) when the quantities chosen for firm 1 and firm 2 are q1 and q2 respectively.

Then, we must have

πI(α(µ), q1, q2) =

2
∑

i=1

[

(α(µ)− q1 − q2)qi − (1 + θi)q
2
i /2

]

. (20)

We say that a pair of quantities, (q̂1, q̂2), leads to collusion if for all i, j ∈ {1, 2}

with j 6= i the quantity q̂i solves

max
qi≥0

1

2

∑

α(µ)

πI(α(µ), qi, q̂j). (21)

Proposition 4 (Ciarreta and Gutiérrez-Hita, 2012). Collusion in quanti-

ties arises only if for each i = 1, 2 the quantity of output produced by firm i is

equal to

qC−Col
i (c) =

1− θi(c)

5− c2
. (22)

Under this collusion, the expected industry profits are always given by

πI,C−Col(c) =
1

5− c2
. (23)
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Moreover, if the output is allocated between the two firms to equalize their

marginal costs, then the expected profits of firm i = 1, 2 become

πC−Col
i (c) =

1

2

[

1− θi(c)

5− c2

]

. (24)

The above proposition shows that -like in the case of collusion in supply

functions- the output allocated to, and the expected profits obtained by, the

more efficient firm in the cartel are always higher. Comparing Propositions 3

and 4, we also observe that the expected profits of each firm, hence the industry

profits, are always higher when the cartel commits to supply functions, instead

of quantities, provided that there is any size of demand uncertainty.

3 The Model

Using the duopolistic industry presented above, Ciarreta and Gutiérrez-Hita

(2012) studied the formation and stability of a collusive agreement (or a cartel).

However, they only considered agreements without side payments, and following

the suggestion of Patinkin (1947) they restricted themselves to collusive alloca-

tions that equalize the duopolists’ marginal costs of production. In this paper,

we will get rid of this restriction and study the problem of dividing collusion

profits under the possibility of bargaining with side payments. We will formu-

late this division problem using the two-person cooperative bargaining model of

Nash (1950), where the two persons, namely the duopolists in our problem, are

allowed to choose a payoff allocation in a bargaining set of payoffs according to

any rule they agree upon.

Formally, in the bargaining model of Nash (1950), a bargaining set is any

nonempty subset of R2
+, representing von Neumann-Morgenstern utilities at-

tainable through the cooperative actions of two agents. Given any bargaining

set S ∈ R
2
+, a point d = (d1, d2) in S is called the disagreement point. If the

two persons fail to agree on any point in S, then they receive the gains d1 and

d2 respectively. The bargaining set S and a disagreement point d in this set to-
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gether define a bargaining problem. It is assumed that S is compact and convex

and there exists x ∈ S such that x ≥ d.3 In addition, S is d-comprehensive (al-

lowing free disposal of utility); that is, for all x, y ∈ R
2
+, if x ∈ S and x ≥ y ≥ d,

then y ∈ S. Let WP (S) denote the set of weakly Pareto optimal points in S;

i.e. WP (S) = {y ∈ S : if x > y, then x /∈ S}, and let P (S) denote the set of

(strongly) Pareto optimal points in S; i.e. P (S) = {y ∈ S : if x ≥ y, then x /∈ S}.

Given the above assumptions and definitions, let Σ2
+ denote the set of all two-

person bargaining problems with a non-negative disagreement point. We can

now formulate the bargaining problem between the firms in a duopolistic cartel.

First, we will construct the bargaining set for this cartel. Here, we assume that

the two firms jointly choose -among the two alternatives in Section 2.2- the type

of collusion that yields the highest industry profits. Comparison of Propositions

3 and 4 to this end immediately reveals that the two firms, when they desire

to form a cartel, should always choose to collude in supply functions since the

expected profits of the cartel would be never lower under that type of collusion

and would be always higher as long as there is any uncertainty in demand. Thus,

for the rest of this study, we assume that the expected collusion profits to be

shared by the duopolistic firms are equal to πI,S−Col(c, µ), satisfying equation

(18), for any c ∈ [0, 1] and µ ∈ [0, 1]. We will denote this profit level by πI(c, µ).

Since any division of collusion profits is allowed under the possibility of side

payments, for any c and µ in [0, 1] the corresponding bargaining set S(c, µ) must

be equal to {s1, s2 ∈ R
2
+ : 0 ≤ s1+s2 ≤ πI(c, µ)}. Note that S(c, µ) always has a

linear frontier, i.e. P (S(c, µ)) = WP (S(c, µ)). Also, S(c, µ) is always compact,

convex, and also d-comprehensive given any d ∈ S(c, µ). Let us denote by Σ2,D
+

the set of all problems (S(c, µ), d) in Σ2
+ faced by the duopolistic firms for some

c and µ in [0, 1]. Clearly, Σ2,D
+ ⊂ Σ2

+.

Given the definition for bargaining problems, a solution F on Σ2
+ is a map-

ping from Σ2
+ to R

2
+ such that for any (S, d) ∈ Σ2

+, F (S, d) ∈ S. (Given the

solution point F (S, d), we will denote by Fi(S, d) the payoff of firm i = 1, 2.)

3Given two vectors x and y in R
2
+
, x > y means xi > yi for i = 1, 2 and x ≥ y means

xi ≥ yi for i = 1, 2.
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Obviously, there exist uncountably many solutions on Σ2
+. However, we will

only consider solutions that will divide up the cartel’s gains from agreement

either always equally or always proportionally according to the ratio of the

disagreement payoffs. To formally describe these solutions, we say that

(i) a bargaining solution F on Σ2
+ is called the Equal Split solution on Σ2,D

+ if

for any c ∈ [0, 1], µ ∈ [0, 1], and d ∈ S(c, µ) it satisfies

Fi(S(c, µ), d)− di =
1

2
[πI(c, µ)− d1 − d2], i = 1, 2, (25)

(ii) a bargaining solution F on Σ2
+ is called the d-Proportional Split solution on

Σ2,D
+ if for any c ∈ [0, 1], µ ∈ [0, 1], and d ∈ S(c, µ) it satisfies

Fi(S(c, µ), d)− di = φi(d) [π
I(c, µ)− d1 − d2], i = 1, 2, (26)

where

φi(d) =



















1

2
if d1 + d2 = 0,

di
d1 + d2

if 0 < d1 + d2 ≤ πI(c, µ).
(27)

In the oligopoly literature, the solution that splits the gains from agreement

equally was referred by Schmalansee (1987) as the Equal Gains solution of Roth

(1979) while he was dealing with problems where the bargaining sets are linear

and the disagreement point is set to the Nash equilibrium payoffs obtained under

the quantity (Cournot) competition, whereas for similar problems the solution

that splits the gains from agreement d-proportionally was referred by Fischer

and Normann (2016) as the Equal Relative Gains solution of Roth (1979). One

can check that many well known solutions, including the Nash (1950) solution,

the Kalai and Smorodinsky (1975) solution, and the Egalitarian solution (Kalai,

1977) among others, reduce to the Equal Split solution on Σ2,D
+ . One can also

check that both the Equal Split and the Proportional Split solution can be

obtained from some members of the class of reference function solutions, defined

and characterized by Anbarci (1995).
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In the next section, we will study the implications of using the Equal Split

and d-Proportional Split solutions in dividing up the collusion profits. For

notational simplicity, we will sometimes use S, πS , πC , and πI in place of

S(c, µ), πS(c, µ), πC(c), and πI(c, µ), respectively.

