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Could Noise Spectra of Strange Attractors Better Explained Wealth and Income Inequalities?         

Evidence from the S&P-500 Index. 

C-René Dominique  

SUMMARY: Inequity in wealth and income distributions is ubiquitous and persistent in markets economies. 
Economists have long suspected that this might be due to the workings of a power law. But studies in financial 
economics have focused mainly on tail exponent while attempting to recover the Pareto and Zipf’s laws. The 
estimation of tail exponents from log-log plots, as in stock market returns, produces biased estimators and has little 
impact on policy. This paper argues that economic time series are output signals of a multifractal process driven by 
strange attractors. Consequently, estimating noise spectra thrown-up by strange attractors stands to produce a much 
richer set of information, including the lower and upper bounds of unequal income distribution.    

JEL Classification: G-15, G-35.  

1-INTRODUCTION  

The World Inequality Report 2018 (Alveredo, Chancel, et al. 2017) is out. It shows that during 

2015-16 the top 10% of individuals captured some 37% of total wealth in the European Union that 

has the best score among other huge economies such as China (41%), Russia (46%), Brazil (55%), 

the USA (47%), India (55%), etc.). In terms of income inequality, the report also shows that from 

1980 to 2018, the world’s richest 1% captured about 27% of new income, while the poorest 50% 

of the world population received only 13%. Thus, compared to the years preceding globalization, 

income inequality has increased almost everywhere, that is, in developing or developed countries, 

including those that enjoy the highest level of development. At first sight, one would tend to 

suspect similar policy structure as the culprit. However, observing that the top 10% had captured 

some 61% of total wealth in Sub-Sahara Africa, wealth and income inequality then appears to be 

an ubiquitous phenomenon. It is then reasonable to suspect that indeed some homogeneous power 

law lurks behind the distribution of wealth and income in market economies.   

A homogeneous power law can be represented as: F(x) = K x , where F (.) is a variable, K is a 

constant, x is the other variable of interest, and  is the scale exponent. Financial economists have 

attempted to study the impact of power law identified in stock market activities, such as firms’ size 

distributions, returns on investments, trading volume, etc. (Gabais, 1999; Gabais et al., 2003, 

among others). But, their studies attempt to reproduce Zipft’ hyperbolic law, which relates word 

rank and word frequency in natural languages, or they are simply influenced by the so-called Pareto 

Law, expressed as: (p(x) > x) = K / f . Moreover, estimates are obtained from log-log plots 

(Kopikrisnan et al., 2000). Experimental data of quantities that follow a power law are usually 



very noisy and therefore obtaining reliable estimates for the exponent  is difficult. In fact, 

estimates obtained from graphical methods based on linear least squares fit of some empirical data 

points, such as a time series, produce biased estimators. If precision is a requirement, then it is 

advised to use maximum likelihood methods as an alternative, as e. g. the so-called Hill’s estimator 

that gives the inverse of the exponent of the Pareto distribution. In practice, however, one never 

know for certain whether an observed quantity is drawn from a power law distribution. At any 

rate, the information obtained either from graphical methods or others is of little use in policy 

formulation. For example, an  = 2, say, means that if F (.) is doubled, then x will go up by 22. 

Even if a power law is really present, the researcher will not know how it manifests itself. 

Moreover, if the output signal is from a multifractal endowed with many scale exponents and 

driven by a strange attractor, what scale is being estimated? Clearly, graphical methods are of little 

use in such situations.   

Yet, power laws with fractional exponents showing scale invariance are perhaps the only way to 

study many critical phenomena in the real-world settings. The values of exponents reflect a large 

number of regularities found in physics, biology, psychology, etc., and in many human constructs 

such as music, economics, etc. Whether the exponent is an integer or a non-integer, relations 

between variables are characterized by the notion of self-similarity. And we contend that by 

knowing why self-similarity or dissimilarity exists is to know much more about the phenomenon 

that we wish to study in this paper.  

