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Abstract

The correlation between two vectors is the cosine of the angle between the centered data.
While the cosine is a measure of association, the literature has spent little attention to the use
of the sine as a measure of distance. A key application of the sine is a new “sine-diagonal
inequality / disproportionality” (SDID) measure for votes and their assigned seats for parties
for Parliament. This application has nonnegative data and uses regression through the origin
(RTO) with non-centered data. Textbooks are advised to discuss this case because the
geometry will improve the understanding of both regression and the distinction between
descriptive statistics and statistical decision theory. Regression may better be introduced and
explained by looking at the angles relevant for a vector and its estimate rather than looking at
the Euclidean distance and the sum of squared errors. The paper provides an overview of the
issues involved. Also a new relation between the sine and the Euclidean distance is derived.

1. Introduction ......................................................................................................................2
1.1. The subject of discussion .........................................................................................2
1.2. Votes and seats........................................................................................................3
1.3. Structure of the paper...............................................................................................5

2. Notation and basics .........................................................................................................6
2.1. Well-known basics....................................................................................................6
2.2. Regression through the origin (RTO), for nonnegative vectors................................7
2.3. A view from didactics................................................................................................9

3. Evolving statistics.............................................................................................................9
3.1. The statistical triad of Design, Description and Decision .........................................9
3.2. A possible reason why RTO may be less prominent in the textbooks ...................10
3.3. Statistical significance ............................................................................................11
3.4. Causality .................................................................................................................11
3.5. Specification search ...............................................................................................11

4. Application to votes and seats .......................................................................................12
4.1. Descriptive statistics and decisive apportionment..................................................12
4.2. Different worlds for votes and seats: DR and EPR ................................................12
4.3. Apportionment in EPR............................................................................................13
4.4. Different models and errors ....................................................................................13
4.5. Disproportionality, dispersion and education..........................................................14
4.6. True variables v* and s* and particular observations v and s ................................15



2

4.7. Cos, slope and concentrated numbers of parties (CNP)........................................16
4.8. Analyses of squares for the direct error .................................................................17
4.9. Symmetry................................................................................................................18

5. More on interpretation....................................................................................................18
5.1. Statistics and heuristics on the slope .....................................................................18
5.2. Electoral justice and inequality ...............................................................................19
5.3. From the Humanities to Science ............................................................................20
5.4. The example of Brexit.............................................................................................22

6. Conclusions ...................................................................................................................23
7. References.....................................................................................................................24

1. Introduction

1.1. The subject of discussion

Karl Pearson (1857-1936) designed correlation between two vectors with the deliberate focus
on centered data, namely to capture as much variation as possible. This arrangement also
applied to the coefficient of determination, R-squared, between a vector and its estimate. We
now have reason to look at the original and non-centered data, and in particular at
nonnegative data. This application arises for votes and the assigned seats for parties for
Parliament. When we want equal proportions of votes and seats, or to maximise the
association, or to minimise the inequality / disproportionality (ID), then it would not make
sense to center the data. Having a vector of seat shares at a constant distance of a vector of
vote shares would be rather curious. For such non-centered data we apply regression through
the origin (RTO), see Kozak & Kozak (1995) and Eisenhauer (2003). Textbooks tend to warn
against dropping the constant in the regression, since it is better to test whether modeling
errors show up in an estimated constant, yet in this case RTO appears to be the proper
approach. Obviously, both Pearson’s centered data and RTO share the property that the
constant is zero, yet remarkably there are some differences for nonnegative data. This article
will use this framework of nonnegative vectors, following Colignatus (2017ab) (2018abcd), but
potentially some properties might be generalised for other data.

Pearson also concentrated on the cosine as a measure of similarity. The literature has spent
little attention to the use of the sine as a measure of distance. For shares of votes and seats
one might say that they are 97% close but the literature had focussed on developing
measures of inequality / disproportionality, as people might be more sensitive to the 3%
dissimilarity. Colignatus (2018d) discusses measures for votes and seats, and develops the
new sine-diagonal inequality / disproportionality (SDID) measure. SDID uses not only the sine
but also the square root on the sine, as a magnifying glass for small values, like the logarithm
in the Richter scale. Colignatus (2018a) gives a more general perspective on distance and
norm, and rejects the Aitchison geometry for compositional data for this comparison of votes
and seats. 1 There are particular aspects in voting, like majority switches, that are not relevant
for other applications. The sine measure is more sensitive than the angular distance, and also
interesting since it links up to regression, since R-squared finds its translation in RTO as the
squared cosine of the angle between the vectors. A new finding in Section 4.8 below is a
direct relation between the sine and the Euclidean distance between two vectors.

Our objective here is to provide an overview of the elementary statistics of correlation, R-
squared, cosine, sine, and regression through the origin (RTO), with application to votes and
seats for Parliament. While our focus is on the relevance for statistics, with an eye on
education in statistics, 2 we cannot avoid highlighting aspects of votes and seats, since this

                                                     
1 Comparing votes and seats is a topic of itself. The log or logit transformations could still be
used for explaining votes by say the economy, though Gelman & King (1994) stopped using
the logit, since the vote shares in their data tended to be between 0.2 and 0.8.
2 Mood & Graybill (1963:1) describe statistics as “the technology of the scientific method.”
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content determines the analysis. For earthquakes there exists the Richter scale, but for votes
and seats there isn’t yet a similar “change” measure, while the advice now is to use SDID.

We use lower case x for a real vector and ||x|| = √x'x for the norm of x, and ||y – x|| for the
Euclidean distance between x and y. There is also θ for the angle between x and y. Linear
algebra provides an expression for the cosine of this angle, as Cos[x, y] = x'y / √(x'x  y'y), and
thus θ = ArcCos[Cos[x, y]]. The cosine is the improduct of the normalised vectors x / ||x|| and
y / ||y|| on the unit circle. It is essentially the projection divided by the radius 1. 3 The formula
for the cosine is scale invariant, as the angle does not change for positive scalars λ and μ,
with Cos[x, y] = Cos[λx, μy].

1.2. Votes and seats

Let v be a vector of votes for parties and s a vector of their seats gained in the House of
Commons or the House of Representatives. We discard zeros in v and use a single zero in s
for the lumped category of "Other", of the wasted vote, for parties that got votes but no seats.
Let V = 1'v be total turnout and S = 1's the total number of seats, and w = v / V and z = s / S
the perunages. For presentation we will use 10 w and 10 z and the range [0, 10] in general.
For votes and seats, percentages [0, 100] generate too much an illusion of precision, while [0,
1] generates too many leading zeros. Distance measures on [0, 10] read as an inverted (Bart
Simpson) report card (with much appreciation for a low score). 4

In political science, the main current inequality / disproportionality (ID) measures are
(conventionally for percentages but now with 10): 5

 Absolute difference / Loosemore-Hanby (ALHID): 10 Sum[Abs[z – w] / 2]. The division by
2 corrects for double counting. An outcome of 1 means that one seat in a House of 10
seats is relocated from equality / proportionality.

 Euclid / Gallagher (EGID): 10 √Sum[(z – w)2 / 2]. For two parties this equals ALHID.
 χ

2 / Webster / Sainte-Laguë (CWSID): 10 Sum[w (z / w - 1)2] = 10 Sum[(z – w)2 / w]. The
Chi-Square expression has nonzero w. One can compare CWSID with ALHID = 10
Sum[w Abs[z / w  – 1] / 2] and EGID = 10 √Sum[w2 (z / w – 1)2 / 2].

 The difference in shares for the “largest” party, i.e. with the most seats: 10 (zL – wL). This
is an easy, rough and ready indicator with some history in the literature, and Shugart &
Taagepera (2017:143 ) show a remarkable approximation EGID ≈ 10 (zL – wL).

The proposed new sine-diagonal inequality / disproportionality (SDID) measure has the
formula SDID[v, s] = sign 10 √ Sin[v, s]. The sine is invariant to scale: Sin[v, s] = Sin[w, z].
With k = Cos[v, s] given by linear algebra, we might use θ = ArcCos[k] and then find Sin[v, s]
= Sin[θ] but we can also use Sin[θ] = √(1 – k2) directly. The additional square root on Sin
works as a magnifying glass for inequalities / disproportionalities. The sign indicates majority
switches, and is 1 for zero or positive covariance and -1 for negative covariance. 6

To clarify the distinction between the new proposal and the conventional measures in political
science, Figure 1 gives ALHID (blue) and SDID (red), and the intermediate steps given by the
angle (yellow) and sine itself (green). 7 For two parties normalised to [0, 10] we plot with seats
                                                     
3 For projection of y onto x, the projection matrix P = x x’ / x’x, so that P y = x (x’y / x’x) = b x.
Normalising x and y onto the unit circle gives b = Cos.
4 Ð = 10 (Word: ctrl ‘ + Shift D) can be used to abbreviate “5.4 per 10” into 5.4 / Ð or 5.4 ÐH,
with H = -1. The official name of the letter is Eth, but for Ð = 10 the pronunciation “deka” is
more appropriate, and ÐH would be “decim” = “per 10”. Thus 10% = 1 ÐH = 1 decim.
5 We might leave out the factor 10 in these definitions, and use 10 only for presentation, but
for SDID the factor 10 is a key design feature, and thus the others are best at the same scale.
Other presentations introduced the scale via the inputs, like 10 w and 10 z, but it is better to
keep w and z unambiguously on the unit simplex and introduce the scale at the level of the
measure.
6 In speech, one might not hear the difference between “sine” and “sign”: then use “sinus” and
perhaps “signum”.
7 For CWSID, see Colignatus (2018ad). This present paper will not discuss it.
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= {t, 10 – t}, with t the seats for the first party. We also consider opposite values votes = {10 –
t, t} = 10 - seats. Since this implies negative correlation, the SDID becomes negative, but the
plot gives the absolute value.To wit:

(1) The angular measure (AID) is 10 θ / (90 degrees) (yellow), Since we look at nonnegative
vectors, the maximum angle is 90 degrees.