4 Results

The bargaining model constructed in the previous section requires the duopolis-

tic firms to determine a disagreement point in their bargaining set. The charac-

terization results of Ciarreta and Gutiérrez-Hita (2012), presented in Section 2,

suggest two natural candidates: The expected profits obtained by the duopolis-

tic firms from the supply function competition, πS , and from the Cournot com-

petition, πC . The firms may agree upon using any of these equilibrium points

as a disagreement (status quo) point d, provided that they mutually believe

that if an agreement fails to occur, each firm will be playing its non-cooperative

strategy at the equilibrium strategy profile inducing the payoffs at d. Below, we

will show that, for all values of the parameters c and µ, the payoff allocations

πS(c, µ) and πC(c) are always inside the bargaining set S(c, µ).

Lemma 1. For any c ∈ [0, 1] and µ ∈ [0, 1], if d ∈ {πS(c, µ), πC(c)} then

d ∈ S(c, µ)\WP (S(c, µ)).

Lemma 1 shows that each of the points πS(c, µ) and πC(c) is admissible as a

disagreement point. However, it also implies that neither of these points can be

selected by any bargaining solution that satisfies efficiency, i.e., that leaves no

part of the collusion profits undistributed between the duopolists. This lemma

has a direct implication on the formation of a collusive agreement.

Theorem 1. Let F be any solution on Σ2
+ that reduces to either the Equal Split

solution or the d-Proportional Split solution on Σ2,D
+ . Then, for any c ∈ [0, 1],

12



µ ∈ [0, 1], and d ∈ {πS(c, µ), πC(c)) each duopolist has incentive to collude un-

der the solution F , i.e., Fi(S(c, µ), d) > di for each i = 1, 2.

We should note that given a disagreement point d, both the Equal Split so-

lution and the d-Proportional Split solution offer to each duopolist a bargaining

payoff which is equal to its disagreement payoff plus a positive fraction of the

gains from agreement πI(c, µ)−d1−d2. So, Theorem 1 can be valid if and only

if for all values of the parameters c and µ the gains from agreement are positive

both when d = πS(c, µ) and when d = πC(c). Lemma 1 ensures that this is

indeed the case, since neither of these two potential disagreement points is on

the weak Pareto frontier of S(c, µ).

We should recall that in case the bargaining between the duopolistic firms

fails, each firm gains its disagreement payoff irrespective of the bargaining so-

lution. Given this, our next concern is to compare the disagreement payoffs of

each duopolist induced by the potential disagreement points πS(c, µ) and πC(c).

To this aim, we will first compare πS
1 (c, µ)− πC

1 (c) and πS
2 (c, µ)− πC

2 (c) in the

following lemma.

Lemma 2. For any µ in [0, 1], πS
1 (c, µ) − πC

1 (c) = πS
2 (c, µ) − πC

2 (c) if c = 0

and πS
1 (c, µ)− πC

1 (c) > πS
2 (c, µ)− πC

2 (c) if c ∈ (0, 1].

Lemma 2 shows that if the disagreement point is changed from πC(c) to

πS(c, µ), the absolute gain –obtained when the bargaining fails– becomes higher

for the firm which is more efficient. Noticing that the inequality in this lemma

can be rewritten as πS
1 (c, µ) − πS

2 (c, µ) > πC
1 (c) − πC

2 (c), one can also observe

that as long as there exists cost asymmetry, the welfare inequality between the

duopolists is always higher under the supply function competition. Lemma 2

will be instrumental to prove the next lemma where we will deal with the exis-

tence, uniqueness, and several other properties of some critical µ values.
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Lemma 3. For any i ∈ {1, 2} and c ∈ [0, 1], there exists a unique µi(c) ∈ (0, 1)

such that

πS
i (c, µi(c)) = πC

i (c). (28)

It is also true that µ1(c) is always decreasing in c whereas µ2(c) is always in-

creasing. Moreover, µ1(0) = µ2(0) and µ1(c) < µ2(c) for any c ∈ (0, 1].

Using Lemma 3, we can make the following comparisons.

Theorem 2. Given any c ∈ [0, 1] and µ ∈ [0, 1], the disagreement payoffs of

each duopolist at the disagreement points πS(c, µ) and πC(c) can be compared

as follows:

πS
1 (c, µ) < πC

1 (c) and πS
2 (c, µ) < πC

2 (c) if 0 ≤ µ < µ1(c),

πS
1 (c, µ) = πC

1 (c) and πS
2 (c, µ) < πC

2 (c) if µ = µ1(c),

πS
1 (c, µ) > πC

1 (c) and πS
2 (c, µ) < πC

2 (c) if µ1(c) < µ < µ2(c),

πS
1 (c, µ) > πC

1 (c) and πS
2 (c, µ) = πC

2 (c) if µ = µ2(c),

πS
1 (c, µ) > πC

1 (c) and πS
2 (c, µ) > πC

2 (c) if µ2(c) < µ ≤ 1.

(29)

Theorem 2 implies that in any bargaining situation where bargaining fails

and the disagreement payoffs are realized, both firms in the cartel would regret

if they had agreed, before the bargaining takes place, on the disagreement point

πC(c) instead of πS(c, µ) (on the disagreement point πS(c, µ) instead of πC(c))

provided that the demand uncertainty is sufficiently high (sufficiently low) with

respect to the cost asymmetry.

Figure 1 illustrates our findings in Theorem 2. Note that µ2(c) is the curve

separating the purple and blue colored areas respectively at the top and the

middle of the figure whereas µ1(c) is the curve separating the blue and yellow

colored areas respectively at the middle and the bottom. One can see that an

increase in the cost parameter c increases µ2(c) and decreases µ1(c), raising the

difference µ2(c)−µ1(c) or widening the blue colored region towards the right. In
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situations where the uncertainty parameter µ is random, the rise in µ2(c)−µ1(c)

would imply an increase in the likelihood that πS(c, µ) and πC(c) are Pareto

non-comparable. On the other hand, as we can see in the purple (yellow) colored

region the disagreement welfares of both firms in the duopolistic cartel are higher

(lower) at πS(c, µ) than at πC(c) if the demand uncertainty is sufficiently high

(low).
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Figure 1. The effects of µ and c on the Pareto comparison of the

disagreement points πS(c, µ) and πC(c).

Hereafter, we will study the agreement payoffs obtained by the duopolistic
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firms when the disagreement point is either πS(c, µ) or πC(c). We will first

consider the simple case of symmetric costs, i.e., c = 0. It should be clear from

(8), (9), and (14) that πS
1 (0, µ) = πS

2 (0, µ) for any µ ∈ [0, 1] and πC
1 (0) = πC

2 (0).

These equalities trivially imply that if there is no cost asymmetry, then irre-

spective of the size of the demand uncertainty the duopolistic firms will always

share the collusion profits equally, both when the solution splits the gains from

agreement equally and when it splits them d-proportionally regardless whether

the disagreement point is obtained from the equilibrium of the supply function

or the quantity competition.

Theorem 3. Let F be any solution on Σ2
+ that reduces to either the Equal Split

solution or the d-Proportional Split solution on Σ2,D
+ . If there is no cost asym-

metry in the industry (c = 0), then for any µ ∈ [0, 1] and d ∈ {πS(0, µ), πC(0)},

the collusion profits are split equally under the solution F , i.e., Fi(S(0, µ), d) =

πI(0, µ)/2 for any i ∈ {1, 2}.

