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Abstract

Let S be a set of logically related propositions, and suppose a jury must decide
the truth/falsehood of each member of S. A ‘judgement aggregation rule’ (JAR)
is a rule for combining the truth valuations on S from each juror into a collective
truth valuation on S. Recent work has shown that there is no reasonable JAR which
always yields a logically consistent collective truth valuation; this is referred to as
the ‘Doctrinal Paradox’ or the ‘Discursive Dilemma’.

In this paper we will consider JARs which aggregate the subjective probability

estimates of the jurors (rather than Boolean truth valuations) to produce a collective
probability estimate for each proposition in S. We find that to properly aggregate
these probability estimates, the JAR must also utilize information about the private
information from which each juror generates her own probability estimate.

Suppose there are three propositions, A and B, and “A ⇒ B”, and a jury with three
jurors J = {1, 2, 3}, which must decide the truth or falsehood of these propositions by ‘ag-
gregating’ the judgements of the individual jurors.1 Suppose the jurors have the profile of
truth-valuations shown in Table 1(A). Each juror has a logically consistent truth-valuation,
but the collective truth-valuation generated by majority vote is logically inconsistent. This
is called the Doctrinal Paradox by Kornhauser and Sager (1986, 1993, 2004), because it
can lead to logical inconsistencies in legal doctrine. This paradox is not merely an artifact
of majority vote. List and Pettit (2002) have proved an ‘impossibility theorem’ which
states (roughly) that there is no anonymous, neutral, and ‘systematic’ procedure which
will aggregate any profile of juror truth-valuations into a logically consistent collective

1Following the social choice literature, we will describe this problem as judgement aggregation. In the
artificial intelligence literature, the same problem is studied as belief merging; see e.g. Cholvy (1998),
Konieczny and Pino Pérez (2005), and Pigozzi (2006).
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j A A⇒B B
1 T T T
2 T F F
3 F T F
J T T F

j A A ⇒ B B

1 µ1[A] µ1[A
∁∪ B] µ1[B]

2 µ2[A] µ2[A
∁∪ B] µ2[B]

3 µ3[A] µ3[A
∁∪ B] µ3[B]

J µJ [A] µJ [A∁∪ B] µJ [B]

j µj[A] µj[A
∁∪ B] µj[B]

1 α1 γ1 β1

2 α2 γ2 β2

3 α3 γ3 β3

J α1+α2+α3

3
γ1+γ2+γ3

3
β1+β2+β3

3

(A) (B) (C)

Table 1: (A) A profile of truth-valuations yielding a Discursive Dilemma. For example, suppose
A =“Atmospheric CO2 will rise to 710 ppm by 2100 AD”, B =“Average global temperature will rise
by 5.5o C by 2100 AD”, while “A ⇒ B”=“If atmospheric CO2 rises to 710 ppm, then average global
temperature will rise by 5.5o C”. (B) A probabilistic version of Table (A). (C) The Linear Opinion Pool
for Table (B), with w1 = w2 = w3 = 1/3;

truth-valuation.2 To emphasize its ramifications to collective discourse in general (not just
legal doctrine), List and Pettit (2002) call this the Discursive Dilemma.

This model of judgement aggregation uses Boolean logic, which is only appropriate
if each juror holds her truth-valuation with absolute certainty. However, these truth-
valuations contradict one other, so at least one juror must be wrong —hence at least one
juror cannot really be ‘certain’ in her beliefs. Indeed, outside of mathematics, there is
really no sphere of knowledge where people can make assertions with absolute certainty.
Normally each person has some degree of ‘confidence’ in a belief —a subjective probability
which is strictly between zero and one —based on the quantity and quality of evidence
available to her.

Thus, Pauly and van Hees (2006) and van Hees (2007) extended List and Pettit’s
Discursive Dilemma theorem to T -valued logics, where T = {0, 1, . . . , T} is a finite set of
truth values: ‘T ’ represents ‘true’, ‘0’ is ‘false’, and the intermediate values are various
‘degrees of acceptance’ or ‘degrees of truthfulness’. Similarly Gärdenfors (2006) proved the
Discursive Dilemma when each juror is allowed to ‘withhold judgement’ on one or more
propositions (this can be seen as a 3-valued logic, with T = {F, ?, T}). Finally Dietrich
(2007) extended the Discursive Dilemma to a variety of generalized logics, including modal
logics containing a modal operator ✷ (where ✷A means ‘it is quite probable that A’).

However, it is difficult to operationalize the meaning of T -valued logics (what exactly
are ‘degrees of acceptance’?) or the modal operator ‘✷’ (how probable is ‘quite proba-
ble’?). Thus, we suggest that a more realistic model of judgement aggregation should go
beyond pure logic (Boolean, multivalued, modal, or otherwise), and instead aggregate the
subjective probabilities which the jurors assign to propositions.

Formally, let (X,B, µ) be a probability space3¶, and let A,B ⊂ X be two events¶. The
‘true’ state of the universe is some unknown point x ∈ X. The proposition A is the assertion

2Dietrich and List (2007) later replaced ‘systematicity’ with a weaker requirement of ‘independence’.
3To preserve continuity, probability theory is reviewed in an appendix. Terminology defined in the

appendix is marked in the text with the symbol ‘¶’.
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“x ∈ A”; the proposition B is the assertion “x ∈ B”; the proposition “A ⇒ B” corresponds
to the assertion “x ∈ A∁ ∪ B”. For each j ∈ J , let Kj ⊂ X be an event representing
j’s ‘knowledge’. In other words, j knows (with certainty) that x ∈ Kj —but that is all
she knows. Note that j’s knowledgeability is inversely proportional to the size of Kj: if
Kj = X, then she is totally ignorant, whereas if Kj = {x}, then she is omniscient. Thus,
j’s probability estimate of proposition A is the conditional probability¶ µj[A] := µ[A|Kj].
Likewise, we define µj[B] := µ[B|Kj], etc. The jury’s collective probability measure µJ is
somehow determined by the conditional measures {µj}j∈J of the individual jurors; see e.g.
Table 1(B). We now have two questions: (Q1) What is the best method to generate µJ ?
(Q2) How should we interpret µJ ?

Sections 1-4 of this paper deal with (Q1). §1 reviews the well-established statistical
theory of ‘opinion pooling’ and its inadequacies; §2 contrasts this with an ideal of judgement
aggregation through ‘full disclosure’ of private knowledge. Such ‘full disclosure’ is probably
impossible in practice, so we next consider how much we can achieve without it. §3 reviews
the theory of consensus via ‘common knowledge’ developed by Aumann (1976) and others.
§4 presents a method to aggregate probability estimates using information about the degree
of ‘independence’ between the knowledge of different jurors.

We then turn to (Q2). §5 discusses the problem of ‘booleanizing’ a probabilistic judge-
ment to get a Boolean truth valuation, and concludes that it is generally impossible and
usually unnecessary anyways. §6 considers the implications of ‘unbooleanizability’ for the
debate between ‘consequentialist’ and ‘deontological’ ethics.