(2) The sine plotted is 10 Sin[θ] (green). For small angles there is little difference between
Sin[θ] and θ in radians. There is a large difference between Sin[θ] and θ / (90 degrees).

The key point of Figure 1 is that the SDID indeed works like a magnifying glass to determine
inequalities / disproportionalities in votes and seats. This relates to the Weber-Fechner law on
psychological sensitivity. 8 When a frog is put into a pan with water at room temperature and
subsequently is slowly boiled it will not jump out. When a frog is put into a pan with hot water
it will jump out immediately. People may notice big differences between vote shares and seat
shares, but they may be less sensitive to small differences, while these differences actually
can still be quite relevant for the decision to jump out. For this reason, the SDID uses a
sensitivity transform. Like with the Richter scale, it will now be easier to relate the smaller
values to the larger values. At the values t = 4.5 or 5.5, when the absolute distance ALHID
registers a 1 on a scale of 10, SDID generates a staggering 4.4 on a scale of 10, which
outcome better relays the message that this difference is alarming.

Figure 1. Plot of d[votes, seats] for votes = 10 – seats and seats = {t, 10 – t}, for d =
Abs/2, AngularID, Sine, and |SDID| (eliminating the latter’s negative sign)

As another example: When votes {4.9, 5.1} are translated into seats then the absolute
difference (ALHID) and the Euclidean distance (EGID) regard outcomes {4.8, 5.2} or {5.0, 5.0}
as at the same distance, namely 0.1 seat difference (correcting for double counting), while
common sense and the sine would hold that the seats {4.8, 5.2} are closer to the votes and
less disruptive than the seats {5.0, 5.0} that suggests that there is equality. The values are: 10
Sin[{4.9, 5.1}, {4.8, 5.2}] = 0.1998 < 0.19996 = 10 Sin[{4.9, 5.1}, {5.0, 5.0}]. 9 These values are
so close together, though, that also the magnifying glass SDID hardly sees a difference:
1.41351 < 1.41407. However, the latter values are still at the high level or 1.4 on a scale of
10, rather than at the low value of 0.1 on a scale of 10 for ALHID. 10

                                                     
8 Wikipedia is a portal and no source:
https://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law
9 We didn’t divide the sine by 2 to correct for double counting. If we would do so then 0.1998 /
2 ≈ 0.1 or the ALHID score. But then we would have to multiply by 20 instead of 10 to get to
the [0, 10] range again. For small values Sin[w, z] = Sin[θ] ≈ θ ≈ || z / ||z|| - w / ||w|| || and for
the unit simplex we might consider ||z – w|| / √ (||z|| ||w||) using the geometric mean.
10 Readers familiar with percentages might compare with the case of {49, 51}, where 1 seat in
a House of 100 is relocated. The ALHID recovers the 1% but SDID magnifies to a score of 14
on a scale of 100. This 1% of the US House is 4.35 seats, and of the UK House 6.5 seats, or,
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Table 1 contains the real world example of the US House of Representatives of 2016 (435
seats) and the UK House of Commons 2017 (650 seats). SDID properly conveys the insight
that there is shocking inequality / disproportionality.

Table 1. Votes and seats in the USA 2016 and UK 2017 
11

USA, House, November 8 2016, S = 435 UK, House, June 8 2017, S = 650
Party Votes Seats Party Votes Seats
Republicans  4.91  5.54 Conservatives  4.22  4.88
Democrats  4.80  4.46 Labour  3.99  4.03
Other  0.29  0 Other  1.79  1.09

100% 10 10 100% 10 10
10 (zL – wL)  0.63 10 (zL – wL)  0.66
ALHID  0.63 ALHID  0.7
AID  0.67 AID  0.92
SDID  3.2 SDID  3.8

1.3. Structure of the paper

The square root within SDID is psychologically important and only a presentation feature of
descriptive statistics. This present discussion collects the key steps in Colignatus (2018d) for
the content of statistics and targets at an overview. Part of the present text has already been
used on my weblog Colignatus (2017b).

The next section provides notation and basics. The subsequent section places our topic
within the perspective of the statistical triad of experimental design, description and decision.
Subsequently we apply the cosine and sine for nonnegative data, and state the relevant
formulas. We close with a summary of the findings.

The reader might be advised to peek at Table 2 for a glance at the different models, to see
what this discussion is about specifically. I have considered putting this table up front, but it
remains better to first rekindle awareness about the basics before delving into the models.

PM 1. See Colignatus (2007) for the approach with determinants rather than angles - as area
and volume might generalise easier to more dimensions than the angle, that might remain
stuck to the 2D plane created by the two vectors. PM 2. There is also the notion of “distance
correlation” 12 but the Pearson correlation remains relevant here precisely because of the
linearity contained in the notion of equality / proportionality. PM 3. There is “least angle
regression” 13 but such is different, and we remain in the realm of “simple regression”. 14

                                                                                                                                                       
with double effect 8.7 and 13 seats. This 1% might make quite a difference. The value of 1.4
on a scale of 10 would seem to be acceptable as the indication that something is wrong.
11 The interpretation of this table requires Section 5.3.
12 Wikipedia is a portal and no scource. https://en.wikipedia.org/wiki/Distance_correlation
13 https://en.wikipedia.org/wiki/Least-angle_regression
14 https://en.wikipedia.org/wiki/Simple_linear_regression



6

2. Notation and basics

2.1. Well-known basics

We use the underlined upper case X for the centered value X = x – Mean[x]. The angle θ* is
between the centered values X and Y. The Pearson correlation coefficient is r[x, y] = Cos[x –
Mean[x], y – Mean[y]] = Cos[X, Y] = Cos[θ*] so that θ* = ArcCos[r[x, y]]. The covariance of x
and y is the improduct of the centered values, divided by the number of observations n, or
cov[x, y] = X’ Y / n. Using covariance, the correlation coefficient r[x, y] = cov[x, y] / √(cov[y, y]
cov[x, x]). See e.g. Egghe & Leydesdorff (2009) for a visualisation of the shift towards
centered data, and Theil (1971:165) for a discussion of the geometric meaning that r =
Cos[θ*].

Along (1) θ and (2) θ*, we also consider the linear cases of (3) the “regression through the
origin” (RTO) for y given x, without a constant, (4) the “regression” in general, with a standard
constant, hence for Y given X. For linearity, the standard case with a constant may also be
formulated in terms of y and x, but some formulas then require the mention of the means. The
symbol ŷ will be the estimate of y, but e and ê are just different kinds of error.

For (4) with centered Y = X b + ê for matrix X, then Y’Y = b’X’X b + ê’ê using X’ê = 0. This is
commonly expressed as SST = SSX + SSE. In this, Y’Y = SST = sum of squares total, ê’ê =
SSE = sum of squared errors, and SSX = sum of squares of the explanation = SST - SSE. 15

The coefficient of determination is R2 = SSX / SST. Thus 1 – R2 = SSE / SST. For the
calculation of SST and SSE we must use centered data, though the regression itself might
also be formulated as y = X b + ê with a column of 1 in X for the constant. With n observations
and m explanatory variables in X, the root mean squared error (RMSE) adjusted for the
degrees of freedom is RMSE = √ (SSE / (n – m)). Colignatus (2006) discusses the sample
distribution of (adjusted) R-squared. When the (explanatory) variables are given without
measurement errors then there is not a “population” but a “space”, and the relevant parameter
for R is best denoted as ρ[X] to express the conditionality on the data.

While the coefficient of determination, R-squared, in this setup seemingly has an independent
definition as SSX / SST, it appears that it is actually the square of the correlation r between y
and its estimate ŷ. It might be possible to present this identity as a great insight and wonder,
but it is better to infer that such independence of definition actually wasn’t possible. It is better
to start with r[y, ŷ] and then show that steps in its calculation can be abbreviated as SST, SSX
and SSE. The R-squared for two vectors thus is the squared cosine of the angle θ* between
the centered values. The root mean squared error (RMSE) then relates to Sin[θ*] = √ (1 – R2)
= √ (SSE / SST), as RMSE = Sin[θ*] √ (SST / (n – m)).

The angle itself is a measure of distance. The angle divided by 360 degrees gives a measure
in [0, 1]. See Colignatus (2009, 2015) for a suggestion to measure angles on [0, 1] anyway,
using the plane itself as the unit of account, and to speak about turns. When it doesn’t matter
whether the angle is positive or negative, then 180 degrees would be a relevant maximum.
For nonnegative data the relevant maximum is 90 degrees. Subsequently 1 minus such value
is an angular measure of association.

The cosine is a measure of association too. Some have suggested to take 1 – Cos as a
distance, calling it “cosine distance”, but this actually is not a metric, see Van Dongen &
Enright (2012). The latter authors clarify that the sine and its root are a metric. Using Sin[θ*] =
√(1 – R2) as a measure of distance might be dubious. The square root causes a management
of the signs, and when the angle is larger than 90 degrees, then the same values of the sine
can only be distinguished by looking at the sign of the cosine again. It might well be that this
present discussion remains relevant for nonnegative vectors only.

