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Abstract
This paper provides a simple characterization of potential games in terms of path indepen-
dence. Using this characterization we propose an algorithm to determine if a finite game
is potential or not. We define the storage requirement for our algorithm and provide its
upper bound. The number of equations required in this algorithm is lower or equal to the
number obtained in the algorithms proposed in the recent literature. We also show that
for games with same numbers of players and strategy profiles, the number of equations for
our algorithm is maximum when all players have the same number of strategies. To obtain
our results, the key technique of this paper is to identify an associated Poisson’s binomial
distribution. This distribution enables us to derive explicit forms of the number of equations,
storage requirement and related aspects.
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1 Introduction

A potential of a game is a function of its strategy profiles such that if a profile is obtained
from another through a unilateral deviation by one player, the difference in the potential
between these profiles equals the gain in payoff of the deviating player. If a game admits
a potential, it is called a potential game. Introduced by Monderer and Shapley (1996),
potential games have been applied to study diverse issues such as coordination (Anderson et
al., 2001; Bramoullé, 2007), congestion (Chien and Sinclair, 2011), networks (Roughgarden
and Tardos, 2002; Bramoullé et al. 2014), consensus problems (Marden et al., 2009) and
wireless systems like cognitive radio (Neel et al., 2004; Ellingsæter et al., 2012).

This paper provides a simple characterization of potential games and proposes an algo-
rithm to determine whether a finite game is potential or not. The key technique of this
paper is to use properties of a statistical distribution, which enables us to get explicit forms
of number of equations of our algorithm, as well as comparable algorithms from the recent
literature.

Consider any game with a finite number n players, each having finitely many strategies.
For every player, we denote one of its strategy as the “zero strategy” and call the rest
“positive strategies”. Corresponding to any such game, there is an associated Poisson’s

binomial distribution (the distribution that corresponds to the number of successes in n
independent but not necessarily identical Bernoulli trials), where the probability of success
in the i-th trial is the proportion of positive strategies of player i.

A strategy profile s̃ is called a predecessor of a profile s if s is obtained from s̃ via
a unilateral deviation of a player from its zero strategy to some positive strategy. We
construct a weighted directed graph from the game, whose vertices are the strategy profiles.
The profile z with all zero strategies act as the origin. For any predecessor-successor pair
(s̃, s), a directed edge is drawn from s̃ to s and the weight assigned to this edge is the gain
in payoff of the corresponding deviating player. The length of any directed path in this
graph is the sum of weights of all edges that appear in the path. For any profile s, the path

independence property holds if all paths from the origin z to s have the same length. We
show that a game admits a potential if and only if the path independence property holds for
all vertices of its associated graph (Theorem 1).

Based on the characterization above, we construct an algorithm to determine whether a
game is potential or not. Using the expectation and success probabilities of the associated
Poisson’s binomial distribution, the number of equations required for this algorithm can be
explicitly stated (Theorem 2).

Among the papers of the existing literature, Sandholm (2010), Hino (2011) and Cheng
et al. (2016) are closely related to our work. Using the dimensions of subspaces of different
classes of games, Cheng et al. (2016) find the same number of equations as our algorithm
to detect a potential game. Using a similar reasoning Sandholm (2010) also finds the same
number in the special case where all players in a game have the same number of strategies.
Our key point of distinction with the existing literature is the method of using the properties
of the associated Poisson’s binomial distribution. Hino (2011) proposes an alternative algo-
rithm,1 but does not give an explicit form of its number of equations. Using the Poisson’s

1In the special case when all players have the same number of strategies, the number of equations in the
algorithm of Hino (2011) coincides with the number obtained in Theorem 3.5 of Sandholm (2010).
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binomial distribution, we determine the number of equations in Hino’s algorithm and show
that it is always at least as large as the number of equations required in our algorithm.
Furthermore, for games in which there are at least three players with two or more strategies,
our algorithm results in lower number of equations (Corollary 1).

The existing literature (e.g., Sandholm, 2010; Hino 2011) discusses two measures to
determine computational burden for an algorithm: (i) the number of equations needed for
its execution and (ii) its storage requirement. However, the literature does not have a
precise definition of storage requirement. We give a definition of storage requirement for our
algorithm and find its upper bound. To define storage requirement we note that four types
of objects are needed to execute our algorithm: vertices, weights associated with vertices,
edges and weights associated with edges. The storage required at any step of the algorithm is
simply the total number of objects at that step. The storage requirement of the algorithm is
the maximum required storage over all of its steps. Using the Poisson’s binomial distribution
we are able to provide an upper bound to the storage requirement of our algorithm (Theorem
3). This bound is based on a remarkable result of Darroch (1964), who shows that the mode
of a Poisson’s binomial distribution differs from its mean by at most 1.

Finally we address another issue that has not received much attention in the literature.
We ask whether having same or different numbers of strategies across players increases
the number of equations of our algorithm. To address this question we begin with the
situation where all players have the same number of strategies. Then we alter the numbers
of strategies of players keeping the number of strategy profiles the same. It is shown that the
number of equations for our algorithm is maximum when all players have the same number
of strategies (Theorem 4). This conclusion is in part driven by the general result that for
different Poisson’s binomial distributions with the same mean, the corresponding binomial
distribution (the one where the probability of success stays the same across trials) results in
the maximum variance (see, e.g., Hoeffding, 1956; Wang, 1993; Pitman, 1997).

One specific application of our algorithm can be in situations where the problem is to
“design” a potential game. For instance, consider the problem of frequency allocation in a
wireless system (see, e.g., Ellingsæter et al., 2012). In this problem the players are wireless
access points and the set of strategies of each player is its available channels. It is often useful
to design this interaction as a potential game. This is an example where given players and
strategy profiles, one has to assign payoffs to ensure that the game has a potential function.
Our algorithm and the related results can be useful for such problems.

The paper is organized as follows. We present the model, together with the associated
Poisson’s binomial distribution, in Section 2. The characterization of potential games in
terms of path independence and our algorithm are presented in Section 3. We discuss other
aspects of the algorithm such as storage requirement in Section 4. We conclude in Section
5. Some proofs are presented in the Appendix.

2 The model

Let Γ = 〈N, (Si)i∈N , (ui)i∈N〉 be a game in strategic form with a finite number of players,
with each player having a finite number of strategies. Let N = {1, . . . , n} be the set of
players where n ≥ 2. For i ∈ N, let Si be the set of strategies of player i. Let S = ×i∈NSi be
the set of strategy profiles and denote S−i = ×j 6=iSj. Let ui : S → R be the payoff function
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of player i.
Player i has ki ≥ 1 strategies, i.e., |Si| = ki. It will be useful for our analysis to denote

Si = {0, 1, . . . , ki − 1}. Thus each player i has a distinct zero strategy (si = 0) and possibly
other positive strategies (si > 0).

Definition 1 (Monderer and Shapley, 1996) The game Γ is a potential game if there is a
function P : S → R (called a potential function of Γ) such that for every i ∈ N, si, s̃i ∈ Si

and s−i ∈ S−i

ui(si, s−i)− ui(s̃i, s−i) = P (si, s−i)− P (s̃i, s−i) (1)

We begin with the following simple observation. The proof is straightforward and hence
omitted.

Lemma 1 The game Γ is a potential game if and only if there is a function P : S → R such

that for every i ∈ N, si ∈ Si and s−i ∈ S−i

ui(si, s−i)− ui(0, s−i) = P (si, s−i)− P (0, s−i) (2)

2.1 A classification of strategy profiles

In light of Lemma 1, the zero strategy of a player will play a central role in our analysis
to determine whether a game is potential or not. Denote the strategy profile where every
player plays its zero strategy by z, i.e.,

z ≡ (0, . . . , 0) (3)

It will be useful to classify the strategy profiles according to the number of zero strategies
in a profile. Specifically, for t = 0, 1, . . . n, define

Vt := {s ∈ S|s has t positive strategies} (4)

Thus, Vt is the set of all strategy profiles where n − t players play their zero strategies and
the remaining t players play positive strategies. Note that Vt ∩ Vt′ = ∅ for t 6= t′ and any
strategy profile s is an element of Vt for some t = 0, 1, . . . , n, so we can partition S = ∪n

t=0Vt.
Also observe that V0 is the singleton set {z}.

