A Study of Consumption Decisions and Wealth, Individual Data, Political Economy and Theory

Curtis Jr, James

31 December 2017

Online at https://mpra.ub.uni-muenchen.de/84461/
MPRA Paper No. 84461, posted 09 Feb 2018 14:33 UTC
Recent studies have used regression decomposition to analyze recent data and found that over seventy percent of the black-white wealth differences remained unexplained (See, e.g., Gittleman and Wolff 2000; Altonji, Doraszelski and Segal 2000; and Blau and Graham 1990). Their results are limited to the variation in modern data. This study contributes improved methodology and historical empirical results to the literature on economic discrimination. In this paper, (i) James Curtis Jr presents structural regression decompositions, which are modifications to methods developed by Becker (1957) and Oaxaca (1973); (ii) James Curtis Jr presents a basic empirical test when analyzing structural regression decompositions; (iii) James Curtis Jr reports the estimated sources of black-white differences in wealth directly before and after emancipation; (iv) James Curtis Jr links these findings to recent studies. Empirical estimates confirm that the size and persistence of modern black-white wealth differences have historical roots. (v) James Curtis Jr presents decision-making considerations of “individuals” in an economy with grouped individuals, owners of firms, and social planner(s), conditional on wealth constraints with applied social economic considerations.

JEL Codes: J7 D9 E2 C2 H5 N3

Key words: theory of economic discrimination, structural regression decomposition, wealth inequality

Please address correspondence to independent researcher James E Curtis Jr.
You may call (202) 739-1962, email james@jecjef.net, or
write EF c/o James Curtis Jr, PO Box 3126, Washington District of Columbia 20010.
I. Case One: Agent-Specific Constraints

MAX_{x_{ij} \geq 0} \quad U = \gamma U \Pi_{SP=1} U_{SP}^{\theta_{SP}}

subject to \quad X_{ijSP} \leq E_{ijSP}

Let: \quad U_{SP} = \gamma U_{(SP)} \Pi_{j=1}(\Pi_{i=1} u_{ij(SP)}^{\theta_{ij(SP)}})

such that \quad U = \gamma^* \Pi_{SP=1} [\Pi_{j=1}(\Pi_{i=1} u_{ij(SP)}^{\theta*_{ij(SP)}})]

where \quad \gamma^* = \gamma U_{(SP)} \Pi_{j=1}(\Pi_{i=1} u_{ij(SP)}^{\theta*_{ij(SP)}})

\theta* = \theta_{ij(SP)} \theta_{ij(SP)}

Further, let: \quad u_{ij(SP)} = \gamma u_{ij(SP)} \Pi_{n=1}(x_{nij} - s x_{nijSP})^{a(n)}

such that \quad U = \gamma^* \Pi_{SP=1} [\Pi_{j=1}(\Pi_{i=1} u_{ij(SP)}^{\theta*_{ij(SP)}})]

Further, let: \quad E_{ijSP} = \sum_{n=1} p x_{nij} e x_{nijSP} + p x_{l} e x_{l} + e_{ijSP} \quad \text{for all } n = 1, 2, \ldots, E \neq l

Further, let: \quad X_{ij} = \sum_{n=1} P x_{nij} x_{nij} + p x_{l} x_{l} + e_{ijSP}

Further, let: \quad X_{ij} = \sum_{n=1} P x_{nij} (1 + \delta_{ij} + \sum_{q=1} t_{q} q x_{nij})

Therefore, the decision becomes:

MAX_{x_{ij} \geq 0} \quad U = \gamma^* \Pi_{SP=1} [\Pi_{j=1}(\Pi_{i=1} u_{ij(SP)}^{\theta*_{ij(SP)}})]

subject to \quad \sum_{n=1} P x_{nij} x_{nij} + p x_{l} x_{l} \leq \sum_{n=1} p x_{nij} e x_{nijSP} + p x_{l} e x_{l} + e_{ijSP}

