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Abstract

This paper studies the theoretical properties of existing economic geography models
with agglomeration and dispersion forces in a many-region setup, rather than their
original two-region space, to investigate the spatial scale—global or local—of agglom-
eration and dispersion intrinsic to each model. We show that models in the literature
reduce to two canonical classes that differ starkly in their engendered spatial patterns
and comparative statics. Our formal results offer a consistent explanation for the set
of various outcomes from the extant reduced-form regression analyses and also provide
qualitative predictions of the treatment effects in the structural model-based studies
on regional agglomeration.
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1 Introduction

Empirical studies over the past few decades have led to the accumulation of ample evidence

that agglomeration externalities are the major source of the lumpy spatial distributions of

economic activities (see, e.g., Rosenthal and Strange, 2004, for a survey). A wide variety

of formal models have been proposed to investigate the underlying mechanisms (see, e.g.,

Duranton and Puga, 2004; Behrens and Robert-Nicoud, 2015, for surveys). For analytical

tractability, most existing models rely on a location space that abstracts from the diversity
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of interregional distances inherent in actual regional economies, where a typical approach

assumes a location space comprising just two regions.1 Summarizing the spatial effects in a

single interregional distance simplifies the analysis. However, this benefit comes at the cost

of losing information on the spatial scale of agglomeration and dispersion.2

To see this, consider a model with any agglomeration force but without a dispersion

force. In such a model, all the mobile agents will concentrate in one region. If some

dispersion forces were added to the model, a proportion of mobile agents will deviate from

the concentration. In a two-region economy, there is only one alternative region to head for.

Hence, there is no variation in the spatial scale of dispersion. However, in a many-region

economy in which interregional distances are heterogeneous, the spatial scale of dispersion

can vary depending on the nature of the dispersion force. Dispersion may occur locally to

avoid crowding inside the agglomeration as in the case of an urban congestion externality,

or it may occur globally through attraction from outside the agglomeration in the case of a

distant, less crowded market.

This study revisits a wide variety of existing economic geography models in a many-region

setup with diverse interregional distances.3 By characterizing their bifurcation behaviors

behind the spontaneous formation of agglomerations, we show that these models reduce

to two canonical classes: (i) one with a global dispersion force4 and (ii) the other with a

local dispersion force.5 Formally, these two dispersion forces differ in that the former is

dependent, whereas the latter is independent, on the distance structure of the model. The

most realistic formulations incorporate both forces, which we call class (iii).6 (See Table 1

in Section 4.3 for the classification of the existing models).

The basic two classes (i) and (ii) exhibit two stark differences. The first difference appears

in the response to transport costs. Global dispersion (i.e., an increase in the number of

agglomerations, a decrease in the spacing of agglomerations, and a decrease in the size of

each individual agglomeration) is triggered by higher costs. By contrast, local dispersion

(i.e., a decrease in population density of mobile agents and an enlargement of the spatial

1Another typical approach allows for the presence of many regions that are equidistant (often zero
distance) from one another as in the system of cities model proposed by Henderson (1974). See Tabuchi,
Thisse and Zeng (2005) for a recent such application.

2Many extant empirical studies have abstracted from the space between locations and focused on the
local interactions between agglomeration size and location-specific factors (see, e.g., Combes and Gobillon,
2015, for a survey). The empirical studies discussed in Section 6 belong to the other strand of the literature
that accounts for global factors (e.g., interregional transport accessibility) on regional agglomerations.

3More specifically, we cover static many-region models with a single type of mobile agent (see footnotes
4, 5, and 6). We do not cover models with multiple types of mobile agents (e.g., urban models of Fujita and
Ogawa, 1982; Ota and Fujita, 1993; Lucas and Rossi-Hansberg, 2002; Ahlfeldt, Redding, Sturm and Wolf,
2015; Owens, Rossi-Hansberg and Sarte, 2017), or dynamic models (e.g., Desmet and Rossi-Hansberg, 2009,
2014, 2015; Desmet, Nagy and Rossi-Hansberg, 2017; Nagy, 2017).

4For example, Krugman (1991); Puga (1999); Ottaviano, Tabuchi and Thisse (2002); Forslid and Otta-
viano (2003); Pflüger (2004); Harris and Wilson (1978).

5For example, Beckmann (1976); Mossay and Picard (2011); Blanchet, Mossay and Santambrogio (2016);
Helpman (1998); Redding and Sturm (2008); Murata and Thisse (2005); Allen and Arkolakis (2014).

6For example, Tabuchi (1998); Pflüger and Südekum (2008); Takayama and Akamatsu (2011).
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extent of an agglomeration) is triggered by lower costs. In class (iii) models with both types

of dispersion forces, a decrease in transport costs simultaneously causes both agglomeration

at the global scale and dispersion at the local scale. The second difference shows up in the

agglomeration patterns. In the former, multiple and distinct agglomerations emerge; in

the latter, the agglomeration always results in a unimodal regional distribution of mobile

agents. The typical location pattern can thus be described as locally concentrated and

globally dispersed for the former and as globally concentrated and locally dispersed for the

latter.

The notion of the spatial scale of agglomeration and dispersion is not pervasive in the

empirical literature on regional agglomeration. However, it is indispensable to understand

the evolution of agglomeration patterns in reality. Consider the case of Japan since 1970.

The development of highways and high-speed railway networks in Japan was triggered by

the Tokyo Olympics held in 1964. Between 1970 and 2015, the total highway (high-speed

railway) length increased from 879 km (515 km) by more than 16 (10) times to 14,146

km (5,350 km). The 302 urban agglomerations that have survived throughout that 45-

year period experienced a 21% increase in population size on average (controlling for the

national population growth). This means that there was a selective concentration from

across the country, i.e., at the global scale.7,8 However, this concentration at the global scale

was associated with a dispersion at the local scale: there was a 94% increase in areal size on

average with a 22% decrease in population density for individual agglomerations on average.9

These seemingly paradoxical evolutions of urban agglomerations in Japan turn out to be a

standard outcome of class (iii) models (see Section 5.3).

Accordingly, our results provide novel perspectives for the three major strands of the em-

pirical literature on regional agglomeration. One is on the measure of agglomeration (e.g.,

Ellison and Glaeser, 1997; Duranton and Overman, 2005; Brülhart and Traeger, 2005; Mori,

Nishikimi and Smith, 2005). The other two are on reduced-form regression approaches (see,

e.g., Redding and Turner, 2015, §20.4, for a survey) and structural model-based approaches

(see, e.g., Redding and Rossi-Hansberg, 2017, for a survey) to evaluate the impacts of exoge-

nous changes, particularly those of interregional transport access on regional agglomeration.

Here, we highlight the basic issue in each context.

A scalar index has long been the natural choice for measuring agglomeration, reflecting

that abstraction from interregional distances has been the rule in the formal analyses of

agglomeration. On the premise of our theoretical results, when the dispersion force is effec-

7Each urban agglomeration is identified as the set of contiguous 1 km-by-1 km cells with a population
density of at least 1000/km2 and total population of at least 10,000. Population count data are obtained from
Statistics Bureau, Ministry of Internal Affairs and Communications of Japan (1970, 2015). The transport
network data are obtained from the National Land Numerical Information Download Service of Japan at
http://nlftp.mlit.go.jp/ksj-e/gml/gml_datalist.html. See Appendix A for more details.

8The population size of each agglomeration is computed in terms of its share of the national population,
and thus the growth in national population size is controlled for.

9These changes are substantial compared to the 9% increase in the national population during the same
period. Thus, obviously they were not driven by the national population growth.
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tive at both global and local scales as in reality, agglomeration proceeds at the global scale

when dispersion proceeds at the local scale and vice versa. Thus, the meaning of the net

effect summarized by a scalar index is unclear. In Section 6.1, we argue for the necessity

and utility of more disaggregated measures of agglomeration.

For the reduced-form regression exercises, consider, for example, the contrasting studies

of regional agglomeration (i.e., at a global scale) presented by Duranton and Turner (2012)

and Faber (2014). The former focused on the growth of large metro areas in the United

States, while the latter focused on the growth of peripheral counties in China.10 The former

(latter) revealed a positive (negative) correlation between the size of agglomeration and

interregional transport access in a given region. In light of class (i) models, these opposite

responses may simply reflect different sides of the same coin. That is, both the results may

indicate the tendency of agglomeration at the global scale (toward larger regions) under the

treatment, i.e., an improvement in interregional transport access (as in the case of Japan

discussed above). Thus, one must carefully interpret the estimated treatment effect, since

it is simply an average effect for the set of the selected regions, where the selection often

involves some obvious biases, e.g., a larger or smaller subset of all cities. For the excluded

but treated regions, the sign of the impacts may well be the opposite. Section 6.2 provides

a unified interpretation of a wider variety of empirical evidence on regional agglomeration

in terms of our theoretical results.

Finally, regarding structural model-based approaches for regional agglomeration, the

two representative models proposed by Redding and Sturm (2008) and Allen and Arkolakis

(2014) belong to class (ii), i.e., they cannot explain the endogenous formation of multiple

agglomerations by construction. In other words, their basic premise is that the primary

source of regional variation in agglomeration size is the heterogeneity in exogenous (or

first-nature) regional advantages and that agglomeration externalities play only a secondary

role. However, we demonstrate that even in this case, the comparative static outcome is

still governed by agglomeration externalities and is specific to the model class. In fact, the

signs of the treatment effects on agglomeration typically reverse if multiple agglomerations

are allowed to form endogenously, i.e., class (i) models are adopted instead.11

The remainder of this paper is organized as follows. Section 2 develops a general modeling

framework for analyzing agglomeration patterns in a many-region economy and defines the

equilibria and their stability. Section 3 characterizes the nature of the dispersion force

and provides a formal classification of the spatial patterns of agglomeration in terms of the

spatial scale of dispersion forces. Section 4 presents a mapping of existing models of economic

geography to the classification. Section 5 outlines the impact of changes in transport costs

10The amount of interregional highway linkages (e.g., number and total length) within a given region is
often interpreted as a measure of intra-urban transport infrastructure (e.g., Baum-Snow, 2007; Duranton and
Turner, 2012). However, we suggest that it can also be interpreted as a measure of interregional transport
infrastructure.

11See the discussions in Section 6.3 and the formal analysis in Appendix D.
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on the stable equilibrium patterns of agglomeration under representative models. Section 6

discusses the implications of our theoretical results for the empirical literature on regional

agglomeration. Finally, Section 7 concludes and discusses future research agendas regarding

models with richer and more realistic structures that are not addressed in this study.

2 A general modeling framework for spatial agglomer-

ations

This section introduces a generic format of many-region spatial economic models, which we

refer to as economic geography models, with agglomeration externalities and the endogenous

formation of spatial concentration. As essential preliminaries, the technical aspects (stability

and bifurcation of equilibria) and their economic interpretations are discussed.

2.1 Economic geography models

The economy consists of K discrete regions indexed from 0 as i = 0, 1, . . . , K − 1, and

K ≡ {0, 1, . . . , K − 1} denotes the set of regions. Throughout our analyses, the term

“region” indicates a discrete spatial unit in which a mobile agent can locate. Whether the

model is interpreted to be intra-urban, interregional, or international is not essential for our

results. A “region” may alternatively be termed an urban zone, a municipality, a country,

and so forth.12

There is a continuum of mobile agents of a single type; an agent chooses a single region

in which to locate. We denote the spatial distribution of agents by h ≡ (hi)i∈K, where its

ith element hi ≥ 0 is the mass of agents located in region i. The total mass of mobile agents

is exogenous constant H. The set of all possible spatial patterns is given by D ≡ {h ∈ R
K |

∑

k∈K hk = H, hk ≥ 0}.

Given the spatial distribution h of agents, the payoff of choosing each region is deter-

mined. The payoff function is denoted by v(h) ≡ (vi(h))i∈K, where vi(h) denotes the payoff

for an agent located in region i ∈ K. Agents are mobile and are free to choose their loca-

tions to possibly improve their own payoffs. Thus, the equilibrium condition for the spatial

distribution of agents is formulated as follows: v∗ = vi(h) for all regions i such that hi > 0,

and v∗ ≥ vi(h) for any region i such that hi = 0. Here, v∗ is the equilibrium payoff level.

Our analysis thus adheres to the most canonical form of economic geography models:

static models with a single type of mobile agent. For example, the above description covers

models of endogenous city center formation (e.g., Beckmann, 1976). It also covers single-

industry new economic geography (NEG) models; in such models there is only a single

type of mobile agent, i.e., the location incentives of firms and workers coincide. We do

12On assuming a discrete space, also noted is that there are intrinsic difficulties with employing a continu-
ous space in empirical analyses because of the discrete nature of the data as well as numerical computations.
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not consider, however, more involved models with multiple types of mobile agents,13 sector-

wise differentiated spatial frictions,14 multiple types of increasing returns,15 and dynamic

models.16 These directions are briefly discussed in Section 7.

The indispensable feature of economic geography models is the presence of space: trans-

port costs are incurred by, e.g., the shipment of goods between different regions or social

interactions among agents in different locations. Therefore, there is a fundamental tradeoff

between transport costs and scale economies associated with the spatial concentration of

economic activities (Fujita and Thisse, 2013). The payoff functions of economic geography

models include agglomeration and dispersion forces, meaning that spatial equilibria are de-

termined by a tense balance of these two opposing forces that depend on the interregional

transport costs. We assume that the spatial friction between regions is summarized by a

single friction matrix D = [dij], where dij ∈ [0, 1) denotes the freeness of the transport

between regions i, j. Also, throughout the paper we focus on a special geographical setup,

namely a racetrack economy, which we will describe in detail in Section 3.1.

Given the friction matrix D that encapsulates the role of the underlying geography,

the microfoundations for the payoff function v(h) are typically provided by modeling the

short-run equilibrium relating to the spatial frictions between locations. Assuming that

the relocation of agents is sufficiently slow compared with that through market reactions,

the short-run equilibrium conditions (e.g., factor and product markets clearing and trade

balance) determine the payoff (utility or profit) in each region as a function of the spa-

tial pattern of agents h. We thus assume that the payoff function v(h) includes D as a

parameter.

2.2 Stability and bifurcation of the equilibria

Owing to the positive externalities of spatial agglomeration, economic geography models

often face a multiplicity of equilibria. A standard approach in the literature is to introduce

equilibrium refinement based on local stability under myopic evolutionary dynamics, where

the rate of change in the number of residents hi in region i is modeled on the basis of the

spatial pattern of agents h and that of payoff v(h).17 We denote the deterministic dynamic

by ḣ = F (h,v(h)), where the dot over h represents the time derivative. We assume (i)

F satisfies differentiability with respect to both arguments in D, (ii) agents relocate in the

direction of an increased aggregate payoff under F , and (iii) the total mass of agents is

preserved under F .18 Furthermore, we assume that any spatial equilibrium is a rest point of

13For example, the urban models of Fujita and Ogawa (1982); Ota and Fujita (1993); Lucas and Rossi-
Hansberg (2002) as well as Ahlfeldt et al. (2015); Owens et al. (2017).

14For example, Fujita and Krugman (1995) and Mori (1997).
15For example, Fujita, Krugman and Mori (1999); Tabuchi and Thisse (2011), and Hsu (2012).
16For example, Desmet and Rossi-Hansberg (2009, 2014, 2015); Desmet et al. (2017); Nagy (2017).
17Another approach is global stability analysis (e.g., Oyama, 2009a,b).
18For (i), we assume the differentiability of F (h,v(h)) as a whole on the tangent space of D. The second,

(ii), is called positive correlation (Sandholm, 2010), which is defined by
∑

i∈K vi(h)·ḣi > 0 for all h ∈ D. The
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the dynamic.19 Given the adjustment dynamic F , the stability of the equilibrium is defined

in terms of asymptotic stability under F .

The stability of a given spatial equilibrium is parameter-dependent. As emphasized

by the NEG literature, changes in transportation technologies can trigger the endogenous

emergence of regional inequality. The basic core–periphery story following Krugman (1991)

may be put as follows: “Consider an economy with two regions that are ex-ante symmetric,

where the regions have exactly the same characteristics and mobile agents are uniformly

distributed. When interregional transport costs are high, the uniform distribution of mobile

agents is a stable equilibrium. If the transportation cost falls below a certain threshold

value, the pattern is no longer stable; the agglomeration toward one of the regions occurs,

and the core–periphery pattern emerges by self-organization.”

Although the intuitive story of the two-region economy backed by the rich interactions

of economic forces has its own right, corresponding many-region studies are scarce in the

literature. In particular, which spatial patterns emerge after an encountered destabilization

in a many-region economy is far from obvious. We therefore need better methods to examine

the stability of equilibrium patterns in a many-region economy.

Such an abrupt change in spatial patterns due to destabilization is an instance of bifurca-

tion. Thus, bifurcation theory in general provides the canonical tools to tackle our problem.

This study builds on the following formal facts on the stability and bifurcation of equilibria

to examine the formation of spatial patterns in a many-region economy:20

Fact 1. Consider a spatial equilibrium h∗. Let J ≡ [∂Fi(h
∗,v(h∗))/∂hj] be the Jacobian

matrix of the dynamic F evaluated at h∗. Let the eigenvalues of J be g = (gk)k∈K.21

Then, h∗ is stable if all the K eigenvalues have strictly negative real parts; it is

unstable if any of the eigenvalues has a strictly positive real part.

Fact 2. Let h∗ be a stable spatial equilibrium, i.e., an equilibrium at which every eigenvalue

of J(h∗) has strictly negative real parts. Suppose that any of the eigenvalues, say

gk, switches its sign because of a change in the value of an underlying model

parameter. Then, bifurcation occurs: h∗ becomes unstable and the spatial pattern

moves in the direction of ηk = (ηk,i)i∈K, which is the eigenvector associated with

gk; given a real number ε, a pattern that can be expressed as h∗ + εηk emerges.

last, (iii), requires that F (h,v(h)) live in the tangent cone of D for all h ∈ D. Furthermore, although this
study focuses on homogeneous payoffs, one can analyze the stability of spatial equilibria with idiosyncratic
taste heterogeneity (e.g., Murata, 2003; Redding, 2016; Behrens, Mion, Murata and Südekum, 2017; Monte,
Redding and Rossi-Hansberg, 2016) by using perturbed best response dynamics.

19That is, if h∗ is a spatial equilibrium, we have ḣ = F (h∗,v(h∗)) = 0.
20In the rest of the paper, we sacrifice mathematical accuracy to reduce unnecessary burden for general

readers. For a rigorous and general textbook treatment of the stability analysis of dynamical systems and
bifurcation theory, see, for example, Guckenheimer and Holmes (1983) and Kuznetsov (2004). An earlier
attempt to apply bifurcation theory to spatial structural evolution can be found in Wilson (1981).

21Allowing notational abuse, K denotes the K-dimensional index sets for the regions and the eigenvalues
and eigenvectors of J .
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Note that when we employ Fact 2, we can focus on ηk with
∑

i∈K ηk,i = 0 because we assume

that the total number of mobile agents is preserved under F .22

The two-region story is related to Facts 1 and 2 in the following way. Consider a two-

region economy that comprises two regions 0 and 1 with completely homogeneous charac-

teristics. The uniform pattern h̄ ≡ (h, h) is obviously a spatial equilibrium. The (two)

eigenvectors of J are given by η0 = (1, 1) and η1 = (1, −1) with the associated eigenvalues

g0 and g1, respectively. The former, η0, induces a change in the total mass of mobile agents

and is irrelevant in a closed economy. The latter, η1, expresses the agglomeration of mobile

agents toward one of the regions, say 0. The associated eigenvalue, g1, then coincides with

the differential of the payoff difference between the two regions ∆v(h) ≡ v0(h)−v1(h) up to

a positive constant. If g1 < 0, then a marginal increase in the population share of region 0

induces a relative decrease in the payoff in region 0. Hence, no mobile agent hopes to leave

region 1. If a decrease in transport costs changes the sign of g1 from negative to positive,

then relocation becomes strictly beneficial for agents in region 1, i.e., h̄ become unstable,

and agglomeration emerges.

2.3 Interpreting eigenvalues: Net agglomeration forces

From Facts 1 and 2, by analyzing the eigenpairs (i.e., eigenvalues g and eigenvectors {ηk})

of J(h∗), one can examine when the destabilization of a given equilibrium h∗ occurs and

which spatial pattern(s) emerge thereafter. Although seemingly mechanical, as one would

expect from the above example of the two-region setup, g and {ηk} have rich economic

meanings.

The sign of an eigenvalue gk dictates whether h∗ is stable in the direction of the associated

eigenvector ηk. We provide some intuitions. Given an interior equilibrium h∗, consider a

small variation in the spatial pattern such that h = h∗ + ηk, where ηk ≡ (ηk,i)i∈K is one of

the eigenvectors of J(h∗), whose associated eigenvalue is gk. Then, under our assumptions

of F , one can show that23

sgn[gk] = sgn[δV (ηk)], (2.1)

where δV (ηk) and δVi(ηk) are respectively defined by

δV (ηk) ≡
∑

i∈K

δVi(ηk)ηk,i and δVi(ηk) ≡
∑

j∈K

∂vi(h
∗)

∂hj

ηk,j. (2.2)

Note that ηk,i = hi − h∗
i is either positive or negative. Observe that δVi(ηk) is the marginal

22To be precise, to examine the stability of a given (interior) equilibrium h∗, it suffices to analyze the
eigenvalues of the restricted linear map J(h∗) : TD → TD, where TD ≡ {η ∈ R

K | η ·1 = 0} is the tangent
space of D (see Appendix B.4).

23See Appendix B.4. The discussion here assumes that gk and ηk are both real, as this property holds
true throughout our analyses below.
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increase in the payoff in region i when the spatial pattern changes to h = h∗ + ηk. Ac-

cordingly, δV (ηk) is the weighted sum of the marginal increase in the payoffs across the

regions.

If gk is strictly negative (positive), δV (ηk) is strictly negative (positive). This implies

that if gk < 0, the collateral deviation in the ηk direction is strictly undesirable for relocated

agents. To see this, rewrite δV (ηk) as follows:

δV (ηk) =
∑

ηk,i>0

δVi(ηk) |ηk,i| −
∑

ηk,i<0

δVi(ηk) |ηk,i| . (2.3)

The first (second) term on the right-hand side is the average payoff increase in the destination

(origin) regions of migration; thus, the weighted sum δV (ηk) is the net increase in the payoff

experienced by relocated agents. If all {gk} are strictly negative, for any direction there is

no incentive to relocate and thus the equilibrium is stable. It is also intuitive to consider

a single hypothetical agent who may want to relocate from region i to j; his or her payoff

gain is given by δV = δVj − δVi. If all {gk} are strictly negative, it follows that δV < 0 and

there is no incentive for such a relocation. Conversely, if any of {gk} is positive, a collateral

deviation in the ηk direction is beneficial for all relocated agents and a snowball effect will

kick the spatial pattern out of the equilibrium; that is, the equilibrium is unstable.

In the context of economic geography models, one can interpret each eigenvalue gk as

the net force in its associated direction of deviation ηk in the sense that gk reflects the net

effect of the agglomeration and dispersion forces at work in the ηk direction. Depending on

its sign, gk expresses the net agglomeration force (if positive) or the net dispersion force (if

negative). In particular, if only one of them happens to be positive, then the spatial pattern

is unstable and agglomeration occurs in the direction of the associated eigenvector.

3 Spatial scale of endogenous agglomeration and dis-

persion

Although the facts on the local stability and bifurcation of equilibria are in principle ap-

plicable to any situation in general geographical setups (i.e., the assumed structures of D),

analytical results are difficult to obtain; thus, formal implications are limited. This sec-

tion introduces a minimal and ideal geographical setup, namely a racetrack economy that

considerably simplifies the local stability analysis of spatial equilibria in general economic ge-

ography models. Despite the technical simplification, the setup preserves the heterogeneities

in interregional distances—an indispensable feature to express the spatial scale of agglom-

eration and dispersion patterns. By employing the desirable properties of the geographical

setup, we reveal the two distinct spatial scales of the dispersion force that determine the

spatial pattern of agglomerations. Concrete examples are discussed in Section 4.
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Figure 1: A racetrack economy (K = 16)

Note: The thin lines represent the transportation network and the black points represent the
regions in which mobile agents can choose. The regions are sequentially numbered.

3.1 Racetrack economy: Desired testbed

We assume a racetrack economy à la Krugman (1993) (Figure 1).24 The K regions are

equidistantly spread in a circle and sequentially numbered from zero, with transportation

possible only around the circumference. The circumferential length is normalized to unity.

Furthermore, we assume that there are no region-fixed advantages in terms of, for instance,

local amenities or productivity differences. The geographical setup provides an ideal testbed

to analyze the intrinsic properties of a many-region economic geography model for two

reasons.

First, it allows us to isolate the role of endogenous forces accruing from externalities

and increasing returns in the determination of spatial patterns of agglomeration. In partic-

ular, it abstracts from the location-fixed advantages induced by the shape of the underlying

transportation network. For instance, in a long narrow economy (e.g., Solow and Vickrey,

1971; Beckmann, 1976), the regions near the boundaries have fewer opportunities to access

the other regions; the central portion is advantageous because of the shape of space. In our

setup, by contrast, every region has the same level of accessibility to the other regions.25

Second, despite its simplicity, the setup incorporates heterogeneities in interregional

distances. Let ℓij denote the shortest path length from region i to j on the circumference;

then, we have for example ℓ0,1 = ℓ1,0 = 1/K and ℓK−1,1 = ℓ1,K−1 = 2/K.26 The heterogeneity

in interregional distances makes the relative location in space matter, which is not the case

for the common two-region setup. Furthermore, the symmetric racetrack economy reduces

to the two-region setup if K = 2; the former is thus a natural generalization of the latter.