2.2 An associated probability distribution

For i = 1, . . . , n, let pi be the proportion of positive strategies for player i and let qi ≡ 1−pi,
that is,

pi = (ki − 1)/ki, qi = 1/ki so that ki = 1/qi (5)

Since ki ≥ 1, we have 0 ≤ pi < 1. Let Y ≡ Y (n; p1, . . . , pn) denote the total number of suc-
cesses in n independent but not necessarily identical Bernouilli trials, where the probability
of success of the i-th trial is pi. Then Y follows a Poisson’s binomial (or Poisson-binomial)
distribution. We know that (see, e.g., Wang, 1993):

E(Y ) =
n∑

i=1

pi and Var(Y ) =
n∑

i=1

piqi (6)
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From the definition of Vt in (4), observe that

Pr(Y = t) =
|Vt|∑n
τ=0

|Vτ |
for t = 0, 1, . . . , n (7)

and hence E(Y ) =
∑n

t=0
tPr(Y = t) =

∑n
t=0

t|Vt|/
∑n

t=0
|Vt|. From (6), we have

E(Y ) =

∑n
t=0

t|Vt|∑n
t=0

|Vt|
=

n∑

i=1

pi (8)

Since
∑n

t=0
|Vt| corresponds to the total number of strategy profiles of the game Γ, using (5)

we have
n∑

t=0

|Vt| =
n∏

i=1

ki =
1∏n
i=1

qi
(9)

2.3 A directed graph representation of Γ

Definition 2 Let s ∈ Vt. A strategy profile s̃ ∈ Vt−1 is called a predecessor of s (and s a
successor of s̃) if there is a player i such that (a) si > 0 and s̃i = 0 and (b) sj = s̃j for all
j 6= i. The player i for which (a) and (b) hold is called the critical player of the pair (s̃, s).

Since there are t players who play positive strategies in s ∈ Vt, any such s has exactly t
predecessors, each having a different critical player. In particular, z has no predecessor and
any s ∈ V1 has only one predecessor z.

By Definition 2, if s̃ is a predecessor of s, then s = (si, s−i) and s̃ = (0, s−i) with si > 0,
where i is the critical player of (s̃, s). The profile s can be reached from profile s̃ if player i
makes a unilateral deviation from its zero strategy to the strategy si. For any predecessor-
successor pair (s̃, s) with critical player i, denote

∆(s̃, s) := ui(s)− ui(s̃) = ui(si, s−i)− ui(0, s−i) (10)

Thus, ∆(s̃, s) presents the gain in payoff of the critical player from its unilateral deviation
when we move from s̃ to s.

Consider condition (2) of Lemma 1. Note that if si = 0, this condition holds for any
function P, so let si > 0. Using Definition 2 and (10) in Lemma 1, it follows that a function
P : S → R is a potential function if and only if for every predecessor-successor pair (s̃, s),

P (s)− P (s̃) = ∆(s̃, s) (11)

Motivated by (11), we construct the weighted directed graph G(Γ) from the game Γ as
follows.

(i) Present each s ∈ S = ∪n
t=0Vt as a vertex.

(ii) For any predecessor-successor pair (s̃, s), draw a directed edge which originates at s̃
and terminates at s. Denote this edge by (s̃, s).

(iii) Put the weight ∆(s̃, s) (given by (10)) on the edge (s̃, s).
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Total number of edges in G: Let et denote the number of edges that terminate at some
vertex of Vt. Since every vertex of Vt has t predecessors, we have et = t|Vt|. Therefore the
total number of edges in G is η(G) =

∑n
t=0

et =
∑n

t=0
t|Vt|. By (8) and (9), η(G) can be

presented in terms of the expectation and the success probabilities of the Poisson’s binomial
distribution of Section 2.2 as:

η(G) = E(Y )
n∑

t=0

|Vt| =

∑n
i=1

pi∏n
i=1

qi
(12)

Definition 3 A sequence γ = (y0, y1, . . . , ym) is a directed path of G(Γ) if for all ℓ, yℓ is a
predecessor of yℓ+1. The vertex y0 is called the origin and ym the terminus of the path γ.
The number of edges in the path γ is m, given by (y0, y1), . . . , (ym−1, ym). The length of the
path γ is the sum of weights over these m edges, given by

L(γ) := ∆(y0, y1) + ∆(y1, y2) + . . .+∆(ym−1, ym) =
m−1∑

ℓ=0

∆(yℓ, yℓ+1) (13)

If m = 0, the path γ = (y0) has only one vertex and no edge, so its length is zero.

One immediate property of directed paths can be noted. By (13) it follows that for two
directed paths γ = (y0, . . . , ym) and γ

′ = (y0, . . . , ym−1),

L(γ) = L(γ′) + ∆(ym−1, ym) (14)

2.4 Illustrative examples

It will be useful to illustrate the directed graph presentation with the help of examples.

Example 1 Consider a three-firm Cournot oligopoly game Γ1 where quantities supplied by
firms are restricted to be non-negative integers. This can correspond to a situation where
firms produce an indivisible good that can be only sold in integers units. Specifically the set
of players is the set of three firms N = {1, 2, 3}. To make the game finite, assume further
that each player is capacity constrained: players 1, 2 can produce at most 1 unit whereas
player 3 can produce at most 2 units. So we have S1 = {0, 1}, S2 = {0, 1} and S3 = {0, 1, 2}.
Players simultaneously choose their quantities. Given (s1, s2, s3), the market price is given
by the equation F (s1, s2, s3) = 6− (s1 + s2 + s3). Assume that all players have zero cost of
production, so the payoff of a player is simply its revenue, given by

ui(s1, s2, s3) = F (s1, s2, s3)si = [6− (s1 + s2 + s3)]si (15)

Define the function P : S → R as

P (s1, s2, s3) = 6
3∑

i=1

si −
3∑

i=1

s2i −
∑

1≤i<j≤3

sisj (16)

It can be verified that the function P is a potential function2 for the game Γ1.

2See Monderer and Shapley (1996) for potential functions of Cournot oligopoly games with more general
demand and cost functions. For an analysis of Cournot oligopoly games in integers, see Todd (2016).
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Note that for the game Γ1, each player i has a “zero strategy” which corresponds to
si = 0. Each of players 1, 2 has one positive strategy, whereas player 3 has two positive
strategies. Using the definition of Vt from (4), for this game we have V0 = {(0, 0, 0)},
V1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2)}, V2 = {(1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 0, 2), (0, 1, 2)}
and V3 = {(1, 1, 1), (1, 1, 2)}.

Diagram 1 has the directed graph presentation of Γ1. At the top is the sole vertex of V0:
(0, 0, 0). At next level are vertices of V1 and so on. Between any predecessor-successor pair,
there is a directed edge. For this game we have pi = (ki − 1)/ki = 1/2 for i = 1, 2 and
p3 = (k3 − 1)/k3 = 2/3, so that

∑
3

i=1
pi = 5/3. Since qi = 1 − pi, we have

∏
3

i=1
qi = 1/12.

Hence (
∑

3

i=1
pi)/

∏
3

i=1
qi = 20, so by (12) it follows that the directed graph has 20 edges in

total.
The number inside the box of each edge gives the weight of that edge. For example,

consider the edge between (0, 0, 0) and (1, 0, 0). For this edge, the critical player is player 1
(as we reach from (0, 0, 0) to (1, 0, 0) through the unilateral deviation of player 1 from its
zero strategy to s1 = 1). So the weight on this edge is u1(1, 0, 0) − u1(0, 0, 0) = 5 − 0 = 5.
Similarly consider the edge between (1, 1, 0) and (1, 1, 2). For this edge, the critical player is
player 3 and weight on this edge is u3(1, 1, 2)− u3(1, 1, 0) = 4− 0 = 4.

Example 2 Consider a three-player minimum-effort coordination game Γ2 where3 the set
of players is N = {1, 2, 3}. Each player i chooses an effort level si. The effort levels of
players act as perfect complements to determine the output. Specifically the output is given
by min{s1, s2, s3}. For any player i, the cost of effort level si is csi where c is a positive
constant. To make the game finite, assume that S1 = {0, 1}, S2 = {0, 1} and S3 = {0, 1, 2}.
Given (s1, s2, s3), the payoff of a player is output net of its cost, so we have

ui(s1, s2, s3) = min{s1, s2, s3} − csi (17)

Define the function P : S → R as

P (s1, s2, s3) = min{s1, s2, s3} − c

3∑

i=1

si (18)

It can be verified that the function P is a potential function for the game Γ2.
Note that for t = 0, 1, 2, 3, the set Vt for this game is the same as in Example 1. Diagram

2 has the directed graph presentation of the game Γ2. As before, between any predecessor-
successor pair there is a directed edge. By (12), the total number of edges for this graph is
(
∑

3

i=1
pi)/

∏
3

i=1
qi = 20.

The number inside the box of each edge gives the weight of that edge. For example,
consider the edge between (0, 0, 0) and (1, 0, 0). For this edge, the critical player is player 1.
So the weight on this edge is u1(1, 0, 0)− u1(0, 0, 0) = −c− 0 = −c.

3 A characterization and an algorithm for potential

games

Based on the directed graph representation of the last section, we define the path indepen-
dence property that is used to characterize potential games. Based on this characterization,

3See Anderson et al. (2001) for general properties of such games.

7



we propose an algorithm to determine if a game is potential or not.

3.1 Path independence

For a finite game Γ consider the set Vt defined in (4). Let s ∈ Vt for some t ≥ 0. It will be
useful for our analysis to consider all directed paths with origin at z and terminus at s. Since
the number of players with positive strategies at s ∈ Vt is t, to reach s from z, we need t
unilateral deviations. As these deviations can occur in t! different ways, this is the number
of directed paths with origin z and terminus s. Each of these paths has exactly t edges.

Definition 4 The path independence property (PI) holds for s ∈ S if all directed paths with
origin z and terminus s have the same length.

