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Abstract

A judgement aggregation rule takes the views of a collection of voters over a set
of interconected issues, and yields a logically consistent collective view. The median

rule is a judgement aggregation rule that selects the logically consistent view which
minimizes the average distance to the views of the voters (where the “distance” be-
tween two views is the number of issues on which they disagree). In the special case
of preference aggregation, this is called the Kemeny rule. We show that, under ap-
propriate regularity conditions, the median rule is the unique judgement aggregation
rule which satisfies three axioms: Ensemble Supermajority Efficiency, Reinforcement,
and Continuity. Our analysis covers aggregation problems in which different issues
have different weights, and in which the consistency restrictions on input and output
judgments may differ.

JEL classification: D71.
Keywords: Judgement aggregation; majoritarian; reinforcement; consistency; me-
dian.

1 Introduction

In judgment aggregation, a group is faced with a joint decision; frequently, the members of
the group disagree about which decision the group should take and/or the grounds for the
decision. Complex decisions can often be described as an interrelated set of judgments on
a set of binary issues subject to some admissibility constraint. Admissibility constraints
may be logical, normative or physical.
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Judgment aggregation theory attempts to determine normative criteria on how to best
resolve the disagreement at hand. Such “resolution of disagreement” can be understood in
two ways: compromise or consensus. By “consensus”, we mean a well-supported inference
from the position of a hypothetical impartial observer. By “compromise” we mean the
best accommodation of each member’s views from their own perspective. In a slogan,
the consensus perspective aims to maximize plausibility, while the compromise perspective
aims to maximize concordance.

Judgment aggregation pertains both to groups that act as sovereigns (“electorates”),
as in democratic elections and referenda, and to groups that act as delegate bodies (“com-
mittees”), such as multi-member courts, corporate boards, central banks. A key rationale
of the existence of many committees is the production of decisions that are sound from
an independent third-party perspective; in those cases, the judgment aggregation frame-
work seems especially apt, arguably often more so than the more common and established
preference aggregation framework.

Given a profile of views by the group members (henceforth: “voters”), which view
should the group adopt? Which view enjoys the highest “support” (“plausibility” or “con-
cordance”)? In recent work (Nehring et al., 2014, 2016; Nehring and Pivato, 2014, 2018),
we have explored a “majoritarian” approach to this question. Its hallmark is to evaluate
support issue by issue in terms of the sign and size of issue-wise majorities. In simple
cases in which the issue-wise majorities happen to produce a jointly feasible view, on the
majoritarian approach, this view enjoys the highest support, and should thus be adopted
by the group. But issue-wise majorities may well not yield a consistent view. In the
context of preference aggregation, this is the well-known Condorcet paradox. Analoguous
inconsistencies are very common in judgment aggregation (Guilbaud, 1952; Kornhauser
and Sager, 1986; List and Pettit, 2002), and have stimulated an intensive investigation in
economic theory, philosophy, and computer science; see e.g. List and Puppe (2009) and
Mongin (2012) for recent surveys.

A satisfactory normative account thus needs to be able to deal with the Condorcet-
inconsistent cases. In contrast to the focus on impossibility results in much of the literature
just referenced, in this paper we make a case for a particular normative decision criterion:
the median rule. The median rule maximizes the total numerical support (number of votes)
for a view, summed over all issues. (Generically, this maximizer is unique.) Equivalently,
the median rule minimizes the average distance to the views of the voters (where the
“distance” between two views is measured by the number of issues on which they differ).

Our characterization of the median rule is based on three normative axioms. First, ma-
joritarianism over multiple issues is encoded in an axiom called “Ensemble Supermajority
Efficiency” (ESME), which itself is an extension of the normatively more basic principle of
“Supermajority Efficiency” (SME). The SME principle says that if, in the comparison of
two admissible views x and y, x agrees with the majority on more issues than y, then y is
inferior as a group view, and thus should not be adopted by the group. Furthermore, and
more demandingly, for any fixed ‘quorum’ q, we count how many supermajorities of size at
least q agree with x or with y. If x agrees with at least as many size-q supermajorities as y
for all values of q, and x agrees with at more size-q supermajorities as y for some value of
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q, then again y is inferior as a group view, and should not be adopted by the group. Thus,
SME takes into account the size of the supporting supermajorities in a manner analogous
to first-order stochastic dominance in decision theory. The ESME axiom extends SME to
“ensembles” of judgment aggregation problems consisting of multiple instances of same
type of judgment aggregation problem but with different profiles.

Second, the axiom of Reinforcement says that if two subpopulations independently
choose the same view under the rule, then the combined population should also choose
this view under the rule. It is a standard, highly versatile axiom originally due to Smith
(1973) and Young (1974). Finally, Continuity asserts that the group judgment is robust
under small perturbations of the distribution of input judgments. Our first main result,
Theorem 1, characterizes the median rule as the unique judgment aggregation rule satisfy-
ing ESME, Reinforcement and Continuity. Theorem 1 is based on a weak minimal richness
on the input space called “thickness”.

Theorem 1 treats all issues symmetrically. This is warranted in many standard ap-
plications whose structure is sufficiently symmetric such as the aggregation of rankings
(linear or weak orderings), of classifiers (equivalence relations) or in multi-winner choice
problems. But other applications lack these symmetries; furthermore, different issues,
whether or not formally symmetric, may be given different “ importance”. For example,
consider truth-functional aggregation, which was the focus of much of the early literature
in judgment aggregation inspired by Kornhauser and Sager’s (1986) “doctrinal paradox”.
In truth-functional aggregation, one or more “conclusion judgments” are logically (“truth-
functionally”) determined by a number of “premise judgments”. Condorcet inconsistency
takes the form of the “discursive dilemma”: issuewise aggregation of majorities on the
premises may well determine (by truth-functional implication) judgments on the conclu-
sions that differ from the majority judgment on these conclusions. The discursive dilemma
can be resolved via the median rule by trading off majority overrides on the premises
against majority overrides on the conclusions. However, in view the structural and con-
ceptual asymmetry between premises and conclusions, they have different standing, and it
would appear quite arbitrary to give them equal weight.

In section 5, we thus generalize the analysis to weighted judgment contexts in which
different issues have different weights. The definitions of SME, ESME and the median rule
generalize naturally. However, as shown by counterexample, Theorem 1 does not carry over
in full generality. The characterization for weighted judgement contexts in Theorem 2 must
invoke not just richness conditions on the space of admissible input judgments, but also
restrictions on the “combinatorial geomety” of the space of admissible output judgments.
We note that, while previous work on judgment aggregation assumed the input and output
spaces to be the same, we allow them to differ. This adds useful additional generality at
very modest cost in execution.

Due to the abstraction and generality of our judgment aggregation framework, it has
a broad and diverse range of applications. We thus illustrate our concepts and results
in a number of examples, including applications to approval voting on committees with
composition constraints, assignment problems, uniform treatment of heterogeneous cases,
missing information, and multiple criteria. See Nehring and Puppe (2007), Nehring and
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Pivato (2011) or Nehring et al. (2014) for many more examples.

The main comparison result in the literature is the remarkable characterization of the
median rule in the aggregation of linear orderings (“rankings”) by Young and Levenglick
(1978). In this setting (mathematically equivalent to the setting of Arrovian preference
aggregation), the median rule is also known as the Kemeny (1959) rule.

For the problem of aggregating ordinal rankings, our assumptions are broadly similar
philosophically to those of Young and Levenglick (1978), but differ in the specifics, our
assumptions being on the whole ‘stronger’. We thus do not claim that when applied to the
aggregation of rankings, our Theorem 1 improves on Young and Levenglick’s result. Our
aims are simply different. While their result relies heavily on particular features of the
combinatorial geometry of the space of ordinal rankings, Theorem 1 is a “one-size-fits-all”
result that covers a wide range of judgment aggregation problems. (See the end of section
4 for a more detailed comparison)

This paper belongs to a larger project exploring multi-issue majoritarianism in judg-
ment aggregation. In particular, the main results in the present paper rely on results in a
companion paper (Nehring and Pivato, 2018), which show that judgment aggregation rules
that satisfy ESME and Continuity are representable as “additive majority rules”. Additive
majority rules can be viewed as non-linear generalizations of the median rule; they evaluate
views not simply in terms of the (weighted) sum of numeric issue-wise majorities, but in
terms of the (weighted) sum of issue-wise majority gains, which are possibly non-linear
transformations of these numeric issue-wise majorities. Theorems 1 and 2 can be read as
showing that Reinforcement implies the existence of a representation as an additive ma-
jority rule with a linear gain function. While plausible, the asserted connection between
Reinforcement and linearity is less straightforward than it may look, and the proof encoun-
ters a number of non-trivial obstacles, among them the need for substantive structural
assumptions on the judgment space, which play no role in obtaining an additive majority
representation in the first place.

The rest of this paper is organized as follows. Section 2 sets up the formal framework.
Section 3 introduces the axioms of ESME and Continuity, and explains that additive ma-
jority rules are the only rules satisfying these axioms. Section 4 states our axiomatic char-
acterization of the median rule for unweighted judgement aggregation contexts. Section 5
introduces weighted judgement contexts, and Section 6 extends our axiomatic characteri-
zation to such contexts. All proofs are in the Appendices.

2 Judgement aggregation

Let K be a finite set of logical propositions or issues, each of which can be either affirmed or
denied. A view is an assignment of an assertoric (Yes-No) value to each issue, represented
by an element of {±1}K. A judgement space is a collection of views —that is, a subset of
{±1}K —determined by certain constraints. These constraints can arise in several ways: as
a matter of logical consistency (as in truth-functional aggregation problems), as a matter
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of “rational coherence” (as in transitivity conditions on orderings) or as mere “feasibility”
(as in multi-winner choice problems).

Example 1. (Aggregation of rankings) Let A be a finite set of alternatives. We can
represent the set of all strict ordinal rankings of A as a judgement space X rk

A ⊂ {±1}K,
where the elements of K represent assertions of the form “a ≻ b” for each pair a, b ∈ A,
and admissibility is given by transitivity.

To be technically specific, let K ⊂ A×A be a subset such that (a, a) 6∈ K for any a ∈ A,
and for each distinct a, b ∈ A, exactly one of the pairs (a, b) or (b, a) is in K. Any complete,
antisymmetric binary relation ≻ on A can be represented by a unique element x of {±1}K

by setting xab = 1 if a ≻ b, whereas xab = −1 if and only if a ≺ b. Let X rk
A be the set of all

elements of {±1}K corresponding to ordinal rankings of A.1 Judgement aggregation on the
space of ordinal rankings X rk

A is thus formally equivalent to classical Arrovian preference
aggregation. ♦

Example 2. (Classifier aggregation) Likewise, we can represent the set of all equivalence
relations on A as a judgement space X eq

A ⊂ {±1}J , where the elements of J represent
assertions of the form “a ≈ b”, for each pair a, b ∈ A. Again, to be formally specific, let
K be the set of all two-element subsets of A. Any symmetric, reflexive binary relation
∼ on A can be represented by a unique element x of {±1}K by setting xab = 1 if and
only if a ∼ b. Let X eq

A be the set of all elements of {±1}K corresponding to equivalence

relations on A.2 Judgement aggregation on X eq

A arises when each voter has her own way of
classifying the elements of A into equivalence classes, and the group must agree on some
common classification system. ♦

Other judgement spaces represent common collective decision problems such as resource
allocation, committee selection, or taxonomic classification. One particularly well-known
class of examples are the so-called truth-functional aggregation problems. In this case, the
issues in K are divided into two classes: “premises” and “conclusions”, and the truth-values
of the conclusions are logically entailed by the truth-values of the premises. The space X
is then the set of all logically consistent assignments of truth values to the premises and
conclusions. See Nehring and Puppe (2007), Nehring and Pivato (2011) or Nehring et al.
(2014) for many more examples.

Judgment aggregation rules map profiles of views to a group view or set of views. Typ-
ically, both outputs and inputs are subject to feasibility or logical consistency constraints,
which are encoded by two judgement spaces X and Y , respectively. In many cases, the
restrictions on inputs and outputs are the same (so that X = Y), but they need not be. For
example, one might require output views to be fully rationally coherent (e.g. transitive),
but allow input views that are not, for example to accommodate bounded rationality in
voters. Or output views may take into account feasibility consideration, while input views

1Formally: X rk

A is the set of all x ∈ {±1}K satisfying the following transitivity constraint, for all distinct
a, b, c ∈ A: if (xab = 1 or xba = −1), and (xbc = 1 or xcb = −1), then (xac = 1 or xca = −1).

2Formally: X eq

A is the set of all x ∈ {±1}K satisfying the transitivity constraint (xab = xbc = 1) =⇒
(xac = 1), for all distinct a, b, c ∈ A.
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do not. (As in single- or multi-winner Approval voting). We thus define an (unweighted)
judgement context to be a triple C := (K,X ,Y), where K is a (finite) set of issues and
X ⊆ Y ⊆ {±1}K, with X being the “input space”, and Y being the “output space”. We
assume that X ⊆ Y ; i.e. output views must satisfy all admissibility restrictions that input
views do, and maybe more. A profile is a function µ : Y−→[0, 1] such that

∑
y∈Y µ(y) = 1.

This represents a population of weighted voters; for each y ∈ Y , µ(y) is the total weight of
the voters who hold the view y. If all voters have the same weight, then µ(y) is simply the
proportion of the electorate which holds the view y. But we allow the possibility that dif-
ferent voters have different weights, e.g. because of different levels of expertise or different
stakes in the outcome. By summarizing the voters’ views with a function µ : Y−→[0, 1],
we abstract from the exact number of voters, and we render them anonymous, except for
their weights: voters with the same weight are indistinguishible in our model.

If Y is a judgement space, then we define ∆(Y) to be the set of all profiles on Y . If
C = (K,X ,Y) is a judgement context, then we define ∆(C) := ∆(Y). A judgement problem

is an ordered pair (C, µ), where C is a judgement context, and µ ∈ ∆(C). Judgement

aggregation is the process of converting such a judgement problem into a view (or set of
views) in X . A judgement aggregation rule on C is a correspondence F : ∆(Y) ⇒ X ,
which produces a nonempty (usually singleton) subset F (µ) ⊆ X for any profile µ ∈ ∆(Y).
(Sometimes, we will write “F (X , µ)” instead of “F (µ)”).

The median rule is a particularly attractive judgement aggregation rule. To define it,
we need some notation. Recall that X ⊆ Y ⊆ {±1}K ⊂ RK. Thus, each view y ∈ Y can
be regarded as a vector in RK. For any profile µ ∈ ∆(Y), we define its majority vector

µ̃ :=
∑

y∈Y

µ(y)y ∈ [−1, 1]K. (1)

For all k ∈ K, we have µ̃k > 0 if a (weighted) majority of voters affirm or support the
issue k, whereas µ̃k < 0 if a majority deny or oppose k. The majority ideal is the element
xµ ∈ {±1}K defined by setting xµ

k := sign(µ̃k) for all k ∈ K.3 However, for many profiles
µ ∈ ∆(Y), it turns out that xµ 6∈ X . (This can happen even when Y = X .) In other
words, it is frequently impossible to agree with the µ-majority in every issue in K, while
respecting the underlying logical constraints which define the judgement space X .