1 Statistical opinion pooling

Let P(X) be the space of all probability measures¶ on (X,B). If J is a set of jurors, then a
statistical opinion pooling rule (SOPR) is a function Φ : P(X)J−→P(X). If µj ∈ P(X) is the
subjective probability distribution of juror j (for all j ∈ J ), then µJ := Φ [(µj)j∈J ] ∈ P(X)
is a probability distribution representing the ‘aggregated judgement’ of the jury. This
problem was considered by Savage (1954, §10.2), and since then has generated an extensive
literature; the survey article by Genest and Zidek (1986) lists 92 key papers in its annotated
bibliography.

A popular SOPR is the linear opinion pool (LOP), defined by Φ [(µj)j∈J ] :=
∑

j∈J wjµj,
where {wj}j∈J are nonnegative ‘weights’ with

∑
j∈J wj = 1. Table 1(C) illustrates the LOP

with w1 = w2 = w3 = 1/3. Figure 2(A) is a Venn diagram labelled with the probabilities
of various events. Table 3 shows Table 1(C) filled with the corresponding conditional
probabilities. Figure 2(B) is a ‘density plot’ of the averaged measure (µ1 + µ2 + µ3)/3.

The LOP was originally suggested by de Finetti (1954) and Stone (1961); later, Lehrer
and Wagner (1981) proposed it as a general framework for ‘rational consensus’ in episte-
mology, philosophy of science, semantics, ethics, and social choice. The LOP has several
appealing characterizations (Genest and Zidek, 1986, §3). For example:

[i] Suppose Φ is an SOPR defined by a function F : [0, 1]J−→[0, 1] such that Φ [(µj)j∈J ] (A) =

3



Figure 2: (A) A Venn diagram illustrating the a priori measure µ. Each number in the picture is the

probability of the smallest region containing that number. (B) The LOP uses the average measure
1

3
(µ1 + µ2 + µ3), where µj := µ[•|Kj ]. (C) ‘Full disclosure’ uses the measure µ[•|KJ ], where KJ :=

K1 ∩ K2 ∩ K3.

j µ[Kj] µ[A ∩ Kj] µj[A] µ[(A∁∪ B) ∩ Kj] µj[A
∁∪ B] µ[B ∩ Kj] µj[B]

1 0.37 0.35 0.95 0.35 0.95 0.33 0.89
2 0.37 0.35 0.95 0.04 0.11 0.02 0.05
3 0.37 0.04 0.11 0.35 0.95 0.02 0.05
Linear Opinion Pool 0.67 0.67 0.33

Booleanization T T F

Table 3: The conditional probabilities arising from Figure 2(A), the outcome of the LOP with w1 =

w2 = w3 = 1/3, and the result of ‘booleanizing’ the LOP with 0.33 < θF ≤ θT < 0.67. The ‘Discursive

Dilemma’ rears its ugly head.

F
[
(µj[A])

j∈J

]
for all A ⊆ X. Then Φ must be an LOP (Wagner, 1982).

[ii] Suppose Φ is an SOPR such that

(a) For any A ⊆ X, if µj[A] = 0 for all j ∈ J , then Φ [(µj)j∈J ] (A) = 0.

(b) For any A ⊆ X, if (µj)j∈J ∈ P(X)J and (νj)j∈J ∈ P(X)J are such that
µj[A] = νj[A] for all j ∈ J , then Φ [(µj)j∈J ] (A) = Φ [(νj)j∈J ] (A).

Then again Φ must be an LOP (McConway, 1981).

Note that the condition in [i] is the probabilistic analogue of the ‘Systematicity’ condition
in List and Pettit (2002), while condition [ii](b) is the analogue of the ‘Independence’
condition in Dietrich and List (2007).
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Unfortunately, the LOP has several deficiencies. For example, an SOPR Φ satisfies the
independence preservation property (IPP) if, for any A,B ⊂ X, if µj[A∩B] = µj[A] · µj[B]
for all j ∈ J , and µJ := Φ [(µj)j∈J ], then µJ [A ∩B] = µJ [A] · µJ [B]. But the only LOP
which satisfies the IPP is a dictatorship —i.e. there is some j ∈ J such that wj = 1, while
wi = 0 for all j 6= i (Lehrer and Wagner, 1983). When combined with the results [i] or
[ii] above, this yields probabilistic versions of the impossibility theorems of List and Pettit
(2002) and Dietrich and List (2007). For further shortcomings of the LOP, see Examples
2.1 and 2.2 below.

For these and other reasons, Baird (1985) and Loewer and Laddaga (1985) have rejected
the LOP. However, to some extent the LOP’s deficiencies reflect the inadequacies of SOPRs
in general. For example if Φ : P(X)J−→P(X) is an SOPR defined by some function

F : [0, 1]J−→[0, 1] such that Φ [(µj)j∈J ] (A|B) = F
[
(µj[A|B])

j∈J

]
for all A,B ∈ X, then

Φ must be a dictatorship (Dalkey, 1972, 1975). More generally, Genest and Wagner (1987)
have shown that any SOPR which satisfies the IPP and has a rather general functional
form (including any SOPR satisfying [i] above) must be a dictatorship; this yields yet
another probabilistic version of List and Pettit’s (2002) impossibility theorem. (Another
problem appears in footnote #6 below).

In short: it is not possible to ‘rationally’ construct a collective probability distribution
using only the data (µj)j∈J . We need additional information about the private knowledge
from which the jurors generate their subjective probability measures.

2 Full disclosure

If KJ :=
⋂

j∈J Kj, then we must have x ∈ KJ ; in particular, this means that KJ 6=
∅. Thus, the best solution would be for the jurors to ‘pool’ their knowledge and define
µJ [A] := µ[A|KJ ], µJ [B] := µ[B|KJ ], etc. Note that in general, this process cannot be
described by an SOPR: there is no function Φ : P(X)J−→P(X) such that, for any family
{Kj}j∈J of measurable subsets of X with µj = µ[•|Kj] for all j ∈ J and KJ :=

⋂
j∈J Kj,

we will have Φ [(µj)j∈J ] = µ (•|KJ ). [Compare Figures 2(B) and 2(C)]. In general, to
determine the measure µ (•|KJ ), we must explicitly compute KJ ; to do this, each juror j
must fully disclose her private knowledge Kj.

Example 2.1: Let X = [0, 1]2 (the unit box), let µ be the uniform measure. Let W :=[
0, 1

2

)
× [0, 1] and E := W∁ be the ‘west’ and ‘east’ halves of X, while S := [0, 1] ×

[
0, 1

2

)

and N := S∁ are the ‘south’ and ‘north’ halves of X. Let A := S ∩ W (the southwest
quadrant), and let J := {1, 2}. If K1 = W and K2 = S, then µ1[A] = µ[A|W] = 1/2
and µ2[A] = µ[A|S] = 1/2. Thus, for any weights w1, w2 summing to 1, the LOP will
estimate the probability of A to be w1µ1[A] + w2µ2[A] = (w1 + w2)(1/2) = 1/2. But
clearly, µ[A|K1 ∩ K2] = 1; thus, if the jurors had disclosed their private knowledge, we
would get a much better estimated probability for A. ♦
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Sometimes it is impossible for the jurors to disclose their private knowledge. For ex-
ample, we might be trying to aggregate the recorded opinions of experts who are widely
separated in time and space. Even if the jurors are present in the same time and place,
we can imagine that each Kj represents some vast, poorly specified body of partly uncon-
scious, intuitive and/or ineffable knowledge which would be impossible for each juror to
disclose to the other jurors. Usually, the jurors can only disclose some of their knowledge.
But sometimes, such ‘partial disclosure’ is sufficient.

