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Abstract

This study develops a Schumpeterian growth model with heterogeneous households and
heterogeneous firms to explore the effects of monetary policy on innovation and income
inequality. Household heterogeneity arises from an unequal distribution of wealth. Firm
heterogeneity arises from random quality improvements and a cost of entry. We find
that under endogenous firm entry, inflation has inverted-U effects on economic growth
and income inequality. We also calibrate the model for a quantitative analysis and find
that the model is able to match the growth-maximizing inflation rate and the inequality-
maximizing inflation rate that we estimate using cross-country panel data.
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1 Introduction

The seminal study by Tobin (1965) initiated an influential literature in macroeconomics that
explores the relationship between inflation and economic growth. Studies in this literature have
focused on how inflation affects economic growth via the accumulation of physical capital and/or
human capital.1 However, an important insight from the seminal study by Solow (1956) is that
economic growth is ultimately driven by technological progress. Therefore, it is important
to also understand the effects of inflation in a growth model with endogenous technological
progress. Marquis and Reffett (1994) explore the effects of inflation in the R&D-based growth
model developed by Romer (1990). However, this early study by Marquis and Reffett (1994) and
many subsequent studies in this branch of the literature have mostly focused on a representative-
household setting with homogeneous firms. In this study, we address this issue and obtain novel
results.
Specifically, we develop a monetary Schumpeterian growth model with heterogeneous firms

and heterogenous households. We model firm heterogeneity in the Schumpeterian quality-
ladder model by assuming that the step size of quality improvements is randomly drawn from a
Pareto distribution. Then, to allow for endogenous firm entry, we assume that R&D entrepre-
neurs need to pay an entry cost to enter the market after observing the step size of their quality
improvements. As a result, an entrepreneur would enter the market if and only if her quality
improvement is sufficiently large, which in turn generates an endogenous distribution of quality
improvements that are implemented. Motivated by the empirical evidence in Piketty (2014),
we consider an unequal distribution of wealth as an important source of income inequality.
Therefore, we model household heterogeneity in the Schumpeterian model by assuming that
households have different levels of wealth in order to generate an endogenous income distrib-
ution. Within this growth-theoretic framework, we explore the effects of monetary policy on
innovation and income inequality. In summary, we find that inflation has inverted-U effects on
economic growth and income inequality under endogenous firm entry.
The inverted-U effect of inflation on economic growth under endogenous entry of hetero-

geneous firms is the same as in Chu et al. (2017). They showed that inflation increases the
cost of R&D via the cash-in-advance (CIA) constraint on R&D and decreases the arrival rate
of innovation, which is a negative effect of inflation on economic growth.2 The lower rate of
creative destruction however increases the expected value of future profits and the market value
of inventions, which in turn lowers the entry threshold for quality improvements. With more
inventions being implemented, inflation also has a positive effect on economic growth. These
positive and negative effects together generate an inverted-U effect of inflation on economic
growth so long as the entry cost is sufficiently large.
Interestingly, this inverted-U effect of inflation on economic growth leads to a novel inverted-

U effect of inflation on income inequality in the Schumpeterian model. In our model, income
inequality is increasing in the ratio of wealth income to wage income. Therefore, either an
increase in the real interest rate or an increase in the value of financial assets would increase
income inequality. Given the Euler equation under which the real interest rate is increasing in
the growth rate of consumption, the abovementioned inverted-U effect of inflation on economic

1See for example Stockman (1981), Abel (1985), Dotsey and Ireland (1996) and Gillman and Kejak (2005).
2Marquis and Reffett (1994) also find a negative effect of inflation on R&D, which is supported by empirical

evidence based on cross-country panel regressions in Chu et al. (2015).
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growth causes an inverted-U effect on the real interest rate and hence also an inverted-U effect
on income inequality. Furthermore, inflation has both positive and negative effects on the value
of financial assets. On the one hand, by slowing down the rate of creative destruction, inflation
increases the market value of monopolistic firms, which in turn increases the value of financial
assets. On the other hand, by lowering the entry threshold for quality improvements, inflation
reduces the average step size of quality improvements implemented in the market and decreases
the average markup ratio, which in turn decreases the market values of monopolistic firms and
financial assets. Combining all these effects yields an overall inverted-U effect of inflation on
income inequality, which exists only under endogenous entry of heterogeneous firms. Finally,
we calibrate the model to perform a quantitative analysis and find that our model is able to
match a growth-maximizing inflation rate of 15% and an inequality-maximizing inflation rate
of 10% that are estimated using cross-country panel data.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which economic growth is driven by the
invention of new products. Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion
and Howitt (1992) develop the Schumpeterian quality-ladder model in which economic growth
is driven by the innovation of higher-quality products. For tractability, these seminal studies
and many subsequent studies assume a constant step size of quality improvement. Important
exceptions include Klette and Kortum (2004) and Minniti et al. (2013). Minniti et al. (2013)
develop a Schumpeterian growth model with random step sizes of quality improvements drawn
from a Pareto distribution.3 Chu et al. (2017) extend the elegant model in Minniti et al.
(2013) by allowing for a Hopenhayn-Melitz-type entry cost to generate endogenous entry of
heterogeneous firms.4 This study further extends the representative-household model in Chu
et al. (2017) by introducing heterogenous households with different asset holdings. In other
words, this study contributes to the literature by developing a Schumpeterian growth model
with two dimensions of heterogeneity among households and firms.
This study also relates to the literature on innovation and inflation. In this literature, the

seminal study by Marquis and Reffett (1994) analyzes the effects of inflation on innovation
in a variant of the Romer variety-expanding model. Subsequent studies analyze the effects of
inflation in the Schumpeterian quality-ladder model; see for example Chu and Lai (2013), Chu
and Cozzi (2014), Chu et al. (2015), He and Zou (2016), Huang et al. (2017) and Neto et al.
(2017). However, all these studies feature a constant step size of quality improvement. As a
result, these studies predict a monotonic relationship between inflation and economic growth,
which is different from the inverted-U relationship between inflation and economic growth often
found in empirical studies.5 As a result, Chu et al. (2017) develop a monetary Schumpeterian
growth model with endogenous entry of heterogeneous firms,6 and they show that their model
can generate an inverted-U relationship between inflation and economic growth and match

3A recent study by Iwaisako and Ohki (2017) develops a Schumpeterian growth model with random quality
improvements drawn from a uniform distribution.

4See also Baldwin and Robert-Nicoud (2008), Haruyama and Zhao (2008) and Gustafsson and Segerstrom
(2010) who adapt a similar entry cost into the R&D-based growth model with heterogeneous firms, but they do
not consider random increments on the quality ladder.

5See for example Bick (2010) and Lopez-Villavicencio and Mignon (2011) for recent studies.
6See also Hori (2017) and Arawatari et al. (2018) who consider monetary policy in the Romer variety-

expanding model with heterogeneity in the productivity of R&D entrepreneurs.
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empirical estimates of the growth-maximizing inflation rate under plausible parameter values.
However, all the abovementioned studies feature a representative household; therefore, they
cannot be used to analyze the implications of monetary policy on the income distribution. To
fill this important gap in the literature, this study introduces heterogeneous households into
the model in Chu et al. (2017) and analyzes the effects of monetary policy on income inequality
in addition to innovation and economic growth.
This study also relates to the literature on innovation and income inequality. Representative

studies include Chou and Talmain (1996), Li (1998), Zweimuller (2000), Foellmi and Zweimuller
(2006), Aghion et al. (2015), Kiedaisch (2016), Grossman and Helpman (2018) and Jones and
Kim (2018). These studies focus on the relationship between income inequality and innovation.
Our study complements these interesting studies by exploring the effects of monetary policy on
innovation and income inequality. Chu and Cozzi (2018) explore the effects of R&D subsidies
and patent policy on income inequality, but not monetary policy. More importantly, Chu
and Cozzi (2018) focus on a Schumpeterian growth model with a constant step size of quality
improvement. We show that endogenous entry of heterogeneous firms is necessary for the
emergence of an inverted-U effect of inflation on income inequality that is consistent with our
empirical finding.7

The rest of this study is organized as follows. Section 2 presents the model and solves the
market equilibrium of the aggregate economy. Section 3 explores the distributions of wealth
and income. Section 4 analyzes the effects of monetary policy. Section 5 provides a quantitative
analysis. Section 6 concludes. Proofs are relegated to the appendix.

2 A Schumpeterian model with heterogeneous firms and

heterogeneous households

The Schumpeterian quality-ladder model is based on Grossman and Helpman (1991).8 We
consider the monetary Schumpeterian growth model in Chu et al. (2017) featuring (a) a CIA
constraint on R&D,9 (b) lab-equipment specifications for innovation and entry that use final
good as the input, (c) random quality improvements as in Minniti et al. (2013) and (d) a fixed
entry cost that generates endogenous entry of heterogeneous firms as in Hopenhayn (1992)
and Melitz (2003). Furthermore, we follow Chu and Cozzi (2018) to introduce heterogeneous
households with different asset holdings into the monetary Schumpeterian model.