In the rest of our paper, we will be interested in the more involving case of

asymmetric costs, i.e., c ∈ (0, 1]. The below lemma will shorten our analysis

substantially. In the proof of many results, after ensuring some payoff compari-

son for firm 1, we will use Lemma 4 to simply infer the relevant comparison for

firm 2.

Lemma 4. Let F be any solution on Σ2
+ that reduces to either the Equal Split

solution or the d-Proportional Split solution on Σ2,D
+ . Then, for any c ∈ (0, 1],

µ ∈ [0, 1], and d, d′ ∈ S(c, µ), we have Fi(S(c, µ), d) > Fi(S(c, µ), d
′) if and only

if Fj(S(c, µ), d) < Fj(S(c, µ), d
′) for any i, j ∈ {1, 2} with j 6= i.

Now, we can start studying solutions that split the gains from agreement

equally.
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Lemma 5. Let F be any solution on Σ2
+ that reduces to the Equal Split so-

lution on Σ2,D
+ . For any c ∈ (0, 1], µ ∈ [0, 1], and d, d′ ∈ S(c, µ), we have

Fi(S(c, µ), d) > Fi(S(c, µ), d
′) if and only if di−dj > d′i−d′j for any i, j ∈ {1, 2}

with j 6= i.

Using Lemma 5, we will next show that if the bargaining solution splits the

gains from agreement equally, then the bargaining payoff of the more efficient

firm in the cartel is always higher when the disagreement point is πS than when

it is πC , while the opposite is true for the payoff of the less efficient firm.

Theorem 4. Let F be any solution on Σ2
+ that reduces to the Equal Split solu-

tion on Σ2,D
+ . Then for any c ∈ (0, 1] and µ ∈ [0, 1], we have F1(S(c, µ), π

S(c, µ))

> F1(S(c, µ), π
C(c)) and F2(S(c, µ), π

S(c, µ)) < F2(S(c, µ), π
C(c)).

To see why Theorem 4 is true, we should note by Lemma 2 that the payoff

difference πS
1 (c, µ) − πS

2 (c, µ) is always higher than πC
1 (c) − πC

2 (c) when there

is cost asymmetry. Then, using Lemma 5, one can simply show that for any

solution F that splits the gains from agreement equally, F1(S(c, µ), π
S(c, µ))

must be higher than F1(S(c, µ), π
C(c)). A negative implication of Theorem 4

is that any size of cost asymmetry would always lead to a conflict between the

duopolistic firms regarding whether –in a pre-bargaining stage– they should set

the disagreement point to πS(c, µ) or πC(c). The firms may resolve this conflict

if they manage to agree upon an alternative disagreement point which is compro-

mising for both of them. A natural candidate for such a point may be a weighted

average of πS(c, µ) and πC(c), i.e., the point πω(c, µ) = ωπS(c, µ)+(1−ω)πC(c)

where ω ∈ (0, 1). Note that the allocation πω(c, µ) lies in S(c, µ) because S(c, µ)

is convex.

Corollary 1. Let F be any solution on Σ2
+ that reduces to the Equal Split

solution on Σ2,D
+ . Then for any c ∈ (0, 1], µ ∈ [0, 1], and ω ∈ (0, 1), we have
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F1(S(c, µ), π
S(c, µ)) > F1(S(c, µ), π

ω(c, µ)) > F1(S(c, µ), π
C(c)) and F2(S(c, µ),

πS(c, µ)) < F2(S(c, µ), π
ω(c, µ)) < F2(S(c, µ), π

C(c)).

Corollary 1 shows that when the bargaining solution splits the gains from

agreement equally, the disagreement point πω becomes, for any ω ∈ (0, 1), al-

ways superior to each firm’s worst alternative in {πC , πS} and always inferior

to each firm’s best alternative in the same set, always implying some degree

of compromise for both firms. We should also note that the higher the weight

parameter ω, the higher the agreement payoff of firm 1 and the lower the agree-

ment payoff of firm 2, pointing to a new conflict between the two firms as to the

determination of ω. Definitely, there is no way to predict which value of ω the

firms would select. However, if they can agree upon choosing their bargaining

solution under some form of symmetry condition leading to a solution split-

ting the gains from agreement equally, it might not be unreasonable to assume

that they could impose a similar condition of symmetry also when they have to

bargain over the parameter ω ∈ (0, 1), leading to the disagreement point π1/2,

which is the equally weighted average of πS and πC at all parameter values.

Now, we will consider bargaining solutions that split the gains from agree-

ment in any bargaining problem d-proportionally.

Theorem 5. Let F be any solution on Σ2
+ that reduces to the d-Proportional

Split solution on Σ2,D
+ . Then for any c ∈ (0, 1] and µ ∈ [0, 1], F1(S(c, µ), π

S(c, µ))

> F1(S(c, µ), π
C(c)) and F2(S(c, µ), π

S(c, µ)) < F2(S(c, µ), π
C(c)).

Theorem 5 shows that when the bargaining solution splits the gains from

agreement proportionally respecting the relative payoffs at the disagreement

point, the more efficient firm always prefers –with respect to the induced agree-

ment payoffs– the disagreement point πS to the disagreement point πC , while

the opposite is true for the less efficient firm. Recall that the same conclusion

was also reached in Theorem 4, where the bargaining solution splits the gains
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from agreement equally. We should also observe that both in Theorem 4 and in

Theorem 5, we have picked and fixed a bargaining solution and then compared

the agreement payoffs of the duopolistic firms induced by the disagreement

points πS and πC . These two theorems together imply that the preferences of

the duopolistic firms over πS and πC are not affected by whether the gains from

agreement are split equally or d-proportionally. But, there remains a question

we have not answered yet. Which of the two solutions, considered in Theorems 4

and 5, would be preferred by the more efficient firm, or the less efficient firm, in

the cartel if the disagreement point were fixed at either πS or πC? The answer

to this question will be implied by the following theorem that builds a bridge

between the results in Theorems 4 and 5.

Theorem 6. Let F d−PS and FES be bargaining solutions on Σ2
+ that respec-

tively reduce to the d-Proportional Split solution and the Equal Split solution

on Σ2,D
+ . Then, for any c ∈ (0, 1] and µ ∈ [0, 1], F d−PS

1 (S(c, µ), πC(c)) >

FES
1 (S(c, µ), πS(c, µ)) and F d−PS

2 (S(c, µ), πC(c)) < FES
2 (S(c, µ), πS(c, µ)).

We know from Theorem 2 that in cases where the size of demand uncertainty

is sufficiently large, the disagreement payoff of the more efficient firm is always

lower at πC than at πS . However, even in such cases it is true –by Theorem 6–

that the more efficient firm prefers a bargaining environment where the disagree-

ment point is πC and the gains from agreement are split d-proportionally to an

environment where the disagreement point is πS and the gains from agreement

is split equally. Theorems 4, 5, and 6 together allow us to observe the following.