Example 2.2: Let ζ : X−→[0, 1] be a measurable function such that ζ(µ) := µ ◦ ζ−1 is
the uniform measure on [0, 1]. For each j ∈ J and m ∈ [1...Mj], let ζj

m := ζ + ǫj
m, where

ǫj
m : X−→R are independent functions such that ǫj

m(µ) is a normal distribution with mean
0 and variance σ2 ≪ 1. If x0 ∈ X is the (unknown) state of nature, then the true value of
z := ζ(x0) is unknown (z is a random variable with uniform a priori distribution on [0, 1]).
Suppose juror j knows zm

j := ζm
j (x0) for m ∈ [1...Mj] (i.e. these are her ‘measurements’

of z, with independent normal random measurement errors). Thus, Dj := {zm
j }

Mj

m=1 is

j’s ‘dataset’, and zj := 1
Mj

∑Mj

m=1 zj
m is an ‘unbiased estimator’ for z, with standard error

σ/
√

Mj.

Let U ⊂ [0, 1], and suppose the jury wants to estimate Prob [z ∈ U] using its measurement
data. If Kj := {x ∈ X ; ζj

m(x) = zj
m, ∀ m ∈ [1...Mj]} and A := ζ−1(U) ⊂ X, then juror

j estimates Prob [z ∈ U|Dj] = µ[A|Kj] ≈ νj[U], where νj is the normal distribution with
mean zj and variance σ2/Mj.

The LOP would compute the average
∑J

j=1 wjνj[U] (for some weights (wj)
J
j=1). A much

better method is ‘full disclosure’: each juror to reveals her entire datasetDj, and the jury es-

timates Prob

[
z ∈ U

∣∣∣
⋃

j∈J Dj

]
= µ

[
A

∣∣∣
⋂

j∈J Kj

]
≈ νJ [U], where νJ is the normal dis-

tribution with mean zJ := 1
M

∑
j∈J

∑Mj

m=1 zj
m and variance σ2/M , where M :=

∑J

j=1 Mj.
But ‘full disclosure’ is not required here. It suffices for each juror to disclose her estimator
zj and her sample size Mj, because M :=

∑J

j=1 Mj and clearly zJ = 1
M

∑
j∈J Mjz

j. Thus,

given only {zj}J
j=1 and {Mj}

J
j=1, the jury can determine νJ and then compute νJ [U]. ♦

We will consider some other models of such ‘partial disclosure’ in §3 and §4.

3 Common Knowledge

Let A ⊂ X. Aumann (1976) showed that, if the probability estimate µj[A] of each juror
j ∈ J is the ‘common knowledge’ of all jurors, then all jurors must actually have the same

probability estimate: there exists α ∈ [0, 1] such that µj[A] = α for all j ∈ J . The obvious
aggregate probability judgement is then µJ [A] = α.

Formally, for all j ∈ J , let Kj be j’s ‘knowledge partition’¶, which we assume is finite.
Let x ∈ X be the true worldstate, and suppose x ∈ Kj ∈ Kj. For any A ⊂ X, we say that
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j knows A in worldstate x if Kj ⊆ A. Let Kj(A) :=
⊔

{K ∈ Kj ; K ⊆ A} be the event
that j knows A. Thus, KJ (A) :=

⋂
j∈J Kj(A) is the event that everyone knows A (i.e.

A is ‘mutual knowledge’). Thus, K
2
J (A) := KJ [KJ (A)] is the event that everyone knows

that everyone knows A, and so on. Finally K
∞
J (A) :=

⋂∞

n=1 K
n
J (A) is the event that A is

common knowledge.
For any α ∈ [0, 1] and j ∈ J , let Mj(A, α) :=

⊔
{K ∈ Kj ; µ[A|Kj] = α} be the

event that j thinks the probability of A is α. Aumann’s (1976) theorem states: for any
α1, . . . , αJ ∈ [0, 1] and x ∈ X, if the event M(α1, . . . , αJ) := M1(A, α1) ∩ · · · ∩MJ(A, αJ)
is common knowledge at x, then α1 = · · · = αJ . We call this an Aumann consensus. This
suggests iteration of the following procedure, which we call ‘ΓΠ’:

(Γ) Each juror publicly announces her current estimate of the probability of A.

(Π) Based on the stated estimates of the other jurors, each juror updates her own private
estimate to account for this new ‘common knowledge’.

Geanakoplos and Polemarchakis (1982) showed that ΓΠ will iteratively converge to an
Aumann consensus. This corroborates List and Pettit’s (2002, §4, p.101) suggestion that
Discursive Dilemmas might be resolved through deliberation leading to ‘convergence’ of
the juror’s beliefs.4

Example 3.1: Let X = [0, 1]2 with uniform measure µ, and suppose K1 = {N,S} and
K2 = {E,W}, where N,S,E,W ⊂ X are as in Example 2.1. Let x ∈ S ∩ W be the
unknown true state of nature; hence K1 = W and K2 = S.

If A = S ∩ W, then µ1[A] = µ[A|W] = 1/2 and µ2[A] = µ[A|S] = 1/2. Once juror
2 announces µ2[A] = 1/2 [Step (Γ)], juror 1 will realize [Step (Π)] that x ∈ S (because
otherwise, juror 2 would have said µ2[A] = 0). Likewise, once juror 1 announces µ1[A] =
1/2, juror 2 will realize that x ∈ W. Thus, after publicly announcing their probability
estimates during the first round of ΓΠ, both jurors recognize that x ∈ A; hence during
round 2, both will agree that µJ [A] = 1. ♦

Example 3.1 shows how ΓΠ works: after Step (Γ), each juror’s knowledge partition has
effectively been refined to¶ K1 ∨ K2 := {S ∩ W,S ∩ E,N ∩ W,N ∩ E}, and both K1 and
K2 have been updated to become S ∩ W. Example 3.1 also shows that a näıve initial
consensus (without common knowledge) is not the same thing as an Aumann consensus
(with common knowledge). The juror’s probability estimates initially ‘agree’, but once
they become common knowledge, both are revised upwards to a more accurate consensus.
Geanakoplos and Polemarchakis (1982; Prop.4) showed that, generically, ΓΠ will converge
in one step to the same Aumann consensus as the ideal of ‘full disclosure’ described in §2.
But while this outcome is highly probable, it is not guaranteed (1982; Prop.3):

4Such ‘deliberative convergence’ is also discussed in List (2002, 2004, 2007). However, List (2008) has
shown that restricting jurors to Boolean truth-valuations can seriously impede deliberative convergence;
this contrasts sharply with the probabilistic convergence of (ΓΠ).
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Example 3.2: Continuing the notation of Example 3.1, suppose B := (S∩W)⊔ (N∩E);
Then µ1[B] = 1/2 = µ2[B]. But after these estimates are disclosed [Step (Γ)], neither
juror has any more information than before, so she will not revise her estimate during (Π).
Thus, the resulting Aumann consensus will be µ1[B] = 1/2 = µ2[B]. However, if the jurors
had fully disclosed their private knowledge, they would realize that x ∈ K1 ∩K2 = S∩W,
and the Aumann consensus would be µ[B|S ∩ W] = 1. ♦

