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Abstract

In various environments new agents may base their decisions on observations of actions taken by a few

other agents in the past. In this paper we analyze a broad class of such social learning processes, and study

under what circumstances the initial behavior of the population has a lasting effect. Our results show that

this question strongly depends on the expected number of actions observed by new agents. Specifically, we

show that if the expected number of observed actions is: (1) less than one, then the population converges

to the same behavior independently of the initial state; (2) between one and two, then in some (but not all)

environments there are decision rules for which the initial state has a lasting impact on future behavior;

and (3) more than two, then in all environments there is a decision rule for which the initial state has a

lasting impact.

Keywords: Social learning, steady state, unique limiting behavior, path dependence. JEL Classifi-

cation: C73, D83.

1 Introduction

Agents must often make decisions without knowing the cost and benefits of the possible choices. In such

situations an inexperienced (or “newborn”) agent may learn from the experience of others, by basing his

decision, on observations of a few actions taken by other agents in the past (see, e.g., the social learning

models of Ellison & Fudenberg, 1993, 1995; Acemoglu et al., 2011). In other environments, agents interact

with random opponents, and an agent may base his choice of action on a few observations of how his current

opponent behaved in the past (as first described in Rosenthal, 1979, and further developed and applied to

various models of community enforcement in the Prisoner’s Dilemma game in (Nowak & Sigmund, 1998;

Takahashi, 2010; Heller & Mohlin, 2017)).

When analyzing such dynamic situations two related important questions arise: (1) does the initial behavior

of the population have a lasting influence on the population’s behavior in the long run and (2) does the model

admit a unique prediction or multiple predictions for the long-run behavior? For concreteness, consider an

environment in which new agents face a choice between competing technologies with positive externalities,
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where the unknown state of nature determines which technology is superior (see, e.g., Banerjee & Fudenberg,

2004). A central issue when analyzing this environment is to characterize in which setups the population may

be “stuck” in the long run with the inferior technology, due to the arbitrary behavior of a few early adopters,

and in which setups the population will always converge to the superior technology regardless of the initial

behavior.

The present paper analyzes a broad class of processes in which agents obtain information by sampling the

behavior of other agents, and it shows that the above two questions strongly depend on the expected number

of actions observed by new agents. Specifically, we show that: (1) if the mean sample size (expected number

of actions observed by a new agent) is less than one then the population converges to the same behavior

independently of the initial state; (2) if the mean sample size is between one and two then any environment

allows for a rule with multiple steady states according to which agents learn from the experience of other

agents, but only some environments allow for decision rules with multiple locally stable states; and (3) if the

mean sample size is more than two then all environments admit a decision rule with multiple locally stable

states, and the initial state determines which steady states will prevail.

Overview of the Model We consider an infinite population of agents (a continuum of mass one). Time is

discrete and in every period each agent is faced with a choice among a fixed set of alternatives. The population

state is a distribution of actions describing the aggregate behavior of agents in the population. In each period

a fixed share of the agents die and are replaced with new agents. Each new agent observes a finite sequence

of actions (called a sample) of random size. The sample may consist either of past actions of random agents

in the population (as in the social learning models mentioned above) or past actions of the current, randomly

drawn, opponent (as in the community enforcement models mentioned above).

A sampling process is a tuple that specifies all the above components. A decision rule specifies the dis-

tribution of actions played by new agents as a function of the observed sample. The agent keeps playing the

same action throughout his life. The sampling process and the decision rule jointly induce a mapping between

population states that determines a new population state for each initial state. A population state is a steady

state if it is a fixed point of this mapping.

Characterization of Multiple Steady States Theorem 2 fully characterizes for which sampling processes

there exist decision rules that admit multiple steady states. Specifically, it shows that a sampling process allows

for a decision rule that admits multiple steady states if and only if the mean sample size is strictly more than

one (or if agents always observe a single action). In the opposite case, each decision rule admits a unique

steady state, and, moreover, the population converges to the unique steady state from any initial state.

The intuition for the “only if” side is as follows. Consider two different initial population states of a

sampling process with a mean sample size below one. The aggregate behavior of new agents may differ only to

the extent in which they observe different distributions of samples. This implies that the distance between the

distributions of actions played by new agents is bounded by the distance between the distributions of samples

that they observe. One can show that this latter distance is bounded by the distance between the distributions

of actions played by the incumbents multiplied by the mean sample size. Hence, if the mean sample size is

less than one, the distance between the distributions of actions of new agents is strictly less than the distance

between the distributions of actions of the incumbents, which implies that the mapping between population

states is a contraction mapping.
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The “if” side relies on constructing a specific decision rule, according to which agents play action a′ if

they observe action a′ in their sample, and play action a′′ otherwise. One can show that such a decision rule

always admits two different steady states provided that the expected number of observed actions is greater

than one. We demonstrate that this decision rule (as well as all other decision rules used in the other results

in the paper) may be consistent with Bayesian inference and the agents using best replies to plausible payoff

functions.

Characterization of Multiple Locally Stable States A steady state is locally stable if the population

converges back to this state after any sufficiently small perturbation. Arguably, the initial state can be said

to have a lasting effect only when there are multiple locally stable states. In particular, in the construction

of the above result (Theorem 2), only one of the steady states is locally stable. Moreover, one can show that

a population converges to this state from almost all initial states. Our remaining results characterize when

there are decision rules that admit multiple locally stable states.

Theorem 3 shows that in any sampling process in which the mean sample size is larger than two it is

possible to define a decision rule that admits multiple locally stable states. According to this decision rule,

each new agent (1) plays action a′ if he observes action a′ at least twice in his sample, (2) plays action a′′ if

he never observes action a′, and (3) mixes between the two actions if he observes action a′ exactly once. We

show that this decision rule (with a well-calibrated mixing probability) admits two locally stable states, one

in which a′ is never played, and the other in which it is played with a positive probability.

Our next two results show that when the mean sample size is between one and two, then some (but not

all) sampling processes allow for decision rules that admit multiple locally stable states. Specifically, we show

that if each new agent observes at most two actions, and there are two feasible actions, then any decision rule

admits a unique locally stable state, and, moreover, the population converges to this state from almost all

initial states. The intuition is that when the sample size is at most two, then the mapping induced by the

learning process can be represented as a polynomial of degree two. Hence, the mapping can have at most two

steady states, and it is relatively straightforward to show that at most one of these states can be locally stable.

Finally, we show that a sampling process with two feasible actions a′, a′′ in which some agents observe a

single action, while others observe three actions, and each new agent chooses the frequently observed action

in his sample, admits two locally stable states: one in which all agents choose action a′, and another in which

everyone chooses action a′′ (in addition, to an unstable state in which half of the population plays each action).

Extensions Our results so far have not assumed anything about the agents’ decision rules. Obviously,

additional information on the decision rules, may allow us to achieve stronger results. Next, we present a

simple notion that measures how responsive a decision rule is to different samples. For example, a decision

rule might be relatively unresponsive due to new agents having strong priors about which action is best. We

use this notion of responsiveness to define the effective sample size of a learning process (which is always

weakly smaller than the simple mean sample size). Next, we apply the notion of effective sample size to derive

a tighter upper bound for learning processes that admit unique steady states.

Finally, we extend our model and main results to (1) heterogeneous populations in which agents are endowed

with different types, and the various types differ in their sample sizes and decision rules, (2) non-stationary

sampling processes, in which the distribution of sample sizes and the agents’ decision rules depend on calendar

time, and (3) stochastic shocks that influence the decision rules of all agents (at the aggregate level).
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Related Literature Various papers have studied different aspects of the question of when the initial beha-

vior of the population has lasting effects on social learning processes. Most of this literature focuses on specific

decision rules, according to which new (or revising) agents myopically best reply to the empirical frequency of

the observed actions. Arthur (1989) (see related models and extensions in Arthur, 1994; Kaniovski & Young,

1995; Smith & Sorensen, 2014) studies games in which agents sequentially choose which competing technology

to adopt, and he shows that social learning is path-dependent if the technologies have positive externalities.

Kandori et al. (1993) and Young (1993a) study models of finite large populations that are involved in a

social learning process, and agents occasionally make mistakes (e.g., an agent adopts a technology that is not

his myopic best reply to his sampled information). They show that the path dependency of the social learning

process vanishes when infinite time horizons are considered. In many cases, when the probability of mistakes

is sufficiently small the population spends almost all the time in a unique “stochastically stable state,” which

is independent of the initial state. A key difference between our model and theirs is that we model an infinite

population, rather than a large finite population. In Section 6, we discuss the relations between the present

paper and the literature on stochastic stability, and, in particular, the implications of our results for finite

large populations.

Banerjee & Fudenberg (2004) study a model with a continuum of agents in which a fixed share of new agents

in each period choose one of two technologies. There are two possible states of nature, and each technology

has a higher quality in one of these states. Each agent, after he observes l past actions and a noisy signal

about the quality of each technology, chooses the technology with the higher expected quality, conditional

on the information that he has observed. Banerjee & Fudenberg show that when l ≥ 2 the behavior of the

population converges to everyone choosing the efficient technology, while if l = 1 the population converges to

an inefficient state in which only some of the agents choose the (ex-post) better technology.

Sandholm (2001) shows that when each new agent observes k actions and the game admits a 1
k

-dominant

action a∗ (i.e., action a∗ is the unique best reply against any mixed strategy assigning a mass of at least 1
k

to a∗), then social learning converges to this action regardless of the initial state. Recently, Oyama et al.

(2015) strengthened this result by extending it to iterated p-dominant actions, and by showing that global

convergence is fast.

Our model differs from all the above-mentioned research in that we study general sampling processes and

arbitrary decision rules. Specifically, we ask what properties of the agents’ sampling procedures imply that

any decision rule admits a unique steady state and global convergence to this state, whereas the existing

literature focuses on the dynamic behavior induced by a specific decision rule (in most of the literature, the

agents myopically best reply to specific payoffs, such as those induced by competing technologies with positive

externalities).

Structure We present motivating examples in Section 2. The basic model is described in Section 3. Section

4 presents our main results. In Section 5 we define and apply the notion of a responsiveness of a decision rule.

We conclude in Section 6. Appendix A extends the basic model to heterogeneous populations, non-stationary

processes, and common stochastic shocks. Technical proofs are presented in Appendix B–.
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2 Motivating Examples

In this section we present three motivating examples, which will be revisited further below to demonstrate the

applicability of our model and the implications of our results. In all the examples the population is modeled as

a continuum of mass one, and time is discrete. The main example deals with social learning with competing

technologies, while the other two examples study situations in which agents are randomly matched to play a

two-player game.

Example 1 (Main Motivating Example: Competing Technologies with Positive Externalities1). Consider a

population in which in each period a share β ∈ (0, 1) of the incumbent agents die, and are replaced with new

agents. Each new agent chooses one of two competing technologies a′ and a′′, which he adopts for the rest of

his life. A share of 99% of the new agents observe the technology followed by a single random incumbent, and

then they choose to adopt this observed technology.

We consider two cases for what the remaining 1% of the new agents observe before they choose a technology

(as summarized in Table 1):

1. They observe nothing, and in this case half of the new agents adopt technology a′, and the other half

adopt technology a′′.

2. They observe the technologies adopted by three random incumbents, and in this case each new agent

adopts the technology chosen by the majority of his sample.

