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Abstract

This paper introduces the classical Public Finance concept of taxation according to

ability to pay in the set-up of standard optimal income tax models. The fundamental

concept used is the specification of an individual revenue requirement function, a mapping

from abilities to taxes. The discussion is centered on the derivation of a tax function

on income such that agents of a given ability pay exactly the amount specified by the

revenue requirement function. The construction of the tax function is achieved by using the

differentiable approach to the revelation principle. A basic differential equation is generated

from which the tax function is found. A discussion of the necessary and sufficient conditions

for the validity of this technique and an interpretation of the results in graphs are provided.

A welfare ranking of the solutions is used to select the best tax function that implements

the individual revenue requirements.

Journal of Economic Literature Classification Number: H21.
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1. Introduction

Traditional discussions of income taxation are often based on the concept of “ability

to pay”, which has been one of the fundamental concepts used to study the horizontal and

vertical equity characteristics of tax systems at both the theoretical and applied levels.1

However, more recent developments in the normative theory of income taxation, namely

the theory of optimal non-linear income taxes, have not used the concept at all. This may

have misled some into thinking that ability to pay is an obsolete idea, incompatible with

the emphasis that the modern theory of tax design places on incentives and efficiency.

This paper shows that is not the case. We provide an integration of the concept of

ability to pay and the optimal income tax model and argue that the study of the politics

and equity of income taxation can be pursued further with such an approach. In order

to accomplish that desideratum we use basic techniques developed in the literature on

incentives and mechanism design to obtain results in an optimal income tax framework.

The framework employed is essentially the one in Mirrlees (1971): there is a contin-

uum of agents with the same preferences over consumption and labor but who differ by

a parameter that can be interpreted as an index of ability, i.e. a wage rate. Given that

the endowment of time is the same for all agents it is normalized to one without loss of

generality. Thus the wage rate is also the market value of each agent’s time endowment, a

concept sometimes referred to as virtual income. The government tries to collect a given

amount of revenue and knows the distribution of the ability parameter in the population

but not each particular agent’s identity. Income is defined to be the product of wage rate

and labor supply. It is also assumed that the government is able to enforce whatever income

tax function is chosen and agents can only adjust their labor supplies. However, the mag-

nitudes of this adjustment are a crucial ingredient of the model. Thus, general preference

structures should be allowed in order to accomodate general labor-leisure tradeoffs.

By preventing the possibility of a differentiated lump-sum tax, the information struc-

ture makes the optimal income tax problem interesting because it becomes conceptually

closer to realistic situations. Unfortunately, this feature also makes the problem quite com-

plex. This is a reason why the standard formulations of the problem, where the government

1
Cf. Musgrave (1959) and Pechman (1987).
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maximizes a social welfare function, have relied almost entirely on the information provided

by the first order conditions of the problem to extract qualitative results.

In contrast with the optimal income tax literature, the ability to pay approach does

not necessarily coincide with the explicit maximization of a social welfare function. Instead

it relies on the specification of an individual revenue requirement function, a mapping from

abilities to taxes. Whereas in classical public finance “ability to pay” is defined as income

(or wealth), in models with incentives where income is an endogenous variable, this role is

played by the ability parameter.2 Obviously, a revenue requirement function is implicit in

the solution to any optimal income tax problem, but here it will be taken as a primitive

concept. The discussion is then centered on the derivation of tax functions on income that

implement a given revenue requirement. By this we mean that, in equilibrium, after all

behavioral adjustments to the tax function have taken place, agents of a given ability pay

exactly the amount specified by the revenue requirement function. The construction of such

tax functions is achieved by using the differentiable approach to the revelation principle,

as in Laffont and Maskin (1980): a basic differential equation is generated from which the

tax functions are found. This paper provides a discussion of the necessary and sufficient

conditions for the validity of this technique, using intensively the particular structure of

the problem. These conditions have a simple interpretation and are easy to check for any

preference specification. We provide a graphical interpretation of the results and discuss

what can be expected to happen when such conditions are not met.

Since the solution is based on a differential equation, a welfare ranking of the many

particular solutions is used to select the best tax function that implements the individual

revenue requirements, a result inspired by Seade (1977).

The Mirrlees optimal tax model has two distinct components: 1) an economy with

agents endowed with different productivities that are private information and 2) a govern-

ment that maximizes a social welfare function. In this paper we retain the first component

and replace the second component by the exogenous revenue requirement function. This ap-

proach gives us a good deal of flexibility in closing an income tax model: the determination

of revenue requirement functions can be separated from incentive problems and considered

2
The ability parameter, a wage rate, can also be interpreted as the value of the taxpayer’s endowment of

time.
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as a problem with a life of its own, leaving room for politics or alternative ethical founda-

tions. Obviously, social welfare functions are the standard way to close normative models

and that is the way the literature has progressed. But there is certainly scope for other

approaches. First, from a normative perspective, one can consider the case where revenue

requirements are the ultimate consequence of adopting certain equity criteria to dictate

tax policy.3 This case includes applications of axiomatic equity theory to the income tax

problem, where rather than focusing on optimizing the distribution of net income, tax de-

sign is defined as a cost-sharing problem. Our work here serves the function of translating

tax problems with incentives to maps from abilities to tax liabilities. The latter can be

compared directly using index numbers representing equity notions.