In addition, in line with Krugman (1993), we assume that the spatial friction between

each pair of regions takes Samuelson’s iceberg form, a standard choice for economic ge-

24Our approach to local stability analysis that uses a racetrack economy was developed by Akamatsu,
Takayama and Ikeda (2012), and an application can be found in Osawa, Akamatsu and Takayama (2017); see
Appendix B for a summary. As the approach focuses on local bifurcations from a given equilibrium, group-
theoretic bifurcation theory combined with numerical analysis provide complementary insights into the global
bifurcation behavior of equilibria. See Ikeda, Akamatsu and Kono (2012); Ikeda, Murota, Akamatsu, Kono
and Takayama (2014); Ikeda, Murota and Takayama (2017a), as well as Ikeda and Murota (2014).

25In this sense, our setup has an intrinsic complementarity with the many-region analyses by Matsuyama
(2017) who abstracted from strong positive feedbacks due to labor mobility and focused on the role of
geography itself.

26In concrete terms, ℓij = min {|i − j|, K − |i − j|}.
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ography models.27 In concrete terms, dij is given by dij = exp[−τℓij] with a transport

technology parameter τ ∈ (0, ∞). D is symmetric because ℓij = ℓji. Along with steady im-

provement in transportation technology, the spatial frictions between the regions gradually

vanish (dij → 1 for all i and j as τ → 0).

3.2 Local and global forces and the basic roles of space

The first virtue of assuming a racetrack structure is that the uniform distribution is always

an equilibrium when the payoff function is symmetric across the regions. For this reason, one

can follow extant theories that assume the spatial distribution of mobile agents to be initially

uniform and study the endogenous formation of spatial patterns due to pure economic forces.

We denote the flat-earth equilibrium on the racetrack by h̄ ≡ (h, h, . . . , h) with h ≡ H/K.

Furthermore, it is typical that at the flat-earth equilibrium, J and ∇v(h̄) ≡ [∂vi(h̄)/∂hj]

are closely related. If we let ek(τ) be the eigenvalues of ∇v(h̄), we often have gk(τ) = cek(τ)

with a positive constant c.28 Thus, not only the sign but also the magnitude of gk(τ)

matters—in fact, the relative magnitude of gk(τ) represents that of the agglomeration and

dispersion forces in the ηk direction.

The second and most important utility of imposing a racetrack structure is that the

role of transport costs in the net agglomeration force becomes transparent. To see this, the

notion of the spatial scales of agglomeration and dispersion forces is useful. Throughout

this paper, we call an agglomeration or dispersion force global if it depends on the distance

between regions (i.e., the friction structure D), while a force that does not depend on the

distance between regions is termed a local agglomeration or dispersion force.

Below, we consider a toy model that reveals the intrinsic workings of a global force.

Consider the following reduced-form payoff specification that implements only a black-box

positive externality of agglomeration but no dispersion force:

v(h) = Dh, (3.1)

or, in the element-wise form, vi(h) =
∑

j∈K dijhj. This simple model is a canonical example

of models with a global agglomeration force—an agglomeration force that depends on inter-

regional distances. This payoff function implies that each mobile agent wants to be as close

as possible to the other agents as in Beckmann (1976), and that there is no counteracting

force to prevent them to cluster. A straightforward intuition suggests that all mobile agents

agglomerate in one region in equilibrium. This intuition helps us associate the agglom-

27Some models, e.g., those by Ottaviano et al. (2002), Tabuchi et al. (2005), and Picard and Tabuchi
(2013), have assumed non-iceberg transport technology. In principle, our analytical approach is effective
with respect to these models, albeit the analysis is far more tedious compared with the iceberg case; the
models can be fit to either class (i) or (ii) [or (iii)] discussed in Section 1 and introduced below. We refrain
from analyzing non-iceberg models to simplify our presentation.

28The replicator dynamic (Taylor and Jonker, 1978) satisfies c = h (see Appendix B.4).
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Figure 2: Eigenvalues of the friction matrix D for a racetrack economy with K = 16

Note: Every fk(τ) for 1 ≤ k ≤ K is an increasing function of τ . Those for 1 ≤ k ≤ K/2 are
shown in the figure, because we have fk(τ) = fK−k(τ) for K/2 + 1 ≤ k ≤ K − 1. For a given τ ,
fk(τ) is basically decreasing in k for 1 ≤ k ≤ K/2 (see Appendix B).

eration/dispersion force with the distance structure of the economy, i.e., the eigenvalues

and eigenvectors of D as explained below. It is evident that we have ∇v(h) = D at the

flat-earth equilibrium.

The net agglomeration forces {gk(τ)}, or the eigenvalues of J , are thus given by gk(τ) =

hd(τ)fk(τ) with {fk(τ)} being the eigenvalues of the row-normalized version of the friction

matrix D̄ ≡ D/d(τ), where d(τ) =
∑

j∈K dij(τ) > 0 is the row sum of D.29 In a racetrack

economy, we have analytical expressions of the eigenvalues {fk(τ)} as well as those of their

associated eigenvectors {ηk} (see Appendix B). Consequently, the eigenvectors of J are

also given by {ηk}. The eigenvector associated with gk(τ) is ηk = (ηk,i) = (cos[θki]) with

θ ≡ 2π/K; we ignore g0 in the following because η0 = (1, 1, . . . , 1) violates the conservation

of the total mass of agents.

Figure 2 illustrates {fk(τ)}k≥1 for K = 16. Each fk(τ) ranges from 0 to 1 and decreases

if τ decreases. When interregional transport costs decline, the effects of the friction matrix

vanish. Thus, we see that gk(τ) > 0 for all k ≥ 1, and hence h̄ is never stable (Fact 1).

Because no dispersion force can stabilize the flat-earth equilibrium, it is also natural that h̄

is unstable for any value of τ .

The relative magnitude of the net agglomeration forces {gk(τ)} is of interest. To this

end, for the toy model, one can see that fk(τ) determines the relative strength between

{gk(τ)}. Note that fk(τ) is decreasing in k (see Figure 2), with the maximal f1(τ) for all

τ . Thus, the maximal among gk(τ) is also g1(τ). But why does this occur?

Looking at the eigenvectors {ηk} provides intuitions. Some examples of ηk with K = 16

are illustrated in Figure 3 for k = 1, 2, 3, K/2.30 The negative (positive) element ηk,i in

ηk indicates that if the spatial pattern slightly changed in the ηk direction so that h =

h̄ + εηk with ε > 0, the number of mobile agents decreases (increases) in the region. In

29We assume the replicator dynamic as the underlying dynamic F for illustration purposes (see Exam-
ple B.3 in Appendix B.4). Note also that the row sum of D is row-independent in a racetrack economy.

30To simplify the presentation, we assume that the number of regions K is a multiple of four. Qualitatively,
the exact number of regions is inconsequential if it is sufficiently large.
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η1,i

Panel A: η1 (monocentric)

0 Region i

η2,i

0

Panel B: η2 (duocentric)

η3,i

0

Panel C: η3 (tricentric)

ηK/2,i

0

Panel D: ηK/2 (K/2-centric)

Figure 3: Illustrations of the eigenvectors ηk (K = 16; k = 1, 2, 3, K/2)

Note: The negative (positive) elements of an eigenvector ηk indicate that if the flat-earth pattern
is perturbed into the direction, so that the new spatial pattern is h = h̄ + εηk with ε > 0, such
regions experience a decrease (increase) in their population.

a symmetric racetrack economy, the possible directions of change are characterized by the

number of peaks, k, or, in other words, by the number of population concentrations (i.e.,

agglomerations). η1 (Panel A of Figure 3) is directed to a monopolar pattern with a single

peak and hence expresses the emergence of a global concentration of mobile agents; η2 (Panel

B) expresses the emergence of two major concentrations, while η3 (Panel C) expresses the

emergence of three major concentrations; ηK/2 (Panel D) expresses the emergence of the

smallest possible agglomerations. In other words, η1 immediately pushes the flat-earth

equilibrium toward a unimodal agglomeration, while η2, η3, and ηK/2 (as well as the other

ηk except for η1) pushes the flat-earth equilibrium toward the other multimodal patterns.

As we assume a featureless space, the peaks are equidistantly spaced.

Given the knowledge of {ηk}, the maximality of g1(τ) now has clear economic meaning.

We understand that the associated eigenvector η1 for g1(τ) is a unimodal, monocentric

agglomeration (Panel B of Figure 3). Since there are no negative effects of agglomeration

in the model, a monocentric concentration is the most beneficial outcome for every agent. As

the number of peaks in ηk increases, the size of a single agglomeration falls. This obviously

reduces the magnitude of the positive externalities and is less favorable. Moreover, fk(τ)

decreases as τ decreases because when the level of interregional transport costs is low, there

is less incentive for agglomeration.

3.3 Endogenous formation of agglomeration

For canonical economic geography models in the literature, at the flat-earth equilibrium, J

is related to the row-normalized version of the friction matrix, D̄(τ), in the following form
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(see Appendices B and C):

J ≃ ∇v(h̄) ≃ G(D̄(τ)), (3.2)

where the function G(D̄) is defined by G(D̄) ≡ c0I + c1D̄ + c2D̄
2 with model-dependent

(positive or negative) coefficients c0, c1, and c2.
31 Consequently, in pallalel with (3.2), the

kth (k ̸= 0) eigenvalue gk(τ) of J satisfies (see Appendix B)

sgn[gk(τ)] = sgn[ek(τ)] = sgn [G(fk(τ))] , (3.3)

where ek(τ) and fk(τ) are the kth eigenvalue of ∇v(h̄) and D̄(τ), respectively, and the

k-independent function G(f) is defined by

G(f) = c0 + c1f + c2f
2 (3.4)

in line with G(D̄). The eigenvector associated with each gk(τ) is again ηk = (ηk,i) =

(cos[θki]) with θ ≡ 2π/K (Figure 3). Recall that one can ignore g0 provided that the

underlying dynamic F preserves the total mass of mobile agents.

By employing our definition of local and global forces, we see that c0 summarizes the local

agglomeration and dispersion forces in the model and that c1 and c2 summarize the global

ones. Usually, we have c0 < 0, c1 > 0, and c2 < 0. For example, a crowding-out effect inside

a region due to congestion or point-wise scarcity of land produces a local dispersion force,

resulting in a negative constant term (c0 < 0); a global social interaction (e.g., Beckmann,

1976) is suggested by a positive first-order term (c1 > 0); and goods demand from spatially

dispersed consumers in other regions (e.g., Krugman, 1991) is indicated by a negative second-

order term (c2 < 0).32

In the following, we assume the most general case of G(f) in the literature: G(f) is given

by G(f) = c0 + c1f + c2f
2 with c0 < 0, c1 > 0, and c2 < 0, with two roots f ∗ and f ∗∗ for

G(f) = 0 in (0, 1) such that f ∗∗ < f ∗. The shape of G(f) under these assumptions is shown

in the bottom left panel of Figure 4. The functional form of G(f) corresponds to a model

with a local dispersion force, global agglomeration force, and global dispersion force.

The properties of {fk(τ)} are completely model-independent; because {fk(τ)} are merely

the eigenvalues of the (normalized version of the) friction matrix D̄(τ), they are invariant

regardless of the economic geography model (i.e., the payoff function v(h)) one may assume.

Instead, the function G(f) in (3.4), or equivalently the matrix relation (3.2), encapsulates

the net effects of the economic interactions in the model and provides insights into the

31The notation ≃ for the matrices means that the left-hand side coincides with the right-hand side
multiplied by some real, symmetric, and circulant matrix J0, which is positive definite relative to TD. For
our purpose in this study (i.e., the local stability analysis of h̄), we can practically “ignore” J0 in our
discussion. Also noted is that the convention is just to simplify the presentation.

32In Appendix C, we present detailed analyses of how economic geography models are mapped to the
coefficients {ci} by taking the models in the literature as concrete examples.
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Figure 4: Model-dependent and -independent components of net agglomeration forces

Note: Top: The net agglomeration forces {gk(τ)} where we consider the simplest case gk(τ) =
G(fk(τ)). Bottom left: An example of the model-dependent function G(f). Bottom right: The
eigenvalues {fk(τ)} of D̄, which are model-independent. h̄ is stable in the dark gray regions of
τ or f .

endogenous formation of spatial patterns.

The question posed is as follows: given such G(f), which spatial pattern emerges after

an encountered bifurcation? In particular, will it be a unimodal pattern or a multipolar

pattern?

Choose an appropriate value of τ so that h̄ is stable; that is, the net agglomeration

forces {gk(τ)} are strictly negative, meaning that any deviation is strictly non-beneficial.

Consider a gradual change in τ . When any of the net agglomeration forces becomes positive,

the flat-earth equilibrium stops being stable and agglomerations emerge. What one should

observe here is the first gk(τ) that changes its sign from negative to positive. Let τ ⋆ be the

critical value at which this occurs. It is evident that τ ⋆, or the so-called break point, is a

solution to the equation maxk∈K {gk(τ ⋆)} = 0. Denote the index of the critical eigenvalue

such that gk(τ ⋆) = maxk gk(τ ⋆) by kcrit
⋆ . Then, the spatial pattern at τ ⋆ is expressed in terms

of the kcrit
⋆ th eigenvector as h = h̄+ εηkcrit

⋆

, where ε is a real number. Under our assumption

of G(f), the curves of {gk(τ)} behave as in the top panel of Figure 4; the upper envelope

of the curves represents maxk∈K {gk(τ ⋆)}, and the critical points are found where the curve

crosses the horizontal axis. There are two solutions, τ ∗ and τ ∗∗, and we have kcrit
∗ = K/2

and kcrit
∗∗ = 1. See Figure 5 for the spatial patterns that emerge at τ ∗ (Panel A) and τ ∗∗

(Panel B).

The stability of the flat-earth equilibrium for the higher level of τ is attributed to the
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Panel A: h̄ + εηK/2 Panel B: h̄ + εη1

Figure 5: Schematic illustrations of the spatial patterns at τ∗ and τ∗∗ (K = 16)

Note: The size of the small white circle represents the number of mobile agents in the region.
Panel A: bifurcation at τ∗ (a locally concentrated and globally dispersed pattern); Panel B:
bifurcation at τ∗∗ (a globally concentrated and locally dispersed pattern).

global dispersion force, while that for the lower level of τ is attributed to the local dispersion

force. As transport costs decline from a high level, the flat-earth equilibrium collapses at

τ ∗ because the global dispersion force declines (recall that fk(τ) decreases as τ decreases).

When τ decreases below another threshold, τ ∗∗, it brings about a situation where the flat-

earth equilibrium becomes stable again because the local dispersion force, which always

exists regardless of τ , overcomes the agglomeration force.

3.4 Rethinking redispersion

Panels A and B of Figure 5 illustrate the two mutually distinct spatial patterns that emerge

at τ ∗ and τ ∗∗, respectively. Panel A illustrates the spatial pattern that emerges at τ ∗, which

is interpreted as a locally concentrated and globally dispersed pattern. This is characterized

by the formation of many small agglomerations spread around the circumference. In the pat-

tern, mobile agents are locally concentrated, whereas the agglomerations are equidistantly

spaced or globally dispersed.33 Panel B illustrates the pattern at τ ∗∗, which is interpreted

as a globally concentrated and locally dispersed pattern. In this pattern, agents are globally

concentrated to shape a unimodal distribution (a single agglomeration with a large spatial

extent).

The two critical points τ ∗ and τ ∗∗ are customarily termed in the literature the “emergence

of core and periphery” and “redispersion (revival of the periphery),” respectively, and the

process as a whole is denoted “bell-shaped development” (Fujita and Thisse, 2013). When

transport costs are very high (τ > τ ∗), the symmetric equilibrium is stable. In the first

stage of the decline in transport costs, the destabilization of the symmetric equilibrium

results in spatial inequality. In the later stage, once established, agglomeration is no longer

sustainable and the symmetric configuration is stable again (τ < τ ∗∗).

The redispersion process is simply considered to be the reverse process of agglomeration.

For any model with a single type of mobile agent, it is supposed that there is no essential

33Observe that the spatial pattern resembles those obtained by the numerical simulations presented by
Krugman (1993) for K = 12. The spatial pattern is also similar to the pre-assumed spatial patterns in
Tabuchi and Thisse (2011).
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difference in the spatial patterns in the two stages (around τ ∗ and τ ∗∗).34 Indeed, this is true

in the two-region setup where the two relevant eigenvectors coincide: ηK/2 = η1 = (1, −1).

However, our analysis so far has shown that it is not the case in a many-region economy.

The two bifurcations at τ ∗ and τ ∗∗ are of a distinct nature: each represents the emergence of

mutually distinct spatial patterns and is attributed to dispersion forces at different spatial

scales (i.e., global and local).

4 Classification of models by the spatial scale of dis-

persion

The distinction between global and local dispersion forces allows us to reduce economic

geography models to two canonical classes: (i) those with only a global dispersion force

and (ii) those with only a local dispersion force. This section provides concrete examples of

global and local dispersion forces by employing selected models in the literature. For every

model discussed in this section, J is shown to have up to the second-order term of D̄ as in

(3.2), meaning that G(f) is (at most) a quadratic of f as in (3.4). Table 1 is the resultant

classification. Detailed analyses of the models in the table are relegated to Appendix C.

4.1 Class (i): Models with a global dispersion force

Global dispersion forces are those that arise outside a given agglomeration, typically imple-

mented as spatially dispersed demand. A global dispersion force usually appears in J as a

negative (second-order) term with respect to D. For instance, the NEG models proposed

by Krugman (1991), Puga (1999), Forslid and Ottaviano (2003), and Pflüger (2004) satisfy

c0 = 0 and we have G(f) = c1f + c2f
2 with c1 > 0 and c2 < 0. Furthermore, the model pro-

posed by Harris and Wilson (1978), a classical model of spatial self-organization proposed

in the field of geography, satisfies G(f) = c0 + c2f
2 with c0 > 0 and c2 < 0.35

Figure 6 illustrates G(f) for Krugman (1991) and Harris and Wilson (1978). Because

G(f) is a concave quadratic with G(0) ≥ 0, G(f) has at most a single solution f ∗ in (0, 1);

this implies that a single critical value (break point) of transport costs τ ∗ can exist.36 As

discussed in the previous section, at τ ∗, the emergent pattern is locally concentrated and

globally dispersed (or a multimodal pattern) in which multiple distinct agglomerations are

34Takatsuka and Zeng (2009) analyzed redispersion behavior in a two-region economy, NEG model with
multiple industries and distinct returns to scale, and found asymmetry in the two processes, namely that
the industrial composition in each region is different in the redispersion phase.

35For the drawn cases, the underlying parameters satisfy the so-called “no-blackhole condition” that
ensures the stability of the flat-earth pattern in the higher extreme of τ . Otherwise, we have G(1) > 0 and
the flat-earth pattern is always unstable.

36We can show that the influential model of Ottaviano et al. (2002) also endogenously produces globally
dispersed patterns; hence, this is a class (i) model. As the model assumes non-iceberg transportation
technology, we do not discuss it here to simplify our presentation (see also Footnote 27).
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Figure 6: G(f) for the models by Krugman (1991) and Harris and Wilson (1978)

endogenously formed (Panel A of Figure 5).

The seminal model of Krugman (1991) is an example. Appendix C provides the omitted

derivations of the indirect utility function and other formulae of this model as well as the

results under the other models discussed below. The payoff function (i.e., indirect utility

function of mobile workers) is given by

vi(h) = wiP
−µ
i (4.1)

where wi denotes the nominal wage of mobile workers and

Pi ≡

(

∑

j∈K

hjw
1−σ
j dji

)1/(1−σ)

(4.2)

denotes the price index in region i. The parameters µ and σ are the expenditure share

of the manufactured good and elasticity of substitution between the varieties, respectively.

The wage is obtained as the (unique) solution to the so-called wage equation that reflects

the short-run utility maximization of consumers, trade balance, and zero-profit condition

for firms. In each region, there is an exogenous endowment of immobile workers.

For the model, one has

J ≃ µ

(

1

σ − 1
+

1

σ

)

D̄ −

(

µ2

σ − 1
+

1

σ

)

D̄2. (4.3)

The exact mappings to the coefficients c1 > 0 and c2 < 0 are thus given by c1 = µ(κ̄+κ) and

c2 = −(µ2κ̄+κ), where we let κ̄ ≡ 1/(σ −1) and κ ≡ 1/σ. The coefficients c1 and c2 capture

the net effects of the agglomeration and dispersion forces in the Krugman (1991) model,

respectively. In particular, µκ̄ in c1 represents the so-called price-index effect, whereas µκ

represents a home-market effect. On the contrary, c2 is the market-crowding effect: µ2κ̄ in

c2 is due to firms’ competition over demand from mobile agents and in κ is due to that from

immobile agents. For more detailed discussions on the interpretations of the coefficients, see

Remark C.2 in Appendix C.1.
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Figure 7: G(f) for the models by Allen and Arkolakis (2014) and Helpman (1998)

4.2 Class (ii): Models with a local dispersion force

A local dispersion force acts inside each region and does not explicitly depend on the spatial

distribution of mobile agents. The urban costs induced within each region (e.g., housing

costs, congestion externalities) are typical. Examples include the frameworks of Helpman

(1998), Redding and Sturm (2008), and Murata and Thisse (2005) as well as the perfectly

competitive framework of Allen and Arkolakis (2014).37 Furthermore, the model proposed

by Beckmann (1976) focusing on the internal structure of cities (Mossay and Picard, 2011;

Blanchet et al., 2016) is another representative example.38 At the flat-earth pattern, a local

dispersion force appears in J as a negative constant term with respect to D (i.e., c0 < 0).

Figure 7 illustrates G(f) for the models proposed by Allen and Arkolakis (2014) and

Helpman (1998). For these models, there exists at most a single critical point of f ∗∗. If the

model parameters are set such that there is an endogenous formation of agglomeration, the

flat-earth equilibrium is stable for the lower level of transport costs. At the only bifurcation

point τ ∗∗, a globally concentrated and locally dispersed pattern (or a unimodal pattern) with

a single agglomeration is endogenously formed (Panel B of Figure 5). In this class of

models, without location-fixed factors, the only possible spatial pattern associated with

agglomeration is a globally concentrated and locally dispersed pattern.

The model proposed by Allen and Arkolakis (2014) is a recent example. The indirect

utility function of mobile workers is given by

vi(h) = hβ
i wiP

−1
i , (4.4)

37Without exogenous location-fixed factors, the model of Redding and Rossi-Hansberg (2017) (§3) is
equivalent to that of Redding and Sturm (2008). The model of Monte et al. (2016) also belongs to class
(ii), albeit it adds an extra urban cost as well as taste heterogeneity; we note that an idiosyncratic utility
shock is equivalent to a local dispersion force (see Appendix B for a brief discussion). It is also evident that
Picard and Tabuchi (2013) is a class (ii) model.

38We here consider a discrete-space version of the Beckmann model as formulated in Akamatsu, Fu-
jishima and Takayama (2017). Akamatsu et al. (2017) showed that a discrete-space version of the model
asymptotically converges to the continuous variant as the number of regions increases.
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where Pi denotes the price index for the model

Pi ≡

(

∑

j∈K

h
α(σ−1)
j w1−σ

j dji

)1/(1−σ)

. (4.5)

The parameters α > 0 and β < 0 are the exponents of a reduced-form Marshallian externality

and a local congestion externality in amenities, respectively, and wi(h) is the market wage

in region i. For this model, the source of agglomeration is the reduced-form local positive

externality represented by the parameter α. One has

J ≃ −(α + β − γ0)I + (α + β + γ1)D̄, (4.6)

with γ0 ≡ (1+α)/σ and γ1 ≡ (1−β)/σ. We thus have G(f) = c0+c1f with c0 = −(α+β−γ0)

and c1 = α+β +γ1. If α+β ≤ 0, there is no effective agglomeration force and the flat-earth

equilibrium is stable for any value of τ . If α + β > 0, there is a local positive agglomeration

force; we have c0 < 0 and c1 > 0 as well as G(1) > 0. If the agglomeration force is strong

(0 < α+β), the model can express endogenous agglomeration. In the net form, as indicated

in (4.6), the model does not have any global dispersion force. Thus, we conclude that

the model produces only unimodal patterns. In fact, Figure VIII in Allen and Arkolakis

(2014) confirms this result. In other contexts, the model presented by Beckmann (1976)

(Mossay and Picard, 2011; Blanchet et al., 2016; Akamatsu et al., 2017) yields a similar

linear functional form of G(f) since it incorporates a first-order global agglomeration force

and a local dispersion force.