                                                     
15 Often the abbreviation SSR is used, SSR = sum of squares of the regression, but then
confusingly with SSR = sum of squares of residuals = SSE = sum of squared errors. The use
of SSX has X, of both "explanation" and the variable x in y = b x + e.
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2.2. Regression through the origin (RTO), for nonnegative vectors

At stake now is the use of θ of the original and non-centered vectors, which leads us to
regression through the origin (RTO). Also, we consider nonnegative vectors. In this case, the
angle between the vectors is between 0 and 90 degrees.

With k = Cos[θ] = Cos[x, y], and faced with a choice of a distance measure, there is no
fundamental difference between using θ = ArcCos[k] or Sin[θ] = Sqrt[1 – k2]. The advantage
of using the sine instead of the angle is that we have some interpretations in terms of
regression because of the cosine. Also, θ / (90 Degree) has a lower slope than the sine at
small values of the angle, whence the sine is more sensitive, which fits our purposes. While
we can add lengths and angles, we cannot add values of the sine though.

There are slopes b and p from the regressions through the origin (RTO) z = b w + e and w = p
z + ε. Then k = Cos[v, s] = Cos[w, z] = Sqrt[b p]. The geometric mean slope is a symmetric
measure of similarity of the two vectors. Also Sin[v, s] = Sin[w, z] = Sin[θ] = Sqrt[1 – b p] is a
metric and a measure of distance or inequality or disproportionality in general.

All this is straightforward but there are some reasons to call attention to it.

 Political scientists have been looking for a sound inequality / disproportionality measure
without finding one, i.e. not finding the sine. They have been setting for the less adequate
Euclidean distance EGID discussed (not proposed) by Gallagher (1991), though with an
awareness that it wasn’t perfect, see Taagepera & Grofman (2003), Karpov (2008) and
Koppel & Diskin (2009). Colignatus (2018d) provides an overall evaluation.

 The use of angle, cosine and sine gives a perspective on compositional data (i.e.
nonnegative values on the unit simplex), see Barceló-Vidal and Martín-Fernández (2016).
This is discussed in Colignatus (2018a). Votes and seats are somewhat special data
however. Often seats are apportioned given the votes and the available seats in the
House, as ŝ = Ap[v, S]. This means that the influence of S cannot be neglected as
perhaps may be done in “pure” compositional data.

 Compositional data generally would use a log transform (with the geometric average as
the mean) and drop one equation because of the addition condition. For the present
paper, however, we don’t employ statistical decision theory, with regression as one of its
applications, but we employ statistical description (without distinction between true
coefficient b and its estimate). For determination of the angle between the vectors all
elements are relevant, though still with the scalar invariance. A contribution to RTO by
(seeming) “compositional data” like votes and seats is that we consider two errors, not
only z = b w + e (used by SDID) but also z = w + ẽ (used by ALHID, EGID and relatively
by CWSID).

The inoptimal situation of discussion in these different though related areas might have to do
something with that, remarkably, the angular distance and the sine tend not to be in the
textbooks. 16 Currently, errors are related to the normal distribution. From there, the Euclidean
distance ||y – ŷ|| = ||ê|| = √SSE, is a measure of variation and estimator for true variation,
whence regression is explained, and proceeds by minimising SSE to find the normal
equations and solve for coefficients. Instead it might make more sense to explain that the
angle can be used as a distance measure, and minimizing the angle means maximising
Cos[y, ŷ]. For regression with a constant this involves Cos[y, c + b x].

However, a binary regression in RTO has y = b x + e and ŷ = b x, so that Cos[y, ŷ] = Cos[y, x]
because of scale invariance, so that the angle is fixed. We still require another criterion than
the angle on y to find the parameter b.

 For RTO, SSE = e’e = (y – b x)’(y – b x) = y’y – 2 b y’x + b2 x’x gives a minimum for the
estimate b = y'x / x'x. On occasion b = √(y'y / x'x) Cos[y, x] may be useful.

                                                     
16 My sample though contains Mood & Graybill (1963) and Johnston (1972) and isn’t very
much larger.
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 From y = b x + e the alternative approach is to x’y = b x’x + x’e, take x’e = 0, so that b =
y'x / x'x. This is shorter but requires geometry instead of calculus. This namely projects y
onto x and imposes perpendicularity between x and e, so that Cos[x, e] = Cos[x, y – b x] =
0 which gives x’e = 0. The projection of y on x is given by b x, with b = x’y / x’x (using
projection matrix P = x x’ / x’x). Figure 2, taken from Colignatus (2011:143), shows the
geometry how y is projected onto x, which determines the size of the Explanation (b x), so
that y follows from addition of perpendicular b x and e. In the figure, the LHS is
normalised with Cause and Effect on the unit circle, so that the coefficient is Cos or R at
63%. The RHS is not normalised with coefficient b = 0.546.

Thus there is a geometric approach that is at least as intuitive as the minimisation of SSE with
reference to the normal distribution. The conceptual link between perpendicular x and e and
minimal SSE need not be intuitive however, and can only be proven exactly by looking at the
normal equation.

Figure 2. Projection of Effect {4, 9} on Cause (11, 3} 
17

Both approaches generate the same solution, and there is only the difference in presentation,
either via the angles between the vectors or the Euclidean norm of the error. Both relate to
the assumption of i.i.d. normal errors, but the latter can also be seen as step 2, when one
agrees that it is more informative to start with the use of the angle as step 1, rather than
derive the angle as a corollary or be actually silent on it.

My suggestion is that the world of statistics develops a greater awareness of the angle and
sine as distance metrics in relation to R-squared, at least for applications of RTO for such
nonnegative data. For textbooks in statistics, this particular combination might be regarded as
a missing link. The geometry would contribute to a better understanding of students of both
regression and the distinction between descriptive statistics (no distinction between b and an
estimate) and statistical decision theory (a true b and its estimate).

Shalizi (2015:19) states that “I have never found a situation where it [R-squared] helped at
all.” – see also Ford (2015). This statement is somewhat curious where minimising the sum of
squared errors is equivalent to maximising R-squared, so that R-squared is crucial. Obviously
one should be careful in interpreting the actual outcome of a R-squared calculation, e.g. in
specification search.

                                                     
17 The RHS: The projection of Effect y on Cause x generates the Explanation (b x). Addition of
b x and perpendicular Error e (from Explanation to Effect) then generates y again. The LHS:
Cause and Effect are normalised into the unit circle. Then y = b x + e gives y* = b* x* + e*,
using y* = y / ||y||, x* = ||x||, e* = e / ||y||, and b* = b ||x|| / ||y||. Obviously b* = Cos[y, x]. Thus
the Explanation (b* x*) on the LHS gives the Cos, in this example 63%. For the Explained part
of the Effect we use y*’y* = b* x*’x* b* + e*’e* or 1 = b*2 + e*’e*. We can say that b* of y is
explained too. Thus on the LHS Cause and Effect are on the unit circle (radius 1) and the
smaller arrows from the origin are on the circle with radius 0.63.
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2.3. A view from didactics

In education it happens far too often that a textbook starts a new section with “Now something
completely different” while it appears that one essentially has the same topic though only from
another perspective. Consider for example {x, y} = x + i y = r (Cos[φ] + i Sin[φ]) = Exp[ρ + i φ].
Obviously such perspectives exist and each perspective has something to say for it, and
obviously it is a result in itself when one can show the equality. But one also feels rather
exasperated, finding out that one only learns different languages for the same.

In the same way for correlation. The “explanation” on correlation, that “correlation between
two vectors is the cosine of the angle between the centered data”, is only required because
the word “correlation” has been introduced without explicit reference to the basic angularity of
the notion. Most students, who first are introduced to “covariance” and who then are
presented with correlation by a formula that uses covariance, will miss out on the notion that
correlation refers to an angle. Even when this is derived it tends to remain a mystery because
students have built up associations on “correlation” that tend to be quite different from angles.

Perhaps it was a deliberate decision by Pearson to keep trigonometry outside of the realm of
statistics, for fear that the subject might appear more dreadful than needed. Instead, it would
be better to make trigonometry more acceptable, see “Trig rerigged” in Colignatus (2009,
2015). When α is the size of the turn on the angular circle with circumference 1, then
functions X = Xur[α] and Y = Yur[α] give the values of {X, Y} on the unit radius circle, such that
X2 + Y2 = 1. The upper case variables X and Y, as standard co-ordinates on the unit circle,
have the same role as the lower case variables x and y as the standard co-ordinates for the
plane. This approach avoids the mysterious names and uninformative labels “sine” and
“cosine”, and avoids the needless calculation that 90 degrees is a quarter of 360 degrees.
Useful is also Θ = 2π, pronounced as “archi” from Archimede, and written with capital theta. 18

The only reason to stick to the use of sine and cosine defined on the unit radius circle itself is
that their derivatives translate into each other. Once students have learned trigonometry with
Xur and Yur while avoiding the current opacity, there would be easier acceptance of sine and
cosine for who can deal with calculus anyhow.

With Xur defined (derived) for vectors as Xur[α] = Xur[x, y] = (x / ||x||)’ (y / ||y||), and a new
function for centered data as XurCD[x, y] = Xur[x – Mean[x], y – Mean[y]], then the meaning
of this XurCD should be clear. With each value of X = Xur there is a Y = Yur on the unit radius
circle, and the angle α that gives the size of the turn in [0, 1]. Once the meaning is clear, there
is obviously no objection to calling XurCD “correlation”, though.