Let α1 ∈ [0, 1] describe the share of agents who use technology a′ initially (in the first period). One can

show that in Case (1), in which the mean sample size of a new agent is slightly less than one, the population

converges to a unique steady state in which half of the agents follow each technology. By contrast, in Case

(2), in which the mean sample size is slightly more than one, the initial behavior of the population has a

lasting effect. Specifically, the population converges to everyone following technology a′ if initially a majority

of the agents followed technology a′ (i.e., if α1 > 50%), and the population converges to everyone following

technology a′′ if α1 < 50%.

Table 1: Summary of the Two Cases in Example 1

Case
Probability of Observing Mean

Sample Size
Convergence and steady states

0 actions 1 action 3 actions
1 1% 99% - 0.99 Global convergence to 50%–50%
2 - 99% 1% 1.02 Convergence to a′ if α1 > 0.5;

convergence to a′′ if α1 < 0.5.

We conclude this example by noting that the described behavior is consistent with each new agent playing

a unique best reply, if we make the following further assumptions. Nature privately chooses the initial share

of agents who follow each technology in the first period. In each later period, new agents have a symmetric

common prior on this initial share.2 The payoff of each new agent is increasing in the current share of agents

who follow the same technology (i.e., the technologies have positive externalities), and hence agents have an

1The example is similar to the model of Banerjee & Fudenberg (2004), except that the technologies have positive externalities,
rather than having unknown inherent different qualities.

2As argued by Banerjee & Fudenberg (2004, p. 5), the aggregate uncertainty about the initial population state may reflect
the choices of a group of “early adopters” whose preferences are uncertain even at the aggregate level.
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incentive to play the action that they believe that the majority is playing. In addition, half of the agents have

a weak preference for technology a′, and the remaining half have a weak preference for technology a′′.

For example, consider the case in which α1 is uniformly distributed on [0, 1], and each revising agent

observes, in addition to the sample of actions described above, a signal about which technology fits better the

agent’s idiosyncratic skill set. Half of the new agents observe signal s′, and the remaining agents observe s′′.

Assume that the payoff function of a new agent that chooses action a and observes signal s at time t + 1 is

given by

U (a, s) =































100 · αt + 1 a = a′, s = s′

100 · αt − 1 a = a′, s = s′′

100 · (1 − αt) + 1 a = a′′, s = s′′

100 · (1 − αt) − 1 a = a′′, s = s′,

(1)

where αt is the share of agents who follow technology a′ at time t. Note that a (risk-neutral) agent who

observes s′ strictly prefers action a′ iff E (αt) > 49%. In what follows we show that the behavior of the new

agents described above is consistent with each agent playing his unique best reply. A new agent who observes

no actions has a symmetric posterior regarding αt, and, thus, he chooses an action based on his idiosyncratic

preferences. A new agent who joins the population in round 2 and observes a single action a′ updates his

posterior belief to be α1 ∼ Beta (2, 1),3 and, thus, his expectation of α1 is given by E (α1) = 2
3 . This in

turn implies that choosing action a′ yields a higher expected payoff regardless of the agent’s own idiosyncratic

preferences. Similarly, a new agent who observes two a′-s in a sample of three actions in round 2 updates his

posterior belief to be α1 ∼ Beta (3, 2)), and, thus, his expectation of α1 is given by E (α1) = 2
3 (E (α1) = 3

5 ).

This implies that choosing action a′ induces a higher expected payoff regardless of the agent’s own idiosyncratic

preferences. Furthermore, one can show that a new agent observing a majority of a′-s in his sample in a later

round t + 1 > 2 assigns a high expected value to αt (in particular, E (αt) = 3
5 ), and, thus, he chooses a′

regardless of his idiosyncratic preferences.

Example 2 (Community Enforcement in the Prisoner’s Dilemma). Consider a population such that in each

round each agent is randomly matched with three opponents, and plays a Prisoner’s Dilemma with each of

them. In round one, each agent defects with probability α in each match. In any later round and match, with

a probability of 95% each agent observes two actions played in the previous period by the current opponent

(i.e., actions played by the current opponent against two of his three opponents in the previous period). With

the remaining probability of 5% each agent observes k actions played by the current opponent in the previous

period. We consider two cases: (1) k = 1, and (2) k = 3. All agents follow the same behavior (in both cases):

(I) an agent defects if he observes his partner defecting more times than cooperating, (II) an agent cooperates

if he observes his partner cooperating more times than defecting, and (III) an agent defects with probability

51% if he observes the partner defecting and cooperating an equal number of times.

One can show that in both cases the sampling process admits two steady states: one in which all agents

cooperate, and one in which all agents defect. In the first case (k = 1, in which the mean sample size is slightly

3Recall that the density of a random variable with a Beta distribution x ∼ Beta (a, b) is given by f (x) = constant · xα−1 · (1 −

x)β−1 (where supp (x) = [0, 1], α, β > 0, and Beta (1, 1) is the uniform distribution), and its expectation is given by E (x) = α
α+β

.

Further recall that if variable x is interpreted as the prior over the frequency of technology a′ in the population, and if one
observes independent random observations of c agents playing action a′ and d agents playing action a′′, then the posterior about
the frequency of technology a′ is given by Beta (a + c, b + d).
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below 2), only the state in which all agents defect is locally stable. Specifically, the population converges to

everyone defecting for any α > 0. By contrast, in the second case (k = 3, in which the mean sample size

is slightly above 2), both steady states are locally stable. In particular, one can show that the population

converges to everyone defecting if α > 31%, and it converges to everyone cooperating if α < 31%.

3 Model

Throughout the paper we restrict attention to distributions with a finite support. Given a (possibly infinite)

set X, let ∆ (X) denote the set of distributions over this set that have a finite support. With slight abuse of

notation we use x ∈ X to denote the degenerate distribution µ ∈ ∆ (X) that assigns probability one to x (i.e.,

we write µ ≡ x if µ (x) = 1). We use N to denote the set of natural numbers including zero.

Population state. Consider an infinite population of agents. More precisely, the population consists of a

continuum of agents with mass one. Time is discrete and in every period (or “round”) each agent is faced with

a choice among a fixed set of alternatives A. Let A be a finite set of at least two actions (i.e., |A| ≥ 2).

The population state (or state for short) is identified with the aggregate distribution of actions played in

the population, denoted γ ∈ ∆ (A). Let Γ denote the set of all population states.

New/Revising agents. In each period, a share of 0 < β ≤ 1 of the agents exit the population and are

replaced with new agents, while the remaining 1 − β share of the agents play the same action as they played

in the past (see, e.g., Banerjee & Fudenberg, 2004). Each new agent chooses an action based on a sample of a

few actions of incumbents. The agent then keeps playing this chosen action throughout his active life, possibly

because the initial choice requires a substantial action-specific investment, and it is too costly for an agent to

reinvest in a different action later on. The model can also be interpreted as describing a fixed population in

which each agent reevaluates his action only every 1
β

periods. 4

Sample. Each new agent observes a finite sequence of actions (or sample). The size of the observed sample

is a random variable with a distribution ν ∈ ∆ (N). Let M denote the set of all feasible samples, i.e.,

M = ∪l∈supp(ν)A
l, where A0 = {∅} is a singleton consisting of the empty sample ∅.

Let l̄ = max (supp (ν)) < ∞ be the maximal sample size. Note that M is finite in virtue of the finite-

support assumption. For each sample size l ∈ N, let ψl : Γ → ∆
(

Al
)

denote the distribution of samples

observed by each agent in the population (or sampling rule for short), conditional on the sample having size l,

and given a state of the population γ. A typical sample of size l is represented by the vector −→a = (a1, ..., al).

We assume that each agent independently samples different agents, and observes a random action played

by each of these agents. This kind of sampling is common in models of social learning (see, e.g., Ellison &

Fudenberg, 1995; Banerjee & Fudenberg, 2004). Formally, we define for each sample size l ∈ N, each state

γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∏

1≤i≤l

γ (ai) . (2)

4Under the interpretation of a fixed population, one can assume (without affecting the learning process) that the first observed
action after a revision (when the sample is non-empty) is the revising agent’s own past action. The reason why the learning
process is unaffected by having the first observed action be the revising agent’s own past action (rather than an action of another
random agent) is that the revising agent himself is chosen uniformly, and, thus, the aggregate behavior of the revising agents
coincides with the aggregate behavior in the population.
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Sampling process. A sampling process (or environment) is a tuple E = (A, β, ν) that includes the

three components described above: a finite set of actions A, a fraction of new agents at each stage β, and a

distribution of sample sizes ν.

Given sampling process E = (A, β, ν), let µl denote the mean sample size, i.e., the expected number of

actions observed by a random agent in the population. Formally:

µl =
∑

l′∈supp(ν)

ν (l′) · l′.

Decision rule and learning process. Each new agent chooses his action in the new population state by

following a stationary (i.e., time-independent) decision rule σ : M → ∆ (A). That is, a new agent who observes

sample m ∈ M plays action a with probability σm (a) . The remaining 1 − β agents play the same action as in

the previous round.

Observe that a decision rule can (implicitly) capture the agents’ payoffs. As demonstrated in Example

1 below, a decision rule can describe the aggregate behavior of new agents who choose the expected payoff-

maximizing actions, given their beliefs, which they have formed through Bayesian inference, on the basis of

the observed sample of actions and possibly additional information about the state of nature.

A learning process is a pair P = (E, σ) consisting of a sampling process and a decision rule.

Population dynamics. An initial state and a learning process uniquely determine a new state. To see this

note that since the number of messages M , and actions A are finite, whereas the population is a continuum,

the probability that an agent observes a message m and switches to an action a is equal to the fraction of agents

who observe m and switch to an action a. For this reason we say that the learning process is deterministic,

despite the fact that the choice of an individual agent may be stochastic.5

Time is discrete in our model. Let fP : Γ → Γ denote the mapping between states induced by a single step

of the learning process P . That is, fP (γ̂) is the new state induced by a single step of the process P , given

an initial state γ̂. Similarly, for each t > 1, let f t
P (γ̂) denote the state induced after t steps of the learning

process P , given an initial state γ̂ (e.g., f2
P (γ̂) = fP (fP (γ̂)), f3

P (γ̂) = fP (fP (fP (γ̂))), etc.).

L1-distance. Throughout the paper we measure distances with the L1-distance (norm). Specifically, let

the L1-distance between two distributions of samples ψl,γ , ψl,γ′ ∈ ∆
(

Al
)

of size l, be defined as follows:

‖ψl,γ − ψl,γ′‖1 =
∑

m∈Al |ψl,γ (m) − ψl,γ′ (m)| .

Similarly the L1-distance between two distributions of actions γ, γ′ ∈ ∆ (A) is defined as follows:

‖γ − γ′‖1 =
∑

a∈A

|γ (a) − γ′ (a)| .

5The formalization of the intuitive claim that the probability that each agent who chooses action a is equal to the fraction of
agents who choose action a does raise various technical difficulties. For example, when the population is a continuum, and each
agent independently chooses action a with probability 50%, then the set of agents who happen to choose action a in a particular
realization may not be measurable. For brevity and clarity, we do not deal with these technical difficulties in the present paper
(as they are not directly related to the main focus of the paper). We refer the interested reader to Duffie & Sun (2012) for details
on how the above intuitive claim can be formalized in a closely related setup.
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Steady States and Stability We say that γ∗ is a steady state with respect to the learning process P , if it

is a fixed point of the induced mapping fP , i.e., if fP (γ∗) = γ∗.