Informally, the median rule maximizes the average agreement with µ-majorities across
all the issues in K. Formally, for all µ ∈ ∆(Y), we define

Median (X , µ) := argmax
x∈X

∑

k∈K

xk µ̃k. (2)

For any x ∈ X , let x • µ̃ :=
∑

k∈K

xk µ̃k. Then we can rewrite (2) in a simpler form:

Median (X , µ) := argmax
x∈X

x • µ̃, for all µ ∈ ∆(Y). (3)

As we noted in the introduction, in the special case of the aggregation of rankings (i.e.
when X = Y = X rk

A ), the median rule is equivalent to the Kemeny rule.

3For simplicity, we assume in this paragraph that µ̃k 6= 0 for all k ∈ K; this is not essential.
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There is another way to define and motivate the median rule via a natural notion
of distance due to Kemeny (1959); see Monjardet (2008) for a broad survey. For any
x,y ∈ {±1}K, we define their Hamming distance by d(x,y) := #{k ∈ K; xk 6= yk}. It
is easy to see that the median rule selects the view(s) in X that minimize the average

Hamming distance to the views of the voters; in the terminology of Miller and Osherson
(2009) and Lang et al. (2011), it is a distance-minimizing rule.4 Distance-minimizing rules
are themselves a subclass of scoring rules, which have been studied by Dietrich (2014).5

This metric interpretation is particularly appealing when the task of judgment aggre-
gation is to find an optimal compromise. From this perspective, the Hamming distance
of the collective view from the view of any voter is a natural measure of the “burden of
compromise” imposed on that voter, and the median view(s) are those that minimize the
aggregate burden of compromise.

3 Additive majority rules

Median rules are a special case of “additive majority rules” (AMRs), and the proofs of
our main results in Sections 4 and 5 rely on broader results for AMRs obtained in the
companion paper (Nehring and Pivato, 2018). Like the median rule, additive majority

rules try to maximize the “total agreement with majorities”, where the “total” is taken
by summing over all issues in K, and where the “agreement with majorities” is measured
by applying an increasing function (called the gain function) to the coordinates of the
majority vector µ̃. This allows, in particular, larger majorities (especially unanimous or
almost unanimous majorites) to carry a disproportionately greater weight than smaller
majorities. The added generality appears potentially useful especially from a consensus
perspective, from which non-linearities in the gain function can naturally be interpreted
as reflecting non-linearities in the plausibility of (evidential support for) judgments as a
function of the balance of majorities supporting them.

In some cases, one might even want larger majorities to lexicographically dominate
smaller majorities. To allow for such possibilities, we must allow the gain function to take
infinite and/or infinitesimal values. Formally, this can be done letting the gain function
take values in some linearly ordered field containing, and possibly strictly including the
reals. By the results of Nehring and Pivato (2018), the hyperreal numbers are sufficiently
general; thus, we define the codomain of the gain function as the linearly ordered field
of hyperreal numbers ∗R,6 and let φ : [−1, 1]−→∗R be an increasing function (the gain

function). The additive majority rule Fφ : ∆(Y) ⇒ X is defined:

For all µ ∈ ∆(Y), Fφ(µ) := argmax
x∈X

(
∑

k∈K

φ(xk µ̃k)

)
. (4)

4Miller and Osherson (2009) call it Prototype, while Lang et al. (2011) call it RdH ,Σ.
5In Dietrich’s terminology, the median rule is the simple scoring rule.
6A reader who feels on unfamiliar territory is invited to focus on the special case of real-valued gain

functions. All that is needed for the present paper (including proofs) is the elementary arithmetic for
addition and multiplication of linearly ordered fields, which is exactly the same as that for the real numbers.

7



In particular, the median rule is an additive majority rule. To see this, let φ(x) := x
for all x ∈ [−1, 1]; then formula (4) reduces to the formula (2). The main result of this
section stated below is adapted from Nehring and Pivato (2018), and is a key step in our
axiomatic characterization of the median rule. It states that additive majority rules are the
only judgement aggregation rules that can simultaneously satisfy two axioms: Ensemble

Supermajority Efficiency and Continuity.

Supermajority efficiency. For any x ∈ X and q ∈ [0, 1], we define γµ
x
(q) := #{k ∈ K;

xk µ̃k ≥ q}; this yields a non-increasing function γµ
x

: [0, 1]−→R. We say x ∈ X is
supermajority efficient (SME) for the judgement problem (X , µ) if there does not exist any
z ∈ X such that γµ

z
(q) ≥ γµ

x
(q) for all q ∈ [0, 1], with strict inequality for some q. Let

SME (X , µ) be the set of such views. If x ∈ SME (X , µ), then it is impossible to change
a coordinate of x to capture one more µ-supermajority of size q, without either losing
at least one µ-supermajority of size q′ ≥ q, or losing at least two µ-supermajorities of
size q′ ≤ q. In the Condorcet consistent case, i.e. if the majority ideal xµ is in X , then
SME (X , µ) = {xµ}. We will say that a judgement aggregation rule F : ∆(Y) ⇒ X is
supermajority efficient (SME) if F (µ) ⊆ SME (X , µ) for any choice of µ ∈ ∆(Y). It is easily
verified that any additive majority rule is SME (Nehring and Pivato, 2018). The next
example illustrates the significance of supermajority efficiency.

Example 3. (Voting on Committees) A committee of L members is to be chosen. For
x ∈ {±1}K , let #x := #{k ∈ K; xk = 1}. With K denoting the set of candidates, the
set of feasible committees can be written as the set XK

L = {x ∈ {±1}K : #x = L}. This
encoding breaks down the selection of a committee into |K| binary issues, each of the form
“should candidate k be a member of the committee?”

There are two natural input spaces. On the one hand, with Y = X , each voter’s
input consists of a feasible committee, naturally interpreted as her own view of the best
committee. On the other hand, with Y = {±1}K , a voter’s input consists of an independent
judgment on each candidate; this could be interpreted as a judgment of “competency” or
“merit” of the candidate. In line with the literature, we will refer to such judgments as
judgments of “approval”, and the domain {±1}K as the approval domain on K.

Consider any profile µ ∈ ∆(Y) ; to sidestep ties, assume for simplicity that all majority
margins µ̃k are different. In such cases, the SME criterion singles out a unique committee
as optimal, namely the committee composed of the L candidates with the highest majority
margins µ̃k (regardless of whether or not these are positive). Since AMRs are supermajority
efficient , this agrees with the output of any AMR, including the median rule. With the
approval domain and L = 1, SME thus selects the candidate k with the highest µ̃k; this
is just the approval voting rule of Brams and Fishburn (1983). With L > 1, SME yields
“multi-winner approval voting”. Multi-winner approval voting is rationalized here via SME
which evaluates views (i.e. committees) issue by issue (i.e. candidate by candidate).

Multi- winner approval voting evaluates committees exclusively based on the “stand-
alone” evaluation of by their judged merit. In many situations, there is also a shared
interest in the composition of the committee, for example to ensure broad expertise or
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broad representation of perspectives or stake-holders. A simple way to incorporate such
considerations is by way of exogenous composition constraints which restrict the set of
admissible committees X to a strict subset of XK

L .

For example, in the selection of a university-wide committee, one may want to ensure an
adequate representation of types of disciplines j ∈ J (such as humanities, social sciences,
natural sciences, engineering) by imposing a minimum size of the membership of each group
Lj. With {Kj}j∈J describing the partition of candidates according to their disciplinary
type, this composition constraint yields an output space X = {x ∈ XK

L : #{k ∈ Kj : xk =
1} ≥ Lj for all j ∈ J }. Again, except for possible ties, the SME criterion yields unique
optimal committees: first, for each group j ∈ J , select the Lj candidates with the highest
majority support in that group; second, fill the remaining L −

∑
j∈J Lj candidates with

those among the not-yet selected candidates with the highest majority support across all
disciplines.

In more complex situations, more than one type of classification may be considered
relevant such as academic rank, gender, or ethnicity, leading to additional, overlapping
composition requirements. In those cases, SME might no longer select a uniquely optimal
committee; that selection might now depend on the particular AMR used. The median
rule in particular selects those comittees x with the highest overall approval

∑
k:xk=1 µ̃k;

it thus yields a natural formulation of multi-winner approval voting under composition

constraints. ♦

Ensemble supermajority efficiency. In applying the SME criterion to judgment ag-
gregation rules, not just single profiles, one can get additional leverage by considering
ensembles of judgment problems. Such ensembles consist of N instances of the same
judgment context with potentially different profiles µ1, . . . , µN . To picture such ensem-
bles concretely, an academic electorate may need to simultaneously appoint committees
with different tasks but the same structure (composition constraint). Or, in a sequential
version of the same idea, it may need to annually elect a committe for a given task and
structure, but potentially different candidates. From a normative standpoint, it suffices
to assume that these ensembles are meaningful as hypotheticals; they do not need to be
actual features of the judgment problem at hand.7

To apply SME formally to ensembles, one needs to represent ensembles of judgment
contexts as judgment contexts on their own. To do so, simply enhance the issue space to
the N−fold disjoint union of (copies of) K written as N · K, and let the output and input
spaces be N -fold Cartesian powers XN := X × · · · × X and YN := Y × · · · × Y . Thus, we
obtain a new judgment context CN := (N · K,XN ,YN).

Given a profile µ ∈ ∆(YN), we define its nth marginal µn ∈ ∆(Y) to be the profile
such that, for any x ∈ Y ,

µn(x) :=
∑

(y1,...,yN )∈YN

with yn=x

µ(y1, . . . ,yN). (5)

7Their role is thus quite similar to the role of counterfactual profiles in multi-profile restrictions.
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An N -tuple of profiles {µ1, . . . , µN} can be represented by any profile µ ∈ ∆
(
YN
)
such

that, for each n ∈ [1 . . . N ], µn = µn. Consider thus an “ensemble problem” (CN , µ).
Denote the normative output for this problem by FN (µ). It seems plausible that this
normative output should be obtained by applying the rule F factor by factor. In other
words, FN (µ) = F (µ1) × · · · × F

(
µN
)
, for all µ ∈ ∆

(
YN
)
. Since (CN , µ) is itself a

well-defined judgment aggregation problem, SME applies to it, just as it does to ‘ordinary’
judgment aggregation problems. We are thus lead to the axiom of Ensemble Supermajority

Efficiency.

ESME. For any number of instances N ∈ N and profile µ ∈ ∆
(
YN
)
, any element of

F (µ1)× · · · × F
(
µN
)
is SME in the judgment aggregation problem (CN , µ).8

This axiom requires F to be supermajority efficient. But it requires more, because an
ensemble view x ∈ XN that is SME instance-by-instance need not be SME overall. Indeed,
we shall soon see that any aggregation rule that satisfies ESMEmust be an additive majority
rule, as soon as it is continuous in the following sense .

Continuity. For every profile µ ∈ ∆(Y), and every sequence {µn}
∞
n=1 ⊂ ∆(Y) with lim

n→∞
µn =

µ, if x ∈ F (µn) for all n ∈ N, then x ∈ F (µ).

This axiom says that the correspondence F is upper hemicontinuous with respect to the
usual, Euclidean topology on ∆(Y). This means that F is robust against small perturba-
tions or errors in the specification of µ. It also means that, if a very large population of
voters is mixed with a much smaller population, then the views of the large population
essentially determine the outcome of the rule. The following result is an adaptation of a
main result in the companion paper Nehring and Pivato (2018).

Proposition 1 Let F be a judgement aggregation rule on a judgement context C. If F
satisfies ESME and Continuity on ∆(C), then F is an additive majority rule.

4 Axiomatic characterization of the median rule

To characterize the median rule, we will need one more axiom in addition to the two which
appeared in Proposition 1: Reinforcement.

Reinforcement. Let µ1, µ2 ∈ ∆(Y) be two profiles, describing two subpopulations of
size S1 and S2. Let c1 = S1/(S1 + S2) and c2 = S2/(S1 + S2). Then µ = c1µ1 + c2µ2 is the
profile of the combined population. If each subpopulation separately endorses some view
x ∈ X , then the combined population presumably should also endorse this view. The next
axiom formalizes this desideratum.

8 The profile µ also contains information about the joint distribution of views over the different instances
of Y. But this extra information is immaterial to ESME, since it is used in neither FN

(
XN , µ

)
nor

SME
(
XN , µ

)
.
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Reinforcement. For any profiles µ1, µ2 ∈ ∆(Y) with F (µ1) ∩ F (µ2) 6= ∅, and any c1, c2 ∈
(0, 1) with c1 + c2 = 1, if µ = c1 µ1 + c2 µ2, then F (µ) = F (µ1) ∩ F (µ2). In other
words, for any view x ∈ X , we have x ∈ F (µ1) ∩ F (µ2) if and only if x ∈ F (µ).

In the present setting, Reinforcement is appealing especially from a compromise perspec-
tive. If a particular view x minimize the aggregate “burden of compromise” within some
subpopulation µ1 and the same view x happens to minimize the aggregate “burden of com-
promise” within a disjoint subpopulation µ2, it stands to reason that x ipso facto minimizes
the aggregate “burden of compromise” within the combined population µ. This argument
for Reinforcement parallels a standard argument for Reinforcement as an Extended Pareto
condition in preference aggregation (Dhillon and Mertens, 1999).

Reinforcement seems less compelling prima facie from the consensus perspective which
treats the input judgments as the ‘evidential basis’ for an outside observer; in particular,
the consensus perspective bars an ‘extended Pareto’ argument for Reinforcement. For
example, consider a situation in which there is unanimous agreement on some issue k in
one subpopulation with profile µ while there is a near tie in the other subpopulation µ′. At
both profiles, the same view x happens to be selected as ‘most plausible’ according to F .
In the combined population, say µ′′ = 1

2
µ+ 1

2
µ′, there is a clear majority on k, but it is far

from unanimity. So the profile µ′′ is materially distinct as evidence from either µ or µ′, and
it may very well be sensible to select a view y different from x as ‘most plausible’ given
the evidence µ′′. This may well happen, for example, at some profiles under an additive
majority rule with a non-linear gain function φ.

While the case for a linear gain function may not be as compelling from a consensus
perspective as it is from a compromise perspective (via Reinforcement), there is still a
good case to be made on the basis of a “default principle” of sorts. The next axiom
serves as an axiomatic expression of such a default principle. In contrast to Reinforcement,
which is a variable-population axiom, the next axiom compares profiles within a fixed
population of voters. In a nutshell, it considers how the rule F should respond to a change
of opinion in one sub-population while the opinion of the complementary sub-population
remains fixed. It says that F should always respond to a given opinion change in the same
way, independent of the opinion of the complementary sub-population; it is conceptually
analogous to the axiom of Tradeoff Consistency in decision theory.