2.1 Households

There is a unit continuum of households, which are indexed by h ∈ [0, 1]. They have identical
preferences over consumption ct(h) but own different levels of wealth. Household h has the

7See also Natob (2015) who finds an inverted-U effect of inflation on income inequality using dynamic panel
regressions with cross-country data.

8See also Aghion and Howitt (1992).
9See Chu et al. (2015) for a discussion of empirical evidence for the presence of cash requirements on R&D

and also Berentsen et al. (2012) for a discussion of theoretical justifications and microfoundations.
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following utility function:

u(h) =

∫
∞

0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 is the subjective discount rate. Household h supplies one unit of
labor to earn wage income wt and maximizes utility u(h) subject to

ȧt(h) + ṁt(h) = rtat(h)− πtmt(h) + itbt(h) + wt + τ t − ct(h). (2)

at(h) is the real value of financial assets (i.e., equity of monopolistic firms) owned by household
h, and rt is the real interest rate. mt(h) is the real value of cash holdings of household h, and πt
is the inflation rate. bt(h) is the amount of cash borrowed from household h by entrepreneurs
for R&D, and it is the nominal interest rate.

10 The CIA constraint is given by bt(h) ≤ mt(h).
Finally, the government provides a lump-sum transfer τ t to each household.

11

From standard dynamic optimization, household h’s consumption path is given by

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct for all h ∈ [0, 1], where ct ≡

∫ 1
0
ct(h)dh denotes aggregate consumption.

Therefore, the growth rate of aggregate consumption is also given by

ċt
ct
= rt − ρ. (4)

2.2 Final good

Final good yt is produced by a unit continuum of competitive firms using the following Cobb-
Douglas production function:

yt = AtL
θ
tK

1−θ
t , (5)

where Lt is labor input and θ ∈ (0, 1) measures labor intensity in production. Kt is a composite
of a unit continuum of differentiated intermediate goods kt(j) given by

Kt = exp

(∫ 1

0

ln kt(j)dj

)
. (6)

At captures a productive externality from Kt such that At = K
ε

t ,
12 where Kt is the aggregate

level of Kt and the parameter ε ∈ [0, θ) measures the degree of this productive externality.
13

From profit maximization using (5), the conditional demand function for Lt is

wtLt = θyt. (7)

10It can be shown as a no-arbitrage condition that the rate of return on borrowing bt(h) must equal rt + πt.
11The transfer is financed by seigniorage. Alternatively, we can assume that seigniorage is used to finance a

public good, in which case all our results would be the same so long as the (potentially utility-enhancing) public
good is non-productive.
12See for example Ho et al. (2007) for a discussion of this type of productive externality. Here we assume

that the externality arises from the production of intermediate goods.
13Our analytical result is robust to the absence of this productive externality (i.e., ε = 0 and At = 1). We

allow for this parameter to improve the ability of the model to match data in the quantitative analysis.
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From profit maximization using (5) and (6), the conditional demand function for kt(j) is

pt(j)kt(j) = (1− θ) yt, (8)

where pt(j) is the price of kt(j).
14

2.3 Intermediate goods

There is a unit continuum of industries indexed by j ∈ [0, 1]. In each industry j, there is a
monopolistic industry leader, who holds a patent on the latest technology and dominates the
market until the arrival of the next innovation.15 The production function of the leader in
industry j is

kt(j) = qt(j, ωj)xt(j), (9)

where qt(j, ωj) is the quality-level of the leader in industry j and ωj is an integer denoting the
quality vintage of the intermediate goods produced by the leader in industry j. xt(j) is the
quantity of input j produced using final good with an one-to-one technology (i.e., xt(j) units of
final good produce xt(j) units of input j). From Bertrand competition, the equilibrium price
of kt(j) is a markup over the marginal cost 1/qt(j, ωj) given by

pt(j) =
λt(j)

qt(j, ωj)
, (10)

where the markup ratio λt(j) ≡ qt(j, ωj)/qt(j, ωj − 1) is determined by the size of the quality
improvement by the leader in industry j. The equilibrium level of monopolistic profit is

Πt(j) =

[
λt(j)− 1

λt(j)

]
pt(j)kt(j) =

[
λt(j)− 1

λt(j)

]
(1− θ)yt ≡ Πt(λ), (11)

where the second equality uses (8).

2.4 R&D and entry

In this section, we present the three steps of innovation. First, an entrepreneur invents a
higher quality product. Then, the size of the quality improvement is randomly drawn from a
Pareto distribution. Finally, if and only if the quality improvement is sufficiently large, then
the entrepreneur would pay a fixed entry cost to enter the market.

14Here pt(j) is denominated in units of the final good.
15See Cozzi (2007) for a discussion of this Arrow replacement effect.
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2.4.1 Invention

R&D is performed by competitive entrepreneurs. If an entrepreneur employs Rt(j) units of
final good to engage in innovation in industry j, then she would succeed in inventing the next
higher-quality product in the industry with an instantaneous probability φt(j) given by

φt(j) = Rt(j)/αt. (12)

For convenience, we define a composite parameter ψ ≡ θ − ε, where ψ ∈ (0, θ]. To ensure

balanced growth, αt ≡ αQ
(1−ψ)/ψ
t measuring the difficulty of R&D is increasing the aggregate

technology level Qt,
16 which is defined as

Qt ≡ exp

(∫ 1

0

ln qt(j, ωj)dj

)
. (13)

To facilitate the payment of Rt(j), the entrepreneur needs to borrow the amount ζRt(j) of cash
from households, where ζ ∈ (0, 1] is the CIA parameter. The borrowing cost is determined
by the nominal interest rate it. Therefore, the total cost of R&D is (1 + ζit)Rt(j). Let’s use
vet (j, ωj + 1) to denote the expected value of an invention before the realization of the size of
its quality improvement. The R&D condition is given by

φt(j)v
e
t (j, ωj + 1) = (1 + ζit)Rt(j)⇔ vet (j, ωj + 1) = (1 + ζit)αQ

(1−ψ)/ψ
t . (14)

2.4.2 Random quality improvements

We follow Minniti et al. (2013) to assume that when an R&D entrepreneur invents a higher-
quality product in industry j, the quality step size λt(j) > 1 is randomly drawn from a station-
ary Pareto distribution with the following probability density function:

f(λ) =
1

κ
λ−

1+κ
κ , (15)

where the parameter κ ∈ (0, 1) determines the shape of the Pareto distribution. Given that the
expected value of λt(j) is equal across industries, (11) implies that the expected value Π

e
t (j) of

monopolistic profit Πt(j) is also the same across industries such that Π
e
t (j) = Π

e
t for j ∈ [0, 1].

Therefore, we follow the standard treatment to focus on the symmetric equilibrium in which
the arrival rate of innovation is equal across industries, such that φt(j) = φt for j ∈ [0, 1].

17 As
a result, the expected value of an invention does not depend on j such that vet (j, ωj + 1) = vet
for j ∈ [0, 1].

16Venturini (2012) provides empirical evidence for the presence of increasing R&D difficulty.
17Cozzi et al. (2007) provide a theoretical justification for the symmetric equilibrium to be the unique

rational-expectation equilibrium in the Schumpeterian model.
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2.4.3 Endogenous firm entry

Following Hopenhayn (1992) and Melitz (2003), we consider a fixed entry cost to generate an
endogenous entry of heterogeneous firms. Let’s denote vt(λ) as the ex post value of an invention
(i.e., after the realization of the quality step size λ). In this case, the entry condition is given
by

vt(λ) ≥ βt, (16)

where the entry cost βt = βQ
(1−ψ)/ψ
t is proportional to Q

(1−ψ)/ψ
t to ensure balanced growth.

Given that Πt(λ) is increasing in λ, there exists a threshold quality level λ̃t above which vt(λ) ≥

βt for all λ ≥ λ̃t. Also, it can be shown that vt(λ)/Q
(1−ψ)/ψ
t is stationary in equilibrium. Then,

Lemma 1 shows that the threshold quality level λ̃ in vt(λ̃) = βt is stationary.

Lemma 1 There exists a unique and stationary threshold quality level λ̃t = λ̃ for all t.

Proof. See Appendix A.

Given the stationary threshold λ̃, Lemma 2 derives the no-arbitrage condition for the ex-

pected value vet of an invention. In (17), Pr(λ ≥ λ̃) = λ̃
−1/κ

is the probability that a randomly
drawn quality step size is larger than the threshold λ̃.