Corollary 2. Let F d−PS and FES be bargaining solutions on Σ2
+ that respec-

tively reduce to the d-Proportional Split solution and the Equal Split solution on

Σ2,D
+ . Then, for any c ∈ (0, 1] and µ ∈ [0, 1],

F d−PS
1 (S, πS) > F d−PS

1 (S, πC) > FES
1 (S, πS) > FES

1 (S, πC), and

F d−PS
2 (S, πS) < F d−PS

2 (S, πC) < FES
2 (S, πS) < FES

2 (S, πC)
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where S = S(c, µ), πS = πS(c, µ), and πC = πC(c).

To summarize the findings we have obtained so far, consider at each c ∈ [0, 1]

and µ ∈ [0, 1], the set of bargaining environments

E(c, µ) = {(F d−PS , πS(c, µ)), (F d−PS , πC(c)), (FES , πS(c, µ)), (FES , πC(c))},

where each environment involves a bargaining solution and a disagreement point

we have studied. To compare the environments in E(c, µ) for the duopolistic

firms, we can define their preference relations. Given any (F, d) and (F ′, d′)

where F and F ′ are bargaining solutions on Σ2
+ and d, d′ ∈ S(c, µ), we say

that in terms of the induced agreement payoffs firm i prefers (F, d) to (F ′, d′),

denoted by (F, d) ≻i (F
′, d′), if and only if Fi(S(c, µ), d) > F ′

i (S(c, µ), d
′) and

firm i is indifferent between (F, d) and (F ′, d′), denoted by (F, d) ∼i (F
′, d′), if

and only if Fi(S(c, µ), d) = F ′
i (S(c, µ), d

′).

Given the above definitions, Theorem 3 implies that in case c = 0, firm

i = 1, 2 has the preference ordering

(F d−PS , πS) ∼i (F
d−PS , πC) ∼i (F

ES , πS) ∼i (F
ES , πC) (30)

at any µ ∈ [0, 1]. On the other hand, Corollary 2 implies the following orderings

(F d−PS , πS) ≻1 (F d−PS , πC) ≻1 (FES , πS) ≻1 (FES , πC) (31)

(FES , πC) ≻2 (FES , πS) ≻2 (F d−PS , πC) ≻2 (F d−PS , πS) (32)

for any c ∈ (0, 1] and µ ∈ [0, 1].

The preference orderings above show that in situations where the firms in the

duopolistic cartel restrict themselves at any c ∈ (0, 1] and µ ∈ [0, 1] to the set of

bargaining environments in E(c, µ), the more efficient firm would desire to be in

the environment (F d−PS , πS(c, µ)), which is the worst environment for the less

efficient firm. Oppositely, the best environment in E(c, µ) from the viewpoint of

the less efficient firm, namely (FES , πC(c)), is the worst environment according

to the more efficient firm, pointing to a conflict of choice between the two firms.
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The firms may resolve this conflict by using a disagreement point, π1/2(c, µ),

which averages πC(c) and πS(c, µ), along with a moderating solution FM on

Σ2
+ that will equally split for the two firms the sum of payoffs generated by

(F d−PS , πS(c, µ)) and (FES , πC(c)), i.e.,

FM
i (S(c, µ), π1/2(c, µ))=

1

2

(

F d−PS
i (S(c, µ), πS(c, µ))+FES

i (S(c, µ), πC(c))
)

(33)

for any i ∈ {1, 2}. We should observe that for any c ∈ (0, 1] and µ ∈ [0, 1], the

environment (FM , π1/2(c, µ)) lies in the preference ordering of each firm between

the most desirable and the least desirable environments in E(c, µ), since we have

(F d−PS , πS(c, µ)) ≻1 (FM , π1/2(c, µ)) ≻1 (FES , πC(c)) (34)

and

(FES , πC(c)) ≻2 (FM , π1/2(c, µ)) ≻2 (F d−PS , πS(c, µ)). (35)

Having noted that (FM , π1/2(c, µ)) may be a plausible bargaining environ-

ment, we wonder whether its outcome can be more desirable for any of the

duopolistic firms in comparison to the division of collusion profits in the ab-

sence of bargaining, as considered by Ciarreta and Gutiérrez-Hita’s (2012). Re-

call from (19) that when there is no bargaining, firm i = 1, 2 obtains a cost-based

share of collusion profits, amounting πS−Col
i (c, µ) = (1− θi(c))π

I(c, µ)/2. Since

this payoff must also be attainable when bargaining is possible, we will –for

the sake of notational harmony– define for every c and µ in [0, 1], a bargaining

environment (FS−Col, πS−Col(c, µ)), where FS−Col is a solution on Σ2
+ such

that

FS−Col(S(c, µ), πS−Col(c, µ)) = πS−Col(c, µ). (36)

Since πS−Col(c, µ) ∈ WP (S(c, µ)), FS−Col can be any solution on Σ2
+ as long as

it satisfies on Σ2,L
+ an axiom of individual rationality requiring that the solution

must not be below the disagreement point in any bargaining set.

Theorem 7. Let F d−PS and FES be bargaining solutions on Σ2
+ that respec-

tively reduce to the d-Proportional Split solution and the Equal Split solution on
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Σ2,D
+ . Then for any c ∈ (0, 1] and µ ∈ [0, 1], FS−Col

1 (S(c, µ), πS−Col(c, µ)) >

F d−PS
1 (S(c, µ), πS(c, µ)) and FS−Col

2 (S(c, µ), πS−Col(c, µ)) < F d−PS
2 (S(c, µ),

πS(c, µ)).

Theorem 7 and Corollary 2 together imply that for all values of c ∈ (0, 1] and

µ ∈ [0, 1], the collusion payoff obtained by the more efficient firm in the cartel

when bargaining (with side payments) is not possible is above the highest payoff

this firm can expect to gain in any bargaining environment of E(c, µ). On the

other hand, even the lowest payoff the less efficient firm can expect to obtain

in E(c, µ) is higher than its collusion payoff in the absence of bargaining. These

results allow us to compare for each firm the payoff obtained in the absence of

bargaining with the payoff obtained in the bargaining environment (FM , π1/2).

We find that in this moderating environment (only) the more efficient firm in

the cartel would wish that the cartel did not have the bargaining possibility.

Corollary 3. Let F d−PS and FES be bargaining solutions on Σ2
+ that respec-

tively reduce to the d-Proportional Split solution and the Equal Split solution

on Σ2,D
+ . Then for any c ∈ (0, 1] and µ ∈ [0, 1], FS−Col

1 (S(c, µ), πS−Col(c, µ))

> FM
1 (S(c, µ), π1/2(c, µ)) and FS−Col

2 (S(c, µ), πS−Col(c, µ)) < FM
2 (S(c, µ),

π1/2(c, µ)).

So far, we have considered the rankings of the agreement payoffs in various

bargaining environments. One may also wonder how the sizes of these agree-

ment payoffs are affected from the changes in the cost asymmetry and demand

uncertainty. To explore this, in Figure 2 we plot the bargaining payoff of the

more efficient firm in the cartel as a share of collusion profits under all bargain-

ing environments studied in this paper. The value of µ2, the variance of the

demand uncertainty, is set to 0, 1/3, 2/3, and 1 in panels (i), (ii), (iii), and (iv),

respectively. Comparing all panels, we observe that the welfare of the more effi-

cient firm in the cartel (and consequently the welfare of the less efficient firm) is
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more sensitive to the variations in the bargaining solution and the disagreement

point when the demand uncertainty is higher.