As discussed by Allen and Arkolakis (2014), their model is isomorphic to the Helpman

(1998) model with local landownership (i.e., Redding and Sturm, 2008). One can show that

the assumptions concerning landownership do not alter the above conclusion. For Helpman’s

original model, with public landownership, under appropriate normalizations, one obtains

J ≃ c0I + c1D̄ + c2D̄
2, so that G(f) = c0 + c1f + c2f

2 with c0 = −(1 − µ), c1 = µ(κ̄ + κ),

and c2 = −(κ + µ2κ̄) + (1 − µ). Again, κ̄ = 1/(σ − 1) and κ = 1/σ, where µ is the

expenditure share of manufactured goods and σ is the elasticity of substitution between

manufactured goods. We have c0 < 0, c1 > 0, and c2 < 0; for the model, the agglomeration

force is derived from the second term in J , whereas dispersion forces are derived from the

others. Observe that c1 is as per the model proposed by Krugman (1991), meaning that the

agglomeration force of the latter is isomorphic to that of the former. Panel B of Figure 7

illustrates the shape of G(f) for the model. It follows that whenever there is an endogenous

agglomeration, we have G(1) > 0; thus, f ∗ does not exist. Although c2 < 0 and there

seemingly exists a global dispersion force, it is not effective. The main dispersion force of

the model is therefore derived from the consumption of non-tradable housing stocks that

produces a negative pecuniary externality through the local housing market.
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4.3 Classification of economic geography models

Table 1 classifies representative economic geography models in the literature according to

the nature of their dispersion forces and resulting stable spatial patterns (including our toy

model discussed in Section 3.2). The exact mapping to the coefficients of G(f) is provided

by Table 1 at the end of Appendix C. As discussed, at the flat-earth equilibrium of a given

model, one can characterize the fundamental tradeoff between the centripetal and centrifugal

forces by the coefficients {ci} or the shape of G(f). In particular, one can clearly distinguish

the spatial scale of the model’s effective dispersion force.

There are two canonical model classes, (i) and (ii). The former includes models with

only a global dispersion force, while the latter includes models with only a local dispersion

force. The second column of Table 1 summarizes the characteristic spatial patterns for

both of these model classes. Although our analysis concerns the endogenous formation of

spatial patterns under a multiplicity of equilibria, class (i) and (ii) models have qualitatively

different behavior and can yield mutually contradicting implications when employed for

counterfactual exercises. This point is discussed in Section 6.3, and a formal analysis is

provided in Appendix D.

In addition, a few models in the literature have the two dispersion forces effectively

at work. For instance, Tabuchi (1998), Pflüger and Südekum (2008), and Takayama and

Akamatsu (2011) presented both local and global dispersion forces. We refer to these as

class (iii) models. Such models produce spatial patterns with mixed characteristics of global

and local dispersion, which we discuss below by employing a numerical example. For this

model class, G(f) is a concave quadratic that has two roots in the (0, 1) interval as in the

bottom left panel of Figure 4. As discussed in Section 3, the flat-earth equilibrium is stable

for both high and low transport costs.

Notably, our classification seems to be backed by a more general principle. A large body

of studies outside economics focus on the formation of spatial patterns, typically on the

basis of reaction–diffusion systems (Kondo and Miura, 2010). In that literature, it is now

widely accepted that the basic requirement to form multiple peaks in stationary spatial

patterns (i.e., in our context, stable locally concentrated and globally dispersed patterns) is

a short-range positive feedback combined with a long-range negative feedback with respect to

a concentration of mobile factors (Meinhardt and Gierer, 2000). Note that the negative term

(global dispersion force) of D̄ in J can be interpreted as a long-range negative feedback.

5 Numerical examples

In the many-region setup, the first bifurcation, or the emergence of agglomeration, may

not be the end of the story. The overall evolutionary path of the spatial structure in line

with a monotonic change (e.g., decline) in transport costs is of interest. Fortunately, the

intrinsic properties of the whole evolutionary process of the agglomeration patterns can be
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Table 1: Classification of economic geography models in the literature

Dispersion force Spatial patterns Economic geography models

None

Concentration
to a single region

(unimodal patterns)
The toy model defined by (3.1)

Only global
[class (i)]

Locally concentrated
and globally dispersed
(multimodal patterns)

Krugman (1991)
Puga (1999)
Forslid and Ottaviano (2003)
Pflüger (2004)
Harris and Wilson (1978)

Only local
[class (ii)]

Globally concentrated
and locally dispersed
(unimodal patterns)

Helpman (1998)
Murata and Thisse (2005)
Redding and Sturm (2008)
Allen and Arkolakis (2014)
Redding and Rossi-Hansberg (2017) (§3)
Beckmann (1976)
Mossay and Picard (2011)
Blanchet et al. (2016)

Both
[class (iii)]

Mixed characteristics
of the classes (i) and (ii)
(multimodal patterns)

Tabuchi (1998)
Pflüger and Südekum (2008)
Takayama and Akamatsu (2011)

Note: Appendix C provides detailed analyses of the models, with Table 1 summarizing the
exact mappings of each model to the coefficients of the corresponding model-dependent function
G(f) = c0 + c1f + c2f2.

qualitatively predicted by the above results on the stability of the flat-earth pattern. This

section provides some numerical illustrations. The models of Krugman (1991), Helpman

(1998), and Pflüger and Südekum (2008) are chosen as representative examples of models

with only a global dispersion force [class (i)], those with only a local dispersion force [class

(ii)], and those with both dispersion forces [class (iii)], respectively. The numerical examples

in this section are conducted in an eight-region (K = 8) symmetric racetrack economy.

Following the literature, the replicator dynamic (Taylor and Jonker, 1978) is employed as

the underlying dynamic F . The chosen parameters are described in Appendix C.

5.1 Class (i): Models with a global dispersion force

Figure 8 reports the evolutionary path of stable equilibrium patterns in the course of

decreasing τ for the Krugman (1991) model. The black solid (dashed) curves depict the

stable (unstable) equilibrium values of population share λ = (λi) at each τ , where λi ≡

hi/H. Consider a gradual decrease in τ from a sufficiently high level at which the flat-earth

equilibrium is stable. The uniform distribution with no agglomerations is initially stable

until τ reaches the break point τ ∗. As discussed in the previous section, the bifurcation

at τ ∗ pushes the spatial pattern in the direction of ηK/2 = (1, −1, 1, −1, 1, −1, 1, −1). This

results in the formation of a globally dispersed pattern with four disjoint and equidistantly

separated point-wise agglomerations.
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Figure 8: Bifurcation diagram of a class (i) model

Note: Krugman (1991) is taken as the underlying example model.

A further decrease in τ triggers the second and third bifurcations at τ ∗∗ and τ ∗∗∗, re-

spectively.39 Observe that the bifurcations at τ ∗∗ and τ ∗∗∗ sequentially double the spacing

between agglomerated regions, reducing their number as 4 → 2 → 1. At the lower extreme

of τ , a monopolar pattern emerges. Note that each agglomeration has no spatial extent at

any level of transportation cost, since the local dispersion force is absent. In the model,

better interregional access (a smaller τ) enlarges the size of each agglomeration. Such an

effect is, however, limited to the selected regions. Depending on the stage of the spatial

structural evolution, the impact of an improvement in transportation on the size of each

agglomeration can be either positive (for the selected regions) or negative (for the others).

In this sense, there are no monotonic relationships between the level of transport costs and

size of each agglomeration. In fact, this point is already apparent in two-region models that

explicitly incorporate agglomeration economies combined with interregional distance.

In our many-region setup, however, there comes another indeterminacy. As the spatial

structure evolves, selected regions may decline to form the hinterland of the currently selected

ones—the agglomeration shadow.40 Consider, as an example, the fourth region at the six

o’clock position in Figure 8. The region is selected at the transitions at τ ∗ and τ ∗∗,

meaning that the impact of a decrease in τ is positive. After τ ∗∗∗ is encountered, however,

it immediately loses its population. For the region, a monotonic decrease in τ implies a win

situation followed by a lose situation. This indicates that if the empirical realities resemble

this class of model, whether the impact of a further decline in transport costs on a specific

region is positive or negative is indeterminate even when a monotonic relation for the region

is supported by historical data. At least in a symmetric racetrack economy, we do not have

any clear implication for models in this class regarding the impact of a uniform reduction in

transport costs on the population (or output) size of an individual region since whether the

39In fact, one can analytically derive these critical values at τ∗∗ and τ∗∗∗ (see Akamatsu et al., 2012;
Osawa et al., 2017) and characterize the spatial patterns that emerge at these points.

40The concept of the agglomeration shadow was first introduced by Arthur (1994) and it is formalized in
the context of the general equilibrium model of Fujita and Krugman (1995).
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Figure 9: Bifurcation diagram of a class (ii) model

Note: Allen and Arkolakis (2014) is taken as the underlying example model.

population share of a region grows or declines is in principle indeterminate a priori. Instead,

possible predictions focus on the global spatial distribution of agglomerations, namely the

number of concentrations and spacing between them, which monotonically decreases and

increases, respectively.

5.2 Class (ii): Models with a local dispersion force

Figure 9 is similar to Figure 8 for the model proposed by Allen and Arkolakis (2014). This

model incorporates only a local dispersion force; the flat-earth equilibrium is stable for lower

values of τ . At τ ∗∗ in Figure 7, bifurcation in the direction of η1 leads to the emergence of a

unimodal pattern. This is the bifurcation in the model; after the emergence of the unimodal

pattern at τ ∗∗, when τ increases further, the spatial pattern monotonically and smoothly

converges to a monopolar pattern (i.e., the complete concentration of mobile agents at a

single region) as τ approaches infinity. Thus, if we define the number of agglomerations for

the model by that of the peaks (i.e., local maxima) in h, it is at most one. The model does

not allow locally concentrated and globally dispersed patterns to emerge; such models would

be interpreted as expressing the evolution of the spatial extent of a single agglomeration.

Quantitative spatial models that employ class (ii) models (e.g., Redding and Sturm, 2008;

Allen and Arkolakis, 2014) emphasize the uniqueness of the equilibrium, through which

calibrations and counterfactual analyses have determinate implications. These studies are

conducted under parameter settings that ensure the uniqueness of the equilibrium regardless

of the level of interregional transport costs (Redding and Rossi-Hansberg, 2017). This is

made possible because the local dispersion force in class (ii) models does not depend on the

level of accessibility to the other regions; consequently, if a sufficiently strong local dispersion

force is imposed, no endogenous agglomeration is caused under any level of transport costs.

Notably, in our setup, since the uniform distribution of mobile agents across regions is always

an equilibrium on a symmetric racetrack, the uniqueness of the equilibrium automatically
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Figure 10: Classification of the uniqueness and stability of the equilibria for the Allen and
Arkolakis (2014)

Note: We let α = 0.6 and σ = 4 for illustration purposes. h̄ is stable in the dark gray region,
while not in the light gray region. At τ∗∗ such that g1(τ∗∗) = 0, a unimodal pattern emerges.
α +β ≤ 0 is a sufficient condition for the stability of h̄ regardless of τ . A comparison with Figure
I of Allen and Arkolakis (2014), where their classification corresponds to Ranges I, II, and III
above, would be interesting.

implies that the flat-earth pattern h̄ is the only equilibrium and is stable. Figure 10

indicates our classification of possible spatial patterns and their stability for the model

proposed by Allen and Arkolakis (2014) in a racetrack economy with arbitrary K. Their

uniqueness condition is β ≤ −α (i.e., Range III in the figure).41 This uniqueness directly

implies that the uniform distribution is stable regardless of the level of τ .

5.3 Class (iii): Models with both dispersion forces

Tabuchi (1998), Pflüger and Südekum (2008), and Takayama and Akamatsu (2011) consid-

ered both local and global dispersion forces. In effect, these models exhibit the rich and

meaningful interplay between the number and spacing of agglomerations and spatial extent

of each agglomeration without any location-fixed factors but only with pure economic forces.

In these models, the evolutionary process of spatial agglomeration patterns in the course

of a monotonic change in τ is expected to be a combination of the two examples presented

above. This is indeed the case. Figure 11 depicts the evolution of the number of agglomer-

ations in the course of decreasing τ for the model proposed by Pflüger and Südekum (2008)

in a symmetric eight-region racetrack economy. We define the number of agglomerations

in a spatial distribution of mobile agents, h, by that of the local maxima therein.42 By

comparing Figure 11 with Figure 8 and Figure 9, we observe that the former is ba-

41For the model of Helpman (1998), the condition for the uniqueness of the equilibrium is given by
(1 − µ)σ > 1.

42For example, for Pattern I in Figure 12, we evenly split the population of the region in the middle of
the two peaks. Further, if two consecutive regions have the same population as in Pattern K in Figure 12,
this is counted as a single agglomeration.
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Figure 11: Evolution of the number of agglomerations in a class (iii) model

Note: Pflüger and Südekum (2008) is taken as the underlying example model.
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Figure 12: Evolution of the spatial pattern in Figure 11

Note: The alphabets below the spatial patterns correspond to those in Figure 11.

sically a combination of the latter two, as expected. When τ gradually decreases from a

very high level, the number of agglomerations evolves as 0 → 4 → 2 → 1 as in the class

(i) models (Figure 8), while in the later stage 1 → 0 as per the class (ii) models (Fig-

ure 9).43 The initial stage is governed by a decline in the global dispersion force, while the

later stage is governed by a relative rise in the local dispersion force. As the importance of

distance declines given improvements in transportation access, local congestion overcomes

the agglomeration force and so-called redispersion occurs.

The evolution of the spatial patterns provides richer intuitions. Figure 12 illustrates the

spatial patterns associated with Figure 11 (see also Section 3.2 to understand the figure).

The flat-earth pattern is initially stable (Pattern A); the first bifurcation leads to a four-

43At this point, there is good reason to suspect that although seemingly identical, the flat-earth patterns
at the higher and lower levels of τ are distinct in nature. Specifically, one would argue that the number
of agglomerations must be eight (one), instead of zero, at large (low) τ . We refrain from these arguments,
however, because the two stages of dispersion are indistinguishable by the mere observation of h.

26



centric global dispersion (C), whereas the dispersion associated with the second bifurcation

is two-centric (E). These transitions are wholly in line with those of Krugman (1991); they

are governed by the gradual decline in the global dispersion force in the model. After these

transitions, the evolutionary behavior becomes more interesting; the decline in the global

dispersion force increases the relative importance of the local dispersion force. The two-

centric agglomerations formed in (E) gradually increase their spatial extent (F, G) because

of the local dispersion effects combined with the relative decline in the global agglomeration

force. A further decline in τ implies a triumph of the global agglomeration force against the

global dispersion force since the latter declines faster than the former. Consequently, the

two agglomerations gradually merge (H, I) to form a monopolar agglomeration (J, K), while

maintaining their spatial extent due to the strong local dispersion force. As the relative

importance of the local dispersion force increases further, a gradual expansion of the single

agglomeration occurs (L, M) followed by complete redispersion (N). This rich and intuitive

interplay of the global and local scales of agglomeration and dispersion can be studied only

in many-region setups.

6 Implications for empirical studies

In the previous sections, we argued that the consideration of the diversity in interregional

distances is the key factor to explaining the actual spatial pattern of agglomeration. The

theoretical understanding of agglomeration and dispersion mechanisms at different spatial

scales helps us find an appropriate way to quantify the spatial patterns of agglomeration,

which in turn allows us to properly formulate regression as well as structural models to

identify the causal mechanisms of regional agglomeration. This section highlights these

points by reviewing selected empirical studies of the relation between transport costs and

regional agglomerations.

6.1 Measures of agglomeration

One strand of the literature concerns the measurement of industrial agglomeration. Unlike

population agglomerations that have been identified in terms of distinct metropolitan areas

or population clusters (e.g., Baum-Snow, 2007; Duranton and Turner, 2012; Rozenfeld, Ryb-

ski, Gabaix and Makse, 2011), industrial agglomerations have typically been measured by

using an aggregated scalar index (e.g., Ellison and Glaeser, 1997; Duranton and Overman,

2005; Brülhart and Traeger, 2005; Mori et al., 2005).

Of the two pioneering indices of industrial agglomeration, that proposed by Ellison and

Glaeser (1997) intended to control for the spatial concentration of employment that accrued

from the distribution of employment among establishments, while the other presented by

Duranton and Overman (2005) aimed to resolve the spatial aggregation biases that arose
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from regional data by using geo-coded microdata on establishments.

While these refinements may be reasonable in certain contexts, a major reservation about

these scalar indices is that by construction they do not distinguish spatial scales of agglom-

eration and dispersion. With respect to cross-sectional comparisons among industries, this

means that there is no way to distinguish spatial scales at which variations in the index

value arise, even though the underlying agglomeration mechanisms qualitatively differ at

each scale.44 Another consequence of the abstraction from spatial scales is that these in-

dices inevitably neutralize the opposing responses of agglomeration at global and local scales

to a given change in transport costs.

Distinguishing individual agglomerations on a map as in the case of population agglom-

erations is necessary to separate the effects at different spatial scales. Kerr and Kominers

(2015) and Mori and Smith (2014) proposed clustering methods designed for economic ag-

glomerations. Pelleg and Moore (2000), Ishioka (2000), and Brendan and Dueck (2007)

proposed heuristic clustering techniques for general purposes. Our theory suggests that ag-

glomeration at the global scale is reflected in a smaller number of agglomerations (as well

as a larger spacing between them), whereas that at the local scale is reflected in a smaller

spatial extent of each individual agglomeration. These spatial properties of agglomeration

can be quantified by using the identified clusters.

An advantage of such a clustering approach for industrial agglomerations is that unlike

the case of population agglomeration, one can obtain variations in agglomeration patterns

across industries. By using the clustering method proposed by Mori and Smith (2014), Mori

and Smith (2015) indicated a wide variation in the degrees of agglomeration at both global

and local scales across three-digit manufacturing industries in Japan. The variations across

industries in turn can be used to test the theoretical implications of the spatial patterns of

agglomeration, for example, the causal relation among the number, size, and spatial extent

of agglomerations and transport costs. One such application by Mori, Mun and Sakaguchi

(2017) is discussed in the next section.

6.2 Reduced-form regression approaches

We have thus far shown that endogenous agglomeration mechanisms generally do not iso-

late which existing agglomerations grow or decline given an improvement in interregional

transport access. This indeterminacy is due to the underlying second-nature advantage.

Nonetheless, the theory offers a clear prediction of the global and local spatial pattern of

agglomerations. The former prediction is that there is agglomeration at the global scale:

the number of agglomerations decreases, the distance between neighboring agglomerations

44Duranton and Overman (2005) distinguish distances between establishments; however, they do not
distinguish between intra- and inter-agglomeration distances. Thus, it is not clear whether these bilateral
distances represent distances between agglomerations or those within an agglomeration (see Mori and Smith,
2015, §6 and Appendix B).
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increases (reflecting the growing agglomeration shadow), and the sizes of the surviving in-

dividual agglomerations increase (see Sections 5.1 and 5.3). The latter prediction is that

there is dispersion at the local scale: The spatial extent of each individual agglomeration

increases, for example, in the form of suburbanization (see Sections 5.2 and 5.3).

In Sections 6.2.1 and 6.2.2, we argue that these theoretical predictions are useful to

understand the diverse results from extant empirical studies using reduced-form regressions

to explain global and local patterns of agglomeration, respectively. Further, in Section 6.2.3,

we discuss the context in which these predictions can be actually tested.

6.2.1 On the size of an agglomeration

A typical regression model used to evaluate the impact of a new transport network on

regional growth has the following form (see, e.g., Redding and Turner, 2015, §20.4, for a

survey):

SIZEit = C0 + C1ACCESSit + C2xi + γit + ηt + εit (6.1)

where SIZEit and ACCESSit measure agglomeration size and interregional transport access,

respectively, in region i in year t; xi denotes the region-specific and year-invariant covariates,

γit denotes the region- and year-specific unobserved effects, ηt denotes the year-specific

unobserved effect, εit denotes the region- and year-specific errors, and C0, C1 and C2 are the

coefficients to be estimated, where C1 is of interest here.

The existing literature on the relation between agglomeration size and interregional trans-

port access in a region shows mixed results. We start from two studies drawing contrasting

conclusions. Faber (2014) investigated the impact of the construction of the national highway

network in China on the agglomerations in peripheral counties during 1997–2006. Duranton

and Turner (2012) studied a similar situation in the United States during 1983–2003; how-

ever, they focused on the impact on agglomerations in relatively large metro areas instead

of peripheral alternatives. SIZEit represents the changes in output measures such as the

gross domestic product and gross value added as well as that of population size in a county

in the former, while it is the change in metro-area population or employment in the lat-

ter. ACCESSit represents the change in interregional highway accessibility in both cases.45

Their results exhibited a stark difference: the former (latter) generally found a significantly

negative (positive) estimate of C1 in (6.1).

Yet, other studies report indefinite results. For Chinese data similar to those used

by Faber (2014), Baum-Snow, Henderson, Turner, Zhang and Brandt (2016, Tables 4 & 5)

found insignificant estimates of C1 when both large and small regions along the network were

45In the baseline specification of (6.1) in Faber (2014), ACCESSit represents a binary variable that takes
the value 1 if a given region i is connected by the newly constructed highway at time t, while it is set
to the initial sum of the interstate highway length within a metro area (i.e., in 1983) in Duranton and
Turner (2012). In particular, Duranton and Turner (2012) considered ACCESSit to be the level of intra-
urban (rather than inter-urban) transport infrastructure. However, we believe that the stock of interstate
highways within a given metro area also reflects the level of inter-urban connectivity.
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included in the regression. For US data similar to those used by Duranton and Turner (2012),

Baum-Snow (2017, Table 5) ran a variant of (6.1) to estimate the impact of interregional

transport access on industry-specific employment in a metro area. However, the estimated

coefficient of C1 was insignificant for all but manufacturing employment, for which it was

negatively significant.46 Thus, the estimated impacts of interregional transport access on the

size of an individual agglomeration vary widely, and there is no consensus, even on the sign

of the impacts.

From the knowledge on endogenous agglomeration mechanisms obtained in this study,

behind the incoherent regression results, we suspect the ignorance of the effects of interre-

gional transport costs on the spatial distribution of agglomerations. Recall that, in class (i)

models, a uniform improvement in interregional accessibility at a given location does not

necessarily result in a growth or decline in agglomeration size at that location (see Section

5.1). It is thus natural to obtain an insignificant average effect of improved transport access

along the new transport network as in Baum-Snow et al. (2016, Tables 4 & 5).47 What hap-

pened appears to be an agglomeration at the global scale toward a smaller number of larger

regions. In Faber (2014), the decline in peripheral regions is a mirror image of the growth

in core regions excluded from his regression.48 It is similarly expected that in Duranton

and Turner (2012), the growth in large metro areas is a mirror image of the decline in the

peripheral areas excluded from their regression, although there is no explicit discussion on

this aspect in their study.

Moreover, both Faber (2014, Table 6) and Duranton and Turner (2012, Table E2) found

evidence of the agglomeration shadow, namely that a larger distance from the nearest major

agglomeration tends to promote the growth of a region, which further suggests the relevance

of class (i) mechanisms.49

46Similar studies by Storeygard (2016) and Yamasaki (2017) have established a positive relation between
interregional transport access and regional agglomeration in the case of Sub-Saharan Africa for 2002–2008
and Japan for 1885–1920, respectively. Since the focus of these studies is the early stage of economic
development, their results may not be directly comparable with those of Faber (2014) and Duranton and
Turner (2012) as well as with our theoretical results. For example, the latter study investigated the situation
in which industrialization took place along with the introduction of railways in response to the spread of
steam power in Japan. However, the decomposition of the causal relationship among industrialization,
improvement in interregional transport access, and urbanization is not obvious.

47The distance effects vary across different types of economic activities such as industries, which further
obscures their aggregate effects on population agglomeration. See Head and Mayer (2004, §7.2) for a related
discussion based on market potential.

48It is also pointed out by Baum-Snow et al. (2016, Tables 4 & 5) that there was a significant increase in
agglomeration size in large regions in the China case.

49In Duranton and Turner (2012), the monotonic relationship between the size of a metro area and level
of inter-urban transport infrastructure in (6.1) is rationalized by assuming an open-city specification in the
underlying theoretical model. However, the significant urban shadow effect among the included metro areas
casts doubt on this justification.
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6.2.2 On the spatial extent of an agglomeration

Using the same specification (6.1) makes perfect sense when it comes to evaluating local

dispersion. Baum-Snow (2007) and Baum-Snow, Brandt, Henderson, Turner and Zhang

(2017) presented evidence of local dispersion as a consequence of improved interregional

transport access in the cases of US metro areas for 1950–1990 and Chinese prefectures

during 1990–2010, respectively.50 In these studies, SIZEit denotes the change in the popu-

lation/production size of the central area within a larger region i (the metro area for the

United States and the province for China). They both reported a significantly negative

estimated coefficient of C1 given an improvement in interregional access after controlling

for the growth of each region.51,52 Their findings are consistent with our results on local

dispersion (see Sections 5.2 and 5.3).53

Recall the population agglomeration at the global scale and dispersion at the local scale

in response to the development of the national highway and high-speed railway networks

in Japan after 1970 discussed in Section 1 (and Appendix A). Empirical evidence suggests

that China and the United States experienced essentially the same phenomena.

6.2.3 On the spatial patterns of agglomeration

Finally, we explore the possibility of testing our theoretical predictions on the spatial pat-

terns of agglomerations mentioned above rather than testing hypotheses about an individual

agglomeration by using regression models of type (6.1). For population agglomerations, we

typically have only a single set of agglomerations at a given point in time, which makes

the hypotheses concerning their spatial distribution untestable. However, such tests become

possible by considering an individual industry as a unit of observation. If a distinct set of

agglomerations can be identified for each industry, we have variations in the spatial patterns

of agglomerations across industries at a given point in time. As a recent attempt, Mori et

al. (2017) adopted the clustering framework developed by Mori and Smith (2014) and used

data on three-digit manufacturing industries in Japan during 1995–2015. They showed that

the number of agglomerations decreases (i.e., agglomeration at the global scale proceeds)

and the average areal size of individual agglomerations increases (i.e., dispersion at the local

scale proceeds) in response to a decrease in industry-specific sensitivity to transport costs:

50Garcia-López (2012) and Garcia-López, Holl and Viladecans-Marsal (2015) conducted similar studies
by using Spanish data.