Lemma 2 The no-arbitrage condition for the expected value vet of an invention is

rt =
Πet + v̇et + Pr(λ ≥ λ̃)β̇t − Pr(λ ≥ λ̃)φt[v

e
t + Pr(λ ≥ λ̃)βt]

vet + Pr(λ ≥ λ̃)βt
. (17)

Proof. See Appendix A.

2.5 Monetary authority

We consider the nominal interest rate it as the policy instrument, which is exogenously set by
the monetary authority. The Fisher equation is given by it = πt + rt, where πt ≡ Ṗt/Pt is
the inflation rate and Pt is the price level of final good. Given the aggregate nominal money
balance Mt ≡ Ptmt, the growth rate of the aggregate nominal money balance is

µt ≡
Ṁt

Mt

= πt +
ṁt

mt

= it − rt +
ṁt

mt

= it − ρ−
ċt
ct
+
ṁt

mt

, (18)

where the last equality uses the aggregate consumption path in (4). It can be shown that given a
stationary nominal interest rate i, aggregate consumption ct and aggregate real money balance
mt grow at the same rate on the balanced growth path. Therefore, on the balanced growth
path, the growth rate of the nominal money balance is determined by the nominal interest rate

8



such that µ = i − ρ. The government uses the seigniorage revenue Ṁt to finance a lump-sum
transfer τ t that has a real value given by

τ t =
Ṁt

Pt
= µt

Mt

Pt
, (19)

which yields τ t = (i− ρ)mt on the balanced growth path.

2.6 Decentralized equilibrium

The equilibrium is a time path of allocations {ct(h), at(h),mt(h), bt(h), yt, Lt, kt(j), xt(j), Rt(j)}
and a time path of prices {wt, rt, pt(j), vt(λ)}. Also, at each instance of time, the following
conditions hold:

• household h ∈ [0, 1] maximizes utility taking {wt, rt} as given;

• competitive firms produce final good yt to maximize profit taking prices as given;

• monopolistic firm j ∈ [0, 1] produces intermediate good kt(j) and chooses {xt(i), pt(j)} to
maximize profit;

• competitive R&D entrepreneurs choose Rt(j) to maximize expected profit taking vt(λ) as
given;

• the market-clearing condition for labor holds such that Lt = 1;

• the market-clearing condition for final good holds such that
∫ 1
0
ct(h)dh +

∫ 1
0
xt(j)dj +

∫ 1
0
Rt(j)dj + λ̃

−1/κ
φtβt = yt;

• the total amount of cash owned by households equals the amount of cash borrowed by
entrepreneurs such that

∫ 1
0
mt(h)dh =

∫ 1
0
bt(h)dh = ζ

∫ 1
0
Rt(j)dj;

• the total value of assets owned by households equals the value of all monopolistic firms
such that

∫ 1
0
at(h)dh =

∫ 1
0
vt(j)dj ≡ vt;

• the monetary authority uses seigniorage to finance a lump-sum transfer τ t = Ṁt/Pt.

2.7 Aggregate economy

First, we derive the growth rate of aggregate technology Qt by differentiating the log of (13)
with respect to time and using the law of large numbers:

Q̇t

Qt

=

[∫ 1

0

lnλt(j)dj

]
Pr(λ ≥ λ̃)φt =

[∫
∞

λ̃

(lnλ) f̃(λ)dλ

]
λ̃
−1/κ

φt = (ln λ̃+ κ)λ̃
−1/κ

φt, (20)
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where the truncated density function f̃(λ) as a result of the threshold λ̃ is defined as

f̃(λ) ≡
f(λ)∫

∞

λ̃
f(λ)dλ

= λ̃
1
κf(λ). (21)

In (20), λ̃
−1/κ

φt is the composite arrival rate of implementable quality improvements and κ+ln λ̃
is the average step size of implemented quality improvements. Then, we derive the aggregate
production function for yt in the following lemma:

Lemma 3 The aggregate production function for yt is given by

yt =

(
1− θ

λ̃eκ
Qt

) 1−ψ
ψ

. (22)

Proof. See Appendix A.

The aggregate production function in (22) implies that the growth rate of aggregate output
yt is given by

gt ≡
ẏt
yt
=
1− ψ

ψ

Q̇t

Qt

=
1− ψ

ψ
(ln λ̃+ κ)λ̃

−1/κ
φt, (23)

where the last equality uses (20). Lemma 4 shows that given a stationary nominal interest rate
i, the aggregate economy jumps to a unique and stable balanced growth path along which φ
and g are also stationary.

Lemma 4 The aggregate economy jumps to a unique and stable balanced growth path.

Proof. See Appendix A.

The no-arbitrage condition for the ex-post value of an invention with λ ≥ λ̃ is given by

Πt(λ)

vt(λ)
= r + λ̃

−1/κ
φ−

v̇t(λ)

vt(λ)
= ρ+ λ̃

−1/κ
φ, (24)

where the last equality uses the aggregate consumption path in (4) and the property that ct
and vt both grow at the steady-state equilibrium growth rate in (23). Then, substituting (11)

and (24) into the entry condition vt(λ̃) = βQ
(1−ψ)/ψ
t , we obtain

(
λ̃− 1

λ̃

)
1

β
=
(ρ+ λ̃

−1/κ
φ)Q

(1−ψ)/ψ
t

(1− θ)yt
. (25)

From (17), the equilibrium value of vet on the balanced growth path is determined by

Πet

vet + λ̃
−1/κ

βt

= rt + λ̃
−1/κ

φ−
v̇et + λ̃

−1/κ
β̇t

vet + λ̃
−1/κ

βt

= ρ+ λ̃
−1/κ

φ, (26)

10



where the last equality uses the aggregate consumption path in (4) and the property that ct,
vet and βt all grow at the steady-state equilibrium growth rate in (23). The expected value of
monopolistic profit is given by

Πet =

[∫
∞

λ̃

(
λ− 1

λ

)
f(λ)dλ

]
(1− θ)yt =

[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]

(1− θ)yt. (27)

Substituting (26) and (27) into the R&D condition in (14) yields
[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]
1

(1 + ζi)α + λ̃
−1/κ

β
=
(ρ+ λ̃

−1/κ
φ)Q

(1−ψ)/ψ
t

(1− θ)yt
. (28)

Combining (25) and (28), we obtain the following condition:

(λ̃− 1)λ̃
1/κ
=
β

α

κ

1 + κ

1

1 + ζi
, (29)

where the left-hand side is monotonically increasing in λ̃. Therefore, (29) implicitly determines
the unique equilibrium value of λ̃ as a decreasing function in the nominal interest rate i. Using
(22), (25) and (29), we obtain the following condition:

λ̃
−1/κ

φ =
λ̃
−(1/κ+1/ψ)

1 + ζi

κ

1 + κ

(1− θ)1/ψ

αeκ(1−ψ)/ψ
− ρ, (30)

which determines the unique equilibrium value of the composite innovation rate λ̃
−1/κ

φ. The
right-hand side of (30) is decreasing in the nominal interest rate i for a given value of λ̃; however,

λ̃ is also decreasing in i. Therefore, the overall effect of i on λ̃
−1/κ

φ is ambiguous. The following

proposition from Chu et al. (2017) summarizes the overall effects of i on λ̃
−1/κ

φ and g.

Proposition 1 If the entry cost parameter β is sufficiently large (small), then an increase in
the nominal interest rate i has an inverted-U (a negative) effect on the composite innovation

rate λ̃
−1/κ

φ and the equilibrium growth rate g.

Proof. See Appendix A.

Intuitively, when the entry cost β is zero, the nominal interest rate i has no effect on the
distribution of quality improvements that are implemented because all firms enter the market.
In this case, the entry threshold becomes λ̃ = 1, and the equilibrium growth rate g = 1−ψ

ψ
κφ

is monotonically decreasing in the nominal interest rate i via the innovation arrival rate φ.
However, when the entry cost β is positive, the nominal interest rate i affects the entry threshold

λ̃ in addition to the innovation arrival rate φ. In this case, Pr(λ ≥ λ̃) = λ̃
−1/κ

is increasing
in the nominal interest rate i because an increase in the nominal interest rate i reduces the
entry threshold λ̃ and leads to more quality improvements being implemented. Therefore, the

overall effects of the nominal interest rate i on the composite innovation rate λ̃
−1/κ

φ and the

equilibrium growth rate g = 1−ψ
ψ
(ln λ̃ + κ)λ̃

−1/κ
φ become ambiguous and follow an inverted-U

pattern when the entry cost β is sufficiently large.
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3 Wealth and income distributions

In this section, we show that the wealth distribution is stationary and exogenously determined
by its initial distribution. Then, we show that the income distribution is also stationary but
endogenously affected by the nominal interest rate.

