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1 Introduction

The relationship between subsidization and privatization has been discussed intensively in the

existing literature on mixed oligopolies. [9] showed that a uniform output subsidy yields the

first-best outcome from the viewpoint of welfare in mixed and private oligopolies. Subsequent

studies proved that his result is quite robust in various economic circumstances; [8] considered

the order of firms’ moves; [3] generalized firms’ objective functions; and [6] extended the model

of [9] to output regulation. These results are known as privatization neutrality theorem (PNT),

which claims that the first-best allocation should be achieved under an identical, uniform subsidy

to whatever extent a public firm is privatized.

The existing studies on subsidized mixed oligopolies have focused mainly on the effect of

output subsidies on production allocation. In particular, they have assumed that public and private

firms have a given identical production technology. However, R&D efforts could work to improve

firms’ technologies, thereby affecting production allocation. Inevitably, social benefits depend not

only on the production allocation but also on an allocation of firms’ R&D investments. As such,

adjusting the allocations of production and R&D is required to achieve the first-best outcome.

As a key to the adjustment of both allocations of production and R&D, we consider a policy

mix of output and R&D subsidies. Recently, some existing works have analyzed an impact of

subsidies in mixed oligopolies with R&D activities. [2] showed that the socially optimal R&D

subsidy increases total R&D and production, but it does not lead to an efficient distribution of

production costs. [4] showed that an R&D subsidy gives rise to higher (res. lower) welfare than

an output subsidy when the extent of R&D spillovers is high (res. low). However, these studies

focused only on a situation in which a single subsidy policy is employed. Instead, considering

both output and R&D subsidies, we examine how they affect the allocations of production and

R&D investments. In particular, we analyze whether the PNT holds in the presence of R&D

activities.
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2 Model

Consider an industry with (n + 1) firms producing a homogeneous good and engaging in cost-

reducing R&D investments. We define the set of firms by N = {0, 1, 2, · · · , n}. Firm 0 is a public

firm and firm j ∈ N \ {0} is a private firm. Let P(Q) be the inverse demand function, where

Q =
∑n

i=0 qi is the total market output and qi is the output of firm i ∈ N. Let C(qi, xi) and Γ(xi) be

the costs of production and R&D of firm i ∈ N, respectively, where xi is the amount of R&D. We

use a bold character to represent a vector, such as q = (q0, q1, · · · , qn) and x = (x0, x1, · · · , xn).

Throughout the paper, the following is assumed:

Assumption 1. A finite number Q̄ > 0 exists such that P(Q) > 0 if Q < Q̄ and P(Q) = 0

otherwise. Moreover, P(Q) is twice continuously differentiable with P′(Q) < 0 for Q < Q̄ and

ε(Q) ≡
P′′(Q)Q

P′(Q)
> −1.

Assumption 2. C(qi, xi) satisfies (a) (∂/∂qi)C(qi, xi) > 0 and (∂2/∂q2
i )C(qi, xi) > 0, and (b)

(∂/∂xi)C(qi, xi) ≤ 0, (∂2/∂x2
i )C(qi, xi) ≤ 0, and (∂2/∂xi∂qi)C(qi, xi) < 0.

Assumption 3. Γ(xi) satisfies Γ′(xi) > 0 and Γ′′(xi) > 0.

The government provides all the firms with two types of subsidies: an output subsidy and an

R&D subsidy. Let s = (sq, sx) denote a pair of output and R&D subsidy rates. The profit of firm

i ∈ N is then given by

Πi(q, xi, s) ≡ πi(q, xi, sq) − Γ(xi) + sxxi, where πi(q, xi, sq) ≡ P(Q)qi −C(qi, xi) + sqqi.

Welfare is

W(a) ≡ w(a) −

n
∑

i=0

Γ(xi), where w(a) ≡

∫ Q

0

P(z)dz −

n
∑

i=0

C(qi, xi) and a = (q, x) ∈ R
2(n+1)
+ .
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Under Assumptions 1–3, the first-best allocation a
f
= (q

f , x f ) must satisfy the marginal-cost pric-

ing principle (∂/∂qi)W(a
f ) = P(Q f ) − (∂/∂qi)C(q f , x f ) = 0 and the cost-minimization condition

(∂/∂xi)W(a
f ) = −(∂/∂xi)C(q f , x f ) − Γ′(x f ) = 0 for all i ∈ N, where Q f

= (n + 1)q f .