Note that in Figure 2 the orange curve represents the bargaining payoff of

the more efficient firm –as a share of the collusion profits– in the bargaining

environment (F d−PS , πS(c, µ)), the most desirable environment for this firm

in E(c, µ). The only curve above the orange curve is the black curve which

represents the share of collusion profits the more efficient firm in the cartel can

secure when bargaining with side payments is not possible. Also note that the

profit shares of the more efficient and the less efficient firm always sum up to

1. Therefore, the significantly positive distance between the black and orange

curves at medium to large sizes of cost symmetry implies that the possibility

of bargaining may increase the welfare of the less efficient firm in the cartel

substantially even when it has to bargain in its least desirable environment in

E(c, µ), namely (F d−PS , πS(c, µ)).

Comparing the four graphs in Figure 2, we also observe that an increase

in the level of demand uncertainty increases at all cost levels the distance be-

tween the orange and gray lines, widening the size of the payoff conflict between

the duopolistic firms whenever they restrict themselves to choose a bargaining

environment from the set of alternatives E(c, µ). Regarding this conflict, our

remedy, suggesting the use of the bargaining environment (FM , π1/2(c, µ), gen-

erates agreement payoffs represented by the red curve. Note that by definition,

the payoffs represented by the red curve are obtained by taking the average of

the payoffs obtained under (F d−PS , πS(c, µ)) and (FES , πC(c)), that is why the

red curve always lies below the orange curve but above the gray curve. In fact,

if µ2 is equal to 1/3 or higher as in panels (ii)-(iv), the red curve always stays

under all other curves except for the gray curve, implying that the bargaining

environment we have suggested dominates for the less efficient firm all bargain-

ing environments in the set E(c, µ), except for its favorite environment, namely

(FES , πC(c)).
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Figure 2. The payoff of firm 1 as a share of collusion profits in various

bargaining environments.
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5 Conclusion

In this paper, we have dealt with the basic problem of a duopolistic cartel re-

garding how to divide up collusion profits. We have borrowed the structures of

our duopolistic industry from Ciarreta and Gutiérrez-Hita’s (2012), who studied

the formation (and also stability) of duopolistic collusion under cost asymmetry

and demand uncertainty. However, differing from Ciarreta and Gutiérrez-Hita’s

(2012) approach to the problem, we have allowed duopolistic firms to coopera-

tively bargain with side payments over collusion profits.

Using the bargaining model of Nash (1950), we have identified for our duopolis-

tic cartel, a bargaining set of payoffs, a disagreement point in this set –to be

realized only if the bargaining fails– and a solution that selects a point inside the

bargaining set possibly taking the disagreement point into consideration. More

specifically, we have defined – for each demand and cost realization– all possible

divisions of the collusion profits as the bargaining set of the cartel. We have

assumed that these collusion profits are always obtained from the joint profit

maximization program of the cartel, employing supply functions as production

strategies instead of fixed quantities, since the former option yields higher ex-

pected profits as long as there is any size of demand uncertainty, as was earlier

shown by Ciarreta and Gutiérrez-Hita’s (2012).

Given the bargaining set of the cartel, we have set the disagreement point

to either the payoff allocation at the (Cournot) Nash equilibrium in quantities,

πC , or the payoff allocation at the Nash equilibrium in supply functions, πS .

As for bargaining solutions, we have restricted ourselves mainly to those that

split the cartel’s total gains from agreement either equally or proportionally

with respect to the ratio of the disagreement payoffs. We have called these two

classes of solutions, within the domain of duopolistic bargaining problems, the

Equal Split solution and the d-Proportional Split solution, respectively.

In our first result, Theorem 1, we have showed that under the possibility of

bargaining each firm in the duopolistic industry has incentive to join a collu-

sive agreement if the bargaining solution splits the gains from agreement either
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equally or d-proportionally and the disagreement point is obtained from the

equilibrium of either the supply function competition or the quantity compe-

tition. Our result is partially different from the earlier result of Ciarreta and

Gutiérrez-Hita (2012) –obtained in the absence of bargaining possibility– show-

ing that when the collusive outcome is allocated between the firms to equalize

their marginal costs, the more efficient firm is always willing to collude both

under quantity competition and supply function competition, whereas the less

efficient firm is willing to collude only if the cost asymmetry is sufficiently small.

Our second result, Theorem 2, compares the disagreement payoffs of each

firm at the two disagreement points considered throughout the paper. Basically,

this result shows that both firms in the cartel have higher (lower) disagreement

payoffs at πC than at πS only if the demand uncertainty is sufficiently low (high).

If the demand uncertainty is intermediate, then in terms of the disagreement

payoff the more efficient firm may prefer the disagreement point πS to πC , while

the opposite would be true for the less efficient firm.

Our other findings are related to agreement payoffs. In Theorem 3 we have

simply showed that when there is no cost asymmetry, the duopolists always

share the collusion profits equally, both when the solution splits the gains from

agreement equally and when it splits them d-proportionally regardless whether

the disagreement point is πS or πC . In the subsequent results we have dealt

with the case of asymmetric costs. Theorem 4 shows that under any solution

that splits the gains from agreement equally the more efficient firm in the cartel

always has a higher agreement payoff when the disagreement point is πS than

when the disagreement point is πC , whereas the opposite is true for the less

efficient firm, pointing to a possible conflict of choice between the two firms.

We have suggested that this conflict can be moderated if the duopolistic firms

set the disagreement point to a weighted average of πC and πS . Corollary 1

shows that by using this moderation, instead of setting the disagreement point

to either πC or πS , it is always possible to reduce the payoff difference of the

duopolistic firms.
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In Theorem 5, we have extended our result in Theorem 4 to show that

the more efficient firm in the cartel prefers the disagreement point πS to πC

when the bargaining solution splits the gains from agreement d-proportionally,

as well. This result holds because the disagreement payoff of the more efficient

firm relative to the disagreement payoff of the less efficient firm is always higher

at πS than at πC , irrespective of the sizes of the demand uncertainty and the

cost asymmetry.

In Theorem 6, we have constructed a bridge between the results of Theorems

4 and 5 to show that the more efficient firm prefers a bargaining environment

where the disagreement point is πC and the gains from agreement are split d-

proportionally to an environment where the disagreement point is πS and the

gains from agreement is split equally. We should note that none of the results in

Theorems 4, 5, and 6 can be trivially predicted. On the other hand, these three

theorems together lead to a predictable conclusion in Corollary 2, implying that

the more efficient firm in the cartel always prefers, with respect to the induced

agreement payoffs, a solution with d-proportional splitting to a solution with

equal splitting regardless whether the disagreement point is obtained from the

supply function or the quantity competition.

Finally, in Theorem 7 we have showed that the highest agreement payoff that

can be obtained by the more efficient firm in the cartel under any bargaining

solution and disagreement point studied in our paper is always below than the

share of collusion profits this firm can receive when the collusive agreement

equalizes the marginal costs of the duopolistic firms as proposed by Patinkin

(1947). Oppositely, the less efficient firm in the cartel always becomes better off

when the firms can use their relative bargaining powers to divide up collusion

profits as suggested by Bain (1948).

We should note that the bargaining solutions we have considered may be

among plausible alternatives for the duopolists. As a matter of fact, the bar-

gaining solutions that split the duopolists’ gains from agreement equally may be

very rich, also including many well-known solutions for two-person bargaining
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problems. Besides, the disagreement points we have considered may be among

the most natural candidates to represent status quo payoffs. Thus, we believe

that the bargaining environments studied in this paper are theoretically sound.