If juror’s knowledge partition Kj is an uncountable sigma-algebra, then Aumann’s
result is still true (if we treat two events as ‘equivalent’ when they only differ by a null
set), and the ΓΠ procedure still converges to consensus (via the martingale convergence
theorem), in the limit as time →∞ (Nielsen, 1984, Thm. 4.1 & 4.2). Also, McKelvey and
Page (1986;Thm.2) have shown that it is not necessary for the jurors to announce their
probability estimates in Step (Γ); it suffices for there to be common knowledge of some
(sufficiently informative) aggregate statistic of these estimates (e.g. their average) —even
one generated from information inadvertently revealed by each juror’s strategic behaviour
—e.g. a market price. (For generalizations, see (Ménager, 2008) and the references therein.)
Thus, to attain Aumann consensus, the jurors need not directly reveal any information to
one another. Nor must any juror trust any other juror not to lie, or trust that every other
juror trusts her, etc. (But they must still trust each other’s competency, and they must
be contemporaneous).

Finally, perfect knowledge is not necessary. For any A ⊂ X, j ∈ J , and p ∈ [0, 1], let
Bp,j(A) :=

⊔
{K ∈ Kj ; µ[A|Kj] ≥ p} be the event that j thinks the probability of A is

at least p (i.e. A is a ‘p-belief’ of j). Thus Bp,J (A) :=
⋂

j∈J Bp,j(A) is the event that A

is a ‘mutual p-belief’. For all n ∈ N, let B
n+1
p,J (A) := Bp,J

[
B

n
p,J (A)

]
; then B

∞
p,J (A) :=⋂∞

n=1 B
n
p,J (A) is the event that A is common p-belief. Monderer and Samet (1989;Thm.A)

proved: if M(α1, . . . , αJ) is common p-belief, where p = 1 − ǫ, then |αi − αj| ≤ 2ǫ for all
i, j ∈ J .

The theory of common knowledge (or ‘interactive epistemology’) is now quite exten-
sive; see (Geanakoplos, 1994) or (Lipman, 1999). But the predictions of Aumann consensus
contradict empirical evidence: people who respect and trust each other often continue to
disagree about the probability of certain events, even after ample dialogue. Perhaps the
model’s assumptions are unrealistic. For example, it assumes the jurors have a common
prior probability measure (the so-called Harsanyi Doctrine); indeed, Feinberg (2000) has
shown this is necessary for Aumann’s result. But the Harsanyi Doctrine is not uncontro-
versial (Morris, 1995).

Or, perhaps Aumann consensus is possible in theory, but not in practice, because
to attain it, each juror must mentally compute K

n
J [M(α1, . . . , αJ)] for arbitrarily large

n ∈ N; it is unclear whether ordinary people are willing (or able) to do this, so perhaps
it is unsurprising that they do not reach a consensus, even if they theoretically could
(Aumann, 1992). Also, to compute K

n
J [M(α1, . . . , αJ)], each juror needs perfect ‘inter-

subjective metaknowledge’ of the knowledge partition Kj of every other juror j ∈ J , and
also ‘metametaknowledge’ of other jurors’ metaknowledge, etc. This so-called Harsanyi-
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Aumann doctrine can be analyzed by embedding X within a larger statespace X∗; each
element of X∗ is a (transfinite) hierarchy representing the state of nature (in X), each
juror’s knowledge partition on X, her metaknowledge partition (concerning other juror’s
knowledge partitions on X), her metametaknowledge partition (concerning other juror’s
metaknowledge partitions), etc. In this formalism, a strict version of the Harsanyi-Aumann
doctrine is false, but certain ‘approximate’ versions are true; see (Fagin et al., 1992, 1999)
or (Geanakoplos, 1994, §15).

Example 3.1 shows how ΓΠ uses intersubjective metaknowledge: after learning µ2[A],
juror 1 uses her metaknowledge of K2 to refine her own knowledge partition from K1 to
K1 ∨ K′

2, for some K′
2 � K2. But juror 1 may have incomplete metaknowledge about 2

—perhaps only a coarser partition K̃2 ≺ K2. Then no matter how much 1 learns about 2’s
private knowledge via ΓΠ, juror 1 can never refine her own knowledge partition beyond
K̂1 := K1 ∨ K̃2. Conversely, if 2’s metaknowledge of 1 is K̃1 ≺ K1, then 2 can never refine
her own knowledge partition beyond K̂2 := K̃1 ∨ K2.

For A to be common knowledge in world-state x, there must exist some A′ ∈ K̂1 ∧ K̂2

with x ∈ A′ ⊆ A. But if K̃j 6= Kj (for j = 1, 2), then K̂1∧K̂2 may be coarser than K1∨K2.

If K̂1 ∧ K̂2 is a coarse partition, then only relatively large (i.e. low-information) subsets
of X can be common knowledge; hence people might agree on ‘obvious’ facts like whether
it is day or night, but be unable to achieve Aumann consensus about the probability that
CO2 will exceed 710 ppm in 2100 AD.

4 Independent Confirmation

In Example 2.1, the LOP failed to recognize that K1 and K2 provide independent informa-
tion about A. The fact that both jurors independently confirm A should raise the jury’s
probability estimate for A well above 1

2
. In contrast, suppose we knew that two jurors

have very similar background knowledge —formally, suppose Ki ≈ Kj. (For instance, in
Example 2.2, suppose the datasets Di and Dj were highly correlated —e.g. the errors ǫi

m

and ǫj
m were not independent.) Then i and j’s probability estimates for A will be very

close; any mechanism which treats i and j equally will incorrectly count this information
‘twice’. If Ki ≈ Kj, then one of i or j is essentially redundant; a good methodology would
(almost) entirely discount one of the two.

The LOP also pays insufficient heed to jurors with exceptionally high-quality informa-
tion. Let KJ :=

⋂
j∈J Kj. If each juror’s private knowledge is correct, then we must have

x ∈ KJ . Now suppose there is some j ∈ J with µj[A] = 0. Then µ[A ∩ Kj] = 0, so
µ[A ∩ KJ ] = 0, so we should set µJ [A] := 0. However, if µi[A] > 0 for some i ∈ J with
wi > 0, then the LOP will incorrectly estimate µJ [A] > 0. Similarly, if µj[A] = 1, then
we should set µJ [A] := 1; but if µi[A] < 1 for some i ∈ J with wi > 0, then the LOP will
incorrectly estimate µJ [A] < 1.

More generally, if there is some j ∈ J with µj[A] ≈ 1 (or 0), then Kj provides excep-
tionally high-quality information, which alone virtually guarantees the truth (or falsehood)

9



of proposition A; the jury should thus give extra weight to j’s opinion. However, the LOP
always gives j the same weight wj, regardless of her information.