Judgement Consistency. For any c1, c2 ∈ (0, 1) with c1+c2 = 1, and any profiles µ, µ′, ν, ν ′ ∈
∆(Y), and any views x,y ∈ X , if (a) y ∈ F (c1 µ+ c2 ν), and (b) x ∈ F (c1 µ

′+ c2 ν),
and (c) y 6∈ F (c1 µ

′+ c2 ν), and (d) x ∈ F (c1 µ+ c2 ν
′), then (e) y 6∈ F (c1 µ

′+ c2 ν
′),

The idea here is that F should only select the views in X which have the greatest ‘plausi-
bility’ in light of the input judgments. In the above axiom, µ, µ′ are profiles describing two
possible distributions opinions for a subpopulation S1 making up a proportion c1 of the
total population, while ν, ν ′ are profiles describing two possible distributions of opinions
for the complementary subpopulation S2 (making up the proportion c2 = 1−c1 of the total
population). Hypotheses (a), (b), and (c) say that the shift in the distribution of opinions
from µ to µ′ shifts the balance of plausbility from y to x, when the S2 subpopulation has
profile ν. Thus, if we start with another profile (c1 µ + c2 ν

′) where x is already weakly
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more plausible than y (hypothesis (d)), then the same shift of opinion from µ to µ′ among
subpopulation S1 should again make the x strictly more plausible than y (conclusion (e)).

It is easy to verify that the median rule satisfies Judgement Consistency. The next result
describes the logical relationship between the last three axioms.

Proposition 2 If an aggregation rule satisfies Continuity and Judgement Consistency, then

it satisfies Reinforcement.9

To obtain the desired axiomatization of the median rule, we will need a weak structural
condition on Y . Recall that Y ⊆ {±1}K ⊂ RK. Let conv(Y) be the convex hull of Y in RK.
We will say that Y is thick if conv(Y) has dimension |K|. To motivate this assumption,
note that conv(Y) is the set of majority vectors associated with admissible profiles µ; that
is, conv(Y) = {µ̃ : µ ∈ ∆(Y)}. Thus, thickness just says that the domain of profiles is
sufficiently “rich”.

Most interesting judgment aggregation spaces are thick. For examples, spaces of rank-
ings (Example 1) are thick, as are spaces of classifiers (Example 2). Evidently, the “approval
spaces” {±1}K involved in the Committee Voting examples are thick. See Nehring and
Pivato (2011) for many other examples. Here is our first main result.

Theorem 1 Let C = (K,X ,Y) be a judgement context where Y is thick. Let F : ∆(Y) ⇒
X be a judgement aggregation rule. Then F satisfies ESME, Continuity, and Reinforcement

if and only if F is the median rule.

Note that thickness restriction applies only to the input space Y , while the output space
X is left entirely unrestricted. For example the committee spaces XK

L from Example 3 is
not thick; since it is defined by an affine feasibility restriction, it has dimension |K| − 1,
not |K|. Nevertheless, Theorem 1 still applies to Multi-Winner Approval Voting under
Constraints, because the input space is Y = {±1}K. In the traditional setting in which
X = Y , the thickness assumption obviously applies to the output space as well. In this
case, Theorem 1 simplifies as follows.

Corollary 1 Let X be a thick judgement space. An aggregation rule F : ∆(X ) ⇒ X
satisfies ESME, Continuity, and Reinforcement if and only if F is the median rule.

By Proposition 2, the statements of Theorem 1 and Corollary 1 remain true if Reinforcement

is replaced by Judgement Consistency. All three axioms are necessary for the characteriza-
tion. For example:

• If φ : [−1, 1]−→R is increasing and continuous, then the additive majority rule Fφ

satisfies ESME and Continuity. But Fφ does not satisfy Reinforcement unless it is the
median rule.

9Proposition 2 suggests that Judgement Consistency is logically stronger than Reinforcement. But Rein-
forcement depends on a variable population of voters, whereas Judgement Consistency can still be applied
when the population of of voters is fixed. Since our framework assumes a variable population from the
beginning, it somewhat obscures this distinction.
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• All scoring rules satisfy Reinforcement and Continuity (Myerson, 1995), but typically
violate ESME.

• Let > be an arbitrary strict order on X . One can construct a single-valued refinement
of the median rule which satisfies ESME and Reinforcement and breaks any tie by
choosing the >-maximal element. But this rule does not satisfy Continuity.

In the special case in which X = Y is the space of linear orderings, Theorem 1 yields a
counterpart to the seminal contribution by Young and Levenglick (1978). As we already
mentioned in the introduction Young and Levenglick characterize the median rule for such
spaces by three assumptions: Condorcet Consistency, Neutrality and Reinforcement. While
their Reinforcement axiom is exactly the same as ours, the other axioms are not quite
comparable. Condorcet Consistency is somewhat weaker than SME (hence a fortiori weaker
than ESME) but not entirely, since it also deals with majority ties.10 Neutrality is the
standard axiom of a symmetry in alternatives. Since any additive majority rule is neutral,
in view of Proposition 1, Neutrality is implied here by ESME plus Continuity. It is not quite
implied by ESME alone, since non-neutral selections from AMRs would satisfy ESME as
well. Conceptually, a lot of Neutrality is built into ESME via its symmetric treatment of
issues.

The three axioms in the Young-Levenglick theorem are meaningful for general judgment
aggregation contexts, with Neutrality understood as invariance to any symmetries of the
context (input and output spaces) under permutations of issues. However, only rarely will
they suffice to uniquely characterize the median rule, simply because in most contexts,
there will be few if any symmetries to exploit.

Mathematically, the two results and their proofs are very different. Young and Lev-
englick’s proof is a tour de force that strongly exploits the special combinatorial features
of the permutation polytope conv(X rk

A ). By contrast, our proof of Theorem 1 needs to
effectively sidestep the combinatorial structure of the context. Even equipped with Propo-
sition 1, this requires significant work because the intended generality precludes the use
of arguments that exploit special properties of the combinatorial structure of a particular
context. A proof sketch of Theorem 1 will be provided at the end of section 5.

There is considerable discussion on various versions of the median rule in the more
mathematically oriented literature; see, for example, Chapter 5 of the monograph of Day
and McMorris (2003), and also Monjardet (2008). Axiomatizations appear largely con-
fined to median spaces defined in Nehring and Puppe (2007) as an adaption of “median
graphs” to judgment aggregation spaces. In particular, McMorris et al. (2000) provide a
characterization of the median rule in median graphs/spaces based on a local Condorcet
condition and Reinforcement.11

10Say that a view x is Condorcet dominant if, for all k ∈ K, µ̃k · xk ≥ 0. A rule F is Condorcet consistent
if F is equal to the set of all Condorcet dominant views whenever that set is non-empty.

11However, in median spaces, the median rule is characterized by Condorcet consistency alone. Indeed,
as shown in Nehring and Puppe (2007), the median spaces are exactly the spaces in which this is the case.
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5 Extension to weighted judgement contexts

The formulation of judgement aggregation in Section 2 implicitly gave the same weight
to the voters’ opinions on all issues. But sometimes such “equal weighting” is not ap-
propriate. For example, in a truth-functional aggregation problem, we may wish to give
a higher weight to the voters’ opinions about the premises than their opinions about the
conclusions. The most extreme form of this is the “premise-based” aggregation rule, which
aggregates the voters’ views on each premise by majority vote, but completely ignores
their opinions about the conclusions; instead, the collective opinion about each conclusion
is logically derived from the majoritarian opinons on the premises. At the opposite extreme
is the “conclusion-based” aggregation rule, which aggregates the voters’ opinions on each
conclusion by majority vote, and mostly ignores their opinions about the premises, except
when these opinions can be aggregated in a manner which is logically consistent with the
majority opinions about the conclusions. Between these extremes, there are rules which
give greater or lesser weight to the voters’ views on different premises and conclusions.

There are other judgement aggregation problems where one might want to assign dif-
ferent weight to the voters’ opinions on different issues. Indeed, only if a problem had a
high amount of “symmetry” (e.g. aggregation of rankings) would there be a strong a priori

reason to assign the same weight to all issues. For this reason, we now introduce a weight

vector λ = (λk)k∈K, where λk > 0 is the “weight” which we assign to the voters’ opinions
on issue k. Roughly speaking, λk would be large if we were very unwilling to overrule the
majority opinion in issue k. Conversely, λk would be small if we were quite ready to over-
rule this opinion, if this was necessary to achieve a coherent collective view. A weighted

judgement context is a quadruple C := (K,λ,X ,Y), where K is a (finite) set of issues,
λ ∈ RK

+ is a weight vector, and X ⊆ Y ⊆ {±1}K, with X being the set of “admissible
collective views”, and Y being the set of “admissible individual views”. (In particular, an
unweighted judgement context of the kind considered in Sections 2 to 4 can be represented
by setting λ = (1, 1, . . . , 1).) A judgement problem is an ordered pair (C, µ), where C is a
(weighted) judgement context, and µ ∈ ∆(Y) is a profile. For any x ∈ X and q ∈ [0, 1],
we now define

γλ

µ,x(q) :=
∑

{λk ; k ∈ K and xk µ̃k ≥ q}. (6)

This yields a non-increasing function γλ

µ,x : [0, 1]−→R. If C is an unweighted judgement
context (i.e. λ = (1, . . . , 1)), then formula (6) reduces to the definition of γµ

x
from Section

3. We say x ∈ X is supermajority efficient (SME) for the judgement problem (C, µ) if there
does not exist any z ∈ X such that γλ

µ,z(q) ≥ γλ

µ,x(q) for all q ∈ [0, 1], with strict inequality
for some q. A judgement aggregation rule F : ∆(Y) ⇒ X is supermajority efficient on C if,
for any µ ∈ ∆(Y), every element of F (µ) is supermajority efficient for (C, µ).

If φ : [−1, 1]−→∗R is a gain function, then the additive majority rule on C is the corre-
spondence Fφ : ∆(Y) ⇒ X defined as follows:

for all µ ∈ ∆(Y), Fφ(µ) := argmax
x∈X

(
∑

k∈K

λk φ(xk µ̃k)

)
. (7)
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In particular, the median rule on C is defined by

Median (C, µ) := argmax
x∈X

(x •
λ
µ̃), for all µ ∈ ∆(Y), (8)

where x •
λ
µ̃ :=

∑

k∈K

λk xk µ̃k, for all x ∈ X .

If C is an unweighted judgement context (i.e. λ = (1, . . . , 1)), then this reduces to the
“unweighted” median rule defined by formula (2). For any x,y ∈ {±1}K, we define
their λ-weighted distance by dλ(x,y) :=

∑
{λk; k ∈ K and xk 6= yk}. The median

rule (8) can be equivalently defined as selecting the view(s) in X minimizing the average
λ-weighted distance to the views of the voters. In Section 6, we will provide an axiomatic
characterization of the weighted median rule (8), similar to Theorem 1. First, we will
motivate the theory of weighted judgement contexts in general —and the weighted median
rule in particular —with two interesting applications: assignment problems and uniform

decisions. But an impatient reader can skip directly to Section 6 without loss of logical
continuity.

5.1 Assignment problems

Consider a group of voters who need to assign different candidates to different of positions
such as the positions in a cabinet. There is a set A := {1, . . . , A} of “candidates” and a set
B := {1, . . . , B} of “positions”, with A ≥ B.12 (As in the matching literature, there are
many different possible interpretation; for example, “positions” could be unique resources
such as organ transplants, and “candidates” could be possible recipients. Judgment ag-
gregation might be required when different group members entertain different standards
of fair allocation).

Assignments can be described in terms of an issue space K = A × B, with the issue
(a, b) addressing the question: “should candidate a hold position b”? Feasibility requires
that any position be filled by exactly one candidate, and that any candidate can fill at
most one position. Feasible assignments can thus be described as B−tuples ((a1, . . . , aB))
saying that candidate ab is assigned to position b. More explicitly in issue space, the tuple
((a1, . . . , aB)) refers to the view x ∈ {±1}A×B such that xab = 1 iff a = ab, and xab = −1 iff
a 6= ab. The feasible output space is the set of all such judgments X asgn

A×B. By contrast, we
will allow input judgments to be unrestricted approval judgments for each position; thus
Y = {±1}A×B .

Generally, different positions will differ in their “importance”, so it will be natural to
assign weights λa,b of the form λa,b = λb, where λb reflects the importance of position b.

This defines a judgement context C =
(
A× B,λ,X asgn

A×B, {±1}A×B
)
. In such a context, the

median rule selects the assignment x = ((a1, . . . , aB)) that maximizes the weighted sum
∑

b∈B

λb µ̃(ab,b).

12This problem has been considered in particular by Emerson (2016). The median rule can
be viewed as an Approval Voting counterpart of sorts to Emerson’s “matrix vote”. See also
http://www.deborda.org/faq/voting-systems/what-is-the-matrix-vote.html
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To illustrate the role of the weights, consider, as a simple example, a profile of input views
µ all of which assess candidate quality as independent of position, i.e. µ̃a,b = µ̃a,b′ for all
a ∈ A, and b, b′ ∈ B. In such profiles, supermajority efficient rules such as the weighted
median rule (8) will assign the better candidates to the more important positions. Likewise,
in arbitrary profiles, if the weight for some position b∗ is much larger than that for any
other position, the median rule fills that position by the candidate a with the highest
majority support µ̃(a,b∗) (up to, possibly, near ties).

5.2 Uniform Decisions

The following “uniform decision” model is in fact a scheme of examples generating more
complex judgment aggregation contexts from simpler ones. We first present the formal
scheme, and then illustrate three types of applications referred to as Heterogeneous Cases,
Missing Information, and Multiple Criteria.

Let C = (K,λ,X ,Y) be a “base” judgement context. Let S be an abstract set of
“instances”; in the three applications, the elements of S will be interpreted as “cases”,
“states” or “criteria”. Let λ := (λs)s∈S be a vector assigning a “weight” to each instance;
in the three applications, these weights will be interpreted as the frequencies of the cases,
the probabilities of the states, or the relative importance of the criteria. (We will provide
more detail below.) While input judgments are made instance-wise, these form the basis
for a single output judgment that governs all instances uniformly. This situation can be
described formally by a “uniform” judgement context Ĉ = (K̂, λ̂, X̂ , Ŷ) defined as follows.

(i) K̂ := K × S;

(ii) X̂ := {(x, . . . ,x) ; x ∈ X};

(iii) Ŷ := Y × · · · × Y ;

(iv) For all k ∈ K and s ∈ S, λ̂k,s := λs λk.

Part (iii) allows input judgments to vary independently across instances, while (ii) says
that output judgments must be constant across instances. Part (iv) says that the weight
of a composite issue (k, s) rescales the base weight λk by the instance weight λs.

5.2.1 Heterogeneous Cases

To flesh out the first interpretation in terms of heterogeneous instances, consider the very
simplest judgment aggregation problem given by a single yes-no issue, i.e. |K| = 1.

For example, a group needs to decide on whether to establish a rule which permits or
forbids some types of action or behaviour. Concrete examples include traffic laws, work-
place codes of conduct, or safety regulations at a public swimming pool. More contentious
examples include restrictions on libel, hate speech, obscenity, or incitement.13 For this rule

13See Miller (2013) for a recent contribution to this theme in the judgment aggregation literature.
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to be simple, unambiguous, and enforceable in a non-arbitrary and independently verifi-
able way, it must be based on a relatively coarse description of the action. Of course, in
each particular case, the “correct” or “just” decision may depend on some finer details of
the action (and surrounding context). But even if these details are observable in principle,
it is not feasible to explicitly condition the actual decision on them, e.g. for reasons of
complexity or non-verifiability.