It would be preferable to first set up the basic structure of correlation and regression in this
clean manner, before entering upon the error distribution, such that “mean” is replaced by
“expectation”, and with such use of covariance. Present textbooks (curriculum) however shy
away from re-engineering trigonometry, and work around corners by introducing correlation
as if it were something really new. In practice they block the understanding by many.

3. Evolving statistics

3.1. The statistical triad of Design, Description and Decision

Statistics has the triad of Design, Description and Decision. Up to fairly recent, statistics relied
much upon the paradigm by R.A. Fisher that focused on population and sample distributions.
With the dictum “correlation is not causation”, statistics assumed that causation was given by
the scientific model, and then concentrated on correlation for cases with clear causality. Since
Pearl (2000), the issue of causality is more in focus again, though this doesn’t change the
triad.

                                                     
18 https://boycottholland.wordpress.com/2014/07/14/an-archi-gif-compliments-to-lucas-v-
barbosa/
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 Design is especially relevant for the experimental sciences. Design is much less
applicable for observational sciences, like macro-economics and national elections when
the researcher cannot experiment with nations.

 Descriptive statistics has measures for the center of location – like mean or median – and
measures of dispersion – like range or standard deviation. Important are also the
graphical methods like the histogram or the frequency polygon. Measures like the Richter
scale for earthquakes belong in this category too. Description relates to decisions on
content (e.g. in medicine or economics). Description becomes more important because of
Big Data.

 Statistical decision making involves the formulation of hypotheses and the use of loss
functions to choose alpha and beta values to evaluate hypotheses. A hypothesis on the
distribution of the population provides an indication for choosing the sample size. A typical
example is the decision error of the first kind, i.e. that a hypothesis is true but still
rejected. The probability of that error, the alpha, is called the level of statistical
significance. This notioin of statistical significance differs from causality and decisions on
content. (See e.g. Varian (2015).)

Historically, statisticians have been working on all three areas, but the most difficult was the
formulation of decision methods, since this involved both the calculus of reasoning and the
more involved mathematics on normal, t, chi-square, and other frequency distributions. In
practical work, the divide between the experimental and the non-experimental (observational)
sciences appeared insurmountable. The experimental sciences have the advantages of
design and decisions based upon samples, and the observational sciences basically rely on
descriptive statistics. When the observational sciences do regressions, there may be an
ephemeral application of statistical significance that invokes the Law of Large Numbers, that
all error is approximated by the normal distribution.

This statistical tradition is being challenged by Big Data including the ease of computing – see
also Wilcox (2017). When the relevant data are available, and when you actually have the
space or population data, then the idea of using a sample may evaporate, and you would not
need to develop hypotheses on those distributions anymore. In that case descriptive statistics
tends to become the most important aspect of statistics. Decisions on content then are less
compounded by statistical decision making on statistical phenomena. It comes more into
focus how descriptive statistics relate to decisions on content. Such questions already existed
for the observational sciences like for macro-economics and national elections, in which the
researcher only had descriptive statistics, and lacked the opportunity to experiment and base
decisions upon samples. The disadvantaged areas may now provide insights for the earlier
advantaged areas of research.

The suggestion is: to transform the loss function into a descriptive statistic itself. An example
is the Richter scale for the magnitude of earthquakes. A measurement on that scale is both a
descriptive statistic and a factor in the loss function. A community making a cost-benefit
analysis has on the one hand the status quo with the current risk on human lives and on the
other hand the cost and benefit of investments in new building and construction including the
risk of losing the investments and a different estimate on human lives. In the evaluation, the
descriptive statistic helps to clarify the content of the issue itself. For the amount of
destruction it would not matter how earthquakes are measured, but for human judgement it
would, as the human mind need not be sensitive to relevant differences. The key issue is no
longer a decision within statistical hypothesis testing, but the key issue is the adequate
description of the data and the formulation of the decision problem in terms for better human
understanding of what is involved.

3.2. A possible reason why RTO may be less prominent in the textbooks

Statistics and specifically textbooks apparently found relatively little use for original (non-
centered) data and RTO. A possible explanation is that statistical theorists fairly soon
regarded descriptive statistics as less challenging, and focused on statistical decision making.
Textbooks prefer the inclusion of a constant in the regression, so that one can test whether it
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differs from zero with statistical significance. The constant is essentially used as an indicator
for possible errors in modeling. The use of RTO or the imposition of a zero constant would
block that kind of application. This (traditional, academic) focus on statistical decision making
apparently caused the neglect of a relevant part of the analysis, that now comes into focus
again.

I am not familiar with the history of statistics – see Stigler (2008), Lehmann (2008) and John
Aldrich’s website 19 – and it is unknown to me what Pearson (1857-1936), Gosset (1876-
1937), Fisher (1890-1962) and other founding and early authors wrote about the application
of the cosine or sine, other than what transpires from current textbooks. The choice to apply
the cosine to centered data to create correlation and R-squared is deliberate. Pearson would
have been aware that the cosine might also be applied to original (non-centered) data, but he
rejected this for his purposes on variation. RTO is available in the mantra, though, and not
obliterated. 20 This history is interesting yet history is not my focus. Quite likely the theoretical
challenge was determined by the lack of Big Data. Thus we can understand that these
founders focused on statistical decision making and hypotheses on distributions rather than
on description.

3.3. Statistical significance

Part of the history is that R.A. Fisher with his attention for mathematics emphasized precision
for statistical purposes while W.S. Gosset with his attention to practical application on content
emphasized the effect size of the coefficients found by regression. Somehow, precision in
terms of statistical significance became more important in textbooks than content significance,
and empirical research has rather followed Fisher than the practical relevance of Gosset. This
history and its meaning is discussed by Ziliak & McCloskey (2007), see also the discussion by
Gelman (2007) referring to Gelman & Stern (2006).

3.4. Causality

Since the cosine is symmetric, the R-squared is the same for regressing y given x, or x given
y. Shalizi (2015, p18) infers from the symmetry: "This in itself should be enough to show that
a high R² says nothing about explaining one variable by another." This is too quick, with too
much reliance on “in itself”. When theory shows that x is a causal factor for y then it makes
little sense to argue that y explains x conversely. Thus, for research the percentage of
explained variation can be informative. Obviously it matters how one actually uses this
information. For standardised variables y and x (difference from mean, divided by standard
deviation), 21 y = R x, so that the regression coefficient is the R, and then the R-squared can
also be understood with attention for the effect size. For some applications a low R-squared
would still be relevant for the particular field. Researchers do not tend to work with
standardised variables, and don’t have to when the R is available by itself.

For standardisation, let sx and sy be the standard deviations, and y = Y / sy and x = X / sx the
standardised variables. Then Y = b X + e gives y = (b sx / sy) x + e / sy or y = r x + e, using r
= b sx / sy and defining e = e / sy. We may also standardise Ŷ = b X. Its standard deviation is
b sx, and thus ŷ = Ŷ / (b sx) = x. Thus we may also write y = r ŷ + e. This could be non-
informative on details for more variables, though.

3.5. Specification search

When it is reported that a regression has an R-squared of say 70% then this means that 70%
of the variance of y is explained by the variance of ŷ. In itself such a report does not say
much, for it is not clear whether 70% is a little or a lot for the particular explanation. For

                                                     
19 http://www.economics.soton.ac.uk/staff/aldrich/kpreader.htm and more general
http://www.economics.soton.ac.uk/staff/aldrich/Figures.htm
20 https://en.wikipedia.org/wiki/Simple_linear_regression
21 http://andrewgelman.com/2009/07/11/when_to_standar/
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evaluation we obviously also look at the issue on content (and the regression coefficients).
The use of R-squared is primarily for specification search.

One can always increase R-squared by including other and even nonsensical variables. For a
proper use of R-squared, we would use the adjusted R-squared. R-adj finds its use in model
specification searches - see Giles (2013). For an increase of R-adj, coefficients of new
variables must have an absolute t-value larger than 1. A proper report would show how R-adj
increases by the inclusion of particular variables. A researcher would compare to studies by
others on the same topic. Comparison on other topics obviously would be rather meaningless.
Shalizi (2015) also rejects R-adj and suggests to work directly with the mean squared error
(MSE), also corrected for the degrees of freedom. Since R-squared is the squared cosine,
then the MSE relates to the sine, and these are basically different sides of the same coin, so
that this discussion is much a-do about little. As said, for standardised variables, the R-
squared also generates the regression coefficient, and then it is relevant for the effect size.

Giles (2013) restates the "uselessnes" of R-squared: "My students are often horrified when I
tell them, truthfully, that one of the last pieces of information that I look at when evaluating the
results of an OLS regression, is the coefficient of determination (R2), or its "adjusted"
counterpart. Fortunately, it doesn't take long to change their perspective!" Such a statement
should not be read as providing the full clarification on cosine or sine in general, or as
rejection of the relevance of the effect size also for y = R ŷ + u.

R-squared is not devoid of meaning. For a satisfactory regression it sets the level that must
be surpassed by the next satisfactory regression. Reporting on it is important for future
researchers, though they would have to use the same dataset.

4. Application to votes and seats

4.1. Descriptive statistics and decisive apportionment

Vectors s and z = s / s'1 have been created by human design upon v, and not by some
natural process as in common statistics. A statistical test on s | v would require to assume that
seats have been allocated with some probability, and this doesn't seem to be so fruitful when
there was an underlying system of rules. We can use the same linear algebra however, now
for descriptive statistics.