For tractability, however, let us first recall that self-similarity is more than a welcomed attribute, 

because it is fundamental to our nature whether we are aware of it or not, and also because it is the 

concept that underlies fractals, complexity, and many laws of nature. In this paper we intend to 

look at income distribution through the lens of fractals, and there, self-similarity plays a huge role, 

as evidenced by the difficulty of distinguishing between minute-by-minute or second-by-second 

stock averages (Mandelbrot, 1982; Priya, 2010; Koulakis and Ruseckas, et al., 2006; West and 

Shlesinger, 1990). Indeed, power laws are found in many scientific and human constructs. Proper 

analyses in these areas requires some generalization of the fractal concept either with many 

exponents (where they are called multifractals), or fractal ‘tout court’ with one scaling exponent; 

at any rate, self-similarity may appear on many scales. Hence, it would really be surprising if some 

power law did not underlie stocks and commodity exchanges.   



Power laws also govern the noise spectra of various processes. But, interpreting noise spectra has 

its own pitfalls, because non-stationarity in the data can produce fake scaling behavior, or as 

evidenced by the excessive association of the Zipf’s law with pink noise or 1/f noise. The latter is 

a signal that gives a power spectral density (power per frequency interval) that is inversely 

proportional to the frequency of the signal. Maybe, the attachment of economists to  1/ f noise 

((where  (= 1) is the squared modulus of the Fourier transform) is from the fact that 1/ f noise is 

connected to systems that are near their equilibrium. Whereas  > 1 is associated with non-

equilibrium driven systems. Thus, values of  = 1 or 3 found in the studies mentioned above 

probably will not occur in spectral analyses, because economic systems are most often far from 

their equilibrium, and economic data are very noisy. Spectral analysis provides a representation of 

the output of a noise-free system, from which on can derive precious quantitative and qualitative 

information concerning the system’s behavior.   

The stochastic behavior of a deterministic dynamic system could show a Power Spectrum Density 

(PSD) that is qualitatively similar to that of a truly random time series, as in a broad-band power 

spectrum. On the other hand, a purely stochastic system may also contain a flicker noise, because 

low frequency components dominate high frequency ones; this is known as the intermittency 

problem. That is why we believe that it is safer to start by first characterizing the attractor in view 

of ascertaining whether or not the system under study is stochastic or one that has structure.   

Power laws abound in the human experience. Its operation can easily be inferred from a few casual 

observations such as: Distributively, the frequency of ‘smalls’ exceeds that of ‘bigs’; the fact that 

there are more small stars than big ones; the fact that the frequency of unstable configurations is 

higher than that of stable configurations in the universe; or why the frequency of small words 

exceeds that of long words, etc. It then follows that it might be natural that the frequency of smaller 

income earners would exceed the frequency of big earners, if market economies are driven by 

power laws. However, one must be careful in dealing with spectral power that is continuous and 

diverges to low frequencies. There exist a plethora of methods, such as the multitaper method, to 

handle these situations. In this study we are less interested in precise measurements than in 

determining the upper and lower bounds of power spectra of multifractals whose fractal attractors 

are characterized by fractional exponent. 



If the S&P-500 Index is the output signal of a multifractal, it is then worth investigating whether 

income distributions (which is of interest here) are better studied by noise spectra (their power 

spectrum) than by reconstructed distributions from tails exponents. To do so, however, it is 

necessary to first express the power law in frequency domain, i. e., f (f) = k / f , where k is a 

constant,  is the power spectrum, and f (t) is the power function that measures the power of the 

signal per unit of time. We next characterize the attractor of the index to determine its fractal 

dimension. We will attempt that in the next two sections. The second will be devoted to the data, 

to preliminaries to the computation of the singularity spectrum (to demonstrate both its multi-

fractality and its non-randomness), and to the noise spectra of the S&P-500. Our findings will be 

summarized in the Third Section. 