So the best the group can do is to get it right “on balance” across comparable cases
s ∈ S. Voters give their judgments about the right decision in each case. The uniform
group decision is then to be taken on the basis of the entire vector of majorities (µ̃s)s∈S .

The cases could be actual or hypothetical. For actual cases, the weights λs would naturally
reflect their frequency of occurence. For hypothetical cases, the weights λs would naturally
reflect their ‘relevance’ or ‘representativeness’. Additive majority rules yields a positive
uniform decision just in case ∑

s∈S

λs φ (µ̃s) ≥ 0.

Hence, the median rule in particular yields a positive uniform decision iff

∑

s∈S

λs µ̃s ≥ 0,

i.e. just in case the weighted average of majorities across comparable cases is non-negative.

5.2.2 Missing Information

The uniform decision model can also be applied to situations in which the group is missing
information relevant to the judgment task. For example, in foreign policy, macroeconomic
management, and environmental regulation, the right course of action may depend on
information which is unavailable at the moment the decision must be made. To pick a
prominent recent example, during its 2014 independence referendum, Scotland confronted
uncertainty about future petroleum prices and its ability to join the E.U. as an independent
state. It is quite legitimate —and may lead to better decisions —to make this missing
information explicit in the collective decision procedure by representing it as an unknown
“state of nature” s ∈ S, so that each voter submits her judgment contingent on the state.
In a binary (single-issue) decision problem, analogously to Example 5.2.1 above, the median
rule would base the decision on the expected majority margin

∑
s∈S psµ̃s.

The relevant probability weights λs = ps could be obtained in various ways. For exam-
ple, they might be obtained by some judgment aggregation rule from the voters themselves.
Or, the group may delegate this judgment to an ‘outside authority’, for example to betting
markets.14

This can be extended beyond a single issue, for instance to the ranking of more than
two possible courses of action. The base context would then be given by the space of

14For a provocative and ambitious advocacy of using betting markets to “vote on values, but bet on
beliefs”, see Hanson (2013).
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rankings X rk
A from Example 1. The median rule would select the ranking(s) ≻ with the

highest support ex ante, as measured by the sum

∑

a,b∈A
a≻b

µ̂ab, (9)

where, for all a, b ∈ A, we defined

µ̂ab :=
∑

s∈S

ps µ̃ab,s. (10)

The median rule thus yields an extension of the Kemeny rule to uncertainty. Note that
the ex ante comparison depends as much on the size of the majorities as on their sign.

5.2.3 Multiple Criteria.

Applied to elections for public office, the standard ranking model can be interpreted as
trying to determine the (impartially best) candidate based on an overall comparative eval-
uation of candidates in terms of their “suitability for office”.

It might be argued that this gives too much room for subjective impressions of personal
appeal of candidates, and that “suitability for office” can be more soundly elicited by ex-
plicitly taking account of its multi-criterial nature, on the view that “suitability for office”
consists of a combination of rather distinct, identifiable qualities such as leadership, in-
tegrity, judgment, etc.. The multi-criterion conception of candidate merit can be captured
by the uniform decision model as follows. Let the base context again be the standard rank-
ing context X rk

A from Example 1, and let each s represent a different criterion. An input
judgment y consists of an S-tuple of rankings (ys)s∈S , with ys representing the ranking of
candidates in terms of criterion s. The uniform output judgment x represents the overall
group ranking to be determined. It is based on weight vector λ ∈ RS

+ describing the rela-
tive importance of these criteria. These can be deteremined in different ways: they could
be determined concurrently by the group itself, by a separate committee or at an earlier
‘constitutional’ stage at which the general requirements for the office where determined.15

In this setting, the median rule selects the ranking with highest overall majority support
(9), where again the overall majority support µ̂ab for ranking of a over b is given the weighted
average (10) . In this manner, the median rule thus yields an extension of the Kemeny

rule to multiple criteria.

The general approach to multi-criterion evaluation just outlined here is not premised on
the particular, comparative format evaluation in terms of rankings; an alternative format
of interest is non-comparative in terms of “grades”. In this vein, Balinski and Laraki
(2010, ch. 21) introduce a multi-criteria majority grading rule16 which – setting aside the

15Switching the setting, a hiring committee or university department may be tasked to evaluate an
applicant for an open faculty position in terms of research, teaching and service, and the weights of these
might be predetermined by standing university policy.

16Their term is “multi-criteria majority judgment”.
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treatment of tied grades – is equivalent to the weighted median rule in the uniform decision
model for a base context that describes grading as follows.

Let (G,>) be a finite, linearly ordered set, each element being interpreted as a grade.
Grading can be defined as a judgment context (G,XG,XG,λ), where the issues g ∈ G are
interpreted as whether or not the object of evaluation achieves at least grade g, and the
set of admissible grade assignments is given by XG = {x ∈ {±1}G; xg ≥ xg′ whenever
g ≤ g′}, with typical element (1, . . . 1, 0, . . . , 0). The input space and output space agree,
YG = XG; the issue weights λ turn out to be immaterial.

6 Characterization of the weighted median rule

To obtain a weighted generalization of Theorem 1, we must consider weighted combi-
nations of weighted contexts. These are given by weighted contexts of the form Ĉ =
(N · K, λ̂,XN ,YN), where λ̂ = (λ̂1, . . . , λ̂N) ∈ RN ·K is proportional to λ; that is, for for

each n ∈ [1, .., N ], λ̂n = cn λ, for some cn > 0. So, for a proportional weight vector λ̂,
the relative weights within the set of basic issues K are the same (original ones) in each
instance, while different instances may be assigned different relative weights reflected in
the scaling factor cn. The potential differences in the scaling factor may have different
origins, as in the uniform decision model of Section 5.2. In particular, they could reflect
differences in frequency, probability or relative importance. We are now in a position to
state the axiom of Weighted Ensemble Supermajority Efficiency.

WESME. For any set of instances N , any vector of weights λ̂ proportional to λ, and any
profile µ ∈ ∆

(
YN
)
, any element of F (µ1)× · · · × F

(
µN
)
is SME for (Ĉ, µ).

Here is the extension of Proposition 1 to weighted contexts.

Proposition 3 Let F be a judgement aggregation rule on a weighted judgement context

C. If F satisfies WESME and Continuity, then F is an additive majority rule like (7).

Note that the consideration of proportional weights is needed only to deal with the case
of irrational-valued weight vectors λ in the base context. If all weights are rational, then it
is sufficient to confine attention to weight vectors λ̂ such that λ̂n = λ for all n ∈ [1 . . . N ].
(See Nehring and Pivato (2018) for more information.)

To obtain an axiomatic characterization of the median rule on a weighted judgement
context C, we will need C to satisfy some structural conditions. For any µ ∈ ∆({±1}K),
let xµ be the majority ideal, as defined below formula (1) above. A judgement space Y is
McGarvey if, for all x ∈ {±1}K, there is some µ ∈ ∆(Y) such that xµ = x.17 For example,
the spaces X rk

A and X eq

A (Examples 1 and 2) are McGarvey, as are many other commonly oc-
curing judgement spaces; see Nehring and Pivato (2011) for many more examples. Clearly,
any McGarvey space is thick, and any superset of a McGarvey space is also McGarvey.

Let x,y, z ∈ {±1}K. We say that y is between x and z if, for any k ∈ K such that
xk = zk, we also have yk = zk (and hence, yk = xk). Now let X ⊆ {±1}K be a judgement

17Equivalently, Y is McGarvey if and only if the zero vector 0 lies in the topological interior of conv(Y).
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space. Say that x, z ∈ {±1}K are near if there is no y ∈ X\{x, z} such that y is between
x and z. We will say that X is distal if there exist some x, z ∈ X such that x is near z
and d(x, z) ≥ 3. Heuristically, this means that the elements of X are not packed tightly
together everywhere. For any z ∈ {±1}K\X , let Xz be the set of views in X that are near
to z; heuristically, these are the “best admissible approximations” to z. We say that X is
rugged if there exists z ∈ {±1}K\X and x,y ∈ Xz such that d(x, z) 6= d(y, z).

Both distality and ruggedness are conditions on the combinatorial geometry of X , and
typically easy to verify. Ruggedness seems to be satisfied in the great majority of cases,
while distality is somewhat more restrictive. Indeed, distality “almost” implies ruggedness.
That is, suppose that there exist some x, z ∈ X such that x is near z and d(x, z) ≥ 3, and
assume additionally that some such d(x, z) is odd. Consider any y ∈ {±1}K \{x, z} such
that y is between x and z. Since x is near z, y ∈ {±1}K \X . Since d(x, z) = d(x,y)+d(y, z)
and d(x, z) is odd, d(x,y) 6= d(y, z), verifying the ruggedness of X . We now come to the
second main result of this paper.

Theorem 2 Let (K,λ,X ,Y) be a weighted judgement context, and suppose that either (a)
X is rugged and Y is McGarvey, or (b) X is distal and Y is thick. Let F : ∆(Y) ⇒ X be

a judgement aggregation rule. Then F satisfies WESME, Continuity, and Reinforcement if

and only if F is the median rule (8).

Thus (weighted) median rules (8) are both (weighted) additive majority rules and scor-
ing rules in the sense of Myerson (1995) or Dietrich (2014). Both types of judgment
aggregation rules are arguably fundamental, but they are characterized by distinct sep-
arability conditions: separability in issues versus separability in individuals. (Weighted)
median rules are separable in both of these senses. Indeed, since scoring rules satisfy Rein-

forcement in general, Theorem 2 provides general conditions under which weighted median
rules are the only rules with this “double separability”.

The presuppositions of Theorem 2 are satisfied in many applications of interest, but
they are more restrictive than those of Theorem 1. We illustrate their broad applicability
in a variety of examples before providing a nonexample.

1. As already mentioned, the spaces of rankings (Example 1) and of classifiers (Example
2) are McGarvey. They are also easily seen to be rugged. Furthermore, the latter is
distal, while the former is not.

2. In the assignment problems of Section 5.1, the input space is trivially McGarvey
as it is an approval space. For B ≥ 3, it is rugged. To see this, consider for the
assignments z := ((a1, a1, a2)), x := ((a1, a3, a2)) and y := ((a1, a2, a3)). Note that x
and y are feasible, while z is not. Evidently, x and y are adjacent to z; the triple of
views verifies ruggedness since d(z,x) = 4 while d(z,y) = 8.

3. In the uniform decision problems of Section 5.2, it follows from elementary linear
algebra to see that Ŷ is thick if and only if Y is thick. On the other hand, for any
x,y ∈ X , d ((x, . . .x), (y, . . . ,y)) = |S| d(x,y). Thus X is distal whenever |S| ≥ 3.
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It is not surprising that Theorem 2 needs the domain Y to satisfy a richness condition such
as thickness or the McGarvey property. It is perhaps more surprising that the codomain X
must satisfy a structural condition like ruggedness or distality. To see why these conditions
are necessary, consider the following class of additive majority rules. For any α > 0, we
define φα : [−1, 1]−→R by φα(r) := sign(r) · |r|α. The corresponding additive majority rule
Fφα is called a homogeneous rule. Note that the median rule is just the homogeneous rule
with α = 1. Now let K be a finite set, and define XK

L,M := {x ∈ {±1}K; L ≤ #x ≤ M}.

If L < M , this space is thick, and if L < K
2
< M , then it is McGarvey.18 But Theorem 2

fails on this space. Its normative assumptions fail to single out the median rule uniquely,
but are satisfied by any homogeneous rule.

Proposition 4 Let K ≥ M ≥ L ≥ 0, let λ ∈ RK
+ be a weight vector, and let C :=

(K,λ,XK
L,M ,XK

L,M). For any α > 0, the rule F α satisfies Reinforcement, Continuity, and

WESME on C. If λ is the uniform weight vector, then F α is equivalent to the median rule

on C. But if λ not uniform and α 6= 1, then F α is not the median rule on C.

The structural assumptions of Theorem 2 fail for XK
L,M . To see that X = XK

0,M is not
rugged, for example, one simply notes that, for any z /∈ X , x is near z iff #x = M and if,
for all k ∈ K, xk = 1 implies zk = 1. Thus, for any x near z, we have d(x, z) = #z−M,
contradicting ruggedness. The failure of distality is verified easily as well.

Note that one can translate any judgment aggregation context with rational weights
into an ‘equivalent’ judgment aggregation context with uniform weights by “cloning” issues
in proportion to their weight. However, in this translation, due to the cloning, thickness
of the input space tends to get lost. So one can use Proposition 4 to produce a non-thick
counterexample to Theorem 1 in the unweighted case.

A sketch of the proofs. Theorems 1 and 2 are both results on judgment contexts and
consequences of a more basic result on judgment aggregation rules, Theorem B.1, which
appears in Appendix B. From Propositions 1 and 3, we know that any rule satisfying
Continuity and (W)ESME is an additive majority rule Fφ, for some gain function φ.
Thus, the key task in the proof of Theorem B.1 is to show that the identity function (or
any linear function) on [−1, 1] is among these gain functions.

A possible strategy would be to try to show that any representing gain function was
linear. If φ was real-valued, it would then be enough to show that φ satisfies the Cauchy
functional equation, and whence deduce linearity. But this straightforward-looking strategy
fails for two reasons. First of all, Propositions 1 and 3 do not guarantee that φ is real-
valued, so one cannot appeal to the Cauchy functional equation. Second, the conclusions
of Theorems 1 and 2 do not require that all representing gain functions φ are linear,
only that some of them are. Indeed, Approval Voting on size-L committees provides

18XK
L,M is often used to represent committee selection problems, as in Example 3: K is a set of potential

“candidates”, and the committee in question must have at least L and most M members. It also arises in
certain resource allocation problems. But these interpretations are not relevant for Proposition 4.
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a counterexample, in which the assumptions of Theorem 1 are satisfied, but any AMR
agrees with the median rule, whatever the gain functions.

Hence this strategy is a nonstarter. Instead, the proof of Theorem B.1 shows in a couple
of steps that any representing φ has the “linearity-like” property that φ(r + ǫ) − φ(r) =
φ(s+ ǫ)− φ(r) for any r and s, and any sufficiently small ǫ; in effect, this says that φ has
a “constant slope” property. This is enough to show that Fφ is the median rule, because it
implies that a gain (or loss) of ǫ in the majority support on one issue can be exactly offset
be a gain (or loss) of ǫ in the support on another issue.19

To show in turn that φ satisfies this “constant slope” property, we must study “perfect
tie” profiles µ ∈ ∆(Y) such that F (µ) = {x,y} for some x,y ∈ X . If the set of such “perfect
tie” profiles is not empty, then it is a relatively open subset of an affine hyperplane (this
is a consequence of Continuity and Reinforcement); we can then demonstrate the “constant
slope” property by looking at how the values of φ(µ̃) change as µ moves around in this
hyperplane. However, we also need x and y to differ in at least three coordinates —in effect,
this is because we need the freedom to manipulate the r, s, and ǫ variables independently
while preserving the perfect tie. In this case, let’s say that {x,y} is a suitable pair.