The ID measures are used to compare outcomes of electoral systems across countries,
though such comparisons have limited value when countries have different designs.
Taagepera & Grofman (2003) mention also some other reasons for an ID measure: (i)
comparison on President, Senate, House, or regional elections (what they call "vote splitting"
but is better called: votes for different purposes), (ii) comparison on years in similar settings
(both votes and seats) (what they call "volatility" but what is better called: votes on different
occasions).

Above measures ALHID, EGID and CWSID have drawbacks and are inoptimal. There
appears to be some distance between the voting literature on inequality / disproportionality
and the statistics literature on association, correlation and concordance. A main point is that
voting uses ẽ = z - w (conventionally) and now z = b w + e (for SDID) as descriptive, while
statistical theory tends to think in terms of hypotheses tests on general relationships like s = c
+ B v + u and then require stochastics.

4.2. Different worlds for votes and seats: DR and EPR

A general distinction is between District Representation (DR) and Equal or Proportional
Representation (EPR). “Elections” in systems of EPR differ from those in DR, and we should
actually avoid the single term “election” for both cases when the meanings are fundamentally
different, see Colignatus (2018c).
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EPR recognises that elections for Parliament concern multiple seats, such that there are
conditions for overall optimality. In DR, each district may have a single seat election, with
neglect of conditions for overall optimality.

In DR, votes for candidates other than the district winner(s) are not translated into seats, and
the system discards those votes. DR-elections have much strategic voting for fear that the
vote is lost. The true first preferences thus are masked. Comparing votes and seats is actually
comparing masked votes and seats, with unknown discarded votes. Only geography might
cause a semblance of balancing at the national level. Also the median voter theorem might
cause that voters concentrate around the middle, but this should not deceive us in thinking
that we could achieve a proper “comparison” of votes and seats in DR.

4.3. Apportionment in EPR

Only in EPR there is a deliberate apportionment of the seats given the votes.

 In general the apportionment will not be perfect, since the distribution over perhaps
millions of votes must be approximated by perhaps a few hundred seats (with integer
values). The apportionment involves some political philosophies that have been adopted
by the national parliaments.

 There need not be a real distance between the voting literature and statistics, at roots,
because (i) the Chi-Square / Webster / Sainte-Laguë (CWSID) apportionment philosophy
obviously compares with the Chi square, and (ii) the apportionment according to Hamilton
/ Largest Remainder (HLR) minimises the absolute difference, or the Loosemore-Hanby
index (ALHID), but also minimises the sum of squared differences, or the Euclidean
distance (or the EGID index). Perhaps this early historical linkage also caused the
presumption that voting theory already "had enough" of what was available or relevant in
the theory of statistics.

 Researchers on voting may have a tendency to remain with these philosophies when they
measure the outcomes from such apportionments too. Apportionment (deciding) and
measuring (describing) have different purposes and methods, tough there may be a
family resemblance.

 When comparing results from different countries, however, it would make sense, to use a
common best measure, rather than reporting that each country applies its own method.

There are more aspects, yet this present article does not focus on voting theory but on giving
an overview of statistics, that is also applicable for this setting. The present discussion
however highlights where comparing votes and seats differs from other purposes in statistics:
(i) First the requirement on the diagonal of the scatter plot of w and z. (ii) Secondly,
comparing votes and seats cannot rely on stochastic assumptions for testing, and thus wants
to describe & measure. We use the same linear algebra but for a different purpose. The
discussion helps to see that the choice of an inequality / disproportionality measure
apparently is not self-evident, at least with the current literature and textbooks so dispersed
over the topics that come together here.

4.4. Different models and errors

We do not want to explain s by v, in which case we would be very careful w.r.t. the exclusion
of the constant. Instead, we want to design a measure. This still uses the same linear algebra.
The relevant distinctions are (i) between true values versus estimates, and (ii) between level
variables versus unitised variables.

Q = V / S is the natural quota, or number of votes to cover a seat. There may be a threshold
to get a seat, or just the natural quota. Voters may vote for parties that do not pass the
threshold and that thus get no seats. This sums to the "wasted vote" W. Standardly the
wasted vote and zero seats are collected in one category "Other", so that v and s still have
the same length. The votes that cause a seat are Ve = V – W. For regression it is
conventional to write s = T v, so that s is explained by v. We call this vector-proportionality
because of the lack of a constant. Any such relation also holds for its sum totals, and we can
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usefully define T = S / V = 1 / Q. In reality we have s = B v + u or z = b w + e with
proportionality parameter b and error e. There is only unit proportionality or equality if z = w or
b = 1 and e = 0. Let a = S v / V = T v = v / Q = S w be the proportionally accurate average of
seats that a party might claim. A common error term is s – a = S (z – w). The unit simplex is
the natural environment to look at this, though we should not forget about the role of S.

The major distinctions are in Table 2.

Table 2. Basic models and their errors

T = S / V = 1 / Q,   B = b T Original Unitised

Without parameter  22) s = T v + ũ = S w + ũ = a + ũ z = w + ẽ      with ẽ = ũ / S

Regression through origin s = B v + u z = b w + e

w = p z + ε

With constant (centered) s = c + B v + û z = γ + β w + ê

The analysis better uses regresssion through the origin (RTO) and not regression with a
constant (Pearson). The value a = S w will be the average, and apportionment of s will tend to
be for Floor[a] ≤ s ≤ Ceiling[a]. There are three different error measures:

 ê from the standard regression with a constant, using centered data (Pearson).
 e from regression through the origin (RTO), with coefficient b = z'w / w'w. (SDID uses e.)
 ẽ = z – w or “direct error” for the plain difference, using b = 1. (ALHID and EGID use ẽ.)

Some useful mnemonics directly are:

 ê'ê ≤ e'e ≤ ẽ'ẽ because regression parameters allow the reduction of error.
 e picks up a potential source for proportionality that ẽ does not allow for.
 1' ẽ = 0 and b = 1 – 1'e because 1'z = 1'w = 1.
 b = z'w / w'w because we multiply z = b w + e with w' while w'e = 0. The regression

selects the b with perpendicular w and e, or with w'e = 0 and minimal e'e.
 Taking the plain differences ẽ = z – w and weighing them by the vote shares and

normalising on their squares, gives w' ẽ / w'w = b – 1 = -1'e. This might perhaps be seen
as an "implicit estimate".

For centered data, we had a simple direct relation between on the one hand the Euclidean
norm of the error, via SSE and RMSE, and on the other hand the sine √(1 – R2) = √ (SSE /
SST). We now wonder about RTO. Observe that the Euclidean norm of the error is SSE = √
e’e = ||e|| while the Euclidean distance between the vectors is √ ẽ’ ẽ = ||ẽ|| = ||z – w||.

4.5. Disproportionality, dispersion and education

For education we want to maintain that we want to explain to students that any line through
the origin in 2D represents a proportional relationship. For vectors and their scatter plot we
would speak about "vector-proportionality". Thus, also for z and w, a relation z = α w is a
vector-proportional relationship, and z = w is only unit or diagonal vector-proportional. It so
happens that the unit simplex is defined such that 1'z = α 1'w, thus any pure proportional
relation in that space requires α = 1 of necessity. I would phrase this as that the space is
defined such that those other pure vector-proportions do not exist. I would not phrase it as
saying that (quote) "z = α w for α ≠ 1 would not be vector-proportional and that only α = 1 is
vector-proportional" (unquote). It is better to say: we only have z = b w + e with vector-
proportionality parameter b and scattered e. Thus, overall, it would be didactically preferable
to speak about "unit or diagonal proportionality" for voting rather than "proportionality". Only

                                                     
22 This is not unreasonable for official data, when a law declares some ŝ = Ap[S, v] to be
optimal. Regression then would misstate the error, though b would still be a measure.
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when e = 0 then we also have equality. Equal Representation is better anyway. It may be
difficult to change a convention, but it would help for mathematics education.

This calls attention to the relation with dispersion. Table 3 reviews the relations. The key
relationship in RTO is that b = 1 – 1'e. Thus b = 1 ↔ 1'e = 0. The upper right cell is
impossible: Not[e = 0 & 1’e ≠ 0]. The lower right case of disproportionality implies dispersion,
but dispersion (e ≠ 0) need not imply such disproportionality. The left column with b = 1 is in
opposition to the right column, but we must distinguish between unit or diagonal vector-
proportionality without dispersion (equality) and average unit or average diagonal vector-
proportionality with dispersion.

Table 3. Disproportionality and dispersion in Regression Trough the Origin (RTO)

RTO:  b = 1 – 1'e 1'e = 0  &  b = 1 1'e ≠ 0  &  b ≠ 1

No dispersion

e = 0

 Unit or diagonal vector
proportionality

 Equality

 Logically impossible

Dispersion

e ≠ 0

 Average unit vector
proportionality can come with
dispersion. E.g. w = {3, 3, 2}/8
and z = {2, 1, 1} / 4.

 Disproportionality by
slope and disperson

With b = 1 then e = z – b w = z – w = ẽ. We already had 1' ẽ = 0 but b = 1 causes also 1'e = 0.
With b = 1 then w’ (z – w) = 0, of which z – w = 0 is only a special case.