2- DATA AND PRELIMINARIES  

We used the Grand Microsoft Excel series of closing prices of the S&P-500 from January 3rd 1961 

to February 28th, sampled at daily intervals, and expressed as a Mixed Fractional Brownian Motion 

((MfBm), see Appendix A), assuming its non-randomness. The series was next truncated into 7 

segments (the b’s in Appendix A) that were previously determined in Dominique and Rivera 

(2012), and each segment was de-trended using 3 logarithmic differences and filtered for white 

noise. Segment length varies from 29 to 211.  

The analysis will be done in two stages. In the first, we will use the wavelet multi-resolution 

software of Trusoft International, the Benoit version, to determine the boundaries of the 

observational range or the limit of the Hurst exponents (H), as well as the Hausdorff dimensions 

((D0 ), see Appendix B). In the second stage, D0 being the first scale exponent will be used as the 

starting point in the determination of the generalized fractal dimensions or the singularity spectra 

of the segments.     

As shown in Appendix B, the Hausdorff dimension (D0) is a more efficient measure than either 

the topological or the box-counting dimension, and also a more natural measure within the 

multifractal formalism. For, if a closed bounded set E  ℝn (where ℝ is the real line) is a manifold, 

then the value of its dimension must accordingly be either i) an integer or a non-integer; and ii) 

points and countable unions of points of zero volume must have zero dimension. It can then be 

seen that the topological dimension fails on these conditions since it is always an integer, giving 



zero for the Cantor set for example, which is obviously not true. By a similar argument, the box-

counting measure also fail on ii), whereas D0 satisfies both i) and ii), and D0 (E) ≤ dim box (E).   

Recalling, at the same time, that if V ⊆ X and G is a collection of subsets of X whose union 

contains V, then G is a cover of V. If further X is a topological space, then G is an open cover if 

each of its subsets is an open set. Therefore, the term ‘fractal dimension’ , more generally referred 

to as the capacity dimension of fractal sets, is also the exponent D0 in the expression  (e) = e-D
0 , 

where  (e) is the minimum number of open sets of diameter (e) needed to cover the set 

(Rpowerasban,1990). The D0 given by the software will be the starting point in the computation 

of the singularity spectrum, including the correlation dimension.   

2.1 The Singularity Spectrum  

The method of multifractal cascades is now known as the multifractal formalism. Mandelbrot 

(1974) and Frisch (1995) introduced it in response to systematic experimental deviations observed 

in the Kolmogorov theory of homogeneous and isotropic turbulence. It has since undergone 

considerable theoretical development and practical applications in many disciplines as it seems 

well adapted to reveal the hierarchy governing special distributions of singularities of multifractal 

measures.  

In this paper it is referred to as the Mandelbrot Method (Mandelbrot, 2003) which is a simple 

iterative construction that asymptotically models strange attractors. It consists of an ‘initiator’ (the 

unit interval) on which a unit mass is uniformly distributed, and a ‘generalized generator’ () with 

two intervals (ei), i  (1, 2). The initiator is first divided into two bins with equal probability (pi). 

Next, the exponent q is assigned to the probabilities, while the exponent  is assigned to the support 

intervals. The exponent (q) is the Renyi’s scaling exponent, and q is a real parameter that can take 

positive as well as negative values. In the case of monofractal (or self-affine),  (q) depends linearly 

on q; otherwise the process is a multifractal. 

Quadratic maps have the same structure, but different intervals. Experimentally, Schroeder (2009) 

has found that an interval size e1 = 0.400 to be a good approximation of ei for the logistic map. By 

using Equation (3) below, our e1 = 0.408903, which is equivalent to a generalized generator of  

= 2.445564 instead of the approximated value of 2.5, chosen initially by Schroeder. The difference 

is due to the fact that the logistic map is not exactly self-similar. Since the approximate map of a 



given process might not be known in advance, one should appeal to equation (1) below to yield 

the size of the generator and intervals from the Hausdorff dimension obtained from the wavelet. 