Second, we may want to take a positive rather than a normative perspective and use

the Mirrlees framework to explain and predict economic behavior and institutions. It might

seem more natural to examine policy choices at the revenue requirement level, given that it

is usually at this level that the incidence and equity implications of tax design are discussed

publicly. For example, recent debates on tax reform in the U.S. are explicitly stated in terms

of how much people of each income class pay in taxes. Another example comes from the

literature on the design of income maintenance programs, where non-utilitarian principles

are seen as increasingly relevant.4

Since there is no reason to expect the political equilibrium to conform to the policies

of a benevolent dictator, a more adequate formalization of a positive model for tax system

formation may be to specify preferences and choices directly at the revenue requirement

level. Indeed, a framework along these lines bears more resemblance to actual budgetary

institutions in some countries, including the U.S., where taxing and spending decisions are

made separately.

Formally, if we try to explain fiscal structures as the outcome of a political process,

we find that revenue requirement functions are the natural objects where we should focus

our attention. Specifying political economy models of income taxation as collective choices

of revenue requirement functions simplifies the problem considerably in the sense that con-

sideration of incentives becomes easy to handle, almost an afterthought. An immediate

3
A detailed study of one such case is Berliant and Gouveia (1993).

4
See, for example, Besley and Coate (1992).
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example would be to use a model of direct democracy, where taxpayers vote over revenue

requirement functions.5 The case of a representative democracy can also be addressed by

modeling a two stage process, where people choose among candidates and elected officials

choose a revenue requirement function. In both these cases, income tax functions would

then be the result of implementing the revenue requirement functions; the latter are chosen

through a political process.

We wish to emphasize that, as suggested just above, one need not accept the “ability

to pay” criterion (which might result in adverse welfare consequences) in order to use the

approach advanced here. Instead, the approach proposed here can be viewed simply as a tool

that can be used to separate the incentive compatibility aspects of an income tax question

from its other considerations. This interpretation gives us another angle from which to

analyze such questions. For example, it would be much more difficult to analyze positive

questions concerning voting over income taxes without isolating the incentive compatibility

part of the model. We employ the results presented here in other work, Berliant and

Gouveia (1998), to accomplish this. Tax systems that are outcomes of such a voting scheme

will be best for a given individual revenue requirement function, but not necessarily Pareto

optimal for a given aggregate revenue requirement constraint. Similarly, the approach gives

us another tool to analyze the validity of the first order approximation to the optimal income

tax problem.

A less important but not irrelevant consideration is that the approach pursued here

allows the computation of solutions for examples and easy computation of comparative

statics. This is in contrast with the results obtained in the standard optimal income tax

model employing a social welfare function, where simulations must be used in place of

explicit closed form solutions and where comparative statics are complex.

The approach proposed here has an analogy in the optimal auction literature. The

role of the individual revenue requirement function is quite similar to the role of the re-

duced form auction in this literature; see, for example, Border (1991) for a description as

well as necessary and sufficient conditions on a reduced form auction for implementation.

Here we inquire only about sufficient conditions on individual revenue requirements for

implementation. Necessary conditions remain an open problem.

5
For some work along these lines, see Berliant and Gouveia (1998).
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The paper is organized as follows. The second section constructs the family of income

tax functions that implement a smooth revenue requirement function and proves the exis-

tence of a best income tax function in that set. It also includes a new result on utilitarian

and second best optimal tax functions. The third section contains an example with explicit

solutions illustrating Propositions 1 and 2. A final section concludes.

2. Model and Results

2.1 Assumptions on Preferences and Technology

Consumers differ by an ability parameter, , strictly positive, which can be interpreted

as a wage rate or productivity. The support of  is W, an interval on the real line:

 ∈ = [] ⊆ ++

where  has a population density function () and ()  0 a.e. on  . The density

function is common knowledge, but each agent’s ability is private information. Thus, the

only lump-sum taxes that can be used are necessarily uniform. Even in this case, such a

tax must be bounded by the earning power of lowest ability individual in order to prevent

bankruptcy.

Define  as the set of functions mapping from  to  that are p-times continuously

differentiable. We assume that agents have preferences defined over non-negative values for

consumption  and labor , represented by a 2 utility function, ( ). Without loss of

generality we normalize the endowment of time to 1 and so we have that ∀ ( ) ( ) ∈
+ × [0 1].

In contrast with much of the optimal income tax literature, our utility function is

purely ordinal. The arguments presented below are immune to continuous increasing trans-

formations of ( ). 6 Utility is employed in place of preferences purely as a matter of

convenience.

6
See, for example, equation (2).
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Next, we present a list of assumptions on preferences often used in the optimal income

tax model. Various subsets of these assumptions will be employed later on. Subscripts

represent partial derivatives with respect to the appropriate arguments.