Steady state γ∗is (asymptotically) locally stable if a population beginning near γ∗ remains close to γ∗, and

eventually converges to γ∗ . Formally, for each ǫ > 0 there exists δ > 0 such that ‖γ̂ − γ∗‖ < δ implies that:6

(1)
∥

∥f t
P (γ̂) − f t

P (γ∗)
∥

∥ < ǫ ∀t ≥ 1 ,(2) limt−→∞f
t
P (γ̂) = γ∗.

Steady state γ∗ is an (almost-)global attractor, if the population converges to γ∗ from any (interior) initial

state, i.e., if

limt−→∞f
t
P (γ̂) = γ∗ for all γ̂ ∈ Γ (γ̂ ∈ Int (Γ)) ,

where Int (Γ) denotes the set of totally mixed distributions of actions (distributions that assign positive pro-

bability to all actions).7

We conclude by demonstrating how the model captures motivating Examples 1–2.

Example 1 (Competing Technologies revisited). We model the process by which agents adopt one of two

competing technologies with positive externalities as a learning process P = ({a′, a′′} , β, ν, σ) ,

where the sampling process consists of (i) the set of competing technologies {a′, a′′}, (ii) the share

of new agents that join the population in each round, β ∈ (0, 1), and (iii) the distribution of sample

size ν, which is defined as

Case I: ν (l) =







1% l = 0

99% l = 1
Case II: ν (l) =







1% l = 3

99% l = 1.

Note that the mean sample size (µl) is equal to 0.99 in Case I, and is equal to 1.02 in Case II.

Finally, the decision rule of the new agents is defined as

σ (−→a ) =



















0.5 · a′ + 0.5 · a′′ −→a = ∅

a′ −→a ∈ {a′, (a′, a′, a′) , (a′′, a′, a′) , (a′, a′′, a′) , (a′, a′, a′′)}

a′′ otherwise.

Observe that this decision rule is consistent with each new agent best replying to the payoff given

by Eq. (1), conditional on observing (1) the random sample of actions −→a , and (2) the random

signal about the state of nature (i.e., observing either s′ or s′′, which informs the agent which

technology fits better his own idiosyncratic skill set.). The initial population state is given by

γ̂ (a′) = α.

Example. 2 (Prisoner’s Dilemma revisited). The process by which agents chose how to play the Prisoner’s

6The notion of local stability is often called “asymptotic stability” (see, e.g., Weibull, 1995, Def. 6.5). A state that satisfies
the first requirement of our definition is called Lyapunov stable.

7Weibull (1995, p. 101) uses the term “globally stable” to refer to an almost-global attractor. Sandholm (2011, Section
7.A.2) uses the term “globally attracting” to refer to a global attractor. All the results in the paper that show that a state is
a “global attractor” (namely, Corollaries 1–7) can be strengthened in a straightforward way to show that the relevant state is
“globally asymptotically stable” à la Sandholm (2011, Section 7.A.2) (i.e., to show that the global attractor also satisfies Lyapunov
stability).
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Dilemma is modeled by a learning process

P = ({c, d} , , β = 1, ν, σ) ,

where ν (2) = 95%, and in Case (1) ν (1) = 5%, while in Case (2) ν (3) = 5%. In Case (1) the decision rule is

given by:

σ (c, c) = σ (c) = c, σ (d, d) = σ (d) = d, σ (c, d) = σ (d, c) = 51% · d+ 49% · c.

In Case (2) the decision rule is given by:

σ (c, c) = σ (c, c, c) = σ (c, c, d) = σ (c, d, c) = σ (d, c, c) = c,

σ (d, d) = σ (d, d, d) = σ (d, d, c) = σ (d, c, d) = σ (c, d, d) = d, σ (c, d) = σ (d, c) = 51% · d+ 49% · c.

Observe that µl = 1.95 in Case (1) , and µl = 2.05 in Case (2).

4 Main Results

4.1 Upper Bound on the Distance between New States

Our first result shows that for any two initial states γ 6= γ′ , the distance between the corresponding states

one period later is at most 1 − β + β · µl times the distance between the two initial states. The intuition

is as follows. Consider two different initial population states γ and γ′. The incumbents who do not die (a

share of 1 − β) continue to behave as before, and hence the distance between the distributions of actions of

those agents remains ‖γ − γ′‖. The aggregate behavior of new agents may differ only to the extent that they

face different distributions of samples. This implies that the distance between the distributions of actions

played by new agents is bounded by the distance between the distributions of samples that they observe. By

using the triangle inequality one can show that this latter distance is bounded by the distance between the

distributions of actions played by the incumbents (‖γ − γ′‖) multiplied by the mean sample size (µl). Finally,

due to another use of a triangle inequality, this implies that the distance between the new population states

is at most (1 − β + β · µl) · ‖γ − γ′‖1. Formally,

Theorem 1. Let P = (A, β, ν, σ) be a learning process, and let γ 6= γ′ ∈ Γ be two population states. Then:

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β + β · µl) · ‖γ − γ′‖1 ,

with a strict inequality if there exists an l > 1 such that ν (l) > 0.

(Sketch of proof. Formal proof is presented for the more general result of Theorem 8 in Appendix B.1.)

The distance between the final population states is bounded as follows:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

l∈N

ν (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 . (3)
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The intuition of this inequality is as follows. The first part of the RHS of Eq. (3) reflects the actions played

by the β new agents. The social learning stage may induce different behaviors for new agents who observe

samples of size l only if they observe different samples. Thus, taking the weighted average of the distances

between samples yields the bound on how much the aggregate behaviors of the new agents may differ (i.e.,
∑

l∈N
ν (l) · ‖ψl,γ − ψl,γ′‖1). Finally, the mixed average of this expression and the behavior of the incumbents,

gives the total bound on the difference between the final population states.

Next, observe that the distance between distributions of samples is bounded by the sample size times the

distance between the distributions of actions:

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 ,

with a strict inequality if l > 1. This is so because the event that two samples of size l differ is (a non-disjoint)

union of the l events: the first action in the samples differ, the second action in the samples differs, ..., the

last lth action in the samples differ.

Substituting the second inequality in (3) yields:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

l∈N

ν (l) · l · ‖γ − γ′‖1 + (1 − β) · ‖γ − γ′‖1 =

(

β ·

(

∑

l∈N

ν (l) · l

)

+ (1 − β)

)

· ‖γ − γ′‖ = (β · µl + 1 − β) · ‖γ − γ′‖ = (1 − β + β · µl) · ‖γ − γ′‖1 ,

with a strict inequality if there exists an l > 1 such that ν (l) > 0.

Observe that 1 − β + β · µl < 1 iff µl < 1. Recall that f is a weak contraction (or shrinking) mapping if

‖(f (γ)) − (f (γ′))‖ < ‖γ − γ′‖ for each γ 6= γ′. Theorem 1 implies that fP is a weak contraction mapping if

either (1) µl < 1, or (2) µl = 1 and8 ν (1) < 1. The fact that the mapping fP is a weak contraction mapping

implies that fp admits a global attractor.9 Formally:

Corollary 1. Let P = (A, β, ν, σ) be a learning process satisfying (1) µl < 1, or (2) µl = 1 and ν (1) < 1.

Then fP is a weak contraction mapping, which implies that (1) fP admits a unique steady state γ∗, and (2)

this unique steady state γ∗ is a global attractor (i.e., limt−→∞f
t
P (γ̂) = γ∗ for each γ̂ ∈ Γ).

4.2 Full Characterization of Sampling Processes with Multiple Steady States

Our main result fully characterizes which sampling processes allow for decision rules for which the past casts a

long shadow. Specifically, it shows that a sampling process allows a decision rule that admits multiple steady

states iff µl > 1 (alternatively if all agents sample exactly one action). In the opposite case (µl ≤ 1) each

decision rule admits a unique steady state, and, moreover, the population converges to the unique steady state

from any initial state. Formally:

Theorem 2. Let E = (A, β, ν) be a sampling process. The following two conditions are equivalent:

8Note that µl = 1 and ν (1) < 1 jointly imply that there exists l > 1 such that ν (l) > 0.
9See Pata (2014, Theorem 1.7) for a formal proof that any weak contraction mapping on a compact metric space admits a

global attractor (see also the sketch of the proof in Munkres, 2000, Section 28, Exercise 7). We thank Xiangqian Yang for kindly
referring us to these proofs.
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1. µl > 1, or ν (1) = 1.

2. There exists a decision rule σ∗, such that the learning process (E, σ∗) admits at least two different steady

states.

Proof. Corollary 1 immediately implies that ¬1⇒¬2. We are left with the task of showing that 1 ⇒ 2.

Case A: Assume that ν (1) = 1 (i.e., each new agent in the population observes a single action). Consider

the decision rule in which each agent plays the action that he observed, i.e., σ∗ (a) = a. Let γ be an arbitrary

population state. Observe that γ is a steady state of the learning process (E, σ∗) because:

(fP (γ)) (a) = γ (a) .

Case B: Assume that µl > 1. Let a∗ and a′ be different actions (a∗ 6= a′ ∈ A). Let σ∗ be a decision rule

according to which each agent plays action a∗ if he has observed action a∗ at least once, and plays action a′

otherwise, that is,

σ∗
(

al
)

=







a∗ ∃i, s.t., al
i = a∗

a′ otherwise.

It is immediate that the population state in which all agents play action a′ (i.e., γ (a′) = 1 ) is a steady state

of the learning process (E, σ∗). We now show that there exists an x > 0, such that the population state γx

in which a share x of the agents play action a∗, and the remaining agents play action a′ (i.e., γx (a∗) = x and

γx (a′) = 1−x), is another steady state of the learning process (E, σ∗). Observe that the state γx is consistent

with the learning process (E, σ∗) if and only if

(fP (γx)) (a∗) =
∑

l∈supp(ν)

ν (l) ·
1

|A|l
·
∑

~a∈Al

1(∃i s.t., ai=a∗) =
∑

l∈supp(ν)

ν (l) ·
(

1 − (1 − x)
l
)

≡ g (x) . (4)

Observe that: (1) g (x) (defined in (4) above) is continuous and differentiable, (2) the derivative of g (x)

is given by g′ (x) =
∑

l∈supp(ν) ν (l) · l · (1 − x)
l−1

, (3) g′ (0) =
∑

l∈supp(ν) ν (l) · l = µl > 1, (4) g (0) = 0, and

(5) g (1) ≤ 1. These observations imply by the intermediate value theorem that there is x∗ > 0 such that

g (x∗) = x∗, and hence γx∗

is an additional steady state of the learning process (E, σ∗).

Remark 1. We note that the decision rules constructed in the proof above can be consistent with Bayesian

inference and best-replying in plausible setups. The decision rule in Case A (playing the observed action)

induces a Nash equilibrium in a setup with competing technologies with positive externalities and uncertainty

about the initial population state, such as the setup presented in Example 1.

The decision rule in Case B induces a Nash equilibrium in the following setup of two competing technologies

with uncertainty about their quality. There are two states of the world. In State 1 technology a∗ has a higher

quality, and in state 2 technology a′ has a higher quality. The technology with the higher quality yields a

payoff of one to an agent who follows it, and the technology with the lower quality yields a payoff of zero.

State 1 has a prior probability of 60%. In state 1, 10% of the agents follow technology a∗ in the first period,

and the remaining agents follow technology a. In state 2, all agents follow technology a′ in period one (i.e., the

setup has a payoff-determined initial popularity à la Banerjee & Fudenberg, 2004). Observe that the unique

Nash equilibrium in this setup is for an agent to play a∗ when observing a∗ at least once (as in this case the
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agent knows for sure that action a∗ has a higher quality), and to play a′ otherwise (as in this case the posterior

probability that action a′ has a higher quality is at least 60%).