4.6. True variables v* and s* and particular observations v and s

A proportional relationship for 1D variables is best described by the 2D line λ y + μ x = 0,
which coefficients may be normalised on the unit circle. For nonzero λ this reduces to y = T x
with T = - μ / λ, where slope T also is the tangent of the angle of the line with the (horizontal)
x-axis. For vectors this generalises into vector-proportionality, with now a plane u = λ y + μ x
and then choosing u = 0 so that y = T x again. For example, y = {1, 2, 3} and x = {2, 4, 6},
then T = ½, and we would see a line without dispersion in the scatter plot.

 The notion of unit proportionality as in the line y = 1 x + 0 is a mathematical concept,
while in statistics with dimensions we can rebase the variables, so that there need not be
a natural base for 1.

 For voting, there are natural bases in the individuals and seats. Larger parliaments may
have more scope for a better fit. Still, normalisation onto the unit simplex makes sense.

 At first sight it is not clear where voting differs from other applications, say the ratio of 1
car per 2 persons. Any vector-proportional relation s = T v also holds for the totals. Thus
S = 1's = T 1'v = T V. In {w, z} space it reduces to a scatter with diagonal z = w because
division gives z = s / S = T v / S = w. When any vector-proportional relationship (also non-
unity) is transformed onto the unit simplex, then they become unit or diagonal proportional
in the scatter, and we lose the original information.

 There also is dispersion. For the sake of understanding this issue of proportionality, but
not for the sake of estimation and hypothesis testing, we now distinguish true elements
and their observations. The basic solution namely is to distinguish the true vector-
proportionality s* = T* v* that holds for all true elements on one hand, and on the other
hand observations (e.g. errors in variables) s = B v + u, for which we only have the
definition for the sum totals as T = S / V. This also generates ũ from s = T v + ũ.

 For theory we have z* = w* but for the data z = w b + e. We divided by S and took b = B /
T and e = u / S. Thus we should not focus only on parameters B and b but also be aware
of the hidden Q = V / S or T = 1 / Q, and perhaps consider T as an estimate on T*.
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4.7. Cos, slope and concentrated numbers of parties (CNP)

We have b = z'w / w'w = √(z'z / w'w) Cos. The relation between Cos and b is by means of w'w
and z'z. They take the place of the covariances that are not used in RTO, and are also known
as the Hirschman-Herfindahl concentration indices. They are known in the voting literature by
the inverse "effective number of parties" Nv = 1 / w'w and Ns = 1 / z'z. Since it hasn't been
clarified what "effectiveness" would be, a better term is “concentrated number of parties”
(CNP).

For theory we have s* = T* v* for the vectors, but for the data we have s = B v + u and thus
only T = S / V for the totals. Thus there are not only parameters B and b but also an
“estimate” T on T* (or perhaps institutionally given T = T*). Table 4 reviews the relations. For
readibility we drop the stars in the theory column.

Table 4. Norm and estimation, in levels and unitised, regression through origin (RTO)

Norm or true situation 23 24) RTO in levels RTO on unit simplex

Theoretical s and v Observed s and v w = v / V and z = s / S

s = T v s = B v + u    z = b w + e,   e = u / S

1' s = T 1' v  or T = S / V 1' s = S = B V + 1' u 1' z = 1 = b + 1' e

T = S / V and s = T v + ũ z = w + ẽ      with ẽ = ũ / S

s = S / V v, thus z = w RTO: 1'u need not be 0 RTO: 1'e need not be 0

B = S / V  – 1' u / V b = 1 – 1' e = B V / S

s's  = SST = SSX + SSE Compare B with T = S / V Compare b with 1

Cos = s'v / √(v'v  s's) = 1 Cos = s'v / √(v'v  s's) Cos = z'w / √(w'w  z'z)

B = s'v / v'v = T  Cos B = s'v / v'v = √(s's / v'v) Cos b = z'w / w'w = √(z'z / w'w) Cos

R2 = T2 v'v / s's   (SSX / SST) R2 = B2 v'v / s's   (SSX / SST) R2 = b2  w'w / z'z    (SSX / SST)

R = T √(v'v / s's) = Cos R = B √( v'v / s's) = Cos R = b  √(w'w / z'z) = Cos

T = s'v / v'v         (alike covar) 1 – R2 = 1 – Cos2 = u'u / s's 1 – R2 = 1 – Cos2 = e'e / z'z

T = s's / s'v         (alike covar) Cos = 1 ↔ u = 0 Cos = 1 ↔ e = 0

T = √( s's / v'v)       (no covar) Sin2 = u'u / s's = SSE / SST Sin2 = e'e / z'z = SSE / SST

Key points of RTO on the unit simplex are, using mostly the last column:

 The sum of errors 1'u or 1'e need not be 0, but 1' ũ = 0 and 1' ẽ = 0.
 It is a contribution to RTO by compositional data that we now also look at T = S / V and s

= T v + ũ, or z = w + ẽ. This features in voting theory but might be inoptimal.
 Perhaps useful to be aware of: b w'w = p z'z = w'z = b / Nv = p / Ns while b / p = Ns / Nv is

also the square of another geometric average of slope, Sqrt[b / p].
 The coefficient of determination R2 applied to non-centered data gives the ratio of SSX /

SST, with: SST = sum of squares total, SSX = sum of squares of the explanation = SST -
SSE.

 For RTO, Cos takes the role of the coefficient of determination R2 in OLS with a constant.
We might simply use Cos2. However, it is clearest to write R = Cos, that is, within the
confines of RTO. When we compare RTO with standard regression, then it we better
distinguish the two again.

 v' u = w' e = 0, following the estimates for B and b (or they are chosen such).
                                                     
23 Thus actually s* = T* v*, with perfection ũ* = 0. This  column is not to be confused with
observations s = T v + ũ, see Table 2.
24 This column drops the stars for readability.
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 The "analysis of squares" (no deviations and thus no “analysis of variance”) on SST
gives:
z'z = (b w' + e') (b w + e) = b2 w'w + 2bw'e + e'e = b2 w'w + e'e with w' e = 0. Then:
1 = b2 w'w / z'z + e'e / z'z = R2 + e'e / z'z. We also have R = Cos.

 Sin2= 1 - Cos2 = e'e / z'z = e'e / (b2 w'w + e'e)
 Thus there is a perfect fit e = 0 if and only if Cos = 1, when b = 1 and z = w.
 Observe that b = 1 – 1' e = B V / S so that B has a relevant dimensional factor.
 With z = s / S and e = u / S, Sin2 = e'e / z'z = u'u / s's, and thus it doesn't matter whether

we regress on the levels or the unitised variables to find Cos and Sin.
 We may regard Cos = b  √(w'w / z'z) = b √ (Ns / Nv) as the explanation of Cos. We may

also see this as an explanation of the slope as b = Cos √(Nv / Ns).
 The footnote in the table is relevant unless you already saw the distinction between the

columns, or the distinction between theoretical s* and v* and observed values s and v.

4.8. Analyses of squares for the direct error

Table 4 decomposes SST into SSX and SSE for the model z = b w + e, and we deduce that
Sin2 = e'e / z'z = SSE / SST. There is also the model z = w + ẽ. The square of the Euclidean
distance between the vectors is ẽ' ẽ = (z – w)'(z – w). We would be interested in a relation
between this Euclidean distance and the sine for variables in RTO.

We find this relationship: Sin2 = (ẽ' ẽ / z'z – h) / (1 – h) for h = (1 / b – 1) 2. While my historical
knowledge about this area is limited, my impression is that this could well be a new finding.

Together: SSE / SST = Sin2 = e'e / z'z = (ẽ' ẽ / z'z – h) / (1 – h).

The interpretation of the RHS is: The sine makes the Euclidean distance ẽ' ẽ relative to z'z
and subtracts a value h, because the cosine uses the slope to see proportionality that the
Euclidean distance doesn't pick up, and then rebases with this h to remain in [0, 1].

The deduction is:

(1) A direct result from z = z is that e = ẽ + (1 – b) w or ẽ = e – (1 – b) w
(2) The LHS of (1) with e gives e’e = ẽ’e because w’e = 0.
(3) The LHS of (1) with ẽ gives ẽ’e = ẽ’ ẽ + (1 – b) w’ ẽ = e’e.
(4) Using w on (1) gives: e'w = ẽ'w + (1 – b) w'w, and with w'e = 0 also ẽ'w = - (1 – b) w'w.