Theorem 1 The game Γ is a potential game if and only if the path independence property

holds for all s ∈ S.

Proof The “if part”: Suppose PI holds for all s ∈ S. Then all directed paths with origin
z and terminus s have the same length. Denote this length by λ(s). Define the function
P : S → R as

P (s) := λ(s) (19)

Observe in particular that P (z) = λ(z) = 0. We prove that P defined in (19) is a potential
function of Γ by showing that P satisfies (11) for any predecessor-successor pair (s̃, s).

First suppose s ∈ V1. Then the only predecessor of s is z. Denote ∆(z, s) := ui(s)−ui(z).
There is only one path with origin z and terminus s and this path has length ∆(z, s). So
for this case P (s) = λ(s) = ∆(z, s). Since P (z) = 0, we have P (s) − P (z) = ∆(z, s) =
ui(s)− ui(z), so (11) holds.

Next suppose s ∈ Vt for some t ≥ 2. Consider any predecessor s̃ ∈ Vt−1 of s. Let
γ = (y0, . . . , yt−1, yt) be a directed path with origin z and terminus s that passes through
s̃, i.e., y0 = z, yt−1 = s̃ and yt = s. Consider the path γ̃ = (y0, . . . , yt−1) with origin z and
terminus s̃. Then it follows by (14) that

L(γ) = L(γ̃) + ∆(yt−1, yt) = L(γ̃) + ∆(s̃, s) (20)

Since PI holds for both s and s̃, we have L(γ) = λ(s) = P (s) and L(γ̃) = λ(s̃) = P (s̃). Using
this in (20), we have P (s) − P (s̃) = ∆(s̃, s), so (11) holds. This completes the proof of the
“if part”.

The “only if part”: Suppose Γ is a potential game. Then there is a function P such that
(11) holds for any predecessor-successor pair (s̃, s). By (13), the length of any directed path
γ = (y0, . . . , ym) is L(γ) =

∑m−1

ℓ=0
∆(yℓ, yℓ+1). Since (yℓ, yℓ+1) is a predecessor-successor pair,

by (11), we have ∆(yℓ, yℓ+1) = P (yℓ+1) − P (yℓ) for all ℓ, so that L(γ) =
∑m−1

ℓ=0
[P (yℓ+1) −

P (yℓ)] = P (ym)− P (y0). Taking y0 = z and ym = s, all paths with origin z and terminus s
has the same length P (s)− P (z), proving that PI holds for s ∈ S.

Remark 1 It can be seen from Diagrams 1,2 that for each of the two graphs, path inde-
pendence holds all vertices. For instance, in Diagram 1 consider the vertex s = (1, 0, 2).
There are two paths from z = (0, 0, 0) to s: (i) (0, 0, 0) → (1, 0, 0) → (1, 0, 2) and (ii)
(0, 0, 0) → (0, 0, 2) → (1, 0, 2). The length of path (i) is 5 + 6 = 11 and the length of path
(ii) is 8 + 3 = 11.
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3.2 An algorithm to determine a potential game

Based on the characterization of Theorem 1, the next theorem identifies the number of
equations required to verify PI for all s ∈ S. This number is also represented in terms of the
expectation and success probabilities of the Poisson’s binomial distribution of Section 2.2.

Theorem 2 Let pi = (ki − 1)/ki, qi = 1/ki and let Y ≡ Y (n; p1, . . . , pn) denote the total

number of successes in n independent Bernouilli trials, where the probability of success of

the i-th trial is pi. Denote

An(k1, . . . , kn) :=
n∑

t=2

(t− 1)|Vt| (21)

By checking An(k1, . . . , kn) equations, it can be determined whether Γ is a potential game.
Moreover

An(k1, . . . , kn) = 1 + [E(Y )− 1]
n∑

t=0

|Vt| = 1 +

∑n
i=1

pi − 1∏n
i=1

qi
(22)

Proof Using Theorem 1, we determine whether Γ is a potential game or not by checking if
PI holds for all s ∈ S = ∪n

t=0Vt. Note that PI always holds for all s ∈ V0 ∪ V1. We check the
property recursively as follows.

Let t ≥ 2. Suppose PI holds for all s ∈ Vℓ for ℓ = 0, 1, . . . , t−1. Consider any s ∈ Vt. Any
directed path with origin z and terminus s must pass through some predecessor s̃ ∈ Vt−1 of
s. Consider two such paths γ = (y0, . . . , yt−1, yt) and γ

′ = (y′0, . . . , y
′
t−1, y

′
t) that pass through

the same predecessor s̃, i.e., y0 = y′0 = z, yt = y′t = s and yt−1 = y′t−1 = s̃. Denoting
γ1 = (y0, . . . , yt−1) and γ

′
1 = (y′0, . . . , y

′
t−1), observe that

L(γ) = L(γ1) + ∆(s̃, s) and L(γ′) = L(γ′1) + ∆(s̃, s) (23)

Note that both γ1 and γ′1 have origin z and terminus s̃. Since s̃ ∈ Vt−1, PI holds for s̃, so
we have L(γ1) = L(γ′1). Denote this common length by λ(s̃). Then it follows from (23) that
all directed paths with origin z and terminus s that pass through the same predecessor s̃
have the same length λ(s̃) + ∆(s̃, s). Since s ∈ Vt, the vertex s has exactly t predecessors.
Denoting these predecessors by s̃1, . . . , s̃t, it follows that PI holds for s if and only if

λ(s̃1) + ∆(s̃1, s) = . . . = λ(s̃t) + ∆(s̃t, s)

This implies that we need to check t − 1 equations for every s ∈ Vt. Therefore the number
of equations we have to check to see if PI holds for all s ∈ Vt is (t − 1)|Vt|. Applying this
recursive argument for t = 2, . . . , n, the total number of equations we need to check to see if
PI holds for all s ∈ S is

∑n
t=2

(t− 1)|Vt|. Noting that |V0| = 1, (22) follows by using (8) and
(9) in (21).

Remark 2 Note that for each of the games Γ1,Γ2 in Examples 1,2, we have n = 3, |V2| = 5,
|V3| = 2 (see Diagrams 1,2). Each vertex in V2 has 2 edges terminating at it, so we need
to check 2 − 1 = 1 equation for each such vertex. Similarly each vertex in V3 has 3 edges
terminating at it, so we need to check 3− 1 = 2 equations for each such vertex. So the total
number of equations to check, as in (21), is An(k1, k2, k3) = A3(2, 2, 3) =

∑
3

t=2
(t − 1)|Vt| =

(1 × |V2|) + (2 × |V3|) = (1 × 5) + (2 × 2) = 9. Also note that for each of the games Γ1,Γ2,
we have pi = (ki − 1)/ki = 1/2 for i = 1, 2 and p3 = (k3 − 1)/k3 = 2/3. So

∑
3

i=1
pi − 1 = 2/3

and
∏

3

i=1
qi = 1/12. Hence 1 + (

∑
3

i=1
pi − 1)/

∏
3

i=1
qi = 1 + (2/3)12 = 9, so (22) holds.
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3.2.1 Comparison with recent literature

Consider as before a finite game Γ with set of players N = {1, . . . , n}, where player i ∈ N
has ki strategies. In the algorithm proposed in the recent paper of Hino (2011) (see also
Theorem 3.5, Sandholm, 2010), the number of equations required to verify whether Γ is a
potential game is given as follows, where i, j, ℓ ∈ N :

Bn(k1, . . . , kn) =
∑

1≤i<j≤n

θij where θij := (ki − 1)(kj − 1)
∏

ℓ6=i,j

kℓ (24)

Corollary 1 compares this with the number of equations required for our algorithm.

Corollary 1

(i)

Bn(k1, . . . , kn) =
n∑

t=2

(
t

2

)
|Vt| (25)

Moreover

Bn(k1, . . . , kn) =
1

2

[
Var(Y ) + (E(Y ))2 − E(Y )

] n∑

t=0

|Vt| =

∑
1≤i<j≤n pipj∏n

i=1
qi

(26)

where pi, qi, Y are as in Theorem 2.

(ii) B2(k1, k2) = A2(k1, k2) and for n ≥ 3, Bn(k1, . . . , kn) ≥ An(k1, . . . , kn) with strict

inequality if at least three players have two or more strategies.

Proof See the Appendix.

Using the Poisson’s binomial distribution of Section 2.2, Corollary 1 identifies the number
of equations required for the algorithm proposed by Hino (2011). It is also shown that this
number is always at least as large as the number of equations required in our algorithm.
Furthermore, for games in which there are at least three players with two or more strategies,
our algorithm requires a lower number of equations.

4 Other aspects of algorithm

In this section we look at two other aspects of our algorithm: (i) storage requirement and
(ii) same versus different numbers of strategies across players.

4.1 Storage requirement

As mentioned earlier, the literature discusses two measures to determine the computational
burden for an algorithm: (a) the number of equations needed and (b) its storage requirement.
However, a precise definition of storage requirement is lacking in the literature. In this section
we define storage requirement for our algorithm and provide its upper bound.