Once e1 is known, then all the Renyi’s generalized fractal dimensions, except D1 (the information 

dimension), can be computed. But beforehand, the Legendre Transform posits: (q) = - d(q) / dq; 

df () / d = q, and f () = q d/ dq-  (q). While the Holder analysis decomposes a measure into 

a sum of measures, where each is characterized by a value of the Holder exponent ; the latter 

measures the strength of the local singularity or roughness. Everything is then on hand to construct 

the multifractal spectrum; thus, the generality of D0 in this approach cannot be over-emphasized. 

To wit: 

 From the partition function: 

       i
 (pi

q ei
 ) = 1, positing e1 = (-1), e2 = ( -1) 2 and  (q) = (1 – q) Dq                   (1) 

We can derive two equations in quadratic form:  

                                                               e1
2Do  +  e1

Do  – 1 = 0                                              (2) 

                                                    e1
2  +   e1

  --  1 = 0 

Equation 2 is derived from positing q = 0, Dq = D0, and p1 = p2 = ½. Then, e1
Do  = [(5)1/2 – 1] / 2 

= G, where G is the Golden Mean; hence,        

                                                D0 = log G / log e1                                                      (3) 

From (3), we have:  

                                                 e1
  = {[(1 + 4 (2)q ]1/2  – 1} / 2,                                  (4) 

then:  

                                                  = log [(1 + 4 (2)q )1/2  – 1] / 2} / log e1                     (5)  

As the exponent (q) describes the same aspect of the multifractal spectrum, denoted f (), we 

have; 

                   / (1 – q) = Dq = log {[(1 + 4 (2)q )1/2  – 1] / 2 } / (1 – q) log e1, for q  1            (6) 
                                                                      lim e

1
0 

Equation (6) is Renyi’s (1955, 1970) generalized dimensions of order q, which handles every 

portion of the support of the attractor in a uniform manner and describes the nature of singularities 

at the same time. It works for all q’s, except of course q = 1. 



For D1, we have: 

                                                 D1 = 2 log 2 / 1
2 log (1/ ei);                                                   (7) 

but, for D and D- , it is easier to expand the numerator of (6). That is,  

                                           Dq = - log 2 [log 2  (1 + q) ] / (1 –q) log e1;                                     (8) 

using log 2 and letting q   or (- ), we have:  

                                              D  = (-1 / log2 ei) ;           D-    = [- 1 / log2 ( e1)2 ] 

                                                                     lim q                                                  lim q  -  

                                                                     e1  0                                                    e2  0 .           

What is needed here is the correlation dimension that can be computed for q =2; that is: 

                                           D2 = lim e1 0 log n
i =1 ( pi

2 
) / log e1                                                (9) 

The importance of D2 lies in its relation with the concept of correlation. It can be shown that as e 

 0, the sum in (9) equals the total counts, defined as C(r) and used in the method proposed by 

Grassberger and Procaccia (1983). One of the many roles played by the correlation dimension lies 

in its ability to distinguish between chaos and random determinism. In the Grassberger and 

Procaccia method, one builds a d-dimensional data vector from d measurements spaced 

equidistantly in time, and determines D2 of the d-dimensional point set. If the data were random, 

then as d increases, D2 would increase continuously with d. However, if the system is deterministic, 

D2 will not increase any more once the embedding dimension exceed D2. For more on this, the 

reader is referred to Appendix C.  

2.2-The Power Spectrum  

The wavelet multi-resolution software computes the Hurst exponent (H) for each segment of the 

S&P-500 Index, and the segments are used to calculate the power spectrum as shown in Appendix 

D. It should stressed at this juncture that self-similarity is at play, indicating that there exist 

relations between variables, and D0 is at hand. The power spectrum can then be computed for each 

segment of the Index. The Hurst exponent, defined as: H = log (R/S)/ log (∆t), is also a measure 

of persistence (H > 0.5) and anti-persistence (H < 0.5) in statistical time series. Persistence is 

related to long memory in time series, meaning that an increase in values is most likely be followed 

by another increase; while anti-persistence (H < ½) relates to short-term memory or return to the 



mean, meaning that an increase will most likely be followed by a decrease, and vice versa. An H 

= 0.5 is taken to mean randomness as in Brown noise spectrum.  

