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Abstract

Votes and seats satisfy only two of seven criteria for application of the Aitchison distance. Vectors of
votes and seats, say for elections for political parties the House of Representatives, can be nor-
malised to 1 or 100%, and then have the outward appearance of compositional data. The Aitchison
geometry and distance for compositional data then might be considered for votes and seats too.
However, there is an essential zero when a party gets votes but doesn’t gain a seat, and a zero gives
an undefined logratio. In geology, changing from weights to volumes affects the percentages but
not the Aitchison distance. For votes and seats there are no different scales or densities per party
component however, and thus reportioning (perturbation) would be improper. Another key issue is
subcompositional dominance. For votes {10, 20, 70} and seats {20, 10, 70} it is essential that we
consider three parties. For a disproportionality measure we would value it positively that there is a
match on 70. The Aitchison distance looks at the ratio {10, 20, 70} / {20, 10, 70} ={1/2, 2, 1} and then
neglects a ratio equal to 1. In this case it essentially compares the subcompositions, i.e. votes {10,
20} and seats {20, 10}, rescales to {1/3, 2/3} and {2/3, 1/3}, and finds high disproportionality. This
means that it essentially looks at a two party outcome instead of a three party outcome. It follows
that votes and seats are better served by another distance measure. Suggested is the angular
distance and the Sine-Diagonal Inequality / Disproportionality (SDID) measure based upon this.
Users may of course apply both the angular and the Aitchison measures while being aware of the
crucial differences in properties.
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1. Introduction

This paper solves an issue on content and employs some didactics to do so.

On content: Votes and seats satisfy only two out of seven criteria for application of the Aitchison
distance. It follows that votes and seats are better served by another distance measure, notably the
angular distance and its transforms. Nevertheless, the Aitchison geometry might be a useful environ-
ment for the analysis of compositional data, and thus we should be aware of the properties.

On didactics: Mathematics provides clear definitions of improduct, norm and distance, and we are
familiar with them for Euclidean space. When we apply these notions to different spaces then we
find that understanding becomes still complicated. Especially education is challenged on those
concepts for different spaces. It appears that Mathematica allows us to better grasp the issues.
Mathematica is a system for doing mathematics on the computer. It allows the combination of
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texts, symbols, numbers, graphs, patterns, motion, sound, etcetera. The following application to
the Aitchison geometry again shows the power of using this integrated system.

We consider three spaces:

(1) the original Euclidean space with vectors (of votes and seats) x> 0

(2) the space with shifted logratio Log[(x+ 1) / (y + 1)]

(3) the space with centered logratio Log[x / g[x]], with y = g[x] the geometric mean.
We first review the notions of improduct, norm and distance for Euclidean space.

Subsequently we introduce the notion of compositional data: vectors x> 0 such that 1’x=1, or that
the sum of the components add up to 1. These vectors are in the unit simplex, or, the endpoints of
the vectors are onto the plane that characterises the unit simplex. Potentially some components
might be zero, and these might be neglected unless there are essential zeros.

Our target application concerns votes and seats. For example, the outcomes for Parties Aand B
might be votes = {49, 51} and seats = {51, 49}, both in percentages. Those votes and seats are compo-
sitional data, at least in outward appearance. We would be interested in a measure of distance
between these two outcomes. Political science on electoral systems has provided various measures
of distance, of which we will mention the two main ones: The Loosemore-Hanby measure is based
upon the absolute difference (ALHID) and the Gallagher measure is based upon the Euclidean
distance (EGID), both with corrections to get an outcome in [0, 1], [0, 10] or [0, 100] depending upon
the preferences of the researcher. It appears that these measures have some drawbacks. My sugges-
tion from econometrics and political economy is to use the angle between the vectors, which in
particular gives the transformation into the Sine-Diagonal Inequality / Disproportionality (SDID), see
Colignatus (2017ac). For this present notebook it suffices to use a simpler indicator. Since the
maximum angle between nonnegative vectors is 90 degrees, we can interprete the angle also as
share of 90 degrees, henceforth AngulariD.

The motivation for this notebook is that we should not overlook the suggestion of the Aitchison
distance for compositional data. This notebook first discusses this geometry so that we understand
its key properties. The two penultimate sections discuss the relevance of the Aitchison geometry for
votes and seats. The conclusion is that the Aitchison geometry is less suited for a disproportionality
measure for votes and seats. Obviously we may use both measures as long as we understand the
properties.

For the literature on compositional data, it would be useful to distinguish between cases where the
Aitchison geometry applies and those where it doesn’t apply. Perhaps it might suffice to say that
the criterion of being on the unit simplex is not enough to count as proper compositional data, so
that votes and seats are only pseudo-compositional data.

For compositional data, the ratios x; / x; are regarded as generating more relevant information than
the absolute values. Aitchison (1926-2016) proposed the “log-ratio” approach, using Log[x; / x;] =
Log[x;] - Log[xj] as the relevant measurement, corrected for the geometric means. The centered

logratio approach essentially switches to the log of the ratio to the geometric average, and then
applies the distance notions of the Euclidean space to those. To do so, however, still requires some
essential understanding of geometry. Researchers in a particular field of interest obviously must
understand what the transformations imply for the field of interest.
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For proper compositional data, it appears that the centered logratio transformation is more impor-
tant than the phenomenon that the data can be seen as being on the unit simplex. The conclusion
of this present discussion may also be summarized as that the centered logratio transformation is
inadequate for votes and seats.

For didactic reasons, we look first at an intermediate model that allows us to better grasp what
Aitchison does. This approach uses the transform Log[x + 1] = x, which approximation is fairly good
for values of x = 0. The addition of 1 moves the vector upwards but the logarithm moves it back
towards the origin. We then look at the revised ratio Log[(x; + 1) / (x; + 1)] = Log[x; + 1] - Log[xj +1]=
X; - x;. This has both a notion of a ratio and outcomes similar to the absolute values. For example,
comparing 10% to 5%, then Log[10/5] = Log[2] = 70% while Log[1.1 / 1.05] = 5%. This didactic setup
allows us to get used to the notion of a ratio and the log transform, and repeats the triad of improd-
uct, norm and distance, so that we get a better feel for that triad. This approach however fails for
votes and seats because there is no real departure from the absolute levels, and thus it suffers the
same drawbacks as the Loosemore-Hanby and Gallagher measures. Comparing this Log[x + 1]
transform with the Aitchison approach shows that the latter deals much better with the ratios, so
that we are more motivated to understand what the Aitchison geometry is.

This notebook uses v for votes, s for seats, V=1’v for the sum of votes, S =1’s for the sum of seats, w
=v/V,z=s/Sforthe shares. The plots tend to use opposite formulas,asz=1-w, usingz={t, 1 - t},
with t for the seats of the first party. For votes and seats we prefer a normalisation to [0, 10], given
that [0, 1] causes leading zeros and [0, 100] suggests precision that is often lacking.

PM. This is the second version of the paper. The main change is that the Appendix E in the original
text has been split off as an independent text Colignatus (2018). There is now also a stricter scaling
of votes and seats into the [0, D] range, default B = 10 (see Section 4).

NB. This discussion forms part of a larger framework given most recently by Colignatus (2017b):
“One woman, one vote. Though not in the USA, UK and France”. My diagnosis is that “political science
on electoral systems” is still in the Humanities and pre-science, notably by relying more upon
common language instead of sharp definitions that are relevant for empirics. On the other hand,
there are also mathematicians who deal with their definitions abstractly, without a proper ground-
ing in empirical research. My invitation to empirical researchers is to help make a difference,
notably in re-engineering the theory on electoral systems.

= https://mpra.ub.uni-muenchen.de/82513/

Routines in this notebook

? Cool  Statistics™ Aitchison™ «
V¥ Cool Statistics Aitchison”

AitchisonDista- LogClosurePlu-

nce AitchisonNorm DistanceLCPO sOne Stretch
AitchisonExpla- CenteredLogR-

in atio ImprodLCPO NormLCPO UnAit
Aitchisonlmpr-

oduct Closure InverseCLR Reportion
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? Cool  Voting  Angular” «

V¥ Cool Voting"Angular’

AbsLoosemoreHan- AngularPolicyDista- IndepAngPolicyDist-
byID ncePlot ance Unitb
AngularPolicyMeas- WAvAngPolicyMeas-
AllZeroButOneQ ure MaxAngularPolicies ure

PlusAngPolicyDista-

AngleProxy AngularPolicyTerm nce WAVPlot
CombinedPolicyDis-
AngPolMax tance PolicyNorm WAvPolicyDistance
WAvSqrtPolicyDista-
AngularlD b SineDiagonallD nce
AngularPolicyDista- WebsterSainteLagu-
nce EuclidGallagherID SingleMajority elD

2. Euclidean improduct, norm, distance and angle

Pythagoras, length and size

In Mathematica, Dimensions[x] gives the list of dimensions of x. For a vector x, Length[x] gives the
number of components.

{Dimensions[{a, b, c}], Length[{a, b, c}]}

{{3}, 3}

The Pythagorean Theorem allows us to find the size length of a vector. Another name is the norm ||
x ||. Mathematica assumes complex vectors and thus uses Abs[x] for the size of the components.
Since we use real vectors, we may eliminate this Abs.

? Norm

Norm[expr] gives the norm of a number, vector, or matrix.

Norml[expr, p] gives the p-norm. >>

Norm[{a, b, c}]

\/Abs[a}2+Abs[b]2+Abs[c}2

% /. Abs - Identity

\ a2+ b2+ c?

The triad of improduct, norm and distance

Consider the steps: improduct - norm - distance.

In Euclidean space, the improduct is given as the Dot product x. y. In linear algebra we write x’y.
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? Dot

a.b.c or Dot[a, b, c] gives products of vectors, matrices, and tensors. >

{a, b, c} . {x,y, 2z}

ax+by+cz

For variables in real space, the norm of x amounts to application of the improduct to x and itself,
and then taking the square root.

Norm[{a, b, c}] == Sqrt[{a, b, c} . {a, b, c}]

\/Abs[a}2+Abs[b]2+Abs[c}2 \/a2+b2+c2

The distance between vectors x and y is given as the norm of their difference. We look at real
vectors, and eliminate Abs.