On the other hand, we also acknowledge that there may exist other meaningful

alternatives, as well. For example, one may include into our set of bargaining

environments, environments where the disagreement point is obtained from the

equilibrium of Bertrand (1883) competition in prices, the third type of com-

petition studied by Ciarreta and Gutiérrez-Hita (2012) under cost asymmetry

and demand uncertainty. However, we are also aware that irrespective from the

theoretical completeness or soundness of our model, it is an empirical question

whether the duopolists could manage to collude and how they would divide the

industry profits in case they collude. For an asymmetric Cournot duopoly these

questions were recently studied by Fischer and Normann (2017) in an experi-

mental work, with a focus on the role of explicit communication on collusion. We

believe that future research may extend their work to our duopolistic bargaining

model where the duopolists are allowed, in the possibility of any disagreement,

to compete in either quantities or supply functions.
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Appendix

Proof of Lemma 1. Pick any c ∈ [0, 1] and µ ∈ [0, 1]. First, consider the

point πS(c, µ). We know from equations (8) and (9) that πS(c, µ) > 0. Also,

equations (2), (9), and (18) imply that πI(c, µ) > πS
1 (c, µ)+πS

2 (c, µ) if and only

if

1 + µ2

5− c2
>

1 + µ2

2

(

9− c2

v(c)
− 1

)

, (37)

implying

(7− c2)2 v2(c) > [45− c2(14− c2)]2. (38)

Using equation (8), the above inequality can be reduced to

(7− c2)2 > 45− c2(14− c2), (39)

which can be easily checked to be true. Hence, πI(c, µ) > πS
1 (c, µ) + πS

2 (c, µ).

Now, consider the point πC(c). Equation (14) implies that πC(c) > 0. Also,

equations (2), (14), and (18) imply that πI(c, µ) > πC
1 (c) + πC

2 (c) if and only if

1 + µ2

5− c2
>

12− c2

(8− c2)2
, (40)

implying

(1 + µ2)(64− 16c2 + c4) > (60− 17c2 + c4), (41)

which can be easily checked to be true. Therefore, πI(c, µ) > πC
1 (c) + πC

2 (c).

Thus, we have proved that for any d ∈ {πS(c, µ), πC(c)}, 0 < d1+d2 < πI(c, µ),

implying d ∈ S(c, µ) and d /∈ WP (S(c, µ)). �

Proof of Theorem 1. Let F be any solution on Σ2
+ that reduces to either

the Equal Split solution or the d-Proportional Split solution on Σ2,D
+ . Pick any

i ∈ {1, 2}, c ∈ [0, 1], µ ∈ [0, 1], and d ∈ {πS(c, µ), πC(µ)}. Then, (25), (26), and

(27) imply that

Fi(S(c, µ), d)− di = ki(d)[π
I(c, µ)− d1 − d2] (42)
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for some ki(d) ∈ (0, 1) such that ki(d) = 1/2 if F reduces to the Equal Split

solution on Σ2,D
+ and ki(d) = φi(d) if F reduces to the d-Proportional Split so-

lution on Σ2,D
+ . By Lemma 1, d /∈ WP (S(c, µ)), implying πI(c, µ)−d1−d2 > 0.

Then, equation (42) implies Fi(S(c, µ), d)− di > 0. �

Proof of Lemma 2. Pick any c ∈ [0, 1] and µ in [0, 1]. Using (2) and (9) we

obtain

πS
1 (c, µ)− πS

2 (c, µ) = c

(

1 + µ2

2

)(

1−
5− c2

v(c)

)

. (43)

On the other hand, using (2) and (14) we obtain

πC
1 (c)− πC

2 (c) =
c

8− c2
. (44)

First note that πS
1 (c, µ) − πS

2 (c, µ) = πC
1 (c) − πC

2 (c) = 0 if c = 0. This implies

πS
1 (c, µ) − πC

1 (c) = πS
2 (c, µ) − πC

2 (c) if c = 0. Now, consider the case where

c ∈ (0, 1]. Considering (43) and (44) when µ = 0, we observe that πS
1 (c, 0) −

πS
2 (c, 0) > πC

1 (c)− πC
2 (c) if and only if

1

2

[

1−
5− c2

v(c)

]

>
1

8− c2
, (45)

implying

v(c) >
(5− c2)(8− c2)

(6− c2)
. (46)

Inserting (8) into the above inequality and taking the square of both sides yield

45− c2(1− c2) >
(5− c2)2(8− c2)2

(6− c2)2
, (47)

which can be easily checked to be true. Moreover, since πS
1 (c, µ)−πS

2 (c, µ) is in-

creasing in µ, we have πS
1 (c, µ)−πS

2 (c, µ) > πS
1 (c, 0)−πS

2 (c, 0) for any µ ∈ (0, 1].

This implies that for any µ ∈ [0, 1], we have πS
1 (c, µ)−πS

2 (c, µ) > πC
1 (c)−πC

2 (c),

further implying πS
1 (c, µ)− πC

1 (c) > πS
2 (c, µ)− πC

2 (c), completing the proof. �

Proof of Lemma 3. We can check that the difference πS
1 (c, 0)−πC

1 (c) reaches

its minimal value (−0.00833) at c = 0, its maximal value (−0.00690) at c = 1,
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and it is increasing everywhere on [0, 1]. On the other, the difference πS
2 (c, 0)−

πC
2 (c) reaches its maximal value (−0.00833) at c = 0, its minimal value (-

0.01049) at c = 1, and it is decreasing everywhere on [0, 1]. So, for any i ∈ {1, 2}

and c ∈ [0, 1], we have πS
i (c, 0)− πC

i (c) < 0, implying µi(c) 6= 0.

Now, we check that the difference πS
1 (c, 1)−πC

1 (c) reaches its minimal value

(0.07707) at c = 0, its maximal value (0.16988) at c = 1, and it is increasing

everywhere on [0, 1]. On the other, the difference πS
2 (c, 1) − πC

2 (c) reaches its

maximal value (0.07707) at c = 0, its minimal value (0.01984) at c = 1, and it

is decreasing everywhere on [0, 1]. So, for any i ∈ {1, 2} and c ∈ [0, 1], we have

πS
i (c, 1)− πC

i (c) > 0, implying µi(c) 6= 1.

So far, we have showed that µi(c) 6= 0, µi(c) 6= 1, πS
i (c, 0)− πC

i (c) < 0, and

πS
i (c, 1) − πC

i (c) > 0. Since for any i ∈ {1, 2} and c ∈ [0, 1], πS
i (c, µ) − πC

i (c)

is continuous in µ, there must exist some µi(c) ∈ (0, 1) such that πS
i (c, µi(c))−

πC
i (c) = 0. Above, we have also found that πS

1 (c, 0)−πC
1 (c) is always increasing

in c and πS
2 (c, 1) − πC

2 (c) is always decreasing in c. Since for any i ∈ {1, 2},

πS
i (c, µ) − πC

i (c) is always increasing in µ, it must be true for any µ ∈ [0, 1]

that πS
1 (c, µ) − πC

1 (c) is always increasing in c and πS
2 (c, µ) − πC

2 (c) is always

decreasing in c. These results imply that µi(c) is unique for each i ∈ {1, 2} and

also that µ1(c) is decreasing whereas µ2(c) is increasing.