Similarly, one can design plausible setups, in which the decision rules presented in all other constructions

in the paper are consistent with Bayesian inference and best-replying (omitted for brevity).

4.3 Any Sampling Process with µl > 2 Admits Multiple Locally Stable States

Theorem 2 shows that any sampling process with a sample size larger than one admits multiple steady states,

but it does not address the question of whether these steady states are locally stable. In particular, the decision

rule presented in the proof of Theorem 2 (Case B) admits two steady states γ0 and γx∗ . It is relatively simple

to see that the state γx∗ is an almost global attractor: the population converges to γx∗ from any initial state

γ̂ that assigns a positive probability to action a∗ (see the related continuous-time analysis in Oyama et al.

(2015, Sections 3.2 and 3.3)). Hence, γ0 is not locally stable. In the next two sections we establish necessary

and sufficient conditions for sampling processes to admit multiple locally stable states.

The following result shows that in any sampling process with a mean sample size larger than 2 it is possible

to define a decision rule that admits multiple locally stable states. According to this decision rule, each new

agent (1) plays action a′ if he observes action a′ at least twice in his sample, (2) plays action a′′ if he never

observes action a′, and (3) plays action a′ with probability q and action a′′ with probability 1−q, if he observes

action a′ exactly once.

Theorem 3. Let E = (A, β, ν) be a sampling process satisfying µl > 2. There exists a decision rule σ∗, such

that the learning process (E, σ∗) admits two different locally stable states.

The sketch of the proof is as follows (the formal proof is presented in Appendix B.2). If the incumbents play

action a′ with a frequency of x << 1, then the share of new agents who play action a′ is q·µl·x+(1 − 2 · q)·O
(

x2
)

(the first term reflects the fact that the probability that a new agent plays action a′ is approximately q times

the expected number of times in which action a′ is observed, namely, µl · x; the second term “corrects” the

fact that when a new agent observes action a′ twice he plays action a′ with probability one rather than with

probability 2 · q). Choosing q < 1
µl

implies that a population in which very few agents play a′ converges to

no one playing a′. Choosing q sufficiently close to 1
µl

< 1
2 implies that a population in which a few more

agents play action a′ converges to a larger share of agents playing action a′ (due to the second-order term,

(1 − 2 · q) ·O
(

x2
)

, being positive).

4.4 Some Processes with 1 < µl < 2 Admit Multiple Locally Stable States

In this section we show that some (but not all) sampling processes in which the mean sample size is between

one and two allow for a decision rule that admits multiple locally stable states.

Theorem 4 presents a family of sampling processes with a mean sample size of up to two, in which every

decision rule admits at most one locally stable state. Specifically, we show that in any sampling process in

which (1) there are two feasible actions (|A| = 2), and (2) each new agent observes at most 2 actions, any

decision rule admits at most one locally stable state.

Theorem 4. Let E = (A = {a′, a′′} , β, ν) be a sampling process. Assume that ν (l) = 0 for each l > 2. Then

for any decision rule σ, the learning process (E, σ) admits at most one locally stable state.
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The sketch of the proof of Theorem 4 is as follows (the formal proof is presented in Appendix B.3).

In sampling processes with two actions, the state can be identified with a number x ∈ [0, 1] representing

the frequency of agents playing the first action. Recall that any steady state is a solution to the equation

fσ (x) = x, where fσ (x) is the dynamic mapping induced by decision rule σ. The fact that the maximal

sample size is two implies that fσ (x) is a polynomial of degree two. This implies that there are at most two

steady states solving fσ (x) = x. Simple geometric arguments regarding the intersection points of a parabola

and the 45
◦

line imply that at most one of these steady states can be locally stable (as illustrated in Figure

1).

Figure 1: Illustrations for the Intersections of a Parabola and the 45
◦

Line

Theorem 4 presents a family of sampling processes (which extends Case (2) in Example 1) in which the

mean sample size is between one and two, such that a simple “follow the majority” rule admits multiple locally

stable states. Specifically, in these sampling processes (1) there are two feasible actions, (2) some agents

observe a single action and the remaining agents observe three actions, and (3) each agent plays the frequently

observed action in his sample. It is relatively straightforward to see that this process admits two locally stable

steady states: one in which all agents play the first action, and one in which all agents play the other action.

In addition, the state in which half of the agents play each action is an unstable steady state. The formal

proof of Theorem 5 is given in Appendix B.4.

Theorem 5. Let E = (A = {a′, a′′} , β, ν) be a sampling process. Assume that ν (1) < 1 and ν (1) + ν (3) = 1.

Then there exists a decision rule σ∗, such that (E, σ∗) admits multiple locally stable states.

4.5 Summary of Main Results

Combining the various results of this section shows that the sampling process’s mean sample size has important

implications for determining whether the initial behavior of the population has an influence on the long-run

behavior of the population.

Corollary 2. Let E be a sampling process with an expected sample size µl.

1. If µl < 1 (or µl = 1 and ν (1) 6= 1), then any decision rule admits a unique steady state that is globally

stable.
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2. If 1 < µl ≤ 2, then there exists a decision rule that admits multiple steady states. By contrast, the

multiplicity of locally stable states depends on other details of the sampling process. That is, for each

1 < µl ≤ 2 there exist sampling processes E′, E′′ with mean sample size µl, such that sampling process

E′ generates a decision rule that admits multiple locally stable states, while sampling process E′′ does

not.

3. If µl > 2, then there exists a decision rule that admits multiple locally stable states.

5 Responsiveness and Effective Sample Size

In this section, we present simple notions of responsiveness and expected effective sample size, and use them to

derive a (weakly) tighter upper bound for processes that admit global attractors (relative to the upper bound

presented in Theorem 1).

5.1 Definitions

Fix a learning process P = (A, β, ν, σ). For each sample size l ∈ supp (ν), and each action a ∈ A , let σl (a)

(σl (a)) be the minimal (maximal) probability that decision rule σ assigns to action a after observing a sample

of size l, i.e.,

σl (a) = minm∈Alσm (a) (σl (a) = maxm∈Alσm (a) ) .

Let rl denote the maximal responsiveness of new agents to changes in observed samples of size l, which is

defined as follows:

rl = min

(

1,
1

2
·
∑

a∈A

(σl (a) − σl (a))

)

, (5)

and let r0 = 0. The responsiveness effectively limits the maximal influence of different samples of length l on

the behavior of agents to be at most rl ≤ 1. One reason a decision rule may have have limited responsiveness is

that new agents might have strong priors about the best action, which are influenced only to a limited extent

by their observed samples. Observe that when there are two actions (i.e., A = {a, b}), then , l is simply the

difference between the maximal and minimal probability assigned to each action, i.e.,

rl = σl (a) − σl (a) = σl (b) − σl (b) (A = {a, b}) . (6)

When there are more than two actions, 1
2 ·
∑

a∈A (σl (a) − σl (a)) may be larger than one. We bound rl from

above by one in Eq.(5) because, any change of sample cannot affect an agent’s mixed behavior by more than

one (as measured by the L1-distance over the set of mixed actions).

We call the product of the sample size and the responsiveness, rl · l the effective sample size. Let µe
l ∈

R
+denote the effective sample size, i.e.,

µe
l =

∑

l∈supp(ν)

ν (l) · rl · l.

It is immediate that the effective sample size is always weakly smaller than the mean sample size in the

population; i.e., µe
l ≤ µl.
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5.2 A Tighter Bound on the Distance between New States

Our main result in this section shows that the distance between two new states is at most (1 − β + β · µe
l )

times the distance between the two initial states. This bound is (weakly) tighter than the one presented in

Theorem 1, as we replace expected sample size µl with the (weakly) smaller effective sample size µe
l . Formally,

Theorem 6. Let P = (A, β, ν, σ) be a learning process, and let γ 6= γ′ ∈ Γ be two population states. Then:

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β + β · µe
l ) · ‖γ − γ′‖1 ,

where the inequality is strict if there exists an l > 1 such that ν (l) > 0.

Proof. The key step of the proof is to show the following inequality:

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

l∈N

ν (l) · rl · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 . (7)

Inequality (7) is the same as (3) in the proof of Theorem 1, except for the factor of rl ≤ 1 on the RHS. All

other arguments of the proof of Theorem 1 remain the same. We prove (7) in Lemma 6 in Appendix B.5.

Observe that (1 − β + β · µe
l ) < 1 iff µe

l < 1, and in this case fP is a contraction mapping, which implies

that fP admits a global attractor. This allows us to strengthen Corollary 1 as follows.

Corollary 3. Let P = (A, β, ν, σ) be a learning process satisfying (1) µe
l < 1, or (2) µe

l = 1 and ν (1) < 1.

Then fP is a contraction mapping, which implies that (1) fP admits a unique steady state γ∗, and (2) this

unique steady state γ∗ is a global attractor (i.e., limt−→∞f
t
P (γ̂) = γ∗ for each γ̂ ∈ Γ).

We demonstrate the implications of Corollary 3 in the following example.

Example 3. 1 Consider a population in which in each period a share of β ∈ (0, 1) of the incumbent agents

die, and are replaced with new agents. A population state describes the share of agents who use each of

two competing technologies, a1 and a2. Each new agent observes the technology followed by a single random

incumbent. Assume that the decision rule used by the agents implies that each new agent plays (on average)

action a1 with a probability of ᾱ ∈ [0, 1] after observing action a′, and with a probability of α < ᾱ after

observing action a′′. Observe that the effective number of observations, µe
l , is equal to:

µe
l = rl=1 · 1 =

1

2
·
∑

a∈A

(σl (a) − σl (a)) =
1

2
· ((α− α) + ((1 − α) − (1 − α))) = α− α,

which is strictly less than one if α < 1 or α > 0. Corollary 3 implies that the learning process converges to a

global attractor (which is the unique steady state) whenever α < 1 or α > 0.10

Our final result demonstrates that our bound of the effective sample size being less than one is tight.

Specifically, it shows that given any sampling process in which the expected sample size µl > 1, and any

number 1 < y ≤ µl, there is a decision rule with an effective sample size of µe
l = y with multiple steady states.

Formally:

10One can show that in this global attractor a share
α

1+α−ᾱ
of the agents play action a1. If α = 1 and α > 0, then any

population state is steady.
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Theorem 7. Let E = (A, β, ν) be a sampling process satisfying µl > 1. Let 1 < y ≤ µl. Then there exists a

decision rule σ, such that the learning process (E, σ) admits two different steady states, and satisfies µe
l = y.

Proof. Let a and a′ be different actions (a 6= a′ ∈ A). Let σ∗ be a decision rule according to which each

agent plays action a∗ with a probability of y
µl

if he has observed action a∗ at least once, and plays action a′

otherwise, that is,

σ∗
(

al
)

=







y
µl

· a∗ +
(

1 − x
µl

)

· a′ if ∃i, s.t., al
i = a∗

a′ otherwise.

Observe that the responsiveness of (E, σ) is equal to x because:

µe
l ==

∑

l∈supp(ν)

ν (l) · rl · l =
∑

l∈supp(ν)

ν (l) ·
1

2
·
∑

a∈A

(σl (a) − σl (a)) · l =

∑

l∈supp(ν)

ν (l) ·
1

2
·

((

y

µl

− 0

)

+

(

1 −

(

1 −
y

µl

)

+ 0 + ...+ 0

))

· l =

∑

l∈supp(ν)

ν (l) ·
y

µl

· l =
y

µl

·
∑

l∈supp(ν)

ν (l) · l =
y

µl

· µl = y.