In Example 2.1, we want to compute µ[A|K1 ∩K2]. But suppose we cannot determine
K1∩K2 (because K1 or K2 is hidden information) —all we know are the juror’s probability
estimates µ[A|K1] and µ[A|K2]. We must estimate µ[A|K1 ∩ K2], given only knowledge
of µ[A|K1] and µ[A|K2], and perhaps some information about the extent to which K1 and
K2 provide ‘independent’ knowledge about A, or the extent to which K1 provides ‘better’
information than K2. For any K1,K2 ⊂ X, we define the correlation between K1 and K2

by

C(K1,K2) :=
µ[K1 ∩ K2]

µ[K1] · µ[K2]
=

µ[K1|K2]

µ[K1]
=

µ[K2|K1]

µ[K2]
.

Thus, C(K1,K2) = 1 iff K1 and K2 are independent¶. If A ⊂ X is some other subset of X,
and µ[K1|A] and µ[K2|A] are both nonzero, then we define the A-conditional correlation

of K1 and K2 by

CA(K1,K2) :=
µ[K1 ∩ K2|A]

µ[K1|A] · µ[K2|A]
=

µ[Ki|Kj ∩ A]

µ[Ki|A]
, (i 6= j). (1)

Thus, CA(K1,K2) = 1 iff K1 and K2 are A-conditionally independent. If µ[K1|A] =
0 or µ[K2|A] = 0, then the expression (1) is not well-defined; in this case, we define
CA(K1,K2) := C(K1,K2). Thus, the ratio CA(K1,K2)/C(K1,K2) will be equal to one if
either (a) One of K1 or K2 is disjoint from A; (b) K1 and K2 are independent, and remain

independent when conditioned on A; or, (c) K1 and K2 are ‘correlated’ somehow, but the
degree of correlation does not change when we condition on A.

More generally, for any K1, . . . ,KJ ⊂ X, we define

C(K1, . . . ,KJ) :=
µ [K1 ∩ · · · ∩KJ ]

µ[K1] · · ·µ[KJ ]
; and

CA(K1, . . . ,KJ) :=





µ [K1 ∩ · · · ∩KJ |A]

µ[K1|A] · · ·µ[KJ |A]
, if µ[Kj|A] > 0 for all j ∈ J ;

C(K1, . . . ,KJ) if µ[Kj|A] = 0 for some j ∈ J .

Thus, C(K1, . . . ,KJ) = 1 if K1, . . . ,KJ are jointly independent, and CA(K1, . . . ,KJ) = 1
if K1, . . . ,KJ are A-conditionally jointly independent.

Proposition 4.1 Let A,K1, . . . ,KJ ⊂ X. Then

µ[A|K1 ∩ · · · ∩KJ ] =
µ[A|K1] · · ·µ[A|KJ ]

µ[A]J−1
·
CA(K1, . . . ,KJ)

C(K1, . . . ,KJ)
. (2)

Thus, if CA(K1, . . . ,KJ) = C(K1, . . . ,KJ), then

µ[A|K1 ∩ · · · ∩KJ ] =
µ[A|K1] · · ·µ[A|KJ ]

µ[A]J−1
. (3)
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Proof: If µ[Kj|A] > 0 for all j ∈ J , then this is a straightforward computation:

µ[A|K1] · · ·µ[A|KJ ]

µ[A]J−1
·
CA(K1, . . . ,KJ)

C(K1, . . . ,KJ)

=
µ[A ∩ K1] · · ·µ[A ∩ KJ ]

µ[A]J−1 · µ[K1] · · ·µ[KJ ]
·

µ[K1] · · ·µ[KJ ]

µ [K1 ∩ · · · ∩KJ ]
·

µ [K1 ∩ · · · ∩KJ |A]

µ[K1|A] · · ·µ[KJ |A]

=
µ[A ∩ K1] · · ·µ[A ∩ KJ ]

µ[A]J−1 · µ [K1 ∩ · · · ∩KJ ]
·

µ [K1 ∩ · · · ∩KJ ∩ A] · µ[A]J

µ[K1 ∩ A] · · ·µ[KJ ∩ A] · µ[A]

=
µ [K1 ∩ · · · ∩KJ ∩ A]

µ [K1 ∩ · · · ∩KJ ]
= µ[A|K1 ∩ · · · ∩KJ ].

If µ[Kj|A] = 0 for some j ∈ J , then also µ[A|Kj] = 0; thus µ[A|K1] · · ·µ[A|KJ ] = 0
and µ[A|K1 ∩ · · · ∩ KJ ] = 0. Meanwhile, CA(K1, . . . ,KJ)/C(K1, . . . ,KJ) = 1 because
CA(K1, . . . ,KJ) = C(K1, . . . ,KJ) by definition. Thus, equation (2) becomes “0 =
0/µ[A]J−1”, which is clearly true. ✷

Example 4.2: (a) In Example 3.1, we have J = 2, and C(K1,K2) = 1 = CA(K1,K2).
Thus, eqn.(2) becomes

µ[A|K1 ∩ K2] =
µ[A|K1] · µ[A|K2]

µ[A]
·
CA(K1,K2)

C(K1,K2)
=

(1/2) · (1/2)

(1/4)
·
1

1
= 1.

(b) In Example 3.2, C(K1,K2) = 1, but CB(K1,K2) = 2. Thus, eqn.(2) becomes

µ[B|K1 ∩ K2] =
µ[B|K1] · µ[B|K2]

µ[B]
·
CB(K1,K2)

C(K1,K2)
=

(1/2) · (1/2)

(1/2)
·
2

1
= 1.

♦

However, if it’s impossible for juror j to share her private knowledge Kj, then we proba-
bly don’t know enough about K1, . . . ,KJ to compute CA(K1, . . . ,KJ) and C(K1, . . . ,KJ).
For all j ∈ J , let Kj be a finite or countable partition of X, which we regard as j’s ‘knowl-
edge partition’¶. If j’s knowledge is private, then we know that Kj ∈ Kj, but the actual
value of Kj is (for us) a Kj-valued random variable; ∀ K ∈ Kj, Prob [Kj = K] = µ[K].
Thus, CA(K1, . . . ,KJ) and C(K1, . . . ,KJ) are also random variables. For any α ∈ [0, 1]
and j ∈ J , let Kj(A, α) := {K ∈ Kj ; µ[A|K] = α}. Let µj[A] := µ[A|Kj]. If µj[A] = αj

for some αj ∈ [0, 1], then we know that Kj ∈ Kj(A, αj), even if we don’t know what Kj

is. Thus, if we are told that µj[A] = αj for all j ∈ J (for some {αj}j∈J ⊂ [0, 1]), then the
expected value of the ratio CA(K1, . . . ,KJ)/C(K1, . . . ,KJ), given this information, is

ECA(α1, . . . , αJ) :=
1

M

∑

K1∈K1(A,α1)

· · ·
∑

KJ∈KJ (A,αJ )

µ[K1 ∩ · · · ∩KJ ]
CA(K1, . . . ,KJ)

C(K1, . . . ,KJ)
.

where M :=
∑

K1∈K1(A,α1)

· · ·
∑

KJ∈KJ (A,αJ )