3.1 Wealth distribution

In equilibrium, household h ∈ [0, 1] lends all its cash to entrepreneurs such that mt(h) = bt(h).
Substituting this condition into (2) yields

ȧt(h) + ḃt(h) = rt[at(h) + bt(h)] + wt + τ t − ct(h), (31)

where we have also used the Fisher equation rt = it − πt. Aggregating (31) for all h, we have

ȧt + ḃt = rt(at + bt) + wt + τ t − ct. (32)

Let’s denote zt(h) ≡ at(h) + bt(h) as household h’s wealth, which consists of financial assets
and bond holdings. Then, we define sz,0(h) ≡ z0(h)/z0 as the initial share of wealth owned
by household h, and sz,0(h) is exogenously given at time 0. We consider a general distribution
function of initial wealth share with a mean of one and a standard deviation of σz > 0.
Taking the log of wealth share sz,t(h) ≡ zt(h)/zt at time t and differentiating the resulting

expression with respect to time yield

ṡz,t(h)

sz,t(h)
=
żt(h)

zt(h)
−
żt
zt
=
ct − wt − τ t

zt
−
ct(h)− wt − τ t

zt(h)
. (33)

Then, (33) can be re-expressed as

ṡz,t(h) =
ct − wt − τ t

zt
sz,t(h)−

sc,t(h)ct − wt − τ t
zt

, (34)

where sc,t(h) ≡ ct(h)/ct is the share of consumption by household h at time t. Taking the log
of sc,t(h) and differentiating the resulting expression with respect to time yield

ṡc,t(h)

sc,t(h)
=
ċt(h)

ct(h)
−
ċt
ct
. (35)

Given that ċt(h)/ct(h) = ċt/ct from (3) and (4), (35) becomes ṡc,t(h) = 0 for all t, which in
turn implies sc,t(h) = sc,0(h) for all t.

18 Given that {at, bt, zt, ct, wt, τ t} all grow at the same
rate g in equilibrium, (34) represents a one-dimensional differential equation, which describes
the potential evolution of sz,t(h) given an initial sz,0(h). In Appendix A, we show that the
coefficient on sz,t(h) in (34) is positive and equal to ρ. Together with the fact that sz,t(h) is a
state variable, the only solution consistent with long-run stability is ṡz,t(h) = 0 for all t, which
is achieved by consumption share sc,t(h) jumping to its steady-state value shown in Appendix
A. Lemma 5 shows that as an equilibrium outcome, the wealth distribution is stationary and
remains the same as the initial distribution, which is exogenously given at time 0.

18sc,0(h) is an endogenous variable to be determined in Appendix A.
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Lemma 5 The wealth share of household h ∈ [0, 1] is given by sz,t(h) = sz,0(h) for all t.

Proof. See Appendix A.

3.2 Income distribution

From (31), before-transfer income earned by household h is given by19

It(h) = rtzt(h) + wt. (36)

Aggregating (36) yields total income earned by all households given by

It = rtzt + wt. (37)

Combining (36) and (37) yields the share of income earned by household h given by

sI,t(h) ≡
It(h)

It
=
sz,0(h) rtzt + wt

rtzt + wt
, (38)

which also uses zt(h) = sz,t(h)zt = sz,0(h)zt from Lemma 5. The distribution function of income
share sI,t(h) has a mean of one and the following standard deviation:

σI,t ≡

√∫ 1

0

[sI,t(h)− 1]2dh =
rtzt

rtzt + wt

√∫ 1

0

[sz,0(h)− 1]2dh =
rtzt/wt

1 + rtzt/wt
σz, (39)

which is also the coefficient of variation of income and is increasing in rtzt/wt. As discussed in
Chu and Cozzi (2018), income inequality σI,t is increasing in rtzt/wt because an unequal distri-
bution of wealth is the source of income inequality in the model. Therefore, whenever interest
income rtzt increases relative to wage income wt, the degree of income inequality increases.

Lemma 6 Income inequality is increasing in the ratio of interest income to wage income.

Proof. Equation (39) shows that σI,t is increasing in rtzt/wt.

Recall that total wealth is given by zt = at + bt. The amount of financial assets at in the
economy is given by

at = vt =

∫
∞

λ̃

vt(λ)f̃(λ)dλ =
[
λ̃
1/κ
(1 + ζi)α + β

]
Q
(1−ψ)/ψ
t , (40)

which uses
∫
∞

λ̃t
vt(λ)f(λ)dλ = (1 + ζi)αt + λ̃

−1/κ

t βt. Using (7), (22) and (40), we derive

a

w
=
[
λ̃
1/κ
(1 + ζi)α + β

] (λ̃eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
. (41)

19We consider after-transfer income in Section 5.3.
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The amount of borrowing bt in the economy is given by

bt = ζRt = ζαQ
(1−ψ)/ψ
t φt, (42)

where the last equality uses (12). Using (7), (22) and (42), we derive

b

w
= ζαφ

(λ̃eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
. (43)

Using (4), (41) and (43), we derive the ratio of total interest income to wage income as

rz

w
=
r(a+ b)

w
= (ρ+ g)

[
λ̃
1/κ
(1 + ζi)α + β + ζαφ

] (λ̃eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
, (44)

where the growth rate g, the quality threshold λ̃ and the innovation arrival rate φ are determined
by (23), (29) and (30), respectively.

4 Monetary policy on growth and inequality

In this section, we explore the effects of monetary policy on economic growth and income
inequality. We begin by exploring the relationship between the inflation rate and the nominal
interest rate. From the Fisher equation, the inflation rate is given by

π = i− r = i− g(i)− ρ, (45)

where the last equality uses (4). Differentiating the steady-state equilibrium inflation rate π in
(45) with respect to the nominal interest rate i yields

∂π

∂i
= 1−

∂g(i)

∂i
. (46)

Therefore, so long as ∂g(i)/∂i < 1, the relationship between the steady-state equilibrium in-
flation rate and the nominal interest rate is positive.20 This positive long-run relationship
between the inflation rate and the nominal interest rate is supported by empirical studies such
as Mishkin (1992) and Booth and Ciner (2001). In the following sections, we explore the ef-
fects of the nominal interest rate on economic growth and income inequality. It is useful to
note that any relationship between the nominal interest rate and growth/inequality would also
apply to inflation and growth/inequality given the positive relationship between inflation and
the nominal interest rate.

20Under our calibrated parameter values, the equilibrium inflation rate is indeed increasing in the nominal
interest rate.
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4.1 Monetary policy under a zero entry cost

We first consider the case of a zero entry cost β = 0. In this case, the threshold quality level
becomes λ̃ = 1. Then, the equilibrium growth rate in (23) becomes g = 1−ψ

ψ
κφ, where the

innovation arrival rate φ in (30) simplifies to

φ =
1

1 + ζi

κ

1 + κ

(1− θ)1/ψ

αeκ(1−ψ)/ψ
− ρ, (47)

which is decreasing in the nominal interest rate i. As for the effect of the nominal interest rate
i on income inequality, we know from Lemma 6 that we simply have to examine how i affects
the ratio of total interest income to wage income in (44). We begin by examining separately
the effects of i on ra/w and rb/w.
Under a zero entry cost, the ratio of asset interest income to wage income simplifies to

ra

w
=

(
ρ+

1− ψ

ψ
κφ

)
1

ρ+ φ

κ

1 + κ

1− θ

θ
, (48)

which uses (4), (41) and (47). Recall that the innovation arrival rate φ is decreasing in the
nominal interest rate i. Therefore, (48) shows that the nominal interest rate i has two opposing
effects on the ratio ra/w of asset interest income to wage income. First, an increase in i reduces
the real interest rate r = ρ + 1−ψ

ψ
κφ by decreasing innovation and the equilibrium growth

rate. This corresponds to the interest-rate effect of innovation on income inequality identified
in Chu and Cozzi (2018), who consider R&D subsidies instead of monetary policy. Second,
an increase in i reduces the rate of creative destruction and raises the asset-wage ratio a/w.
This corresponds to the asset-value effect of innovation on income inequality in Chu and Cozzi
(2018). Equation (48) shows that as ρ → 0, the two effects cancel each other. For the more
general case with ρ > 0, differentiating ra/w in (48) with respect to i yields the following result:

∂ra/w

∂i
> 0⇔ κ <

ψ

1− ψ
. (49)