It is immediate that the uniform population state in which all agents play action a′ (i.e., γ (a′) = 1) is a steady

state of the learning process (E, σ∗). An analogous argument to the one presented in Case B of the proof of

Theorem 2 shows that there exists x > 0 such that the uniform population state γx in which all agents play

action a∗ with probability x, and play action a′ with the remaining probability of 1 − x, is another steady

state of the learning process (E, σ∗).

6 Concluding Remarks

Extensions. The basic model assumes that all agents share the same distribution of sample sizes, and the

same decision rule. In many applications the population might be heterogeneous, i.e., the population includes

various groups that differ in their sampling procedures and decision rules (see, e.g., Ellison & Fudenberg, 1993;

Munshi, 2004; Young, 1993b). In Appendix A.1 we formally extend our model and results to heterogeneous

populations.

The basic model assumes that the decision rule is stationary. In Appendix A.2 we extend our model and

results to time-dependent decision rules, and we characterize when a non-stationary sampling process admits

a unique sequence of states, such that it converges to this sequence of states from any initial population state.

Finally, we further extend the model in Appendix A.3 to stochastic shocks that influence the decision rules

of all agents (on the aggregate level), and we characterize when the initial population state may have a lasting

effect in such sampling processes.

Repeated Interactions without Calendar Time. In many real-life situations agents are randomly ma-

tched within a community, and these interactions have been going on since time immemorial. Modeling such

situations as repeated games with a definite starting point and strategies that can be conditioned on calendar

time may be a problematic, as it seems implausible that agents would be aware of the the exact time that
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has transpired since the starting point, and be aware of the very distant history of play of other agents. An

alternative approach is to model behavior in such situations as steady states of environments without a calen-

dar time (see, e.g., (Rosenthal, 1979; Okuno-Fujiwara & Postlewaite, 1995; Heller & Mohlin, 2017), and the

working paper version of Phelan & Skrzypacz, 2006).

An interesting question about such environments is whether the distribution of strategies used by the

players to choose their actions as a function of their observations is sufficient to uniquely determine the steady

states, or whether the same distribution of rules may admit multiple steady states. Our main result shows that

the former is true whenever the expected number of observed actions is less than one, while if the expected

number of observed actions is more than one, then there is always a distribution of rules with multiple steady

states.

Large Finite Populations. Our model studies infinite populations, and it is important to know what the

implications of our results are for large finite populations. The key difference between an infinite and a finite

population, is that in the former, the law of large numbers implies that the new state of the population is

a deterministic function of the initial state and the decision rule. By contrast, in finite populations the new

population state is a random variable. If the finite population is sufficiently large then we expect the resulting

stochastic process to be close to the deterministic process over finite time horizons. However, when time goes

to infinity, rare random events will occasionally take the population away from one (locally stable) steady state

towards another steady state (see Sandholm, 2011 for a textbook overview of the deterministic approximation

of stochastic evolutionary processes).

When dealing with large finite populations, one may therefore interpret our main result (Theorem 2) as

follows. In sampling processes in which µl < 1, all learning processes admit a unique globally stable state γ∗.

The population is highly likely to quickly converge to state γ∗, and will almost always remain very close to this

state. In the rare event that the realized observations of many agents substantially differ from their expected

values, the population may temporarily move away from γ∗, but with a very high probability the population

will quickly converge back to γ∗.

In sampling processes in which µl > 1, there are decision rules that admit multiple steady states. The fact

that the population is finite and that the new population state is a random variable will typically quickly take

the population away from steady states that are not locally stable. If the sampling process admits multiple

locally stable states, then the initial state is highly likely to determine which of these locally stable states the

population converges to in the medium run. Moreover the population will likely stay there for a significant

amount of time.11

Observations of Action Profiles. In Heller & Mohlin (2017) we investigate sampling processes in which

an agent may observe action profiles played in past interactions by the current opponent against her past

opponents. All of our results can be extended to this setup, with relatively minor adjustments to the proofs.

Specifically one should count an observation of an action profile (in a two-player game) as two actions when

11The literature on stochastic evolutionary game theory (starting with the pioneering works of Foster & Young, 1990; Kandori
et al., 1993; Young, 1993a; see Young, 2015, for a recent survey) studies situations the long-run behavior in environments with
multiple locally stable states, and in which there is a small level of noise in the agents’ behavior. We think that it would be
interesting to extend the methodology of this literature in order to apply it to the setup analyzed in this paper. It might be
that such future research can characterize various cases in which, if the population size is sufficiently large, in the long run the
population will spend almost all of the time in one of these locally stable states.
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calculating the expected number of observed actions µl. Our main result still holds in this setup: a sampling

process allows a profile of decision rules that admits multiple steady states, essentially, if and only if µl ≤ 1.

A Extensions

A.1 Heterogeneous Population

The basic model assumes that all agents share the same distribution of sample sizes, and the same decision

rule. In many applications the population might be heterogeneous, i.e., the population includes various groups

that differ in their sampling procedures and decision rules. A few examples of such models with heterogeneous

populations can be found in: (1) Ellison & Fudenberg (1993), who study competing technologies where each

technology is better for some of the players and these different tastes induce different decision rules (see also

Munshi, 2004); (2) Young (1993b), who studies social learning in a bargaining model in which agents differ

in the size of their samples; and (3) Heller & Mohlin (2017), who in a companion paper analyze community

enforcement in which the population includes several types of agents, and each type uses a different strategy.

A.1.1 Model with Heterogeneous Population

In what follows we introduce heterogeneous populations that include different types, and we redefine the

notions of population state, sampling process, and learning process to deal with this heterogeneity.

Population state. Let Θ denote a finite set of types with a typical element θ. Let λθ denote the mass

of agents of type θ (or θ-agents). For simplicity, we assume that λ has full support. We redefine a population

state (or state for short) to be a vector γ = (γθ)θ∈Θ, where each γθ ∈ ∆ (A) denotes the aggregate distribution

of actions played by θ-agents. Let γ̄ ∈ ∆ (A) denote the average distribution of actions in the population (i.e.,

γ̄ (a) =
∑

θ λθγθ (a) for each action a ∈ A). A population state is uniform if all types play the same aggregate

distribution of actions, i.e., if γθ (a) = γ̄ (a) for each type θ ∈ Θ and action a ∈ A. We redefine Γ to denote

the set of all populations with heterogeneous types.

New/Revising agents. In each period, a share of 0 < β ≤ 1 of the agents of each type die and

are replaced with new agents (or, alternatively, are randomly selected to reevaluate their choice), while the

remaining 1 − β share of the agents of each type play the same action as they played in the past.

Sample. Each new agent observes a finite sequence of actions (or sample). The size of the sample

observed by type θ is a random variable with a distribution νθ ∈ ∆ (N). Let M , the set of all feasible samples,

be redefined as: M = ∪θ∈Θ ∪l∈supp(νθ) A
l. Let l̄ = maxl∈ (∪θ∈Θsupp (νθ)) < ∞ be the maximal sample size.

For each sample size l ∈ N , let ψl : Γ → ∆
(

Al
)

denote the distribution of samples observed by each agent in

the population (or sampling rule for short), conditional on the sample having size l. A typical sample of size

l is represented by the vector −→a = (a1, ..., al).

We analyze two kinds of sampling methods in heterogeneous populations:

1. Observing different random agents: Each agent independently samples different agents, and observes a

random action played by each of these agents. This kind of sampling is a common modeling choice in
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situations in which an agent’s payoff depends not on the behavior of a specific sub-group of opponents,

but on the agent’s own action, the state of nature, and, possibly, the aggregate behavior of the population

(see, e.g., Ellison & Fudenberg, 1995; Banerjee & Fudenberg, 2004). Formally, we define for each sample

size l ∈ N, each state γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∏

1≤i≤l

γ̄ (ai) . (8)

2. Observing a single random type: Each agent randomly draws a type θ̄, and then the agent samples

different agents of type θ̄, and observes a random action played by each of these θ̄-agents. This kind

of observation is relevant to models in which the agent is randomly matched with an opponent, and

may sample some actions played in the previous period by agents with the same type as the opponent.

Formally, we define for each size l ∈ N, each state γ ∈ Γ, and each sample (a1, ..., al),

ψl,γ (a1, ..., al) =
∑

θ∈Θ

λθ ·
∏

1≤i≤l

γθ (ai) . (9)

In the case of β = 1, this sampling method has another interpretation that is common in models of

strategic interactions among randomly matched agents (e.g., Rosenthal, 1979; Nowak & Sigmund, 1998;

Heller & Mohlin, 2017). According to this interpretation, each agent is involved in n ≥ l̄ interactions

in each period. In each of these interactions the agent is randomly matched with a different opponent,

and the agent observes a sample of random actions played by the opponent in the previous round. The

random type of the opponent is distributed according to λθ, and each of the actions played by the

opponent of type θ in the previous round is distributed according to γθ.

Observe that both cases, i.e., (8) and (9), coincide in two special setups: (1) when the population state is

uniform (as in the basic model), or (2) when agents observe at most one action (i.e., l̄ = 1).

Remark 2. Our results work also in a setup in which some types use the first sampling method, while other

types use the second sampling method.

Sampling Process. We redefine a sampling process as a tuple

E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

that includes the six components described above: a finite set of actions A, a finite set of types Θ, a fraction

of new agents at each stage β, a sampling rule ψl (satisfying either (8) or (9)), a distribution over the set of

types λ, and a profile of distributions of sample sizes (νθ)θ∈Θ.

Given sampling process E =
(

A,Θ, β, ψl, (λθ, νθ)θ∈Θ

)

, let µl, the mean sample size, be redefined as the

expected number of actions observed by a random agent in the population. Formally:

µl =
∑

θ∈Θ

λθ

∑

l∈supp(νθ)

νθ (l) · l.

Decision rule and learning process. Each new θ-agent chooses his action in the new population state

by following a stationary (i.e., time-independent) decision rule σθ : M → ∆ (A). That is, a new θ-agent who
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observes sample m ∈ M plays action a with probability σθ,m (a) . The remaining 1 − β incumbent agents play

the same action as in the previous round. A profile of decision rules (σθ)θ∈Θ is uniform if all types use the

same decision rule, i.e., if σθ = σθ′ for each type θ, θ′ ∈ Θ.

A learning process is a pair

P =
(

E, (σθ)θ∈Θ

)

=
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

,

consisting of a sampling process and a decision rule.

As in the basic model, let fP : Γ → Γ denote the mapping between states induced by a single step of the

learning process P .

L1-distance. Each population state γ ∈ Γ corresponds to a distribution qγ ∈ ∆ (Θ ×A) as follows:

qγ (θ, a) = λθ · γθ (a). We define the distance between two population states γ, γ′ ∈ Γ as the L1-distance

between the corresponding distributions qγ , qγ; ∈ ∆ (Θ ×A):

‖γ − γ′‖1 = ‖qγ − qγ′‖1 =
∑

θ∈Θ

∑

a∈A

|λθ · γθ (a) − λθ · γ′
θ (a)| =

∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 .

A.1.2 Generalizing Results

In what follows we formally show how to generalize the first result (Theorem 1) to heterogeneous populations.