Norm[{a, b, c} - {x, y, z}] /. Abs - Identity

J(a—x)ﬂ (b-y)*+ (c-2)°

EuclideanDistance[{a, b, ¢}, {x, y, z}] /. Abs - Identity

J(a—x)ﬂ (b-y)*+ (c-2)°

Invariance to translation

Atranslation is an additive relocation by some z. The distance between x and y is unaffected by a
translationto x+zand y + z This is easy to prove: Norm[(x + z) - (y + z)] = Norm[x - y]. The following
shows the translation of two (black) vectors by z={2, 1} (red) giving two translated (blue) arrows.

org = {0, 0}; pa = {0, 3}; pb = {1, 0}; pat = pa + {2, 1}; pbt = pb + {2, 1};

linl = Line[{pa, pat, pbt, pb, pa}]; 1lin2 = Line[{pat, {2, 1}, pbt}];
arpa = Arrow[{org, pa}]; arpat = Arrow[{org, pat}];

arpb = Arrow[{org, pb}]; arpbt = Arrow[{org, pbt}];

arpz = Arrow[{org, {2, 1}}1;

Graphics[{1inl, 1in2, Thick, Arrowheads[.1], arpa, arpb, Blue,
arpat, arpbt, Red, arpz}, Axes - True, AspectRatio - Automatic]

05 10 15 20 25 3.0
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Subspace dominance
The size of vectors is always larger than their parts in subspaces. This is called subspace domi-
nance.

Formally, dist[s1, s2] < dist[x1, x2] when s1 and s2 are in the same subspaces of x1 and x2.

Consider:

x1l =

{.1, .2, .7}; s1 Drop[x1, -1];
x2 = {.2, .1, .7}; s2 = Drop[x2, -1];

The final elements in x1 and x2 are the same, and this causes that x1 and x2 are as far apart as s1
and s2. When the final elements in x1 and x2 would differ, this would only increase the Euclidean
distance.

{EuclideanDistance[x1, x2], EuclideanDistance[sl, s2]}

(0.141421, 0.141421}

When we use the Norm then we see a zero where the vectors have the same values. Adding a zero
size length obviously does not affect the outcome of the Norm.

{Hold [Norm] [x1 - x2], Hold[Norm][sl - s2]}

{Hold [Norm] [{-©.1, 8.1, ©.}], Hold[Norm] [{-©.1, ©.1}]}

% // ReleaseHold
{0.141421, 0.141421}

Metric

Given the properties of the Euclidean norm, the Euclidean distance d is a metric.
A distance d is a metric iff it satisfies these three properties:

(1)dlx, y] =0,and d[x, y] =0iffx=y

(2) Symmetry: dlx, y] = dy, x]

(3) The triangular inequality: d[x, z] < d[x, y] + d[y, z] for y other than x or z.

Angle and its estimate

Two vectors always form a plane. Improduct and norm allow us to define the cosine of an angle
between vectors.

Cos[B]=Cos[x, yI=x.y/ (||x|| [I¥Il) = Improduct[x, y] / (Norm[x] Norm[y]).

The angle itself can be found by the inverse of the cosine, as 6 = ArcCos[Cos[8]].

? VectorAngle
VectorAngle[u, v] gives the angle between the vectors u and v. >

The angle distance is a metric. The “cosine distance” 1 - Cos[x, y] is not a metric because it does not
satisfy the triangular inequality, see Van Dongen & Enright (2012).
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= | - cos is a.k.a. the versed sine: https://en.wikipedia.org/wiki/Versine

Mathematica assumes complex variables, and thus its internal definition of the vector angle uses
Abs and Conjugate. We can eliminate this however. We also look at nonnegative vectors, for which
the maximum angle is 90 degrees. We get a relative measure of angular distance when we divide
the angle by this maximum. We already showed this in the Introduction in numbers but let us repeat
it here in symbols.

VectorAngle[{a, b, c}, {d, e, f}] /. {Abs - Identity, Conjugate - Identity}

ad+be+cef
ArcCos [ ]

\/a2+b2+c2 \/d2+e2+'F2
The AngularID (AID) scales to [0, B], default b = 10. Thus, an AID outcome h stands for90h/10=9h
degrees of the angle between the vectors.

? AngularID

AngularlID[x, y] gives the angular inequality / disproportionality. This is the angle between
real vectors x and y, divided by Pi/2 radian or 90 Degree, times D. Output is in [0, D]

The angular distance is independent from any positive scalar multiple per vector.

Simplify[
AngulariD[ A {a, b, c}, p{d, e, f}] == AngularID[{a, b, c}, {d, e, f}
1, {2 >0, u> 0}]

True

Appendix B shows an approximation of the angle 8= || x/ ||x|| - ¥ / |I¥|| ||, which works good for
small angles.

3. Theoretical requirements for a norm

Itis useful to state the theoretical requirements of a norm, so that we can use these also for the
Aitchison geometry.

A norm requires a vector space.

Definition of a vector space

A vector space has both vector addition and scalar multiplication.
A) Addition has:

1) Symmetry / commutativity: x+y =y +x
2) Associativity: x+(y+2) = (x+y) +z

3) There is a neutral or identity element 0, such that x + 0 = x

4) Each element x has an inverse, denoted -x, such thatx+ (-x) =0
B) For scalar multiples A and u:

(
(
(
(
(
(
(

1) Associativity: A (U x) = (A u) x
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(2) There is a neutral or identity element A=1, such that A x=x
(3) Distributivity 1: A (x +y) =Ax+ Ay
(4) Distributivity 2: (A+ ) x=Ax+ px

Definition of a norm

When there is a vector space V, then the definition of a norm norm: V- Reals is:
(1) Homogeneity or absolutely scalable: norm[A x] = Abs[A] norm|x]

(2) Subadditive or triangular inequality: norm[x + y] < norm[x] + norm[y]
(3) Nonnegative: norm[x] = 0

(4) Definite: norm[x] =0 iffx=0

When distance d[x, y] = norm[x - y] then the homogeneity of the norm gives d[A x, A y] = Abs[A] d[x, y]

wikipedia is a portal and no source
https://en.wikipedia.org/wiki/Vector space#Definition
https://en.wikipedia.org/wiki/Distance#General _metric

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

4. Inequality / disproportionality measures of votes and
seats

This section is essentially copied from Colignatus (2018).

Normalisation to 10 rather than 1 or 100

For political science there is the choice between training students to grow sensitive to small num-
bers or create more sensitive measures that also allow direct communication with the larger public.
For the Richter scale for earthquakes, the approach was to use logarithms, so that smaller values
could be compared easier with larger ones. For our purposes the square root is adequate, with an
easy change from 10 (grade) to 100 (percentage).

For this subject of votes and seats it is better to use the grades in [0, 10], like votes={4.9, 5.1}. The
reason is that variables in [0, 1] causes leading zeros, while percentages in the range [0, 100] sug-
gest a degree of precision that is often overdone.

For the scale we will use the symbol D (capital eth). For example w =D v/ V. The default value in this
paperis b =10.

? Unitb

Unitb[x, f:D] gives f x / (Plus @@ Abs[x])
Unitb[Clear] unprotects and clears b
UnitD[Set, x] sets b to the value x and protects

The default protected value of D is 10
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?Db

The default value is 10, but it might be reset, see Unitb.
Compare the use of % as having the value 1/100. Write [ESC]D-[ESC] or

"\[CapitalEth]". Pronounce here as "deka" instead of "eth",and 1/ as "decim"
UnitP[ {49, 51}] // N
(4.9, 5.1}
1/ D = 10Percent

1
— == 10 Percent
10

Data of the US House of Representatives elections of 2016

It will be useful to have some example. At the US (half) elections of 2016 for the House of Represen-
tatives, the distributions for the votes and seats were, using the order {Democrats, Republicans,
Other}:

votes = {dem = 61776554, rep = 63173815, 128627010 - rep - dem};
seats = {194, 241, 0};

= https://en.wikipedia.org/wiki/United States House of Representatives_elections, 2016#Results_summary
The operation of “closure” divides a vector by its sum total.

? Closure

Closure[x] gives x / Total[x], i.e. divides x by

its sum. This assumes that x is a vector of positive real numbers

For votes we prefer to use Unitb.

{vts = UnitP[votes], sts = UnitD[seats]} // N
{{4.80277, 4.9114, 0.285837}, {4.45977, 5.54023, 0.}}



12 | 2018-02-03-Aitchison.nb

Show[ListLinePlot[{{0, ©}, 6 {1, 1}}],

ListPlot [MapThread[Labeled, {Transpose[{vts, sts}], {Dem, Rep, Other}}],
PlotStyle - PointSize[Large]],

AxesLabel -» {"Votes (P)", "Seats (P)"}, AspectRatio - 1]

Seats (D)

6

5t

L Votes (B
A ®)

1 2 3 4 5

The USA have district representation which differs from equal or proportional representation (like in
Holland). In a US district, a candidate is elected with the plurality rule. The votes for other candi-
dates than the winner are discarded. That the Democrats and Republicans are still relatively close
to the 45 Degree line of equality or proportionality is the effect of geography, and perhaps the
median voter theorem. The word “election” is over-used when it refers to such different meanings
for either district or proportional representation. Given the discarding of votes in the system of
district representation, we rather should speak about “half elections”.

In district representation, there will also be more strategic voting, in which voters will not vote for a
smaller party for fear that their vote will be discarded. This effect cannot be measured by the
common inequality or disproportionality measures, since we only have the recorded votes and not
the true preferences.

Disproportionality measures
The common notion is distance but for votes and seats we would like to see equal proportions,
whence we also speak about an inequality / disproportionality (ID) measure.

The following measures are used in the literature on votes and seats, with the sine-diagonal mea-
sure a new suggestion from 2017. The measures are all symmetric, except Webster / Sainte-Lagué.

The literature uses values of ALHID and EGID in the [0, 100] range. We use the [0, 10] range here.
AbsLoosemoreHanbylID (ALHID)
? AbsLoosemoreHanbyID

AbsLoosemoreHanbylID[v, s] takes the absolute value of the
differences of Unitb[v] and UnitD[s], divided by 2 to correct for double
counting: D » Total[Abs[v/v'l - s/s'1]] / 2. Outcomes are in the range [0, D]
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Plot [AbsLoosemoreHanbyID[{P -t, t}, {t, P - t}], {t, @, D}]

The LHID measure has the useful interpretation that it gives the share of displaced seats between
parties for a House of D seats (corrected for double counting). In the US, 0.6 seats of a House of 10
seats are displaced, or 6 in a House of 100 seats.