51As discussed in these studies, the results for local dispersion can also be interpreted as suburbanization in
response to improved intra-urban transport infrastructure in classical urban economic theory (e.g., Alonso,
1964).

52Faber (2014, Table 5 and Figure 4) showed related evidence that agglomeration relatively proceeds in
regions at a certain distance (around 100–150 km) from highways rather than those along highways.

53Baum-Snow (2017) extended the work of Baum-Snow (2007) by replacing the outcome variable in (6.1)
with the local dispersion (or suburbanization) of employment in each industry instead of population and
showed variations in the extent of the local dispersion across industries.
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the transport cost per unit distance and unit value of output.54 In their study, by setting a

unit of observation to an individual industry, the variation across industries made it possi-

ble to directly test the two predictions from our theoretical results mentioned above on the

spatial patterns of agglomerations.

To sum up, knowledge on the behavior of general economic geography models brings

together seemingly unrelated pieces of empirical evidence on agglomeration patterns. Our

interpretation of the results from the literature suggests the strong relevance of endogenous

agglomeration mechanisms to the observed regional variations in agglomeration size.

6.3 Structural model-based approaches

We now turn to the structural model-based approach used to evaluate the causal effects

of regional agglomerations summarized by Redding and Rossi-Hansberg (2017, §3). In this

perhaps one of the most popular approaches in quantitative spatial economics, the basic

premise is that the primary source of the regional variation in agglomeration size is the

heterogeneity in exogenous (or first-nature) regional advantages rather than endogenous (or

second-nature) advantages considered in this study. Thus, given the exogenous productivity

or residential amenity difference across regions, a larger population of a given region is

always associated with higher exogenous productivity or amenity in that region.

A remarkable feature of these models (e.g., Redding and Sturm, 2008; Allen and Arko-

lakis, 2014) is that they not only rely on exogenous advantages to explain agglomeration

patterns but also incorporate agglomeration externalities to the extent that the unique

equilibrium is guaranteed, thereby preserving the tractability of the model.55,56 This subtle

situation has been realized by adopting class (ii) models. As shown in Section 5.2, these

models have a parameter range in which agglomeration diseconomies dominate agglomera-

tion economies independently of the level of transport costs. This special property of class

(ii) models is due to the independence of local dispersion forces on the distance structure

of the model. In this context, the model parameters are calibrated to replicate the rele-

vant regional variations (such as regional population sizes) in the absence (or presence) of a

given treatment such as transport development; then the counterfactual regional variations

are derived in the presence (or absence) of the treatment given these calibrated parameter

values.

A caveat is that the predictions of treatment effects crucially depend on a specific feature

of the underlying economic geography models. In particular, in class (ii) models, the decline

54This definition of the sensitivity to transport costs is an empirical counterpart of the iceberg transport
costs in our theoretical models.

55Redding (2016) and Monte et al. (2016) extended the work of Redding and Sturm (2008) by adding
different sources of exogenous location-fixed factors.

56The majority of structural model-based studies of a regional economy involve no agglomeration exter-
nalities (see, e.g., Donaldson and Hornbeck, 2016; Baum-Snow et al., 2016; Alder, 2016; Caliendo, Parro,
Rossi-Hansberg and Sarte, 2016).
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in interregional transport costs reduces each regional agglomeration caused by the first-

nature advantage of the region and promotes local dispersion. This causal relation was

demonstrated by a numerical counterfactual exercise in Redding and Rossi-Hansberg (2017,

§3.9). In fact, it can be formally shown (see Appendix D) that this scale-down effect is

a general property of class (ii) models, although there are certain cases in which local

landownership mitigates the effect by counteracting congestion externalities.

However, if class (i) models are used instead, even in the parameter range in which

no endogenous agglomeration occurs (as in Redding and Rossi-Hansberg, 2017, §3), the

sign of the treatment effect reverses, namely agglomeration externalities would scale up

the first-nature advantage (see Appendix D for a formal proof). The resulting implications

thus become the opposite depending on the choice of dispersion force to be included in the

model.57

Thus, even in the context in which first-nature heterogeneity plays a primary role, knowl-

edge of endogenous agglomeration and dispersion mechanisms is crucial to understand the

logic and direction of the treatment effect. For that purpose, our stylized analytical frame-

work appears to be useful.

More recent structural approaches have shifted to accommodate multiple equilibria with

endogenous agglomerations (e.g., Ahlfeldt et al., 2015; Owens et al., 2017; Nagy, 2017).

In that case, class (ii) models are no longer useful, as they can endogenously generate

at most a unimodal agglomeration. To explain both multiple agglomerations and local

dispersion by using endogenous mechanisms, one needs a model of either class (iii) or of a

more general class not addressed in this study. We briefly touch on these issues in Section

7 when delineating future research directions.

7 Concluding remarks

In this study, we formally classified economic geography models in terms of their model-

specific spatial patterns of agglomeration. By allowing the presence of many regions, the

spatial scale of agglomeration and dispersion is made explicit unlike the two-region setup or

many-region setup without an interregional space. In particular, the two dispersions at high

and low transport costs that look identical in a two-region setup turned out to differ and

take place at global and local spatial scales, respectively. In fact, when dispersion proceeds

57Fajgelbaum and Schaal (2017) used a specification similar to those of class (ii) models to study the impact
of transport network development in European countries. In their model, the variation in regional advantage
is exogenous, while there are congestion externalities in interregional transportation. Since the externalities
are effective only locally, they act as a local dispersion force in class (ii) models when agents are mobile.
Like Redding and Rossi-Hansberg (2017, §3.9), under this model, they observe (Figure 5 in their paper) that
an improvement in interregional transport access generally mitigates the variation in regional advantages,
which disperses population from the originally larger (more advantageous) regions to the originally smaller
regions. Although the average impact of improved transport access on regional population growth is found
to be insignificant (Table 1 in their paper), one must bear in mind that this result reflects the fact that the
signs of the impact of improved transport access are the opposite in the originally larger and smaller regions.
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at the local scale, agglomeration typically proceeds at the same time but at the global scale

and vice versa.

Our theoretical results indicated a new direction for future empirical research based on

endogenous agglomerations. First, the contrasting agglomeration and dispersion behaviors

at different spatial scales suggest the need to distinguish individual agglomerations rather

than measuring agglomeration by using a scalar index. Second, endogenous agglomeration

and dispersion mechanisms generally do not isolate the growth and decline in individual

agglomerations and can only provide insights into their spatial patterns. Our new results on

the impact of transport development on the spatial patterns of agglomeration could thus pro-

vide a unified interpretation of the variety of existing results from reduced-form regressions

on regional agglomerations. Furthermore, we showed that our analytical framework is useful

for obtaining formal predictions of treatment effects in structural model-based analyses that

aim to explain agglomeration patterns.

However, the relatively simple classification of the spatial scale of agglomeration and

dispersion in our study is owing to the simple structure of the models considered. Below, we

discuss possible future directions of theoretical research to account for richer, more realistic

variations in agglomeration and dispersion across different spatial scales.

At least three major research directions could be pursued. The first possible extension is

to distinguish location incentives between firms and consumers/workers as is traditionally

done in the urban economics literature (e.g., Fujita and Ogawa, 1982; Ota and Fujita, 1993;

Lucas and Rossi-Hansberg, 2002). In all the models considered in this study, the location

incentive of firms and that of consumers/workers coincide. This simplification may be

justifiable when the global pattern of agglomeration (in particular, sizes and locations of

cities) is the subject of the study. However, their distinction becomes crucial for explaining

the location patterns within a city. There are recent attempts, for example, by Ahlfeldt et al.

(2015) and Owens et al. (2017) in this direction. These models typically abstract from the

intercity/regional interactions in an open-city setup. Nonetheless, the possible equilibrium

patterns and their stability properties in this class of models are still not well known and

this could thus represent a fruitful avenue for future research.

The second possibility is to consider different transport cost structures by industry. For

instance, Fujita and Krugman (1995) introduced transport costs for land-intensive rural

(agricultural) goods along with those of urban goods. In the presence of rural goods that

are costly to transport, the delivered price for such goods is lower in regions farther away

from the agglomerations, which generates a dispersion force. This is similar to the local

dispersion force in that even a small deviation from an urban agglomeration will decrease

the price of rural goods and increase the payoff of the deviant. However, the advantage of

dispersion persists outside the agglomeration, i.e., it depends on the distance structure of the

model. This type of dispersion force leads to the formation of an industrial belt, a continuum

of agglomeration associated with multiple atoms of agglomeration as demonstrated by the
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simulations in Mori (1997) and Ikeda, Murota, Akamatsu and Takayama (2017b). The

formal characterization of industrial belts remains to be carried out.

The final possible extension is to incorporate diversity in increasing returns, leading to

diversity in the spatial scale of agglomeration and dispersion as well as diversity in agglomer-

ation size. In all the models with a global dispersion force considered in this study, the sizes

of agglomerations in the equilibrium are basically the same (see the simulation exercises in

Section 5.1) since each model has only one type of increasing return. This is counterfactual

as actual city size distributions are diverse and well known to roughly follow the power

law.58 Initial attempts to account for the diversity in increasing returns by introducing

multiple increasing returns industries have been made in the context of the NEG models

proposed by, e.g., Fujita et al. (1999), Tabuchi and Thisse (2011), and Hsu (2012)’s spatial

competition model. Alternatively, Desmet and Rossi-Hansberg (2009), Desmet and Rossi-

Hansberg (2014), Desmet and Rossi-Hansberg (2015), Desmet et al. (2017), and Nagy (2017)

incorporated dynamic externalities through endogenous innovation and spillover effects.

58The models considered in this study are consistent with heterogeneously sized agglomerations in the
equilibrium; however, it is not possible to replicate the high diversity of city sizes seen in reality.
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A Development of the transport network and urban

agglomeration (UA) patterns in Japan, 1970–2015

To compare population agglomeration patterns in Japan, we define an urban agglomeration (UA)

as the set of contiguous 1 km-by-1 km cells with a population density of at least 1000/km2 and total

population of at least 10,000.1 (The basic results below remain the same for alternative threshold

densities and populations.) For the part of Japan contiguous by roads to at least one of the

four major islands (Hokkaido, Honshu, Shikoku, and Kyushu), 503 and 450 UAs are identified, as

depicted in Panels (a) and (b) of Figure 1 for 1970 and 2015, respectively, where the warmer color

indicates a larger population. These together account for 64% and 78% of the total population

in 1970 and 2015, respectively. Thus, there is a substantial 18% increase in the urban share over

these 40 years. Of the 503 UAs that existed in 1970, 302 survived, while 201 either disappeared or

integrated with other UAs by 2015. Of the 450 UAs that existed in 2015, 148 were newly formed

after 1970 (including those split from existing UAs).2

Panels (c) and (d) of Figure 1 show the highway and high-speed railway networks in use in 1970

and 2015, respectively. The comparison of these panels indicates an obvious substantial expansion

of these networks during these 45 years, as mentioned in the text.

Panels (a), (b), and (c) of Figure 2 show the distributions of the growth rates of population

share (in the national population), the areal size and population density of individual UAs for the

set of the 302 UAs that survived throughout the 45-year period. A UA experienced an average

growth rate of 21% (75%) of population share, 94% (105%) of areal size, and −22% (22%) of

population density (per km2), respectively, where the numbers in parentheses are the standard

deviations.

As a larger population share was concentrated in a smaller number of UAs in 2015 than in

1970, the spatial size of an individual UA almost doubled on average. However, these spatial

expansions are not simply due to the shortage of available land in UAs. Note that population

density decreased by 22% on average. We take this as evidence of global concentration with local

dispersion under the improvement in interregional transport access.

1Population count data are obtained from Statistics Bureau, Ministry of Internal Affairs and Communi-
cations of Japan (1970, 2015).

2UA i in year s is said to be associated with UA j in year t (̸= s) if the intersection of the spatial coverage
of i and that of j accounts for the largest population of i among all the UAs in year t. For years s < t,
if i and j are associated with each other, they are considered to be the same UA. If i is associated with j
but not vice versa, then i is considered to have been absorbed into j, while if j is associated with i but not
vice versa, then j is considered to have separated from i. If i is not associated with any UA in year t, then
i is considered to have disappeared by year t, while if j is not associated with any UA in year s, then j is
considered to have newly emerged by year t.
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(a) Urban agglomrations in 1970 (b) Urban agglomrations in 2015

(c) Highway and high-speed railway network in 1970 (d) Highway and high-speed railway network in 2015
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Figure 1: UAs and transport network in Japan
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Figure 2: Growth rates of the sizes of UAs in Japan
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B Stability Analysis in a Racetrack Economy

The friction matrix D for a racetrack economy is a circulant matrix. In this appendix, we first

review some useful properties of circulant matrices. Then, we see how the stability analysis of the

flat-earth pattern in a symmetric racetrack economy is simplified by these properties.

B.1 Facts on the properties of circulant matrices

A circulant matrix C of dimension K is defined as a K-by-K square matrix of the form

C ≡

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 c2 · · · cK−2 cK−1

cK−1 c0 c1 c2 · · · cK−2

cK−2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . c2

c2 · · · cK−2 cK−1 c0 c1

c1 c2 · · · cK−2 cK−1 c0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.1.1)

The elements of each row of C are identical to those of the previous row, but are moved one

position to the right and wrapped around. The whole circulant is evidently determined by the first

row vector c = (ci)
K−1
i=0 . Circulant matrices are known to satisfy the following properties (see, e.g.,

Horn and Johnson, 2012):

Lemma B.1. Let C1 and C2 be circulant matrices. Then, their sum C1 +C2 and product C1C2

also are circulants. They are also commutative, i.e., C1C2 = C2C1. Let C3 be a non-singular

circulant matrix. Then, its inverse C−1
3 is also a circulant.

Lemma B.2. Let C be a K-by-K circulant matrix. Let Z = [zjk] be the discrete Fourier trans-

formation (DFT) matrix, where zjk = K−1/2 exp[iθjk] with θ ≡ 2π/K and i ≡
√

−1. Then, C

is diagonalized by the similarity transformation by Z as Z∗CZ = diag[λ], where ∗ denotes the

conjugate transpose.

λ = (λi) are the eigenvalues of C. The kth eigenvalue and associated eigenvector of C are λk and

the kth row of the DFT matrix Z, respectively. Furthermore, λ is given by the DFT of the first

row vector c of C as λ = K1/2Zc⊤.

Remark B.1. It follows that all K-by-K circulant matrices share the same eigenvectors.

Consider a matrix A defined by a matrix polynomial of a non-singular circulant matrix C:

A = c0I + c1C + c2C
2 + · · · . (B.1.2)

Thanks to Lemma B.1 and B.2, one has that (i) A is a circulant matrix (note that I is also a

A4



circulant) and thus that (ii) its eigenvalues µ ≡ (µi) are given by those of C, λ, by the relation

diag[µ] = Z∗AZ = Z∗(c0I + c1C + c2C
2 + · · · )Z = c0I + c1 diag[λ] + c2 diag[λ]2 + · · · ,

(B.1.3)

or, in the element-wise manner,

µk = c0 + c1λk + c2λ2
k + · · · . (B.1.4)

Remark B.2. If C is also symmetric, A is symmetric. This implies that the eigenvalues λ = (λk)

and µ = (µk) as well as their associated eigenvectors are all real.

B.2 Eigenvalues and eigenvectors of the friction matrix

We derive the eigenvalues and eigenvectors of the friction matrix for later use. To simplify the

notation, we define r ∈ (0, 1) to represent the freeness of transport between two consecutive regions

on the racetrack: r(τ) ≡ exp[−τ/K], where we rescale τ so that the circumferential length of

the economy is fixed. From the definition of r, it is a monotonically decreasing function of the

transportation cost (technology) parameter τ and hence r and τ are mutually interchangeable.

We use r as the transport technology parameter in the present appendix. By using r, one has

dij = rℓij .

To analyze specific models, it is useful to derive the eigenvalues of the row-normalized friction

matrix D̄ ≡ D/d with d ≡ ∑

j∈K d0,j . We note that every row has the same row sum because D

is circulant. It turns out that in a racetrack economy, D is a circulant matrix since dij = rℓij =

rℓi+1,j+1 = di+1,j+1 for all i, j (mod K for indices). Furthermore, D is symmetric and real and

hence all the eigenvalues and eigenvectors are real. The analytical expressions of the eigenvalues

and eigenvectors of D̄ are available (Akamatsu, Takayama and Ikeda, 2012):

Lemma B.3. Let fk(r) be the kth eigenvalue of the row-normalized friction matrix D̄ for a

racetrack economy with K regions. Assume that K is a multiple of four. Define Ψk(r) > 0 and

Ψ̄(r) > 0 by

Ψk(r) ≡ 1 − r2

1 − 2{cos[θk]}r + r2
, Ψ̄(r) ≡ 1 + rK/2

1 − rK/2
(B.2.1)

with θ = 2π/K. Then, {fk(r)} is given by

fk(r) =

⎧

⎪⎨

⎪⎩

Ψk(r)ΨK/2(r) (k: even)

Ψk(r)ΨK/2(r)Ψ̄(r) (k: odd)
k = 0, 1, 2, . . . , K/2, (B.2.2)

where k = 1, 2, . . . , K/2 − 1 are of multiplicity two. The associated eigenvectors are

η0 = (1, 1, . . . , 1), (B.2.3)
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η+
k = (cos[θki]), η−

k = (sin[θki]) k = 1, 2, . . . , K/2 − 1, (B.2.4)

ηK/2 = (1, −1, 1, −1, . . . , 1, −1) (B.2.5)

where η+
k and η−

k are the two eigenvectors associated with fk(r) (k = 1, 2, . . . , K/2 − 1).

Remark B.3. For each k with 1 ≤ k ≤ K/2 − 1, we may focus on a single eigenvector of the

form ηk = η+
k = (cos[θki]) since we do not distinguish rotationally symmetric patterns; any linear

combination of η+
k and η−

k reduces to a single trigonometric curve with the same wavelength as

them.

See Figure 2 and Figure 3 for an illustration. In particular, f0(r) = 1, f1(r) = (1−r)/(1+r),

and fK/2(r) = {(1 − r)/(1 + r)}2. Furthermore, by employing the analytical expression of {fk(r)}

in Lemma B.3, one shows

Corollary B.1. {fk(r)} satisfy the following properties if K is a multiple of four.

1. Every fk(r) is a monotonically decreasing function of r except for f0(r) = 1.

2. For all r, {fk(r)} with k = 0, 1, 2, . . . , K/2 are ordered as

⎧

⎪⎨

⎪⎩

1 = f0 > f2 > · · · > f2k > · · · > fK/2,

1 > f1 > f3 > · · · > f2k+1 > · · · > fK/2−1.
(B.2.6)

with f1(r) > f2(r) and fK/2−1(r) > fK/2(r).

The second property yields that mink{fk(r)} = fK/2(r) and maxk≥1{fk(r)} = f1(r) for all r. We

note that every fk(r(τ)) (k ≥ 1) as a function of τ is monotonically increasing.

Example B.1. In a racetrack economy with K = 4, the friction matrix D is given by

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 r r2 r

1 r r2

1 r
Sym. 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (B.2.7)

Its row sum is d = 1 + r + r2 + r = (1 + r)2 and thus D̄ = D/(1 + r)2. The eigenvalues of D̄ are

given by

f0 = 1, f1 =
1 − r

1 + r
, f2 =

(
1 − r

1 + r

)2

. (B.2.8)

The associated eigenvectors are η0 = (1, 1, 1, 1), η+
1 = (1, 0, −1, 0), η−

1 = (0, 1, 0, −1), and η2 =

(1, −1, 1, −1).
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B.3 Representing the eigenvalues of ∇v(h̄) by those of D̄

We assume that the payoff function v is differentiable. Let D ≡ {h ∈ R
K | h · 1 = H, hi ≥ 0}

denote the set of possible spatial patterns. For simplicity, we assume that v is defined for the

non-negative orthant R
K
+ .

Assumption B.1. The payoff function v : RK
+ → R

K is continuously differentiable.

Given v, we define a spatial equilibrium by the following variational inequality problem (VIP):

[VIP] Find h∗ ∈ D such that v(h∗) · (h − h∗) ≤ 0 for all h ∈ D. (B.3.1)

Definition B.1. A spatial equilibrium is a solution to [VIP].

An alternative equivalent definition of the long-run equilibria is found in the main text.

The flat-earth equilibrium h̄ ≡ (h, h, . . . , h) with h ≡ H/K is obviously a spatial equilibrium;

because v(h̄) = v̄1 with the uniform level of payoff v̄, we have v(h̄) · (h − h̄) = v̄1 · (h − h̄) =

v̄(H − H) = 0 for all h ∈ D. In preparation for Appendix B.4 below, we discuss the eigenvalues of

the Jacobian matrix of the payoff function at the flat-earth equilibrium. Appendix C demonstrates

that at the flat-earth equilibrium in a racetrack economy, we can express the Jacobian matrix of

the payoff function in the following way:

∇v(h̄) = G0(D̄)G(D̄), (B.3.2)

G(D̄) ≡ c0I + c1D̄ + c2D̄
2, (B.3.3)

where G0(·) and G(·) are interpreted as matrix polynomials. G0(D̄) is a positive definite matrix

defined by D̄. Since D̄ is circulant, ∇v(h̄) is also circulant. Thus, we can express the kth

eigenvalues of ∇v(h̄), ek, by that of D̄, fk, in terms of the model-dependent functions G0(f) and

G(f):

ek = G0(fk)G(fk) (B.3.4)

where G0(fk) and G(fk) are the kth eigenvalues of G0(D̄) and G(D̄), respectively. The associated

eigenvectors are the same as those of D̄. As we have G0(fk) > 0, to examine the sign of ek, we

only need to check that of G(fk).

B.4 Stability analysis of the flat-earth equilibrium

By employing the above results, this section derives the results presented in Sections 2.3 and 3.

Notations. In relation to D, let TD(h) ≡ {z ∈ R
K | z = α(y − h) for some y ∈ D and α ≥ 0}

denote the tangent cone of D at h ∈ D and TD ≡ {z ∈ R
K | z · 1 = 0} denote the tangent

space of D. Note that for any h ∈ int D, we have TD(h) = TD because D is a convex subset of a

hyperplane.
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B.4.1 Derivations for Section 2.3

We summarize our assumptions on the dynamic F as follows, where with notational abuse we let

F (h) = F (h,v(h)). We assume that F is defined for the non-negative orthant R
K
+ .

Assumption B.2. The dynamic F : RK
+ → R

K satisfies the following properties:

1. (Conservation) the total mass of mobile agents is invariant, i.e., F (h) ∈ TD(h) for all h ∈ D.

2. (Differentiability) F (h) is continuously differentiable with respect to h and v(h) in D.

3. (Stationarity at spatial equilibria) if h∗ is a spatial equilibrium, then F (h∗) = 0.

4. (Positive correlation) v(h) · F (h) > 0 for all h ∈ D such that F (h) ̸= 0.

Example B.2. The set of dynamics that satisfies Assumption B.2 includes the replicator dynamic

(Taylor and Jonker, 1978), which is the leading instance of the general class of imitative dynamics,

the Brown–von Neumann–Nash dynamic (Brown and von Neumann, 1950; Nash, 1951), which is

an instance of excess payoff dynamics, and, for interior equilibria, the projection dynamic (Dupuis

and Nagurney, 1993). For more examples, see Sandholm (2010).

Consider a small deviation η ∈ TD(h∗) = TD at an interior equilibrium h∗ ∈ int D. By

conservation, we must have F (h∗ + η) ∈ TD for such η; it follows that

F (h∗ + η) = F (h∗) + ∇F (h∗)η + o(∥η∥) = ∇F (h∗)η + o(∥η∥) ∈ TD. (B.4.1)

Since J ≡ ∇F (h∗) maps all η ∈ TD into TD, J defines a linear map from TD to TD. Thus, the

stability analysis of an interior equilibrium h∗ reduces to examining the eigenvalues of the restricted

linear map J : TD → TD. We thus focus on the deviations η that live in TD (i.e., η such that

η · 1 = 0). In effect, we can ignore g0, which is the associated eigenvalue for η0 ≡ (1, 1, . . . , 1)

because η0 is the basis for TD⊥ (the orthogonal space of TD, which is one-dimensional).

For general isolated interior equilibria h∗ ∈ int D, we have v(h∗) = v̄1 with the uniform level

of payoff v̄ and F (h∗) = 0, implying that v(h∗) · F (h∗) = 0. Because h∗ is an isolated interior

equilibrium, the positive correlation property of F requires that there is a neighborhood O ⊂ D

of h∗ such that v(h) ·F (h) > 0 for all h ∈ O \ {h∗}. Moreover, from the differentiability of v and

F in int D, we can expand v and F in the vicinity of the equilibrium; that is, for a sufficiently

small η such that h∗ + η ∈ D (i.e., η ∈ TD), the positive correlation property is equivalent to the

condition:

(v̄1 + ∇v(h∗)η) · (F (h∗) + Jη) = (∇v(h∗)η) · (Jη) > 0. (B.4.2)

Note that (Jη) · 1 = 0 because Jη ∈ TD for all η ∈ TD.