A1— Standard assumptions on preferences:

1  0 2  0 22  0 11  0

A2- The utility function is strictly quasi-concave:

112
2 − 21212 + 221

2 ≡ 0  0

A3- Consumption is normal:

212 − 221  0

A4- Interior solutions:

lim
→0

1( ) =∞

lim
→1

2( ) = −∞

lim
→0

2( ) = 0

Restrictive as these assumptions may be, they allow for a considerably wider class of

preferences than the quasi-linear or additively separable utility functions often used in the

literature. The more restrictive preferences are also used in L’Ollivier and Rochet (1983)

and papers following, such as Weymark (1987). We could weaken assumption A4, but at

the cost of having more extensive proofs. The production technology side of the model is

simple, in order to allow a sharper focus on the issues with which we are concerned. As

is standard in the optimal income tax literature, we assume a production function with

constant returns to scale in labor, with coefficient  for type  workers.

We define gross income as  and, when there are no taxes, we have that  ≡  ·  and

 = . Denote as  the set of possible incomes,  = [0 ].

Without taxes, the consumer’s problem for type  is

max


( )
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Given A4, we have interior solutions for this problem, satisfying the first order condi-

tion:

1( ) + 2( ) = 0

Denote the solution to the problem as () ≡ argmaxy( ) and the indirect utility
function as () ≡ (() ()) Notice that () is well defined under A2, since the

argmaxy is unique.

2.2 The Revenue Requirement Function and Definition of the Problem

In the basic model being discussed, the government wishes to impose a tax on individuals

following the general principle of taxation according to ability to pay. This objective is

formalized by the specification of a revenue requirement function , mapping from abilities

to tax payments. Denote  ⊂  as the set of possible tax payments. Then we can be more

precise and write  : →  .

The concept of a revenue requirement function is a flexible way to formalize the tax

payments implied by alternative equity concepts. It can also be interpreted as the object

over which political debates on the distribution and redistribution of income are centered.

Although it is cardinal, it has a natural scale in terms of numeraire.

We will require () to obey some feasibility and regularity conditions:

A5- Feasibility and regularity of ():

() is 2, ∀  ∈ it is assumed that   (), and

Z 



()() ≥ 0

These are not strong assumptions. Define  to be the space of all functions satisfying

A5. Then the assumption that  is 2 is generic in the appropriate topology on ; that is

2 ’s will uniformly approximate any continuous function (Hirsch (1976, Theorem 2.2)).7

The specification of the budget constraint is standard in the optimal taxation literature.

7
This justification is also used to explain differentiability assumptions in the smooth economies literature.
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As is standard in that literature, we will not specify what is to be done with the revenue

raised.

The government does not know each agent’s identity, but we assume that it is able to

monitor individual output, which can thus serve as a tax base. The income tax function

 :  →  specifies the tax paid by an individual with gross income . The net income

function, (), is defined as () ≡  − ().

Given that income will be taxed, the consumer’s problem is now

max


(() )

with first order condition

1



+

2

= 0 (1)

and with solution (; ). 8

We can now state the problem with which we are concerned: given that the government

wants to impose taxes as described by the revenue requirement function (), can we design

an income tax function  :  →  such that, in equilibrium, after all behavioral adjustments

have taken place, agents of type  pay () in taxes? More formally, can we find a 2

function  that implements  in the sense that ((; )) ≡ ()?

To find such a tax, we use the differentiable approach to the revelation principle (see

Laffont and Maskin (1980)). The direct mechanism is defined in the following way: agents

are asked to report their type, the value of . Given this reported value they are required to

produce output () = ()+ () but can retain () for consumption. We find a family

of 2 functions () that satisfies incentive compatibility. In other words, these functions

satisfy the first and second order conditions of the agent with respect to the type reported

to the planner and furthermore do so for the case of truthful reporting.

We will define conditions under which the strategy chosen by the agents is unique, and

consequently nothing is lost when we go from the indirect mechanism, taxation of income,

8
In general (;) is a correspondence, but given our assumptions A1-A4 in equilibrium it will turn out to

be a function.
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to the direct mechanism just described. This is actually a trivial feature of the problem

since the outcome for each worker’s strategy (and not just his best strategy, as in the case

of implementation in dominant strategies) is unaffected by other workers’ strategies.

In contrast with the standard moral hazard problem, the optimal income tax problem

is an adverse selection problem in the following sense. Each individual agent perceives no

randomness in his individual decision problem since there is no randomness in the map

from actions to consequences. The density function  represents the distribution of agents’

types, while each agent knows her own type. This contrasts with moral-hazard problems

where  might represent the conditional distribution of outcomes given an agent’s action.

A consequence of this is that the restrictions on density functions used in moral hazard

environments to validate the first order approach are irrelevant to the adverse selection

model studied here.

2.3 Results

It is helpful to consider briefly the first-best case, where perfect information allows the

government to impose a differentiated lump-sum tax. It turns out that the solution to this

simpler problem helps to understand the second order conditions for the second-best case

and sheds light on a non-negativity condition we will require of ().