Four types of objects are needed to execute our algorithm: (i) vertices, (ii) weights
associated with vertices, (iii) edges and (iv) weights associated with edges. Consider any

10



step τ of the algorithm. Denote by Nτ (v) = number of vertices, Nτ (wv) = number of
weights associated with vertices, Nτ (e) = number of edges and Nτ (we) = number of weights
associated with edges to run step τ of the algorithm.

Definition 5 The storage requirement at step τ (SRτ ) of the algorithm is the total number
of objets needed to run step τ of the algorithm, that is, SRτ is the sum Nτ (v) +Nτ (wv) +
Nτ (e) +Nτ (we).

Definition 6 The storage requirement for the algorithm is the maximum of SRτ over all
steps τ of the algorithm.

Consider the Poisson’s binomial variable Y of Section 2.2. The variable Y is used in the
next theorem to give an upper bound to the storage requirement of our algorithm, where
⌊x⌋ stands for the largest integer not exceeding x.

Theorem 3 For λ = 0, 1, let

βλ :=
4 Pr(Y = ⌊

∑n
i=1

pi⌋+ λ)∏n
i=1

qi
+ 2n− 1 (27)

where pi, qi, Y are as in Theorem 2. The storage requirement for the algorithm of Theorem 2
is bounded above by either β0 or β1.

Proof See the Appendix.

Recall that for the Poisson’s binomial variable Y , we have E(Y ) =
∑n

i=1
pi. Darroch

(1964) has shown that the mode (that is, the most probable number of successes) of a
Poisson’s binomial distribution differs from its mean by at most 1. Specifically, for a Poisson’s
binomial variable Y, the mode is either ⌊E(Y )⌋ = ⌊

∑n
i=1

pi⌋ or ⌊E(Y )⌋+ 1 = ⌊
∑n

i=1
pi⌋+ 1

or both.4 Theorem 3 shows that the probability of this mode determines an upper bound of
the storage requirement of our algorithm.

4.2 Same versus different numbers of strategies for players

In this section we ask whether having same or different numbers of strategies across players
increases the number of equations for our algorithm. Our approach is as follows. Fix the
number of players n and begin with the case where all players have the same number k of
strategies so that the number of strategy profiles is kn. Now alter the numbers of strategies
across players keeping the number of strategy profiles the same, that is, consider n-tuples
(k1, . . . , kn) keeping

∏n
i=1

ki = kn. Theorem 4 shows that An(k1, . . . , kn), Bn(k1, . . . , kn) are
both maximum when k1 = . . . = kn = k.

Theorem 4 Let n ≥ 2 and k ≥ 1. The following hold for all n-tuples of positive integers

(k1, . . . , kn) such that
∏n

i=1
ki = kn.

(i) An(k1, . . . , kn) ≤ An(k, . . . , k) with equality iff k1 = . . . = kn = k.

(ii) Bn(k1, . . . , kn) ≤ Bn(k, . . . , k) with equality iff k1 = . . . = kn = k.

(iii) If either ki ≥ 2 for at least four i, or ki ≥ 3 for at least three i, then Bn(k1, . . . , kn)−
An(k1, . . . , kn) ≤ Bn(k, . . . , k)− An(k, . . . , k) with equality iff k1 = . . . = kn = k.

4See Theorem 4 (p.1321) of Darroch (1964) for the complete description of the mode. See also Pitman
(1997, p.284).
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Proof The results trivially hold for k = 1, so consider k ≥ 2. Let (k1, . . . , kn) be any n-tuple
of positive integers such that

∏n
i=1

ki = kn. Since qi = 1/ki, we have
∏n

i=1
qi = 1/kn. The

arithmetic mean-geometric mean inequality implies that for any r > 0:

n∑

i=1

qri ≥ n

n∏

i=1

q
r/n
i =

n

kr
with equality iff q1 = . . . = qn =

1

k
(28)

(i) As qi = 1− pi, from (22), we have

An(k1, . . . , kn) = 1 + kn(n− 1)− kn
n∑

i=1

qi (29)

The result of (i) follows by applying (28) with r = 1 for the last term of (29).

(ii) Since
∑

1≤i<j≤n pipj = [(
∑n

i=1
pi)

2 −
∑n

i=1
p2i ]/2 and qi = 1− pi, from (26), we have

Bn(k1, . . . , kn) =
kn

2



(
n−

n∑

i=1

qi

)2

−
n∑

i=1

(1− qi)
2


 =

kn

2

[
f

(
n∑

i=1

qi

)
−

n∑

i=1

q2i

]
(30)

where f(x) := n− 1 + [x− (n− 1)]2.
If (k1, . . . , kn) is such that ki = kn for some i and kj = 1 for all j 6= i (that is, all players

except one have only one strategy), taking qi = 1/kn and qj = 1 for all j 6= i it follows from
(30) that Bn(k1, . . . , kn) = 0 < Bn(k, . . . , k) = n(n− 1)kn−2(k − 1)2/2 (since n, k ≥ 2).

To complete the proof, consider (k1, . . . , kn) such that ki ≥ 2 for at least two i (that is,
at least two players have 2 or more strategies). In that case, qi ≤ 1/2 for at least two i and
hence

∑n
i=1

qi ≤ (1/2)+ (1/2)+ (n− 2) = n− 1. Note that f is decreasing in
∑n

i=1
qi (this is

because
∑n

i=1
qi ≤ n− 1 and f(x) is decreasing for x ≤ n− 1). Using this, the result follows

by applying (28) with r = 1 for the first term and r = 2 for the second term of (30).

(iii) Denote g(x) := n− 2 + [x− (n− 2)]2. Note from (29) and (30) that

Bn(k1, . . . , kn)− An(k1, . . . , kn) =
kn

2

[
g

(
n∑

i=1

qi

)
−

n∑

i=1

q2i

]
− 1 (31)

If ki ≥ 2 for at least four i (that is, at least four players have 2 or more strategies), then∑n
i=1

qi ≤ 4(1/2) + (n − 4) = n − 2. If ki ≥ 3 for at least three i (that is, at least three
players have 3 or more strategies), then

∑n
i=1

qi ≤ 3(1/3) + (n− 3) = n− 2. Thus, in either
case

∑n
i=1

qi ≤ n−2. Since g(x) is decreasing for x ≤ n−2, we conclude that g is decreasing
in
∑n

i=1
qi. Using this, the result follows by applying (28) with r = 1 for the first term and

r = 2 for the second term of (30).

Theorem 4 shows that beginning from a situation where all players have the same number
of strategies, the number of equations required for both our algorithm and the algorithm
of Hino (2011) falls when the number of strategies across players are altered keeping the
number of strategy profiles the same. Furthermore, provided enough players have two or
more strategies, the difference between the numbers of equations of these two algorithms
also falls when players have different numbers of strategies.
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The results of Theorem 4 can be useful in problems of designing a potential game. As
mentioned in the introduction, consider a wireless system problem (see, e.g., Ellingsæter et
al., 2012) in which there are 4 access points (players), each having 2 channels (strategies).
So the number of strategy profiles is 24 = 16. Note that one can add players with only one
strategy without affecting the interaction of a game (moreover, since ki = 1 implies pi = 0
and qi = 1, by (22), adding players with only one strategy does not alter the number of
equations for our algorithm). Given this observation and noting that 8× 2× 1× 1 = 16, it
follows by Theorem 4 that designing a potential game with 2 access points where one point
has 8 channels and the other one has 2 will require lower number of equations compared to
the case of 4 access points in which each one has 2 channels. Thus given the same number of
strategy profiles, the number of equations is lower when there are few players having many
strategies rather than many players having the same number of strategies.

To a certain extent, the results of Theorem 4 are driven by the general property that
among different Poisson’s binomial distributions with the same mean, the corresponding
binomial distribution has the maximum variance. For instance, discussing the inequalities of
Hoeffding (1956), Pitman (1997, p.283) states that among all Poisson’s binomial distributions
“...on {0, 1, . . . , n} with a given mean µ, the binomial (n, p) distribution for p = µ/n is the
one that is “most spread out.”” A precise statement of this result is presented in Theorem 1 of
Wang (1993, p.301). Discussing this result, Wang (1993, p.302) points out that “...to estimate
an unknown proportion p, the unbiased sample mean from a sequence of non-identically

distributed Bernoulli random variables has smaller variance than the uniformly minimum

variance unbiased estimate obtained by using the binomial density b with parameter p.” (italics
in the original)

5 Concluding remarks

This paper presents a simple characterization of potential games in terms of path indepen-
dence. Based on this characterization we propose an algorithm to determine whether a finite
game is potential or not. In terms of the number of required equations, our algorithm does at
least as good or better than the algorithms proposed in the recent literature. In particular,
for games where at least three players have two or more strategies, our algorithm requires
a lower number of equations. We give a precise definition of the storage requirement and
using the result of Darroch (1964), provide an upper bound of the storage requirement for
our algorithm. We also address the question of whether the number of equations required
for our algorithm increases with same or different numbers of strategies across players.