AbsLoosemoreHanbyID [votes, seats] // N

0.628834

The ALHID distance is insensitive to the location of a 1 grade difference, say at {4, 6} or {9, 1}.

{adl = AbsLoosemoreHanbyID[{4, 6}, {5, 5}1,
ad2 = AbsLoosemoreHanbyID[{9, 1}, {10, ©}], adl/ad2} // N

(1., 1., 1.}

= https://en.wikipedia.org/wiki/Loosemore%E2%80%93Hanby_index

EuclidGallagherID (EGID)

? EuclidGallagherID

EuclidGallagherIDlv, s] takes the Euclided distance of Unitb[v] and
UnitD[s], divided by Sqrt[2] to correct for double counting. Outcomes are in the
range [0, D]. For length 2 the outcome is the same as AbsLoosemoreHanbyID

Plot[EuclidGallagherID[{D -t, t}, {t, P - t}], {t, @, P}]

The 2016 US House data have 3 parties, and thus the EGID can have a different outcome than the
ALHID. The US EGID is a bit larger than a half grade or 5%.

EuclidGallagherID[votes, seats] // N
0.545336
For two parties, the insensitivity is the same for EGID as ALHID.

{adl = EuclidGallagherID[{4, 6}, {5, 5}],
ad2 = EuclidGallagherID[{9, 1}, {10, ©}], adl/ad2} // N

1.,1.,1.}
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= https://en.wikipedia.org/wiki/Gallagher index
Angular inequality / disproportionality (AID)
? AngularID

AngularlID[x, y] gives the angular inequality / disproportionality. This is the angle between
real vectors x and y, divided by Pi/2 radian or 90 Degree, times D. Output is in [0, D]

Plot [AngularID[{P - t, t}, {t, P - t}], {t, @, D}]

The 2016 US AID would suggest a disproportionality in the USA of 0.7 grades or 7%.
AngularID[votes, seats] // N

0.66848

The angular distance is sensitive to the location of 1 grade difference. It shows a halving or doubling
of the angular distance, depending where one starts.

{adl = AngularID[{4, 6}, {5, 5}1,
ad2 = AngularID[{9, 1}, {10, ©}], adl/ad2} // N

{1.25666, 0.704466, 1.78385}

Because of this greater sensitivity the angular distance is a better measure for disproportionality
than ALHID and EGID.

= https://en.wikipedia.org/wiki/Angular_distance
Sine-Diagonal (SDID)
? SineDiagonallD

SineDiagonallDl[v, s] gives the Sqrt (greater sensitivity) of the Sine of the
angle between the vectors, multiplied by 10 to get rid of leading zeros, and with

the sign of Covariancelv, s] < -1 for majority switches. Thus it ranges in [-10, 10]

If we do not look at input of opposites.
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Plot[SineDiagonallID[ {50, 50}, {t, b - t}], {t, @, P}]

The input of opposites generates negative outcomes, indicating majority switches between votes
and seats.

Plot[SineDiagonalID[{P - t, t}, {t, P - t}], {t, @, P}]

The SDID measure is designed to be sensitive to disproportionality. For the US it gives 3.2 on a scale
of 10, thus 32%. The SDID uses a magnifying glass like the scale of Richter on earthquakes does.
(Smaller earthquakes are made comparable with the bigger ones.)

SineDiagonalID[votes, seats] // N

3.23746

The SDID is steeper than the AID, which makes the ratio of inner versus outer range values for the
displacement a bit lower.

{adl = SineDiagonalID[{4, 6}, {5, 5}1,
ad2 = SineDiagonalID[{9, 1}, {10, ©}], adl/ad2} // N

{4.4285, 3.32312, 1.33263}

= https://mpra.ub.uni-muenchen.de/81389/

Webster / Sainte-Lagué (WSLID)

The measure is sensitive to ratios and without bound, so there is no real criterion to judge what an
outcome really means.

? WebsterSainteLagueID

WebsterSainteLaguelDlv, s] unitises w = v/ Total[v] and
z=s/Total[s], and then gives D w . ((z/w — 1)*2) = D Total[(z - w)*2 / w]
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Plot [WebsterSainteLagueID[{P - t, t}, {t, P-t}], {t, 0, P}]
200}
150 f
100}

50

2 4 6 8 10

WebsterSainteLaguelID[votes, seats] // N

0.390846

When a distance d has no upper value then it may always be transformed into b d /(1 + d) to get a
value in [0, D) if needed.

Plot[ (d = WebsterSainteLagueID[{D -t, t}, {t, P-t}] /DP; Pd/ (1 +d)), {t, 0, D}]

= https://en.wikipedia.org/wiki/Webster/Sainte-Lagu%C3%AB_method

The Aitchison distance

Though we haven’t defined the Aitchison distance here yet, we may already calculate and plot it
with the same input as above.

? AitchisonDistance

AitchisonDistance[x, y] gives Norm[CenteredLogRatio[x]
- CenteredLogRatio[y]] = Norm[CenteredLogRatio[x/y]] which is
AitchisonNorm[x /y] which is also AitchisonNorm[Reportion[x, Stretch[y, -1]]]

Plot[AitchisonDistance[{P -t, t}, {t, P-t}], {t, 0, P}]

It is difficult to judge an outcome when there is no frame of reference. When a distance d has no
upper value then it may always be transformed into  d /(1 + d) to get a value in [0, D) if needed. It
itself this plot of the Aitchison distance suggests that it might be used, but below we will look at
various properties that are awkward for votes and seats.
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Limit [AitchisonDistance[{1 -t, t}, {t, 1-t}], t - 0]

[ee]

Plot[(d = AitchisonDistance[{P -t, t}, {t, P-t}]; pd /7 (1 + d)), {t, O, P}]

For the US data, the Aitchison distance is undefined when there is a zero. Let us drop that case.

AitchisonDistance [Drop[votes, -1], Drop[seats, -1]] // N
0.137584

Appendix D discusses the relation between the Aitchison distance and the Webster / Sainte-Lagué
inequality / disproportionality measure.

5. Compositional data

The unit simplex, closure and the neutral element

Compositional data are positive and their sum adds up to 1. Zeros would be eliminated, and all are
divided by a constant.

The operation of “closure” divides a vector by its sum value.

? Closure

Closure[x] gives x / Total[x], i.e. divides x by

its sum. This assumes that x is a vector of positive real numbers
Closure[{X, Yy, z}]

et

X+Y+Z X+Y+Z X+y+2Z

This means that all vectors are projected onto the unit simplex.

? Simplex
Simplex[{p1, ..., pr}] represents the simplex spanned by points p;. >

Since we will be looking at logarithms and Log[1] = 0, there is a special role for the unit vector {1, 1,
vy 1}

The projection of {1, 1, ..., 1} onto the unit simplex is called "UnAit" here.
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? UnAit

UnAit[n] gives {1/n, ..., 1/n} for n positions, for integer n.
UnAit[] uses the integer from Options[UnAit]
UnAit[x] for vector x sets the integer option of UnAit to the length of x

Options [UnAit]
{Integer - 3}

UnAit[]

The following is an example from 3D, in which we project {1, 1, 1} onto the unit simplex and find {1,
1,1}/3.

zero

Table[O, {3}];

Table[1l, {3}];

simp Simplex[{{1, @, @}, {0, 1, @}, {0, O, 1}}];
lin = Line[{ zero, ones }];

pnt = Point[ Closure[ones] ];

ones

Graphics3D[ {simp, 1lin, Red, PointSize[Large], pnt }]

The “ternary plot” is again a special transformation of the unit simplex for 3D.

m For 3D, the ternary plot reworks the simplex: http://mathworld.wolfram.com/TernaryDiagram.html

Closure and angle

The angular distance is independent from closure, since this holds for any positive scalar multiple
per vector.

As said we use the votes and seats of the US elections of 2016.
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votes = {dem = 61776554, rep = 63173815, 128627010 - rep - dem};
seats = {194, 241, 0};
{vts = Closure[votes], sts = Closure[seats]} // N

{{0.480277, ©.49114, 0.0285837}, {0.445977, ©.554023, 0.} }

Closure is relevant for human understanding but not for the calculation of the angular distance, as
this distance is unaffected by scalar multiples per vector.

{VectorAngle[votes, seats], VectorAngle[vts, sts]} / (90 Degree) // N
{0.066848, 0.066848)}

The AngularID (AID) has been defined so that it scales into [0, D].

{AngularID[votes, seats], AngularID[vts, sts]} // N
{0.66848, 0.66848}

By comparison, to be discussed below, the Aitchison distance for American politics is, (i) depending
upon our method to get rid of the zero, and (ii) without a reference like 100%:

AitchisonDistance[votes, seats + {0, -1, 1}] // N

2.07952

AitchisonDistance [Drop[votes, -1], Drop[seats, -1]] // N
0.137584

Practical cases and the essential zero

The notion of “Closure” may affect our perception of the data. We not only lose a degree of free-
dom. Aitchison has a strong argument that relative data are different from absolute data. The latter
argument though seems more related to the use of the geometric mean than to closure, see below.

Examples of compositional data are:
(i) geology: soil, e.g. sand, biological materials, some water

(ii) biology: milk, e.g. fat, proteins, minerals, water (e.g. for different species like cows, cats, ele-
phants, camels, ....}

(iii) politics: votes and seats for various political parties.

There are some distinctions between these kinds of compositional data however. On the following
three aspects, votes and seats differ from the first two examples.

(1) For soil and milk, one can take many samples from various sources, but for elections we essen-
tially compare a single outcome of votes with a single outcome of seats. It makes little sense to take
an average of votes over various countries when the parties are quite different. Even for the same
country and same parties, comparison over years causes us to compare votes and seats in each
year apart, and it makes little sense to average the votes and seats separately, and then take the
disproportionality of those constructs.