The net income function for the first best case, , is defined implicitly by the first order

condition of the agents :

1(
+ ()


) + 2(

+ ()


) = 0

For the case with () = 0, () = (). Given assumptions A1-A4, () exists and

is unique. Assumptions A1-A5 also imply that the Jacobian of the equation above is not

singular for strictly positive . Thus, we can use the implicit function theorem to prove

that () exists and is locally unique.

In ( ) space (defined in the positive orthant of 2) the net income function defines

two sets:

− = {( ) | 1(
+ ()


) + 2(

+ ()


)  0} and

+ = {( ) | 1(
+ ()


) + 2(

+ ()


)  0}

10



(Fig 1 about here )

The last area, +, is important in the proof of Proposition 1 that follows, as it corre-

sponds to points where the second order conditions for incentive compatibility are verified.

In particular, define the interval () = (0 ()) We now show that () is not degener-

ate, or more generally that  is always positive. Suppose that (̃) = 0 for some ̃ ∈  .

But then by A4 we must have 1 =∞. Hence 2 = −∞ so  = 1 and  = (). Using A5,

we have a contradiction. We can now state our first result.

Proposition 1 : Assumptions A1-A5, () ≥ 0 and 
  0 are sufficient conditions to

implement () by means of an income tax.

The Appendix contains the proofs of all Propositions. However, it will be useful to

mention here the basic steps involved. Using the first order condition of the agents, the

government constructs net consumption functions () that induce truth telling from the

agents. These functions are defined by the following differential equation:




= − 2(

+()
 ) 

1(
+()

 ) + 2(
+()

 )
(2)

A solution to (2) that satisfies monotonicity (0()  0) implements the revenue requirement

().

Remark 1: The condition that () ≥ 0 is needed only to ensure that the solution to
the implementation problem implies non-negative labor supply. Given specific preferences

and an arbitrary revenue requirement function assuming negative values for some range of

 , we can solve (2) to obtain (). As long as () + ()  0 for all  ∈  and A5

holds the remainder of our proof is still valid.9

9
We are indebted to a referee for corrections and suggestions on this matter. Berliant and Page (1996) prove

existence of solutions to the implementation problem for more general ()’s but their existence proofs are not

constructive.
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Remark 2: The monotonicity condition tells us that, in equilibrium, consumption and

gross income must be an increasing function of ability. Proposition 1 is related to other

results in the literature as can be seen in Myles (1995, Chap.5, sec. 2.4). However, one needs

to keep in mind that Proposition 1 provides sufficient conditions on exogenous objects for

implementation, while the remainder of the literature provides conditions on endogenous

objects, like . There are some similarities with Brito and Oakland (1977) Proposition

4. However, the proof of the latter theorem relied on the optimality of the solution to

a planner’s maximization problem; our Proposition does not. The results in Proposition

1 are also related to the results in Theorem 2 of Guesnerie and Laffont (1984), where

monotonicity is shown to be a necessary condition for implementability of “action profiles”

(labor supply and consumption schedules). Papers dealing with monotonicity in the optimal

income tax literature include L‘Ollivier and Rochet(1983), Weymark (1986), and Ebert

(1992). However, Guesnerie and Laffont are concerned with a principal-agent relationship

where the welfare of the principal depends on the action profiles of the agents. In contrast,

the problem we solve is in the tradition of classical Public Finance, where establishing a

desirable mapping from abilities to taxes is a goal in itself. The principal or government

cares not only about each agent’s action, but also about her type, which is hidden knowledge.

Our proposition also differs in that we discuss the entire set of implementable tax functions

instead of just using them as tools ( more precisely nonlinear price mechanisms ) that induce

patterns of behavior over which the principal optimizes. Moreover, the Guesnerie-Laffont

result is implicitly restricted to additively separable utility functions since the objective

(principal’s utility) is assumed to be separable. Given the importance of the labor-leisure

tradeoff this is a restrictive assumption.

The implications of the results derived above can be seen in a more intuitive manner if

we illustrate the problem by depicting two possible situations in ( ) space, using graphs

developed in Sadka (1976). The reader is referred to that paper as well as Seade (1977) for

a more detailed explanation of these graphs.

Normality of consumption (A3) yields the single crossing property for indifference

curves of agents with different abilities. However, this alone is not enough to guarantee

implementation. The second order conditions must be checked.

12



(Figure 2 about here )

In Figure 2 we have the case where the second order conditions for incentive compat-

ibility are obeyed. Notice that when indifference curves of different agents cross, higher

ability agents have smaller slopes. This is essentially what the single crossing condition

says. In this situation, agents align themselves along () in ascending ability order.

(Figure 3 about here )

In the case depicted in Figure 3, we have single crossing, but the consequence is a

perverse situation where taxes decrease with ability. Agents line up in descending order of

ability, i.e. high  agents choose to produce and consume less than low  agents. The

perversity of the situation is its apparent ”normality” because taxes are still an increasing

function of income! This must be a serious concern to anyone using this type of framework.

Suppose we were doing simulations of the model on a computer, and we had a program

which solved the differential equation (2) and computed the corresponding (). Just by

looking at () we might never guess the solution was completely wrong.