Theorem B.1 just assumes that a suitable pair exists for the given judgment aggregation
rule F . So to derive Theorems 1 and 2 from Theorem B.1, we must provide conditions on
the judgment context which guarantee the existence of a suitable pair , for any judgment
aggregation rule satisfying the normative assumptions. This is done in Theorem B.2 in the
Appendix in terms of a constructive condition of ‘frangibility’ on contexts.

If X is rugged and Y is McGarvey, then frangibility of the context follows from Lemma
B.1 in the Appendix; meanwhile if X is distal and Y is thick, then frangibility of the
context follows from Lemma B.2. Finally, Theorem 2 follows by combining Theorem B.2
with Lemmas B.1 and B.2.

For unweighted judgement contexts, a second route is available. If there exists a suitable
pair, then we can argue as above. Otherwise, that is if d(x,y) ≤ 2 whenever F (µ) = {x,y},
then we can use a straightforward geometric argument (along with the three axioms) to
show that F is the median rule. This is why Theorem 1 does not require the auxiliary
structural conditions of Theorem 2. On the other hand, it is typically not the case that
d(x,y) ≤ 2 whenever F (µ) = {x,y}. Thus, even in the unweighted case, the proof of
Theorem 1 requires the full force of Theorem B.1.

Appendix A: Proofs of minor results

This appendix contains the proofs of Propositions 1 to 4.

Proof of Propositions 1 and 3. Both statements follow from Corollary 5.2 of Nehring
and Pivato (2018). Let 〈C〉 := {CN ; N ∈ N} (in the unweighted case of Section
3), and let 〈C〉 := {Cp; p ∈ ∆N and N ∈ N} (in the weighted case of Section 5).
Let F ∗ := {FN}∞N=1. Then in the terminology of Nehring and Pivato (2018), F ∗ is a

19This assumes uniform weights. In the case of nonuniform weights, the relevant statement is that a
gain (or loss) of ǫ/λj in the majority support on issue j can be exactly offset be a gain (or loss) of ǫ/λk in
the majority support on issue k.
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judgement aggregation rule on 〈C〉, and it satisfies the axiom of Combination (in either
the weighted or unweighted case) and Scale invariance (in the weighted case). The
axioms ESME (in the unweighted case) or WESME (in the weighted case) say that F ∗

satisfies the axiom of Supermajority efficiency on 〈C〉. Finally, Continuity says that the
rule F is continuous on ∆(Y). Thus, Corollary 5.2 of Nehring and Pivato (2018) says
that F is an additive majority rule. ✷

The proof of Proposition 2 requires some preliminaries. Let (K,λ,X ,Y) be a judgement
context, and let F : ∆(Y) ⇒ X be a judgement aggregation rule. For any µ, ν ∈ ∆(Y),
define µ ⊕ ν := 1

2
µ + 1

2
ν. Consider the following, weaker versions of Reinforcement and

Judgement Consistency.

Even Reinforcement: For any µ1, µ2 ∈ ∆(Y), if F (µ1) ∩ F (µ2) 6= ∅, then F (µ1 ⊕ µ2) =
F (µ1) ∩ F (µ2).

Even Judgement Consistency: For any µ, µ′, ν, ν ′ ∈ ∆(Y), and any views x,y ∈ X , if (a)
y ∈ F (µ⊕ν), and (b) x ∈ F (µ′⊕ν), and (c) y 6∈ F (µ′⊕ν), and (d) x ∈ F (µ⊕ν ′),
then (e) y 6∈ F (µ′ ⊕ ν ′).

Lemma A.1 Let C = (K,λ,X ,Y) be any judgement context, and let F : ∆(Y) ⇒ X be

any judgement aggregation rule. If F satisfies Even Judgement Consistency, then F satisfies

Even Reinforcement.

Proof: Let µ1, µ2 ∈ ∆(Y).

Claim 1: Let y ∈ X . If y ∈ F (µ1) and y ∈ F (µ2), then y ∈ F (µ1 ⊕ µ2).

Proof: Set µ = ν = µ1 and µ′ = ν ′ = µ2. Then for any x ∈ X \ {y}, Even Judgement

Consistency says: if (a) y ∈ F (µ1), and (bd) x ∈ F (µ1 ⊕ µ2), and (c) y 6∈ F (µ2 ⊕ µ1),
then y 6∈ F (µ2).

Taking the contrapositive, if y ∈ F (µ2), then one of the hypotheses (a), (bd), or (c)
must be false. In particular, if y ∈ F (µ2) and y ∈ F (µ1), then

either x 6∈ F (µ1 ⊕ µ2) or y ∈ F (µ1 ⊕ µ2). (A1)

This holds for all x ∈ X \ {y}.

Now, by contradiction, suppose y ∈ F (µ2) and y ∈ F (µ1), but y 6∈ F (µ1 ⊕ µ2).
Applying (A1), we obtain x 6∈ F (µ1 ⊕ µ2) for all x ∈ X \ {y}, which means that
F (µ1 ⊕ µ2) = ∅. This is a contradiction. The claim follows. ✸ Claim 1

Claim 2: Let y ∈ X . If F (µ1) ∩ F (µ2) 6= ∅, and y 6∈ F (µ2), then y 6∈ F (µ1 ⊕ µ2).

Proof: Let x ∈ F (µ1) ∩ F (µ2). If we set µ′ = ν = µ2 and µ = ν ′ = µ1, then Even

Judgement Consistency says: if (a) y ∈ F (µ1 ⊕ µ2), and (b) x ∈ F (µ2), and (c)
y 6∈ F (µ2), and (d) x ∈ F (µ1), then (e) y 6∈ F (µ2 ⊕ µ1).

Thus, y 6∈ F (µ2 ⊕ µ1), as claimed. ✸ Claim 2
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Combining Claims 1 and 2, we conclude that, if F (µ1) ∩ F (µ2) 6= ∅, then F (µ1 ⊕ µ2) =
F (µ1) ∩ F (µ2). ✷

Lemma A.2 Let C = (K,λ,X ,Y) be any judgement context, and suppose F : ∆(Y) ⇒ X
satisfies Continuity. If F satisfies Even Reinforcement, then F satisfies Reinforcement.

Proof: Let µ1, µ2 ∈ ∆(Y), and suppose F (µ1) ∩ F (µ2) 6= ∅. Let Q2 be the set of dyadic
rationals (that is, Q2 := { n

2k
; n and k integers, k > 0}).

Claim 1: F (q µ1 + (1− q)µ2) = F (µ1) ∩ F (µ2) for all q ∈ Q2 ∩ [0, 1].

Proof: Even Reinforcement implies that F (µ1 ⊕ µ2) = F (µ1) ∩ F (µ2). It follows that
F (µ1⊕µ2)∩F (µ1) = F (µ1)∩F (µ2) 6= ∅ and F (µ1⊕µ2)∩F (µ2) = F (µ1)∩F (µ2) 6= ∅.
Thus, applying Even Reinforcement again, we deduce that F [µ1⊕ (µ1⊕µ2)] = F (µ1)∩
F (µ2) and F [(µ1 ⊕ µ2)⊕ µ2] = F (µ1)∩F (µ2). But µ1 ⊕ (µ1 ⊕ µ2) =

3
4
µ1 +

1
4
µ2, while

(µ1 ⊕ µ2) ⊕ µ2 = 1
4
µ1 +

3
4
µ2. Iterating this argument yields the claim, by induction.

✸ Claim 1

Now, Q2 is dense in R. Thus, Continuity and Claim 1 imply that

F (r µ1 + (1− r)µ2) ⊇ F (µ1) ∩ F (µ2), for all r ∈ [0, 1]. (A2)

Claim 2: F (r µ1 + (1− r)µ2) ⊆ F (µ1) ∩ F (µ2) for all r ∈ [0, 1].

Proof: Suppose y 6∈ F (µ1). We must show that y 6∈ F (r µ1+(1− r)µ2) for all r ∈ [0, 1].

By contradiction, let Ry := {r ∈ [0, 1]; y ∈ F (r µ1 + (1 − r)µ2)}, and suppose
Ry 6= ∅. By Continuity, 1 is not a cluster point of Ry (because y 6∈ F (µ1)). Thus,
if R := sup(R), then R < 1. Now let r ∈ Ry. Find some s ∈ (R, 1) such that
r/s = q ∈ Q2.

Let ν := s µ1 + (1 − s)µ2. Then y 6∈ F (ν), by definition of R. But F (ν) ⊇
F (µ1) ∩ F (µ2), by statement (A2). Thus, F (ν) ∩ F (µ2) 6= ∅. Thus, Claim 1 implies
that F (q ν + (1 − q)µ2) = F (ν) ∩ F (µ2). But q ν + (1 − q)µ2 = r µ1 + (1 − r)µ2

(because r = q s). Thus, we conclude that F (r µ1+(1− r)µ2) = F (ν)∩F (µ2). Hence
y 6∈ F (r µ1 + (1− r)µ2), which contradicts the fact that r ∈ Ry.

To avert the contradiction, we must have Ry = ∅. This argument works for any
y 6∈ F (µ1), and likewise any y 6∈ F (µ2). The claim follows. ✸ Claim 2

Statement (A2) and Claim 2 imply F (r µ1+(1−r)µ2) = F (µ1)∩F (µ2) for all r ∈ [0, 1].
Thus, F satisfies Reinforcement. ✷

Proof of Proposition 2. If F satisfies Judgement Consistency, then it satisfies Even Judge-

ment Consistency. Then Lemma A.1 says F satisfies Even Reinforcement. If F also
satisfies Continuity then Lemma A.2 says it satisfies Reinforcement. ✷
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Proof of Proposition 4. It is easy to verify that F α satisfies WESME and Continuity. (Or
see Proposition 3.4 and Corollary 5.2 from Nehring and Pivato (2018).) Thus, it remains
to show that F α satisfies Reinforcement.

For any weight vector λ = (λk)k∈K, and any exponent α > 0, we define the correspon-
dence F α

λ
: ∆(XK

L,M) ⇒ XK
L,M by setting

F α
λ
(µ) := argmax

x∈X

(
∑

k∈K

λk φα(xk µ̃k)

)
, for all µ ∈ ∆(XK

L,M). (A3)

We also define λα := (λα
k )k∈K.

Claim 1: Let α, β > 0, and let λ,κ ∈ RK
+ be weight vectors. If λβ = κα, then

F α
λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ) for all µ ∈ ∆(XK
L,M).

Proof: Let µ ∈ ∆(XK
L,M), and let J := {k ∈ K; µ̃k > 0}. There are now three cases.

Case 1. If L ≤ |J | ≤ M , then F α
λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ) = {x}, where x ∈ XK
L,M

is the view with xj = 1 for all j ∈ J and xk = −1 for all k ∈ K \ J .

Case 2. Suppose |J | > M . Define η := λ1/α. Then we also have η = κ1/β (because
ηβ = λβ/α = (λβ)1/α = (κα)1/α = κ, because λβ = κα by hypothesis). By reordering
the elements of K = [1 . . . K] if necessary, we can assume without loss of generality
that

η1 µ̃1 ≥ η2 µ̃2 ≥ · · · ≥ ηJ µ̃J > 0 ≥ ηJ+1 µ̃J+1 ≥ · · · ≥ ηK µ̃K . (A4)

(Thus, J = [1 . . . J ].) Now, for any k ∈ K, observe that λk φα(xk µ̃k) = sign(xk)λk |µ̃k|
α =

sign(xk) |ηk µ̃k|
α. Thus,

∑

k∈K

λk φα(xk µ̃k) =
∑

k∈K

sign(xk) |ηk µ̃k|
α. (A5)

Suppose ηM µ̃M > ηM+1 µ̃M+1. Then the unique maximizer in XK
L,M of the sum (A5)

is the element x ∈ XK
L,M such that xm = 1 for all m ∈ [1 . . .M ], while xk = −1 for

all k ∈ [M + 1 . . . K]. Thus, definition (A3) yields F α
λ
(XK

L,M , µ) = {x}. But by an
identical argument, κk φβ(xk µ̃k) = sign(xk) |ηk µ̃k|

β, so that

∑

k∈K

κk φβ(xk µ̃k) =
∑

k∈K

sign(xk) |ηk µ̃k|
β, (A6)

so this sum is also uniquely maximized by x, so F β
κ
(XK

L,M , µ) = {x} also. Thus,
F α
λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ), as claimed.

On the other hand, suppose ηN−1 µ̃N−1 > ηN µ̃N = ηN+1 µ̃N+1 = · · · = ηP µ̃P >
ηP+1 µ̃P+1 for some N,P with N ≤ M ≤ P . In this case, the sums (A5) and (A6)
have more than one maximizer.20 Even in this case, however, it is easy to see that they
have exactly the same set of maximizers, so once again F α

λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ).

20To be precise, they have
(
P−N+1

M−N+1

)
maximizers.
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Case 3. Suppose |J | < L. The argument is similar to Case 2. Again, assume without
loss of generality that (A4) holds. If ηL µ̃L > ηL+1 µ̃L+1, then by invoking equations
(A5) and (A6), we see that F α

λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ) = {x}, where x ∈ XK
L,M is

defined by xℓ := 1 for all ℓ ∈ [1 . . . L], while xk := −1 for all k ∈ [L + 1 . . . K]. If
ηL µ̃L = ηL+1 µ̃L+1, then the sums (A5) and (A6) have more than one maximizer, but
they have the same maximizers, so that F α

λ
(XK

L,M , µ) = F β
κ
(XK

L,M , µ). ✸ Claim 1

Now, fix λ ∈ RK
+, and consider the judgement context C := (K,λ,XK

L,M ,XK
L,M). Let

κ := λ1/α. Then

F α(C, µ)
(∗)

F α
λ
(XK

L,M , µ)
(†)

F 1
κ
(XK

L,M , µ), for all µ ∈ ∆(XK
L,M). (A7)

Here, (∗) is obtained by comparing equations (7) and (A3), while (†) follows from Claim
1. Now, F 1

κ
is just the (κ-weighted) median rule; thus, F 1

κ
satisfies Reinforcement on

XK
L,M . Thus, F α

λ
also satisfies Reinforcement on XK

L,M . This proves the first assertion of
Proposition 4.

If λ = (1, 1, . . . , 1), then κ = λ. Thus F 1
κ
= F 1

λ
. Thus, statement (A7) implies that

F α(C, µ) = F 1(C, µ) for all µ ∈ ∆(XK
L,M) —in other words, F α itself is the median rule

on C. This proves the second assertion of Proposition 4.

On the other hand, if λ 6= (1, 1, . . . , 1), then κ 6= λ. Thus, F 1
λ
and F 1

κ
will not

always agree on XK
L,M . (Discrepancies between these two rules can be constructed using

reasoning similar to the proof of Claim 1.) Thus, statement (A7) implies that F α is not
the median rule on C. This proves the third assertion of Proposition 4. ✷

We will frequently use the following result.

Lemma A.3 Any additive majority rule is SME on any judgement context.