Theorem 8. (Generalization of Theorem 1) Let P =
(

A,Θ, β, ψl, (λθ, νθ, σθ)θ∈Θ

)

be a learning process, and

let γ 6= γ′ ∈ Γ be two population states. Then: we

‖fP (γ) − fP (γ′)‖1 ≤ (1 − β + β · µl) · ‖γ − γ′‖1 ,

with a strict inequality if there exist a type θ and an l > 1 such that νθ (l) > 0.

The intuition is similar to Theorem 1. The proof is presented in Appendix B.

Similarly to the generalization of Theorem 1 above, one can generalize in a straightforward way all the

other results of the paper to the setup of a heterogeneous population (proofs omitted for brevity).

A.2 Non-Stationary Learning Process

In this section we further extend the model to deal with non-stationary deterministic learning processes, in

which the process explicitly depends on calendar time, and we show how to generalize our results to this setup.

Adaptations to the model. For each period t ≥ 1, let βt ∈ [0, 1] denote the random share of agents who

revise their actions in period t. For each type θ ∈ Θ and period t ≥ 1, let νt
θ ∈ ∆ (N) denote the distribution

of sample sizes of type θ in period t. To simplify the notation we assume that the support of the sample sizes

of each type is independent of the period, i.e., supp
(

νt1

θ

)

= supp
(

νt2

θ

)

:= supp (νθ) for each type θ ∈ Θ and

periods t1, t2 ≥ 1. As in the basic model, let M denote the set of all feasible sample sizes. A non-stationary

sampling process is a tuple

E =
(

A,Θ, (βt)t∈N
, ψl, (λθ)θ∈Θ ,

(

νt
θ

)

θ∈Θ,t≥1

)

.
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Given a non-stationary sampling process, let µt
l denote the expected number of actions observed in period t,

i.e., µt
l =

∑

θ∈Θ λθ

∑

l∈supp(νθ) ν
t
θ (l) · l.

Given a non-stationary sampling process E, let µ̄l be the upper limit of the geometric mean of 1−βt·(1 − µt
l)

as t goes to to infinity, i.e.,

µ̄l = limsupt̂→∞ t̂

√

∏

t≤t0

(1 − βt · (1 − µt
l)).

For each type θ ∈ Θ and period t ≥ 1, let σt
θ : M → ∆ (A) denote the non-stationary decision rule of

new θ-agents in period t. A non-stationary learning process is a pair consisting of a non-stationary sampling

process and a non-stationary decision rule, i.e.,

P =
(

E,
(

σt
θ

)

θ∈Θ,t≥1

)

=
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ ,
(

νt
θ, σ

t
θ

)

θ∈Θ,t≥1

)

.

As as in the basic model, a non-stationary learning process P and an initial state uniquely determine a new

state in each period t. Let f t
p (γ̂) ∈ Γ denote the state induced after t stages of the non-stationary learning

process P .

A sequence of states (γ∗
t )t∈N is a global attractor of the non-stationary learning process P , if

limt−→∞

∥

∥f t
P (γ̂) − γ∗

t

∥

∥

1
= 0

for each initial state γ̂ ∈ Γ.

Adapted results. Minor adaptations to the proof of Theorem 8 and a simple inductive argument im-

mediately imply that the distance between two states at time to is at most
∏

t≤t0
(1 − βt + βt · µt

l) the initial

distance. Formally:

Corollary 4. Let P =
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ , (ν
t
θ, σ

t
θ)

θ∈Θ,t≥1

)

be a non-stationary learning process, let

γ̂, γ̂′ ∈ Γ be two population states, and let t̂ ≥ 1. Then:

∥

∥

∥f t̂
p (γ̂) − f t̂

p (γ̂′)
∥

∥

∥

1
≤ ‖γ̂ − γ̂′‖1 ·

∏

t≤t̂

(

1 − βt + βt · µt
l

)

·

This, in turn, immediately implies that in any non-stationary sampling process in which µ̄l < 1, any profile

of non-stationary decision rules admits a global attractor. Formally:

Corollary 5. Let E =
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ , (ν
t
θ)

θ∈Θ,t≥1

)

be a non-stationary sampling process sa-

tisfying µ̄l < 1. Then for any profile of non-stationary decision rules (σt
θ)

θ∈Θ,t≥1, the non-stationary learning

process P =
(

E, (σt
θ)

θ∈Θ,t≥1

)

admits a global attractor.

The example presented in Case A of the proof of Theorem 2 demonstrates that the above bound of µ̄l < 1

is binding in the sense that there is a sampling process with µ̄l = 1 that admits a profile of decision rules with

multiple steady states.

The adaptation of the remaining results to the time-dependent setup is similar (proof omitted for brevity).
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A.3 Process with Common Shocks

In this section we further extend our model to deal also with common stochastic shocks to the decision rules.

Additional adaptations to the model. In what follows we further adapt the model of Section A.2 by

allowing common stochastic shocks to the decision rules of the agents.

Let (Ω,F , p) be an arbitrary probability space. Each element ω ∈ Ω represents the state of nature, which

determines the realizations of all common shocks to the decision rules in all periods. For each type θ ∈ Θ and

period t ∈ N, let σt
θ : Ω ×M → ∆ (A) denote the state-dependent decision rule of new θ-agents in period t.

Our interpretation of the state-dependent decision rule σt
θ is as follows. The state of nature determines a

distribution of noisy signals from which each new agent draws a signal. Based on this noisy signal as well as on

the sample of past actions (and on information about calendar time), each new agent chooses an action. The

choices of actions (which depend on the noisy signals) and the distribution of noisy signals jointly generate a

distribution of actions that depend only on the state of nature (and on calendar time), which is captured by

the state-dependent decision rule σt
θ.

A learning process with common shocks is a pair consisting of a non-stationary sampling process and a

state-dependent decision rule, i.e., P =
(

E, (σt
θ)

θ∈Θ,t≥1

)

=
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ , (ν
t
θ, σ

t
θ)

θ∈Θ,t≥1

)

.

Learning processes with commons shocks are important in modeling situations in which there are stochastic

factors that influence the decision rules of all new agents in period t. For example , Ellison & Fudenberg (1995)

model a situation in which new agents in period t choose between two agricultural technologies, and each such

new agent observes a noisy signal about the expected payoff of each technology conditional on the weather in

period t (which is common to all agents), where the (unknown) state of nature determines the weather in all

periods.

The state of nature, the learning process, and the initial population state uniquely determine the population

state in each period. Let f t
p (ω) (γ̂) ∈ Γ denote the population state induced after t stages of the non-stationary

learning process P , given an initial population state γ̂, and state of nature ω ∈ Ω.

We say that a sequence of state-dependent population states (γ∗
t )t≥1, where γ∗

t : Ω → Γ, is a state-dependent

global attractor of the learning process with commons shocks P if, for each ω ∈ Ω, limt−→∞ ‖f t
P (ω) (γ̂) − γ∗

t (ω)‖1 =

0 for each initial state γ̂ ∈ Γ.

Example 4 below demonstrates how to apply the extended model to a social learning process with competing

technologies with common shocks:

Example 4 (Competing Technologies with Common Shocks). Consider a stochastic sampling process in which

there are two possible regimes {1, 2}. There are two technologies: a1 and a2. Technology a1 is advantageous

in regime 1, while technology a2 is advantageous in regime 2. There is a uniform common prior about the

regime in round 1. In each subsequent round, the regime is the same as in the previous round with probability

99%, and it is a new regime with probability 1%. In each round, a share of 25% of the incumbents die,

and are replaced with new agents. Each new agent observes the action of a single random incumbent and

a noisy signal about the current regime, and based on these observations, the agent chooses one of the two

technologies. Assume that the decision rule used by the agents implies that each new agent plays action a1:

1. with a probability of 95% after observing action a1 in regime 1;

2. with a probability of 80% after observing action a1 in regime 2;
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3. with a probability of 20% after observing action a2 in regime 1;

4. with a probability of 5% after observing action a2 in regime 2.

One can show that the sampling process admits a unique steady state that is a state-dependent global attrac-

tor. The induced aggregate behavior of the population converges towards playing action a1 with an average

probability of 80% in regime 1, and it converges towards playing action a1 with an average probability of 20%

in regime 2.

This learning process with common shocks is modeled as

P =
(

{a1, a2} , {θ} , (βt ≡ 25%)t∈N
, ψl, λθ,

(

νt
θ ≡ 1, σt

θ

)

t≥1

)

.

The set of states of nature Ω =
{

(ωn)n∈N

}

is the set of infinite binary sequences, where each ωn ∈ {1, 2}

describes the regime in round n. The definition of (F , p) is derived from the Markovian process determining

the regime in each round in a standard way. Given state ω = (ωn)n∈N , let the decision rule be defined as

follows:

σθ (a1, ω) =































95% a = a1 and ωt = 1

80% a = a1 and ωt = 2

20% a = a2 and ωt = 1

5% a = a2 and ωt = 2.

Adapted Results. Minor adaptations to the proof of Theorem 8 imply that the distance between two states

at time t̂ is at most
∏

t≤t̂ (1 − βt + βt · µt
l) the initial distance. Formally:

Corollary 6. Let P =
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ , (ν
t
θ, σ

t
θ)

θ∈Θ,t≥1

)

be a learning process with commons shocks,

let γ̂, γ̂′ ∈ Γ be two population states, and let t̂ ∈ N. Then, for each ω ∈ Ω,

∥

∥

∥f t̂
p (ω) (γ̂) − f t̂

p (ω) (γ̂′)
∥

∥

∥

1
≤ ‖γ̂ − γ̂′‖1 ·

∏

t≤t̂

(

1 − βt + βt · µt
l

)

·

An immediate corollary is that any sampling process with common shocks in which µ̄l < 1, given any

profile of decision rules, admits a state-dependent global attractor. That is, in the long run, the population’s

behavior depends only on the state of nature, but it is independent of the initial population state in time zero.

Formally:

Corollary 7. Let E =
(

A,Θ, (βt)t≥1 , ψl, (λθ)θ∈Θ , (ν
t
θ)

θ∈Θ,t≥1

)

be a sampling process satisfying µ̄l < 1.

Then for any profile of stochastic decision rules (σt
θ)

θ∈Θ,t≥1, the learning process with common shocks P =
(

E, (σt
θ)

θ∈Θ,t≥1

)

admits a state-dependent global attractor.

The adaptation of the remaining results to the time-dependent setup is similar to the adaptation above

(proof omitted for brevity).
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B Formal Proofs

B.1 Proof of Theorem 8 (Upper Bound Result; Generalization of Theorem 1)

The distance between the final population states is bounded as follows (where the second inequality is strict

if νθ (l) > 0 for some θ ∈ Θ and l ≥ 2):

‖(fP (γ))θ − (fP (γ′))θ‖
1

≤ β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 ≤

β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · l · ‖γ − γ′‖1 + (1 − β) · ‖γ − γ′‖1 =

(

β ·

(

∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · l

)

+ (1 − β)

)

· ‖γ − γ′‖ = (β · µL + 1 − β) · ‖γ − γ′‖ = (1 − β · (1 − µl)) · ‖γ − γ′‖1 .

The first inequality is proven in Lemma 1. The second inequality (is strict if νθ (l) > 0 for some θ ∈ Θ and

l ≥ 2) is implied by the inequality

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 (with a strict inequality if l ≥ 2),

which is proven in Lemma 4.