(2) For soil and milk, there might be no “essential zeros” while for seats there is the essential phe-
nomenon that there can be votes for parties who gain no seats (collected in the category “other”).
If we switch to logarithms, then Log[0] is undefined. NB. Parties that receive no votes may be
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neglected, as they would neither get seats.

(3) The underlying issue for votes and seats derives most meaning from apportionment in which the
number of available seats S is important. With apportionment function Ap, we determine: seats =
Aplvotes, S]. Thus S has a key role. Votes and seats have the outward appearance of compositional
data but this should not cause us to infer that they share the other properties.

= https://en.wikipedia.org/wiki/Apportionment

Aitchison’s four criteria for distance

We can continue the list of aspects with four criteria on the distance measure (giving a total of
seven criteria).

(4) Aitchison (undated), “Concise guide”, p35, requires four properties of a compositional distance
measure:

a) scale invariance
b) permutation invariance

c) perturbation invariance (reportioning, componentwise rescaling)

(
(
(c)
(d) subcompositional dominance.
See also Martin-Fernandez et al. (undated) p2. The latter p3 show that the angular distance satis-
fies the first two properties but not the latter two. Thus, of the seven points considered here, votes
and seats satisfy only two.
= http://ima.udg.edu/activitats/codawork05/A concise guide to compositional data analysis.pdf

= http://ima.udg.edu/~barcelo/index_archivos/Measures_of difference Clustering.pdf
Comments on these criteria are:
(4a) Permutation invariance means that the political parties can be sorted in whatever manner.

(4b) For scaling: Votes and seats have a natural scale, namely the natural numbers, and the invari-
ance to scale must only hold for the vectors as a whole: dividing the votes by turnout and dividing
the seats by the number of seats in the House.

(4c) For reportioning (perturbation): This concerns different scales per component. For soil and milk,
the components might be measured by weight or volume. If the components {x, y, z} are in volumes
and the components have different densities {g, b, c}, or weights per volume, then {a x, b y, c z}
would be the composition in weights. These formats would give different vectors by closure. For
multiplicative factors, rescaling each component by its own factor (reportion or perturbation) is the
equivalent of the (linear) translation in Euclidean geometry (see the diagram above for translation).
For soil and milk it would be relevant that the outcome of the analysis does not depend upon
weight or volume. For votes and seats there are no different scales per party component, and thus
this does not apply. We discuss this further below.

(4d) We will look at subcompositional dominance below.

Spurious correlation

Karl Pearson (1857-1936) coined the term “spurious correlation” by referring to a particular case of
compositional data. It appears that his example is somewhat convoluted, see Colignatus (2017d).
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The question is whether we correlate samples (rows) or components (columns). The term “spurious
correlation” still is useful for when we have the wrong model and then find a correlation that does
not reflect the true model. In the literature on compositional data, the reference to Pearson’s
discussion is somewhat popular, using a similarly convoluted example. If you consider soil samples,
and compare the compositions of the original samples with the compositions of those that have
been dried (with removal of the water), then one might get different correlations. It must be
doubted however whether this particular setup for the correlations is so relevant, when there is a
confusion of samples (rows) and components (columns). Overall, my impression is that neither the
reference to Pearson nor this particular example of “spurious correlation” of soil compositions are
so enlightening. It is one distraction that one has to look into though, when the literature refers to it.

= https://boycottholland.wordpress.com/2017/11/19/karl-pearsons-curious-construction-of-spurious-correlation/

6. Log Closure Plus One

Rebasing to Log[Closure[x] + 1]

This section shows how a log transform can create something similar to a distance that is sensitive
to some ratio. The transforms cause properties that deviate from both Euclid and Aitchison. This is
intended as a didactic step between Euclidean and Aitchison distance measures.

? LogClosurePlusOne

LogClosurePlusOne[x] gives Log[Closure[x] + 1]/ Log[2]. This assumes a nonnegative vector x with at
least one positive value. Division by Log[2] keeps corners like {1, 0, 0} in position. Note: for

small values x ~ Log[x + 1]. (Not implemented: All zeros may be translated in all zeros again.)

LogClosurePlusOne[{Xx, Yy, z}]

Log {1 - X+y+Z } Log {1 - x+§+z ] Log {1 *

)
X+y+2 }

Log(2]  Log[2] Log[2]

LogClosurePlusOne[ {0, 1, 0}]
{0, 1, 0}

The transformation x + 1 maps x first with 1 to some “upper Simplex” beyond {1, 1, ..., 1}, and then
Log projects back again. The following example uses co-ordinates ¢s ={.10, .35, .55} on the unit
simplex. The blue line connects the origin to cs, to Closure[cs] + 1 =cs + 1, to Log[cs + 1], to Log[cs +
1] / Log[2]. See also the numerical output. The transformation will generate outcomes close to the
unit simplex.
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zero = Table[0, {3}];
ones = Table[1l, {3}];
SimP = Simplex[{{l) o, 0}, {0, 1, @0}, {0, O, 1}}]5

lin = Line[{ zero, ones }];

pnt = Point[ Closure[ones]];

pntl = Point[{cs = {.10, .35, .55}, cls = Closure[cs], cpo = cls + 1,
lcpotrue = Log[cpo], lcpo = lcpotrue / Log[2] }]

linl = Line[{zero, cs, cls, cpo, lcpotrue, lcpo}];

Graphics3D[{simp, lin, Red, PointSize[Large], pnt, Blue, pntl, linl }]

Point[{{@.1, ©.35, .55}, {0.1, ©.35, ©.55}, {1.1, 1.35, 1.55},
(0.0953102, 0.300105, 0.438255}, {0.137504, 0.432959, 0.632268} } |

The triad of improduct, norm and distance

Following the model of Euclidean space, we need an improduct, norm and distance. We can employ
the Euclidean definitions to the transformed data since these are still within Euclidean space.

? ImprodLCPO
ImprodLCPO[x, y] applies the Euclidean improduct to the two Log[Closure[...] + 1]

ImprodLCPO[{a, b, c}, {d, e, f}]

b
a+b+c

Log[1+ | Log[1+ Log[1A+a+;{] Log[lgrd+;f}

a+b+c d+e+f

| Log[1+ d | Log[1+ d+&{]
+ +

Log[2]? Log[2]? Log([2]?
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? NormLCPO
NormLCPO[x] applies the Euclidean Norm to Log[Closure[x] + 1]

NormLCPO[{a, b, c}]

Log[1+—2-]" Log[1+-2-]° Log[1+a+;c]2

a+b+c a+b+c
+ +

Log[2]2 Log[2]? Log[2]2

? DistanceLCPO
DistanceLCPOIx, y] gives the Euclidean distance between the two Log[Closure]...] + 1]

DistancelLCPO[{a, b, c}, {d, e, f}]

LOg[1+ a+b+c] LOg[lJr d+e+~F] ’
- +
Log[2] Log[2]
LOg[lJr a+2+c] B LOg[lJr d+e+‘F] N LOg[l * ﬁ] B LOg[1+ d+1e:+'F] ’
Log[2] Log[2] Log[2] Log[2]

DistanceLCPOlx, y] gives Norm[LCPO[x] - LCPO[y]]. The subtraction means that we use something
similar to the logratio: Log[(Closure[x] + 1) / (Closure[y] + 1)].

Evaluation of this didactic approach for votes and seats

Applying the routine to above votes and seats generates a distance of 0.08, which we should not
interprete as 8% because it is not quite defined what 100% would be.

DistanceLCPO[seats, votes] // N
0.0796768

In voting theory the Loosemore-Hanby measure takes the sum of the absolute differences in the
shares, and divides by 2 to correct for double counting. In a House of 100 seats, this gives the
number of seats that are relocated between parties. In this case the Republicans got 6% of the seats
more than their share of votes, taking the seats from the Democrats and the others.

Total[Abs [Closure[seats] - Closure[votes]]] /2 // N
0.0628834
Our routine scales to [0, D].

AbsLoosemoreHanbyID [votes, seats] // N

0.628834

= https://en.wikipedia.org/wiki/Loosemore%E2%80%93Hanby index

The result of the LCPO distance is close to the result of Loosemore-Hanby. We see it confirmed that
there is no real difference between using LCPO and an absolute measure. Thus we have a stronger
interest in finding out more about the Aitchison approach that focuses on the relative data.
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7. The Aitchison geometry

Rebase to the geometric mean
We repeat the trick of transforming the data, and then using the Euclidean definitions on the trans-
formed data.

In this case, we will rebase the original data to their geometric mean, and then take the log. This
gives the centered log-ratio transform, normally abbreviated as (function) clr. The neutral element
UnAit[] will transform to zero.

? CenteredLogRatio

CenteredLogRatio[x] gives Log[x / GeometricMean[x]]. This assumes a positive real vector x
CenteredLogRatio[UnAit[7]]

{0,0,0,0,0, 0, 0}

The geometric mean is only relevant for positive vectors. Since our vector of seats has an essential
zero, we will flip one seat from a Republican to Other.

votes2 = Closure[votes] // N;
seats2 Closure[seats + {@, -1, 1}] // N;

N[CenteredLogRatio /@ {seats2, votes2}]
{{1.68503, 1.89781, -3.58283}, {0.933053, 0.955419, -1.88847}}

The sum of centered logratio data is always 0.

Total /@ % // Chop
{0, 0}

Actually, using closure is not needed before we transform to the centered logratio. The latter
transformation is also invariant for scalar multiples of the vectors. (A more complicated way of
saying this is that it generates an equivalence class.)

CenteredLogRatio[{x, y, z}] == CenteredLogRatio[ A {x, y, z}]

X Z

{Log[ (XyZ)l/S}) LOg[ (XyZ)l/S}) Log[ (XyZ)l/S]} -
X A y A zZA
{LOg[(Xyz)é)l/3 ,Log[W]JLog{<Xy2)\3>l/3]}

% /. Log[x_] = Log[PowerExpand[x]]
True
When we use votes instead of votes2 then the result does not change from the above.

N[CenteredLogRatio /@ {seats2, votes}]
{{1.68503, 1.89781, -3.58283}, {0.933053, 0.955419, -1.88847}}
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Thus the story about the unit simplex is less relevant here than the story about the clr-transform.