Interestingly, the rescaled range and segment sizes follow a power law, and H is its exponent. The 

intensity of fluctuations in anti-persistence mode increases as H moves closer to zero; hence, its 

connection to frequency.  

3- THE RESULTS  

The results are summarized in Table 1, while Table 2 provides some additional information that 

might be apparent in Table 1. As it can be seen, the power spectrum , that describes how much 

different frequencies contribute to the average power of the signal, fluctuates from segment to 

segment. Values between 1 and 2 reflect anti-persistence in the index, and values between 2 and 

3 reflect long-term memory or persistence. Readers interested in knowing the wave length of the 

memory are referred to the excellent paper by Peters (1991). Thus, over the whole period, 4 

segments reflect anti-persistence and three reflect persistence.  

The interesting observation for the present purpose is that the power spectrum lying between 1 and 

2 reflects dark-pink noise spectra; and that implies thereby a deterioration in income distribution. 

While values lying between 2 and 3 reflect dark-brown spectra coinciding to improvement. 

Interestingly, over the whole range of the data considered, no brown noise was detected; and we 

note in passing that this should be significant for studies based on Brownian motion.  

For an additional verification, we consider some values obtained from another measure, called the 

Gini Index. The latter has a few interpretative limitations. For example, it measures relative 

income; thus two countries could have the same Gini value and yet are very different in terms of 

economic status. Or the Gini index may exceed a value of 1.0 when some individuals make a 

negative contribution to the total income, etc. However, these limitations do not apply in the 

present case. In essence, a value of zero in the Gini Index reflects perfect equality, while a value 

of 1 reflects perfect inequality.  

Now consider how the Gini Indices of the US economy vary over time. Over the period 1961-72, 

the S&P-500 Index was in persistence mode with a value of  = 2.044; the Gini index went down 

from 0.52 in 1961 to 0.42 in 1972. In contrast, from1972 to 1983, when the S&P-500 was in anti-

persistence mode, the power spectrum was 1.4, probably due to changes in the status of the US  



Table 1: The power Spectrum and the Correlation Dimension of the S&P Index: 1961-2011 

                  Period     Number of Observations       Power Spectrum ()  Correlation Dimension (D2) 

                1961-72                       211                     2.044                    2.360 
                1972- 83                       211 2                     1.441                    2.640 
                1983-87                       210                     2.118                    2.334 

                1998-02                       210                     2.220                    2.280 
                2003-07                       210                     1.220                    2.750 
                2007-08                       29                     1.562                    2.590 
                2009-11                       29                     1.286                    2.720 

 

Table 2 More information About Persistence and anti-persistence Modes 

                   Characteristics                         1 <  < 2                        2 <   < 3 
                           Mode                  Anti-persistence                       Persistence 
                     Noise Color                       Dark-pink                      Dark-brown 
                      Frequency                                                              
                  Power Function                                                             

          Correlation Dimension (D2)                                                             

              Income Distribution                                                             

The symbols  and  indicate improvement or deterioration in ordinal space or increase and decrease in real space. D2 indicates 
the frequency of orbit’s visits to different subspaces in the attractor. 

 

dollar, war, and the oil shock. We would then expect a deterioration in the Gini index over that 

period. That is what happens; the Gini coefficient went from 0.42 to 0.46. During the whole period 

2003-2011, the system was again in anti-persistence mode, the Gini coefficient again went from 

0.51 to 0.53. During the brief period 1998-2002, when the S&P-500 index was in persistence mode, 

the Gini coefficient remained at 0.50; that is the only glitch observed. But from 2003 to 2008, it 

increased from 0.49 to 0.50. From 2007 to 2008, the Gini index increased from 0.50 to 0.52.Thus, 

during the economic meltdown from 2007 to 2011, the index was in anti-persistence mode and the 

Gini coefficient increased from 0.50 to 0.53. If we were to examine the Gini indices for other 

countries, we would most likely observe a similar situation, except where it is mitigated by 

equality-like policies.   