In (B.4.2), suppose that η = ηk, where ηk (k ≥ 1) is the kth eigenvector of the restricted linear

map J with the associated eigenvalue being gk. Then, with h = h∗ + ηk, we have

(Jηk) · (∇v(h∗)ηk) = (gkηk) · (∇v(h∗)ηk) = gk(η⊤
k ∇v(h∗)ηk) > 0, (B.4.3)
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which shows that, as in (2.1), if gk and ηk are real (in particular, if J is symmetric)

sgn[gk] = sgn[η⊤
k ∇v(h∗)ηk] = sgn

[
∑

i∈K

δViηk,i

]

where δVi ≡
∑

j∈K

∂vi(h
∗)

∂hj
ηk,i. (B.4.4)

B.4.2 Derivations for Section 3

At the flat-earth equilibrium in a racetrack economy, we have stronger results. First, because J

and ∇v(h̄) are both symmetric and circulant, the eigenvectors for the two matrices are both real

and the same (see Appendix B.1). Thus, by letting ek be the kth eigenvalue of ∇v(h̄), which is

associated with the eigenvector ηk = (ηk,i) = (cos[θki]) (see Lemma B.3), (B.4.3) further implies

that

gk

(

η⊤
k ∇v(h∗)ηk

)

= gk

(

ekη
⊤
k ηk

)

= gkek∥ηk∥2 > 0. (B.4.5)

By noting that gk and ek are real, at the flat-earth equilibrium in a racetrack economy, we have

sgn[gk] = sgn[ek] (B.4.6)

for all k ≥ 1. For convenience, we introduce a notation to describe the above situation.

Definition B.2. Let A and B be two K-by-K symmetric circulant matrices. By A ≃ B, we

denote that A = CB with a symmetric circulant matrix C that is positive definite relative to TD.

Observe that if we have J ≃ B for some symmetric circulant matrix B, we may study the

eigenvalues of B instead of those of J to examine the stability of h̄. Because J = CB and J , C,

and B are circulant, by employing the properties of circulant matrices, we have gk = ckbk with

ck and bk being the eigenvalues of C and B, respectively; moreover, because J , B, and C are

symmetric, gk, bk, and ck are real (Appendix B.1). Since C is symmetric, circulant, and positive

definite relative to TD, we have ck > 0 for k ≥ 1. In sum, it follows that sgn[gk] = sgn[bk] for

k ≥ 1. We summarize this as follows.

Lemma B.4. Assume that the dynamic F satisfies Assumption B.2 and consider the flat-earth

equilibrium h̄ in a racetrack economy. Then, J ≡ ∇F (h̄) and ∇v(h̄) are both symmetric and

circulant. Furthermore, we have J ≃ ∇v(h̄).

Thus, for the stability analysis of h̄, we may study the signs of the eigenvalues ek (k ≥ 1) of ∇v(h̄)

because we have sgn[gk] = sgn[ek]. In particular, by using our notation, J satisfies

J ≃ c0I + c1D̄ + c2D̄
2 (B.4.7)

at the flat-earth equilibrium (see Appendix B.3). Thus, the stability of h̄ is governed by the

model-dependent function G(·) in (B.3.3) because (B.4.7) implies

sgn[gk] = sgn[G(fk)], (B.4.8)
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G(fk) ≡ c0 + c1fk + c2f2
k . (B.4.9)

Furthermore, not only the signs but also the magnitudes of the eigenvalues {gk} and {ek} of

J and ∇v(h̄) are often related in a much stronger way.

Observation B.1. For canonical evolutionary dynamics in the literature, it often follows that

gk = c̄ek for k ≥ 1 with a common, positive constant c̄.

Example B.3. The replicator dynamic, which is the de facto standard dynamic in the NEG

literature, is defined by Fi(h) ≡ hi{vi(h) − v̄(h)} where v̄(h) ≡ (1/H)
∑

j∈K vj(h)hj is the average

payoff across regions. One has

∇F (h) = ψ0(h) + ψ1(h)∇v(h) (B.4.10)

with ψ0(h) and ψ1(h) defined by ψ0(h) ≡ diag[v(h) − v̄(h)1] − (1/H)hv(h)⊤ and ψ1(h) ≡
diag[h](I − (1/H)1h⊤), respectively. It follows that, at the flat-earth equilibrium, ψ0(h̄) = −v̄E

and ψ1(h̄) = h (I − E), where E ≡ (1/K)11⊤ is a K-by-K matrix whose elements are all 1/K.

This implies that

gk =

⎧

⎪⎨

⎪⎩

−v̄ < 0 if k = 0,

hek if 1 ≤ k ≤ K − 1,
(B.4.11)

where {ek} are the eigenvalues of ∇v(h̄). Therefore, J ≃ ∇v(h̄) as well as c̄ = h.

B.4.3 Extension: Taste heterogeneities

The local stability of the equilibria in models with idiosyncratic taste heterogeneity á la Murata

(2003) and Redding (2016) can be analyzed by employing the associated perturbed best response

dynamics as is conducted by Akamatsu et al. (2012) for the logit equilibrium under the logit

dynamic. To be precise, for models with a randomized preference ṽ(h) and the associated perturbed

best response dynamic F̃ , we have J = ∇F̃ (h̄, ṽ(h̄)) ≃ Φ∇v(h̄)−ηI, where η is a positive constant

that reflects the magnitude of the heterogeneity and Φ is the projection matrix onto TD. v(h) is

interpreted as the homogeneous part of the underlying payoff function ṽ(h) (see Sandholm, 2010).

Assuming idiosyncratic taste heterogeneity is thus mathematically equivalent to incorporating an

extra local dispersion force.3

Example B.4 (Logit equilibrium). Consider a logit equilibrium (an equivalent of an equilibrium

under an idiosyncratic multiplicative Fréchet shock in the payoff function) with the noise parameter

3Interested readers should consult Chapter 8 of Sandholm (2010) for local stability analysis via the
linearization of evolutionary dynamics in population games as well as the consequences of assuming random
utility models on the Jacobian matrix of the dynamic J at an equilibrium.
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η. It is standard that the equilibrium condition is

hi = Pi(h)H, where Pi(h) ≡ exp[vi(h)/η]
∑

j∈K exp[vj(h)/η]
. (B.4.12)

The logit dynamic is defiled by Fi(h) = HPi(h) − hi. At h̄, for the finite values of η, we have

J = η−1
Φ∇v(h̄) − I ≃ Φ∇v(h̄) − ηI. (B.4.13)

Observe that η → ∞ implies J = −I, which indicates that h̄ is always stable; it is intuitive that

under sufficient heterogeneity on the side of the preferences of mobile agents, the equilibrium is

unique.
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C Analyses of economic geography models

In this appendix, we derive the Jacobian matrix of the payoff function at the flat-earth equilibrium,

∇v(h̄), for the models included in Table 1. As discussed in the main text and as in Appendix B

above, this suffices for our purpose. Table 1 at the end of this appendix summarizes the exact

mappings from each model to the coefficients of a model-dependent function G(f) = c0+c1f +c2f2.

We note that as soon as one has an analytical expression of G(f), one can derive the break points

with respect to the relevant parameters and study the implications of the model.

C.1 Krugman (1991) (Km) model

Following Fujita, Krugman and Venables (1999), this section introduces a many-region version of

Krugman (1991)’s seminal model in line with our context.

Assumptions. There are K discrete regions whose set is denoted by K. There are two types

of workers: unskilled and skilled. Each worker inelastically supplies one unit of labor. The total

endowments of skilled and unskilled workers are H and L, respectively. Skilled workers are mobile

across regions; hi ≥ 0 denotes their population in region i, where h ≡ (hi)i∈K is their spatial

pattern across regions. Throughout Appendix C, D ≡ {h ∈ R
K | h · 1 = H, hi ≥ 0} denotes the

set of all possible spatial distributions of mobile (skilled) workers. Unskilled workers are immobile;

their population in region i is denoted by li.

There are two industrial sectors: agriculture (abbreviated as A) and manufacturing (abbrevi-

ated as M). The A-sector is perfectly competitive and a unit input of unskilled labor is required

to produce one unit of goods. We choose A-sector goods as the numéraire. The M-sector is mod-

eled by Dixit–Stiglitz monopolistic competition. M-sector goods are horizontally differentiated and

produced under increasing returns to scale using skilled labor as the input.

The goods of both sectors are transported. The transportation of A-sector goods is frictionless,

While the transportation of M-sector goods is of an iceberg form. For each unit of M-sector goods

transported from region i to j, only the proportion 1/τij arrives, where τij > 1 for i ̸= j and

τii = 1.

Preference. All workers share an identical preference for both M- and A-sector goods. The

utility function U of a worker in region i is given by a two-tier form. The upper tier is the following

Cobb–Douglas function:

U(CM
i , CA

i ) = µ ln CM
i + (1 − µ) ln CA

i (0 < µ < 1), (C.1.1)

where CA
i is the consumption of A-sector goods in region i, CM

i the lower-tier manufacturing

aggregate in region i, and µ the constant expenditure share of manufactured goods. The lower
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tier, CM
i , is defined by the following constant elasticity of substitution (CES) aggregate:

CM
i ≡

(
∑

j∈K

∫ nj

0
qji(ξ)(σ−1)/σdξ

)σ/(σ−1)

, (C.1.2)

where nj is the number of varieties produced in region j, z qji(ξ) is the consumption of variety

ξ ∈ [0, nj ], and σ is the CES between any two varieties. As we take A-sector goods as the numéraire,

the budget constraint of a worker in region i is given by

CA
i +

∑

j∈K

∫ nj

0
pji(ξ)qji(ξ)dξ = yi, (C.1.3)

where pji(ξ) denotes the delivered price in region i of the M-sector goods produced in region j

and yi denotes the income of the worker. The incomes (wages) of skilled and unskilled workers are

represented by wi and wu
i , respectively.

Demand. Utility maximization yields the following demand:

CM
i = µ

yi

Pi
, CA

i = (1 − µ)yi, qji(ξ) =
{pji(ξ)}−σ

P −σ
i

CM
i , (C.1.4)

where Pi denotes the price index of the differentiated product in region i:

Pi ≡
(

∑

j∈K

∫ nj

0
pji(ξ)1−σdξ

)1/(1−σ)

. (C.1.5)

Since the total income in region i is given by Yi = wihi + wu
i li, we have the following total demand

Qji(ξ) for the variety ξ produced in j:

Qji(ξ) =
µ{pji(ξ)}−σ

P 1−σ
i

(wihi + wu
i li). (C.1.6)

The total supply xi(ξ) of the differentiated variety ξ in region i should meet the total demand from

all regions including the transport costs incurred by shipments:

xi(ξ) =
∑

j∈K

τijQij(ξ). (C.1.7)

Firm behavior. With free trade in the A-sector, the wage of the unskilled worker wu
i is equalized.

As A-sector goods are the numéraire, we have wu
i = 1. In the M-sector, to produce xi units of

the differentiated product, a firm requires α + βxi units of skilled labor. With increasing returns,

every firm specializes in a single variety. The cost function of a firm in region i producing variety

ξ is thus given by

Ci(xi(ξ)) ≡ wi{α + βxi(ξ)}. (C.1.8)
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Therefore, an M-sector firm located in region i specializing in variety ξ faces the following profit:

Πi(ξ) =
∑

j∈K

pij(ξ)Qij(ξ) − Ci(xi(ξ)). (C.1.9)

Since we have a continuum of firms, each is negligible in the sense that its action has no impact

on the market (i.e., the price indices). It is standard that the profit maximization of firms yields

pij(ξ) =
σβ

σ − 1
wiτij (C.1.10)

and that pij(ξ) is independent of ξ. This fact in turn implies that Qij(ξ) and xi(ξ) also do not

depend on ξ. We thus omit ξ in the following.

Short-run equilibrium. In the short run, the spatial distribution h = (hi)i∈K of skilled workers is

fixed. Given h, we determine the short-run equilibrium wage w ≡ (wi)i∈K by the M-sector product

market-clearing condition (PMCC), zero-profit condition (ZPC), and skilled labor market-clearing

condition (LMCC). First, the ZPC for every M-sector firm dictates that xi = α(σ − 1)/β, meaning

that the required skilled labor input is ασ. Then, skilled labor-market clearing yields ασni = hi.

By using ni = hi/(ασ), we have

Pi =
σβ

σ − 1

(
1

ασ

∑

j∈K

hj(wjτji)
1−σ

)1/(1−σ)

, (C.1.11)

with dij ≡ τ1−σ
ij ; D = [dij ] = [τ1−σ

ij ] is the friction matrix. By employing the formula up to here,

the M-sector PMCC (C.1.7) implies that

wihi = µ
∑

j∈K

hiw
1−σ
i dij

∑

k∈K hkw1−σ
k dkj

(wjhj + lj), (C.1.12)

which is the so-called wage equation. By adding up (C.1.12), we obtain

∑

i∈K

wihi =
µ

1 − µ
L, (C.1.13)

which constrains w at any configuration h. The existence and uniqueness of the solution for the

wage equation under a fixed h and normalization constraint (C.1.13) follow from standard non-

linear complementarity problem arguments (Facchinei and Pang, 2007) and thus we omit them.

Given the solution w(h) of (C.1.12), we have the following indirect utility function of skilled

workers:

vi(h) = κ̄ ln[∆i] + ln[wi], (C.1.14)

where κ̄ ≡ µ/(σ − 1) and ∆i ≡ ∑

k∈K hkw1−σ
k dki. Note that we omit the constant terms as they

do not affect the properties of the equilibrium spatial patterns. We follow this convention for the

rest of Appendix C. The long-run equilibria are defined by the VIP in Appendix B.3 based on the
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payoff function (C.1.14).

Jacobian matrix at the flat-earth equilibrium. Assume a racetrack economy (i.e., dij = τ1−σ
ij =

exp[−τℓij ] with τ > 0; see Section 3.1) with a uniform unskilled labor endowment (i.e., li = l ≡
L/K for all i ∈ K). Then, it is trivial that the flat-earth pattern is a long-run equilibrium. As we

must evaluate ∇v(h̄), we first derive ∇v(h) = [∂vi(h)/∂hj ] at any interior solution h. We have

∂vi(h)

∂hj
=

κ̄

∆i

(
∂∆i

∂hj
+

∑

k∈K

∂∆i

∂wk

∂wk

∂hj

)

+
1

wi

∂wi

∂hj
(C.1.15)

= κ̄

(
1

∆i
w1−σ

j dji + (1 − σ)
∑

k∈K

1

∆i
hkw−σ

k dki
∂wk

∂hj

)

+
1

wi

∂wi

∂hj
(C.1.16)

= κ̄

(
1

hj
mji + (1 − σ)

∑

k∈K

mki
1

wk

∂wk

∂hj

)

+
1

wi

∂wi

∂hj
, (C.1.17)

where mij ≡ hiw
1−σ
i dij/∆j , or in vector–matrix form M = [mij ] = diag[w1−σ ◦ h]D(diag[∆])−1

with ∆ = [∆i] = D⊤ diag[w]1−σh. We let xa ≡ [xa
i ] and x◦y ≡ [xiyi]. Noting that κ̄(1−σ) = −µ,

we have

∇v(h) = κ̄M⊤ diag[h]−1 − µM⊤ diag[w]−1∇w(h) + diag[w]−1∇w(h) (C.1.18)

= κ̄M⊤ diag[h]−1 + (I − µM⊤) diag[w]−1∇w(h), (C.1.19)

where ∇w(h) ≡ [∂wi(h)/∂hj ] is yet to be known. By letting

Wi(h,w) ≡ wihi − µ
∑

k∈K

mik(wkhk + l), (C.1.20)

the wage equation is equivalent to W (h,w) = 0. Thanks to the implicit function theorem, it can

be shown that ∇w(h) = −(∇wW )−1(∇W ), where ∇wW ≡ [∂Wi/∂wj ] and ∇W ≡ [∂Wi/∂hj ]

are given by

∂Wi

∂wj
= δijhi − µ

∑

k∈K

∂mik

∂wj
(wkhk + l) − µmijhj (C.1.21)

= δijhi − µ(1 − σ)
1

wj

(

δij

∑

k∈K

mik(wkhk + l) −
∑

k∈K

mikmjk(wkhk + l)

)

− µmijhj , (C.1.22)

∂Wi

∂hj
= δijwi − µ

∑

k∈K

∂mik

∂hj
(wkhk + l) − µmijwj (C.1.23)

= δijwi − µ
1

hj

(

δij

∑

k∈K

mik(wjhj + l) −
∑

k∈K

mikmjk(wkhk + l)

)

− µmijwj , (C.1.24)

with δij being Kronecker’s delta. In vector–matrix form, we have

∇wW = diag[h] − µ(1 − σ)(diag[MY ] − M diag[Y ]M⊤) diag[w]−1 − µM diag[h] (C.1.25)

∇W = diag[w] − µ(diag[MY ] − MY M⊤) diag[h]−1 − µM diag[w], (C.1.26)
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where Y = [Yi] ≡ [wihi + l] is the vector of regional income.

Assume the flat-earth equilibrium, where h = h1 with h ≡ H/K. Then, we know that the

(uniform level of the) equilibrium wage is given by w̄ ≡ µ/(1 − µ) · L/H and the (uniform level of

the) total income of a region is Ȳ ≡ l/(1−µ) = 1/(1−µ)·L/K, where Ȳ /w̄ = h/µ and Ȳ /h = w̄/µ.

We also have M = D̄ = D/d, where d is the row sum of D. It then follows that

∇w(h̄) =
w̄

h

[
σI − µD̄ − (σ − 1)D̄2]−1

D̄
(
µI − D̄

)
(C.1.27)

and thus that

∇v(h̄) =
1

h

[
I − κD̄ − ρD̄2]−1

[(κ + κ̄)D̄ − (µκ̄ + σ−1)D̄2], (C.1.28)

where κ ≡ µ/σ and ρ ≡ (σ − 1)/σ ∈ (0, 1). We recall that circulant matrices commute (Lemma

B.1). It thus follows that for the Km model, we have ∇v(h̄) ≃ c1D̄ + c2D̄
2 with c1 = κ + κ̄ and

c2 = −(µκ̄ + σ−1).

Remark C.1. A comparison with the literature would be useful for providing some insights. By

letting {ek} be the eigenvalues of ∇v(h̄), we have

ek =
1

h
fk

(κ + κ̄) − (µκ̄ + σ−1)fk

1 − κfk − ρf2
k

=
K

H

(
1 − ρ

ρ

)

fk

[

µ(1 + ρ) − (µ2 + ρ)fk

1 − µ(1 − ρ)fk − ρf2
k

]

. (C.1.29)

However, this expression is a generalized version of equation (5.27) in Fujita et al. (1999) for the

Km model in the symmetric two-region setting (with a rearrangement):

1

P −µ
0

dω

dλ
=

2

λ + (1 − λ)

(
1 − ρ

ρ

)

Z

[

µ(1 + ρ) − (µ2 + ρ)Z

1 − µ(1 − ρ)Z − ρZ2

]

, (C.1.30)

which expresses the change in the real wage ω ≡ w0P −µ
0 in region 0 when its share of skilled

workers λ slightly increases. Here, Z is “an index of trade barriers” defined by equation (5.25),

ibid:

Z ≡ 1 − T 1−σ

1 + T 1−σ
, (C.1.31)

where T > 1 is the iceberg transport cost parameter between regions. We thus see that the “real

wage differential” exercise often conducted in the literature is a special case of our approach. In

fact, if we assume K = 2, the only possible deviation direction is η1 = (1, −1), which corresponds

to agglomeration toward one of the regions. Given the freeness of transport r between the two

regions, its associated eigenvalue of D̄ is given by

f1 =
1 − r

1 + r
, (C.1.32)

which precisely coincides with the above Z—since r = T 1−σ for this case. In the two-region
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economy, there is only a single possible deviation direction: agglomeration. We thus only have to

investigate the sign of dω/dλ. In a many-region racetrack economy, however, there are multiple

possible deviation directions and thus the stability of the flat-earth pattern depends on the signs

of all (ek)K−1
k=1 .

Remark C.2. As emphasized by the literature, the coefficients of G(f) have clear economic

interpretations. The first, c1, represents the demand externality through a price index (κ̄) and a

home market effect (κ). For the former, κ̄, observes that 1/(σ − 1) in κ̄ is the markup of firms or

the magnitude of product differentiation; an agglomeration, by improving the proximity of mobile

agents to the production locations of firms, increases the payoff of agglomerated regions. The

latter, κ, is a home market effect. Note that 1/σ in κ is the share of the fixed cost (the wage of

a mobile agent required to operate) in a firm’s production cost. The second, c2, on the contrary,

represents the dispersion force. The centrifugal force of the model is due to the increased market

competition caused by the concentration of firms (the so-called “market-crowding effect”). Since

there is spatially dispersed demand (immobile agents), firms in a region of agglomeration may

hope to relocate to other, less crowded regions (σ−1 in c2). In addition, the price-index effect

by reducing a firm’s market share and hence the wage of mobile agents produces another global

dispersion force (µκ̄ in c2). This effect produces a dispersion force from outside a region.

Numerical simulation. Figure 8 assumes the Km model. The parameters are set as µ = 0.4,

σ = 10, L = 8, and H = 1.

C.2 Forslid and Ottaviano (2003) (FO) model

The FO model is a slightly simplified version of Krugman (1991)’s NEG model. The model is

sometimes called the footloose-entrepreneur model, since a unit of skilled (mobile) labor is required

as the fixed input of a manufacturing firm. The only difference is that the variable input of M-sector

firms in the Km model is now replaced by unskilled labor. Specifically, to produce xi(ξ) units of

product ξ, an M-sector firm now requires α units of skilled labor and βxi(ξ) units of unskilled

labor. Therefore, for the FO model, the total cost of production for a firm in region i is

Ci(x(ξ)) = αwi + βxi(ξ)wu
i . (C.2.1)

The wage equalization of the A-sector (wu
i = 1 for all i ∈ K) then implies that

pij(ξ) =
σβ

σ − 1
τij (C.2.2)

provided that A-sector goods are produced in every region (we assume βxini < li for all i ∈ K).

Again, we drop ξ in what follows.

Short-run equilibrium. The short-run equilibrium conditions are again the PMCC, LMCC, and

ZPC. First, since a firm requires α units of skilled labor, the LMCC implies that αni = hi, which
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in turn yields the price index Pi for the FO model:

Pi =
σβ

σ − 1

(
1

α

∑

j∈K

hjdji

)1/(1−σ)

, (C.2.3)

where dji ≡ τ1−σ
ji is the trade friction between regions i and j. Note that unlike the Km model, Pi

does not depend on the wage w = (wi)i∈K. The ZPC implies that the operating profit of a firm is

entirely absorbed by the wage bills:

wi =

(
∑

j∈K

pijQij − βxi

)

. (C.2.4)

Together with the PMCC, we have the following wage equation for the model:

wi =
µ

σ

∑

j∈K

dij
∑

k∈K dkjhk
(wjhj + lj). (C.2.5)

This equation is analytically solvable. Specifically, in vector–matrix form, we have

w = κ [I − κM diag[h]]−1 Ml, (C.2.6)

where κ ≡ µ/σ, l ≡ (li), and M ≡ [mij ] = [dij/∆j ] = D{diag[∆]}−1 with ∆i =
∑

j∈K djihj ,

meaning that ∆ = [∆i] = D⊤h. The indirect utility v(h) of each of the many-region FO models

is expressed as

vi(h) = κ̄ ln[∆i] + ln[wi], (C.2.7)

where κ̄ ≡ µ/(σ − 1). We again ignore the constant terms. The long-run equilibria are defined by

(B.3.1) with respect to the above (C.2.7).

Jacobian matrix at the flat-earth equilibrium. In a racetrack economy, by following the same

line of logic as in the Km model, we obtain

∇v(h̄) =
1

h

[

I − κD̄
]−1 [

(κ̄ + κ)D̄ − (κ̄κ + 1)D̄2
]

, (C.2.8)

where D̄ ≡ D/d. We thus conclude that ∇v(h̄) ≃ c1D̄+c2D̄
2 with c1 = κ̄+κ and c2 = −(κ̄κ+1).

C.3 Pflüger (2004) (Pf) model

The Pf model is a further simplified version of the FO model (and hence the Km model) in which

we assume a quasi-linear utility function for the upper tier as follows:

U(CM
i , CA

i ) = CA
i + µ ln CM

i . (C.3.1)
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Taking A-sector goods as the numéraire, it is standard that utility maximization yields the following

demand, where the income effect in CM
i is lost compared with the Km and FO models:

CA
i = yi − µ, CM

i = µ
1

Pi
, (C.3.2)

where the price index Pi is the same as that in the FO model. Thus, by replacing the total income

of a region Yi = wihi + li in (C.2.5) with the total number of workers hi + li, we obtain the following

“wage equation”:

wi =
µ

σ

∑

j∈K

dij
∑

k∈K dkjhk
(hj + lj), (C.3.3)

which has already been solved. Indirect utility is given by

vi(h) = κ̄ ln[∆i] + wi, (C.3.4)

where ∆i ≡ ∑

j∈K djihj . The long-run equilibria are defined by (B.3.1) with respect to the above

(C.2.7).

Jacobian matrix at the flat-earth equilibrium. We show

∇v(h) = κ̄M⊤ + κ
(

M − M diag[H]M⊤
)

(C.3.5)

with H = [Hi] ≡ [hi + li] and M = [mij ] ≡ [dij/∆j ] and thus that

∇v(h̄) =
1

h

[

(κ̄ + κ)D̄ − κ(1 + ε)D̄2
]

(C.3.6)

with ε = L/H being the ratio of the number of unskilled to skilled workers. We thus see that

∇v(h̄) ≃ c1D̄ + c2D̄
2 with c1 = κ̄ + κ and c2 = −κ(1 + ε).

C.4 Helpman (1998) (Hm) model

Helpman (1998) removed the A-sector in Krugman (1991) and thereby assumed that all workers

are mobile. Instead of the A-sector, the Hm model introduces the housing (abbreviated as H)

sector and each region i is endowed with a fixed stock Ai of housing.