The key contribution of this paper is the method of using a statistical distribution.
Identifying an associated Poisson’s binomial distribution with any finite game, we use the
properties of this distribution to derive our results. This distribution enables us to derive an
explicit form for the number of equations of our algorithm and helps us to better understand
related aspects such as the storage requirement. Our approach can be specifically useful for
problems where payoffs are assigned to design a strategic interaction as a potential game.
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Appendix

Proof of Corollary 1 (i) Since a player i ∈ N has ki−1 positive strategies and ki strategies
in total, the term θij defined in (24) corresponds to the number of strategy profiles where
both players i, j play positive strategies. Let θtij be the number of strategy profiles in Vt
where both i, j play positive strategies. Then θij =

∑n
t=0

θtij. Since θ
0
ij = θ1ij = 0, we have

θij =
∑n

t=2
θtij. Using this in (24), we have

Bn(k1, . . . , kn) =
∑

1≤i<j≤n

θij =
∑

1≤i<j≤n

n∑

t=2

θtij =
n∑

t=2

∑

1≤i<j≤n

θtij (32)

Fix any t ∈ {2, . . . , n} and consider the sum ψt :=
∑

1≤i<j≤n θ
t
ij. For any strategy profile

s ∈ Vt, exactly t players play positive strategies. Since out of these t players, two players
i < j can be chosen in

(
t
2

)
ways, it follows that the number of times a profile s ∈ Vt is counted

in this sum is
(
t
2

)
. Therefore ψt =

(
t
2

)
|Vt|. Using this in (32), the result in (25) follows.

Since Var(Y ) = E(Y 2)− (E(Y ))2, the first equality of (26) follows by using (7) in (25).
Since qi = 1 − pi, the second equality follows from (6) and (9) by noting that (

∑n
i=1

pi)
2 −∑n

i=1
p2i = 2

∑
1≤i<j≤n pipj.

(ii) We give two alternative proofs of (ii).
First alternative proof: We compare An(k1, . . . , kn) from (21) with Bn(k1, . . . , kn) from

(25). The first part follows by noting that
(
t
2

)
− (t−1) = 0 if t = 2. For the second part, note

that
(
t
2

)
− (t − 1) =

(
t−1

2

)
if t ≥ 3. So for n ≥ 3 we have Bn(k1, . . . , kn) − An(k1, . . . , kn) =∑n

t=3

(
t−1

2

)
|Vt| ≥ 0. If at least three players have two or more strategies, then the number of

players having one or more positive strategies is at least three. This implies that |V3| > 0,
so we have Bn(k1, . . . , kn) > An(k1, . . . , kn).

Second alternative proof: Denote φn := (
∏n

i=1
qi)[Bn(k1, . . . , kn) − An(k1, . . . , kn)]. Since

qi = 1− pi, from (22) and (26), we have

φn =
∑

1≤i<j≤n

pipj −
n∏

i=1

(1− pi)−
n∑

i=1

pi + 1 (33)

For n = 2, we have φ2 = p1p2 − (1 − p1)(1 − p2) − (p1 + p2) + 1 = 0. For n = 3, we have
φ3 = p1p2 + p1p3 + p2p3 − (1− p1)(1− p2)(1− p3)− (p1 + p2 + p3) + 1 = p1p2p3 ≥ 0 and it is
positive if pi = (ki − 1)/ki > 0 for all i = 1, 2, 3, that is, if all three players have two or more
strategies. Observe from (33) that

φn+1 =
∑

1≤i<j≤n+1

pipj −
n+1∏

i=1

(1− pi)−
n+1∑

i=1

pi + 1 = (1− pn+1)φn + pn+1

∑

1≤i<j≤n

pipj (34)

Since φ3 ≥ 0, it follows from (34) that φn+1 ≥ 0 for all n ≥ 2.
Suppose there are n+1 players where n ≥ 2. We prove that if at least three out of n+1

players have two or more strategies (that is, pi > 0 for at least three i), then φn+1 > 0. The
result is true for n = 2. We prove the result by induction on n.

If pn+1 = 0, then (34) implies φn+1 = φn. Since there are at least three i ∈ {1, . . . , n+1}
such that pi > 0 and pn+1 = 0, we must have at least three i ∈ {1, . . . , n} such that pi > 0.
But then by induction hypothesis φn > 0 and so φn+1 = φn > 0.
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Next suppose pn+1 > 0. Then there are at least two i ∈ {1, . . . , n} such that pi > 0.
Hence pn+1

∑
1≤i<j≤n pipj > 0 and by (34) we have φn+1 > 0.

Proof of Theorem 3 The proof proceeds in two parts. In part (A) we show that the storage
for the algorithm is bounded above by

β := max
t∈{0,1,...,n−1}

[2(|Vt|+ |Vt+1|) + 2t+ 1]. (35)

Given part (A), in part (B) we show that either β ≤ β0 or β ≤ β1. The proof of part (A) is
constructive5 and done later. Let us first show the proof of part (B) given part (A).

Proof of part (B) given part (A) Note by (7) and (9) that |Vt| + |Vt+1| = [Pr(Y =
t) + Pr(Y = t + 1)]/

∏n
i=1

qi where Y follows the Poisson’s binomial distribution given in
Section 2.2. Darroch (1964) has shown that the mode of a Poisson’s binomial distribution
distribution differs from its mean by at most 1. Specifically, for a Poisson’s binomial variable
Y, the mode is either ⌊E(Y )⌋ or ⌊E(Y )⌋+1 or both, where ⌊E(Y )⌋ is the largest integer not
exceeding E(Y ). Using Darroch’s result, |Vt| + |Vt+1| is bounded above by either 2Pr(Y =
⌊E(Y )⌋)/

∏n
i=1

qi or by 2Pr(Y = ⌊E(Y )⌋ + 1)/
∏n

i=1
qi. Noting that E(Y ) =

∑n
i=1

pi and
t ≤ n− 1, it follows from (35) that either β ≤ β0 or β ≤ β1.

Proof of part (A) There are 4 objects at each step of executing the algorithm: (i)
vertices, (ii) weights associated with vertices, (iii) edges and (iv) weights associated with
edges. Recall that Nτ (v) = number of vertices, Nτ (wv) = number of weights associated
with vertices, Nτ (e) = number of edges and Nτ (we) = number of weights associated with
edges to run step τ of the algorithm. The storage requirement at step τ is SRτ = Nτ (v) +
Nτ (wv) +Nτ (e) +Nτ (we) (as the step τ will be clear from the context, henceforth we drop
the subscript τ).

We begin from the singleton set V0 = {z}. Since there is no path terminating at z, path
independence vacuously holds for z. In the initial step of the algorithm, construct a graph
with the sole vertex z and no edge.

Step 0

N(v) N(wv) N(e) N(we) SR
|V0| = 1 0 0 0 1

Step 1
At Step 1, we verify path independence for the vertices of V1. At step 1, we have two

sub-steps for every vertex s ∈ V1. In sub-step 1(a) we add vertex s, add the only edge that
originates from z and terminates at s together its weight. As there is only one path from z
to s, path independence trivially holds for any s ∈ V1. In sub-step 1(b), we delete the edge
as well as its weight and put that weight on the vertex s (this weight is the common length
of all paths from z to s). So we have

5In the end of the paper it is shown how the storage requirement of the algorithm is determined for the
game Γ1 of Example 1.
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Step 1: first vertex of V1

N(v) N(wv) N(e) N(we) SR
(a): |V0|+ 1 0 0 + 1 = 1 0 + 1 = 1 |V0|+ 3

(add a vertex s) (add the edge (add weight
from z to s) of edge)

(b): |V0|+ 1 0 + 1 = 1 1− 1 = 0 1− 1 = 0 |V0|+ 2
(add weight for s) (delete edge) (delete weight of edge)

Continuing from the last table, for the next vertex of V1, we have
Step 1: next vertex of V1

N(v) N(wv) N(e) N(we) SR
(a): (|V0|+ 1) + 1 1 0 + 1 = 1 0 + 1 = 1 |V0|+ 5

= |V0|+ 2
(b): |V0|+ 2 (|V0|+ 1) + 1 1− 1 = 0 1− 1 = 0 |V0|+ 4

= |V0|+ 2

Following similar steps, for the last vertex in V1, we have
Step 1: last vertex of V1

N(v) N(wv) N(e) N(we) SR
(a): (|V0|+ |V1| − 1) + 1 |V1| − 1 0 + 1 = 1 0 + 1 = 1 |V0|+ 2|V1|+ 1

= |V0|+ |V1| < 2(|V0|+ |V1|) + (2× 0) + 1
(b): |V0|+ |V1| (|V1| − 1) + 1 1− 1 = 0 1− 1 = 0 |V0|+ 2|V1|

= |V1|

Once PI has been established for vertices in V0 and V1, to verify PI for vertices in Vt (t ≥ 2)
we only need vertices of V1 and their associated weights (where the weight for a vertex s ∈ V1
is the length of the only path from z to s). So the sole vertex of V0 is deleted in the end of
step 1 and we have:
In the end of step 1