In summary therefore, dark-pink noise (1<  < 2) implies deterioration in income distribution, 

while dark-brown noise (2 <  < 3) reflects improvement in income distribution.   

Turning now to the correlation dimension D2 in 2-D, it remained between 2 and 3 over the whole 

period under study, implying that the S&P-500 was never a random process. The other interesting 

result is that the correlation dimension (which detects probabilistic structure among variables) of 

each segment is a non-integer, implying that its dynamics should show a countable set of periodic 

orbits of arbitrary long periods, and an uncountable set of non-periodic orbits. Such a situation 



might appear random to the naked eyes, but in fact the process is deterministic. Furthermore, when 

the system was in anti-persistence mode, D2 increased, and it decreased in persistence mode, as 

can be seen in the last column of Table 1. This means that there is a sort of phase shift that occurred 

at the fold at H = ½. This is explained by an enlargement or a shrinking of the singular spectrum 

at the values of the b’s in Appendix A. For example, during the period 1961-72, the process was 

in persistence mode, while during the period 1972-83, it was in anti-persistence mode. 

Consequently, the information dimension D1 went from 2.4192 to 2.7083; D0 went from 2.4780 to 

2.7791, and so on. That is, the size of the attractor increases in anti-persistence mode and decreases 

in persistence mode, as we would expect.   

Further verifications come from similar studies as in Medio (1992, 130). He found that for 3-D 

fractal attractors of continuous-time dissipative systems, the non-integer fractal dimension is 

between 2 < D2 < 3, as found in the last column of Table 1. To take yet another example, consider 

the findings of Edgar Peters (1991) who used the Grassberger/Procaccia procedure to compute D2 

of the S&P-500 Index, sampled at monthly intervals from January 1980 to July 1989. He found 

that the embedding dimension was 2.33. Even though we do not have the same series’ length nor 

the same sampling interval, nevertheless this study arrives a value of 2.3345 for the period 1983-

87. This might be due the fact that D2 remained constant over the time interval, or due to the fact 

that segment as well as all the others were filtered for white noise prior to the analysis since both 

methods are sensitive to noise, or due to a combination of both; at any rate, this kind of 

concordance in that statistic is rather rare in economics. 

CONCLUDING REMARKS  

Our initial contention was that wealth and income inequalities in market economies are too 

ubiquitous and systematic not to be driven by some power law. To verify that assertion, the S&P-

500 Index, sampled daily over a span of 50 years, was examined. It was found that the index varies 

from anti-persistence to persistence modes during the period studied. Consequently, its noise 

spectrum varies from dark-pink, when the power spectrum was between 1 and 2, to dark-brown, 

when the power spectrum lied between 2 and 3. On the assumption that the Index is the output of 

a multifractal, its singularity spectrum, including the correlation dimension of each segment, was 

also computed using the method proposed by Mandelbrot. The value computed for the correlation 



dimension is compared to that obtained from another procedure advocated by Grassberger and 

Procaccia. Values from the two methods were found to be in perfect agreement.  

It was further found that both noise spectra and Correlation dimensions vary with persistence 

modes. When the index was in anti-persistence mode (the power spectrum lies between 1 and 2), 

the correlation dimension was over 2.5; but in persistence mode (the power spectrum was between 

2 and 3) the correlation dimension was below 2.5. More interestingly, in anti-persistence mode, 

income distribution became more unequal than when it was in persistence mode. This finding 

confirms the original suspicion that power spectra faithfully reflect the state of the economic and 

drive income distribution in market economies. Moreover, the fact that the correlation dimension 

is not an integer also shows that the whole process is deterministic and driven by a strange attractor 

with a fractional exponent.  