Graphs

The following two graphs show the transformed data. We assume original co-ordinates that satisfy
closure, with x+ y + z=1, and transform into new co-ordinates {x, y, zZ} / (xy 2)*(1 / 3) and their
logarithms.

Perhaps a 2D graph is just as clear but we want to relate to the unit simplex above.

The first graph give the direct transform, the second graph gives the Log of this, and check that the
latter is a plane (though Mathematica still draws contour lines because of minute numerical approxi-
mations).

ParametricPlot3D[z = 1 - x - y; If[z > 0, {xX, ¥, 2}/ (xyz)~(1/3)],
{x, @, 1}, {y, 9, 1}, AspectRatio -» 1, ViewPoint - Right]
6

% 2 4

ParametricPlot3D[z = 1 - x - y; If[z > @, Log[{X, ¥, 2}/ (xyz)~(1/3)11,
{x, @0, 1}, {y, 9, 1}, AspectRatio -» 1, PlotRange - All]

The triad of improduct, norm and distance

For the improduct, norm and distance it suffices to use the centered logratio transform. We do not
have to assume closure.
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? AitchisonImproduct
Aitchisonlmproduct[x, y] gives CenteredLogRatio[x] . CenteredLogRatio[y]

AitchisonImproduct[{a, b, c}, {d, e, f}]

a d
Log{ (abc)1/3] Log[ (def)m] i

b e C f
Log{m} Log{m] +Log{7(abc>1/3] Log{i(deﬂlﬁ

AitchisonImproduct[seats2, votes2] // N
10.1515

As said, we do not have to assume that the vectors satisfy closure.

AitchisonImproduct [seats2, votes] // N

10.1515
? AitchisonNorm
AitchisonNorm(x] gives Sqrt[AitchisonImproduct[x, x]]

AitchisonNorm[UnAit[]]
0

AitchisonNorm[{a, b, c}]

b 2

a 2 C 2

Log . Log{ . Log[

(abc>1/3] (abc)l/J (abc)3

AitchisonNorm /@ {seats2, votes2} // N
{4.39063, 2.31295}
The Aitchison distance is the Euclidean distance for the rebased vectors.

If we do not use Norm but above AitchisonNorm then we divide instead of subtract, with the ratio-
nale that division for real data is subtraction for logarithms.

? AitchisonDistance

AitchisonDistance[x, y] gives Norm[CenteredLogRatio[x]
- CenteredLogRatio[y]] = Norm[CenteredLogRatio[x/y]] which is
AitchisonNorm[x /y] which is also AitchisonNorm[Reportion[x, Stretch[y, -1]1]

AitchisonDistance[{a, b, ¢}, {d, e, f}]

a 2 b 2 C 2
Log[ abc /3] +Log[ abc /3] +Log[ abc1/3 ]
d<de‘F> e<de‘F> <de‘F> f
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AitchisonDistance[{a, b, c}/ {d, e, f}, {1, 1, 1}]

a 2 b 2 c 2
e ) e

AitchisonDistance[seats2, votes2] // N

2.07952
The outcome 2.1 differs quite a bit from the earlier finding of the Loosemore-Hanby outcome of 6%,
yet, we have no standard to judge that value 2.1.

PM 1. In the theory of votes and seats, researchers already considered using the Log[seats / votes]
transform. See Appendix D for its use in the Webster / Sainte-Lagué measure.

AitchisonDistance[seats2 / votes2, {1, 1, 1}] // N
2.07952

PM 2. Check again that it is not required to use closure data. (But for seats2 we flipped a seat.)

AitchisonDistance[seats2, votes] // N

2.07952

Underlying the Aitchison distance: Reportion and Stretch

For compositional data, Aitchision might have sufficed to argue that one should use the centered
logratio transform, and then use the Euclidean improduct, norm and distance on those trans-
formed vectors.

Instead, he also showed that this might be interpreted as a particular geometry on the unit simplex.
The emphasis on "closure" and the unit simplex in the literature on the Aitchison distance only
derives from this additional purpose. Since our present discussion aspires at a fair comparison of
the methods, we now look at this additional purpose. Essentially, though, it is a distraction from the
centered logratio transform.

Consider these two operations on the vectors in the unit simplex, which turn this into a vector space:
(1) Reportion, a.k.a. perturbation, which has the role of “addition” for the vector space.

(2) Stretch, a.k.a. power, which has the role of “scalar multiplication”for the vector space.

The routines assume that the input already is in closure.

Reportioning is when you have data in volumes and multiply these data with the densities to get
data in weights.

? Reportion

Reportion[x, y] gives Closure[x y]. A.k.a. perturbation

or Log-translation. This assumes that x and y are vectors in Closure

Reportion[{a, b, ¢}, {d, e, f}]
{ ad be cf }
ad+be+c-F) ad+be+cf, ad+be+cf
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Stretching is the application of a uniform power to all elements.

? Stretch

Stretchly, p] gives Closure[y”p]. A.k.a. power.
This assumes that p is a real number and thaty is a vector in Closure

Stretch[{a, b, c}, p]
aP bP cP

{ : : }
aP+bP+c?P aP+bP+c?P aP+bP+cP

Stretch[{a, b, c}, -1]

For example, when x is on the unit simplex, with 1’x=1, then (i) y = v x will be on the unit hyper-
sphere, with || y || = 1, (ii) but Stretch[x, 1/2] will be on the unit simplex again.

nc = Norm[Sqrt[Closure[{a, b, c}]]] /. Abs - Identity // Simplify
1

A vector space on the unit simplex with reportion and stretch

Reportioning and stretching generate a vector space for the variables under closure.

The Aitchison norm and distance satisfy the requirements for norm and distance, with the UnAit([]
as the neutral element for addition. See the referred papers for the math. Appendix A shows this
formally in Mathematica as well. For numbers it is more straightforward.

Reportion[votes2, Stretch[votes2, -1]] == UnAit[3]

True

For pairs x, there is the special property that the inverse operation Closure[x"(-1)] =1 - x.
Stretch[{1/3, 2/3}, -1]
=
373
Stretch[{x, 1-x}, -1] // Simplify
{1-x, x}

There seems to be a small tension between (a) the vector space under closure and (b) the use of
Euclidean improduct, norm and distance for centered log-ratio vectors. However, the vector space
under closure has its own definitions of improduct, norm and distance. Thus, when AitchisonNorm
uses x/ yin Euclidean terms, it actually uses Reportion[x, Stretchly, -1]]] for the variables under
closure, whence we have a theoretically closed system.
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? AitchisonDistance

AitchisonDistancel[x, y] gives Norm[CenteredLogRatio[x] — CenteredLogRatio[y]] which
is AitchisonNorm[x/ y] which is also AitchisonNorm[Reportion[x, Stretch[y, —11]]

AitchisonDistance[seats2, votes2]

2.07952

AitchisonNorm[Reportion[seats2, Stretch[votes2, -1]]]

2.07952

Still a question on conceptual consistency

While we have consistency in terms of logic, this still leaves a question on conceptual consistency.

(i) For the Aitchison distance, the centered logratio transform is more important than closure, since
this distance is invariant to scalar multiples per vector (and thus also to the scalars generated by
the closure operation).

(ii) Applying closure afterwards to clr-transformed data generates zeros. Thus clr-data are not on
the unit simplex.

(i) Thus it is true that multiplication and power (Reportion and Stretch) generate a vector space on
the unit simplex, but this is rather irrelevant for centered logratio data, which are not on that sim-
plex. The clr-data are in Euclidean space and we can still use the Euclidean improduct, norm and
distance (which generates the Aitchison distance for the original data).

Thus, my take on this part of the literature is:

(1) For compositional data for which the ratios are important, one would use the centered logratio
transform, and then use the normal Euclidean improduct, norm and distance on those transformed
data, including regressions and such (minding the loss of 1 degree of freedom). Forecasts can be
interpreted again using Exp or the InverseCLR transformation.

? InverseCLR
InverseCLR[x] gives Closure[Exp[x]], the inverse of the CenteredLogRatio

(2) The invariance of the Aitchison distance to component-wise multiplication before the transform
(e.g. changing volumes in weights) depends upon the properties of the clr-transform. Idem dito for
scalar multiples and the power relationship. Closure is not relevant here but only the clr-transform.
Empirical researchers would diagnose that clr-transforms are the proper data to work with. They
would still discuss whether to use weights or volumes (sensitive to temperature) though, since
these would generate different clr-transforms (though with the same distances).

(3) The Aitchison geometry, with the interpretation of multiplication and power as creating a
geometry on the unit simplex, is a mathematical exercise that is not relevant for empirical
researchers. There is a connection between (1) & (2) and (3), in that logarithms change multiplica-
tion into addition, but that is all. The mathematical content is not large either, and perhaps suitable
for a first year course on normed spaces. The discussion about this geometry is distractive for
empirical researchers, who do not deal with the unit simplex but with the clr-transforms. (For
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example, the creation of “lines” and “angles” on the unit simplex using this geometry is a mathemat-
ical exercise but conceptually at a distance for the clr-transforms that are not on the simplex.) It is
true that one might interprete the camel as the “ship of the desert” but one should not be carried
away by this interpretation.

(4) Thus the literature on “analysis on compositional data” can be cleaned up greatly but using
these distinctions: (i) The explanation to empirical researchers on how to deal with compositional
data that either satisfy the clr-transform (soil, milk) or not (votes and seats). (ii) A succinct text on
that geometry for a first year course on normed spaces, not really relevant for researchers.

(5) I don’t expect but am still open to the possibility that the geometry might generate surprise
insights for research.

8. Aitchison geometry and voting data

Judging the application of the Aitchison geometry requires knowledge about the particular field of
application. As an econometrician and researcher in didactics of mathematics, | cannot judge upon
applications for issues of geology or biology and such. The use of the voting data fall under
“political science of electoral systems” and this area overlaps with “political economy” and “public
choice”. See the reference to my paper on this.

m Use of the angular distance measure and its transform for voting data: https://mpra.ub.uni-muenchen.de/81389/

We are looking for properties that are essential for our understanding of proportionality between
votes and seats: (1) properties that apply to both the angular and Aitchison distance but for which
the firstis simpler, (2) properties that apply to the angular distance but not the Aitchison distance,
(3) properties that apply to only the Aitchison distance and not the angular distance. (Potentially
there is also: (4) properties that apply to neither.)