In this last case the second order conditions for incentive compatibility do not hold.

Consequently, critical points in the agents’ Lagrangeans are local minima and hence useless

for describing the actual behavior of the agents. Any () derived under these circumstances

is meaningless.

Notice that () plays no role in Proposition 1.

For future reference, note that the inverse function theorem yields the following ex-

pression for the marginal tax rates:

 0() =
0()

0() + 0()

So far we have proved that we can implement () by means of an income tax. This

can be accomplished by solving the differential equation (2) and checking second order

13



conditions. But we have not yet discussed the efficiency of the income tax thus found.

Since Proposition 1 identifies a family of solutions, we can search for the best one. This is

the content of our next proposition.

Proposition 2: Under assumptions A1-A5, if 0()  0 and () ≥ 0, then the 2 income
taxes implementing () are Pareto ranked, and there exists a best 2 income tax under

this ranking that implements .

The results we have presented concern smooth tax functions. Do there exist other

tax functions that may be superior on efficiency grounds and also implement ? The next

proposition rules out such alternatives.

Proposition 3: Under the assumptions used in Proposition 2, the best 2 income tax im-

plementing  Pareto dominates any income tax implementing .

One final remark is in order. Although we have found the best tax system imple-

menting , an important question remains open. Is this tax system (second best) Pareto

optimal among tax systems satisfying the aggregate revenue constraint? To restate this

question in a rigorous way, fix an aggregate revenue requirement  and consider the sets

() = { Continuously differentiable  with 
 ≥ 0|

R 

()() ≥ } and

Θ() = { |  ∈ ()}, where  is the net income function characterized in Propo-

sition 2.

Is there any  that is Pareto dominated inΘ()? We conjecture that further conditions

on both  and utility would be needed to answer the question in the negative. Here is some

intuition for the conjecture. Suppose that  0 ∈ () but that 0 gives more tax liability

to high ability agents than . Since the incentive constraint is looser towards the top of the

net income schedule induced by  as opposed to 0, agents will generally work more under

 than under 0 . It seems possible that although low ability agents pay more taxes and

work harder under  than under 0 , they might also get more consumption good. Thus it

seems to us that Pareto domination or lack thereof depends on the particular utility function
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employed. In our opinion, this method of attack might yield further characterizations of

Pareto optimal income taxes (other than the classical zero top marginal rate), but that is

a difficult subject outside the scope of the present paper.

However, we are able to offer one result that is stronger than the classical necessary

condition for a second best tax and employs our individual revenue requirements framework.

Definions: Let  = { :  →  |  is measurable} Given aggregate

revenue requirement  ∈ <, a tax function  ∈ M is called Utilitarian Opti-

mal if
R 

((; ))() ≥  and if there is no other tax function ̄ such that

R 

̄((; ̄))() ≥  and

R 

((; ̄) − ̄((; ̄) (; ̄))() 

R 

((; ) −

((; ) (; ))()

Given aggregate revenue  ∈ <, a tax function  ∈  is called Second

Best if
R 

((; ))() ≥  and if there is no other tax function ̄ ∈ 

such that
R 

̄((; ̄))() ≥  and ((; ̄) − ̄((; ̄) (; ̄)) ≥ ((; ) −

((; ) (; )) a.s., with strict inequality holding for a set of positive measure (in f).

Existence of utilitarian optima and second best taxes is studies in Berliant and Page

(1999).

Theorem: Suppose that ∗ is a tax function such that the first order conditions for

incentive compatibility (1) hold, let ∗() be the gross income function associated with

∗, and suppose that ∗(∗()) ∈ (), where R is fixed and positive. Let  ∈ (),

let  ∈ <,10 and let ( ) be any implementation of (1 − )∗(∗( )) + () ∈ G(R);
let  ( ) be the gross income function associated with ( ). Suppose that u is 1,

that ( ) is continuosly differentiable in  at  = 0 over all  ∈ [0 ], and suppose that
 ( ) is continuously differentiable in  at  = 0 over all  ∈ []. If ∗ is utilitarian
optimal, then

R 

1(

∗() − ∗(∗()) ∗())) · (∗() )|=0 () = 0. If

∗ is second best and 1  0, then either (A) there is a set of positive measure such that

(∗() )|=0  0 and another set of positive measure such that (∗() )|=0 

0, or (B) (∗() )|=0 = 0 a.s. in w.

Remarks: At a utilitarian optimal tax, a small movement toward any other individual

10
Note that  can be positive, negative, or zero
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revenue requirement function satisfying the aggregate revenue constraint will balance gains

and losses in marginal utilities across consumers. This is the analog of the idea that a first

best utiliitarian tax equates the marginal utility of income across consumers, but it applies

to second best utilitarian taxes.

At a second best tax, if a small move is made toward any other individual revenue

requirement function satisfying the aggregate revenue constraint, then income taxes rise on

a set of incomes associated with a set of consumers of positive measure at the second best

tax, and taxes fall on another set of incomes associated with a set of consumers of positive

measure. Of course, utilitarian optimal taxes are a special case of second best taxes.