Proofs of the various Lemmas used in the Proof of Theorem 8

Lemma 1. For each sampling process E and states γ 6= γ′ ∈ Γ,

‖(fP (γ)) − (fP (γ′))‖1 ≤ β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 .

Proof.

‖(fP (γ)) − (fP (γ′))‖1 =
∑

θ∈Θ

λθ · ‖(fP (γ))θ − (fP (γ′))θ‖
1

≤

∑

θ∈Θ

λθ ·

(

β ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ‖1

)

=

β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) ·
∑

θ∈Θ

λθ · ‖γθ − γ′
θ′‖1 =

β ·
∑

θ∈Θ

λθ ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γ − γ′‖1 ,

where the inequality is due to Lemma 2.

Lemma 2. For each sampling process E, type θ ∈ Θ, and each two states γ 6= γ′ ∈ Γ:

‖(fP (γ))θ − (fP (γ′))θ‖
1

≤ β ·
∑

l∈N

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ‖1 .
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Proof.

‖(fP (γ))θ − (fP (γ′))θ‖
1

=
∑

a∈A

|(fP (γ))θ (a) − (fP (γ′))θ (a)| =

∑

a∈A

∣

∣

∣

∣

∣

∣





∑

l∈supp(νθ)

β · νθ (l)
∑

m∈Al

ψl,γ (m) · σθ,m + (1 − β) · γθ



 (a)

−



β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

m∈Al

ψl,γ′ (m) · σθ,m + (1 − β) · γ′
θ



 (a)

∣

∣

∣

∣

∣

∣

=

∑

a∈A

∣

∣

∣

∣

∣

∣

β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a) + (1 − β) · (γθ (a) − γ′
θ (a))

∣

∣

∣

∣

∣

∣

≤ (10)

∑

a∈A



β ·
∑

l∈supp(νθ)

νθ (l) ·

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

+ (1 − β) · |γθ (a) − γ′
θ (a)|



 =

β ·
∑

l∈supp(νθ)

νθ (l) ·
∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

+ (1 − β) ·
∑

a∈A

|γθ (a) − γ′
θ (a)| ≤ (11)

β ·
∑

l∈supp(νθ)

νθ (l) · ‖ψl,γ − ψl,γ′‖1 + (1 − β) · ‖γθ − γ′
θ′‖1 ,

where the (10) is a triangle inequality, and (11) is due to Lemma 3.

Lemma 3. For each sampling process E, each size l ∈ N, each type θ ∈ Θ, and any two states γ 6= γ′ ∈ Γ:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤ ‖ψl,γ − ψl,γ′‖1 .

Proof.

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σθ,m (a)

∣

∣

∣

∣

∣

∣

≤
∑

a∈A

∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| · σθ,m (a)

=
∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| ·
∑

a∈A

σθ,m (a)

=
∑

m∈Al

|ψl,γ (m) − ψl,γ′ (m)| · 1,

where the inequality is a triangle inequality.

Lemma 4. For each sampling process E, type θ ∈ Θ, sample size l ∈ N, and states γ 6= γ′ ∈ Γ

‖ψl,γ − ψl,γ′‖1 ≤ l · ‖γ − γ′‖1 ,

with a strict inequality if l > 1.
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Proof. Case I - Observing different random agents:

‖ψl,γ − ψl,γ′‖1 =
∑

−→a ∈Al

|ψl,γ (−→a ) − ψl,γ′ (−→a )| = (12)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∏

1≤i≤l

γ̄ (ai) −
∏

1≤i≤l

γ̄′ (ai)

∣

∣

∣

∣

∣

∣

= (13)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

1≤i≤l

(γ̄ (ai) − γ̄′ (ai)) ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)

∣

∣

∣

∣

∣

∣

≤ (< if l > 1) (14)

∑

−→a ∈Al





∑

1≤i≤l

|γ̄ (ai) − γ̄′ (ai)| ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)



 =

∑

1≤i≤l





∑

−→a ∈Al

|γ̄ (ai) − γ̄′ (ai)| ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak)



 =

∑

1≤i≤l

(

∑

ai∈A

|γ̄ (ai) − γ̄′ (ai)|

)

·





∑

(ai+1,...,al)∈Al−i

∏

i<j≤l

γ̄ (aj)



 ·





∑

(a1,...,ai−1)∈Ai−1

∏

1≤k<i

γ̄′ (ak)



 = (15)

∑

1≤i≤l

(

∑

ai∈A

|γ̄ (ai) − γ̄′ (ai)|

)

· 1 · 1 =
∑

1≤i≤l

(‖γ̄ − γ̄′‖1) = l · ‖γ̄ − γ̄′‖1 ≤ l · ‖γ − γ′‖ .

Eq. (12) is due to the independence of different observations. Eq. (13) is implied by adding to the sum

elements that cancel out. Specifically, let bi = γ̄ (ai) and ci = γ̄′ (ai); then due to a “telescoping series”

argument (in which each new element appears once with a positive sign and once with a negative sign):12

∏

1≤i≤l

γ̄ (ai) −
∏

1≤i≤l

γ̄′ (ai) =
∏

1≤i≤l

bi −
∏

1≤i≤l

ci =

(b1 · ... · bl − c1 · b2 · ... · bl) + (c1 · b2 · ... · bl + c1 · c2 · b3 · ... · bl) − c1 · c2 · b3 · ... · bl + ...+ c1 · ... · cl =

(b1 − c1) · b2 · ... · bl + (b2 − c2) · b3 · ... · bl · c1 + (b3 − c3) · b4 · ... · bl · c1 · c2...+ (bl − cl) · c2 · ... · cl =

=
∑

1≤i≤l



(bi − ci) ·
∏

i<j≤l

bj ·
∏

1≤j<i

cj



 =
∑

1≤i≤l

(γ̄ (ai) − γ̄′ (ai)) ·
∏

i<j≤l

γ̄ (aj) ·
∏

1≤k<i

γ̄′ (ak) .

Eq. (14) is a triangle inequality, and it is strict if l > 1 because the sum inside the “
∣

∣

∣

∣

∣

∣” in (14) includes

both positive and negative elements. Eq. (15) holds because each sum adds the probabilities of disjoint and

exhausting events. The final inequality is implied by Lemma 5.

12We use the convention that a product of an empty set (e.g.,
∏

1≤j<1
) is equal to one.
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Case II - Observing a single random type:

‖ψl,γ − ψl,γ′‖1 =
∑

−→a ∈Al

|ψl,γ (−→a ) − ψl,γ′ (−→a )| = (16)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ ·





∏

1≤i≤l

γθ (ai) −
∏

1≤i≤l

γ′
θ (ai)





∣

∣

∣

∣

∣

∣

= (17)

∑

−→a ∈Al

∣

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ ·





∑

1≤i≤l

(γθ (ai) − γ′
θ (ai)) ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)





∣

∣

∣

∣

∣

∣

≤ (< if l > 1) (18)

∑

−→a ∈Al

∑

θ∈Θ

λθ ·





∑

1≤i≤l

|γθ (ai) − γ′
θ (ai)| ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)



 =

∑

1≤i≤l

∑

θ∈Θ

λθ ·





∑

−→a ∈Al

|γθ (ai) − γ′
θ (ai)| ·

∏

i<j≤l

γθ (aj) ·
∏

1≤j<i

γ′
θ (aj)



 =

∑

1≤i≤l

∑

θ∈Θ

λθ ·

(

∑

ai∈A

|γθ (ai) − γ̄θ
′ (ai)|

)

·





∑

(ai+1,...,al)∈Al−i

∏

i<j≤l

γθ (aj)



 ·





∑

(ai,...,ai−1)∈Ai−1

∏

1≤j<i

γ′
θ (aj)



 =

(19)
∑

1≤i≤l

∑

θ∈Θ

λθ ·

(

∑

ai∈A

|γθ (ai) − γ̄θ
′ (ai)|

)

· 1 · 1 =
∑

1≤i≤l

∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 =

∑

1≤i≤l

‖γ − γ′‖1 = l · ‖γ − γ′‖1 .

Eq. (16) is due to the different observations being independent conditional on the observed type θ. Eq. (17)

is implied by adding to the sum elements that cancel out (i.e., a “telescoping series”). Eq. (18) is a triangle

inequality, and it is strict if l > 1 because the sum inside the “
∣

∣

∣

∣

∣

∣
” in (18) includes both positive and negative

elements. Eq. (19) holds because each sum adds the probabilities of disjoint and exhausting events.

Lemma 5. ‖γ̄ − γ̄′‖1 ≤ ‖γ − γ′‖1 for each two states γ 6= γ′ ∈ Γ.

Proof.

‖γ − γ′‖1 =
∑

θ∈Θ

λθ · ‖γθ − γ′
θ‖1 =

∑

θ∈Θ

λθ ·
∑

a∈A

|γθ (a) − γ′
θ (a)| =

∑

a∈A

∑

θ∈Θ

λθ · |γθ (a) − γ′
θ (a)| ≥

∑

a∈A

∣

∣

∣

∣

∣

∑

θ∈Θ

λθ (γθ (a) − γ′
θ (a))

∣

∣

∣

∣

∣

=
∑

a∈A

∣

∣

∣

∣

∣

∑

θ∈Θ

λθγθ (a) −
∑

θ∈Θ

λθγ
′
θ (a)

∣

∣

∣

∣

∣

=
∑

a∈A

|γ̄ (a) − γ̄′ (a)| = ‖γ̄ − γ̄′‖1 ,

where the various equalities are immediately implied by the definitions on the L1-norm and γ̄, and the inequality

is a triangle inequality.

B.2 Proof of Theorem 3 (µl > 2)

For each 0 < q < 1
µl

define σq as the decision rule according to which each agent plays action a∗ if he has

observed action a∗ at least twice, plays action a′ if he has not observed action a∗, and he plays action a∗ with
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probability q and action a′ with the remaining probability 1 − q; that is, for each al ∈ Al,

σ∗
(

al
)

=



















a∗
∣

∣

{

i|al
i = a∗

}∣

∣ ≥ 2

q · a∗ + (1 − q) · a′
∣

∣

{

i|al
i = a∗

}∣

∣ = 1

a′
∣

∣

{

i|al
i = a∗

}∣

∣ = 0.

Observe that new agents play only a∗ or a′. Further note that the probability that a new agent plays a∗

depends only on the frequency with which the incumbents play action a∗ (and not on any other aspect of the

population state). Thus, by a slight abuse of notation, we identify a state γ ∈ ∆ (A) with the frequency x of

agents who choose action a∗, i.e., x := γ (a) (as the actions played by the remaining 1 − x of the agents do

not play any role in the dynamics, and in the long run each agent plays either action a∗ or a′ ). The mapping

induced by the learning process Pq = (E, σq) is given by the function fq : [0, 1] → [0, 1] (neglecting terms that

are O
(

x3
)

):

fq (x) := f(Pq) (x) = (1 − β) · x+ β ·



q · µl · x+ (1 − 2 · q) ·
∑

2≤l∈supp(ν)

ν (l) ·

(

l

2

)

· x2 +O
(

x3
)



 . (20)

The argument for (20) is as follows. The term of (1 − β) · x describes the behavior of incumbents who have

not died. The terms multiplying β represent the behavior of new agents. The first of these terms (q · µl · x)

derives from the fact that the first-order approximation for the probability that a new agent plays action a′

is q times the expected number of times that action a′ is observed (µl · x), since action a′ is almost always

observed once in a sample. The second term multiplying β in (20) reflects the correction required to adjust the

above first-order approximation due to the fact that an agent who observes action a′ twice in the sample plays

action a′ with probability 1, rather than with probability 2 · q. Hence, the additional probability of playing a∗

conditional on observing a∗ twice is (1 − 2 · q). The probability of observing a∗ twice in a random sample is

∑

2≤l∈supp(ν) ν (l) ·

(

l

2

)

·x2 +O
(

x3
)

. Finally, note that the probability of observing a∗ three or more times

is negligible (i.e., O
(

x3
)

), so that the remaining adjustment required for (20) to coincide with the dynamic

mapping induced by Pq is O
(

x3
)

.