Proof: See Corollary 5.2 from Nehring and Pivato (2018). ✷

Appendix B: Proofs of the main results

In the proofs of our main results, we will require the judgement context and the rule to
satisfy one of two hypotheses. We will say that a judgement context C = (K,λ,X ,Y)
has balanced weights if for all x,y ∈ X with only two issues i, j ∈ K such that xi 6= yj
and xj 6= yj (so that d(x,y) = 2), we have λi = λj. If F is a judgement aggregation
rule, then we will say that F is compatible with C if there is some µ ∈ ∆(Y) such that
F (C, µ) = {x,y} for some x,y ∈ X with d(x,y) ≥ 3.

Note that any unweighted judgement context automatically has balanced weights. Thus,
we will later invoke balanced weights to prove Theorem 1. On the other hand, we will invoke
compatibility to prove Theorem B.2. Indeed, Theorems 1 and B.2 are both consequences
of the following, more general result.
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Theorem B.1 Let C = (K,λ,X ,Y) be a weighted judgement context where Y is thick,

and let F : ∆(Y) ⇒ X be an additive majority rule. Suppose that either C has balanced

weights or F is compatible with C. Then F satisfies Continuity and Reinforcement if and

only if it is the median rule (8).

Before proving Theorem B.1, we introduce some notation. Let F : ∆(Y) ⇒ X be any
additive majority rule, and let C := conv(Y). For any c ∈ C, there exists some µ ∈ ∆(Y)
such that µ̃ = c. We then define F (c) := F (C, µ). By inspection of defining formulae
(4) and (7), it is clear that this definition is independent of the choice of µ. Thus, we can
define a correspondence F : C ⇒ X . We will make use of this convention frequently in
what follows. For any x ∈ X , define

CF
x

:= {c ∈ C ; x ∈ F (c)} and oCF
x

:= {c ∈ C ; F (c) = {x}}. (B1)

Let oC be the topological interior of C as a subset of RK. (Note that oC 6= ∅ because Y is
thick.) For any x,y ∈ X , we define

BF
x,y := CF

x
∩ CF

y
= {c ∈ C ; x,y ∈ F (c)}, (B2)

and oBF
x,y := {c ∈ oC ; F (c) = {x,y}}. (B3)

Let K(x,y) := {k ∈ K; xk 6= yk}. Thus, for any µ ∈ ∆(Y), and any gain function
φ : [−1, 1]−→∗R, we have

(x− y) •
λ
φ(µ̃) =

∑

k∈K(x,y)

λk (xk − yk)φ(µ̃k), (B4)

because (xk − yk) = 0 for all k ∈ K \ K(x,y). In particular, if µ̃ ∈ BF
x,y —that is, if

{x,y} ⊆ F (X , µ) —then the sum (B4) must be zero.

Proof of Theorem B.1. It is easy to verify that the median rule satisfies the Reinforcement

and Continuity. It remains to verify the converse. So, let F : ∆(Y) ⇒ X be an additive
majority rule with gain function φ : [−1, 1]−→∗R.

Claim 1: Let x,y ∈ X , and let z := 1
2
(x+ y). Then z ∈BF

x,y.

Proof: Observe that zk = xk = yk for all k ∈ K \ K(x,y), while zk = 0 for all k ∈
K(x,y). Let ǫ > 0 and let zǫ := ǫx + (1 − ǫ) z. Then sign(zǫk) = xk for all k ∈ K;
thus, F (zǫ) = {x} by supermajority efficiency (because of Lemma A.3). Likewise,
if z−ǫ := ǫy + (1 − ǫ) z, then sign(z−ǫ

k ) = yk for all k ∈ K; thus, F (z−ǫ) = {y} by
supermajority efficiency. However, clearly lim

ǫ→0
zǫ = z = lim

ǫ→0
z−ǫ. Thus, z is a cluster

point of both CF
x
and CF

y
, so z ∈BF

x,y because F is satisfies Continuity. ✸ Claim 1

Claim 2: Let x,y ∈ X , and let b ∈BF
x,y. For all s ∈ [0, 1), we have sb+(1−s)x ∈ oCF

x

and sb+ (1− s)y ∈ oCF
y
.
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Proof: Lemma A.3 says that F is supermajority efficient (SME); thus, F (x) = {x}.
By hypothesis, {x,y} ⊆ F (b). Thus, for all s ∈ [0, 1) we have F (sb + (1 − s)x) =
F (x) ∩ F (b) = {x}, by Reinforcement. Thus, sb + (1 − s)x ∈ oCF

x
. By the same

argument, sb+ (1− s)y ∈ oCF
y
. ✸ Claim 2

Claim 3: For all x,y ∈ X , if there exists µ ∈ ∆(Y) with F (C, µ) = {x,y}, then oBF
x,y

is nonempty, and it is a relatively open subset of some affine hyperplane in RK.

Proof: Let K := |K|. For all x ∈ X , Reinforcement implies that CF
x

is a convex subset
of C. Continuity implies that CF

x
is closed. Thus, BF

x,y is closed and convex, because
BF
x,y = CF

x
∩CF

y
. But Claim 2 implies thatBF

x,y has empty interior; thus, it is a convex
subset of RK with dimension at most K − 1.

SME implies that F (x) = {x}. Thus, Continuity implies that F (c) = {x} for all
c ∈ C in some open ball around x. Thus, CF

x
contains an open ball around x. Thus,

CF
x
itself has nonempty interior, so it is a closed, convex set of dimension K.

Now, let b := µ̃. Then F (b) = {x,y}. Thus, Continuity yields some ǫ > 0 such
that, if D is the ball of radius ǫ around b in C, then F (d) ⊆ {x,y} for all d ∈ D.
Define the convex sets:

Dx := D \ CF
y
, Dy := D \ CF

x
, and D0 := D ∩BF

x,y.

Thus, Dx ⊂ oCF
x
, and Dy ⊂ oCF

y
, and D = Dx ⊔ D0 ⊔ Dy. Also, Dx and Dy are

nonempty, because Claim 2 implies that the line segment from b to x lies in Dx, while
the line segment from b to y lies in Dy.

Claim 3A: The set D \ D0 is path-disconnected.

Proof: Note that D \ D0 = Dx ⊔ Dy. Let dx ∈ Dx and dy ∈ Dy. Let P ⊂ D be any
path from dx to dy. Then F (p) ⊆ {x,y} for all p ∈ P . Continuity implies that
F (p) = {x} for all points p ∈ P close to dx and F (p) = {y} for all points p ∈ P
close to dy. Thus, Continuity yields some p0 ∈ P such that F (p0) = {x,y}; thus
p0 ∈ D0. Thus, dx and dy lie in different path components of D \ D0. ▽ Claim 3A

Claim 3A implies that D0 meets the interior of D, which means it meets oC (because
int(D) ⊆ oC). But clearly D0 ∩

oC ⊆ oBF
x,y; thus, we deduce that

oBF
x,y 6= ∅, as claimed.

Furthermore, D0 is a convex subset of D of dimension at most K − 1, which cuts
the ball D into at least two disconnected pieces (by Claim 3A). The only way this can
happen is if D0 = D ∩ H for some affine hyperplane H ⊂ RK. Now, BF

x,y is a convex
subset of RK, and we have just found an open ball D ⊂ RK such thatBF

x,y ∩ D ⊂ H;
thus,BF

x,y ⊂ H. Thus, oBF
x,y ⊂ H.

Finally, for any point b ∈ oBF
x,y, we can repeat the above construction to obtain an

H-relatively open neighbourhood D0 around b in oBF
x,y; thus,

oBF
x,y is a relatively open

subset of H. ✸ Claim 3

Claim 4: (a) For any x ∈ X , CF
x

is a closed, convex polyhedron in RK, and

(∂CF
x
) ∩ C =

⋃

y∈X\{x}

BF
x,y.
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(b) For all y ∈ X , if oBF
x,y 6= ∅, then it is contained a codimension-1 face of (∂CF

x
)∩C.

(c) Conversely, for each each codimension-1 face F of (∂CF
x
)∩C, there is some y ∈ X

such that ∅ 6= oBF
x,y ⊆ F .

Proof: (a) CF
x

is closed by Continuity, and convex by Reinforcement. For any y ∈ X ,
BF
x,y ⊂ ∂CF

x
by Claim 2. This proves that (∂CF

x
) ∩ C ⊇

⋃
y∈X\{x}B

F
x,y. To see the

opposite inclusion, let b ∈ (∂CF
x
) ∩ C. Then b is a cluster point of CF

x
, but b is also

a cluster point of CF
y

for some y 6= x. Thus, b ∈ CF
x

and b ∈ CF
y

by Continuity, so

b ∈BF
x,y. Thus, (∂C

F
x
) ∩ C ⊆

⋃

y∈X\{x}

BF
x,y.

(b) If oBF
x,y 6= ∅, then Claim 3 says it is a nonempty open subset of some hyperplane,

hence of codimension 1, hence contained in some codimension-1 face of ∂CF
x
.

(c) Let F be a codimension-1 face of (∂CF
x
) ∩ C; we claim that oBF

x,y ⊆ F for some
y ∈ X . To see this, first note that F ⊆

⋃
y∈X\{x}B

F
x,y, by part (a). Since this is a

finite collection of sets, there must be some y ∈ X such thatBF
x,y ∩F is a subset of F

with nonempty relative interior. Call this relative interior set B0.

We claim that B0 ⊂
oBF

x,y. To see this, consider the set Dy := {sb+(1−s)y; b ∈ B0

and s ∈ (0, 1)}. This is an open cone in RK with base B0, and Reinforcement says that
Dy ⊂ oCF

y
. Likewise, if we define Dx := {sb + (1 − s)x; b ∈ B0 and s ∈ (0, 1)},

then Dx is an open cone with base B0, and Reinforcement says that Dx ⊂ oCF
x
. Note

that Dy and Dx are disjoint. Since both have B0 as their base, it follows that the set
O := Dy ⊔ B0 ⊔ Dx is an open subset of RK, containing B0.

Now let b ∈ B0, and suppose by contradiction that b 6∈ oBF
x,y. Then F (b) ⊇ {x,y, z}

for some distinct z ∈ X \ {x,y}. Thus, if we define L := {sb+ (1− s)z; s ∈ (0, 1]},
then L is a line-segment with one end at b, and Reinforcement says that L ⊂ oCF

z
.

But O is an open neighbourhood of b, so L must pass through O to reach b. Thus,
oCF

z
∩O is nonempty. But since it is an intersection of two open sets, oCF

z
∩O itself is

open; thus, it must contain points in either Dx or Dy. But this is impossible, because
these are subsets of oCF

x
and oCF

y
, which are disjoint from oCF

z
by definition. To avoid

contradiction, we must have b ∈ oBF
x,y.

From this, it follows that F ∩ oBF
x,y 6= ∅ (because it contains B0). However, part (b)

tells us that oBF
x,y is entirely contained in some codimension-1 face of C; thus, we must

have oBF
x,y ⊆ F . ✸ Claim 4

The strategy of the proof is now as follows. Claim 4(a) tells us that the sets {CF
x
}x∈X

partition C into closed, convex polyhedra, which overlap only on their boundaries. By
a similar argument, the median rule also partitions C into closed, convex polyhedra
{Cmed

x
}x∈X , which overlap only on their boundaries. We will show that these two parti-

tions are identical. To do this, it suffices to show that the codimension-1 faces of CF
x
and

Cmed
x

are the same, for each x ∈ X . Claim 4(b,c) tells us that the codimension-1 faces of
CF
x
can be identified with the “boundary” sets oBF

x,y for y ∈ X ; thus, it suffices to show
that these boundary sets coincide with those of the median rule.
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The boundary face oBmed
x,y lies in the hyperplane Hx,y = {r ∈ RK; r •

λ
(x−y) = 0}. We

will show that oBF
x,y also lies in this hyperplane (see Claim 10 below). To do this, we will

show that, if we start with a point in oBF
x,y and perturb it slightly by a vector parallel

to Hx,y, then it remains in oBF
x,y. But to perform such a perturbation analysis on points

in oBF
x,y, we must perform a corresponding perturbation analysis on the gain function

φ. To do this, we need some control over “φ-increments” of the form φ(r + δ) − φ(r),
where r ∈ [−1, 1] and δ is a “small” perturbation. To acheive this, Claims 5 to 9
establish more and more precise control over these φ-increments. For all i ∈ K, let
ei := (0, 0, . . . , 0, 1, 0, . . . , 0), where the 1 appears in the ith coordinate.

Claim 5: Let x,y ∈ X , with d(x,y) ≥ 2 and let b ∈ oBF
x,y. Let i, j ∈ K(x,y) with

i 6= j.

(a) For any δi, δj ∈ R,

(x−y) •
λ
φ(b+δi ei+δj ej) = λi (xi−yi)

(
φ(bi + δi)− φ(bi)

)
+λj (xj−yj)

(
φ(bj + δj)− φ(bj)

)
.

(b) Let r := bi and s = bj. There exists ǫrs > 0 and a unique constant crs > 0
(which is determined by x, y, i, and j) such that, for any ǫ ∈ (−ǫrs, ǫrs), we have

φ(r + ǫ)− φ(r) =
λj

λi

(
φ(s+ crs ǫ)− φ(s)

)
.

Proof: (a) (x− y) •
λ
φ(b+ δi ei + δj ej)

(⋄)

∑

k∈K(x,y)\{i,j}

λk (xk − yk)φ(bk) + λi (xi − yi)φ(bi + δi) + λj (xj − yj)φ(bj + δj)

=
∑

k∈K(x,y)

λk (xk − yk)φ(bk) + λi(xi − yi)
(
φ(bi + δi)− φ(bi)

)

+ λj (xj − yj)
(
φ(bj + δj)− φ(bj)

)

(⋄)
(x− y) •

λ
φ(b) + λi (xi − yi)

(
φ(bi + δi)− φ(bi)

)
+ λj (xj − yj)

(
φ(bj + δj)− φ(bj)

)

(†)
λi (xi − yi)

(
φ(bi + δi)− φ(bi)

)
+ λj (xj − yj)

(
φ(bj + δj)− φ(bj)

)
.

Here, both (⋄) are because (x − y)k = (xk − yk) = 0 for all k ∈ K \ K(x,y), and (†)
is because b ∈BF

x,y, so that (x− y) •
λ
φ(b) = 0.