Consider a utilitarian optimal tax for the population density  , and suppose that it is

also utilitarian optimal for the population density ̄ . Then, for any  ̄ ∈ < with () +

̄̄() ≥ 0 a.s.,
R 

1(

∗() − ∗(∗()) ∗())) · (∗() )|=0 (() +

̄̄()) = 0. So if these first order conditions for a utilitarian optimal tax are also suf-

ficient, 11 then this tax is utilitarian optimal for any non-negative linear combination of

the population densities for the appropriate linear combination of aggregate revenue re-

quirements. 12 An analogous statement applies for non-negative linear combinations of

populations for second best taxes.

Finnaly, if  is quasi-linear so that 1 is constant, then the necessary condition for

utilitarian optimal taxes reduces to
R 

(∗() )|=0 () = 0.

3. An Explicit Example

This section contains an example illustrating Propositions 1 and 2. It provides a closed

form interior solution to the problem of implementing a revenue requirement function. We

assume agents have Cobb-Douglas preferences, ( ) = () + (1− ) and  = [1 2].

We wish to implement proportional taxes on the endowments of the agents, () = ,

with  ∈ (0 1). The first-best  is defined by

max


() + (1− + 


) with solution () =

 − ()

2
=

(1− )

2


11
In general, Frechet or Gateaux derivatives can be used to explore first and second order conditions in the

context of optimal taxation. However, to reduce the mathematical complexity of this paper and of this result in
particular, a parametrization is used. Second best conditions are certainly of interest, but are beyond the scope

of this paper.
12

A special case of interest is ̄=06=1
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This equation defines the area over which the second-best net income functions must be

constructed. The second-best net income function is obtained following the steps in the

proof of Proposition 1. Agent  sends the message 0 that

max
0

((0)) + (1− (0) + (0)


)

Truth telling requires



0
|0= = 0 ⇐⇒





− (


 +


 )

1− +


= 0

We obtain the differential equation for the net income functions that implement :




=




 −  − 2 =


(1− )− 2 

This is an homogeneous differential equation. The solution is:

 =
2 + 

−1−1

1− 2 for  6= 5 or  = 4(− ()) for  = 5

where b is the constant of integration. By picking points in (0 (2)) we determine the value

of b that defines a particular net income function implementing  = . A particularly

simple result is obtained for   5. In this case if we set b to equal zero, we have () = (1−
2)2 and () = (1−2)2+ or  = 2. This implies () = 2, i.e. a proportional
income tax implements proportional taxation of the endowment of time. Note that this

simple result does not hold for  ≥ 5, since the solutions going through (2) = (0 1 − )

require a non-zero constant of integration. We can now illustrate Proposition 2 and compute

the best tax function that implements  = . The net income function corresponding to

the best tax is the particular solution that goes through (2 (2)) = (2 1− ). In order to

compute an exact solution assume that  = 13.

The net income function is of the form:

 = −1+ (9 + 3)53

Solve for b such that the function passes through (2 23) and has a positive derivative to

obtain (for b= -1.5)

 =
2− 2(1− 2)5

3
and  =

(2 +)− 2(1− 2)5

3

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Inverting for  we find the best tax function:

 =  − 1 + (1− 23)5

This tax function is concave (regressive) and has a zero marginal tax rate at the highest

income level (2) = 43. It differs quite substantially from the proportional tax function

 = 23 which generates exactly the same revenue from every agent but implies a higher

level of deadweight loss. Figures 4 and 5 illustrate this example. In Figure 4, income is

on the horizontal axis while tax is on the vertical axis. The proportional tax is the darker

line while the optimal tax is the lighter line. Note that the optimal tax function lies below

the proportional tax function everywhere. In Figure 5, income is on the horizontal axis

while marginal tax rates are on the vertical axis. Figure 5 gives the derivatives of the tax

functions in Figure 4. The solid line is the marginal tax function for the proportional tax,

while the dashed line is the marginal tax function for the optimal tax. Notice that marginal

tax rates decrease with income for the optimal income tax, so it is regressive.

(Figure 4 about here )

(Figure 5 about here )

4. Conclusions

Sufficient conditions for the implementation of well-behaved revenue requirement functions

have been found. This allows us to ignore incentives when modeling the determination

of the distribution of tax burdens. We can simply use revenue requirement functions to

generate incentive compatible income tax functions.
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An implication of this result is that modeling strategies of the politics of income tax-

ation can emphasize revenue requirement constraints instead of the maximization of social

welfare functions.