Preference. The utility function of a worker in region i is given by

U(CM
i , CH

i ) = µ ln CM
i + γ ln CH

i , (C.4.1)

where CH
i is the consumption of H-sector goods in region i and γ is its constant expenditure share

(γ + µ = 1). The budget constraint of a worker located in region i is represented by

pH
i CH

i +
∑

j

∫ nj

0
pji(ξ)qji(ξ)dξ = yi, (C.4.2)
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where pH
i is the price of H-sector goods in region i. Utility maximization leads to the following

demand for H-sector goods:

CH
i = γ

yi

pH
i

. (C.4.3)

Housing market clearing. In the H-sector, total demand hiC
H
i in region i cannot be greater

than maximum supply Ai. If demand in region i is less than supply, the price pH
i should be

the lower boundary (i.e., zero); Otherwise, it is positive. Thus, we have the following housing

market-clearing condition:

⎧

⎪⎨

⎪⎩

hiC
H
i = Ai if pH

i > 0,

hiC
H
i ≤ Ai if pH

i = 0,
∀i. (C.4.4)

From (C.4.3), pH
i ̸= 0 for any long-run equilibria; because CA

i → ∞ and thus U → ∞ as pH
i → 0,

such a spatial pattern is never sustainable. We thus conclude that

CH
i =

Ai

hi
, pH

i = γ
yihi

Ai
(C.4.5)

and that hi > 0 at any long-run equilibrium.

Landownership. We here consider two types of assumptions on landownership: public landown-

ership (abbreviated as PL) and local landownership (LL). In the original formulation, housing

stocks are equally owned by all workers (i.e., PL). In this way, the income of a worker in region i

is the sum of the wage and dividend of rental revenue, yi = wi + w̄H, where

w̄H =
1

H

∑

i∈K

pH
i CH

i hi =
γ

H

∑

i∈K

yihi, (C.4.6)

meaning that rearrangement yields

w̄H =
γ

(1 − γ)H

∑

i∈K

wihi. (C.4.7)

We set w̄H = 1 to normalize wi to satisfy
∑

i∈K wihi = (µ/γ)H. On the contrary, Ottaviano,

Tabuchi and Thisse (2002), Murata and Thisse (2005), and Redding and Sturm (2008) assumed

that housing stocks are locally owned (i.e., LL). Hence, yi = wi + wH
i , where w̄i = pH

i CH
i = γyi,

which in turn yields yi = wi/µ. Also for this case, analogous to the PL case, we constrain w by

using the condition
∑

i∈K wihi = (µ/γ)H for normalization purposes.

Short-run equilibrium. Regarding the short-run equilibrium conditions, the only difference from

the Km model is the total expenditure in each region, which is now

Yi =

⎧

⎪⎨

⎪⎩

(wi + 1)hi, (for PL),

wihi/µ, (for LL).
(C.4.8)
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The short-run equilibrium wage equation is thus given by

[PL] wihi = µ
∑

j∈K

dijw1−σ
i hi

∑

k∈K dkjw1−σ
k hk

(wj + 1)hj , (C.4.9)

[LL] wihi =
∑

j∈K

dijw1−σ
i hi

∑

k∈K dkjw1−σ
k hk

wjhj . (C.4.10)

Given the solution w for (C.4.9) or (C.4.9), indirect utility v(h) is expressed as

vi(h) =

⎧

⎪⎨

⎪⎩

κ̄ ln[∆i] + µ ln[wi + 1] − γ
(

ln[hi] − ln[Ai]
)
, (for PL),

κ̄ ln[∆i] + µ ln[wi] − γ
(

ln[hi] − ln[Ai]
)
, (for LL)

, (C.4.11)

where ∆i ≡ ∑

j∈K hjw1−σ
j dji.

Jacobian matrix at the flat-earth equilibrium. Let Ai = A for all regions to abstract from the

location-fixed exogenous effects. For the PL case, we can show that

∇v(h̄) =
1

h

{

κ̄D̄ + µ(µI − D̄)
[

σI − µD̄ − (σ − 1)D̄2
]−1

D̄(I − D̄) − γI

}

(C.4.12)

=
σ

h

[

σI − µD̄ − (σ − 1)D̄2
]−1

{

−γI + (κ̄ + κ)D̄ +

{

γ −
(

µκ̄ +
1

σ

)}

D̄2
}

, (C.4.13)

meaning that ∇v(h̄) ≃ c0I + c1D̄ + c2D̄
2 with c0 = −γ, c1 = µ

(
1

σ−1 + 1
σ

)

, and c2 = γ − 1
σ

− µ2

σ−1 .

Recall that γ is the expenditure share of housing goods. Hence, the dispersion force expressed by

c0 < 0 solely arises from local housing. For the LL case, we can show that

∇v(h̄) =
1

h

{

κ̄D̄ + µ(I − D̄)
[

σI + (σ − 1)D̄
]−1

D̄ − γI

}

(C.4.14)

=
σ

h

[

σI + (σ − 1)D̄
]−1

{

−γI +

(
µ

σ − 1
+

µ

σ
− γ

σ − 1

σ

)

D̄

}

. (C.4.15)

From this, we conclude that for the LL case ∇v(h̄) ≃ c0I + c1D̄ with c0 = −γ and c1 = µ
σ−1 +

µ
σ

− γ σ−1
σ

.

Remark C.3. For the model, the condition for the uniqueness of the equilibrium is given by

γσ = (1 − µ)σ > 1 (Redding and Sturm, 2008). If γσ > 1 is satisfied, regardless of the assumption

on landownership, the flat-earth equilibrium is stable.

Remark C.4. The regional model formulated in §3 of Redding and Rossi-Hansberg (2017) is an

enhanced version of the Hm model with LL, in which the variable input of skilled labor is allowed

to depend on region i (i.e., productivity differs across regions). That is, the cost function of firms

in region i becomes

Ci(xi(ξ)) = wi(α + βixi(ξ)). (C.4.16)
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This then implies that the short-run equilibrium price and price index in region i become

pij(ξ) =
σβi

σ − 1
τijwi, (C.4.17)

Pi =
σ

σ − 1

(
1

ασ

∑

j∈K

hj(βjwjτji)
1−σ

)1/(1−σ)

, (C.4.18)

respectively. As the model assumes LL, the wage equation for the model is

wihi =
∑

j∈K

hiAiw
1−σ
i dij

∑

k∈K hkAkw1−σ
k dkj

wjhj , (C.4.19)

where Ai ≡ β1−σ
i . Thus, by abstracting from first natures by setting Ai = Ā, the model reduces

to the Hm model under LL.

C.5 Puga (1999) (Pg) model

Puga (1999) generalized the Km model in two directions, namely (i) the inter-sector mobility

of workers between the A-sector and the M-sector (without immobile workers but land) and (ii)

intermediate inputs in the M-sector, both as in Krugman and Venables (1995).

Assumptions. There is only a mass H of mobile workers, with hi denoting the number of

workers in region i. We denote by hM
i and hA

i the numbers of workers engaged in the M- and

A-sectors, respectively (hi = hM
i + hA

i ). The homogeneous preference of consumers is the same as

in the Km model, with the expenditure share of the M-sector good µ and elasticity of substitution

between manufactured varieties σ. Each region is endowed with Ai units of land owned by immobile

landlords that have the same preference as the workers. We assume that if a worker relocates, then

he or she first enters the M-sector of the destination region. The stability of the spatial pattern h

is then reduced to the study of hM ≡ [hM
i ].

A-sector. The A-sector is perfectly competitive and produces a homogeneous output by using

labor and land under constant returns to scale. A-sector goods are costless to trade and set as the

numéraire. Let XA
i be the gross regional product of the A-sector. In line with the original study,

we specify a Cobb–Douglas production function with labor share µ̄; in concrete terms, we have

XA
i = (hA

i )µ̄A1−µ̄
i . This implies that the total labor costs of A-sector firms are given by µ̄XA

i =

wih
A
i , while their land costs (= the total rental revenue of landlords) are (1 − µ̄)XA

i = 1−µ̄
µ̄ wih

A
i .

In particular, labor demand in this sector is given by a function of the wage hA
i = Ai(wi/µ̄)1/(µ̄−1),

because wi = µ̄(hA
i /Ai)

µ̄−1. Let hA
i = εih

M
i , meaning that hi = (1 + εi)h

M
i ; we here consider

the case hM
i ̸= 0, because we are interested in the stability of complete dispersion. We also have

εi ≡ (Ai/hM
i )(wi/µ̄)1/(µ̄−1). The regional rental revenue from land, Ri, in terms of hM

i is

Ri ≡ 1 − µ̄

µ̄
εiwih

M
i . (C.5.1)

By employing the above formulae, the elasticity νi of a region’s labor supply to the M-sector with
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respect to wage is

νi ≡ wi

hM
i

∂hM
i

∂wi
=

hA
i

hM
i

1

1 − µ̄
= εi

1

1 − µ̄
. (C.5.2)

Further, if µ̄ = 0, XA
i = Ai as well as Ri = Ai and εi = 0.

M-sector. By considering the simplest possible model of intermediate inputs as in Krugman

and Venables (1995), the minimum cost function of the M-sector is replaced by

C(xi(ξ)) = P µ̂
i w1−µ̂

i (α + βxi(ξ)), (C.5.3)

where Pi is the price index of M-sector goods in region i and µ̂ the share of intermediates in firms’

costs. The profit-maximizing price is given by

pij(ξ) =
σβ

σ − 1
P µ̂

i w1−µ̂
i τij , (C.5.4)

which, together with the definition of Pi, implies that we should solve a system of non-linear

equations to obtain Pi. In concrete terms, the price indices {Pi} should satisfy

Pi =
σβ

σ − 1

(
∑

j∈K

nj

(

P µ̂
j w1−µ̂

j

)1−σ
dji

)1/(1−σ)

, (C.5.5)

where dij ≡ τ1−σ
ij . We must solve (C.5.5) along with the wage equation to be defined below.

In line with the Km model, the ZPC of firms implies xi(ξ) = α(σ − 1)/β. Firms’ minimized

production cost in region i is then given by Ci = (ασ)P µ̂
i w1−µ̂

i , meaning that labor demand in the

M-sector of region i is

hM
i = (1 − µ̂)

Ci

wi
ni = ασ(1 − µ̂)P µ̂

i w−µ̂
i ni. (C.5.6)

The mass of varieties produced in region i is thus given as follows:

ni =
1

ασ(1 − µ̂)
P −µ̂

i wµ̂
i hM

i . (C.5.7)

For simplicity, in the following, as in the original study, we normalize the constants such that

α = 1/σ and β = (σ − 1)/σ. Then, by plugging (C.5.7) to (C.5.5), we have

P 1−σ
i =

1

1 − µ̂

∑

j∈K

hM
j P −µ̂σ

j w1−σ+µ̂σ
j dji. (C.5.8)

Land is locally owned by immobile landlords that share the same preference as mobile workers;

their regional expenditure on M-sector goods is given by µRi. In addition, the regional expenditure
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of firms on intermediates is given by

µ̂Cini =
µ̂

1 − µ̂
wih

M
i . (C.5.9)

Total expenditure in region i on M-sector goods is Yi = µwihi + µRi + µ̂Cini. By using (C.5.1) as

well as hi = (1 + εi)h
M
i , this is simplified to

Yi = µ(1 + εi)wih
M
i + µRi +

µ̂

1 − µ̂
wih

M
i =

[

µ

(

1 +
εi

µ̄

)

+
µ̂

1 − µ̂

]

wih
M
i . (C.5.10)

From the ZPC of firms, the wage equation for the model is given by4

1

1 − µ̂
wih

M
i

︸ ︷︷ ︸

M-sector firms’ total cost

=
∑

j∈K

hM
i P −µ̂σ

i w1−σ+µ̂σ
i dij

∑

k∈K hM
k P −µ̂σ

k w1−σ+µ̂σ
k dkj

[

µ

(

1 +
εj

µ̄

)

+
µ̂

1 − µ̂

]

wjhM
j

︸ ︷︷ ︸

M-sector firms’ total revenue

.. (C.5.11)

The short-run wage w = (wi) and price index P = (Pi) are obtained as the solution for the system

of non-linear equations (C.5.8) and (C.5.11). We require µ̂ < σ−1
σ

, meaning that P and w are

uniquely determined for any transportation cost.

Given P and w, the indirect utility function is

vi(h) =
µ

σ − 1
ln[∆i] + ln[wi] (C.5.12)

with ∆i =
∑

j∈K hM
j P −µ̂σ

j w1−σ+µ̂σ
j dji.

Jacobian matrix of the payoff function at the flat-earth equilibrium. Let Ai = A for all i and

consider the flat-earth equilibrium. Let h ≡ H/K be the uniform number of mobile agents; let

also hM and hA be the number of mobile agents engaged in the M- and A-sectors, respectively.

Further, let Ȳ , P̄ , w̄, Ω̄, and ε̄ be the uniform level of regional expenditure, price index, wage,

Ωi, and ratio εi of hA
i to hM

i at the flat-earth equilibrium, respectively. By adding up the wage

equations (C.5.11) at the flat-earth equilibrium, we show

ε̄ =
hA

hM
= µ̄

1 − µ

µ
. (C.5.13)

A larger µ̄ (µ) implies a larger (smaller) ε̄ = hA/hM, which is intuitive. The explicit formula of ε̄

yields

Ȳ =
w̄

1 − µ̂

ε̄

1 + ε̄
h, w̄ = µ̄

(
h

A

ε̄

1 + ε̄

)µ̄−1

. (C.5.14)

Together with the fact that ε̄/µ̄ = µ
1−µ , µ̄ does not affect the stability of h̄ but rather scales total

global income. We also have P̄ = ρw̄, where ρ ≡ {(hMd)(1 − µ̂)}1/(1−σ+µ̂σ) with d being the row

4The original analyses in Puga (1999) allow a positive profit of firms. In this appendix, we adhere to the
ZPC so that comparisons with the other models are possible.
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sum of D and ∆i = ∆̄ ≡ (1 − µ̂)P̄ 1−σ. Note that at the equilibrium, we have

1

µ̄

∂εi

∂hM
i

= − 1

µ̄

ε̄

hM
= − 1

hM

1 − µ

µ
. (C.5.15)

In addition, with ν̄ ≡ µ̄
1−µ̄

1−µ
µ being the elasticity of labor supply from the A-sector to the M-sector

with respect to wi,

∂hM
i

∂wi
= ν̄

hM

wi
,

1

µ̄

∂εi

∂wi
=

1

µ̄

∂εi

∂hM

∂hM
i

∂wi
= −ν̄

1

wi

1 − µ

µ
. (C.5.16)

We also assume that ∂hi/∂hM
i = ∂hM

i /∂hi = 1 as discussed. It follows that, at h̄,

∂Yi

∂hM
i

=

(
µ̂

1 − µ̂
+ µ

)

w̄,
∂Yi

∂wi
=

(
1

1 − µ̂
+ (1 − µ)ν̄

)

hM. (C.5.17)

The Jacobian matrix of the payoff function is computed as

∂vi

∂hj
=

µ

σ − 1

1

∆i

(
∂∆i

∂hj
+

∑

k∈K

∂∆i

∂Pk

∂Pk

∂hj
+

∑

k∈K

∂∆i

∂wk

∂wk

∂hj

)

+ δi,j
1

wi

∂wi

∂hj
, (C.5.18)

where δi,j is Kronecker’s delta; below, we evaluate ∇∆ ≡ [∂∆i/∂hj ], ∇P∆ ≡ [∂∆i/∂Pj ], ∇w∆ ≡
[∂∆i/∂wj ], ∇P ≡ [∂Pi/∂hj ], and ∇w ≡ [∂wi/∂hj ].

For ∇∆, ∇P∆, and ∇w∆, we compute as follows: ∇∆ = ∆̄(hM)−1D̄, ∇w∆ = ∆̄w̄−1aD̄, as

well as ∇P∆ = ∆̄P̄ −1bD̄, with a ≡ 1 − σ + µ̂σ and b ≡ −µ̂σ. Thus, at the flat-earth pattern,

∇v(h̄) is

∇v(h̄) =
µ

σ − 1

( 1

hM
D̄ +

1

P̄
bD̄∇P

)

+
1

w̄

(

I +
µa

σ − 1
D̄

)

∇w. (C.5.19)

The remaining task is to evaluate ∇P and ∇w. First, by totally differentiating the definition of

the price index (C.5.8), we have ∇QdhM + ∇wQdw + ∇PQdP = 0 with

∇PQ ≡
[

(σ − 1)I + bD̄
]

, ∇hQ ≡ P̄

hM
D̄, ∇wQ ≡ a

P̄

w̄
D̄. (C.5.20)

In addition, the total differentiation of the wage equation implies ∇WdhM+∇wWdw+∇PWdP =

0 with

∇wW ≡ hMI − (1 − µ̂)

[

a
1

w̄
Ȳ (I − D̄2) +

∂Ȳ

∂w
D̄

]

, (C.5.21)

∇hW ≡ w̄I − (1 − µ̂)

[
1

hM
Ȳ (I − D̄2) +

∂Ȳ

∂hM
D̄

]

, (C.5.22)

∇PW ≡ −(1 − µ̂)b
1

P̄
Ȳ (I − D̄2)∇P . (C.5.23)

We have already computed Ȳ , ∂Ȳ /∂w, and ∂Ȳ /∂hM. These relations yield the analytical expres-
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sions for the Jacobian matrices ∇P and ∇w:

∇P = −[∇wQ∇PW − ∇PQ∇wW ]−1[∇wQ∇hW − ∇hQ∇wW ], (C.5.24)

∇w = [∇wQ∇PW − ∇PQ∇wW ]−1[∇PQ∇hW − ∇hQ∇PW ]. (C.5.25)

Summing up the computations up to here, patient computation yields

∇v(h̄) = J−1
0

[

µ̌

(
1

σ − 1
+

1

σ

)

D̄ −
(

µ̌2

σ − 1
+

1

σ
+ ω

)

D̄2
]

, (C.5.26)

where J0 is a positive definite matrix defined by D̄, µ̌ ≡ µ̂ + µ(1 − µ̂), which is loosely interpreted

as the aggregate expenditure share of M-sector goods, and ω ≡ µ(1−µ̌)
σ(σ−1)(1 − ν̄) is a constant that

summarizes the effects of labor mobility between the A- and M-sectors at h̄. Thus, ∇v(h̄) ≃
c1D̄ + c2D̄

2 with

c1 = µ̌

(
1

σ − 1
+

1

σ

)

> 0, (C.5.27)

c2 = −
( µ̌2

σ − 1
+

1

σ
+ ω

)

< 0. (C.5.28)

C.6 Tabuchi (1998) (Tb) model

The Tb model introduces the internal structure of regions to the Km model. The main thrust

of this model is that unlike the majority of regional models, the city boundary in each region is

endogenously determined by the full-fledged monocentric city model of Alonso–Muth–Mills. This

produces a rich structure of urban costs, because the tradeoff between commuting costs and land

rents is explicit.

In this model, we have the previous three sectors (M, H, and A). The internal structure of

each region is featureless, except that it is endowed with a single central business district (CBD)

with negligible spatial extent. In each region, locations are indexed by the distance from the CBD,

x ≥ 0. At any point, the land endowment density is assumed to be unity. The total numbers of

skilled and unskilled workers are given by H and L, respectively. The number of skilled workers

in region i is denoted by hi, whereas the spatial distribution (density) in that region is, allowing

notational abuse, denoted by hi(x). Thus, we have

∫ x̄i

0
hi(x)dx = hi, (C.6.1)

where x̄i ≥ 0 is the city boundary in region i that is endogenously determined. Unskilled workers

are employed by the A-sector and do not commute to the CBD, whereas skilled workers do. A

skilled worker at distance x from the CBD incurs the generalized cost of commuting T (x), which

is measured by the numéraire.

Preference. The utility of a representative worker living in region i and located at x is given
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by

U(CM
i , CH

i , CA
i ) = µ ln CM

i + γ ln CH
i + (1 − µ − γ) ln CA

i , (C.6.2)

where µ and γ with µ + γ < 1 are the constant expenditure shares for M-sector goods and H-

sector goods, respectively; CM
i is the CES aggregate of M-sector goods defined by (C.1.2), CH

i

the consumption of housing space (H-sector goods), CA
i the consumption of agricultural products

(A-sector goods) in region i. M-sector goods are subject to iceberg transport costs, whereas those

of the A-sector are not for both intra- and interregional transportation. H-sector goods are local

and non-tradable. By choosing A-sector goods as the numéraire, the budget constraint of a skilled

worker at location x in region i is

CA
i + ri(x)CH

i (x) +
∑

j∈K

∫ nj

0
pji(ξ)qji(ξ)dξ + Ti(x) = yi, (C.6.3)

where ri(x) is the land rent prevailing at location x in region i, T (x) the generalized cost of

commuting from location x to the CBD, and yi the income of the worker. We assume that T (x) is

differentiable and increasing in x with T (0) = 0. Note that T (x) is independent of its population

and is homogeneous among the regions. Given the price including the land rent profile {ri(x)},

utility maximization yields

CM
i (x) = µ

yi(x)

Pi
, CH

i (x) = γ
yi(x)

ri(x)
, CA

i (x) = (1 − µ − γ)yi(x), qji(ξ) =
{pji(ξ)}−σ

P −σ
i

CM
i , (C.6.4)

where yi(x) = yi − T (x) is the net income of a worker residing at x in region i. Following the

tradition of urban economics, the model assumes absentee landowners who keep the rental revenue

of housing, leading to yi = wi for every skilled worker. Unskilled workers live outside the city and

do not commute to the CBD. Thus, they face the agricultural land rent rA > 0 and zero commuting

cost as well as yi = 1. For simplicity, we assume that rA is the same across the regions. We also

assume that the intracity transportation of M-sector goods is costless, meaning that unskilled and

skilled workers face the same M-sector product price.

Internal structure of each region. As discussed, the difference compared with the Km model is

that the internal structure of each region is now explicitly modeled by a monocentric city model.

The standard first-order condition for the equilibrium spatial pattern is that

CH
i (x)

dri(x)

dx
+

dT (x)

dx
= 0 (C.6.5)

for 0 ≤ x ≤ x̄ with the boundary condition being ri(x̄) = rA. In the following, we focus on a single

region given the fixed values of wi and hi. For simplicity, we omit index i unless otherwise noted.

By combining CH
i (x) in (C.6.4), we obtain the land rent profile r(x) given w:

r(x) = r̂{1 − T (x)/w}1/γ (C.6.6)
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with r(x̄) = rA at the city boundary x̄ of the region. Thus, r̂, the land rent at the CBD (x = 0)

when the city boundary is at x̄ and wage rate is w, is determined as

r̂(x̄, w) =
rA

{1 − T (x̄)/w}1/γ
. (C.6.7)

We observe that r̂ = rA when hi = 0 because x̄ = 0 and T (0) = 0. With notational abuse, the

population density function h(x) in the region for the given x̄ and w becomes

h(x) =
a(x)

CH(x)
=

a(x)r(x)

γy(x)
=

r̂(x̄, w)

γw
a(x){1 − T (x)/w}1/γ−1, (C.6.8)

where a(x) is the land endowment at distance x. We here note that as r(x̄) = rA,

h(x̄) =
a(x̄)rA

γ(w − T (x̄))
. (C.6.9)

In Tabuchi (1998), it is assumed that a(x) = 2πx, meaning that the city is disk-shaped.

Comparative statistics for the internal structure of a region. Before studying the stability of

the flat-earth equilibrium at the regional scale, we first investigate how changes in hi and wi affect

the internal structure of a region. We note that the population density function h(x) satisfies

∂h(x)

∂x̄
=

T ′(x̄)

γ(w − T (x̄))
h(x) > 0 (C.6.10)

∂h(x)

∂w
=

(
1 − γ

γ(w − T (x))
− 1

γ(w − T (x̄))

)

h(x) < 0 (C.6.11)

provided that w − T (x̄) > 0, which must be the case because otherwise the utility of an agent

at x̄ becomes negative infinity. The latter inequality states that, as is standard in the literature,

population density decreases as income increases. Define the function H(x̄, w) that returns the

population in the interval [0, x̄) by

H(x̄, w) =

∫ x̄

0
h(x)dx. (C.6.12)

Then, the location of the city boundary x̄ for the given h and w is determined by the equation

h = H(x̄, w), (C.6.13)

where x̄ becomes a function of h and w. For later use, we investigate the effects of h and w on x̄.

By applying the implicit function theorem to the equation H(x̄, w) − h = 0, we have

∂x̄

∂h
=

1

h(x̄)
and

∂x̄

∂w
= − 1

h(x̄)

∂H

∂w
, (C.6.14)

where we assume that w is determined in the region-scale trade balance, meaning that w and h
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are the independent variables. Note that ∂H/∂x̄ = h(x̄). From (C.6.11), we have

∂H

∂w
=

∫ x̄

0

∂h(x)

∂w
dx < 0, (C.6.15)

which suggests that the population in the interval [0, x̄) decreases when income increases. Then,

from (C.6.14), we conclude that (i) the city boundary x̄ is increasing in wi and (ii) x̄ is increasing

in hi. Thus, we see that x̄ is increasing in both hi and wi, which is standard. In addition, define

the total (generalized) costs incurred by commuting in the region by

Ti =

∫ x̄

0
T (x)h(x)dx. (C.6.16)

Then, we can show that

∂Ti

∂h
= T (x̄) +

υ

h(x̄)
Ti > 0,

∂Ti

∂w
= −∂Ti

∂h

∂H

∂w
> 0, (C.6.17)

where υ is the elasticity of land rent at the city boundary x̄:

υ ≡ −r′(x̄)

r(x̄)
=

T ′(x̄)

γ(w − T (x̄))
. (C.6.18)

Thus, the total commuting cost increases in both hi and wi ceteris paribus, which is also standard.