Further, let: \quad \sum_{n=1} p x_{nij} e x_{nijSP} + \sum_{n=1} w x_{nij} = W_{ij}

where \quad W_{ij} = p x_{l}

\quad h_{ij} = e x_{l} - x_{ij}
II. Case Two: One Universal Constraint

\[
\begin{align*}
\text{MAX } & \{x_{nij} \geq 0\} \quad U = \gamma U_{SP=1} U^{SP} \\
\text{Subject to } & X \leq \epsilon \\
\text{Further, let: } & \epsilon = \sum_{SP=1} E_{SP} + e \\
E_{SP} & = \sum_{n=1}^{N} \sum_{j=1}^{J} E_{ijSP} + e_{SP} \\
E_{ijSP} & = E_{X(n)ijSP} + \sum_{n=1}^{N} \sum_{j=1}^{J} p_{x(l)ij} + e_{ij} \text{ for all } n = 1, 2, \ldots, E \neq l \\
E_{X(n)ijSP} & = \sum_{n=1}^{N} p_{x(n)ijSP} \\
\text{such that } & \epsilon = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} p_{x(n)ijSP} + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} \sum_{l=1}^{L} p_{x(l)ijSP} + e^{*} \\
where & e^{*} = e + \sum_{SP=1} E_{SP} + \sum_{i=1}^{I} \sum_{j=1}^{J} e_{ij} \\
\text{Further, let: } & X = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} P_{x(n)ij} x_{nij} + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} \sum_{l=1}^{L} p_{x(l)ij} x_{l} \\
where & p_{x(E)} = \eta(B) \\
\text{Therefore, the decision becomes: } & \\
\text{MAX } & \{x_{nij} \geq 0\} \quad U = \gamma U_{SP=1} U^{SP} \\
\text{subject to } & \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} p_{x(n)ij} x_{nij} + \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} \sum_{l=1}^{L} p_{x(l)ij} x_{l} + e^{*} \\
\text{Let: } & \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} p_{x(n)ij} x_{nijSP} + \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} h_{ij} = \sum_{i=1}^{I} \sum_{j=1}^{J} w_{ij} \\
where & w_{ij} = p_{x(l)} \\
h_{ij} = c_{x(l)ij} - x_{l}
\end{align*}
\]
III. A Model of Wealth

Let:

\[W_{ij} = (1-g-\sum_q t_q I_q) I_{ij} + A_{ij} + (1-g)(\sum_q S_{qij} + C_{ij}) - G_{ij} \]

\[I_{ij} = \sum_{v=1}^{\nu} w'_v h'_{vij} \]

\[w'_v = w_v - \delta w(v) g - \sum_q t'_q \]

\[h'_{vij} = h_{vij} - \delta h(v) g \]

\[A_{ij} = [A_{0ij}(1-g-\sum_q t_q A(0)) + \sum_a \gamma_a(1-a) S_{0ij} + \sum_q G_{0ij}(1-q) \sum_t t_q] \]

\[+ \sum_m \gamma_m Z(m)_{ij} \sum_{d=1}^{D} X_{Z(m,d)ij}\]

\[+ \sum_b \gamma_b(1-b) S_{0ij} + \sum_q G_{0ij}(1-q) \sum_t t_q] \]

\[\pi_{Z(m)ij} = \pi_{Z(m)ij}(1-\sum_q S_{qij} + \sum_q t'_q Z(m)) \]

\[P_{Z(m)ij} = P_{Z(m)ij}(1-\sum_q S_{qij} + \sum_q t'_q Z(m)) \]

\[Z_{mnij} = \gamma_{Zmnij} P_{Z(m)ij}^{\beta(d)} \]

\[P_{Z(m,d)ij} = P_{Z(m,d)ij}(1-\sum_q S_{qij} + \sum_q t'_q Z(m)) \]

\[X_{Z(m,d)ij} = X_{Z(m,d)ij} - \delta Z(m,d)_{ij} \]

where

- \(S \) is subsidies,
- \(g \) is the tithe,
- \(G \) is offerings,
- \(q \) is governments,
- \(C \) is social capital, i.e. food and medications from societal organizations,
- \(\rho \) is the rate of return,
- \(\gamma \) is the knowledge on scaling the rate of return, i.e. the 1996-97 INVESCO case study,
- \(d \) is inputs,
- \(N_1 \) is appreciative,
- \(N_2 \) is non-appreciative
A Study of Consumption Decisions and Wealth, James Curtis Jr, PO Box 3126 Washington District of Columbia 20010, 202 739 1962, jamesjr@jecjef.net