We already mentioned some drawbacks for the application of the Aitchison geometry to voting
data: (1) the pairwise comparison of votes and seats, instead of having lots of samples on the same
issue like for soil, (2) the essential zeros for parties who get votes and not seats, (3) the importance
of the total available seats S for seats = Ap[votes, S], (4c) no adjustment of scales per party
component.

Let us look further at (4c) Reportioning, (4d) subcompositional dominance.

Judging a distance by some reference

The Aitchison distance between the votes and seats of this basic example is, with an outcome close
to O:

AitchisonDistance[ {49, 51}, {51, 49}]

77 e[ 2]

The Aitchison distance is invariant to reportioning:
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AitchisonDistance[ {a, b} {49, 51}, {a, b} {51, 49}]

51
\/2 Log [ —]
49
The Aitchison distance has a factor V2 . We might divide standardly by this, like we do for the
Euclid / Gallagher index to correct for double counting of relocated seats.

We still lack a yardstick to interprete what remains. A point of reference is perhaps this case that we
would consider to be close to a maximal difference (or find a House with more than 1000 seats):

AitchisonDistance[{999, 1}, {1, 999}]

\/2 Log[999]

Thus a relative distance might be:

AitchisonDistance[ {49, 51}, {51, 49}] / AitchisonDistance[{999, 1}, {1, 999}] // N

0.0057922

Section 4 already showed the transformationis d / (1 + d), though we must beware that it becomes
rather insensitive at the extremes.

Reportioning of voting data 1: assuming perfection in apportionment
The question in this subsection is whether apportionment has the property Ap[x v, S] = x Aplv, S] for
arbitrary nonnegative vectors x.
We already have d[w, z] = d[w, Ap[w, S]]. Let us not assume just now that 1’(x w) = 1 too.

Above property gives dx w, Ap[x w, S]] = d[xw, x Ap[w, S]] =d[xw, x z]. If apportionment causes an
outcome d[w, z] then with above property apportionment also causes d[x w, x z] for any x. When this
property would apply, then apportionment can be reduced to merely updating the seats with the
change in votes.

In general, apportionment exists precisely since there is no such property that can be used like this.
Perhaps for a rough estimate only.

If apportionment would be perfect then z=w, and d[w, z] = d[w, w] = 0. With this perfection, also d[x
w, Aplx w, S]]1=0. If above property would hold then d[x w, x z] = 0 too. Thus perfection and above
property give d[w, z] = d[x w, x z] = 0 for any x. Unfortunately apportionment exists because there is
no such perfection.

The following argues the same, now using explicitly two apportionments of seats given votes: s1 =
Ap[vl, S] and s2 =Ap[v2, S].

When {v1, s1} would be the results of one election, and when a new election generates v2, then an
estimate would be s1 * (v2 / v1) but we would rather await the process of apportionment as s2 =
Ap[v2, S].

Definet=v2/vlandr=s2/sl. We have s2 =Ap[tvl, S]and s2=rsl=rAp[vl, Sl.
Thus Ap[tvl, S] =rAp[vl, S]. Can we really assume that t ~ r ? In that case Ap[x v, S] = x Aplv, SI.
In practice we will have a relation that r=Ap[vt, S] / Aplv, S1=rlv, t, S].

Suppose that we have a disproportionality measure such that disp[v1, s1] ~ 0 ~ disp[v2, s2].
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Obviously disp[v2, s2] = disp[t v1, rs1] ~ disp[v1, s1], namely both close to zero.

Can this be seen as invariance of reportioningby t~rorv2 /vl ~s2/s1?

If apportionment Ap is truely proportional, sothatsl/vl=Alands2/v2=ul,thenr=s2/sl=(u
v2) / (Avl) = p/At. Thusrly, t, S] = p/At, in which the complexity has been hiddenin A and p. Real
numbers allow perfect apportionment, giving z= w, switching to unitised variables now. For perfec-
tion on these unitised variables, A = y= 1. This is the case from above again, with d[w, z] =0 and d[x
w, x z] = 0, with the added restriction that 1’(x w) = 1. For seats we have rounding however. This
rounding should perhaps not affect the choice of the distance measure. But rounding may still
imply that we cannot rely upon an invariance to reportioning.

In practice there will be few cases such thatt~rorv2 /vl ~s2/sl, so that we may observe some
invariance to reportioning.

It is more likely that there will be imperfections due to rounding. Invariance to reportioning would
go against rounding.

The above assumes apportionment under a system of proportional representation. In district
representation, the transformation of votes into seats is more complex, and there is no link to the
supposed perfection of apportionment.

The comparison of votes and seats likely would do better by choosing an inequality / disproportion-
ality measure that doesn’t hinge upon invariance to reportioning.

The discussion whether such invariance Ap[x v, S] = x Aplv, S] is relevant or practically possible
distracts from the very purpose of apportionment.

Reportioning of voting data 2: differential growth of party sizes

Forvl, v2, sl and s2, let us suppose that Party A drops by about 40% of its votes and seats, and that
Party B rises by about 40% of its votes and seats. These are only approximate effects, and we would
get proper values from closure (and apportionment).

factor = {.6, 1.4}; {factor {4.9, 5.1}, factor (5.1, 4.9}}

({2.94, 7.14}, {3.06, 6.86}}

In that case, the Aitchison distance remains the same. Let us use integers to generate the exact
result.

factor = {6, 14}; {factor {49, 51}, factor {51, 49}}

{{294, 714}, {306, 686} }

factor = {6, 14}; AitchisonDistance[ factor {49, 51}, factor {51, 49}]

51
\/TLog[—]
49
% // N
0.0565761

By comparison, the angular distance is slightly reduced from 0.25 grade to 0.18 grade, or from 2.5%
to 1.8%, since the resulting vectors are closer together indeed.
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factor = {6, 14}; AngularID[factor {49, 51}, factor {51, 49}] // N
0.184422

An extreme effect uses {1/1000, 1000}. The Aitchison distance does not change, as this depends
upon the ratio x; / y; while the angular distance becomes close to zero because votes and seats get
close to {0, 1}.

factor = {1/1000, 1000}; AitchisonDistance[ factor {49, 51}, factor {51, 49}]

ﬁLog[Sl

w
factor = {1/1000, 1000}; AngularID[factor {49, 51}, factor {51, 49}] // N

5.10857 x 10/

PM. Closure has no effect on the outcome again, but can be shown anyway.

factor = {1/ 1000, 1000} ;

vts = Closure[factor {49, 51}] ;
sts = Closure[factor {51, 49}] ;
{vts, sts}

49 51000000 51 49 000 000
H 51000049 51000049 } {49 900051 49000051 H

{AitchisonDistance[vts, sts], AngularID[vts, sts] // N}

51
{ﬁ Log{—} , 5.10857 x 10*7}

49
In sum, the differential growth of party sizes suggests that invariance in reportioning is counterpro-
ductive.

Reportioning of voting data 3: policy distance

The next main section looks at policy distance, and contains a role for the AngularID[p v, p 5], in
which p are policy positions on a left-to-right scale [0, 10]. The measure used there cannot be based
upon AitchisonDistance[p v, p s] since this is equal to AitchisonDistancely, s].

Subcompositional dominance

For compositional data on minerals, a common dimension reduction is by dropping components in
the vector, e.g. when the water content is removed, and the remainder components are rebased
with “closure”. There would be spurious correlation in the original data when columns on compo-
nents are used instead of rows on samples.

An example in the literature

Martin-Fernandez et al. (undated, p2) contain an example on subcompositional dominance.

= http://ima.udg.edu/~barcelo/index_archivos/Measures of difference Clustering.pdf

Consider (using “s” for “sub” and not “seats”):
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x1 = {.1, .2, .7}; sl
x2 = {.2, .1, .7}; s2

Drop[x1, -17;
Drop[x2, -1];

Subcompositional dominance would require that dist[s1, s2] < dist[x1, x2].

The formal definition is provided in Aitchison (undated) “Concise guide”, p35.

= http://ima.udg.edu/activitats/codawork05/A concise guide to compositional data analysis.pdf
Let us first look at the angular distances and then the Aitchison distance.
The angular distances are, using radians to link up with table 3 on p4 in Martin-Fernandez et al..

{VectorAngle[x1, x2] , VectorAngle[sl, s2], VectorAngle[Closure[sl], Closure[s2]]}
{0.192748, 0.643501, 0.643501}

For voting, these outcomes are logical. We should not confuse a comparison for three parties with
a comparison for two parties. The participation of a third party may affect the evaluation of the
total vectors of votes and seats.

(i) The x1 and x2 are closer together because the third party has been valued accurately.

(ii) When we consider the situation with only two parties, then s1 and s2 are further apart, as votes
{1/3, 2/3} have opposite seats {2/3, 1/3}.

(iii) Thus, subcompositional dominance does not seem to be so useful for votes x1 and seats x2.

Degrees of freedom, dropping one element

This issue relates to the point that compositional data lose one degree of freedom. For the angular
distance between votes and seats there is little reason to drop e.g. the last observation (potentially
the essential zero) and then look at the angle between the remaining independent party shares.
Namely, suppose that the last dependent share in each vector is the same, and that the other
elements differ, like indeed is the case for above x1 and x2 and their subcompositions s1 and s2.
Then the full vectors have a smaller angle, and we would want to see this reflected in the dispropor-
tionality measure (and thus we would not drop one element from the vector).

Ergo

Thus for voting we can properly infer that the situation with x1 and x2 with three parties is more
proportional and that the situation with s1 and s2 with two parties is more disproportional.

The Aitchison distance however generates the same outcomes. The perfect match .7 for the third
party is neglected, and the measure concentrates on where there are differences. We can also
understand this outcome by reportioning as x1 / x2 ={1/2, 2, 1}, as another way to show that only
the positions are used for which the ratios differ from 1.

{AitchisonDistance[x1, x2],
AitchisonDistance[x1 / x2, {1, 1, 1}],
AitchisonDistance[sl1l, s2],
AitchisonDistance[Closure[sl], Closure[s2]]}

{0.980258, 0.980258, 0.980258, 0.980258}

Martin-Fernandez et al. (undated) conclude that the angular measure has no “compositional
coherent behavior”. If votes and seats are regarded as compositional data, then there is a distinc-
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tion between votes and seats on the one hand and soil and milk on the other hand.