Therefore, the positive asset-value effect of i on income inequality dominates the negative
interest-rate effect of i on income inequality if and only if κ < ψ/(1−ψ). This result generalizes
the one in Chu and Cozzi (2018), who consider a symmetric quality step size and find that the
asset-value effect of R&D subsidies dominates the interest-rate effect of R&D subsidies if and
only if the quality step size is sufficiently small. In the case of asymmetric quality step sizes,
the average quality step size is increasing in κ. Therefore, a small value of κ implies a small
average quality step size, under which the asset-value effect dominates the interest-rate effect
of monetary policy on income inequality.
Under a zero entry cost, the ratio of bond interest income to wage income simplifies to

rb

w
=

(
ρ+

1− ψ

ψ
κφ

)
ζφ

α(eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
, (50)

which uses (4) and (43). Equation (50) shows that the ratio rb/w of bond interest income to
wage income is increasing in the innovation arrival rate φ, which in turn is decreasing in the
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nominal interest rate i. The first negative effect is that an increase in i reduces the real interest
rate r = ρ + 1−θ

θ
κφ by decreasing innovation and the equilibrium growth rate. The second

negative effect is that an increase in i decreases R&D and the amount of borrowing, which in
turn decreases the bond-wage ratio b/w.
Combining (48) and (50) yields the ratio of total interest income to wage income given by

rz

w
=

(
ρ+

1− ψ

ψ
κφ

)[
1

ρ+ φ

κ

1 + κ

1− θ

θ
+ ζφ

α(eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ

]
. (51)

As ρ → 0, the two effects of the nominal interest rate i on the ratio ra/w of asset interest
income to wage income cancel each other. In this case, we are left with the negative effects
of i on the ratio rb/w of bond interest income to wage income. For the more general case in
which ρ > 0, the overall effect of i on rz/w depends on the relative value of κ and ψ/(1− ψ).
If κ > ψ/(1 − ψ), then the effects of i on ra/w and rb/w are both negative. In this case, the
overall effect of the nominal interest rate on income inequality is negative. If κ < ψ/(1 − ψ),
then the effect of i on ra/w is positive whereas the effect of i on rb/w is negative. In this case,
the overall effect of the nominal interest rate on income inequality can be positive, negative or
U-shaped. Proposition 2 summarizes these results.

Proposition 2 Given a zero entry cost parameter β, an increase in the nominal interest rate
has the following effects: (a) it has a negative effect on income inequality if κ > ψ/(1− ψ) and
(b) it may have a positive, negative or U-shaped effect on income inequality if κ < ψ/(1− ψ).

Proof. See Appendix A.

4.2 Monetary policy under a positive entry cost

We now consider the general case of a positive entry cost β > 0. Recall that the effects of the
nominal interest rate on income inequality depend on how it affects the ratio of total interest
income to wage income, which depends on r, a/w and b/w. Proposition 1 shows that the nominal
interest rate has an inverted-U effect on the equilibrium growth rate under a sufficiently large
entry cost β. Therefore, the nominal interest rate also has an inverted-U effect on the real
interest rate r = ρ + g under a sufficiently large entry cost β. It is useful to note that this
interest-rate effect works through the quality threshold λ̃ in addition to the innovation arrival
rate φ in the previous section and in Chu and Cozzi (2018).
We now consider how the nominal interest rate affects the asset-wage ratio a/w. Substituting

(29) and (30) into (41) yields

a

w
=

1

ρ+ λ̃
−1/κ

φ

λ̃− 1/(1 + κ)

λ̃

1− θ

θ
, (52)

where the quality threshold λ̃ > 1 is determined by (29) and decreasing in the nominal interest
rate i. In the previous section with β = 0, the quality threshold is simply λ̃ = 1. In this
special case, the positive asset-value effect works through the innovation arrival rate φ, which
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in turn is decreasing in i. However, in the more general case with β > 0, the asset-value effect
also works through the quality threshold λ̃ via two channels. First, it decreases the threshold
quality level λ̃, which in turn speeds up the arrivals of implementable innovations and increases
the rate of creative destruction. This effect works to decrease a/w. Second, the lower average
quality step size also reduces the average markup ratio and the average value of monopolistic
firms, which in turn decreases a/w. It is useful to note that these negative asset-value effects
have the opposite sign as the one in the previous section by working through a different channel
that is the quality threshold λ̃, which is absent in Chu and Cozzi (2018).
We now consider how the nominal interest rate affects the bond-wage ratio b/w. Substituting

(29) and (30) into (43) yields

b

w
= ζαλ̃

1/κ

[
λ̃− 1

λ̃
1/ψ

(1− θ)1/ψ

βeκ(1−ψ)/ψ
− ρ

]
(λ̃eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
. (53)

Equation (53) shows that the nominal interest rate i affects b/w through λ̃ via multiple channels.
The main effect is similar to and complements the one in the previous section but once again
works through a different channel that the nominal interest rate reduces the quality threshold
and the average quality step size, which in turn decreases the average markup ratio and the
expected value of monopolistic profits. This general-equilibrium effect in turn reinforces the
direct negative direct of i on R&D and the amount of borrowing as well as the bond-wage ratio
b/w.
In Section 4.1, we find that in the case of a zero entry cost β = 0 and a positive discount

rate ρ > 0, an increase in the nominal interest rate has both positive and negative effects on
income inequality. In this section, we find that in the case of a positive entry cost β > 0, an
increase in the nominal interest rate has additional effects on income inequality via endogenous
firm entry. Therefore, when the entry cost β and the discount rate ρ are both positive and
the CIA parameter ζ, which determines the effects of the nominal interest rate, is sufficiently
large, we find that an increase in the nominal interest rate has a potentially inverted-U effect on
income inequality. Proposition 3 shows that the effect of the nominal interest rate on income
inequality is firstly increasing and eventually decreasing.

Proposition 3 If the product of the discount rate and the entry cost (i.e., ρβ) is positive and
the CIA parameter ζ is sufficiently large, then the effect of the nominal interest rate i on income
inequality is firstly increasing and eventually decreasing.

Proof. See Appendix A.

It is important to note that this non-monotonic and potentially inverted-U effect of the
nominal interest rate on income inequality is different from the U-shaped effect under a zero
entry cost β = 0 in Proposition 2. The reason is that as Proposition 1 shows, the nominal
interest rate has an inverted-U effect on the equilibrium growth rate if and only if the entry cost
β is sufficiently large. In other words, endogenous firm entry is necessary for the emergence of
an inverted-U effect of the nominal interest rate on economic growth, which in turn generates
an inverted-U effect on income inequality that is otherwise absent without endogenous firm
entry.
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The main mechanisms behind this inverted-U effect on income inequality can be summarized
as follows. Given that the real interest rate is increasing in the growth rate of consumption,
the inverted-U effect of the nominal interest rate on economic growth causes an inverted-U
effect on the real interest rate. Furthermore, the nominal interest rate has both positive and
negative effects on the value of assets. On the one hand, by slowing down the innovation arrival
rate, the nominal interest rate increases the market value of monopolistic firms, which in turn
increases the value of assets. On the other hand, by lowering the entry threshold for quality
improvements, the nominal interest rate reduces the average step size of implemented quality
improvements and decreases the average markup ratio, which in turn decreases the market
values of monopolistic firms and assets. Combining all these effects yields an overall inverted-U
effect of the nominal interest rate on income inequality, which exists only under endogenous
entry of heterogeneous firms.

5 Quantitative analysis

In this section, we provide a quantitative analysis. In Section 4.1, we use cross-country data to
estimate the empirical effects of inflation on economic growth and income inequality. In Section
4.2, we calibrate the model to data as well as regression estimates and then simulate the effects
of inflation on growth and inequality in the model. Section 4.3 considers after-transfer income
inequality to examine the robustness of our results.

5.1 Empirical estimation

To facilitate the subsequent calibration, we first provide an empirical estimation of the effects
of inflation on economic growth and income inequality. Here we use cross-country panel data
to estimate the following regressions:

git = γ1πit + γ2π
2
it + ΓXit + δi + εit,

σit = ω1πit + ω2π
2
it + ΩXit + δi + ηit,

where git denotes the growth rate of real GDP in country i at time t, πit denotes the inflation
rate from the GDP deflator in country i at time t, and σit denotes income inequality in country
i at time t. Income inequality is collected from the World Income Inequality Database (WIID)
version 3.4. This database provides information on the income share of each decile group; i.e.,
the share of total income going to each tenth of the population ordered according to the income
level of each group. To be more specific, the first decile group includes the poorest 10% of the
population, while the tenth decile group includes the richest 10%. We use the data to calculate
the standard deviation of income share and the ratio of income between groups. This database
also provides the Gini index, which is another conventional measure of income inequality. Xit is
a vector of the following control variables: a constant, the degree of openness, the unemployment
rate, and investment risks. We follow Fan and Gao (2017) to use the investment profile index
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and the corruption index from the International Country Risk Guide to measure investment
risks.21 δi is the country fixed effect.