µ[K1 ∩ · · · ∩KJ ] (4)
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Proposition 4.1 then yields the following expectation for µJ [A] := µ[A|K1 ∩ · · · ∩KJ ]:

E

(
µJ [A]

∣∣∣ µj[A] = αj, ∀ j ∈ J
)

= ECA(α1, . . . , αJ) ·
α1 · · ·αJ

µ[A]J−1
. (5)

In some cases, it may not be possible even to compute ECA(α1, . . . , αJ), since we don’t
even know the sets Kj(A, αj) for all j ∈ J . In this case, we can crudely approximate
ECA(α1, . . . , αJ) with the constant

ECA :=
∑

K1∈K1

· · ·
∑

KJ∈KJ

µ[K1 ∩ · · · ∩KJ ]
CA(K1, . . . ,KJ)

C(K1, . . . ,KJ)
. (6)

and then approximate (5) with

E

(
µJ [A]

∣∣∣ µj[A] = αj, ∀ j ∈ J
)

≈ ECA ·
α1 · · ·αJ

µ[A]J−1
. (7)

For example, let J = {1, 2}, and suppose A is K1-conditionally independent¶ of K2. Then
clearly µJ [A] = µ1[A]. Thus, the next result is no surprise; but it helps to illustrate the
meaning of equation (5) and gauge the accuracy of approximation (7).

Corollary 4.3 Suppose A is K1-conditionally independent of K2.

(a) For any α1, α2 ∈ [0, 1], we have ECA(α1, α2) = µ[A]/α2. Thus, expression (5)

becomes E

(
µJ [A]

∣∣∣ µ1[A] = α1 & µ2[A] = α2

)
= α1.

(b) ECA = µ[A] · E (1/µ2[A]), where we regard µ2[A] as a random variable with

Prob [µ2[A] = α] = µ [K2(A, α)] for all α ∈ [0, 1]. Thus, for any α1, α2 ∈ [0, 1], ap-

proximation (7) becomes E

(
µJ [A]

∣∣∣ µ1[A] = α1 & µ2[A] = α2

)
≈ α1α2·E (1/µ2[A]).

Proof: If A ⊥K1 K2, then for any K1 ∈ K1 and K2 ∈ K2, we have µ[A|K1∩K2] = µ[A|K1].
This means

µ[A ∩ K1 ∩ K2]

µ[K1 ∩ K2]
=

µ[A ∩ K1]

µ[K1]
; hence

µ[A ∩ K1 ∩ K2]

µ[A ∩ K1]
=

µ[K1 ∩ K2]

µ[K1]
. (8)

Thus, CA(K1,K2) =
µ[K1 ∩ K2|A]

µ[K1|A] · µ[K2|A]
=

µ[K1 ∩ K2 ∩ A] · µ[A]

µ[K1 ∩ A] · µ[K2 ∩ A]

(8)

µ[K1 ∩ K2] · µ[A]

µ[K1] · µ[K2 ∩ A]
=

µ[K1 ∩ K2]

µ[K1] · µ[K2]
·
µ[K2] · µ[A]

µ[K2 ∩ A]

= C(K1,K2) ·
µ[K2] · µ[A]

µ[K2 ∩ A]
= C(K1,K2) ·

µ[A]

µ[A|K2]
. (9)
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So ECA(α1, α2) (4)

1

M

∑

K1∈K1(A,α1)
K2∈K2(A,α2)

µ[K1 ∩ K2]
CA(K1,K2)

C(K1,K2)

(9)

1

M

∑

K1∈K1(A,α1)
K2∈K2(A,α2)

µ[K1 ∩ K2]
µ[A]

µ[A|K2]

=
1

M

∑

K1∈K1(A,α1)
K2∈K2(A,α2)

µ[K1 ∩ K2]
µ[A]

α2
(4)

µ[A]

α2

. (10)

Also, ECA (6)

∑

K1∈K1
K2∈K2

µ[K1 ∩ K2]
CA(K1,K2)

C(K1,K2) (9)

∑

K1∈K1
K2∈K2

µ[K1 ∩ K2]
µ[A]

µ[A|K2]

=
∑

K2∈K2

µ[K2]
µ[A]

µ[A|K2]
= µ[A] · E

(
1

µ2[A]

)
. (11)

This establishes the first assertions in (a) and (b). The second assertions follow by
setting J := 2 and substituting (10) into (5) and (11) into (7). ✷

Exact conditional independence is rare. If A is only ‘almost’ K1-conditionally indepen-
dent of K2 (i.e. if K1 ‘mostly’ subsumes K2-information about A), then Corollary 4.3(a)
and continuity imply that E(µJ [A] | µ1[A] = α1 & µ2[A] = α2) ≈ α1. Comparing Corol-
lary 4.3(b) to 4.3(a), we see that the approximation (7) is good as long as A is ‘almost
independent’ of K2, so that the random variable µ2[A] is ‘almost constant’ (and hence,
E (1/µ2[A]) ≈ 1/α2).

5 Booleanization and its perils

Suppose the jury must be ‘decisive’, and produce not a probability measure, but a ‘verdict’
(i.e. a Boolean truth-valuation) concerning the propositions. The obvious procedure is to
fix ‘thresholds’ 0 ≤ θF ≤ θT ≤ 1, and define a booleanization function V : [0, 1]−→{T, ?, F}
by

V (p) :=





F if p < θF ;
? if θF ≤ p < θT ;
T if p ≥ θT .

(12)

However, it is often impossible to obtain a logically consistent truth-valuation via (12),
except by assigning the truth value ‘?’ to one or more propositions. For example, suppose
that juror j believes that µj[A

∁ ∩ B] = 0, µj[A] = 2
3

and µj[B] = 1
3
. Then µ[A∁ ∪ B] =

µ[A∁] + µ[B] = 1
3

+ 1
3

= 2
3
. If we booleanize using any 1

3
< θF ≤ θT ≤ 2

3
, then we

re-encounter the Discursive Dilemma, as in the bottom row of Table 3.
We can avoid this inconsistency if we make the booleanization thresholds more ‘indeci-

sive’ (i.e make θF smaller and/or θT larger), but then (12) yields a useless truth-value of ‘?’

13



for one or more propositions. Furthermore, no matter how indecisive we make the thresh-
olds, it is always possible to construct some system of logical propositions complicated
enough to force a logically inconsistent booleanization.

Could we avoid these problems using a different booleanization instead of (12), or
perhaps by applying different booleanizations to different propositions? The answer is
‘no’, as we shall now see. Let T := {T, F}, and let X be a set of possible ‘states of nature’.
Given A1, . . . ,AN ⊂ X, a decisive booleanization for A1, . . . ,AN is an ordered n-tuple
V = (V1, . . . , VN), where, for each n ∈ [1...N ], Vn : [0, 1]−→T is some function. If µ is a
probability measure on X, then vn := Vn(µ[An]) is the ‘truth value’ assigned to event An

by booleanizing the probability µ[An]. Let V(µ) := (v1, . . . , vN) ∈ T N , and define

XV(µ) :=
{

x ∈ X ; ∀ n ∈ [1...N ], x ∈ An if vn = T, and x ∈ A∁
n if vn = F

}
.