PM. A bit more about the application of the angular measure in geology

Martin-Fernandez et al. refer to a paper by Watson & Philip 1989 who propose the use of the angular
measure for geological compositions. Unfortunately that paper is behind a paywall. Aichison,
“Concise guide” p17 refers to this approach as being inappropriate for analysis of compositional
data, referring to various other papers behind paywalls too.

= http://ima.udg.edu/~barcelo/index_archivos/Measures_of difference Clustering.pdf

= https://link.springer.com/article/10.1007/BF00893217

Wang et. al 2007 project a vector of dimension n into a vector of dimension n - 1 consisting of angles
between components, yet, this might be dependent upon permutation, as one would get different
angles for different permutations.

= https://pdfs.semanticscholar.org/67e5/fa4a7cc9c833109722eed64fc3611cdel5f4.pdf

See Appendix B for the relation between closure and the unit sphere.

9. Scoring parties on a policy scale

The parties can also be scored on a policy scale, say a vector p with elements in [0, 10]. Acommon
term for such a scale is “left-to-right” even though those terms are rather out-dated. With unitised
votes and seats w and z, a weighted average of the difference between House and electorateisa=p
. (z-w). A basic reference is to Golder, M. & Stramski, J. (2010), “Ideological congruence and elec-
toral institutions”, American Journal of Political Science, 54(1), 90-106. For example, they state
(p95): “(...) substantively representative legislatures [for us now: a = 0] increase things like per-
ceived levels of democratic legitimacy and responsiveness, satisfaction with democracy, political
participation, or personal efficacy and trust in the political process.”

m http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.8475&rep=rep1&type=pdf

As a political economist, | regard it as “revealed preference” (a term coined by Paul Samuelson)
what parties are voted for and what policies those parties enact. When researchers try to determine
what the “policy stance” p of the parties is then this seems operationally dubious and needlessly
complicated, since we already have the distinctions between parties with their votes and seats,
including the angular distance d[v, s] between them. Remarkably, some researchers who prefer a
policy distance tend to regard the distance between votes and seats as devoid of such meaning,
and they thus do not value the interpretation in terms of revealed preference. The present discus-
sion thus only occurs because there is a section in the literature that tries to look into such a policy
distance between House and electorate.

The discussion on a policy distance measure has been split off as a separate paper, Colignatus
(2018), since it distracts from the purpose of the present discussion, namely to compare with the
Aitchison geometry.

In an earlier text (2017b, p45 and its Appendix J) | suggested that the angular distance d[p v, p s]
might be a policy distance itself. | retract this suggestion. This is only true for the perspective of flv,
s;pl=d[pv, ps] fora given p. There is a different perspective for g[p ; v, s] = d[p v, p s] for given w
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and z, which appears to be policy congruence and not incongruence. A widening policy gap
between parties does not increase but reduce the angle of vectors p vand p s, since the components
actually come closer to each other. We already saw this above for differential growth of party sizes.
A clear example is using p = {0, 10} that causes an outcome of 0. Thus d[p v, p s] is a measure of
disproportionality given p and a measure of congruence given vand s. This point has now be
included in Colignatus (2018), while (2017b) needs an update.

= https://www.wolframcloud.com/objects/thomas-cool/Voting/2018-02-02-PolicyDistance.nbor MPRA 84324

= Discussion of electoral systems: https://mpra.ub.uni-muenchen.de/82513/

10.

Thus, Colignatus (2018) gives the revised suggestion for an angular policy distance pd[v, s, p] that
uses a transform of angular d[p v, p s]. Such a proposal would not work for the Aitchison distance, in
which dait[p v, p s] = dait[v, s] because of reportioning.

Conclusion

Vectors of votes and seats, for (half) elections for political parties for say the House of Representa-
tives, can be normalised to 1 or 10 / B or 100%, and then can be regarded as compositional data.
The Aitchison geometry and distance for compositional data might also be applied to votes and
seats. However, of seven criteria, votes and seats only satisfy two.

There is an essential zero when a party gets votes but doesn’t gain seats. A zero gives an undefined
logratio.

Votes and seats have a natural scale, namely the natural numbers, and the invariance to scale must
only hold for the vectors as a whole: dividing the votes by turnout and dividing the seats by the
number of seats in the House. The Aitchison distance is invariant to scale per component, so that
e.g. volumes can be rescaled to weights. The latter property does not apply to votes and seats. One
might argue that using the Aitchison distance for this case would not harm the analysis of the
inequality / disproportionality of votes and seats. However, the issues of differential growth and the
policy distance show that it does matter.

A key pointis subcompositional dominance. For votes {1, 2, 7} and seats {2, 1, 7} it is essential that
we consider three parties. For a distance or disproportionality measure we would value it positively
that there is a match on 7. The Aitchison distance looks at the ratio {1, 2,7} /{2, 1, 7} ={1/2, 2, 1} and
neglects a ratio equal to 1. It effectively compares the subcompositions, i.e. votes {1, 2} and seats {2,
1}, rescales to {1/3, 2/3} and {2/3, 1/3}, and finds high disproportionality. This means that it essen-
tially looks at a two party outcome instead of a three party outcome.

It follows that votes and seats have a better measure in the angular distance (AID) and/or the Sine-
Diagonal Inequality / Disproportionality (SDID) measure based upon this. One may of course use all
measures, being aware of the crucial differences in meaning.

John Aitchison actually has two analyses. The literature would do well in making a clear distinction
between: (1) the logratio transform and the Aitchison distance that are relevant for empirical
research of compositional data, and (2) the Aitchison geometry on closure and the unit simplex that
is mainly a mathematical exercise (and the logratio transforms are not on the unit simplex).
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Appendix A. Formal properties of the Aitchison distance

The Aitchison distance is symmetric

Let us show d[x, y] = d[y, x] for the Aitchison distance. For the following, application of FullSimplify
for the domain of real vectors does not work. Let us get rid of the square root by squaring both
sides of the equality sign.

res = AitchisonDistance[{a, b, c}, {d, e, f}]72 ==
AitchisonDistance[ {d, e, f}, {a, b, c}]*2

2 b 2 C 2
Log{ abc 1/3} +Log[ abc 1/3} +L0g[ abc\1/3 ] -
d (def) e(def> <de<F> f
d 2 e 2 f 2
Log{ def 1/3] +Log{ def 1/3} +Log{ def 1/3}
<abc) b(abc) c(abc)

It suffices that show equality for the first elements, for the others are similar.

res[[1, 1]] = res[[2, 1]]

Log{

Only the ratios are relevant here.

res2 =% /. {d > ka, e > mb, f » nc}

1 2 k 2
Log{ 1 1/3} - Log{ 1/3
k() (kmn)
kmn

These expressions apparently are too difficult for Mathematica to deal with, but we can observe
that the negative power within the logarithm is neutralised by the squares.

% /. Log[x_] :» Log[PowerExpand[x]]

mt/3nl/3 K23 5

Log{ - Log
k2/3 m1/3 n1/3

FullSimplify[%, {k, m, n} e Reals]

k2/3 2 m1/3 n1/3 2

Lo = Lo [
g m1/3 n1/3 g k2/3

The Aitchison norm has homogeneity or is absolutely scalable

This is norm[A x] = Abs[A] norm[x]. This also transfers to the distance.

na = AitchisonNorm[{a, b, c}]

2

ng[(""]img{b} +Log|—

abc)l/S (abc)1/3 (abc)l/S
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nape = na /. Log[x_] = Log[PowerExpand[x]]

a2/3 2 b2/3 2 c2/3 2
Lo [ } Lo { ] ‘Lo [ }
g b1/3 C1/3 g a1/3 c1/3 g a1/3 b1/3

nap = AitchisonNorm[{a, b, c}”p]

J

nappe = nap /. Log[x_] = Log[PowerExpand[x]]

\/ (Log [az p/3 /3 cfp/3} 2 +Log [afp/3 p2P/3 cfp/3} 2 +Log [afp/3 bP/3 2 p/3} 2)

ap 2 bp 2 Cp
Log 71/3] + Log ] +Log{
(aP bP cP)

2

]

(apbp c,_-,)1/3 (apbp c,_-,)1/3

For p>0: Sqrt[Log[x]*2] = p / p Sqrt[Log[x]"2] = p Sqrt[ (1/p Log[x])"2] = p Sqrt[Log[x"(1/p)]"2]

nappep = nappe /. Log[x_] :» Log[PowerExpand[x”~ (1/p)]]

52/3 5 p2/3 5 c2/3 5
Log[ } + Log{ ] + Log[ }
pl/3 c1/3 31/3 ¢1/3 al/3 pl/3

nape = nappep

True

The Aitchison distance remains the same under Reportioning

The Aitchison distance between vectors x and y remains the same when they are Reportionioned
with some z Thus AitchisonDistance[z x, z y] = AitchisonDistancel[x, y]. This is similar to the transla-
tion for Euclidean vectors.

daf = AitchisonDistance[{a, b, c}, {d, e, f}]

0.0049056 a ;2 14.2776b ;2 14.2776 c ;2
Log[ abcy1/3 } +Log{ abc 1/3} +Log{ abc 1/3_F}
( ef > e ( ef ) ( ef )

dafrep = AitchisonDistance[ {x, y, z} {a, b, ¢}, {x, y, z} {d, e, f}]

0.0049056 a ;2 14.2776b ;2 14.2776 ¢ 42
Log[i} +Log{7} +Log{7}
<abc>1/3 e (abC)1/3 (abC)1/3_F
ef ef ef
daf == dafrep
True

Appendix B. Approximation to the angle

General property w.r.t. the unit circle

The transformation x/ ||x|| puts the vector on the unit circle (hypersphere).
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A vector under closure has the property that the norm of its square root is 1, which means that this
square root lies on the unit hypersphere too. Thus x* =x/||x|| and x** = Sqrt[Closure[x]] are on the
unit hypersphere, though still different.

xstar = {a, b, ¢} / Norm[{a, b, c}] /. Abs - Identity

(— : .