Short-run equilibrium. Consider the regional scale and recover the region indices. Given x̄i,

total expenditure in region i net of commuting costs is given by Yi = wihi − Ti + li. The wage

equation for the model is given by

wihi = µ
∑

j∈K

hiw
1−σ
i dij

∑

k∈K hkw1−σ
k dkj

(wjhj − Tj + lj). (C.6.19)

We impose the following constraint on w for normalization purposes:

∑

i∈K

(wihi − Ti) =
µ

1 − µ
L, (C.6.20)

where Ti depends on both hi and wi. Given the short-run wage, indirect utility for region i is

obtained by evaluating it at the CBD (x = 0) since utility is equalized in each region:

vi(h) = κ̄ ln[∆i] + ln[yi(x̄i)] (C.6.21)

where ∆i =
∑

j∈K hjw1−σ
j dji and yi(x̄i) = wi − T (x̄i).

Jacobian matrix at the flat-earth equilibrium. We compute as follows:

∇v(h) = κ̄M⊤ diag[h]−1 − µM⊤∇w(h) diag[w]−1 + diag[yi(x̄i)]
−1∇[yi(x̄i)] (C.6.22)

with M defined in line with the Km model and ∇[yi(x̄i)] = ∇w(h)−∇ diag[T (x̄i)], where we note
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that

∇ diag[T (x̄i)] = diag[T ′(x̄i)]∇[x̄i(hi, wi)] = diag[T ′(x̄i)]
{

diag[∂x̄i/∂hi] + diag[∂x̄i/∂wi]∇w(h)
}
.

Thus, by letting Ψ0 ≡ diag[T ′(x̄i)∂x̄i/∂hi] and Ψ1 ≡ diag[T ′(x̄i)∂x̄i/∂wi], we have

∇[yi(x̄i)] = ∇w(h) − (Ψ0 + Ψ1∇w(h)) = −Ψ0 + (I − Ψ1)∇w(h). (C.6.23)

As in the Km model, ∇w = [∂/∂wi]. For ∇w(h), we have ∇w(h) = −(∇wW )−1(∇W ) with

∇wW = diag[h] + µ(σ − 1)(diag[MY ] − M diag[Y ]M⊤) diag[w]−1 − µM∇wY , (C.6.24)

∇W = diag[w] − µ(diag[MY ] − MY M⊤) diag[h]−1 − µM∇Y (C.6.25)

where Y = [Yi] = [wihi − Ti + li], ∇wY = diag[h] − ∇wT , and ∇Y = diag[w] − ∇T .

Consider the flat-earth equilibrium in a symmetric racetrack economy with li = l. Let w̄ and

T̄ be the uniform level of the nominal wage rate and total commuting cost in each region. Note

that T̄ is a function of w̄ and x̄. Given the commuting cost function T (x) and location of the city

boundary and wage (x̄, w̄), at the flat-earth equilibrium, we require

w̄h − T̄ (x̄, w̄) =
µ

1 − µ
l (C.6.26)

so that wages are normalized. Then, we can show that there exists a unique positive solution

(x̄∗, w̄∗) such that w̄∗ − T (x̄∗) > 0 for the system of non-linear equations defined by (C.6.13)

and (C.6.26) for the given h. By employing the solution (x̄∗, w̄∗), total income in Y is given by

Ȳ = l/(1 − µ). Define the ratios φ of the regional disposable income of skilled workers and φ̂ of

regional total expenditure to the total nominal wage:

φ ≡ w̄h − T̄

w̄h
, φ̂ ≡ Ȳ

w̄h
. (C.6.27)

The latter implies that Ȳ /w̄ = φ̂h and Ȳ /h = φ̂w̄. Given (x̄∗, w∗), we define the T (x)-dependent

positive constants ψ0, ψ1, ρ0, and ρ1 such that Ψ0 = ψ0I, Ψ1 = ψ1I, ∇Y = ρ0w̄I, and

∇wY = ρ1hI. Then, we can calculate the Jacobian matrix of the payoff function at the flat-

earth equilibrium as follows:

∇v(h̄) = h−1κ̄D̄ − w̄−1µD̄∇w(h̄) − ȳ−1ψ0I + ȳ−1(1 − ψ1)∇w(h̄), (C.6.28)

= h−1κ̄D̄ − ȳ−1ψ0I + {ȳ−1(1 − ψ1)I − w̄−1µD̄}∇w(h̄), (C.6.29)

where ȳ ≡ y(x̄∗) = w̄∗ − T (x̄∗) is the net wage at x̄∗ and ∇w(h̄) = −(∇wW )−1(∇W ) with

∇W = −w̄
[

− (1 − φ̂µ)I + ρ0µD̄ − φ̂µD̄2]
, , (C.6.30)

∇wW = h
[{

φ̂µ(σ − 1) + 1
}
I − ρ1µD̄ − φ̂µ(σ − 1)D̄2]

. (C.6.31)
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Illustration. Following Tabuchi (1998), we investigate the simplest case where the commuting

cost function is linear with respect to distance: T (x) = tx. We also simplify the analysis by

assuming that the internal structure of each region is one-dimensional and extends symmetrically

around the CBD over the interval [−x̄, x̄] á la Murata and Thisse (2005). Although this change

strengthens the role of urban costs in each region, it does not affect the intrinsic properties of the

model. For this case, By letting a(x) = 1, we obtain

x̄ =
1

t
(1 − εγ)w̄, (C.6.32)

where the non-dimensional constant ε ∈ (0, 1) is defined by ε ≡ (1 + t̂h)−1. The parameter

t̂ ≡ (t/2)/rA is interpreted as a measure of the relative magnitude of commuting costs to land

rents. As expected, x̄ is decreasing in the generalized commuting cost per distance t. Then,

solving (C.6.26) implies that

w̄ =
1

φ
·

µ

1 − µ
·

L

H
and φ =

1

1 + γ
·

1 − ε1+γ

1 − ε
(C.6.33)

as well as ȳ = εγw̄, Ȳ = l/(1 − µ), and φ̂ = φ/µ. Then, we also have

ψ0 = T ′(x̄)
∂x̄

∂h
= h−1ȳγ(1 − ε), ψ1 = T ′(x̄)

∂x̄

∂w
= 1 − εγ , (C.6.34)

ρ0 =
1

w̄

∂Yi

∂hi
=

1

w̄

(

wi − ∂Ti

∂hi

)

= 1 − γ(1 − ε)φ, ρ1 =
1

h

∂Yi

∂wi
=

1

h

(

hi − ∂Ti

∂wi

)

= φ. (C.6.35)

Summarizing computations up to here yields the analytical expression of ∇v(h̄) as follows:

∇v(h̄) = h−1κ̄D̄ + (I − µD̄)w̄−1∇w(h̄) − h−1γ̂I, (C.6.36)

∇w(h̄) = w̄h−1[
ĉ0I + ĉ1D̄ + ĉ2D̄

2]−1[
c̄0I + c̄1D̄ + c̄2D̄

2]
(C.6.37)

with the coefficients being

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ĉ0 ≡ 1 + (σ − 1)φ > 0,

ĉ1 ≡ −µφ < 0,

ĉ2 ≡ −(σ − 1)φ < 0,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c̄0 ≡ −(1 − φ) < 0,

c̄1 ≡ µ(1 − γ̂φ) > 0,

c̄2 ≡ −φ < 0

(C.6.38)

where γ̂ ≡ γ(1 − ε). Note that φ and γ̂ together summarize the net effects of the two types of

urban costs; φ and γ̂ represent those from commuting and non-tradable land, respectively. As a

consequence, we have ∇v(h̄) ≃ c0I + c1D̄ + c2D̄
2 with

c0 = −γ̂

(
1

σ
+

σ − 1

σ
φ

)

< 0, (C.6.39)

c1 = µ

(
1

σ − 1
+

1

σ

)

> 0, (C.6.40)
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c2 = −
[

µ2

σ − 1

(
φ

σ
+

σ − 1

σ
(1 − γ̂φ)

)

︸ ︷︷ ︸

=:ω0

+
1

σ
φ − γ̂φ

σ − 1

σ
︸ ︷︷ ︸

=:ω1/σ

]

≡ −
(

µ2

σ − 1
ω0 +

1

σ
ω1

)

. (C.6.41)

Remark C.5. Observe that if t̂ and γ are both infinitesimally small so that there are virtually no

urban costs, we have γ̂ = γ(1 − ε) ≈ 0(1 − 1) = 0 and φ ≈ (1 + γ)−1 ≈ 1. Then, the coefficients

c0, c1, and c2 reduce to those of the Km model, which is intuitive. We note that for general

cases, the sign of c2 is ambiguous. In particular, if γ is large relative to µ and in addition 1 − ε is

small (t̂ or h is small), c2 can be positive. This is because while housing is important relative to

manufactured goods, commuting costs are quite low; this implies that a concentration of skilled

workers is beneficial despite higher market competition on the side of firms.

C.7 Pflüger and Südekum (2008) (PS) model

The PS model builds on Pflüger (2004), with the only difference being that it introduces the

housing sector (again denoted by H), which produces a local dispersion force.

Preference. The homogeneous preference of skilled workers is given by the following quasilinear

form with respect to the A-sector good (numéraire):

U(CM
i , CH

i , CA
i ) = µ ln CA

i + γ ln CH
i + CA

i , (C.7.1)

where CM
i , CH

i , and CA
i are again the consumption of manufacturing aggregates, CH

i housing goods,

and CA
i agricultural goods, respectively. Then, the indirect utility of a skilled worker in region i is

obtained as

vi(h) = κ̄ ln[∆i] − γ(ln[hi + li] − ln Ai) + wi, (C.7.2)

where ∆i =
∑

j∈K djihj , and li and Ai denote the number of unskilled workers and amount of

housing stock in region i, respectively. The nominal wage in region i is given by

wi =
µ

σ

∑

j∈K

dij

∆j
(hj + lj) (C.7.3)

as in the Pf model.

Jacobian matrix. At the flat-earth equilibrium with li = l and Ai = A for all i, we can show

∇v(h̄) = h−1
[

−γ(1 + ε)−1I + (κ̄ + κ)D̄ − κ(1 + ε)D̄2
]

, (C.7.4)

where ε ≡ L/H is the ratio of the total number of unskilled workers to that of skilled workers. We

thus conclude that c0 = −γ(1 + ε)−1 < 0, c1 = κ̄ + κ > 0, and c2 = −κ(1 + ε) < 0.

Numerical simulation. Figure 11 and Figure 12 assume Pflüger and Südekum (2008)’s model.

The parameters are set to µ = 0.4, σ = 2.5, L = 4, H = 1, γ = 0.5, and A = 1.
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C.8 Murata and Thisse (2005) (MT) model

Similar to the Tb model, Murata and Thisse (2005) studied the interplay between commuting

costs and interregional transport costs by employing a simplified yet reasonable specification. The

internal structure of each region is assumed to be one-dimensional and featureless except that

there is a given CBD; the city expands symmetrically around the origin. There are only skilled

and mobile workers, who choose their own residential region i and location x ≥ 0 in that region,

where the CBD is located at x = 0. The total number of skilled workers is fixed and assumed to

be H.

The internal structure of a region. Land endowment equals unity everywhere in a region and

workers are assumed to inelastically consume one unit of land. The opportunity cost of land is

normalized to zero in every region. Then, the city spreads in the interval Xi ≡ [−x̄i, x̄i], where

x̄i ≡ hi/2 denotes the city boundary. Commuting costs take an iceberg form. Specifically, a worker

located at x supplies

s(x) = 1 − 4θ|x| x ∈ Xi (C.8.1)

unit of labor, where we require θ ∈ [0, 1/(2H)) so that we have s(x) ≥ 0 for all x ∈ X and for all

region i at any configuration. Then, total effective labor supply in the CBD of region i is given by

Si =

∫

Xi

s(x)dx = hi(1 − θhi). (C.8.2)

Note that Si = hi when commuting is costless: θ = 0. Letting ri(x) be the land rent profile, at the

equilibrium, this must satisfy

s(x)wi − ri(x) = w̄i, ∀x ∈ Xi, (C.8.3)

where w̄i ≡ s(x̄i)wi − ri(x̄i) = s(x̄i)wi = s(−x̄i)wi = (1 − 2θhi)wi is the disposable wage level of a

worker located at the boundary of the city. We thus have

ri(x) = 2θ(hi − 2|x|)wi, ∀x ∈ Xi, (C.8.4)

which means that the aggregate land rent in region i is

Ri ≡
∫

Xi

ri(x)dx = θwih
2
i . (C.8.5)

Land is locally owned, and thus the income of a worker in region i and any location x is

yi = s(x)wi − ri(x) +
Ri

hi
= w̄i + θwihi = (1 − θhi)wi. (C.8.6)
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Preference. The homogeneous preference of skilled workers in region i is given by

U(CM
i ) = ln CM

i , (C.8.7)

where, as usual, CM
i is the consumption of the CES aggregate defined by (C.1.2). The budget

constraint of a mobile worker becomes

∑

j∈K

∫ nj

0
pji(ξ)qji(ξ)dξ = yi, (C.8.8)

where yi denotes the income of the worker. It is immediately obvious that given yi, utility maxi-

mization yields

CM
i =

yi

Pi
, qji(ξ) =

{pji(ξ)}−σ

P −σ
i

CM
i , (C.8.9)

where Pi is the price index in region i.

Firms. Manufacturing firms are assumed to be the same as in the Km model. Specifically, to

produce xi units of a good, a firm requires α + βxi units of skilled labor. Thus, the cost function

faced by a firm in region i is given by Ci(xi) = wi(α + βxi). Profit maximization yields pij(ξ) as

in the Km model (C.1.10), which does not depend on ξ. Noting that the number of firms ni in

region i is given by ni = Si/(α + βx∗
i ) = (ασ)−1Si, the price index in region i is given as

Pi =
βσ

σ − 1

(
1

ασ

∑

j∈K

Sjw1−σ
j dji

)1/(1−σ)

(C.8.10)

with dij = τ1−σ
ij and Si = (1 − θhi)hi.

Short-run equilibrium. Noting that aggregate income in region i is given by Yi = wiSi, the

wage equation for the MT model becomes

wiSi =
∑

j∈K

Siw
1−σ
i dij

∑

k∈K Skw1−σ
k dkj

wjSj . (C.8.11)

To normalize w, we assume
∑

i∈K wiSi = W > 0. Given the solution w to the equation, the

indirect utility of workers in region i is obtained as

vi(h) = κ̄ ln[∆i] + ln[wi] + ln[1 − θhi], (C.8.12)

where κ̄ = 1/(σ − 1) and ∆i ≡ ∑

k∈K hi(1 − θhi)w
1−σ
k dki.

Jacobian matrix at the flat-earth equilibrium. We compute as follows:

∇v(h) = κ̄M⊤ diag[S]−1 diag[1 − 2θhi] + (I − M) diag[w]−1∇w(h) − θ diag[1 − θhi]
−1

(C.8.13)
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where ∇w(h) = −(∇wW )−1(∇W ) with

∇wW = diag[S] + (σ − 1)(diag[MY ] − M diag[Y ]M⊤) diag[w]−1 − M diag[S] (C.8.14)

∇W =
[

diag[w] − (diag[MY ] − MY M⊤) diag[S]−1 − M diag[w]
]

diag[1 − 2θhi] (C.8.15)

with Y = [Yi] = [wi(1 − θhi)hi] and S = [Si] = [(1 − θhi)hi]. Note that Yi = wiSi. Assume a

symmetric racetrack economy. We have

∇wW = (1 − θh)h
[
σI + (σ − 1)D̄

][
I − D̄

]
, (C.8.16)

∇W = −w̄(1 − 2θh)D̄
[
I − D̄

]
, (C.8.17)

which in turn yields

∇v(h) =
1 − 2θh

(1 − θh)h

(
[
σI + (σ − 1)D̄]−1

(
1

σ − 1
+

1

σ

)

D̄ − θh

1 − 2θh
I

)

. (C.8.18)

As a consequence, we obtain ∇v(h̄) ≃ c0I + c1D̄, where, with θ̂ ≡ (θh)/(1 − 2θh),

c0 = −θ̂, c1 = (1 − θ̂)

(
1

σ − 1
+

1

σ

)

− θ̂
σ − 1

σ
. (C.8.19)

Remark C.6. We must require that 0 ≤ θ̂ < 1/{2(K − 1)} < 1 to ensure that Si is positive for

all region i. In particular, when H = 1 and K = 2, meaning that h = 1/2 as in the original study,

we have θ̂ = θ/{2(1 − θ)} and θ̂ ∈ (0, 1/2). Moreover, by letting γ ≡ θ̂ and µ ≡ 1 − θ̂, the model

is isomorphic to Helpman (1998)’s model with LL, albeit there is a restriction on γ.

C.9 Harris and Wilson (1978) (HW) model

The HW model is an archetypal economic geography model formulated in the field of geography well

before mainstream economists started to emphasize the self-organization of the spatial allocation

of economic activity. The model has fruitful applications in urban planning. A detailed analysis

of the model can be found in Osawa, Akamatsu and Takayama (2017). The model can also be

interpreted as a spatial competition model with discrete locations but a continuum of firms.

Assumptions. We consider a city discretized into K zones and associated centroids. There is

a continuum of retailing firms in each zone that operate a shop. The number of firms in zone

i is denoted by hi ≥ 0; h denotes the spatial distribution of retailers. A fixed proportion of

consumers resides in each zone. Consumers are assumed to inelastically buy retail goods from

some shop located in the city. Total per capita consumer demand for a shopping activity in zone i

is a constant Oi. Consumers’ shopping behavior is captured by a set of origin-constrained gravity

equations. For any given h, consumer demand Sij(h) from zone i to j, measured as cash flow, is

A35



given by

Sij(h) =
hα

j exp[−βtij ]
∑

k∈K hα
k exp[−βtik]

Oi, (C.9.1)

where tij is the travel cost from zone i to j. The parameters α, β > 0 are exogenous constants. The

term hα
i is the attractiveness of the retailers in the zone i, where α determines the economies of

scale. We assume α > 1 and hence there is increasing returns to scale. β dictates how fast demand

decreases with the travel cost tij (respecting the original formulation, this section uses β instead

of τ). Note that one may recast the demand function into the context of spatial competition by

interpreting α−1 as the magnitude of product differentiation.

Payoff. The payoff (profit) of a retailer in zone i is defined as follows:

Πi(h) =

∑

j∈K Sji(h)

hi
− κi, (C.9.2)

where κi is the fixed cost of entry. Assume that Oi = 1 and that κi = κ for all i. Then, we have

Π(h) = M⊤ − κ1 labeleq : Pivec (C.9.3)

where M ≡ diag[D diag[h]α1]−1D diag[h]α−1 with dij ≡ exp[−βtij ].

Long-run equilibrium. The HW model is an open-city model. The total number of retailers at

an equilibrium is thus determined from the following equilibrium condition: hiΠi(h) = 0, hi ≥
0, Πi(h) ≤ 0. However, at any equilibrium, we have

∑

i∈K κihi =
∑

i∈K Oi; the set D ≡ {h ∈ R
K |

∑

i∈K κihi =
∑

i∈K Oi, hi ≥ 0} is globally attracting.

Dynamics. Harris and Wilson (1978) assumed that the spatial pattern h gradually evolves in

proportion to the profit Π(h) and the state h. Specifically, we define ḣ = F (h) ≡ diag[h] ·Π(h) =

[Si(h) − κihi]

Jacobian matrix at the flat-earth equilibrium. It is immediately clear that J = ∇F (h̄) is given

by

J = κ
{

(α − 1)I − αD̄2
}

, (C.9.4)

where I is the identity matrix and D̄ ≡ D/d with d ≡ ∑

j∈K d0,j . We see that J ≃ c0I + c2D̄
2

with

c0 = 1 − 1

α
, c2 = −1. (C.9.5)

It is clear that c0 reflects the magnitude of the local increasing return. c0 is positive as long as

α > 1; α < 1 yields that the flat-earth equilibrium is always stable. c2 = −1 represents, analogous

to the FO model, firms’ competition over demand from immobile consumers.
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C.10 Beckmann (1976) (Bm) model

We formulate a discrete-space version of Beckmann (1976)’s spatial model of social interactions.

Since the original formulation of Beckmann (1976) uses a linear communication cost, we introduce

suitable modifications. Yet, as long as every consumer communicates with all other consumers, our

modification does not alter the intrinsic properties of agglomeration and dispersion. In particular,

whether possible equilibria are unimodal or multimodal does not change. We also avoid unnecessary

complication and stick to the simplest possible specification.

Assumptions. Consider a city discretized into K areas. Each area i is endowed with fixed

amount Ai of housing stocks. Housing stocks are owned by absentee landlords. The city is endowed

with H homogeneous consumers that can choose his or her residential location and consume land

and composite goods. The income of consumers is a fixed constant Y , which is sufficiently large.

Preference. In addition to land and composite goods, every consumer draws social utility

because of his or her communication with others. Specifically, everyone in area i draws the following

social utility:

Si(h) = log[∆i], (C.10.1)

where ∆i ≡ ∑

j∈K dijhj with dij ≡ exp[−τℓij ]. Note that ∆i is an exponential accessibility function

à la Fujita and Ogawa (1982). Given the spatial distribution of consumers h, the utility of residing

area i takes the following quasilinear form:

Ui(zi, si;h) = zi + γ log[si] + Si(h), (C.10.2)

where zi and si are the consumption of the composite and housing goods, respectively, and γ is an

exogenous constant. We set the composite good to the numéraire and the budget constraint of a

worker in area i is

Y = zi + risi, (C.10.3)

where utility maximization yields si = Ai/hi, ri = αhi/Ai, and zi = Y − γ. Then, by assuming

Ai = 1 in every area and removing the constants, indirect utility in area i is given by

vi(h) = log[∆i] − γ log[hi]. (C.10.4)

Jacobian matrix at the flat-earth equilibrium. Assuming a racetrack economy, it is immediately

clear that the Jacobian matrix at the flat-earth equilibrium is given by

∇v(h̄) = h−1[
− γI + D̄

]
. (C.10.5)

We thus see that c0 = −γ and c1 = 1 for the model. Without any location-fixed factors, Mossay
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and Picard (2011) and Blanchet, Mossay and Santambrogio (2016) are essentially the same model

as the one presented here.

C.11 Takayama and Akamatsu (2011) (TA) model

Takayama and Akamatsu (2011) is a reduced-form partial equilibrium model that introduces a

spatial competition effect à la Harris and Wilson (1978) into the Bm model. Specifically, in

essence, they introduced firms that sell goods at a fixed price to spatially immobile consumers.

The consumers in the Bm model are now workers; each worker inelastically provides a single unit

of labor.

Immobile consumers. In each area, li immobile consumers with
∑

i li = L demand a single unit

of goods produced by firms; immobile consumers are assumed to engage in jobs in other industries.

Given the spatial distribution n = (ni)i∈K of firms, demand from area j to i is given by the

following origin-constrained gravity equation:

qji =
d̂ji

∑

k∈K d̂jknk

lj (C.11.1)

with d̂ij ≡ exp[−τ̂ ℓij ], whose microfoundation can be found at a CES preference or alternatively

some taste heterogeneity.

Firms. A manufacturing firm produces a single unit of a manufactured good at a fixed price

µ, using a single unit of the labor of mobile consumers. Thus, we must have ni = hi. The profit

function of the firm at i is given by

Πi(h) = µ
∑

j∈K

d̂ji
∑

k∈K d̂jkhk

lj − wi. (C.11.2)

For simplicity, we force zero profit for firms and abstract from commuting between different areas.

Then, the wage of a mobile worker in area i equals

wi(h) = µ
∑

j∈K

d̂ji
∑

k∈K d̂jkhk

lj , (C.11.3)

meaning that the indirect utility of the worker becomes

vi(h) = wi(h) + log[∆i] − γ log[hi]. (C.11.4)

Jacobian matrix at the flat-earth equilibrium. Let li = L/K for all i and assume that dij = d̂ij

for all i and j (i.e., τ = τ̂). Then, we compute as follows:

∇v(h̄) = h−1[
− γI + D̄ − µεD̄2]

, (C.11.5)

where ε ≡ L/H. Hence, we see that c0 = −γ, c1 = 1, and c2 = −µε.
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C.12 Allen and Arkolakis (2014) (AA) model

The AA model is formulated as a perfectly competitive Armington (1969)-based framework with

positive (production) and negative (congestion) reduced-form local agglomeration externalities.

We introduce a discrete-space version of the AA model, instead of the continuous-space version of

the original study, to fit our context.

Assumptions. A fixed number H of mobile consumers choose residents. We denote the spatial

pattern of consumers by h. In each region i, a unique differentiated variety of a good is produced

following Armington (1969). Production is assumed to be perfectly competitive and labor is the

only factor of production. Each mobile consumer inelastically supplies a single unit of labor. As

usual, we do not consider the commuting of workers between two regions. We denote the wage of

workers by w. The transportation of goods between regions takes an iceberg form; firms in i must

export τij > 0 units of the good to meet a single unit of demand in region j.

In each region, the total factor productivity (TFP) and amenity are directly affected by the

number of inhabitants, hi. These externalities are local in the sense that they do not depend on

the distance between regions. The number of consumers in each region does not affect its TFP

or amenity; it is exclusively enjoyed by the agents located in each region. As the analysis in the

present section demonstrates, such an assumption turns out to be insufficient for endogenously

producing the polycentricity of spatial agglomeration patterns.