N(v) N(wv) N(e) N(we) SR
|V1| |V1| 0 0 2|V1|

At step t ≥ 2, we have two sub-steps for every vertex s ∈ Vt: (a) we add vertex s, add the
t edges that terminate to s from its predecessors together with their weights and (b) after
verifying these weights are equal (which requires t−1 equations), we delete the edges as well
as their weights and put the single weight on the vertex s (this weight is the common length
of all paths from z to s). Since any vertex in V2 has 2 predecessors, when we go to Step 2
from Step 1 to add the first vertex s of V2, we have
Step 2: first vertex of V2

N(v) N(wv) N(e) N(we) SR
(a): |V1|+ 1 |V1| 0 + 2 = 2 0 + 2 = 2 2|V1|+ 5

(add a vertex s) (add edges (add weights
terminating at s) of edges)

(b): |V1|+ 1 |V1|+ 1 2− 2 = 0 2− 2 = 0 2|V1|+ 2
(add weight for s) (delete edges) (delete weights

of edges)

16



Continuing from the last table, for the next vertex of V2, we have
Step 2: next vertex of V2

N(v) N(wv) N(e) N(we) SR
(a): (|V1|+ 1) + 1 |V1|+ 1 0 + 2 = 2 0 + 2 = 2 2|V1|+ 7

= |V1|+ 2
(b): |V1|+ 2 (|V1|+ 1) + 1 2− 2 = 0 2− 2 = 0 2|V1|+ 4

= |V1|+ 2

Following similar steps, for the last vertex in V2, we have
Step 2: last vertex of V2

N(v) N(wv) N(e) N(we) SR
(a): (|V1|+ |V2| − 1) + 1 |V1|+ |V2| − 1 0 + 2 = 2 0 + 2 = 2 2(|V1|+ |V2|) + 3 =

= |V1|+ |V2| 2(|V1|+ |V2|) + (2× 1) + 1
(b): |V1|+ |V2| (|V1|+ |V2| − 1) + 1 2− 2 = 0 2− 2 = 0 2(|V1|+ |V2|)

= |V1|+ |V2|

Once PI has been established for vertices in V1 and V2, to verify PI for vertices in Vt (t ≥ 3)
we only need vertices of V2 and their associated weights (where the weight for a vertex s ∈ V2
is the common length of any path from z to s). So the vertices of V1 and their weights are
deleted after step 2 and we have:
In the end of step 2

N(v) N(wv) N(e) N(we) SR
|V2| |V2| 0 0 2|V2|

By similar reasoning, we have the following in the end of step t
In the end of step t

N(v) N(wv) N(e) N(we) SR
|Vt| |Vt| 0 0 2|Vt|

In step t+1, we add vertices of Vt+1, where for each vertex there are two sub-steps (a),(b)
as before. Since t+ 1 edges terminate to any vertex in Vt+1, step t+ 1 proceeds as follows:
Step t+ 1

N(v) N(wv) N(e) N(we) SR
(a): |Vt|+ 1 |Vt| 0 + (t+ 1) 0 + (t+ 1) 2|Vt|+ 1 + 2(t+ 1)

= t+ 1 = t+ 1
(b): |Vt|+ 1 |Vt|+ 1 (t+ 1) (t+ 1) 2|Vt|+ 2

−(t+ 1) = 0 −(t+ 1) = 0
...

(a): (|Vt|+ |Vt+1| − 1) |Vt|+ |Vt+1| − 1 0 + (t+ 1) 0 + (t+ 1) 2(|Vt|+ |Vt+1|) + 2t+ 1
+1 = |Vt|+ |Vt+1| = t+ 1 = t+ 1
(b): |Vt|+ |Vt+1| (|Vt|+ |Vt+1| − 1) (t+ 1) (t+ 1) 2(|Vt|+ |Vt+1|)

+1 = |Vt|+ |Vt+1| −(t+ 1) = 0 −(t+ 1) = 0
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Note that the storage requirement (SR) in step 0 is |V0| = 1. The maximum SR in step 1
is lower than 2(|V0| + |V1|) + (2 × 0) + 1 (see the table corresponding to “Step 1: the last
vertex of V1”). The maximum SR in step 2 is 2(|V1| + |V2|) + (2 × 1) + 1 (see the table
corresponding to “Step 2: the last vertex of V2”). In general, for t ≥ 1, the maximum SR in
step t + 1 is 2(|Vt| + |Vt+1|) + 2t + 1 (see the second last row of the table corresponding to
“Step t + 1”). This shows that the storage requirement of the algorithm is bounded above
by β = maxt∈{0,1,...,n−1}[2(|Vt|+ |Vt+1|) + 2t+ 1].
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Bramoullé, Y., Kranton, R., D’Amours, M. 2014. Strategic interaction and networks. Amer-

ican Economic Review, 104: 898-930

Cheng, D., Liu, T., Zhang, K., Qi, H. 2016. On decomposed subspaces of finite games. IEEE
Transactions on Automatic Control, 61: 3651-3656

Chien, S., Sinclair, A. 2011. Convergence to approximate Nash equilibria in congestion
games. Games and Economic Behavior, 71: 315-327

Darroch, J.N. 1964. On the distribution of the number of successes in independent trials.
Annals of Mathematical Statistics, 35: 1317-1321

Ellingsæter, B., Skjegstad, M., Maseng, T. 2012. A potential game for power and frequency
allocation in large-scale wireless networks, arXiv preprint arXiv:1212.0724, pp. 1-10, 2012.
Available: http://arxiv.org/abs/1212.0724

Hino, Y. 2011. An improved algorithm for detecting potential games. International Journal
of Game Theory, 40: 199-205

Hoeffding, W. 1956. On the distribution of the number of successes in independent trials.
Annals of Mathematical Statistics, 27: 713-721

Marden, J.R., Arslan, G., Shamma, J.S. 2009. Cooperative control and potential games.
IEEE Transactions on Systems, Man and Cybernetics-part B, 39: 1393-1407

Monderer, D., Shapley, L.S. 1996. Potential games. Games and Economic Behavior, 14:
124-143

18



Neel, J.O., Reed, J.H., Gilles, R.P. 2004. Convergence of cognitive radio networks, in Pro-
ceedings of IEEE Wireless Communications Network Conference (WCNC), Atlanta, GA,
Mar. 2004, 2250-2255

Pitman, J. 1997. Probabilistic bounds on the coefficients of polynomials with only real zeros.
Journal of Combinatorial Theory, Series A, 77: 279-303

Roughgarden, T., Tardos, E. 2002. How bad is selfish routing? Journal of the ACM 49:
236-259

Sandholm, W.H. 2010. Decompositions and potentials for normal form games. Games and

Economic Behavior, 70: 446-456

Todd, M.J. 2016. Computation, multiplicity, and comparative statics of Cournot equilibria
in integers. Mathematics of Operations Research, 41: 1125-1134

Wang, Y.H. 1993. On the number of successes in independent trials. Statistica Sinica, 3:
295-312

19



Diagram 1: directed graph presentation of the game Г1 of Example 1 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0,0,0) 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 
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Diagram 2: directed graph presentation of the game Г2 of Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0,0,0) 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

− c − c − 2c 

(1,1,0) (1,0,1) 

− c − c − c 

(0,1,1) 

− c − c 

− c 

(1,0,2) 

− c − c 

(0,1,2) 

− 2c − c 

(1,1,2) (1,1,1) 

1 − c 1 − c 
1 − 2c 1 − c 1 − c 

1 − c 

− 2c 
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Determination of storage requirement for the game Г1 (Example 1) 

4 types of objects are needed at any step of the algorithm: vertices, weights associated with vertices, 

edges and weights associated with vertices. Denote by N(v) = number of vertices, N(wv) = number of 

weights associated with vertices, N(e) = number of edges, N(we) = number of weights associated with 

edges. The storage requirement at any step of the algorithm is SR = N(v) + N(wv) + N(e) + N(we). 

Step 0: The sole vertex z = (0,0,0) of V0: 

 

Table 0: Storage requirement in step 0 

N(v) N(wv) N(e) N(we) SR 
|V0 | = 1 
 

0 0 0 |V0| 
 

 

Step 1: First vertex (1,0,0) of V1  

Substep (a): Add vertex (1,0,0), edge between (0,0,0) and (1,0,0) and weight on the edge: 

 

 

Table 1.1(a): Storage requirement in substep (a) 

 

Substep (b): There is only one path between (0,0,0) and (1,0,0). The length of that path is 5. So path 

independence (PI) trivially holds for (1,0,0). We delete the edge (after verifying PI, keeping the edge is 

not necessary). We also delete the weight on the edge and put the weight on the vertex (1,0,0) as below. 

The weight on (1,0,0) stands for the length of the only path between (0,0,0) and (1,0,0). 

 

 

 

Table 1.1(b): Storage requirement in substep (b) 

N(v) N(wv) N(e) N(we) SR 
|V0| + 1 
 

0 0 + 1= 1 0 + 1= 1 |V0| + 3 
 

N(v) N(wv) N(e) N(we) SR 
|V0| + 1 
 

0 + 1= 1 1−1= 0 1−1= 0 |V0| + 2 
 

(0,0,0) 

(0,0,0) 

(1,0,0) 

(0,0,0) 

(1,0,0) 

5 

5 



Second vertex (0,1,0) of V1:  

Substep (a): add vertex (0,1,0), edge between (0,0,0) and (0,1,0) and weight on the edge: 

 

 

  

  

 

Table 1.2(a): Storage requirement in substep (a) 

 

Substep (b): As there is only one path between (0,0,0) and (0,1,0), PI holds for (0,1,0). We delete the 

edge, delete the weight on the edge and put the weight on the (0,1,0) as below.  