It is immediate from the definition of decision rule σ∗ that fq (x) is strictly increasing in x. Recall that

state x is a steady state iff fq (x) = x. Observe that: fq (0) = 0 and f ′
q (0) = q · µl < 1 for each q < 1

µl
. Fix

q < 1
µl

. The previous observations imply that there exists x̄ > 0 such that fq (x) < x and f ′
q (x) < 1 for each

x ∈ (0, x̄). This implies that f t
q (x) < x and limt→∞ f t

q (x) = 0 for each x ∈ (0, x̄), and hence state 0 is locally

stable.

Assume that ν (0) = ν (1) = 0. Then, the definition of decision rule σ∗ implies that fq (1) = 1, and that

for each ǫ << 1 it holds that

fq (1 − ǫ) = (1 − β) · (1 − ǫ) + β ·
(

1 − ν (2) · 2 · ǫ · (1 − q) +O
(

ǫ2
))

.

This is so because when x = 1 − ǫ and ǫ << 1, a new agent plays action a′ with probability 1 − q when

observing action a∗ once in a sample of size two (the probability of this event is given by ν (2) ·2 ·ǫ). Moreover,

observing a∗ once in a longer sample (or not observing a∗ at all) is a rare event with a probability of O
(

ǫ2
)

.
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This implies that for each q < 0.5, there is ǭ > 0, such that for each x > 1 − ǭ: (1) f t
q (x) > x for each t, and

(2) limt→∞ f t
q (x) = 1 . This shows that the state 1 is locally stable.

We are left with the case in which ν (0) > 0 or ν (1) > 0. Observe that (1) limq−→ 1
µl

f ′
q (0) = 1 and (2)

f ′′
q (0) > 0 for each q < 1

µl
. This implies (by a Taylor approximation around x = 0) that there exists (q∗, x̂)

satisfying: (1) 0 < x̂ << 1, (2) q∗ < 1
µl

, (3) fq∗ (x̂) = x̂, (4) fq∗ (x) < x for each x ∈ (0, x̂), and (5) f ′
q∗ (x̂) > 1.

This implies that x̂ is an (unstable) steady state.

Next observe that fq∗ (x̂) = x̂, f ′
q∗ (x̂) > 1, and fq∗ (1) < 1. These observations, due to the intermediate

value theorem and standard arguments, imply that there exists x̂ < x∗ < 1, such that fq∗ (x∗) = x∗ and

f ′
q∗ (x∗) < 1. This, in turn, implies that there exists ǭ > 0, such that for each x ∈ (x∗ − ǭ, x∗ + ǭ): (1)

fq∗ (x) < x if x < x∗, (2) fq∗ (x) > x if x > x∗, and (3) f ′
q∗ (x) < 1. These observations imply (due to the

monotonicity of fq∗) that for each x∗ 6= x ∈ (x∗ − ǭ, x∗ + ǭ): (1) f t
q (x) is strictly between x and x∗ for each t,

and (2) limt→∞ f t
q (x) = x∗. Hence, state x∗ is locally stable.

B.3 Proof of Theorem 4 (Two Feasible Actions, µ (l) = 0 ∀l > 2)

Let E = (A = {a′, a′′} , β, ν) be a sampling process satisfying ν (l) = 0 for each l > 2. Let σ be an arbitrary

decision rule. The fact that there are two feasible actions (i.e., |A| = 2) implies that we can identify a

population state with a number x ∈ [0, 1] representing the frequency of agents who play action a′. Let fσ (x)

be the dynamic mapping induced by decision rule σ. The fact that the maximal length of the sample observed

by new agents is two implies that fσ (x) is a polynomial of degree at most two. Specifically, the explicit formula

for fσ (x) is given by:

fσ (x) = (1 − β) · x+ β · [ν (0)σ (∅) (a′) + ν (1) · (x · σ (a′) (a′) + (1 − x) · σ (a′′) (a′)) +

ν (2) ·
(

x2 · σ (a′, a′) (a′) + (1 − x)
2 · σ (a′′, a′′) (a′) + x · (1 − x) · (σ (a′, a′′) (a′) + σ (a′′, a′) (a′))

)]

=

= b · x2 + c · x+ d,

where b, c, d ∈ R. Recall that x∗ is a steady state iff f (x∗) = x∗. We conclude the proof by looking at three

exhaustive cases. Cases 2 and 3 are illustrated in Figure 1 in Section 4.4.

1. Case 1: b = 0 (recall, that b is the parameter multiplying x2 in the formula for fσ (x)). If fσ (x) ≡ x (i.e.,

if fσ (x) = x for each x), then any state is steady, but none is locally stable. Otherwise, the equation

fσ (x) = x has at most one solution, and, hence, σ∗ has at most one locally stable state.

2. Case 2: b > 0. The equation fσ (x) = x has at most two solutions. Assume that it has two solutions

in the interval [0, 1] (otherwise, it is immediate that σ admits at most one locally stable state). Simple

geometric arguments (regarding the incidence points of a parabola satisfying fσ (1) ≤ 1 and the 45
◦

line) imply that one of these solutions must be one (i.e., fσ (1) = 1), and that f ′
σ (1) > 1. By standard

continuity arguments there exists a sufficiently small ǭ > 0 such that f ′
σ (x) > 1 for each x > 1 − ǭ.

This implies that for each x > 1 − ǭ: (1) f t
σ (x) < x, and (2) if limt→∞ f t

σ (x) exists then it must satisfy

limt→∞ f t
σ (x) < 1 − ǭ. Hence, state 1 cannot be locally stable, and the decision rule σ admits at most

one locally stable state.

3. Case 3: b < 0. Assume that the equation fσ (x) = x has two solutions in the interval [0, 1] (otherwise,

it is immediate that σ admits at most one locally stable state). Simple geometric arguments (regarding
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the points of intersection of a parabola bounded with positive values and the 45
◦

line) imply that one of

these solutions must be zero (i.e., fσ (0) = 0), and that f ′
σ (0) > 1. By standard continuity arguments

there exists a sufficiently small ǭ > 0 such that f ′
σ (x) > 1 for each x ∈ (0, ǭ). This implies that for each

x ∈ (0, ǭ): (1) f t
σ (x) > x, and (2) if limt→∞ f t

σ (x) exists then it must satisfy limt→∞ f t
q (x) > ǭ. This

implies that state x∗ cannot be locally stable, and hence decision rule σ admits at most one locally stable

state.

B.4 Proof of Theorem 5 (ν (1) + (ν (3) = 1) , “Follow Majority” Rule)

Let E = (A = {a′, a′′} , β, ν) be a sampling process, such that ν (l) = 0 for each l /∈ {1, 3} and ν (1) < 1. Let

σ∗ be the decision rule in which each new agent follows the frequently observed action in his sample, i.e.,

σ∗ (a′) = σ∗ (a′, a′, a′) = σ∗ (a′, a′, a′′) = σ∗ (a′, a′′, a′) = σ∗ (a′′, a′, a′) = a′, and

σ∗ (a′′) = σ∗ (a′′, a′′, a′′) = σ∗ (a′′, a′′, a′) = σ∗ (a′′, a′, a′′) = σ∗ (a′, a′′, a′′) = a′′.

We identify a state with the number x ∈ [0, 1] representing the frequency of agents who play action a′. Let

fσ∗ (x) be the dynamic mapping induced by decision rule σ∗. The explicit formula for fσ∗ (x) is given by

fσ∗ (x) = (1 − β) · x+ β ·
(

ν (1) · x+ ν (3) ·
(

x3 + 3 · x2 · (1 − x)
)

= ν (1) · x+ ν (3) ·
(

3 · x2 − 2 · x3
))

,

and its derivative is given by

f ′
σ∗ (x) = (1 − β) + β · ν (1) + β · ν (3) ·

(

6 · x− 6 · x2
)

= (1 − β) + β · ν (1) + β · 6 · ν (3) · x · (1 − x) .

Observe that: (1) fσ∗ (x) is strictly increasing, (2) fσ∗ (x∗) = x∗ for three values of x: 0, 0.5, 1, (3) f ′
σ∗ (0) =

f ′
σ∗ (1) = ν (1) < 1, and (4) f ′

σ∗ (0.5) = ν (1) + 1.5 · ν (3) > 1. These observations imply (by arguments

analogous to those in the proof of B.3 above) that the process (E, σ∗) admits three steady states: two locally

stable states, 0 and 1, and the locally unstable state 0.5.

B.5 Lemma Required for the Proof of Theorem 6 (Bound with Responsiveness)

Lemma 6. For each sampling process E, each size l ∈ N, and any two states γ 6= γ′ ∈ Γ:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σm (a)

∣

∣

∣

∣

∣

∣

≤ rl · ‖ψl,γ − ψl,γ′‖1 .

Proof. We begin with a preliminary definition. Let Al
γ>γ′ ⊆ Al be the set of samples that have higher

probabilities given state γ than given state γ′, i.e.,

Al
γ>γ′ =

{

m ∈ Al|ψl,γ (m) > ψl,γ′ (m)
}

.

We now prove the lemma:

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σm (a)

∣

∣

∣

∣

∣

∣

=
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∑

a∈A

∣

∣

∣

∣

∣

∣

∣

∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) · σm (a) −
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m)) · σm (a)

∣

∣

∣

∣

∣

∣

∣

≤

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) · σl (a) −
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m)) · σl (a)

∣

∣

∣

∣

∣

∣

∣

=

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

σl (a) ·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) − σl (a) ·
∑

m∈Al

γ′>γ

(ψl,γ′ (m) − ψl,γ (m))

∣

∣

∣

∣

∣

∣

∣

= (21)

∑

a∈A

∣

∣

∣

∣

∣

∣

∣

(σl (a) − σl (a)) ·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m))

∣

∣

∣

∣

∣

∣

∣

=

∑

a∈A

(σl (a) − σl (a)) ·
∑

m∈Al

γ>γ′

(ψl,γ (m) − ψl,γ′ (m)) =

∑

a∈A

(σl (a) − σl (a)) · 0.5 ·





∑

m∈Al

|(ψl,γ (m) − ψl,γ′ (m))|



 =

0.5 ·
∑

a∈A

(σl (a) − σl (a)) · ‖ψl,γ − ψl,γ′‖1 .

Equality (21) is implied by the fact that ψl,γ and ψl,γ′ are both distributions, and the sum of the differences

in the probabilities that they assign to samples of size l must be equal to zero. Thus we have shown that

∑

a∈A

∣

∣

∣

∣

∣

∣

∑

m∈Al

(ψl,γ (m) − ψl,γ′ (m)) · σm (a)

∣

∣

∣

∣

∣

∣

≤ 0.5 ·
∑

a∈A

(σl (a) − σl (a)) · ‖ψl,γ − ψl,γ′‖1 , (22)

which together with Lemma 3 implies that the LHS of (22) is weakly smaller than rl · ‖ψl,γ − ψl,γ′‖1 .
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