Future work should examine the Pareto optimality of the best tax function relative

to an individual revenue requirement and its welfare properties relative to the aggregate

revenue constraint. Solving this problem is equivalent to finding more necessary conditions

for an optimal tax, a very difficult unsolved problem. Our techniques may turn out to

be useful for dealing with such a problem. Other topics deserving additional work are

1) the extension of this approach to environments where agents differ not only in their

productivity but possibly in other dimensions as well, and 2) an examination of the role of

heterogeneity in determining the progressivity of the tax schedules implementing a given

revenue requirement function, for instance in our example.
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Appendix

Proof of Proposition 1:

The problem solved by an agent of type  is

max
0

((0)
(0) + (0)


) (3)

The first order condition for incentive compatibility is:

1


0
+

2

(


0
+



0
) = 0

Truthful revelation requires () to be constructed in such way that the following identity

in  holds:

1(() (() + ()))



+ 2(() (() + ()))

1


(



+




) ≡ 0 (4)

We now find ().13

It is immediate that we can rewrite (4) as:




= − 2(

+()
 ) 

1(
+()

 ) + 2(
+()

 )
(2)

Equation (2) is well defined on both sides of the function () because assumptions

A1-A4 guarantee that this first order differential equation has a unique continuous solution

through any ( ) pair in + as well as −.14

Recall that () is a nonempty open interval. Pick () ∈ (), and let (·) be the

solution to (2) through ( ()). Next we show that ()  ()  0, ∀  ∈ [].
Clearly ()  ()  0.15

Let ∗ be the largest  such that () ≤ (). Take {}
∞
=1 with lim→∞  = ∗,

  ∗ ∀ . Then from the definition of  and (2), lim→∞ 
 | = ∞. Now from the

definition of , 
 is bounded (at ∗), so ∃ 0  ∗ with (0) ≥ (0), a contradiction,

so ()  ().

13
It is possible to solve the problem using an indirect mechanism as in Mirrlees (1971), where he uses a

differential equation for utility instead of consumption. The approach used here seems to be easier to handle.
14

See Brock and Malliaris (1989), Theorem 5.1.
15

Note that the denominator of (2) is zero when ()=() and that 1 is undefined when ()=0.
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Using A1 and A4, () = 0 implies by (2) that 
 = 0, so (

0) ≥ 0 ∀ 0 ∈ . If ∃”
such that (”) = 0 and (”)  ” then () = 0 for   ”, contradicting ()  0. If

(”) ≥ ” we contradict A5.

Hence ()  ()  0 ∀  ∈ [].
Since () ≥ 0, this result is sufficient to obtain the positivity of income, () + ().

Since  never intersects , () ∈ + ∀  ∈ [].
Our assumptions on preferences also imply that () is 2 since the right hand side of

(2) is 1.

The second order condition for incentive compatibility is:

 ≡ 11(


0
)2 + 2

21




0
(


0
+



0
) +

22
2
(


0
+



0
)2

+1
2

02
+

2

(
2

02
+

2

02
)  0 (5)

If this condition holds everywhere, we have strict concavity of the agents’ utility over

0, guaranteeing uniqueness of a solution to each agent’s maximization problem.

We can differentiate (4) with respect to  and obtain

 − 21
( + )

2



− 2

2
(



+




)− 22

( + )

3
(



+




) ≡ 0 (6)

Combining the equations (4), (5) and (6), and using primes to denote derivatives in order

to simplify the notation, we write the second order condition for incentive compatibility as

0() + 0()

2
[
() + ()


(22 −

122
1

) + 2]  0

Using assumptions A1 and A3, the expression in brackets above is always negative 16,

so the second order condition is reduced to 0() + 0()  0.

Since () ∈ + ∀  ∈ [], we have

1(
 + ()


) + 2(

 + ()


)  0 (7)

With 0()  0 and A1, we have that (2) implies 0()  0. Since 0()  0, the second

order condition holds.17

16
The negativity of the expression in brackets coincides with Assumption B in Mirrlees (1971).

17
We could also study the implementation of revenue requirements with 0()0 in − even though they are

not very appealing as ability to pay criteria. However, they pose an additional problem, since the second order

condition would require 0()−0(), and it is difficult to find  conditions ensuring that outcome.
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Finally, recall that we have () ≡ () + (). By our previous results we have that

0()  0. Thus, we can invert it to obtain  = (). The desired tax function is then

() = (()) (8)

Proof of Proposition 2: Under the assumptions, every income tax implementing  has an

associated net income function satisfying (2). Since all are solutions to the same differential

equation, they do not intersect. Hence, in +, they are Pareto ranked as for each  and

each net income level , less labor is required to obtain the same consumption  using a

schedule ranked higher. 18 and so are the income taxes implementing . The first-best net

income function  is an upper bound on admissible solutions to (2).

Let {(·)}
∞
=1 be a sequence of admissible solutions to (2) that are increasing to

a maximal function in the Pareto ranking as  → ∞. Hence ∀ , +1() ≥ (),

∀  ∈ .

Fix  ∈ [). Since () ≤ () ∀ , there is a pointwise limit () ≡
lim→∞ (). Hence () ≤ (). If () = (), then

1(
 + ()


) + 2(

 + ()


) = 0

and there is a neighborhood Z of ( ()) in 2 ∩ (−) and   0 such that

− 2(
∗ 

∗+(∗)
∗ )(

∗)
 ∗

1(∗
∗+(∗)

∗ ) + 2(∗
∗+(∗)

∗ )∗





|0 + 

∀ (∗ ∗) ∈ , ∀ 0 with (0 (0)) ∈ . Choosing n large, it follows that there exists

̂ with (̂) ≥ (̂), a contradiction. So    ∀  ∈ [). Since (2) holds for each 

on [), it also holds for  on [). So  is smooth on [).