 

 

  

  

 

Table 1.2(b): Storage requirement in substep (b) 

 

Third vertex (0,0,1) of V1:  

Substep (a): add vertex (0,0,1), edge between (0,0,0) and (0,0,1) and weight on the edge: 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V0| + 1+1= |V0| + 2 1 0 +1 = 1 0 +1 = 1 |V0| + 5 

 

N(v) N(wv) N(e) N(we) SR 
|V0| + 2 
 

1 + 1 = 2 1−1= 0 1−1= 0 |V0| + 4 
 

(0,0,0) 

(1,0,0) 

5 

(0,1,0) 

5 

(0,0,1) 

(0,0,0) 

(1,0,0) 

5 

(0,1,0) 

5 

(0,0,0) 

(1,0,0) 

5 

(0,1,0) 

5 
5 



Table 1.3(a): Storage requirement in substep (a) 

 

Substep (b): As there is only one path between (0,0,0) and (0,0,1), PI holds for (0,0,1). We delete the 

edge, delete the weight on the edge and put the weight on the (0,0,1) as below.  

 

 

  

  

 

Table 1.3(b): Storage requirement in substep (b) 

 

Last vertex (0,0,2) of V1:  

Substep (a): add vertex (0,0,2), edge between (0,0,0) and (0,0,2) and weight on the edge 

 

 

  

 

 

Table 1.4(a): Storage requirement in substep (a)                                                                                       

[this is the maximum SR that we can have in Step 1] 

N(v) N(wv) N(e) N(we) SR 
|V0| +2+1= |V0| + 3 2 0 +1 = 1 0 +1 = 1 |V0| + 7 

 

N(v) N(wv) N(e) N(we) SR 
|V0| + 3 
 

2 + 1 = 3 1−1= 0 1−1= 0 |V0| + 6 
 

N(v) N(wv) N(e) N(we) SR 
|V0| +3+1= |V0| + 4 
= |V0| + |V1| 
 

3 = |V1|−1 0 +1 = 1 0 +1 = 1 |V0| + 9  
=|V0| + 2|V1| + (2×0) +1 
< 2(|V0|+|V1|)+ (2×0) +1 
 
 

(0,0,1) 

(0,0,0) 

(1,0,0) 

5 

(0,1,0) 

5 5 

(0,0,2) (0,0,1) 

(0,0,0) 

5 

(0,1,0) 

5 5 

(1,0,0) 

) 

8 



Substep (b): As there is only one path between (0,0,0) and (0,0,2), PI holds for (0,0,2). We delete the 

edge, delete the weight on the edge and put the weight on the (0,0,2) as below. 

 

 

  

 

 

Table 1.4(b): Storage requirement in substep (b) 

 

End of step1: As PI has been established for all vertices in V1, we can delete vertex (0,0,0) and keep only 

the vertices in V1 with their associated weights. 

  

 

 

Table 1.4(c): Storage requirement in the end of step 1 

 

Step 2: First vertex (1,1,0) of V2:  

Substep (a): add vertex (1,1,0), edges terminating at (1,1,0) and weights on the edges 

 

 

  

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V0| + |V1| |V1| −1 + 1 = |V1|  1−1= 0 1−1= 0 |V0| + 2|V1| 

 

N(v) N(wv) N(e) N(we) SR 
|V0|+ |V1|−|V0| =|V1| |V1|  0 0 2|V1| 

 

(0,0,2) (0,0,1) 

(0,0,0) 

5 

(0,1,0) 

5 5 

(1,0,0) 

) 

8 

(0,0,2) (0,0,1) 

5 

(0,1,0) 

5 5 

(1,0,0) 

) 

8 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 5 

(1,1,0) 

5+4=9 5+4=9 



Note that there are two edges terminating at (1,1,0): from (1,0,0) and from (0,1,0). PI has been already 

established for (1,0,0) and (0,1,0). The common length of any path from z = (0,0,0) to (1,0,0) is 5. As the 

length of the path between (1,0,0) and (1,1,0) is 4, the length of any path from z to (1,1,0) that goes 

through (1,0,0) is 5 + 4 = 9. This is the weight we put on the edge between (1,0,0) and (1,1,0). By the 

same reasoning we put the weight 5 + 4 = 9 on the edge between (0,1,0) and (1,1,0).  

Table 2.1(a): Storage requirement in substep (a) 

Substep (b): As both edges terminating at (1,1,0) have the same associated weight 9, PI holds for (1,1,0) 

and the common length of any path between z and (1,1,0) is 9. We delete the two edges, delete the two 

weights on the edges and put the weight 9 on the vertex (1,1,0) as below.  

  

 

 

 

 

Table 2.1(b): Storage requirement in substep (b) 

 

Second vertex (0,1,1) of V2:  

Substep (a): add vertex (0,1,1), edges terminating at (0,1,1) and weights on the edges  

  

 

 

 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V1| + 1 
 

|V1| 0 +2 = 2 0 +2 = 2 2|V1| +5 
 

N(v) N(wv) N(e) N(we) SR 
|V1| + 1 
 

|V1| + 1 2 −2 = 0 2 −2 = 0 2|V1| +2 
 

(1,0,0) 
(0,1,0) (0,0,1) (0,0,2) 

5 5 8 5 

(1,1,0) (0,1,1) 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 

9 

5 

(1,1,0) 

9 

5+4=9 5+4=9 



There are two edges terminating at (0,1,1): from (0,1,0) and from (0,0,1). PI has been already established 

for (0,1,0) and (0,0,1). The common length of any path from z to (0,1,0) is 5. As the length of the path 

between (0,1,0) and (0,1,1) is 4, the length of any path from z to (0,1,1) that goes through (0,1,0) is 5 + 4 

= 9. This is the weight we put on the edge between (0,1,0) and (0,1,1). By the same reasoning we put the 

weight 5 + 4 = 9 on the edge between (0,0,1) and (0,1,1).  

Table 2.2(a): Storage requirement in substep (a) 

 

Substep (b): As both edges terminating at (0,1,1) have the same associated weight 9, PI holds for (0,1,1) 

and the common length of any path between z and (1,1,0) is 9. We delete the two edges, delete the two 

weights on the edges and put the weight 9 on the vertex (0,1,1) as below. 

  

 

 

 

 

Table 2.2(b): Storage requirement in substep (b) 

 

Third vertex (1,0,1) of V2:  

Substep (a): add vertex (1,0,1), edges terminating at (1,0,1) and weights on the edges  

  

 

 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V1| + 1+ 1= |V1| +2 |V1| + 1 0 +2 = 2 0 +2 = 2 2|V1| +7 

 

N(v) N(wv) N(e) N(we) SR 
|V1| +2 |V1| +1+ 1= |V1| + 2 2 −2 = 0 2 −2 = 0 2|V1| +4 

 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 

9 

5 

(1,1,0) (0,1,1) 

9 

(1,0,0) 
(0,1,0) (0,0,1) (0,0,2) 

5 5 8 5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

5+4=9 5+4=9 

9 



There are two edges terminating at (1,0,1): from (1,0,0) and from (0,0,1). By the same reasoning as the 

previous case, the length of any path from z to (1,0,1) that goes through (1,0,0) is 5 + 4 = 9. The length of 

any path from z to (1,0,1) that goes through (0,0,1) is also 5 + 4 = 9. These are weights we put on the 

corresponding edges.  

Table 2.3(a): Storage requirement in substep (a) 

 

Substep (b): As both edges terminating at (1,0,1) have the same associated weight 9, PI holds for (1,0,1) 

and the common length of any path between z and (1,0,1) is 9. We delete the two edges, delete the two 

weights on the edges and put the weight 9 on the vertex (1,0,1) as below. 

  

 

 

 

 

Table 2.3(b): Storage requirement in substep (b) 

 

Fourth vertex (1,0,2) of V2:  

Substep (a): add vertex (1,0,2), edges terminating at (1,0,2) and weights on the edges  

  

 

 

 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V1| + 2+ 1= |V1| +3 |V1| + 2 0 +2 = 2 0 +2 = 2 2|V1| +9 

 

N(v) N(wv) N(e) N(we) SR 
|V1| +3 |V1| +2+ 1= |V1| + 3 2 −2 = 0 2 −2 = 0 2|V1| +6 

 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 

9 

5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 
(1,0,2) 

8+3=11 5+6=11 

9 



There are two edges terminating at (1,0,2): from (1,0,0) and from (0,0,2). PI has been already established 

for (1,0,0) and (0,0,2). The common length of any path from z to (1,0,0) is 5. As the length of the path 

between (1,0,0) and (1,0,2) is 6, the length of any path from z to (1,0,2) that goes through (1,0,0) is 5 + 6 

= 11. This is the weight we put on the edge between (1,0,0) and (1,0,2).  