The government can sell its stocks of firm 0 to private investors. Let θ ∈ [0, 1] denote the

private investors’ shareholdings in firm 0 (henceforth, the degree of privatization). We follow

[5] by assuming that each private firm maximizes its profit, whereas firm 0 maximizes a convex

combination of its profit and welfare, V(a, s, θ) = (1 − θ)W(a) + θΠ0(q, x0, s), that is,

V(a, s, θ) ≡ v(a, sq, θ) − Γ(x0) − (1 − θ)

n
∑

j=1

Γ(x j) + θsxx0,

where v(a, sq, θ) ≡ (1 − θ)w(a) + θπ0(q, x0, sq).

We consider the following three-stage game. In the first stage, the government sets s = (sq, sx)

for a given θ. Observing the choice made by the government, all the firms simultaneously and

independently choose their R&D investments in the second stage and their outputs in the third

stage. We solve this game by backward induction. As easily confirmed, in the third stage of the

game, Assumptions 1 and 2 warrant the second-order conditions, the strategic substitutability, and

the stability of the Cournot-Nash equilibrium.

For the result presented in the next section, we define some functions. First, let the output

vector of the third-stage equilibrium be q
∗(x, sq, θ), which is characterized by the equation system

(∂/∂q0)v(q
∗(x, sq, θ), x, sq, θ) = 0 and (∂/∂q j)π j(q

∗(x, sq, θ), x j, sq) = 0 for any j ∈ N \ {0}, with

its Jacobian matrix Ω negative definite. Second, we denote the reduced forms of firms’ objective

functions by Ṽ(x, s, θ) ≡ V(q
∗(x, sq, θ), x, s, θ) and Π̃ j(x, s, θ) ≡ Π j(q

∗(x, sq, θ), x j, s) for j ∈ N \

{0}. Finally, we denote the allocation and subsidy profile in the subgame perfect Nash equilibrium

by a
∗∗(θ) = (q

∗∗(θ), x∗∗(θ)) and s
∗∗(θ) = (s∗∗q (θ), s∗∗x (θ)), respectively.
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3 Main theorem

We say that the PNT holds if and only if a
∗∗(θ) = a

f and s
∗∗′(θ) = 0 (i.e., (s∗∗′q (θ), s∗∗′x (θ)) = (0, 0)).

The existing studies have shown that this theorem holds if R&D activities are not taken into

account. This can be expressed in our model as follows:

Proposition 1. q
∗(x

f , se
q, θ) = q

f , where se
q ≡ −P′(Q f )q f > 0.

Proof: q f is the best response of firm 0 when the other firms choose q f . Indeed, it follows from

the definition of a
f that

∂

∂q0

v(a
f , se

q, θ) = P(Q f ) −
∂

∂q0

C(q f , x f ) + θP′(Q f )q f
+ θse

q = θ
[

P′(Q f )q f
+ se

q

]

= 0.

By the same procedure, we can easily show that q j = q f is the best response of firm j ∈ N \ {0}.

Q.E.D.

We finally examine whether the PNT holds if R&D activities are introduced. As indicated by

the following theorem, it never holds in the sense that the optimal R&D subsidy depends on θ

even if the first-best allocation is achieved.

Theorem 1. Suppose that sq = se
q > 0 and sx = se

x(θ) ≡ nse
q(∂/∂x0)q∗

1
(x

f , se
q, θ) < 0. There holds

a
∗∗(θ) = a

f if and only if either (i) θ = 1 or (ii) ε(Q f ) = Ψ holds, where

Ψ ≡ −
(n − 1)(n + 1)P′(Q f )

nP′(Q f ) − (∂2/∂q2
0
)C(q f , x f )

≤ 0, with equality if and only if n = 1.