Bl 3
\/a2+b2+c2 \/a2+b2+c2 \/a2+b2+c2

xdouble = Sqrt[Closure[{a, b, c}]]

{/ a b / C }
a+b+cl a+b+cl a+b+c

Norm /@ {xstar, xdouble} /. Abs - Identity // Simplify

{1, 1}

To show this property for vectors under closure in Mathematica, use ParametricPlot instead of Plot.

pp = ParametricPlot[Sqrt[{a, 1 - a}], {a, O, 1}, AspectRatio - 1];
pgr = Graphics[Circle[{@, O}, 1, {@, Pi/2}]];
Show [pp, pgr]

1.0
0.8
0.6
04+

0.2+

Approximation of angle

Small angles between x and y have the interesting approximation given by || x / ||x]| - ¥ / ||¥]| ||- The
difference gives a chord that approximates the curve. See Maligranda, " Simple norm inequalities, "
Amer. Math. Monthly 113 (3), 256 - 260 (2006).

? AngleProxy

AngleProxy[x, y] gives Norm[x/Norm[x] -y / Norm[y]] for real vectors (Abs
—> Identity). Normalise by division by Sqrt[2] when comparing {1, 0} and {0, 1}

AngleProxy[x, y]

X y
Norm —
Norm[x] Norm[y]

For vectors that are close to each other, the approximation is remarkably well.

{VectorAngle[{.49, .51}, {.51, .49}], AngleProxy[{.49, .51}, {.51, .49}]}
{0.0399947, 0.039992}
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For orthogonal vectors, the chord gets length Sqrt[2]. For normalisation to 100% we would divide
by Sqrt[2] instead of Pi/2. However, when the proxy is intended for an angle then division by Pi/2
would be better still.

AngleProxy[{1/2, 0}, {0, 17}]

V2

{Sgrt[2], Pi / 2} // N
{1.41421, 1.5708)

org = {0, 0}; pa = {0, 3}; pb = {1, @}; pat = pa + {2, 1} ; pbt = pb + {2, 1};
panorm = pat / Norm[pat]; pbnorm = pbt / Norm[pbt];
linl = Line[{pat, pbt}]; 1lin2 = Line[{panorm, pbnorm}];
arpat = Arrow[{org, pat}]; arpanorm = Arrow[{or, panorm}];
arpbt = Arrow[{org, pbt}]; arpbnorm = Arrow[{or, pbnorm}];
unitcircle = Circle[{O, ©}, 1, {0, Pi/ 2}];
Graphics[{1inl, 1lin2, unitcircle, Thick, Arrowheads[.1], Blue, arpat,
arpbt , Red, arpanorm, arpbnorm}, Axes - True, AspectRatio - Automatic]
ar

0.5 1.0 1.5 2.0 2.5 3.0

Application to votes and seats

If we would work with variables x that are transformed to x** = Sqrt[Closure[x]] then the Sqrt moves
the data from the original ray. The angle between x and y differs from the angle between x** and
y**. That the Norm[x** - y**] would still be an approximation to the angle between x**and y**
should not distract us.

Take for example the 2016 (half) elections for the US House of Representatives again.

votes = {rep = 63173815, dem = 61776554, 128627010 - rep - dem};
seats = {241, 194, 0};
{vts = Closure[votes], sts = Closure[seats]} // N

{{9.49114, 0.480277, 0.0285837}, {0.554023, 0.445977, 0.}}
= https://en.wikipedia.org/wiki/United States House of Representatives elections, 2016#Results summary

The angle between the vectors is (and differs from the angle between their square roots):
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VectorAngle [votes, seats] // N
0.105005

The sqrt transformation to the hypersphere is:

{vhyp, shyp} = Sqrt[{vts, sts}] // N
{{0.700814, 0.69302, 0.169067}, {0.744327, 0.667815, 0.}}

The approximation by the Norm is remarkably close to the true angle between these variables:

{VectorAngle[vhyp, shyp], Norm[vhyp - shyp]}
{0.176617, 0.176387}

However, the angle between votes and seats (0.105) differs from the angle of the Sqrt variables
(0.177). Itis not clear why the latter would be a more useful transform. Merely the property that
their angle and Euclidean distance are approximately the same, is no argument on content.

Wang et al. use this square root transformation and the angles, yet, the angles also depend upon
the permutation of parties.
= https://pdfs.semanticscholar.org/67e5/fa4a7cc9¢833109722eed64fc3611c4el5f4.pdf

Appendix C. Votes and seats in Catalunya December
2017

The CoDaWeb research group is established at Girona, Catalunya, Spain.

= Website: http://www.compositionaldata.com/

It is somewhat remarkable what is happening in Catalunya in terms of electoral systems. In Autumn
2017, the regional government of Catalunya, Spain, declared independence without implementing
it. The Spanish government dissolved this regional government and organised new elections. There
are charges of corruption and that parties emphasized independence to distract attention away
from this corruption. Because of the electoral system of district representation, the political parties
in favour of independence of Catalunya got no majority in votes but still a majority in seats.

» https://www.irishtimes.com/news/world/europe/corruption-sentence-hits-catalonia-s-dominant-nationalist-party-1.3356372

Wikipedia is a portal and no source, so in this case | am hoping that they reported correctly.

= January 15 2018: https://en.wikipedia.org/wiki/Catalan_regional election, 2017#Results

data = {{"Names", "Labels", "Votes", "Seats", "1 = Independence"},
{"Citizens-Party of the Citizenry", Cs, 1109732, 36, 0},
{"Together for Catalonia", JuntsxCat, 948233, 34, 1},
{"Republican Left-Catalonia Yes", ERC_CatSi, 935861, 32, 1},
{"Socialists' Party of Catalonia", PSC_PSOE, 606659, 17, 0},
{"Catalonia in Common-We Can", CatComu_Podem, 326360, 8, 0},
{"Popular Unity Candidacy", CUP, 195246, 4, 1},
{"People's Party", PP, 185670, 4, 0},
{"other, Blank, Invalid", Other, 49607 + 19431 + 16092, 0, 0}};
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data // MatrixForm

Names Labels Votes Seats 1 = Independence
Citizens-Party of the Citizenry Cs 1109732 36 0
Together for Catalonia JuntsxCat 948 233 34 1
Republican Left-Catalonia Yes ERC_CatSi 935861 32 1
Socialists' Party of Catalonia PSC_PSOE 606 659 17 4]
Catalonia in Common-We Can CatComu_Podem 326360 8 0
Popular Unity Candidacy cup 195246 4 1
People's Party PP 185670 4 4]
Other, Blank, Invalid Other 85130 0 0

{names, labels, votes, seats, indep} = Transpose[Rest[data]];
Let us use the term Unitb with default values in [0, P], default B = 10, instead of “Closure and 100”.

vts

UnitP[votes] // N

sts = Unitb[seats] // N

{2.5262, 2.15856, 2.1304, 1.381, 0.742928, 0.444459, 0.42266, 0.19379}
{2.66667, 2.51852, 2.37037, 1.25926, 0.592593, 0.296296, 0.296296, 0.}

labels . indep
CUP + JuntsxCat + ERC_CatSi

The independence parties have 4.7 /D of the votes but 5.2 /D of the seats. Catalunya has district
representation instead of equal or proportional representation. See Colignatus (2017b) for the
conceptual errors of district representation.

{vts . indep, sts . indep}

(4.73342, 5.18519}

The two indicators for electoral disproportionality on a scale of [0, B] are (with the policy distance
also taking variation in the group):

{AngularID[vts, sts], AngularPolicyDistance[vts, sts, indep]}

{0.680163, 1.24041}

The Aitchison distance requires us to drop the last zero, while the outcome is hard to judge because
we lack some reference like 100%.

AitchisonDistance [Drop[vts, -1], Drop[sts, -1]]
0.552229

Appendix D. Aitchison distance and Webster / Sainte-
Lague

Use unitised votes w and seats z. Let us write z/w = x + 1, then Log[z/w] = Log[x+ 1] = x = z/w - 1.

The Webster / Sainte-Lagué (WSL) disproportionality measure uses Sum[w (z/w - 1)*2] = Sum[(z -
w)A2 [ wl.
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Thus WSL = Sum[w Log[z/w]"2]. This is a weighted norm of Log[z/w].

The Aitchison distance d[w, z] = d[1, z/w] = Norm[CenteredLogRatio[z/w]], using reportioning.
We may also write Norm[Log[z/w] - Log[GeometricMean[z/w]]].

Thus WSL uses a weighted norm of Log[z/w] while Aitchison uses the centered norm of Log[z/w].

The properties and outcomes differ, of course.

Links

Some relevant links are:
m Use of the angular distance measure for voting data: https://mpra.ub.uni-muenchen.de/81389/
= Discussion of electoral systems: https://mpra.ub.uni-muenchen.de/82513/
= The policy distance: https://www.wolframcloud.com/objects/thomas-cool/Voting/2018-02-02-PolicyDistance.nb
= Aitchison 134 pages: http://ima.udg.edu/activitats/codawork05/A_concise guide to compositional data analysis.pdf
m Sheets: https://laboratoriomatematicas.uniandes.edu.co/cursocoda/04-Vera-geometry.pdf
= Nutshell: http://www.sediment.uni-goettingen.de/staff/tolosana/extra/CoDaNutshell.pdf
= Summary text on closure: http://slon.diamo.cz/hpvt/2011/ Mat/M%2002.pdf
» Different measures (including angular): http://ima.udg.edu/~barcelo/index_archivos/Measures_of difference Clustering.pdf
m Use of the geometric mean in the Aitchison improduct: http://kma.upol.cz/data/xinha/ULOZISTE/ActaMath/0708.pdf
= Website: http://www.compositionaldata.com/
= More involved math of Aitchison’s approach to compositional data: http://dx.doi.org/10.17713/ajs.v45i4.142
= Wikipedia, a portal and no source: https://en.wikipedia.org/wiki/Compositional data
= https://en.wikibooks.org/wiki/Why, and How, Should Geologists Use Compositional Data Analysis
= Voting but no use of distance: https://gking.harvard.edu/files/gking/files/multiparty.pdf

= PM. Aitchison & Brown (1957), The lognormal distribution, CUP
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