If this is true that income and wealth distributions are driven by a power law, than perfect equality 

in this area is unattainable, even with strong equitable policies, since one would be fighting not 

only the rich but also the power law along the way. Incidentally, power laws should be operational 

in many other areas of economics. For example, if economists could muster the courage to drop 

the unobservable appendage called utility function, they would see that what they term law of 

demand is none other than a power law whose exponent  is 1; for more on this, the reader is 

referred to Dominique (2017).  

Before closing, let us say that we believe that an equitable policy is desirable, but policy makers 

must bear in mind that producing “effective policies” is also a fight against the power law. As 

policy approaches equity, the power law constraint becomes more and more unsurmountable. 

Nonetheless, what is obvious is what Table 2 reveals. That is, all would-be effective policies should 

focus on the stabilization of fluctuations.      

APPENDICES  

Appendix A. The Mixed Fractional Brownian Motion. 

The Mixed Fractional Brownian Motion is given by: 

                                             Zt =  in (bi XHi), where b  , i  n. and Hi  (0, 1), i  n.                                          (A2.1) 

Zt is an observed combination of Gaussian processes (XHi), each with its own H index. XHi are the unobserved Mandelbrot- van 

Ness (1968) inputs into Zt.  The latter not only captures the properties of the dynamic input/output construct describing the financial 

market, but its structure allows the analysis of the data segment by segment, depending on their scaling limit of self-similarity. That 



setting allows the judicious use of both the wavelet multi-resolution analysis and the Mandelbrot Method of multifractal analysis. 

For, if outputs are only approximately self-similar, they must be decomposed into subsets supporting a Borel probability measure 

having some sort of symmetry, which can reproduce copies of the sets on arbitrarily small scales up to a given precision (For more 

on this, see Arneodo, et al., 1995, 2000).   

If now we consider price index as the observable output or an observable signal, Zt, we have:  

(The Process): Zt = i
n (bi Xt

Hi ), where b  ,, i  n, is a combination of observed Gaussian processes, each with its own H index, 

while Xt
H are unobservable inputs into Zt, arriving as “cars” or as “trains” in the sense of Sottinen (2003). Further: 

                                                                                       E ( Zt ) = 0                                                                               (A2.2)  

                                                        E (Zt
2 ) = ∑r=1

n br
2 (XH

t)2 = ∑r=1
n (br)2 t 2Hr.                                                          (A.2.3)  

Then Zt is completely characterized by its covariance function R (t, s):  

                         R (t, s) = 2-1 ∑n
r =1 (br)2 [t 2Hr +  s 2Hr  - t – s 2Hr ], t, s  + , r  n.   (A.2.4).                                 (A2.4) 

Zt has the following essential properties: 

Property 1. (Scale invariance). XHr
t, t  0 and mHr [XHr

t, t  0] (m  +, r  n) have the same probability distribution. This 

property is a consequence of the covariance function, R (t, s), which is homogeneous of order 2H.                                                                                     

Property 2. (Stationary Increments). Over the interval (t, s), XHr
t has a normal distribution with zero mean and variance given by 

E [(XHr
t, XHr)] =  t – s  2Hr.   

Property 3. (Dependence). Defining S1 = {Hr  + 0 < Hr < 1/2}; S2 = {Hr  + Hr = 1/2}, and S3 = {Hr  +  1/2 < Hr < 1}. If 

Hr  S1, Zt is anti-persistent and STD exists; if, on the other hand, Hr  S3, Zt is persistent and LTD exists.  

In the literature, Zt is termed: Mixed Fractional Brownian Motion (MfBm) (see, Zili, 2006; Maio, et al., 2008; Thale, 2009). 

While Xt
Hi is the Mandelbrot- van Ness (1968) process (fBm).   