Proof: First, we show that se
x(θ) < 0. Appendix shows that

∂

∂x0

q∗1(x
f , se

q, θ) = −
1

detΩ

[

P′(Q f ) + P′′(Q f )q f
]

[

P′(Q f ) −
∂2

∂q2
1

C(q f , x f )

]n−1
∂2

∂x0∂q0

C(q f , x f ),

where detΩ is the determinant ofΩ. Since sign detΩ = sign (−1)n+1 holds because of its negative

definiteness, we obtain (∂/∂x0)q∗
1
(x

f , se
q, θ) < 0 and thus, se

x(θ) is negative.

4



We next show that x = x
f can be the Nash equilibrium in the second stage under s

e(θ) =

(se
q, s

e
x(θ)). First, we prove that x0 = x f is firm 0’s best response to the R&D investments of the

other firms x−0 = (x f , · · · , x f ) ∈ Rn
+
. By symmetry among private firms and the definition of a

f ,

we obtain

∂

∂x0

Ṽ(x
f , se(θ), θ) = θ

[

nP′(Q f )q f ∂

∂x0

q∗1(x
f , se

q, θ) + se
x(θ)

]

= 0.

Coupled with this, Proposition 1 suggests that firm 0 chooses x f as the best response to x−0.

Similarly, for firm j ∈ N \ {0}, we obtain

∂

∂x j

Π̃ j(x
f , se(θ), θ) = P′(Q f )q f

[

∂

∂x2

q∗0(x
f , se

q, θ) − n

(

∂

∂x0

q∗1(x
f , se

q, θ)

)

+ (n − 1)

(

∂

∂x2

q∗1(x
f , se

q, θ)

)]

=
(1 − θ)ΦP′(Q f )q f

(n + 1)(detΩ)

[

ε(Q f ) +
(n − 1)(n + 1)P′(Q f )

nP′(Q f ) − (∂2/∂q2
0
)C(q f , x f )

]

∂2

∂x0∂q0

C(q f , x f ),

where

Φ = P′(Q f )

[

nP′(Q f ) −
∂2

∂q2
0

C(q f , x f )

] [

P′(Q f ) −
∂2

∂q2
0

C(q f , x f )

]n−2

, 0.

Thus, firm j chooses x j = x f as the best response if and only if either (i) θ = 1 or (ii) ε(Q f ) = Ψ.

Q.E.D.

Finally, we make several remarks on Theorem 1.

Remark 1. As stated by Theorem 1, output and R&D subsidies can yield the first-best allocation

even if firms’ strategic choices of R&D are taken into account. In particular, the first-best outcome

is obtained if demand is linear (i.e., ε(Q) = 0) and n = 1. However, if demand is strictly convex

(i.e., ε(Q) > 0) and firm 0 is not fully privatized (i.e., θ ∈ [0, 1)), the subsidies do not remove the

distortions enough to achieve the first-best allocation.

Remark 2. Using a mixed duopoly with linear demand and quadratic costs, [10] showed that if
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the government provides both production and R&D subsidies to firms, the optimal R&D subsidy

is negative irrespective of whether a public firm is fully privatized or fully nationalized. Theorem

1 extends [10] by (i) generalizing demand and costs, (ii) introducing partial privatization, and (iii)

allowing for more than one private firm. The negativity of the optimal R&D subsidy is explained

as follows. The production subsidy plays a role to reduce the distortion due to firms’ underproduc-

tion. On the other hand, it encourages private firms to overinvest because the greater investments

lead to the higher market shares. Thus, the government attempts to remedy the overinvestments

by imposing a R&D tax.

Remark 3. Some existing studies have presented the failure of the PNT by showing that subsi-

dies cannot achieve the first-best allocation ([1], [7]). By contrast, Theorem 1 suggests that while

the first-best allocation is achievable, the degree of privatization does influence the optimal R&D

subsidy. Indeed, the optimal R&D subsidy rate increases with the degree of privatization. We

briefly explain the intuition, relegating the proof to Appendix. An increase in θ makes firm 0 pro-

duce less for a given R&D profile, which enlarges each private firm’s output because of strategic

substitution. Accordingly, private firms lose their incentives to conduct R&D investments and

thus, the government can raise the R&D subsidy rate.