For any x ∈ XV(µ), the truth value of the proposition “x ∈ An” is equal to vn for every
n ∈ [1...N ] —in other words, x is a ‘semantic instantiation’ of the truth valuation V(µ).
Thus, AV(µ) 6= ∅ only if the truth valuation V(µ) is logically consistent. We say V
guarantees consistency if XV(µ) 6= ∅ for any probability measure µ on X.

We say V respects certainty if Vn(0) = F and Vn(1) = T for all n ∈ [1...N ]. A good

booleanizer is some rule which assigns, to any set X and any finite collection of subsets
A1, . . . ,AN ⊂ X, a decisive booleanization V = (V1, . . . , VN) which respects certainty, yet
guarantees consistency.

Proposition 5.1 There is no good booleanizer.

Proof: (by contradiction). Let A = {a1, . . . , aN} be a finite set of propositions which
are strongly connected in the terminology of (Dietrich and List, 2007, §3). A ‘truth
valuation’ on A is thus an element of T A. Let X := {x ∈ T A ; x is a logically
consistent valuation on A}, and let B be the power set of X. For all n ∈ [1...N ],
let An := {x ∈ X ; xn = T} be the set of all valuations that say proposition an is
‘true’. Supposing there was a good booleanizer, let V := (V1, . . . , VN) be a decisive
booleanization for the sets A1, . . . ,AN ⊂ X, which respects certainty, yet guarantees
consistency.

If J is any jury, we define a (Boolean) judgment aggregation function Φ : XJ−→X as
follows. For any profile (xj)j∈J ∈ XJ of juror’s truth valuations, let µ : B−→[0, 1] be
the probability measure on X where, for all y ∈ X, µ{y} := #{j ∈ J ; xj = y}. Thus,
µ[An] = #{j ∈ J ; xj ∈ An} is the number of jurors who ‘believe’ proposition an. Now
let Φ [(xj)j∈J ] := V(µ) = (v1, . . . , vN), where vn := Vn (µ[An]) for every n ∈ [1...N ].

Claim 1: V(µ) ∈ X.

Proof: V(µ) is the unique point in T A such that, for all n ∈ [1...N ], V(µ) ∈ An if vn = T ,
while V(µ) ∈ A∁

n if vn = F . Thus, V(µ) is the only element of T A which could be in
XV(µ). But XV(µ) 6= ∅, because V guarantees consistency —hence XV(µ) = {V(µ)},
which means that V(µ) ∈ X. ✸ Claim 1
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Claim 1 makes Φ : XJ−→X a well-defined function; in the terminology of Dietrich
and List (2007), Φ satisfies universal domain (it is defined everywhere on XJ ) and
collective rationality (it maps into X). Furthermore, Φ is independent, because the value
of vn = Vn (µ[An]) depends only on the number of jurors who believe proposition an (that
is, µ[An]). This also means that Φ is anonymous: it treats all jurors the same. Finally,
Φ respects unanimity because V respects certainty. Thus, Theorem 2 of Dietrich and
List (2007) says Φ must be a dictatorship —but this is impossible if #(J ) ≥ 2, because
Φ is anonymous. Thus, we have a contradiction. ✷

So, booleanization is generally impossible. Fortunately, it usually isn’t even necessary.
When a jury must be ‘decisive’, it normally must decide a course of action —it doesn’t
need to declare a Boolean verdict on every proposition which may be germane to this
course of action. In an uncertain situation, the Bayesian decision procedure is to select
the action which yields the highest expected utility. To perform this procedure, a rational
jury must specify: (1) A probability distribution µ over the set X of ‘states of nature’,
and (2) A utility function U : A×X−→R, where A is the set of possible actions. Finding
the a∗ ∈ A which maximizes

∫
X

U(a∗, x) dµ[x] is then merely a computational problem
(difficult in practice, but solvable in principle). The real problem is for the jury to construct
U and µ. The construction of U (the ‘social welfare function’) is the concern of traditional
social choice theory.5 The construction of µ is our present concern.6 At no time during
this process need the jury declare a Boolean verdict for any propositions corresponding to
subsets of X.

6 Consequentialism versus deontology

The ‘Bayesian decision procedure’ in §5 is ‘consequentialist’: it says that the best action is
the one which yields the best consequences (e.g. the highest expected utility).7 However,
‘deontological’ philosophers argue that actions should be judged not by their consequences,
but by their conformity with certain inviolable moral axioms, such as respect for inalienable

5The ‘correct’ social welfare function is a subject of ongoing controversy. However, Harsanyi (1955; 1977
§4.8) has shown that, if both the individual jurors and the jury as a whole are expected-utility maximizers,
as we are suggesting here, and if the jury chooses Pareto-preferred alternatives whenever possible, then the
jury’s utility function must be a linear combination of the utility functions of the jurors. Mongin (1994)
and others have extended Harsanyi’s argument to derive a utilitarian social welfare function.

6Hylland and Zeckhauser (1979) have shown that, if we aggregate the jurors’ utilities {uj}j∈J with a
social welfare function, and also aggregate their probability measures {µj}j∈J with a nondictatorial SOPR,
then the collective Bayesian choice a∗ may be ‘Pareto-inefficient’: there may be some other b ∈ A such
that

∫
X

uj(b, x) dµj [x] >
∫
X

uj(a
∗, x) dµj [x], ∀ j ∈ J . This can be seen as another argument against

SOPRs.
7Notwithstanding footnote #5, ‘consequentialist’ does not mean ‘welfarist’ —the ‘consequences’ in

question could refer to non-welfare goods like ‘liberty’ or ‘autonomy’. Also, even ‘welfarism’ recognizes
the ‘instrumental’ value of such non-welfare goods, because of their strong impact on welfare itself —see
footnotes #10 and #11.
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‘rights’ (e.g. property rights, personal liberties) and obedience to ‘duties’ (e.g. the law;
the terms of a valid contract; the holy scriptures). For example, the juridical reasoning
considered by Kornhauser and Sager is deontological. Deontological reasoning is a kind
of deductive logic; hence all deontological propositions must be assigned Boolean truth
values. Thus, a deontologist would argue that, when deciding a course of action, the jury
in fact does need to declare a Boolean verdict on every proposition which may be germane
to this course of action.

A full discussion of consequentialism versus deontology is outside the scope of this
paper. We will simply note that, because it works with discrete categories (e.g. forbid-
den/allowed/obligatory, true/false) rather than continuous quantities (e.g. utility, proba-
bility), deontology already has two well-known defects:

• Deontology is incapable of making the (often tragic) tradeoffs which are ubiquitous
in politics. (Example: If we are forced to choose, is it worse to violate the property
rights of ten people, or the personal liberties of five?).8

• Deontology is incapable of dealing with risk, which is inevitable in any complex
decision. (Example: is it worse to risk a 20% chance of trampling the liberties of ten
people, or a 10% chance of trampling the liberties of twenty?).9

To these two defects, we can now add a third:

• By insisting on Boolean truth valuations, deontology inexorably collides with the
Discursive Dilemma.