Preference. The utility function of a consumer in region i is defined as the following CES

function:

ui({qji}) = ai ·

(
∑

j∈K

q
(σ−1)/σ
ji

)σ/(σ−1)

, (C.12.1)

where qji is the quantity of the good variety produced in region j ∈ K and consumed in region

i. The constant σ > 1 is the elasticity of substitution between varieties, and ai(hi) is the local

amenity. The local amenity deteriorates as the population hi in i increases; this is defined by the

following power function that produces a congestion effect:

ai(hi) = āih
−β
i , (C.12.2)

where āi > 0, β ≥ 0 is the exogenously given constants. In particular, āi represents the unobserved

amenity in region i. When β = 0, there is no congestion effect and the local amenity is the

exogenous constant āi.

The income of consumers comes only from the wage from production firms. We denote the

price of the variety produced in j and consumed in i as pji. The wage in region i is denoted by

wi ≥ 0. Then, the budget constraint of a consumer in i is given by the following equation:

wi =
∑

j∈K

pjiqji. (C.12.3)
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To normalize the wage, we impose a constraint
∑

i∈K wihi = W , which means that total income in

the economy always equals the fixed constant W .

The utility maximization of consumers under a given price system p yields

qji =
p−σ

ji

P 1−σ
i

wi, (C.12.4)

where Pi is the price index of the good in region i:

Pi ≡
(

∑

k∈K

p1−σ
ki

)1/(1−σ)

. (C.12.5)

Production. Firms in region i ∈ K produce goods under perfect competition. As a result, the

final price of the good produced in i and sold in j, which we denote by pij , equals

pij =
wi

mi
τij , (C.12.6)

where mi denotes the TFP in region i. To model a Marshallian agglomeration economy (Marshall,

1989) in a reduced form, the TFP in region i is assumed to be an increasing power function of its

population:

mi(hi) = m̄ih
α
i (C.12.7)

with m̄i > 0, α ≥ 0 being exogenous constants. If α = 0, the TFP in region i is a given constant

m̄i.

Short-run equilibrium. In the following, we set m̄i = 1, āi = 1 for all i to abstract from any

first-nature advantages. In the short run, consumers are immobile across regions. We determine

short-run indirect utility as a function of h under general equilibrium conditions, which consist

of the PMCC and the ZPC of firms. First, by plugging (C.12.6) and (C.12.7) into (C.12.5), with

dki ≡ τ1−σ
ki , we obtain

Pi =

(
∑

k∈K

w1−σ
k h

α(σ−1)
k dki

)1/(1−σ)

. (C.12.8)

The ZPC of firms requires that total revenue in region i is exhausted. This yields the wage equation

for the model:

wihi =
∑

j∈K

w1−σ
i h

α(σ−1)
i dij

∑

k∈K w1−σ
k h

α(σ−1)
k dkj

wjhj . (C.12.9)

Given the short-run equilibrium wage w, the indirect utility function is given by

vi(h) =
h−β

i wi

Pi
. (C.12.10)
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Jacobian matrix at the flat-earth equilibrium. Direct computation shows that the Jacobian

matrix of the payoff function ∇v(h̄) is given by

∇v(h̄) =
[

σI − D̄ − (σ − 1)D̄2
]−1 [

− (α + β − γ0)I + (α + β + γ1)D̄
]
, (C.12.11)

where γ0 ≡ 1+α
σ

and γ1 ≡ 1−β
σ

. Thus, we conclude that

∇v(h̄) ≃ c0I + c1D̄, (C.12.12)

with c0 = −(α + β − γ0) and c1 = α + β + γ1.

Numerical example. Figure 9 assumes Allen and Arkolakis (2014)’s model. The parameters

are set to α = 0.5, β = 0.3, σ = 6, and H = 10.
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Table 1: Exact mappings of economic geography models to the coefficients of G(f) = c0 + c1f + c2f2

Model class Specific model
Local force Global forces

c0 c1 c2

Class (i) Krugman (1991) 0 µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 + 1
σ

)

Puga (1999) 0 µ̌
(

1
σ−1 + 1

σ

)

−
(

µ̌2

σ−1 + 1
σ

+ ω
)

Forslid and Ottaviano (2003) 0 µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ(σ−1) + 1
)

Pflüger (2004) 0 µ
(

1
σ−1 + 1

σ

)

− µ
σ

L+H
H

Harris and Wilson (1978) 1 − 1
α

0 −1

Class (ii) Helpman (1998) −γ µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 + 1
σ

)

+ γ

Redding and Sturm (2008) −γ µ
(

1
σ−1 + 1

σ

)

− γ σ−1
σ

0

Murata and Thisse (2005) −θ̂ (1−θ̂)
(

1
σ−1 + 1

σ

)

−θ̂ σ−1
σ

0

Allen and Arkolakis (2014) −(α + β) + 1+α
σ

(α + β) + 1−β

σ
0

Beckmann (1976) −γ 1 0

Class (iii) Tabuchi (1998) −γ̂
(

1
σ

+ σ−1
σ

φ
)

µ
(

1
σ−1 + 1

σ

)

−
(

µ2

σ−1 ω0 + 1
σ

ω1

)

Pflüger and Südekum (2008) −γ H
L+H

µ
(

1
σ−1 + 1

σ

)

− µ
σ

L+H
H

Takayama and Akamatsu (2011) −γ 1 −µ L
H

Note: The positive (negative) coefficients indicate agglomeration (dispersion) forces. Observe that class (i) models incorporate a global dispersion
force, class (ii) models include a local one, and class (iii) models comprise both forces. See the analyses above for the derivations and definitions
of the parameters. The model of Mossay and Picard (2011) (and hence Blanchet et al. (2016)) is the equivalent of Beckmann (1976).
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D Comparative statics: Role of local factors

The majority of structural exercises in the current stream of quantitative spatial economics employ

local unobserved factors (i.e., heterogeneities in local amenities or the productivity of firms) to

replicate the actual data, often under conditions where the uniqueness of the equilibrium is ensured

(Redding and Rossi-Hansberg, 2017). For example, in the simplest form, structural residuals under

fixed values of the main exogenous parameters of the model (e.g., the expenditure share of the

manufactured goods µ or the elasticity of substitution σ) are given broad interpretations such as

recovered “local amenities” and then used as exogenous parameters to conduct the counterfactual

analyses. In this section, we explore the implications of such approaches by carrying out simple

comparative static analyses.

D.1 Structure of equilibrium spatial patterns with location-fixed

factors

The payoff function of an economic geography model can be written as vi(h,A), where A ≡ (Ai)i∈K

is the vector of the location-fixed factors. Two canonical examples show how such location-fixed

factors are modeled in the literature.

The first and perhaps simplest example is a location-fixed factor in the payoff function:

vi(h, Ai) = v̂i(h) + Ai, (D.1.1)

where v̂i(h) is the A-independent component of vi(h, Ai), which we term local heterogeneity.

The specification (D.1.1) includes many models with location-fixed factors that directly affect the

(indirect) utility of mobile workers. For instance, by taking the logarithm, the indirect utility

function of Allen and Arkolakis (2014)’s model that incorporates location-fixed amenities reduces

to (D.1.1). Such effects also arise from local non-tradable goods, with a representative example

being Helpman (1998). As is evident from (C.4.11), when we let Ai := (1 − µ) log[Ai], the model

reduces to (D.1.1).

The second and more involved example is those location-fixed factors that affect interregional

trade flows, which we term global heterogeneity. The regional model of Redding and Rossi-Hansberg

(2017), §3, is an example. Owing to heterogeneities in the local productivity of firms Ai, The prices

of manufactured goods differ across regions; then, the trade balance implies that the wage in region

i depends on the whole pattern of A. Thus, vi(h,A) is (with slight notational abuse)

vi(h,A) = vi(h,w(h,A)), (D.1.2)

where w(h,A) = (wi(h,A)) denotes the wage vector. Krugman (1991)’s model is also an exam-

ple, where one may interpret that Ai represents the number of immobile workers in region i or,

alternatively, the region-specific productivity (as in Redding and Rossi-Hansberg (2017), §3).
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We have seen that by assuming a racetrack economy and abstracting from the first-nature

advantages as well as by letting A = Ā ≡ Ā1, the flat-earth equilibrium h̄ ≡ h1 is always

an equilibrium. The question asked in the present appendix is as follows: What happens when

we consider variation in the spatial pattern of the location-fixed factors? Does our classification

obtained under no heterogeneities still matter?

Suppose that h̄ is the unique stable equilibrium. Then, we may view that the equilibrium

spatial pattern is a function of A so that h = h(A). In the vicinity of h̄, we have

h(A) = h(Ā + δ) ≈ h̄ + JAδ, (D.1.3)

where δ = (δi) ≡ A − Ā = (Ai − Ā) is the variation in A and JA ≡ [∂hi/∂Aj ] is the Jacobian

matrix of the spatial pattern of mobile agents with respect to A evaluated at Ā. We also define ε

by

ε ≡ δ⊤(h − h̄) = δ⊤JAδ. (D.1.4)

This fact implies the following lemma.

Lemma D.1. Assume that JA = [∂hi/∂Ai] is positive definite at A = Ā and consider a small

variation δ = (δi) ̸= 0 in A such that A = Ā + δ. Then, the direction of the variation in the

location-fixed factor δ and that of the marginal increase in its population, h − h̄, coincide in the

sense that ε = δ⊤(h − h̄) > 0.

The above lemma provides a sufficient condition for any economic geography model under which

an increase of the location-fixed factor Ai basically implies population growth in region i and vice

versa. In particular, it is often the case that the sign of δi = Ai − Ā and hi − h coincide if JA is

positive definite.

To employ Lemma D.1, we should evaluate JA. Below, we show that this is represented by the

Jacobian matrix of the payoff function. First, recall that an interior equilibrium with hi > 0 for

all i must be a solution to the following system of non-linear equations:

v(h,A) − v̄(h,A)1 = 0, (D.1.5)

where v̄(h,A) ≡ H−1 ∑

i∈K vi(h,A)hi denotes the average payoff. The implicit function theorem

regarding the equilibrium equation (D.1.5) implies that at (h̄, Ā), JA is evaluated as follows:

JA = [cE − (I − E)J ]−1[I − E]Ĵ , (D.1.6)

where c ≡ h−1v̄, E ≡ K−1
11

⊤ is a matrix whose elements are all 1/K, J ≡ [∂vi/∂hi], and

Ĵ ≡ [∂vi/∂Ai]. All matrices are evaluated at the flat-earth pattern (h̄, Ā).

Since JA is symmetric at the flat-earth equilibrium, it is positive definite if and only if its

eigenvalues are all positive. However, because JA is circulant, its eigenvalues are computable by
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adopting the same procedure as in our stability analysis (Lemma B.2). We conclude that the

eigenvalues ak of JA are given by5

ak =

⎧

⎪⎨

⎪⎩

0, k = 0,

−e−1
k êk, k = 1, 2, . . . , K − 1,

(D.1.7)

with ek and êk being the kth eigenvalues of J and Ĵ , respectively, where we assume that ek ̸= 0.

Moreover, the eigenvectors of JA are again {ηk} with ηk = (cos[θki]) with k = 0, 1, . . . , K − 1.

Note that we have a0 = 0. This is intuitive because it says that a uniform increase in Ai across the

regions does not affect the spatial pattern—in other words, what matters is the relative variation in

the location-fixed factors. Thus, without loss of generality, we rewrite δ =
∑

k∈K Ckηk and assume

C0 = 0, meaning that δ · 1 = 0. We then have h − h̄ =
∑

k∈K Ckakηk and

ε = δ⊤(h − h̄) =
∑

k∈K

C2
kak. (D.1.8)

If ak > 0 for all k ≥ 1, we have ε > 0. Each ak is an amplifying factor in the direction of ηk in the

sense that if δ = ηk, we obtain h − h̄ = akηk.

That said, we have two questions regarding the properties of ak. The first is obvious:

Question 1. Is ak > 0 for all k ≥ 1?

If true, from Lemma D.1, this implies that the relative advantage of a region implies a relative

increase in its population and vice versa. As we see below, this is generally the case.

The second is important: What happens on {ak} if we face a change (in particular, a decrease)

in transport costs? Put another way, does an increase in trade freeness r (see Section B.2) imply

a strengthened role of first natures—or the converse? In concrete terms:

Question 2. Is dak/dr positive (or negative) for all k ≥ 1?

We see that because

dε

dr
=

∑

i∈K

C2
k

dak

dr
, (D.1.9)

if dak/dr happened to be positive for all k ≥ 1, as r increases (τ decreases), the location-fixed

factors matter more; the converse is also true.

D.2 Role of location-fixed factors: Model class matters

For simplicity, consider the simplest case, (local heterogeneity), as in (D.1.1). We note that for

(D.1.1), we have Ĵ = I and thus êk = 1, which in turn implies that ak = −e−1
k . Recalling that if

the flat-earth equilibrium is stable, we have ek < 0 for all k, we see that ak > 0. Thus, it must be

5We note that I − E and E represent the projections onto the subspace of RK defined by
∑

i∈K
xi = 0

and its orthogonal subspace, respectively, and their eigenvalues are (0, 1, 1, . . . , 1) and (1, 0, 0, . . . , 0).
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that ε > 0 for any relative variation δ in A. Thus, the answer to the first question is “yes”: any

relative first-nature (dis)advantage in terms of location-fixed amenities increases (decreases) the

local population when the flat-earth equilibrium is stable—this is, of course, hardly a surprise.

We next turn our attention to the second question. As we see, asking the question reveals a

major watershed between model classes (i) and (ii): when the economy faces a decrease in transport

costs, the effects of location-fixed advantages are typically in the opposite direction for classes (i)

and (ii).

For the class (i) models in the literature, there is a determinate implication regarding the effects

of a decline in interregional transport costs on first-nature advantages. As long as the flat-earth

pattern is stable, we have6

dak

dr
> 0. (D.2.1)

Thus, the positive effects of the relative location-fixed advantages increase according to the decrease

in interregional transport costs. Under the stability of the flat-earth equilibrium, a decrease in

interregional transport costs fosters more agglomeration in regions with relative advantages in

amenity. In fact, this leads to the instability of the flat-earth equilibrium because at the first break

point, we have ek = 0 for some k and hence ak = ∞ for that k. Thus, the model leads to regional

divergence, even in the range of transport costs where the flat-earth equilibrium is stable.

For class (ii) models, a decrease in transport costs has the opposite implication compared with

class (i) models. We illustrate this by using Helpman (1998)’s model. For the original model with

PL, we have

dak

dr
< 0 (D.2.2)

whenever the stability of the flat-earth equilibrium is ensured regardless of the level of r, by the

condition σ(1 − µ) > 1. Thus, regions once flourished by first-nature advantages due to larger

endowments of housing space will decline if interregional transport costs decrease. Assuming

different specifications of the local factors as in (D.1.2) does not alter the result. In fact, as we see,

if we consider a variant model where A is interpreted as the heterogeneities in local productivity

as in the regional model of Redding and Rossi-Hansberg (2017), §3 (see Section C.4), we have the

same result: ak > 0 and that dak/dr < 0; this result is also consistent with the numerical exercise

conducted by the study. In short, in class (ii) models, the role of initial heterogeneity declines in

line with decreasing transport costs.

6For all class (i) models in the literature, we have ek = G(fk(r))/φ(fk(r)) with a strictly positive and
decreasing function φ(f) (see Appendix C). Noting that dfk/dr < 0, this then implies that

dak

dr
= −de−1

k

dr
= − d

dr

(
φ(fk(r))

G(fk(r))

)

= −φ′(fk)G(fk) − φ(fk)G′(fk)

{G(fk)}2

dfk

dr
> 0,

where we note that φ′(fk)G(fk) − φ(fk)G′(fk) is strictly positive since φ′(fk) < 0, φ(fk) > 0, and because
the flat-earth equilibrium is stable G(fk) < 0 and G′(fk) < 0.
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The interpretation of the behavior of class (ii) models is straightforward. As the role of in-

terregional transport costs declines, the local dispersion force dominates. Then, an agglomeration

formed solely by its local advantages must face relative second-nature disadvantages because of local

congestion compared with those formerly behind, leading to a relative decline in such a region.

In light of this, assumptions about landownership can affect the sign of dak/dr. In particular,

LL, by redistributing local rental revenue, can relax the magnitude of the second-nature disad-

vantage in regions in which housing rent is high. If the expenditure share of the housing good

is sufficiently high, via redistribution, this can overcome any relative second-nature disadvantage,

meaning that dak/dr > 0. If we assume LL in Helpman (1998) as in Redding and Sturm (2008),

we obtain

dak

dr

⎧

⎪⎨

⎪⎩

< 0, if µ̄ < µ < 1,

> 0, if 0 < µ < µ̄,
(D.2.3)

with µ̄ ≡ 2(σ−1)2

2σ2−2σ+1
< σ−1

σ
, which confirms the above speculation. This result illustrates the basic

role of a local dispersion force and typically less featured assumptions on landownership.

Thus, whether the second-nature causation of an economic geography model boosts first-nature

advantages in line with decreasing transport costs or not depends on the model class to which it

belongs.

Below, in addition to the simplest case (D.1.1), we provide examples of global heterogeneity

where the payoff is given by (D.1.2). For this case, we have ∇Av = ∇wv∇Aw. Because ak (k ≥ 1)

is the kth eigenvalue of (∇hv)−1(∇Av), we first evaluate the two matrices and then their product.

Given any wage equation W (h,w,A) = 0 that incorporates local factors A, we have the following

computation:

∇hv = {φ(D̄)}−1GH(D̄), ∇Av = {φ(D̄)}−1GA(D̄), (D.2.4)

where we define the matrix polynomials φ, GH, and GA of D̄ by

φ(D̄) ≡ (∇wW )−1, GH(D̄) ≡ ∇hv∇wW − ∇wv∇hW , GA(D̄) ≡ ∇Av∇wW − ∇wv∇AW .

(D.2.5)

By employing these formula, we see ek = GH(fk)/φ(fk) and êk = GA(fk)/φ(fk), meaning that we

have a0 = 0, and, for k ≥ 1,

ak = −GA(fk)

GH(fk)
. (D.2.6)

This in turn implies

dak

dr
= −G′

A(fk)GH(fk) − GA(fk)G′
H(fk)

{GH(fk)}2

dfk

dr
. (D.2.7)
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However, since we have dfk/dr < 0, we conclude

sgn
dak

dr
= sgn

[
G′

A(fk)GH(fk) − GA(fk)G′
H(fk)

]
. (D.2.8)

Basically, location-fixed factors that affect trade flows can be modeled by employing either

of the two forms in the following examples. These two examples demonstrate that the above

implication, namely model class matters even when uniqueness is the case, holds true for the cases

when the level of the location-fixed factors in a region affects the nominal wages in other regions.

Example D.1 (Heterogeneous local productivity (Redding and Rossi-Hansberg, 2017, §3)). The

productivity of firms differs across regions and thus affects the regional share in trade flows. The

wage equation for the model is defined by (C.4.19):

Wi(h,w,A) = wihi −
∑

j∈K

hiAiw
1−σ
i dij

∑

k∈K hkAkw1−σ
k dkj

wjhj = 0. (D.2.9)

Without heterogeneities in the per capita housing space, the indirect utility function is

vi =
µ

σ − 1
ln[∆i] + µ ln[wi] − (1 − µ) ln[hi] (D.2.10)

with ∆i ≡ ∑

k∈K hjAiw
1−σ
j dji. By employing these formulae, we compute as follows:

∇hv =
1

h

(
µ

σ − 1
D̄ − (1 − µ)I

)

, ∇wv =
1

w̄
µ(I − D̄), ∇Av =

1

A

µ

σ − 1
D̄, (D.2.11)

∇hW = −w̄D̄(I − D̄), ∇wW = h{σI − (σ − 1)D̄}(I + D̄), ∇AW = − 1

A
w̄h(I − D̄)(I + D̄).

(D.2.12)

These formulae imply that without heterogeneities in the per capita housing space, we have

GH(f) =
1

σ
(1 − f)

[

− (1 − µ) +

(
µσ

σ − 1
− σ − 1

σ

)

f

]

(D.2.13)

GA(f) = − h

A

µ

σ − 1
(1 − f) [(σ − 1) + σf ] < 0. (D.2.14)

By employing these formulae, we can show that whenever the equilibrium is unique (σ(1−µ) > 1),

we have GH(f) < 0 and thus ak ≥ 0 for all k. It also follows that dak/dr < 0 for all k ≥ 1. We also

note that GH(f) < 0 implies the stability of h̄. Further, if there are no exogenous heterogeneities in

A, the model is isomorphic to Redding and Sturm (2008) and Allen and Arkolakis (2014) regarding

the second-nature mechanism.

Example D.2 (Heterogeneous local market size (Krugman, 1991)). Consider Krugman (1991)’s

model. Assuming there are first-nature heterogeneities in the local endowments of immobile agents,
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we can model the heterogeneities in market size. For the model, the wage equation is

Wi(h,w,A) = wihi − µ
∑

j∈K

hiw
1−σ
i dij

∑

k∈K hkw1−σ
k dkj

(wihi + Ai) = 0, (D.2.15)

where Ai is the number of immobile workers in region i. We compute as follows:

∇hv =
1

h

µ

σ − 1
D̄, ∇wv =

1

w̄
(I − µD̄), ∇Av = 0, (D.2.16)

∇hW = −w̄D̄(µI − D̄), ∇wW = h{σI − µD̄ − (σ − 1)D̄2}, ∇AW = −µD̄. (D.2.17)

Then, we have

GH(f) =
1

σ

[ (
µ

σ − 1
+

µ

σ

)

f −
(

µ2

σ − 1
+

1

σ

)

f2
]

, (D.2.18)

GA(f) =
µ

w̄
f(1 − µf) > 0. (D.2.19)

By employing these formulae, we can show that ak ≥ 0 for all k and that dak/dr > 0 for all k ≥ 1

whenever the flat-earth equilibrium is stable (i.e., GH(f) < 0).

Remark D.1. Some models, e.g., Redding and Turner (2015), §20.3, employ both local and global

heterogeneities such that

vi(h,A,B) = vi(h,w(h,A)) + Bi, (D.2.20)

where A = (Ai) and B = (Bi) are exogenous constants that reflect global and local heterogeneities,

respectively. Since A and B are not related to each other, the Jacobian matrix with respect to

these two heterogeneities is given by a block-diagonal form and the effects of each heterogeneity

can be studied separately.

D.3 Numerical examples

This section provides numerical examples to complement the above formal analysis, which focused

on infinitesimally small variations in A. Below, by focusing on the most canonical form of the

location-fixed factors as in (D.1.1), we add an extra positive constant term A0 to the indirect

utility of region 0, meaning that the region has an exogenous advantage. Our numerical results

suggest that the drawn formal conclusions correctly predict the tendency in agglomeration patterns

even when a strong location-fixed effect is imposed.

Figure 3 and Figure 4 report the results of our numerical experiments under three repre-

sentative settings, namely a class (ii) model under the uniqueness of the equilibrium and class (i)

and (ii) models under a multiplicity of equilibria. In line with the numerical examples discussed

in Section 5 (Figure 8, and Figure 9), Krugman (1991) and Allen and Arkolakis (2014) are em-

ployed for the examples for classes (i) and (ii), respectively. We note that the latter is isomorphic
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to Helpman (1998) with LL (i.e., Redding and Sturm, 2008; Redding and Rossi-Hansberg, 2017).

The figures show the population share of region 0 at stable equilibria, λ0 ≡ hi/H, against τ for

the four settings of A0 in {0, 0.001, 0.005, 0.01}. A0 = 0 is the baseline case with no location-fixed

advantage. Under our parameter setting, A0 accounts for 0.5 ∼ 100% of the indirect utility of

region 0 and hence has significant effects on the equilibrium patterns.

Figure 3 reports the evolutionary paths of λ0 for the model proposed by Allen and Arkolakis

(2014) [class (ii)] under the uniqueness of the equilibrium. The parameters are the same as in

Figure 9 except that we let β = 0.6. This implies α + β ≤ 0 and hence the equilibrium is unique

regardless of the level of transport costs (see Section 5.2). Compared with the baseline case A0 = 0,

λ0 is larger for the other cases (A0 = 0.001, 0.005, 0.01); this corresponds to the condition ak > 0.

In addition, λ0 is increasing in A0, which is intuitive. Furthermore, λ0 decreases in line with τ ,

which is consistent with dak/dr < 0.

Figure 4 reports the evolutionary paths of λ0 for the models proposed by Krugman (1991)

[class (i)] and Allen and Arkolakis (2014) [class (ii)] under a multiplicity of equilibria. The basic

model parameters other than A0 are the same as in Figure 8 and Figure 9. We confirm that

the figures are also consistent with our predictions: that (a) ak > 0 and that (b) dak/dr > 0 for

the class (i) models and dak/dr < 0 for the class (ii) models, provided that h̄ is stable. For all

A0 = 0.001, 0.005, 0.01, λ0 is greater than that for A0 = 0, which confirms ak > 0. Moreover, by

focusing on the ranges τ ∈ (τ∗, ∞) (for Panel A) and τ ∈ (0, τ∗∗) (for Panel B), the curves confirm

(b). Although our predictions do not cover τ ∈ (0, τ∗) for Panel A, a similar relation robustly

holds true: as long as the global structure of the spatial pattern is unchanged (i.e., bifurcation is

not encountered), a monotonic decrease in τ implies a greater role of location-fixed advantages in

region 0.
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