Appendix

The derivation of derivatives

The optimality conditions in the third stage are given by (∂/∂q0)v(q
∗(x, sq, θ), x, sq, θ) = 0 and

(∂/∂q j)π j(q
∗(x, sq, θ), x j, sq) = 0 for j ∈ N \ 0. We differentiate this equation system with respect

6



to x0 to obtain
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(∂/∂x0)q∗
0
(x, sq, θ)
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0
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. (1)

Recall that q∗i (x
f , se

q, θ) = q f for any i ∈ N by Proposition 1. This implies that

(∂2/∂q2
i )C(q∗i (x

f , se
q, θ), x

f ) = (∂2/∂q2
j)C(q∗j(x

f , se
q, θ), x

f ),

(∂2/∂xi∂qi)C(q∗i (x
f , se

q, θ), x
f ) = (∂2/∂x j∂q j)C(q∗j(x

f , se
q, θ), x

f ),

for i, j ∈ N and i , j. We then use F and G to represent (∂2/∂q2
i )C(q f , x f ) and (∂2/∂xi∂qi)C(q f , x f ),

respectively. Setting x = x
f and s = se

q and solving the equation system (1), we obtain

(detΩ)
∂

∂x0

q∗1(x
f , se

q, θ)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 + θ)P′(Q f ) + θP′′(Q f )q f − F G P′(Q f ) + θP′′(Q f )q f · · · P′(Q f ) + θP′′(Q f )q f

P′(Q f ) + P′′(Q f )q f 0 P′(Q f ) + P′′(Q f )q f · · · P′(Q f ) + P′′(Q f )q f

P′(Q f ) + P′′(Q f )q f 0 2P′(Q f ) + P′′(Q f )q f − F · · · P′(Q f ) + P′′(Q f )q f

...
...

...
. . .

...

P′(Q f ) + P′′(Q f )q f 0 P′(Q f ) + P′′(Q f )q f · · · 2P′(Q f ) + P′′(Q f )q f − F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
[

P′(Q f ) + P′′(Q f )q f
]

G

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1

0 P′(Q f ) − F 0 · · · 0

0 0 P′(Q f ) − F · · · 0

...
...

...
. . .

...

0 0 0 · · · P′(Q f ) − F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
[

P′(Q f ) + P′′(Q f )q f
] [

P′(Q f ) − F
]n−1

G
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Likewise, we find that

∂

∂x2

q∗0(x
f , se

q, θ) = −
1

detΩ

[

P′(Q f ) + θP′′(Q f )q f
] [

P′(Q f ) − F
]n−1

G,

∂

∂x2

q∗1(x
f , se

q, θ) = −
1

detΩ

[

P′(Q f ) + P′′(Q f )q f
] [

θP′(Q f ) − F
] [

P′(Q f ) − F
]n−2

G.

Proof of se′
x (θ) > 0

Let us use H(θ) to represent detΩ under x = x
f and sq = se

q. Straightforward computation shows

that

H′(θ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P′(Q f ) + P′′(Q f )q f P′′(Q f )q f P′′(Q f )q f · · · P′′(Q f )q f

P′(Q f ) + P′′(Q f )q f 2P′(Q f ) + P′′(Q f )q f − F P′(Q f ) + P′′(Q f )q f · · · P′(Q f ) + P′′(Q f )q f

P′(Q f ) + P′′(Q f )q f P′(Q f ) + P′′(Q f )q f 2P′(Q f ) + P′′(Q f )q f − F · · · P′(Q f ) + P′′(Q f )q f

...
...

...
. . .

...

P′(Q f ) + P′′(Q f )q f P′(Q f ) + P′′(Q f )q f P′(Q f ) + P′′(Q f )q f · · · 2P′(Q f ) + P′′(Q f )q f − F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

[

P′(Q f ) + P′′(Q f )q f
] [

(n + 1)P′(Q f ) − F
] [

P′(Q f ) − F
]n−1
,

which implies that signH′(θ) = sign(−1)n+1 because of Assumptions 1 and 2. Thus, it follows

from G < 0 that

se′(θ) =
nGse

qH′(θ)

(detΩ)2

[

P′(Q f ) − F
]n−1 [

P′(Q f ) + P′′(Q f )q f
]

> 0.
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