22

To be consistent with our innovation-driven growth model, we focus on high-income coun-
tries. We consider data from 1995 to 2014. In the first four columns, we define high-income
countries according to the definition given by the WIID. In the last four columns, we define
high-income countries according to the classification given by the World Bank (WB). Table
1 shows that the overall effects of inflation on economic growth and income inequality follow
an inverted-U pattern. The growth-maximizing inflation rate is about 15%,23 whereas the
inequality-maximizing inflation rate is about 10%.24

Table 1: Effects of inflation on economic growth and income inequality25

WIID WB

growth income inequality growth income inequality

(1) (2) (3) (4) (5) (6) (7) (8)

πit 1.071*** 0.026** 0.103** 0.104* 1.057*** 0.027** 0.108** 0.109*

(0.283) (0.013) (0.042) (0.054) (0.283) (0.012) (0.043) (0.055)

π2it -0.034** -0.001** -0.006*** -0.005* -0.033** -0.001** -0.006*** -0.005*

(0.014) (0.001) (0.002) (0.003) (0.014) (0.001) (0.002) (0.003)

country fixed effect YES YES YES YES YES YES YES YES

control variables YES YES YES YES YES YES YES YES

observations 571 463 463 463 570 459 459 459

R-squared 0.178 0.920 0.897 0.926 0.182 0.916 0.892 0.920

5.2 Calibration and simulation

We now calibrate the model to perform a quantitative analysis on the relationship between
inflation and economic growth/income inequality. The model features the following structural
parameters {ζ, ρ, θ, κ, α, β, ε} and the policy instrument i. We normalize the CIA parameter
ζ to unity. Then, we set the discount rate ρ to a conventional value of 0.05. As for labor
intensity θ, we set it to a value of 0.58 in the US; see for example Elsby et al. (2013). As for
the Pareto distribution parameter κ, we calibrate its value by matching an average real GDP
per capita growth rate of 0.014 in the US. As for the R&D cost parameter α and the entry cost
parameter β, we calibrate their values by matching the growth-maximizing inflation rate and

21We rescale these two indexes into a number between zero and ten.
22If we controlled year fixed effects instead, our results (available upon request) would still hold.
23This estimate is between the two estimates of 12% and 19% reported in Bick (2010), who uses a panel

threshold model. Our estimate of 15% is also similar to the whole-sample estimate in Lopez-Villavicencio and
Mignon (2011). Although Lopez-Villavicencio and Mignon (2011) find a lower threshold for advanced economies,
their high-income countries include only a subset of the OECD countries.
24This estimate is much lower than the estimate in Natob (2015), who however focuses on developing countries.
25*** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are corrected by clustering at the country

level in parentheses. Columns 1 and 5 correspond to the GDP growth rate. Columns 2-4 and 6-8 use different
measures of income inequality. Specifically, columns 2 and 6 correspond to the standard deviation of income
share. Columns 3 and 7 correspond to the income difference between the top 10% and the bottom 10% of the
population. Columns 4 and 8 correspond to the Gini coefficient. In the first (last) four columns, high-income
countries follow the classification by the WIID (WB).
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the inequality-maximizing inflation rate estimated in the previous section. We calibrate the
monetary policy instrument i by matching the average inflation rate in the US, which is about
0.025 in the past two decades. As for the productive externality parameter ε, we consider a
range of values from 0.43 to 0.55.26 The calibrated parameter values are summarized in Table
2. We find that if the productive externality parameter ε were too small (large), then the
implied value of the Pareto distribution parameter κ would approach one (zero), under which
the average value of λ approaches infinity (one).

Table 2: Calibration

ε ρ θ κ α β i
0.430 0.050 0.580 0.938 3.249*10−5 1.727*10−5 0.089

0.470 0.050 0.580 0.670 3.022*10−6 1.358*10−6 0.089

0.510 0.050 0.580 0.416 2.246*10−8 8.391*10−9 0.089

0.550 0.050 0.580 0.174 6.950*10−16 2.113*10−16 0.089

Figure 1 simulates the relationship between inflation and economic growth. We find that
the relationship between inflation and economic growth follows an inverted-U pattern. When
the inflation rate increases from the benchmark value of 0.025 to 0.150, the equilibrium rate of
economic growth increases from the benchmark value of 0.0140 to a maximum value of about
0.0154 in all four cases. After that, any further increase in inflation is associated with a decline
in economic growth.

Figure 1a: Inflation and economic growth (ε = 0.43) Figure 1b: Inflation and economic growth (ε = 0.47)

26This range of values is consistent with Ho et al. (2007). Soerensen and Whitta-Jacobsen (2010, p. 219)
survey the empirical literature and conclude that the degree of externality from capital goods is between 0.45
and 0.75.
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Figure 1c: Inflation and economic growth (ε = 0.51) Figure 1d: Inflation and economic growth (ε = 0.55)

Figure 2 simulates the relationship between inflation and income inequality. We find that
the relationship between inflation and income inequality also follows an inverted-U pattern.
When the inflation rate increases from the benchmark value of 0.025 to 0.100, the increase in
the coefficient of variation of income ranges from 0.4% (in the case of ε = 0.43) to 0.7% (in
the case of ε = 0.55).27 Therefore, larger productive externality amplifies the effect of inflation
on income inequality. When the inflation rate is above 0.1, any further increase in inflation is
associated with a decline in income inequality.

Figure 2a: Inflation and income inequality (ε = 0.43) Figure 2b: Inflation and income inequality (ε = 0.47)

27These numbers refer to percent changes from the benchmark value.
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Figure 2c: Inflation and income inequality (ε = 0.51) Figure 2d: Inflation and income inequality (ε = 0.55)

5.3 After-transfer income inequality

In this section, we consider after-transfer income inequality. After-transfer income of household
h ∈ [0, 1] is

Iat (h) = rtzt(h) + wt + τ t, (54)

where τ t = Ṁt/Pt = (i− ρ)mt. Then, after-transfer income share of household h is

saI,t(h) =
sz,0(h) rtzt + wt + τ t

rtzt + wt + τ t
, (55)

and the standard deviation of after-transfer income share is

σaI =
rz/(w + τ)

1 + rz/(w + τ)
σz, (56)

which is increasing in rz/(w+τ). In the rest of this section, we use the same parameter values as
in the previous section and simulate the effects of inflation on after-transfer income inequality.
Figure 3 shows that the relationship between inflation and after-transfer income inequality
is very similar to the relationship between inflation and before-transfer income inequality in
Figure 2. Therefore, adding seigniorage as a lump-sum transfer to households does not change
our results.
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Figure 3a: Inflation and income inequality (ε = 0.43) Figure 3b: Inflation and income inequality (ε = 0.47)

Figure 3c: Inflation and income inequality (ε = 0.51) Figure 3d: Inflation and income inequality (ε = 0.55)

6 Conclusion

In this study, we have developed a Schumpeterian growth model with two dimensions of het-
erogeneity among households and firms. We model household heterogeneity by assuming that
households own different levels of wealth, which in turn generate an endogenous distribution of
income. We model firm heterogeneity by assuming random quality improvements and a cost of
entering a market, which together generate an endogenous distribution of implemented qual-
ity improvements. Both the income distribution and the implemented quality distribution are
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affected by monetary policy. Within this monetary growth-theoretic framework, we find that
inflation has inverted-U effects on both economic growth and income inequality. Furthermore,
we calibrate our model to match the growth-maximizing and inequality-maximizing inflation
rates that are estimated using cross-country panel data.
Finally, it is useful to note that our model could feature scale effects as in the first-generation

R&D-based growth model in seminal studies by Romer (1990), Segerstrom et al. (1990), Gross-
man and Helpman (1991) and Aghion and Howitt (1992).28 We sidestep this issue by normaliz-
ing the supply of labor to unity. Alternatively, one can remove scale effects in the Schumpeterian
growth model by considering the semi-endogenous-growth approach in Segerstrom (1998) or the
second-generation approach in Peretto (1998, 2007). We leave this potentially interesting ex-
tension to future research.
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Appendix A

Proof of Lemma 1. It follows from (14) that vet + λ̃
−1/κ

t βt = (1 + ζi)αt+ λ̃
−1/κ

t βt. Differen-
tiating both sides of this equation with respect to time t yields

v̇et + λ̃
−1/κ

t β̇t = (1 + ζi)αt
α̇t
αt
+ λ̃

−1/κ

t βt
β̇t
βt
⇔

v̇et + λ̃
−1/κ

t β̇t

vet + λ̃
−1/κ

t βt

=
1− ψ

ψ

Q̇t

Qt

, (A1)

where the first equality cancels βtd(λ̃
−1/κ

t )/dt from both sides and the second equality uses

αt = αQ
(1−ψ)/ψ
t and βt = βQ

(1−ψ)/ψ
t . Using (A1) and Pr(λ ≥ λ̃t) = λ̃

−1/κ

t , we modify (17) as

rt =
Πet

vet + λ̃
−1/κ

t βt

+
1− ψ

ψ

Q̇t

Qt

− λ̃
−1/κ

t φt. (A2)

Similarly, we modify (24) for λ = λ̃t as

rt =
Π(λ̃t)

vt(λ̃t)
+
1− ψ

ψ

Q̇t

Qt

− λ̃
−1/κ

t φt, (A3)

which uses the entry condition vt(λ̃t) = βt = βQ
(1−ψ)/ψ
t and Pr(λ ≥ λ̃t) = λ̃

−1/κ

t . From (A2)
and (A3), we have

Πet

(1 + ζi)α + λ̃
−1/κ

t β
=
Πt(λ̃t)

β
, (A4)

where

Πet ≡

∫
∞

λ̃t

Πt(λ)f(λ)dλ =

(
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

)

(1− θ)yt (A5)

and

Πt(λ̃t) =
λ̃t − 1

λ̃t
(1− θ)yt (A6)

from (11). Using (A4)-(A6), we also have

λ̃
1
κ

t (λ̃t − 1) =
κ

1 + κ

1

1 + ζi

β

α
, (A7)

which uniquely determines λ̃ > 1 independent of t because the left-hand side of (A7) is increasing
in λ̃t > 1 and the right-hand side is independent of t.