Finally, to prove the assertions regarding the comparison of µ1(c) and µ2(c),

consider first c = 0. Equation (28) implies πS
1 (0, µ1(0)) − πC

1 (0) = 0 and

πS
2 (0, µ2(0))−πC

2 (0) = 0, further implying πS
1 (0, µ1(0))−πS

2 (0, µ2(0)) = πC
1 (0)−

πC
2 (0). On the other hand, equation (44) implies πC

1 (0)−πC
2 (0) = 0. So, we must

have πS
1 (0, µ1(0))− πS

2 (0, µ2(0)) = 0, as well. We can rewrite this last equality

as πS
1 (0, µ1(0))− πS

2 (0, µ1(0)) + πS
2 (0, µ1(0))− πS

2 (0, µ2(0)) = 0. We know from

equation (43) that πS
1 (0, µ1(0))−πS

2 (0, µ1(0)) = 0. Inserting this into the previ-

ous equality yields πS
2 (0, µ1(0))− πS

2 (0, µ2(0)) = 0. Since equations (8) and (9)

imply that πS
2 (0, µ) is increasing in µ, the last equality above implies µ1(0) =

µ2(0). Now, let c ∈ (0, 1]. Lemma 2 implies πS
1 (c, µ)−πC

1 (c) > πS
2 (c, µ)−πC

2 (c)

for any µ ∈ [0, 1]. So, we must have πS
1 (c, µ2(c))− πC

1 (c) > πS
2 (c, µ2(c))− πC

2 (c)
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since µ2(c) ∈ (0, 1). Above, we can replace the difference πS
2 (c, µ2(c)) − πC

2 (c)

with πS
1 (c, µ1(c))− πC

1 (c) since both differences are zero by equation (28). This

would yield πS
1 (c, µ2(c))−πC

1 (c) > πS
1 (c, µ1(c))−πC

1 (c), implying µ2(c) > µ1(c)

since πS
1 (c, µ) is always increasing in µ. This completes the proof. �

Proof of Theorem 2. Pick any i ∈ {1, 2} and c ∈ [0, 1]. By Lemma 3, we

know that the value µi(c) is unique. Moreover, we know from (8), (9), and (14)

that πS
i (c, µ)− πC

i (c) is increasing in µ. Given equation (28), this implies that

πS
i (c, µ)− πC

i (c) > 0 if and only if µ > µi(c). (48)

By Lemma 3, we also know that µ1(0) = µ2(0) and µ1(c) < µ2(c) for any

c ∈ (0, 1], implying µ1(c) ≤ µ2(c) for any c ∈ [0, 1]. All of these facts imply that

(29) is true. �

Proof of Theorem 3. Let F be any solution on Σ2
+ that reduces to either

the Equal Split solution or the d-Proportional Split solution on Σ2,D
+ . Pick any

µ ∈ [0, 1] and any d ∈ {πS(0, µ), πC(0)}. Equations (8), (9), and (14) imply

d1+d2 > 0 and d1 = d2. On the other hand, Lemma 1 implies d1+d2 < πI(0, µ).

If F reduces to the Equal Split solution on Σ2,D
+ , then for each i ∈ {1, 2},

equation (25) implies that

Fi(S(0, µ), d) =
πI(0, µ)

2
+

d1 − d2
2

=
πI(0, µ)

2
. (49)

On the other hand, if F reduces to the d-Proportional Split solution on Σ2,D
+ ,

then for each i ∈ {1, 2}, (26) and (27) imply that

Fi(S(0, µ), d) =

(

d1
d1 + d2

)

πI(0, µ) =
πI(0, µ)

2
. (50)

This completes the proof. �

Proof of Lemma 4. Let F be any solution on Σ2
+ that reduces to either

the Equal Split solution or the d-Proportional Split solution on Σ2,D
+ . Then,

equations (25), (26), and (27) imply that for any c ∈ (0, 1], µ ∈ [0, 1], and d, d′ ∈
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S(c, µ), we have F1(S(c, µ), d) + F2(S(c, µ), d) = πI(c, µ) and F1(S(c, µ), d
′) +

F2(S(c, µ), d
′) = πI(c, µ). Thus,

F1(S(c, µ), d)− F1(S(c, µ), d
′) = − [F2(S(c, µ), d)− F2(S(c, µ), d

′)] , (51)

implying that Fi(S(c, µ), d) > Fi(S(c, µ), d
′) if and only if Fj(S(c, µ), d) <

Fj(S(c, µ), d
′) for any i, j ∈ {1, 2} with j 6= i. �

Proof of Lemma 5. Let F be any solution on Σ2
+ that reduces to the Equal

Split solution on Σ2,D
+ . Pick any c ∈ (0, 1], µ ∈ [0, 1], d, d′ ∈ S(c, µ), and

i, j ∈ {1, 2} with j 6= i. Equation (25) implies that

Fi(S(c, µ), d) =
πI(c, µ)

2
+

di − dj
2

(52)

and

Fi(S(c, µ), d
′) =

πI(c, µ)

2
+

d′i − d′j
2

. (53)

Then, (52) and (53) imply

Fi(S(c, µ), d)− Fi(S(c, µ), d
′) =

(di − dj)

2
−

(d′i − d′j)

2
. (54)

So, Fi(S(c, µ), d) > Fi(S(c, µ), d
′) if and only if di − dj > d′i − d′j . �

Proof of Theorem 4. Let F be any solution on Σ2
+ that reduces to the

Equal Split solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Lemma

2 implies that πS
1 (c, µ) − πS

2 (c, µ) > πC
1 (c) − πC

2 (c). Then, Lemma 5 im-

plies F1(S(c, µ), π
S(c, µ)) > F1(S(c, µ), π

C(c)). By Lemma 4, we also have

F2(S(c, µ), π
S(c, µ)) < F2(S(c, µ), π

C(c)). �

Proof of Corollary 1. Let F be any solution on Σ2
+ that reduces to the Equal

Split solution on Σ2,D
+ . Pick any c ∈ (0, 1], µ ∈ [0, 1], and ω ∈ (0, 1). Equation

(25) implies that

F1(S(c, µ), π
ω(c, µ)) =

πI(c, µ)

2
+

πω
1 (c, µ)− πω

2 (c, µ)

2
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=
πI(c, µ)

2
+

(

ωπS
1 (c, µ) + (1− ω)πC

1 (c)

2

)

−

(

ωπS
2 (c, µ) + (1− ω)πC

2 (c)

2

)

= ω

(

πI(c, µ)

2
+

πS
1 (c, µ)− πS

1 (c, µ)

2

)

+

(1− ω)

(

πI(c, µ)

2
+

πC
1 (c)− πC

2 (c)

2

)

= ωF1(S(c, µ), π
S(c, µ)) + (1− ω)F1(S(c, µ), π

C(c)). (55)

Since we have F1(S(c, µ), π
S(c, µ)) > F1(S(c, µ), π

C(c)) by Theorem 4, equa-

tion (55) and the assumption ω ∈ (0, 1) imply that F1(S(c, µ), π
S(c, µ)) >

F1(S(c, µ), π
ω(c, µ)) > F1(S(c, µ), π

C(c)). Then, Lemma 4 implies F2(S(c, µ),

πS(c, µ)) < F2(S(c, µ), π
ω(c, µ)) < F2(S(c, µ), π

C(c)). �

Proof of Theorem 5. Let F be any solution on Σ2
+ that reduces to the d-

Proportional Split solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Equations