Also b = 1 + ẽ'w / w'w. We already had this "implicit regression" above.
(5) Eliminating w’ẽ from (3) and (4) gives ẽ' ẽ = e'e + (1 – b)2 w’w. We already had ê'ê ≤ e'e ≤

ẽ'ẽ and see this confirmed by the sum of squares
(6) From (5):

ẽ' ẽ = e'e + (1 – b)2 w'w

ẽ' ẽ / z'z = e'e / z'z + (1 – b)2 w'w / z'z

ẽ' ẽ / z'z = Sin2 + (1 – b)2  Cos2 / b2

ẽ' ẽ / z'z = Sin2 + h (1 – Sin2) using Cos2 = 1 – Sin2 and h = (1 – b) 2 / b2  = (1 / b – 1) 2

ẽ' ẽ / z'z = h + (1 – h) Sin2

Sin2 = (ẽ' ẽ / z'z – h) / (1 – h)

For voting theory this can be translated into a relation between EGID = √( ẽ' ẽ / 2) and SDID.
Colignatus (2018d) contains plots and tables that clarify the different behaviours.
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4.9. Symmetry

From symmetry, w = p z + ε generates the same insights. Cos and Sin are symmetric, and
thus we have Sin2 = ε’ ε / w’w. We can write down the result straight away, yet in the repeat
deduction, the negative sign in w = z - ẽ causes a distraction, and thus it is better to repeat
the steps, also writing w = z + f so that f ’ f = ẽ' ẽ. Then

(1) From w = w or z + f = p z + ε we find ε = f + (1 – p) z
(2) With ε we have ε’ ε = ε’ f since z’ ε = 0
(3) With f we have f ‘ε = f ‘ f + (1 – p) f ‘ z = ε’ ε because of (2)
(4) With z we get z’ ε = z’ f + (1 – p) z’z and with z’ ε = 0 also z’ f = - (1 – p) z’z
(5) Eliminating z’f from (3) and (4) gives f ‘ f = ε’ ε + (1 - p)2 z’z = ẽ' ẽ from f = - ẽ
(6) From (5) and also using p = z’w / z’z = √ (w’w / z’z) Cos:

ẽ' ẽ = ε’ ε + (1 - p)2 z’z

ẽ' ẽ / w'w = ε’ ε / w’w + (1 - p)2 z’z / w’w

ẽ' ẽ / w'w = Sin2 + (1 – p)2  Cos2 / p2

ẽ' ẽ / w'w = g + (1 – g) Sin2   with g = (1 / p – 1) 2

Sin2 = (ẽ' ẽ / w'w – g) / (1 – g)

Thus, both SDID and EGID are symmetric measures. The statement that SDID picks up
disproportionality from an imputed angle b does not imply asymmetry (because of the
asymmetry in the regression z = b w + e). The same sensitivity can also be formulated from
the inverted regression.

The latter form can be rewritten using w* = w / ||w||. Then the relative sum of squared
differences can also be seen as another weighted sum of relative differences.

ẽ' ẽ / w'w = Sum[(z – w)2 / w’w] = Sum[w*2 (z / w – 1)2]

5. More on interpretation

5.1. Statistics and heuristics on the slope

This paper uses descriptive statistics, and we are not in hypothesis testing. The linear algebra
in this paper should not be confused with statistical decision methods. The latter methods use
the same linear algebra but also involve assumptions on distributions: and we will make no
such assumptions. However, when the linear algebra results into a new measure, then this
measure can be used for new statistics again.

A heuristic is this: the voting literature has the Chi-Square / Webster / Sainte-Laguë (CWSID)
measure 10 Sum[w (z / w  - 1)2], as the weighed sum of the squared deviations of the ratios
from the ideal of unity provided by the diagonal. CWSID is not symmetric. If we would try to
make CWSID symmetric then this causes division by zero, since some parties meet with zero
seats (the "wasted vote"). An insight is: the idea to compare each ratio to unity is overdone,
because the criterion or proportionality rather applies to the whole situation, and we should
not be distracted by single cases. If b is the slope of the regression of z = b w + e, then (1 -
b)2 is a measure on the regression coefficient. This shifts the focus from individual parties to
the relation between z and w. Thus we now consider the slope-diagonal deviation. This gives
scope for symmetry by also looking at the regression w = p z + ε, so that we can compare b
and 1 / p.

The latter was the heuristic that started the Colignatus (2018d) paper. Taking the geometric
average Sqrt[b p] gave the recognition that this gave the same mathematical expression of
the cosine as well. In other words Cos[v, s] = Sqrt[b p]. At some point it appeared that the role
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of the cosine was more important by itself, and thus not regarded as a slope, as it generates
the inequality / disproportionality measure Sin. This again was first seen as a slope-diagonal
deviation measure but eventually the name sine-diagonal seems more accurate. This double
nature of cosine and sine may be illustrated by Rubin's Vase, see Figure 3.

Figure 3. Rubin's Vase 
25

Alongside CWSID other common measurea are the absolute difference / Loosemore-Hanby
index (ALHID) and Euclid / Gallagher index (EGID). CWSID, ALHID and EGID are parameter-
free, and clearly fall under descriptive statistics. My original view was that SDID is parameter-
dependent, since it refers to b and p. Paradoxially, however, while we started out looking for a
slope measure, Cos is actually parameter-free, since its value as a similarity measure can be
found without thinking about slopes at all. It is just a matter of perspective, see Figure 3. Thus
the bonus of above heuristic is only that it helps to better understand what the measure does.
The awareness of this double nature is important for the comparison of ALHID and SDID. For
ALHID one might argue that it takes error z - w = ẽ in Table 2 under the assumption that
official regulations have chosen s = ŝ = Ap[S, v] with some optimality. Thus, the use of z = b w
+ e can be seen as changing the error. However, when Cos is regarded as a parameter-free
measure of similarity, then no errors have been changed. Thus we can compare ALHID and
SDID with this argument out of the way. Interpreting Cos as the outcome of RTO is only a
bonus, that helps in the development of more perspectives. The useful perspective is that
SDID may pick up more inequality / disproportionality than ALHID in the official s = ŝ = Ap[S,
v] for example by an imputed b that systematically differs from 1. And the cosine is a slope
again in the equation with the standardised variables.

5.2. Electoral justice and inequality

Balinski & Young (1976:2) quote Daniel Webster:

"To apportion is to distribute by right measure, to set off in just parts, to assign in due
and proper proportion."

Webster’s emphasis was on "due and proper" and not on "proportion", but the world adopted
"proportionality". Arend Lijphart has written about proportionality as "electoral justice". I have
considered adopting the term "justice" too but settle for the notion that z = w means equal
proportions, or equality. A 2D line y = ½ x is proportional too. Thus, rather than speaking
about "proportionality" in comparing votes and seats, it is better to speak about unit or
diagonal vector-proportionality and electoral equality. Similarly, while the standard expression
is "Proportional representation" (PR) it would be better to speak about Equal or Proportional
Representation (EPR) or even Equal Proportional Representation (EPR). I don't think that
there is much chance that the world will rephrase this for the sake of education, but at least it
is important to explain the vocabulary as a possible source for confusion. 26

                                                     
25 https://en.wikipedia.org/wiki/Rubin_vase
https://commons.wikimedia.org/wiki/File:Rubin2.jpg
26 France has the slogan "Liberté, Egalité, Fraternité", and thus it seems important to explain
to the French that their system isn't equal. Using the word disproportional wouldn't ring their
bell.
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5.3. From the Humanities to Science

The issue of votes and seats contains an awkward element. The issue merges a topic of
content with methods of statistics, and it appears that political science can use an infusion
from statistical ethics as well. For description we know that displaying squares by their heights
is misleading, since comparing 5 and 10 is quite else than comparing 25 and 100. This
principle also causes the need to magnify what might be overlooked though. The underlying
issue however is much more involved.

Colignatus (2018c) evaluates the “political science of electoral systems” and concludes that
this branch of study still remains in the Humanities, without the methods of clear definitions,
modeling and measuring as is required for proper Science. A telltale is the use of the word
“election”, while EPR-elections are quite different from DR-elections. The invitation to
empirical scientists is to help re-engineer the “political science of electoral systems” to
become a real science.

Remarkably, political scientists Shugart & Taagepera (2017) themselves, in a
recommendable book that indeed is a major advance, tend to agree that “political science of
electoral systems” in general isn’t a science yet indeed, and they present their own book as a
rare exception: “Thus the book is a rare scientific book about politics, and should set a
methodological standard for all social sciences.” (p:320) They point to the trap of testing for
statistical significance and the direction of the coefficient, while neglecting the effect size that
would be relevant on content. “This can produce valuable insights, but these so-called
“empirical models” are not really models at all. (...) Every peasant in Galileo’s time knew the
direction in which things fall – but Galileo felt the need to predict more than direction.” (p324).

Unfortunately, while S&T mention different properties of DR and EPR, they apparently are
blind to the key distinction, and thus in this key respect they are widely off-track. 27 They
employ the words “vote” and “seat” as if these would be the same phenomenon everywhere
while this is only superficially so. While we would expect that political scientists would
understand what they are studying, apparently they don’t. And apparently it is necessary to
belabour the point.

Let us focus on what “vote”and “seat” are about, and thus on what the term “representative”
might mean. A common dictionary 28 emphasizes the legal meaning of “representative”. “2 a :
standing or acting for another especially through delegated authority, b : of, based on, or
constituting a government in which the many are represented by persons chosen from among
them usually by election”. The dictionary also assumes that DR-elections and EPR-elections
are all “elections” in a legal sense. Since direct democracy might only be feasible in town
halls, we need representative democracy indeed, but the dictionary focuses on the legal
setting and hides the key distinction between DR and EPR. As opposed to this common
dictionary and legalistic thinking, in science we need strict definitions that fit the observations.
We might make the assumption that the Moon is made of green cheese, but obviously we
don’t. In a single seat case like for the President, one might argue that the President would
represent the whole nation, but the House of Representatives has multiple seats, and this
changes the logic of the case. Thus we get the distinction:

(1) In EPR, “representation” for Parliament means “standing for the people who have voted
for you, by marking your name or party”. In EPR, a candidate gets a seat when the natural
quota Q = V / S, the national average votes per seat, is covered, while this criterion is only
lowered for the remainder seats. Thus there tends to be full backing by those like-minded,
and this avoids the green cheese moon of “assuming” that the winner of a district seat

                                                     
27 When the article Colignatus (2018c) was updated, I had seen only a few pages of this new
book by S&T. I have now studied it as required, with a curious mixture of great pleasure
(science) and great worry (no science).
28 https://www.merriam-webster.com/dictionary/representative (2018-02-18)
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“represents” all conflicting interests of both who voted for him or her and who explicitly didn’t.
29

(2) In DR, there is the confusion between the single seat election and the multiple seats
election. The de iure House of Representatives is de facto a House of District Winners, and
de facto not a House of Representatives in the sense of EPR. DR systems can only be
understood from history as proto-democracy with its confusions. Researchers who do not call
attention to this, focus on legal notions and words in a dictionary, like might be common in the
Humanities, rather than on what actually happens in empirical reality.