Proof of Lemma 2. In the symmetric equilibrium, we have vet (i, ωi + 1) = vet , which can be
expressed as

vet ≡

∫ λ̃

1

0 f(λ)dλ+

∫
∞

λ̃

[vt(λ)− βt] f(λ)dλ =

∫
∞

λ̃

vt(λ)f(λ)dλ− Pr(λ ≥ λ̃)βt. (A8)
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Substituting the no-arbitrage condition for the value of an implemented innovation vt(λ) =
[Πt(λ) + v̇t(λ)− Pr(λ ≥ λ̃)φtvt(λ)]/rt into (A8) yields

rt[v
e
t + Pr(λ ≥ λ̃)βt] = Π

e
t +

∫
∞

λ̃

v̇t(λ)f(λ)dλ− Pr(λ ≥ λ̃)φt

∫
∞

λ̃

vt(λ)f(λ)dλ, (A9)

which uses (A8) and Πet ≡
∫
∞

λ̃
Πt(λ)f(λ)dλ. Then, we use the R&D condition v

e
t = (1 + ζi)αt

to derive ∫
∞

λ̃

vt(λ)f(λ)dλ = (1 + ζi)αt + Pr(λ ≥ λ̃)βt. (A10)

Differentiating both sides in (A10) with respect to t yields

∫
∞

λ̃

v̇t(λ)f(λ)dλ = (1 + ζi) α̇t + Pr(λ ≥ λ̃)β̇t. (A11)

By substituting (A11) into (A9), with vet = (1 + ζit)αt, we can obtain

rt[v
e
t + Pr(λ ≥ λ̃)βt] = Π

e
t + v̇

e
t + Pr(λ ≥ λ̃)β̇t − Pr(λ ≥ λ̃)φt[v

e
t + Pr(λ ≥ λ̃)βt], (A12)

which is equivalent to (17).

Proof of Lemma 3. Substituting (8) and (10) into (6) yields

Kt = (1− θ) ytQt exp

(
−

∫ 1

0

lnλt(j)dj

)
, (A13)

which uses (13) for Qt. Given that λt(j) > λ̃ for implemented innovations, the truncated
distribution function for implemented innovations is as follows:

f̃(λ) ≡
f(λ)∫

∞

λ̃
f(λ)dλ

= λ̃
1
κf(λ). (A14)

By this,

exp

(
−

∫ 1

0

lnλt(j)dj

)
=

1

λ̃eκ
(A15)

holds. Substituting (A13)-(A15) into yt = K1−θ+ε
t = K1−ψ

t from (5) yields (22).

Proof of Lemma 4. Define c̃t ≡ ct/Q
(1−ψ)/ψ
t . Then, from (4), it holds that

·

c̃t
c̃t
= rt − ρ−

1− ψ

ψ

Q̇t

Qt

. (A16)

From (A3) and (A6), with vt(λ̃) = βt = Q
(1−ψ)/ψ
t β, the real interest rate can be expressed as

rt =
λ̃− 1

λ̃

1− θ

β

yt

Q
(1−ψ)/ψ
t

+
1− ψ

ψ

Q̇t

Qt

− λ̃
−1/κ

φt. (A17)
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Substituting (22) and (A17) into (A16) yields

·

c̃t
c̃t
=
(1− θ)1/ψ

βeκ(1−ψ)/ψ
λ̃− 1

λ̃
1/ψ

− λ̃
−1/κ

φt − ρ. (A18)

To obtain the equilibrium expression of φt off the balanced growth path, we will derive the total
demand for final goods. First, we use (8)-(10), and to have

∫ 1

0

xt(j)dj =

∫ 1

0

(1− θ) yt
λt(j)

dj = (1− θ) yt

∫
∞

λ̃

f̃(λ)

λ
dλ =

(1− θ)yt

(1 + κ) λ̃
. (A19)

Then from (12), we have ∫ 1

0

Rt(j)dj = αQ
(1−ψ)/ψ
t φt. (A20)

Combining (A19) and (A20) with the final good market condition yields

φt =
1

α + βλ̃
−1/κ

[(
1−

1− θ

(1 + κ) λ̃

)(
1− θ

λ̃eκ

)(1−ψ)/ψ
− c̃t

]

≡ φ(c̃t
−

). (A21)

which also uses (22) for yt. Finally, by substituting (A21) into (A18), we have a one-dimensional
differential equation in c̃t. Given that φt decreases with c̃t, the right-hand side of (A18) is
increasing in c̃t. The dynamics of c̃t is saddle-point stable; i.e., c̃t jumps to the unique steady-

state c̃ at t = 0. Accordingly, (A18) determines the stationary equilibrium value of λ̃
−1/κ

φt as
in (30). Then, (A21) determines the steady-state value of c̃t as

c̃ =

(
1−

1− θ

(1 + κ) λ̃

)(
1− θ

λ̃eκ

)(1−ψ)/ψ
− φ

(
α + βλ̃

−1/κ
)
. (A22)

Proof of Proposition 1. From (29) and (30), we have

λ̃
−1/κ

φ =
λ̃− 1

λ̃
1/ψ

(1− θ)1/ψ

βeκ(1−ψ)/ψ
− ρ, (A23)

which is an inverted-U shaped function in λ̃ that is maximized at λ̃ = 1/ (1− ψ) .We naturally

focus on a non-trivial case where λ̃
−1/κ

φ > 0. There are, thus, lower and upper bounds of λ̃, say

λ− and λ+, such that λ̃
−1/κ

φ > 0 holds if and only if λ̃ ∈ (λ−, λ+). By (29), λ̃ is decreasing in i,
thereby having an upper bound, denoted as λ, due to i ≥ 0. It is easy to verify that λ increases
from 1 to ∞ as β increases from 0. When β is such large that λ > 1/ (1− ψ) holds, there is

an inverted-U shaped relationship between i ≥ 0 and λ̃
−1/κ

φ, noting λ̃ monotonically decreases
with i ≥ 0. Then, when β is small such that λ < 1/ (1− ψ) , the relationship is monotonically
negative for any i ≥ 0.
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Differentiating (23) with respect to λ̃ yields

(
dg

dλ̃

)
βψλ̃

1+1/ψ

1− ψ
(A24)

=

(
(1− θ)1/ψ

eκ(1−ψ)/ψ

(
λ̃− 1

)
− βρλ̃

1/ψ
)

︸ ︷︷ ︸
≡Λ1(λ̃)

−
(1− θ)1/ψ

ψeκ(1−ψ)/ψ

(
ln λ̃+ κ

)(
(1− ψ) λ̃− 1

)

︸ ︷︷ ︸
≡Λ2(λ̃)

,

where we have used (23). It is easy to prove the following properties of Λ1 and Λ2. On the
one hand, Λ1(λ̃) is maximized at λ̃ = 1/ (1− ψ) and strictly concave, with Λ1(λ̃) > 0 for
λ̃ ∈ (λ−, λ+). On the other hand, Λ2(λ̃) increases from Λ2(1) < 0 to ∞ as λ̃ increases from
1, with Λ2(1/ (1− ψ) = 0. Taking into account these facts, Figure 4 illustrates the graphs of the
two functions. As this shows, there must uniquely exist a threshold level of λ̃ ∈ (1/ (1− θ) , λ+),
denoted as Λ∗ in Figure 4, below (above) which Λ1(λ̃) > (<)Λ2(λ̃), that is, dg/dλ̃ > (<)0.
Recalling that λ increases with β and then λ̃ decreases with i, we can show that the relationship
between i and g is also inverted-U shaped (negative) if β is large (small).