The common length of any path from z to (0,0,2) is 8. As the length of the path between (0,0,2) and 

(1,0,2) is 3, the length of any path from z to (1,0,2) that goes through (0,0,2) is 8 + 3 = 11. This is the 

weight we put on the edge between (0,0,2) and (1,0,2).  

Table 2.4(a): Storage requirement in substep (a) 

 

Substep (b): As both edges terminating at (1,0,2) have the same associated weight 11, PI holds for (1,0,2) 

and the common length of any path between z and (1,0,1) is 11. We delete the two edges, delete the two 

weights on the edges and put the weight 11 on the vertex (1,0,2) as below. 

  

 

 

 

 

Table 2.4(b): Storage requirement in substep (b) 

 

Last vertex (0,1,2) of V2:  

Substep (a): add vertex (0,1,2), edges terminating at (0,1,2) and weights on the edges  

  

 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V1| + 3+ 1= |V1| +4 |V1| + 3 0 +2 = 2 0 +2 = 2 2|V1| +11 

 

N(v) N(wv) N(e) N(we) SR 
|V1| +4 |V1| +3+ 1= |V1| + 4 2 −2 = 0 2 −2 = 0 2|V1| +8 

 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 

9 

5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

9 

(0,1,2) 

11 
5+6=11 8+3=11 



There are two edges terminating at (0,1,2): from (0,1,0) and from (0,0,2). PI has been already established 

for (0,1,0) and (0,0,2). The common length of any path from z to (0,1,0) is 5. As the length of the path 

between (0,1,0) and (0,1,2) is 6, the length of any path from z to (0,1,2) that goes through (0,1,0) is 5 + 6 

= 11. This is the weight we put on the edge between (0,1,0) and (0,1,2).  

The common length of any path from z to (0,0,2) is 8. As the length of the path between (0,0,2) and 

(0,1,2) is 3, the length of any path from z to (0,1,2) that goes through (0,0,2) is 8 + 3 = 11. This is the 

weight we put on the edge between (0,0,2) and (0,1,2).  

Table 2.5(a): Storage requirement in substep (a)                                                                                  

[this is the maximum SR that we can have in Step 2] 

 

Substep (b): As both edges terminating at (0,1,2) have the same associated weight 11, PI holds for (0,1,2) 

and the common length of any path between z and (0,1,2) is 11. We delete the two edges, delete the two 

weights on the edges and put the weight 11 on the vertex (0,1,2) as below. 

  

 

 

 

Table 2.5(b): Storage requirement in substep (b) 

End of step 2: As PI has been established for all vertices in V2, we can delete the vertices in V1 and keep 

only the vertices in V2 with their associated weights. 

  

 

Table 2.5(c): Storage requirement in the end of step 2 

N(v) N(wv) N(e) N(we) SR 
|V1| + 4+ 1= |V1| +5 
= |V1| + |V2| 

|V1| + 4 
= |V1| + |V2|−1 

0 +2 = 2 0 +2 = 2 2|V1| + 13 
= 2(|V1| + |V2|)+3 
= 2(|V1|+ |V2|) + (2×1) + 1 
 

N(v) N(wv) N(e) N(we) SR 
|V1| + |V2| |V1| +|V2| −1+1  

= |V1| + |V2| 
2 −2 = 0 2 −2 = 0 2(|V1|+ V2|)  

N(v) N(wv) N(e) N(we) SR 
|V1| +|V2| −|V1| 
= |V2| 

|V1| +|V2| −|V1| 
= |V2| 

0 0 2|V2| 
 

(1,0,0) (0,1,0) (0,0,1) (0,0,2) 

5 5 8 

9 

5 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11

9 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11



Step 3: First vertex (1,1,1) of V3:  

Substep (a): add vertex (1,1,1), edges terminating at (1,1,1) and weights on the edges  

  

 

 

 

 

There are three edges terminating at (1,1,1): from (1,1,0), from (0,1,1) and from (1,0,1). PI has been 

already established for (1,1,0), (0,1,1), (1,0,1). The common length of any path from z to (1,1,0) is 9. As 

the length of the path between (1,1,0) and (1,1,1) is 3, the length of any path from z to (1,1,1) that goes 

through (1,1,0) is 9 + 3 = 12. This is the weight we put on the edge between (1,1,0) and (1,1,1).  

The common length of any path from z to (0,1,1) is 9. As the length of the path between (0,1,1) and 

(1,1,1) is 3, the length of any path from z to (1,1,1) that goes through (0,1,1) is 9 + 3 = 12. This is the 

weight we put on the edge between (0,1,1) and (1,1,1). By the same reasoning, the weight we put on the 

edge between (1,0,1) and (1,1,1) is 9 + 3 = 12. 

Table 3.1(a): Storage requirement in substep (a) 

 

Substep (b): As all three edges terminating at (1,1,1) have the same associated weight 12, PI holds for 

(1,1,1) and the common length of any path between z and (1,1,1) is 12. We delete the three edges, delete 

the three weights on the edges and put the weight 12 on the vertex (1,1,1) as below.  

  

 

 

 

 

Table 3.1(b): Storage requirement in substep (b) 

N(v) N(wv) N(e) N(we) SR 
|V2| + 1 |V2| 0 + 3= 3 0 + 3 = 3 2|V2| + 7 

 

N(v) N(wv) N(e) N(we) SR 
|V2| + 1 |V2| + 1 3 − 3= 0 3 − 3= 0 2|V2| + 2 

 

9 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11

(1,1,1) 

9+3 = 12 9+3 = 12 9+3 = 12 

9 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11

(1,1,1) 

12



Last vertex (1,1,2) of V2:  

Substep (a): add vertex (1,1,2), edges terminating at (1,1,2) and weights on the edges 

  

 

 

 

 

There are three edges terminating at (1,1,2): from (1,1,0), from (1,0,2) and from (0,1,2). PI has been 

already established for (1,1,0), (1,0,2), (0,1,2). The common length of any path from z to (1,1,0) is 9. As 

the length of the path between (1,1,0) and (1,1,2) is 4, the length of any path from z to (1,1,2) that goes 

through (1,1,0) is 9 + 4 = 13. This is the weight we put on the edge between (1,1,0) and (1,1,2).  

The common length of any path from z to (1,0,2) is 11. As the length of the path between (1,0,2) and 

(1,1,2) is 2, the length of any path from z to (1,1,2) that goes through (1,0,2) is 11 + 2 = 13. This is the 

weight we put on the edge between (1,0,2) and (1,1,2). By the same reasoning, the weight we put on the 

edge between (0,1,2) and (1,1,2) is 11 + 2 = 13. 

Table 3.2(a): Storage requirement in substep (a)                                                                                    

[this is the maximum SR that we can have in Step 3] 

 

Substep (b): As all three edges terminating at (1,1,2) have the same associated weight 13, PI holds for 

(1,1,2) and the common length of any path between z and (1,1,2) is 13. We delete the three edges, delete 

the three weights on the edges and put the weight 13 on the vertex (1,1,2) as below.  

  

 

 

 

 

 

N(v) N(wv) N(e) N(we) SR 
|V2| + 1+1=|V2| + 2 
= |V2| + |V3| 

|V2|+1 = |V2| + |V3|−1 0 + 3= 3 0 + 3 = 3 2|V2| + 9 
= 2(|V2|+|V3|) + 5 
= 2(|V2|+|V3|) + (2×2) + 1 
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(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11

(1,1,1) 

12

(1,1,2) 

9+4=13
11+2=13 11+2=13

9 

(1,1,0) (0,1,1) 

9 

(1,0,1) 

9 

(1,0,2) 

11

(0,1,2) 

11

(1,1,1) 

12

(1,1,2) 

13



Table 3.2(b): Storage requirement in substep (b) 

 

End of step 3: As PI has been established for all vertices in V3, we can delete the vertices in V2 and keep 

only the vertices in V3 with their associated weights. 

  

 

Table 3.2(c): Storage requirement in the end of step 3 

 

This is the end of the algorithm for the game Г1 (Example 1).   

Maximum storage requirement: 

In step 0, the storage requirement is |V0| = 1.  

As shown in Table 1.4(a), in step 1, the maximum storage required is |V0| + 2|V1| + (2×0) +1 < 2(|V0| +|V1|) 

+ (2×0) +1  

As shown in Table 2.5(a), in step 2, the maximum storage required is 2(|V1| + |V2|) + (2×1) +1  

As shown in Table 3.2(a), in step 3, the maximum storage required is 2(|V2| + |V3|) + (2×2) +1  

So the storage requirement for the algorithm is bounded above by max{t =0,1,2}[2(|Vt| + |Vt+1|) + 2t +1]. 

N(v) N(wv) N(e) N(we) SR 
|V2| + |V3| |V2| +|V3| −1+1  

= |V2| + |V3| 
3 −3 = 0 3 −3 = 0 2(|V2|+ |V3|)  

N(v) N(wv) N(e) N(we) SR 
|V2| +|V3| −|V2| 
=|V3| 

|V2| +|V3| −|V2| 
=|V3| 

0 0 2|V3| 
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(1,1,1) (1,1,2) 
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