(8) and (9) imply πS
1 (c, µ)+πS

2 (c, µ) > 0 whereas equation (14) implies πC
1 (c)+

πC
2 (c) > 0. On the other hand, Lemma 1 implies that πS

1 (c, µ) + πS
2 (c, µ) <

πI(c, µ) and πC
1 (c)+πC

2 (c) < πI(c, µ). Then, it follows from equations (26) and

(27) that

F1(S(c, µ), π
S(c, µ)) =

(

πS
1 (c, µ)

πS
1 (c, µ) + πS

2 (c, µ)

)

πI(c, µ) (56)

and

F1(S(c, µ), π
C(c)) =

(

πC
1 (c)

πC
1 (c) + πC

2 (c)

)

πI(c, µ). (57)

So, F1(S(c, µ), π
S(c, µ)) > F1(S(c, µ), π

C(c)) if and only if πS
1 (c, µ)/π

S
2 (c, µ)

> πC
1 (c)/π

C
2 (c), implying

(9− c2)− c(5− c2)− (1− c)v(c)

(9− c2) + c(5− c2)− (1 + c)v(c)
>

(3− c)(2 + c)2

(3 + c)(2− c)2
, (58)
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using (9) and (14). After some algebra, one can show that the last inequality

holds if and only if

v(c)(10− c2)2 − (66− 17c2 + c4) > 0. (59)

Using (8), the left hand side of the above inequality can be reduced to 144 −

56c2+4c4, which is always positive since c ∈ (0, 1]. This proves that F1(S(c, µ),

πS(c, µ)) > F1(S(c, µ), π
C(c)). Then, Lemma 4 implies that F2(S(c, µ), π

S(c, µ))

< F2(S(c, µ), π
C(c)). �

Proof of Theorem 6. Let F d−PS and FES be bargaining solutions on Σ2
+

that respectively reduce to the d-Proportional Split solution and the Equal

Split solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Equation (14) implies

πC
1 (c) + πC

2 (c) > 0, while Lemma 1 implies πC
1 (c) + πC

2 (c) < πI(c, µ). Then, it

follows from (26) and (27) that

F d−PS
1 (S(c, µ), πC(c)) =

(

πC
1 (c)

πC
1 (c) + πC

2 (c)

)

πI(c, µ). (60)

On the other hand, (25) implies

FES
1 (S(c, µ), πS(c, µ)) =

πI(c, µ)

2
+

πS
1 (c, µ)− πS

2 (c, µ)

2
. (61)

So, F d−PS
1 (S(c, µ), πC(c)) > FES

1 (S(c, µ), πS(c, µ)) if and only if

2

(

πC
1 (c)

πC
1 (c) + πC

2 (c)
−

1

2

)

>
πS
1 (c, µ)− πS

2 (c, µ)

πI(c, µ)
. (62)

We calculate

πS
1 (c, µ)− πS

2 (c, µ)

πI(c, µ)
= c

[

5− c2

2

] [

1−
(5− c2)

v(c)

]

(63)

using (18) and (43). On the other hand, we obtain

πC
1 (c)

πC
1 (c) + πC

2 (c)
=

(3− c)(2 + c)2

24− 2c2
, (64)

using (2) and (14). Hence, we have

2

(

πC
1 (c)

πC
1 (c) + πC

2 (c)
−

1

2

)

=
(3− c)(2 + c)2

12− c2
− 1 =

c(8− c2)

12− c2
. (65)
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Then, it is easy to check that

c(8− c2)

12− c2
> c

[

5− c2

2

] [

1−
(5− c2)

v(c)

]

(66)

for any c ∈ (0, 1]. This implies F d−PS
1 (S(c, µ), πC(c)) > FES

1 (S(c, µ), πS(c, µ)).

Then, Lemma 4 implies that F d−PS
2 (S(c, µ), πC(c)) < FES

2 (S(c, µ), πS(c, µ)). �

Proof of Corollary 2. Let F d−PS and FES be bargaining solutions on Σ2
+

that respectively reduce to the d-Proportional Split solution and the Equal Split

solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Then, we have

F d−PS
1 (S(c, µ), πS(c, µ)) > F d−PS

1 (S(c, µ), πC(c)) by Theorem 5,

F d−PS
1 (S(c, µ), πC(c)) > FES

1 (S(c, µ), πS(c, µ)) by Theorem 6,

FES
1 (S(c, µ), πS(c, µ)) > FES

1 (S(c, µ), πC(c)) by Theorem 4.

The three inequalities together imply for firm 1 the payoff comparisons in the

corollary. Then, Lemma 4 implies the payoff comparisons for firm 2. �

Proof of Theorem 7. Let F d−PS and FES be bargaining solutions on Σ2
+

that respectively reduce to the d-Proportional Split solution and the Equal Split

solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Note that (8) and (9) imply

πS
1 (c, µ)+πS

2 (c, µ) > 0 whereas Lemma 1 implies πS
1 (c, µ)+πS

2 (c, µ) < πI(c, µ).

Then, using (2), (19), and (36) together with (26) and (27) we observe that

FS−Col
1 (S(c, µ), πS−Col(c, µ)) > F d−PS

1 (S(c, µ), πS(c, µ)) if and only if
(

1 + c

2

)

πI(c, µ) >

(

πS
1 (c, µ)

πS
1 (c, µ) + πS

2 (c, µ)

)

πI(c, µ), (67)

implying

1 + c

1− c
>

πS
1 (c, µ)

πS
2 (c, µ)

. (68)

Given equation (9), the inequality in (68) becomes

1 + c

1− c
>

(9− c2)− c(5− c2)− (1− c)v(c)

(9− c2) + c(5− c2)− (1 + c)v(c)
. (69)
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After some algebra, we can show that the above inequality holds if and only if

(14− 2c2)2 − 4[v(c)]2 > 0. (70)

Using (8), the left hand side of the above inequality can be reduced to

(196− 56c2 + 4c4)− (180− 56c2 + 4c4) = 16, (71)

which is greater than zero. Thus, we have FS−Col
1 (S(c, µ), πS−Col(c, µ)) >

F d−PS
1 (S(c, µ), πS(c, µ)). Then, Lemma 4 implies FS−Col

2 (S(c, µ), πS−Col(c, µ))

< F d−PS
2 (S(c, µ), πS(c, µ)). �

Proof of Corollary 3. Let F d−PS and FES be bargaining solutions on

Σ2
+ that respectively reduce to the d-Proportional Split solution and the Equal

Split solution on Σ2,D
+ . Pick any c ∈ (0, 1] and µ ∈ [0, 1]. Theorem 7 implies

that FS−Col
1 (S(c, µ), πS−Col(c, µ)) > F d−PS

1 (S(c, µ), πS(c, µ)). On the other

hand, Corollary 2 and equation (33) imply that F d−PS
1 (S(c, µ), πS(c, µ)) >

FM
1 (S(c, µ), π1/2(c, µ)). Therefore, FS−Col

1 (S(c, µ), πS−Col(c, µ)) > FM
1 (S(c, µ),

π1/2(c, µ)). Then, Lemma 4 implies FS−Col
2 (S(c, µ), πS−Col(c, µ)) < FM

2 (S(c, µ),

π1/2(c, µ)). �
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