Figure 4: Proof of Proposition 1

Proof of Lemma 5. From (3), (4), and (35), we can show that sc,t(h) = sc,0(h) holds for all
t. Substituting this condition into (34) yields

ṡz,t(h) =
ct − wt − τ t

zt
sz,t(h)−

sc,0(h)ct − wt − τ t
zt

. (A25)

According to Lemma 4, {ct, wt, τ t, zt, mt} all grow at the same rate g in equilibrium. Using
(4) and (32), it is easy to obtain

ct − wt − τ t
zt

= rt −
żt
zt
= ρ > 0. (A26)

Therefore, the coefficient on sz,t(h) in (A25) is always positive, which in turn implies that
ṡz,t(h) = 0 for all t is the only solution of (A25) consistent with long-run stability. Finally,
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imposing ṡz,t(h) = 0 on (A25) yields the steady-state value of sc,t(h) given by

sc,0(h) = 1−
ρ [1− sz,0(h)]

c/z
, (A27)

where we can make use of (40) and (42) to derive

c

z
=

c̃

λ̃
1/κ
(1 + ζi)α + β + ζαφ

. (A28)

Note that c̃ is given by (A22).

Proof of Proposition 2. Differentiating rz/w in (51) with respect to φ yields

d(rz/w)

dφ
= κ

α(eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ

{
ρ

(ρ+ φ)2

(
1− ψ

ψ
κ− 1

)
1

1 + κ

(1− θ)1/ψ

αeκ(1−ψ)/ψ
+ ζ

(
ρ

κ
+ 2

1− ψ

ψ
φ

)}
.

(A29)
Given κ > ψ/(1 − ψ), (A29) shows that d(rz/w)/dφ > 0. From (47), we know dφ/di < 0. As
a result, there is a negative effect of i and rz/w.
As for κ < ψ/(1− ψ), we will show that there are three possibilities: for a feasible range of

φ, (a) d(rz/w)/dφ < 0, (b) d(rz/w)/dφ > 0, or (c) d(rz/w)/dφ < (>)0 if φ is smaller (larger).
Before proceeding, it is useful to note that there is an upper bound of φ since i ≥ 0 with (47),
given by

φ+ ≡
κ

1 + κ

(1− θ)1/ψ

αeκ(1−ψ)/ψ︸ ︷︷ ︸
≡ϑ

− ρ.

We will derive a sufficient conditions for each case, by focusing on both ends of φ ∈ (0, φ+].
First, by substituting φ→ 0 (i.e., the lower bound) into (A29), we can show that d(rz/w)/dφ >

0 holds at φ→ 0 if (
1−

κ

ψ/(1− ψ)

)
<
ζρ2

ϑ
. (A30)

Moreover, it is easy to derive d2(rzt/wt)/dφ
2 > 0 when κ < ψ/(1−ψ). As a result, d(rz/w)/dφ >

0 holds for any φ ∈ (0, φ+]. Given dφ/di < 0, in this case, there is a negative effect of i on
rz/w.
Second, it is straightforward to verify that d(rz/w)/dφ < 0 holds at φ → 0 if (A30) is

violated. In this case, by substituting φ = φ+ into (A29), we can show that d(rz/w)/dφ < 0
also holds at the upper bound, φ = φ+, if and only if

(
1−

κ

ψ/(1− ψ)

)
> ζϑ

[
ϑ

ρ

(
2κ

ψ/ (1− ψ)

)
+

(
1−

2κ

ψ/ (1− ψ)

)]
. (A31)

We know d2(rzt/wt)/dφ
2 > 0 when κ < ψ/(1− ψ). As a result, d(rz/w)/dφ < 0 holds for any

φ ∈ (0, φ+]. Given dφ/di < 0, in this case, there is a positive effect of i on rz/w.
Finally, if (A31) does not hold, there is a threshold value of φ below (above) which d(rz/w)/dφ <

(>)0; i.e., there is a U-shaped relationship between i and rz/w. Therefore, the effect of i on
rz/w can be negative, positive, or U-shaped.
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Proof of Proposition 3. As in the proof of Proposition 1, we focus on the non-trivial case

where λ̃
−1/κ

φ > 0, implying λ̃ ∈ (λ−, λ+) unless βρ = 0. Recall that 1 < λ− < 1/ (1− ψ) < λ+.
By (29) and (44), we have

rz

w
= (ρ+ g)λ̃

(1−ψ)/ψ

[
λ̃− 1/ (1 + κ)

λ̃− 1
+
ζα

β
φ

]
β(eκ)(1−ψ)/ψ

θ(1− θ)(1−ψ)/ψ
. (A32)

By differentiating this with respect to λ̃,

Ξ
d (rz/w)

dλ̃
= λ̃(ρ+g)′

(ρ+g)
+ 1−ψ

ψ
+ λ̃

(
λ̃−1/(1+κ)

λ̃−1

)′
+ ζα

β
φ′

λ̃−1/(1+κ)

λ̃−1
+ ζα

β
φ

≡ Ψ(λ̃), (A33)

where Ξ > 0 is a composite variable that is strictly positive.29 By evaluating Ψ(λ̃) in (A33) at
λ̃ ∈ {λ−, λ+}, we can obtain

Ψ(λ̃) = 1−(1−ψ)λ̃

λ̃−1
1
ψ

[
1−ψ
ψ
(ln λ̃+ κ) + (αζ) (1+κ)ρ

β
λ̃
1/κ

(λ−1)

(1+κ)λ̃−1

]

︸ ︷︷ ︸
≡Ψ1(λ̃)

+ 1−ψ
ψ
− κ

(1+κ)λ̃−1
λ̃
λ̃−1︸ ︷︷ ︸

≡Ψ2(λ̃)

, (A34)

which reflects λ̃
−1/κ

φ = 0 for λ̃ ∈ {λ−, λ+} with (30). For λ̃ = λ−, Ψ1(λ̃) > 0 always holds due
to λ− < 1/(1 − ψ), but Ψ2(λ̃) ≶ 0. For λ̃ = λ+, both Ψ1(λ̃) < 0 and Ψ2(λ̃) > 0 hold due to
λ+ > 1/(1− ψ).

Given that λ̃
−1/κ

φ is independent of ζ, λ− and λ+ are also independent of ζ. Thus, changes
in ζ affect (A34) only through the second term of Ψ1. Keeping λ̃ = {λ−, λ+} unchanged, it
is possible to make Ψ(λ̃) larger (smaller) as one needs by increasing ζ, since the coefficient of

Ψ1,
1−(1−ψ)λ̃

λ̃−1
, is positive (negative) for λ̃ = λ− (λ̃ = λ+). Therefore, for a sufficiently large ζ,

30

Ψ(λ−) > 0 and Ψ(λ+) < 0 hold; rz/w is first increasing and eventually decreasing in λ̃ on the
feasible domain of λ̃. As we already mentioned, by (29), λ̃ has another upper bound, λ, due to
i ≥ 0. Since, by (29), λ is decreasing in α and satisfies limα→0 λ = ∞, we can also prove that
rz/w first increases and eventually decreases with i on the feasible domain of i, by taking an
appropriately small value of α so that λ > 1/ (1− ψ).

29Here Ξ ≡ λ̃w
rz
. We can derive from (23), (29), and (30)

λ̃(ρ+ g)′

(ρ+ g)
=
1− ψ

ψ

λ̃−1

λ̃1/ψ
(1−θ)1/ψ

βeκ(1−ψ)/ψ
−ρ+(ln λ̃+κ)

(1−θ)1/ψ

βeκ(1−ψ)/ψ
1
ψ
1−(1−ψ)λ̃

λ̃1/ψ

ρ+ 1−ψ
ψ (ln λ̃+κ)

(
λ̃−1

λ̃1/ψ
(1−θ)1/ψ

βeκ(1−ψ)/ψ
−ρ

)

and

λ̃

(
λ̃−1/(1+κ)

λ̃−1

)
′

+ ζα
β φ

′

λ̃−1/(1+κ)

λ̃−1
+ ζα

β φ
=

−
κ

1+κ
λ̃

(λ̃−1)2
+ ζα

β
λ̃1/κ

κ

{
1

λ̃1/ψ
(1−θ)1/ψ

βeκ(1−ψ)/ψ
[(1− κ

ψ/(1−ψ) )λ̃+
κ−ψ
ψ ]−ρ

}

λ̃−1/(1+κ)

λ̃−1
+ ζα

β λ̃
1/κ

(
λ̃−1

λ̃1/ψ
(1−θ)1/ψ

βeκ(1−ψ)/ψ
−ρ

) .

30It is worth noting that there exists a sufficient condition for the lower bound of ζ to be less than 1.
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