Implicitly, we have taken a sequence  of solutions to (2) passing through an increasing

sequence of points in (). In the end, () = (), so equation (2) is undefined at .

However,  can be defined at  by () ≡ lim→ (). Using the same arguments as in the

proof of Proposition 1, () satisfies the second order conditions for incentive compatibility,

18
Riley (1979) studies a different problem where a set of solutions to a fundamental differential equation is

also Pareto ranked.
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and the associated income tax () is incentive compatible. Moreover, since () ≥ ̂()

for all admissible solutions 19 ̂(), () is Pareto optimal among those 2 net income

functions implementing .//

Remark : The initial restriction of the arguments in the proof to [) is necessary

because the upper limit of the Pareto optimal net income schedule is a singularity point

of the differential equation (2). Intuitively, we push  as far up as we can, until the top

person’s utility no longer increases. This happens at a point where the denominator of (2)

vanishes (and ()
 approaches infinity), which also implies that the marginal tax rate is

zero at that point. 20

Proof of Proposition 3: Let  be any income tax implementing , and let () be its asso-

ciated net income function as function of income. We will prove first that, without loss of

generality,  can be taken to be 1.

It is easy to see that  must be continuous on the relevant incomes  = { |

∃  with  = argmax0 ((
0) 0)}, for otherwise incentive compatibility is violated.

Fix  and define  and  to be the sets of left and right derivatives of  at :

 ≡ { |  = lim
→

()− ()

 − 
where  ≤  ∀ }

 ≡ { |  = lim
→

()− ()

 − 
where  ≥  ∀ }

If ∃  ∈   ∈  with   , then there is a non-degenerate interval in  where

all produce the same gross income . Thus,  − () is the same for all  in this interval,

which contradicts the assumption that  implements , since 0()  0. Hence for all

 ∈   ∈   ≥ . If ∃  ∈   ∈  with   , then  is convex in a neighborhood

around y. In addition, there is an open set  contained in this neighborhood,  ∈ , such

that no consumer produces gross income in . In other words, A is a gap. The last fact

follows since  is 2 and quasi-concave. Then, without loss of generality (and without

19
Those solutions satisfying the first and second order conditions.

20
See the Appendix of Seade (1977) for a proof of this last statement in another context.
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changing the consumption and labor supply of any consumer),  can be made 2 on  such

that it is unchanged outside of .

Thus, without loss of generality,  is differentiable. Notice that the first order condition

for incentive compatibility of  implies

 = argmax
0

((0) 0)} or

1
0 + 2 = 0 or

0() ≡ − 2
1



Hence  is 1 and, in fact, is 2 since the last equation is a functional identity. The

result follows from Proposition 2.//

Proof of Theorem:

Fix  ∈ [].
Now ( ( )− ( ) )  ( ))|=0

= {1( ( )− ( ) )  ( ))[ ( )− ((( ( ) ) )( ( ))−
( ( ) )] + 2( ( )− ( ( ) )  ( ))[ ( )]}|=0.

Using equation (1) and () =  − (),

= {1( ( )− ( ( ) )  ( ))[( ( ))(( ( ) ) )−
( ( ) ) )( ( ))− ( ( ) )]}|=0.

= [−1( ( )− ( ( ) )  ( ))( ( ) )]|=0

Now suppose that ∗ is utilitarian optimal. Then

[
R 

((; ) − ((; ) (; ))()]|=0 By Goffman (1965, Theorem 19), we

can interchange the integral and derivative operators, so

[
R 

((; )−((; ) (; ))|=0 ()] = 0 Plugging in the equalities of the

last paragraph,
R 

1( ( ) − ( ( ) )  ( ))( ( ) )]|=0 () = 0,

or
R 

1(

∗()− ∗(∗() ∗())∗(∗())]|=0 () = 0.

Now suppose that ∗ is second best. Since 1  0, the string of equalities above implies

that ( ( )− ( ( ) )  ( ))|=0 if and only if
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( ( ) )|=0 ≡ (∗() )|=0  0;

( ( ) − ( ( ) )  ( ))|=0 ≤ 0 if and only if ( ( ) ))|=0 ≡
(∗() )|=0 ≥ 0

Thus, if ∗ is second best it is not the case that

( ( )− ( ( ) )  ( ))|=0 ≤ 0 a.s. with
( ( )−( ( ) )  ( ))|=0  0 for a set of positive measure. In other

words, there is a set of positive measure such that

( ( )− ( ( ) )  ( ))|=0  0, or

( ( ) − ( ( ) )  ( ))|=0 ≤ 0, a.s. in w. Thus, there is a set of
positive measure such that (∗() )|=0  0, or (∗() )|=0 ≥ 0, a.s. in w.

Since  can also be negative ( and it is assumed that the derivative at  = 0 is well-

defined), there is also a set of positive measure such that ∗() ))|=0  0, or

(∗() )|=0 ≤ 0, a.s. in w, then (∗() )|=0 = 0, a.s. in w.

Q.E.D.
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