Appendix B. The Hausdorff Dimension  

According to Warwick.ac.uk (2012)’s lectures on Fractals and Dimension Theory, the Hausdorff dimension is a description of the 

geometry of a fractal set. If E is a fractal set whose dimension is sought, then let C (e, C) = [c1, c2,, …,cu] be a finite covering of E 

into sets whose diameters are less than e. Then E  Ui ci and the dimension of its set satisfy some I =  (ci). If the function:  

                                                                                  f (E, D, e) = inf c(B,e) i i
D,                                                            ( B2.1) 

where the infimum (over all coverings satisfying I < e) defines a measure for the set E. Then f (E, D, e) decreases monotonically 

with D. Therefore, there is a unique transition point H that satisfies the Hausdorff dimension. That is:   

                                                    f (E, D, e) = lim sup e0 f (E, D, e) =  for D < DH , and  0 for D > DH                         ( B2.2) 

so that D0 = inf [ D: f (E, D, e)] = 0   (DH is henceforth denoted, D0).   

For a greater ease of exposition, one might wish to define a probability u on E and consider upper and lower dimensions of u as 

measurable functions du (sup) and du (inf)-, where  

                                      du (b) = lim supe  0 log [ ball (b, e)] / log e ≥ d , b  E, then dimH (u) ≥ d; and                           (B2.3) 



                                      du-(b) = lim infe  0 log u [ ball (b, e)] / log e  d, b  E, then dimH (u)  d,   

where ball (b, e) is a ball of radius e > 0 about b.       

Moreover, if a closed bounded set E  n is a manifold, the value of its dimension must satisfy the Warwick criteria. That is, its 

dimension must be:  

i) either an integer or a non-integer; and  

ii)        points and countable unions of points of zero volume must have zero dimension.  

It can then be seen that the topological dimension (dim T), for example, fails on both criteria since it is always an 

integer, giving 0 for the Cantor set, which is not true. By a similar argument, the Box-counting measure fails on ii), 

whereas dim H (E) satisfies both i) and ii), and dim H (E)  dim Box (E).  

Both the so-called capacity and the Hausdorff dimensions are closely related in the sense that both are fractal and geometric 

measures, but in general the Hausdorff dim is the lower limit of capacity dim. Both are geometric, not probability measures, 

indicating how orbits fill the phase space under the flow of a dynamic system.    

Appendix C. The Correlation Dimension. 

This presentation is provided by Medio (1992,134). For n discrete points and an arbitrary fixed time interval, the correlation 

function is: 

                                                                            C(r) = limn (1/N2) N
i,j =1 (r - |xi - xj|),                                      (C2.1) 

where  (s) is the Heavyside function, i. e.,  (s) = 1 if (s)  0 and 0 if (s) < 0. 

For small r, C(r) behaves as a power of r. Then:  

                                                                                               C(r )  rD
2,                                                                      (C2.2)    

where D2 is the correlation dimension. In reality, one proceeds by counting how many points have a smaller Euclidean distance 

than some given distance r. As r varies, so does C (r), defined here as the total count, divided by the squared number of points. The 

quantity C(r) is also called the correlation sum. As r  0, the sum  p2
i = C (r), which yields the correlation dimension. The latter 

is another fractal dimension and a probability measure describing the frequency with which orbits visit different parts of the attractor 

of a dynamic system.   

Appendix D: The Hurst Exponent  

The Hurst exponent (Hurst, 1951) is used to measure the long-term memory of time series. It involves the correlations of the series 

with the rate at which these decrease as the lag between pairs of values increase. The Hurst exponent (H) is then defined as the 

asymptotic behavior of the rescaled range as a function of the time span of a time series as follows: 

E [the range of the first n values / the standard deviation of the first n values] = CH
n as n, where E stands for expected value, C 

is a constant, and n is the number of data points in the time series.  

The Hurst exponent H is also elated to both the Hausdorff dimension and the power spectrum as follows:  

                                                                                          (2 – D0) = H = ( - 1) / 2.                                                          (D2.1)  



This relation is valid for a given range, i.  e.,   0 ≤ H ≤1.  
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