(b) By negating the i coordinate and/or j coordinate of X and Y if necessary, we can
assume without loss of generality that xi = yj = 1 and xj = yi = −1. Claim 3 yields
some vector v ∈ RK and some constant a ∈ R such that oBF

x,y is a relatively open
subset of the affine hyperplane H := {r ∈ RK; v • r = a}. Let crs := −vi/vj. For any
ǫ ∈ R, let bǫ := b+ ǫ ei + crs ǫ ej. Then

bǫ • v = b • v + ǫ ei • v −
vi
vj

ǫ ej • v = a+ ǫ vi −
vi
vj

ǫ vj = a. (B5)
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Thus, bǫ ∈ H. Thus, if |ǫ| is small enough, then bǫ ∈
oBF

x,y. Thus,

0 = (x− y) •
λ
φ(bǫ) (∗)

2
[
λi

(
φ(r + ǫ)− φ(r)

)
− λj

(
φ(s+ crs ǫ)− φ(s)

)]
,

where (∗) is by setting δi := ǫ and δj := crs ǫ in part (a), and noting that (xi − yi) = 2

while (xj−yj) = −2. Thus, we conclude that φ(r+ǫ)−φ(r) =
λj

λi

(
φ(s+ crs ǫ)− φ(s)

)
,

as desired. Finally, observe that crs > 0 and is unique, because φ is strictly increasing.
✸ Claim 5

Claim 6: Let x,y ∈ X be such that d(x,y) ≥ 3 and oBF
x,y 6= ∅. Let b ∈ oBF

x,y. Let
i, j ∈ K(x,y) with i 6= j. Let r := bi and s = bj.

(a) There is an open interval Tr ⊆ [−1, 1] containing r such that, for all t ∈ Tr, we have
cts = crs, where crs and cts are as in Claim 5(b).

(b) For all t ∈ Tr, there is an open interval Etr containing 0 such that, for all ǫ ∈ Etr,
we have φ(r + ǫ)− φ(r) = φ(t+ ǫ)− φ(t).

Proof: (a) Since d(x,y) ≥ 3, there is a third coordinate k ∈ K(x,y) \ {i, j}.

Claim 3 yields some vector v ∈ RK and some constant a ∈ R such that oBF
x,y is a

relatively open subset of the affine hyperplane H := {r ∈ RK; v • r = a}. For any
η ∈ R, let bη := b + η ei − (vi/vk) η ek. Then bη ∈ H, by an argument identical to
equation (B5). Thus, there is some η > 0 such that bη ∈ oBF

x,y for all η ∈ (−η, η).
Let Tr := (r − η, r + η). Let t ∈ Tr, and let η := t − r. Then bη ∈ oBF

x,y, and by
construction we have bηi = bi + η = r + η = t, while bηj = bj = s. Then, repeating
the construction in Claim 5(b) using bη in place of b, we get φ(t + ǫ) − φ(t) =
λj

λi

(
φ(s+ ctsǫ)− φ(s)

)
, for all sufficiently small ǫ, where cts = −vi/vj. This works for

all t ∈ Tr. But r ∈ Tr; thus, in particular crs = −vi/vj. Thus, cts = crs for all t ∈ Tr,
as claimed.

(b) Let t ∈ Tr, and let ǫt := min{ǫrs, ǫts}, where these are defined as in Claim 5(b). Then
ǫt > 0, and for all ǫ ∈ (−ǫt, ǫt), we have

φ(r + ǫ)− φ(r)
(∗)

λj

λi

(
φ(s+ cr,s ǫ)− φ(s)

)
(†)

φ(t+ ǫ)− φ(t),

where (∗) is by Claim 5(b), and (†) is by Claim 5(b) and part (a). ✸ Claim 6

Let R := sup{bi; b ∈ oBF
x,y and i ∈ K(x,y) for some x,y ∈ X with d(x,y) ≥ 3}. Note

that R > 0 if and only if F and C are compatible. Thus, Claims 7, 8 and 9 (below) are
non-vacuous if C is compatible with F .

Claim 7: (Assuming compatibility) For all r ∈
(
0, R

)
, there is an open interval Tr

containing r, and for all t ∈ Tr, there is an open interval Etr containing 0, such that, for
any ǫ ∈ Etr, we have φ(t+ ǫ)− φ(t) = φ(r + ǫ)− φ(r).
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Proof: Since r ≤ R, there exist x,y ∈ X with d(x,y) ≥ 3 and some b ∈ oBF
x,y and

i ∈ K(x,y) such that r ≤ bi ≤ R. Let s = r/bi; thus, s ∈ [0, 1] and r = s bi. Let
z := 1

2
(x+y), and then let bs := sb+(1− s)z. Then F (bs) = F (b)∩F (z) = {x,y},

because F satisfies Reinforcement and F (z) ⊇ {x,y} by Claim 1. Thus, bs ∈ oBF
x,y.

Note that bsi = s bi = r. Thus, Claim 6 yields some neighbourhood Tr around r, and
for all t ∈ Tr, an open interval Etr containing 0, such that, for all t ∈ Tr and ǫ ∈ Etr
we have φ(t+ ǫ)− φ(t) = φ(r + ǫ)− φ(r). ✸ Claim 7

Claim 8: (Assuming compatibility) For all r, s ∈
(
0, R

)
, there exists ǫ = ǫ(r, s) > 0

containing 0, such that, for any ǫ ∈ (−ǫ, ǫ), we have φ(s+ ǫ)− φ(s) = φ(r+ ǫ)− φ(r).

Proof: Without loss of generality, suppose r < s. For all q ∈ [r, s], let Tq be as in
Claim 7. The family {Tq}q∈[r,s] is an open cover of the compact set [r, s], so it has
a finite subcover, say {Tq0 , . . . , TqN}, where r = q0 ≤ q1 < q2 < · · · < qN ≤ s =
qN . By dropping to a subsequence of {q0, q1, . . . , qN} if necessary, we can ensure
that qn ∈ Tqn−1 for all n ∈ [1 . . . N ] (because these intervals cover [r, s]). For all
n ∈ [1 . . . N ], let Eqn,qn−1 be the open interval around 0 defined in Claim 7. Let
E := Eq1,q0 ∩ Eq2,q1 ∩ · · · ∩ EqN ,qN−1

; then E is an open interval containing 0, so there is
some ǫ > 0 such that (−ǫ, ǫ) ⊆ E . For all ǫ ∈ (−ǫ, ǫ), we have

φ(qN+ǫ)−φ(qN) = φ(qN−1+ǫ)−φ(qN−1) = · · · = φ(q1+ǫ)−φ(q1) = φ(q0+ǫ)−φ(q0),

where each equality is an invocation of Claim 7. In other words, φ(s + ǫ) − φ(s) =
φ(r + ǫ)− φ(r), as claimed. ✸ Claim 8

Claim 9: (Assuming compatibility) For all r ∈
(
0, R

)
, there is some δ = δ(r) > 0

such that for any q ∈ Q ∩ [−1, 1], we have φ(r + q δ)− φ(r) = q · [φ(r + δ)− φ(s)].

Proof: Find δ > 0 such that 0 < r− δ < r+ δ < R. Thus, if we define S := [r− δ, r+ δ],
then S ⊂ (0, R). Thus, for all s ∈ S, Claim 8 yields some ǫs := ǫ(r, s) > 0 such that
φ(s + ǫ) − φ(s) = φ(r + ǫ) − φ(r) for all ǫ ∈ (−ǫs, ǫs). It is easily verified that the
function S ∋ s 7→ ǫs ∈ R+ is continuous. The interval S is compact. Thus, there
exists some ǫ′ > 0 such that ǫs ≥ ǫ′ for all s ∈ S.

Now, let M0 ∈ N be large enough that δ/M0 < ǫ′. For any rational number q ∈
[−1, 1], we can write q = N/M for some N ∈ [−M . . .M ] and some M ∈ N with
M ≥ M0. Thus, if we define ǫ := δ/M , then ǫ < ǫ′, and q δ = N ǫ, and we have

φ(r + q δ)− φ(r) = φ(r +N ǫ)− φ(r) =
N∑

n=1

(
φ(r + n ǫ)− φ(r + (n− 1) ǫ)

)

(∗)

N∑

n=1

(
φ(r + ǫ)− φ(r)

)
= N ·

(
φ(r + ǫ)− φ(r)

)

= N ·

(
φ

(
r +

1

M
δ

)
− φ(r)

)
, (B6)
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where (∗) is by N applications of Claim 8 (which applies because for all n ∈ [1 . . . N ],
we have s := r + (n − 1) ǫ ∈ S and ǫ < ǫ′ ≤ ǫs). In particular, if q = 1 (so that
N = M), then (B6) yields

φ(r + δ)− φ(r) = M ·

(
φ

(
r +

δ

M

)
− φ(r)

)
,

which means that

φ

(
r +

1

M
δ

)
− φ(r) =

1

M

(
φ(r + δ)− φ(r)

)
. (B7)

For any q = N/M ∈ [−1, 1], if we substitute (B7) into (B6), we get

φ(r + q δ)− φ(r) =
N

M
·
(
φ (r + δ)− φ(r)

)
= q ·

(
φ (r + δ)− φ(r)

)
,

as desired. ✸ Claim 9

Claim 10: Let x,y ∈ X be distinct, and let Hx,y := {r ∈ RK; (x − y) •
λ
r = 0}. If

oBF
x,y 6= ∅, then oBF

x,y ⊂ Hx,y.

Proof: First suppose d(x,y) = 1, and let K(x,y) = {i}. Then Hx,y = {r ∈ RK; ri = 0}.
By negating the ith coordinate of X and Y if necessary, we can assume without loss
of generality that xi = 1 and yi = −1. Then for any µ ∈ ∆(Y), if µ̃i > 0 then y 6∈
SME (C, µ) (because γx,µ(q) ≥ γy,µ(q) for all q ∈ [0, 1], and γx,µ(q) ≥ γy,µ(q) + λi for
all q ∈ [0, µ̃i].) Likewise, if µ̃i < 0 then x 6∈ SME (C, µ). Thus, if {x,y} ⊆ SME (C, µ),
then we must have µ̃i = 0. Since F is SME, it follows thatBF

x,y ⊂ Hx,y.

Now suppose d(x,y) ≥ 2. There are now two cases: Either C is compatible with F ,
or it is not compatible with F , but has balanced weights.

Case A. Suppose C is not compatible with F , but has balanced weights. If x,y ∈ X ,
and oBF

x,y 6= ∅, then we must have d(x,y) ≤ 2 (because C is not compatible with
F ). We have already dealt with the case d(x,y) = 1, so suppose d(x,y) = 2. Let
K(x,y) = {i, j}. By balanced weights, we must have λi = λj. For simplicity, suppose
λi = λj = 1. By negating the ith and jth coordinate of X and Y if necessary, we
can assume without loss of generality that xi = yj = 1 and yi = xj = −1. Thus,
Hx,y = {r ∈ RK; ri = rj}. Now, for any µ ∈ ∆(Y), if µ̃i > µ̃j then y 6∈ SME (C, µ)
(because γx,µ(q) ≥ γy,µ(q) for all q ∈ [0, 1], and γx,µ(q) ≥ γy,µ(q)+1 for all q ∈ (µ̃j, µ̃i].)
Likewise, if µ̃i < µ̃j then x 6∈ SME (C, µ). Thus, if {x,y} ⊆ SME (C, µ), then we must
have µ̃i = µ̃j. Since F is SME, it follows thatBF

x,y ⊂ Hx,y.

Case B. Suppose F and C are compatible. Then R > 0. Let x,y ∈ X , and suppose
d(x,y) ≥ 2. Let J := K(x,y) and let L := K \ J . By negating the i and/or j
coordinates of X and Y if necessary, we can assume without loss of generality that
xj = 1 and yj = −1 for all j ∈ J . Let z := 1

2
(x+ y). Let b ∈ oBF

x,y. For all u ∈ [0, 1],
let bu := ub+ (1− u)z. Then bu ∈ oBF

x,y by Claim 1 and Reinforcement, as explained

above. If u is small enough, then we have bui ∈ (0, R) for all i ∈ K(x,y).

Claim 10A: For any distinct i, j ∈ K(x,y), there exists ǫ > 0 such that, bu +
ǫ (λj ei − λi ej) ∈

oBF
x,y.

33



Proof: Without loss of generality, suppose λi ≥ λj. For any δ > 0 and θ ∈ [0, 1], let
bθ
δ := bu+ θδ ei− δ ej. Since F (bu) = {x,y} and F satisfies Continuity, there exists

some ǫ > 0 such that, for all ǫ1, ǫ2 ∈ (−ǫ, ǫ), we have F (bu + ǫ1 ei + ǫ2 ej) ⊆ {x,y}.
In particular, for any δ ∈ (0, ǫ), and θ ∈ [0, 1], we have F (bθ

δ) ⊆ {x,y}. Without
loss of generality, suppose ǫ ≤ ǫ(bui , b

u
j ), where ǫ(bui , b

u
j ) is as in Claim 8. Let δ(bui )

be defined as in Claim 9, and find some small enough q ∈ Q ∩ [0, 1] such that, if
δ := q δ(bui ), then δ ∈ (0, ǫ).

Let θ :=
λj

λi
. Then θ ∈ [0, 1]. We will show that bθ

δ ∈
oBF

x,y. If we knew that φ was
linear, then we could deduce that that φ(bui + θδ)− φ(bui ) = θ · [φ(bui + δ)− φ(bui )],
and from here, use Claims 8 and 5(a) to obtain (x − y) •

λ
φ(bθ

δ) = 0 and hence

F (bθ
δ) = {x,y}. . But we don’t know that φ is linear; instead, Claim 9 only tells us

that φ is “locally Q-linear”. Thus, we must approximate θ with rational numbers.
Let {qn}

∞
n=1 be a decreasing sequence in Q ∩ [0, 1] with limn→∞ qn = θ. For all

n ∈ N, we have

φ(bui + qnδ)− φ(bui ) (∗)
qn [φ(b

u
i + δ)− φ(bui )] (†)

qn
[
φ(buj )− φ(buj − δ)

]

>
(⋄)

λj

λi

[
φ(buj )− φ(buj − δ)

]
, and thus,

λi [φ(b
u
i + qnδ)− φ(bui )] > λj

[
φ(buj )− φ(buj − δ)

]
, (B8)

where (∗) is by setting r := bui in Claim 9, (†) is by setting r := bui , s := buj − δ, and

ǫ := δ in Claim 8, and (⋄) is because qn > θ =
λj

λi
.

Since (xi − yi) = (xj − yj) = 2, the inequality (B8) yields

λi (xi − yi) [φ(b
u
i + qnδ)− φ(bui )] + λj (xj − yj)

[
φ(buj − δ)− φ(buj )

]
> 0.

(B9)
Thus, Claim 5(a) yields (x − y) •

λ
φ(bqn

δ ) > 0. Thus, y 6∈ F (bqn
δ ). But we have

already noted that ∅ 6= F (bqn
δ ) ⊆ {x,y}. Thus, we must have F (bqn

δ ) = {x}. But
limn→∞ qn = θ, so limn→∞ bqn

δ = bθ
δ. Thus, Continuity implies that x ∈ F (bθ

δ) also.
Now let {qn}

∞
n=1 be an increasing sequence in Q∩[0, 1] with limn→∞ qn = θ. For all

n ∈ N, we obtain λi (xi−yi) [φ(b
u
i + qnδ)− φ(bui )]+λj (xj−yj)

[
φ(buj − δ)− φ(buj )

]
<

0, by an argument similar to inequality (B9). Thus, Claim 5(a) yields (x−y) •
λ
φ(bqn

δ ) <
0. Thus, by an argument similar to the previous paragraph, we get F (bqn

δ ) = {y},
for all n ∈ N. But limn→∞ qn = θ, so limn→∞ bqn

δ = bθ
δ. Thus, Continuity implies

that y ∈ F (bθ
δ) also.