Deontological arguments still have a place in a consequentialist moral reasoning, but only
as a kind of heuristic or shorthand:

1. They can help to make approximate, ‘order-of-magnitude’ estimates of the expected
utility of actions, when precise computations are impossible (e.g. due to incomplete
data) or excessively complicated (e.g. due to long-term consequences).10

8Each tradeoff can be resolved by adding some supplementary moral axiom (e.g. “the liberty of N
people takes precedence over the property rights of 2N or less people”). But the accretion of such ad hoc

axioms will inevitably lead to logical inconsistencies, eventually.
9Indeed, it has been known since von Neumann and Morgenstern (1947 [2007]) that, if an actor i makes

risky choices which satisfy minimal conditions of ‘rationality’, then there is a utility function ui such that
i always acts to maximize the expected value of ui. So, even a supposedly ‘deontological’ actor, if she
responds ‘rationally’ to risk, is behaving as if she is a consequentialist, whether she knows it or not.

10Example: violating personal liberties usually causes massive disutilities. Lacking more precise data,
we could approximate the ‘expected utility’ of any action which violated liberties as being ‘−∞’, compared
to an action which did not; this has roughly the same effect as treating personal liberty as a ‘right’.
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2. They can efficiently and concisely summarize complex consequentialist arguments (or
at least, approximations of them).11

However, it must be remembered that deontological reasoning is never more than a shortcut
for a more nuanced consequentialist argument. When a deontological argument runs into
trouble (e.g. tradeoffs, risk, or discursive dilemmas), it should be jettisoned in favour of a
consequentialist (e.g. Bayesian) decision procedure.

Conclusion

We can mostly obviate the ‘Discursive Dilemma’ if we reconceive the problem of ‘judgment
aggregation’ in three ways:

(i) Aggregate the juror’s probability estimates, rather than Boolean truth valuations.

(ii) Utilize the juror’s private information (from which they derive their probability esti-
mates) in addition to the estimates themselves.

(iii) Do not try to ‘booleanize’ the jury’s aggregated probability judgement (§5).

Section 1 showed that (i) alone is not sufficient; SOPRs (which ignore the juror’s private
information) encounter ‘impossibility theorems’ very similar to the Discursive Dilemma.
Sections 2-4 explored three models of (ii), from an unrealistic ideal of ‘full disclosure’
(§2), to a (perhaps equally unrealistic) model of ‘Aumann consensus’ arising from perfect
intersubjective metaknowledge (§3), to a less ambitious mechanism which uses only a crude
measure of the jurors’ ‘independence’ from one another (§4).

All three models show the importance of deliberation. It is simply not sufficient to
mechanically aggregate judgements (probabilistic, Boolean, or otherwise) using some sim-
ple ‘voting rule’. It is necessary for the jurors to deliberate, to share information, and
to revise their private judgements in light of the information revealed by others. Ideally,
at the end of this deliberation, there will be no need to ‘aggregate’ judgements, because
there will be unanimous consensus (§3). Even if there is still dissensus, we can use the
additional information revealed by the jurors to refine the aggregation process (§4). Thus,
our analysis provides strong support for the ‘deliberative’ conception of democracy which
has been advanced by Dryzek and List (2003) and others.12

11 Example: people must expect that their personal property will be protected, their contracts will
be fulfilled, and they will be free to engage in economic transactions —otherwise the modern market
economy would disintegrate, greatly diminishing prosperity and causing long-term disutility for everyone.
To sustain these expectations, the State must always be seen to vigorously enforce contracts, protect
personal property, and respect economic freedoms. In other words, the State must act as if we have a
‘moral duty’ to honour contracts, and a ‘right’ to property or economic liberty.

12See Bohman and Rehg (1997), Elster (1998), Dryzek (2002), Fishkin and Laslett (2003), Amsler (2004),
Bächtiger and Steiner (2005), van Aaken et al. (2004) or Rosenberg (2007).
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Appendix on Probability Theory

Let X be a set of ‘world-states’. A sigma-algebra on X is a collection B of subsets of X which is
closed under complements, countable intersection, and countable unions. A subset A ⊂ X is an
event (or an B-measurable set) if A ∈ B. A probability measure is a function µ : B−→[0, 1], with
µ[X] = 1, which is countably additive —i.e. µ[

⊔∞
n=1 An] =

∑∞
n=1 µ[An] for any disjoint events

A1,A2, . . . , in X. The ordered triple (X,B, µ) is then called a probability space. If A,K ⊂ X,
then µ[A|K] := µ[A ∩ K]/µ[K] is the conditional probability of A, given K.

A partition of X is a collection K = {Kn}
N
n=1 of disjoint events such that X =

⊔N
n=1 Kn (where

N ∈ N⊔{∞}). Typically, K is the knowledge partition of some juror j: at any time, j’s ‘knowledge
set’ Kj is some element of K. For example, suppose j obtains her knowledge by conducting some
‘measurement’ or ‘experiment’, described by some measurable function φj : X−→N. Then j’s
‘knowledge’ of the unknown world-state x0 ∈ X is the measurement value Nj := φj(x0) ∈ N;

hence Kj = φ−1
j {Nj}. Thus, K =

{
φ−1

j {n} ; n ∈ N

}
.

If A ⊂ X, then A is K-measurable if A =
⊔

K∈K′ K for some subset K′ ⊆ K. This means that
juror j’s private knowledge alone provides complete information about A: for any K ∈ K, either
µ[A|K] = 1 or µ[A|K] = 0 (because either K ⊆ A, or K is disjoint from A). Let 〈K〉 be the
family of all K-measurable subsets of X (that is: 〈K〉 is the sigma-algebra generated by K).

Let K1 and K2 be the knowledge partitions of jurors 1 and 2. Say K1 refines K2 if K2 ⊆ 〈K1〉.
(Notation: “K2 � K1”). This means that juror 1’s knowledge completely subsumes juror 2’s
knowledge. We define K1 ∧ K2 to be the coarsest partition which refines both K1 and K2, and
define K1 ∨K2 to be the finest partition which is refined by both K1 and K2. If A,K ⊂ X, then
A is independent of K if µ[A|K] = µ[A]. (Notation: “A ⊥ K”). Likewise, A is independent of K2

if A ⊥ K2 for all K2 ∈ K2. (Notation: “A ⊥ K2”). This means that juror 2 is totally ignorant
of A —her private knowledge tells us absolutely nothing about A. We say K1 is independent of
K2 if K1 ⊥ K2 for every K1 ∈ K1. (Notation: “K1 ⊥ K2”). This means that jurors 1 and 2 have
completely disjoint information about the world.

Finally, we say that A is K1-conditionally independent of K2 if, for any K1 ∈ K1 and K2 ∈ K2,

µ[A|K1 ∩ K2] = µ[A|K1]. (Notation: “A ⊥K1 K2”) . This means that juror 1’s knowledge of

A totally subsumes juror 2’s knowledge of A: once we have juror 1’s opinion, juror 2’s opinion is

redundant. For example: (a) If K2 � K1, then A ⊥K1 K2. (b) If K1 ⊥ K2 and also A ⊥ K2 (e.g.

if A ∈ 〈K1〉), then A ⊥K1 K2. (c) Suppose K1, K2, and A represent information about a Markov

process. If K1 represents information about the process at time t, and A represents an event

which occurs after time t, while K2 represents information from before time t, then A ⊥K1 K2.
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