Combining these observations, we deduce that {x,y} ⊆ F (bθ
δ). But we have

already noted that F (bθ
δ) ⊆ {x,y}. Thus, F (bθ

δ) ⊆ {x,y} —that is, bθ
δ ∈ oBF

x,y.
Now define ǫ := δ/λi; then bθ

δ = bu + ǫ (λj ei − λi ej), which proves the claim.
▽ Claim 10A

Claim 10B: Let ℓ ∈ L. If ǫ > 0 is small enough, then bu + ǫ eℓ ∈
oBF

x,y.

Proof: Let ǫ > 0. If ǫ is small enough, then Continuity implies that ∅ 6= F (bu + ǫ eℓ) ⊆
{x,y} (because F (bu) = {x,y}). But (x−y) •

λ
φ(bu + ǫ eℓ) = (x−y) •

λ
φ(bu) = 0

(because φ(bu+ ǫ eℓ)j = φ(bj) for all j ∈ J , while (x−y)k = 0 for all k ∈ L). Thus,
we must have F (bu + ǫ eℓ) = {x,y}; hence bu + ǫ eℓ ∈

oBF
x,y. ▽ Claim 10B
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Claim 3 says that oBF
x,y is a relatively open subset of some affine hyperplane H. Claims

10A and 10B imply that H is parallel to all vectors in the set {(λj ei − λi ej); i, j ∈
J }∪ {eℓ; ℓ ∈ L}. But the hyperplane Hx,y is spanned by this set. Thus, H is parallel
to Hx,y. Let z = (x + y)/2. Then z ∈ Hx,y. But Claim 1 and Reinforcement imply
that z is a cluster point of oBF

x,y. Thus, H = Hx,y. ✸ Claim 10

For any x ∈ X , let Cmed
x

:= {c ∈ C; x ∈ Median (X , c)}. Then Cmed
x

is a convex
polyhedron whose supporting hyperplanes are the sets Hx,y (from Claim 10) for all
y ∈ X \ {y}, along with the supporting hyperplanes of C itself. Claims 4 and 10 show
that every one of these supporting hyperplanes is also a supporting hyperplane of the
convex polyhedron CF

x
. Thus, CF

x
⊆ Cmed

x
for all x ∈ X . However, the systems {CF

x
}x∈X

and {Cmed
x

}x∈X are each partitions of C into closed convex polyhedra which meet only
along their boundaries. Thus, they must be identical. Thus, F is the median rule. ✷

Proof of Theorem 1. It is easy to verify that the median rule (3) satisfies ESME, Continuity,
and Reinforcement; we must verify the converse. So, suppose F is a rule satisfying these
axioms. Proposition 1 says that F is an additive majority rule, because it satisfies ESME

and Continuity. Any unweighted judgement context obviously has balanced weights.
Thus, if F also satisfies Reinforcement, then Theorem B.1 says it is the median rule. ✷

Theorem 2 is a consequence of a more general result, involving a more complicated struc-
tural condition. Let F be a judgement aggregation rule on the context C = (K,λ,X ,Y),
and let Θ ⊂ ∆(Y) be a collection of profiles. Let VF

θ := {x ∈ X ; ∃ µ ∈ Θ such that

F (µ) = {x}}. For any v,w ∈ VF
θ , we write v

F

∼ w if d(v,w) ≤ 2 and there is some µ ∈ Θ

with F (µ) = {v,w}. Thus, (VF
Θ ,

F

∼) is a graph. This graph is path-connected if, for any

u,w ∈ VF
θ , there is some path u

F

∼ v1
F

∼ v2
F

∼ · · ·
F

∼ vN
F

∼ w connecting them in VF
θ .

We will say that the judgement context C is frangible if for any additive majority rule
F satisfying Continuity, there exists an open, connected subset Θ ⊂ ∆(Y) such that the

graph (VF
Θ ,

F

∼) is not path-connected. Theorem 2 is a corollary of the next result.

Theorem B.2 Let C = (K,λ,X ,Y) be a frangible weighted judgement context such that

Y is thick, and let F : ∆(Y) ⇒ X be a judgement aggregation rule. Then F satisfies

WESME, Continuity, and Reinforcement if and only if F is the median rule (8).

Proof: Suppose C is frangible and Y is thick, and F is an additive majority rule satisfying
Continuity and Reinforcement. It suffices to show that C and F are compatible.

Since C is frangible, there is some open, connected Θ ⊆ ∆(Y) and some v,w ∈ VF
Θ in

different
F

∼-connected components. Let Θ̃ := {µ̃; µ ∈ Θ}; this is an open, connected
subset of RK (because the function ∆(Y) ∋ µ 7→ µ̃ ∈ RK is open and continuous). Let

C = conv(Y); then Θ̃ ⊆ C. As explained after Claim 4 in the proof of Theorem B.1,
the sets {CF

x
}x∈X partition C into closed, convex polyhedra, which overlap only on their

boundaries. Now, Θ̃ intersects oCF
v
and oCF

w
(because v,w ∈ VF

Θ ). Thus, it is possible to
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construct a continuous path α : [0, 1]−→Θ̃ with α(0) ∈ oCF
v

and α(1) ∈ oCF
w
, such that

for all x,y ∈ X , if α crosses from CF
x

to CF
y
, then it does so by passing through the

codimension-1 face between CF
x
and CF

y
—call this face Fx,y.

In fact, we will now show that we can assume without loss of generality that for all
x,y ∈ X , if α crosses from CF

x
to CF

y
, then it does so by passing through the set oBF

x,y.
To see this, let t ∈ [0, 1], and suppose α(t) ∈ Fx,y for some x,y ∈ X . Claim 4(b,c) in
the proof of Theorem B.1 says that oBF

x,y is nonempty, and is a subset of Fx,y. So, let
b ∈ oBF

x,y, let ǫ > 0, and replace α with the path α′ defined:

α′(s) :=

{
α(s) if s 6∈ (t− ǫ, t+ ǫ);

(ǫ− |s− t|)b+ (1− ǫ+ |s− t|)α(s) if s ∈ (t− ǫ, t+ ǫ).

Recall that Θ̃ is open; thus, if ǫ is small enough, then α′(s) ∈ Θ̃ for all s ∈ [0, 1]; further-
more, α′ passes through exactly the same polyhedral cells as α, and its passage through
all other faces is unchanged. However, α′(t) = ǫb + (1 − ǫ)α(t). Thus, Reinforcement

yields F [α′(t)] = F (b) ∩ F [α(t)] = {x,y}, so that α′(t) ∈ oBF
x,y, as desired.

Thus, we can construct α such that for all t ∈ [0, 1], either α(t) ∈ oCF
x
for some x ∈ X

(so that F [α(t)] = {x}) or α(t) ∈ oBF
x,y for some x,y ∈ X (so that F [α(t)] = {x,y}).

Now, suppose that C is not compatible with F . Then whenever α(t) ∈ oBF
x,y for some

x,y ∈ X , we must have d(x,y) = 2, and hence, x
F

∼ y. Thus, the function F ◦ α

defines a path from v to w in the graph (VF
Θ ,

F

∼). But v and w are in different connected

components of (VF
Θ ,

F

∼). Contradiction.

To avoid this contradiction, C must be compatible with F . Then Theorem B.1 says
that F is the median rule (8). ✷

Case (a) of Theorem 2 follows from Theorem B.2 and the next result.

Lemma B.1 Let C = (K,λ,X ,Y). If X is rugged and Y is McGarvey, then C is frangible.

Proof: Let z ∈ {±1}K \ X and x,y ∈ Xz be such that d(x, z) 6= d(y, z). (By ruggedness,
such a z exists). Let Θ := {µ ∈ ∆(Y); xµ = z} = {µ ∈ ∆(Y); sign(µ̃k) = zk, for all
k ∈ K}.

Claim 1: Θ is nonempty, open and convex (hence, connected).

Proof: Θ is nonempty because Y is McGarvey. It is defined by a finite system of strict
linear inequalities, so it is open and convex. ✸ Claim 1

Now let F be any additive majority rule satisfying Continuity. We will show that (VF
Θ ,

F

∼)
is disconnected. First, we need some terminology. A view x ∈ X is Condorcet admissible

for µ if there does not exist any other y ∈ X such that yk µ̃k ≥ xk µ̃k for all k ∈ K —in
other words, there is no view y ∈ X which agrees with the majority in a strictly larger set
of issues than those where x agrees with the majority. Let Cond(X , µ) ⊆ X be the set of
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all views that are Condorcet admissible for µ.21 It is easily verified that supermajority ef-
ficiency (for any λ) implies Condorcet admissibility. Thus, SME (X ,λ, µ) ⊆ Cond(X , µ).

Claim 2: VF
Θ = Xz.

Proof: “⊆ For any µ ∈ Θ, we must have F (µ) ⊆ SME (X , µ) ⊆ Cond(X , µ). But
Cond(X , µ) ⊆ Xz by Lemma 1.5 of Nehring et al. (2014).

“⊇” Let x ∈ Xz. Let J := {j ∈ K; xj = zj}. By negating certain coordinates of
X and Y if necessary, we can assume without loss of generality that zj = xj = 1 for
all j ∈ J . Since Y is McGarvey, there exists some µ ∈ ∆(Y) such that µ̃j > 0 for all
j ∈ J and µ̃k = 0 for all k ∈ K \ J (by Footnote 17). Since z is near to x, there is
no other y ∈ X \ {x} such that yj = 1 for all j ∈ J . Thus, SME (X , µ) = {x}. Thus,
F (µ) = {x}, because F is supermajority efficient by Lemma A.3.

Let θ ∈ Θ be arbitrary. For all s ∈ [0, 1], define µs := s θ + (1 − s)µ. Thus,
lims→0 µ

s = µ. Thus, Continuity implies that F (µs) = {x} for all s sufficiently close
to zero. But for all s > 0, we have µs ∈ Θ (because for all k ∈ K we have sign(µ̃s

k) =

sign(s θ̃k + (1 − s) µ̃k) = sign(θ̃k) = zk). Thus, x ∈ VF
Θ . This argument works for all

x ∈ Xz, so VF
Θ ⊇ Xz, as claimed. ✸ Claim 2

Claim 3: For any v,w ∈ VF
Θ , if v and w are in the same

F

∼-connected component,
then d(v, z) = d(w, z).

Proof: It suffices to prove this in the case when v
F

∼ w; the general case follows by
induction on path length. Now, if v

F

∼ w, then d(v,w) = 2. Thus, K(v,w) = {i, j}
for some i, j ∈ K.

Claim 3A: Either i ∈ K(v, z) or i ∈ K(w, z), but not both. Likewise, either
j ∈ K(v, z) or j ∈ K(w, z), but not both.

Proof: Since vi = −wi, we either have vi = −zi or wi = −zi. But if vi = −zi, then
evidently wi = zi. This proves the first claim. The second is similar. ▽ Claim 3A

Claim 3B: Exactly one of i or j is in K(v, z).

Proof: (by contradiction) If {i, j} ⊆ K(v, z), then Claim 3A implies K(w, z) =
K(v, z) \ {i, j}, which means K(w, z) ( K(v, z), which contradicts the fact that
v is near to z. On the other hand, if {i, j} is disjoint from K(v, z), then Claim 3A
implies K(w, z) = K(v, z) ⊔ {i, j}, which means K(v, z) ( K(w, z), which contra-
dicts the fact that w is near to z. ▽ Claim 3B

Without loss of generality, suppose i ∈ K(v, z) and j 6∈ K(v, z). Thus, Claim 3A says
i 6∈ K(w, z). But by an argument similar to Claim 3B, exactly one of i or j is in
K(w, z). Thus, we must have j ∈ K(w, z). At this point, we deduce that K(w, z) =
{j} ⊔ K(v, z) \ {i}. Thus, |K(w, z)| = |K(v, z)|. In other words, d(v, z) = d(w, z), as
claimed. ✸ Claim 3

21 See Nehring et al. (2014, 2016) and Nehring and Pivato (2014) for an analysis of Condorcet admissi-
bility in judgement aggregation.
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By the definition of z, there exist x,y ∈ Xz such that d(x, z) 6= d(y, z). Claim 2 says that

x,y ∈ VF
Θ , and Claim 3 implies that they must be in different

F

∼-connected components.

Thus, (VF
Θ ,

F

∼) is disconnected, as desired.

This argument works for any additive majority rule (actually, any supermajority effi-
cient rule) satisfying Continuity. Thus, C is frangible. ✷

Case (b) of Theorem 2 follows from Theorem B.2 and the next result.

Lemma B.2 Let C = (K,λ,X ,Y). If X ⊆ {±1}K is distal, then C is frangible.

Proof: By hypothesis, there exist some x, z ∈ X with x near to z and d(x, z) ≥ 3. Let δx
and δz be the point masses at x and z, respectively, and let µ := 1

2
(δx + δz). Let Θ be

an open ball of small radius around µ; Θ is obviously open and connected.

Now let F be any additive majority rule satisfying Continuity. We claim that VF
θ ⊆

{x, z}. To see this, let J := K(x,y) and let L := K \ J . Without loss of generality,
suppose xℓ = zℓ = 1 for all ℓ ∈ L. Then µ̃ℓ = 1 for all ℓ ∈ L, while µ̃j = 0 for all
j ∈ J . Fix a weight vector λ ∈ RK

+, and let Λ =
∑

ℓ∈L λℓ. Then for any y ∈ X and
any q ∈ [0, 1], we have γλ

µ,x(q) = γλ

µ,z(q) = Λ ≥ γλ

µ,y(q), with equality if and only if y is
between x and z. But x is near to z, so there is no y ∈ X \ {x,y} which is between x
and z. Thus, SME (X , µ) ⊆ {x, z}. Thus, Lemma A.3 implies that F (µ) ⊆ {x, z}. If we
make the ball Θ small enough, then Continuity implies that F (θ) ⊆ {x, z} for all θ ∈ Θ;
thus, VF

θ ⊆ {x, z}.

To see that VF
θ = {x, z}, define µn := n+1

2n
δx + n−1

2n
δz for all n ∈ N. Then by

an argument similar to the previous paragraph, supermajority efficiency implies that
Fn(µn) = {x} for all n ∈ N. If n is large enough, then µn ∈ Θ; thus, x ∈ VF

Θ . By an
identical argument (defining µn := n−1

2n
δx + n+1

2n
δz for all n ∈ N), we obtain z ∈ VF

Θ .
Thus, VF

θ = {x, z}, as claimed. But d(x, z) ≥ 3; thus, (VF
θ ,∼) is not path-connected,

and thus, C is frangible. ✷

Proof of Theorem 2. It is easy to verify that the weighted median rule (8) satisfiesWESME,
Continuity, and Reinforcement; we must verify the converse. If F is a rule satisfying
WESME and Continuity, then Proposition 3 says that F is an additive majority rule.
Suppose F also satisfies Reinforcement. If X is rugged and Y is McGarvey, then Lemma
B.1 says C is frangible. On the other hand, if X is distal and Y is thick, then Lemma
B.2 says C is frangible. Either way, Theorem B.2 implies that F is the median rule. ✷
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