Let us reconsider Table 1, with outcomes of such DR-elections. The USA and UK use both
single seat districts (SSD) and the criterion of Plurality per district, meaning that the district
seat is given to the candidate with the most votes - also called "first past the post" (FPTP).
The values in the table do not indicate: (1) that the votes are masked and do not give the first
preferences, so that we rather don’t know what voters would really prefer, (2) that the votes
for candidates other than the district winners are obliterated. The latter would show by
comparing the votes per winning candidate to the natural quota Q, which would highlight that
the winning candidates are below this quota. Figure 4 plots the UK “elections” of 2010,
reproduced from Colignatus (2010:10). Only the plotted points are translated into seats and
the other votes are obliterated. The 2010 quota was 45.6 thousand votes per seat. With 650
districts and seats, a MP would tend to need 100% of the district to get the quota. None of the
MPs gained the electoral quota of 45.6 thousand, and more than half do worse than 50% of
the quota, and 66% is even below 50% of their own district. Such information is not provided
by the UK Electoral Commission (2017abc), even though they claim to do an “analysis”. 30 We
can diagnose a situation of incomplete information to the general public, and actual
disinformation, biased towards proto-democratic DR and against proper democratic EPR.

Figure 4. MPs of UK 2010: Winning % (District share) per votes won per seat

                                                     
29 The empirical observation is that it takes complicated bargaining to find workable
compromises for such conflicting interests, and we should not assume that a district winner
would be able to do so all by himself or herself, even by invoking magic.
30 Website and texts: “The Electoral Commission is the independent body which oversees
elections and regulates political finance in the UK. We work to promote public confidence in
the democratic process and ensure its integrity.” and “We carry out policy work across a
range of areas. We want to ensure that the rules around all aspects of elections are as clear
and simple as possible and that the interests of voters are always put first.” Yet the Electoral
Commission silently accepts that most votes are discarded and not translated into seats. Most
problematic is that they do not provide the statistics that show this discarding of most votes.
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Basically the majority of the USA still miss out on “No taxation without representation”. A legal
approach, like in current “political science on electoral systems”, would adopt the green
cheese moon of the legality of the 1773 UK Parliament and the Royal Govenour Thomas
Hutchison as “representing” the American people, so that the Boston Tea Party was criminal
indeed. Let us see what it means in terms of the EPR notion of representation. In a schematic
setup, assume that Republicans and Democrats have the majority in the House each 50% of
the time. Assume {Rep, Dem, Other} vote shares {4.6, 4.4, 1} for half of the districts, thus with
Rep winners. Assume vote shares {4.4, 4.6, 1} for the other half of the districts, thus with Dem
winners. Let minor fluctuations (say on Other) cause the majority switches. Then in the first
half of districts only 4.6 out of 10 are represented all of the time and 5.4 never since their
votes are discarded. In the second half the same. Thus overall only 4.6 gets represented and
5.4 never. If we make this more random then a voter would be represented 46% of his or her
life and 54% not. We have a US House of District Winners and not a House of
Representatives. The switches of a majority around the 5-5 middle in the House are a product
of the system, that allows that “representatives” get less than the natural quota, and that hides
what is really happening on masking and discarding. Also, these majority switches should not
deceive us, because we are looking at representation in the House and not at the
participation of parties in the majority coalition. One might argue that a Republican voter who
loses out in his or her district then is “represented” by a Republican winner in another district,
but if this would be the true meaning of “representation”, then even more is wrong with the
dictionary, and even lawyers might protest.

Shugart & Taagepera (2017) use the term “wasted vote” but they do not clarify to their
readers that this term has quite different meanings in DR and EPR. In EPR small parties may
simply be too tiny, whence those votes go lost. In Holland this is 0.2 out of 10. DR however
has systematic obliteration of the votes for other candidates than the district winners. Above
schematic example has 5.4 of 10, not far from reality in Figure 4.

S&T ingeniously and remarkably succeed in modeling key statistical variables on votes and
seats, notably by using the assembly size S (US 435, UK 650) and the district magnitude M
(in SSD M = 1), and by deriving constraints that drive the outcomes. They suggest that these
findings could be used for better electoral design. However, they overlook (1) that M is only
relevant for DR, since EPR has M = S, and (2) that the scientifically correct advice is to switch
from DR to EPR, since DR can only be understood from history and confusion about single
seat and multiple seats elections. The shocking but accurate analogy is that S&T are skilled
surgeons, but they are still blind to bacteria and do not wash their hands. The problem, like
with the UK Electoral Commission that emphasizes integrity, isn’t quite with integrity but with
hygiene, and the willingness to see what you are looking at. Fish might not know the water
they are swimming in, but here we are speaking about basic notions of empirical science. It
would however become an issue of research integrity when researchers in political science
are alerted to the bias and when they would not correct it.

There as well appears to exist an argument that DR would be more “accountable” than EPR,
but this appears to be based upon faulty logic, recently “supported” by invalid regression
analysis. Colignatus (2018c) provides the overall deconstruction.

The legalistic and essentially unscientific bend in the “political science on electoral systems” is
a key factor that keeps the USA and UK locked in proto-democracy since 1917, while Holland
switched to EPR in 1917. Thus let me repeat that the scientific world is advised to look into
this area of “political science on electoral systems”, see Colignatus (2018c). There might be a
special role for the ethics in statistics, when statisticians deal with statistics on votes and
seats. Statisticians should be clear on what the figures and charts mean, and should not
deceive the public by playing into common confusions and the use of words only.

5.4. The example of Brexit

I came to this subject because of the 2016 Brexit referendum and the reactions in the UK.
Oxford Chancellor Chris Patten (2017) expresses a similar amazement: “A parliamentary
democracy should never turn to such populist devices. Even so, May could have reacted to
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the 52 per cent vote to quit Europe by saying that she would hand the negotiations to a group
of ministers who believed in this outcome and then put the result of the talks in due course to
parliament and the people. Instead, she turned the whole of her government into a Brexit
machine, even though she had always wished to remain in the EU. (...) But, as with any
divorce, we can be fairly confident that it is the children who will suffer the most.” Eventually
Colignatus (2017e) concludes that these events can be explained by the UK system of DR.
The UK Electoral Commission went along with a Brexit referendum question that is binary
only in a legal sense (Remain or Leave), while it does not satisfy the standards for a statistical
questionnaire, that would list the policy options of how to Remain or Leave, see Colignatus
(2017c). When the company YouGov.com made the proper statistical questionnaire, it
appeared that 17% of those polled put the option of Remain between different options of
Leave, see Colignatus (2017d). Basically it still is unclear what the UK electorate would
prefer. Colignatus (2017e) concludes that the UK can only find this out when the UK switches
from DR to EPR and has new elections, so that a properly elected House of Commons can
clarify the situation, and perhaps find a compromise on their views. Perhaps this case might
be an eye-opener for other nations with DR. (And chancellor Patten is advised to look into the
political science department at his university.)

6. Conclusions

This overview generates various insights for our topic of discussion.

(1) Regression of y = b x + e likely is better introduced by the geometric approach using
angles, with projection of y on x, such that b x and e are perpendicular and x’e = 0. One
would start with regression through the origin (RTO), and only subsequently introduce the
constant, the notion of correlation (with centered values), the sum of squared errors and
normal equations, the normal distribution for the error, and then multiple regression.

(2) The comparison of votes and seats would be a key example for such an approach. This is
descriptive statistics and uses the same linear algebra as regression but without an
assumption on a distribution of the errors. In this setting, the sine-diagonal inequality /
disproportionality (SDID) finds a quick understanding as a measure of the distance
between votes and seats.

(3) For descriptive statistics, there is an important role for psychology. We must avoid
deceiving presentations like portraying squares by their height only. This principle also
causes the need to magnify what might be overlooked. We must also be clear on the
different meanings of votes and seats under systems of DR and EPR.

(4) Big Data might cause a shift from a focus on statistical decision theory to more attention
for descriptive statistics. Elements within the loss functions for statistical decision can be
used to construct measures for statistical description. Examples are the Richter scale for
earthquakes and SDID for votes and seats.

(5) R-squared has a key rol, first since it is a cosine, and secondly since minimising the sum
of squared errors is tantamount to maximising R-squared. The particular value of R-
squared would be informative for specification search. The sum of squared errors can
also be related to the sine, and for votes and seats in RTO to the SDID.

(6) For compositional data z and w such that 1’z = 1 and 1’w = 1 there is the contribution to
regression analysis that z = b w + e is supplemented with a meaningful ẽ = z – w. This
would not hold for all compositional data, of course, and it might be inoptimal for votes
and seats.

(7) For the latter there is the relation SSE / SST = Sin2 = e'e / z'z = (ẽ' ẽ / z'z – h) / (1 – h),
with h = (1 / b – 1) 2. This helps to understand that SDID picks up disproportionality
caused by an imputed slope that the Euclidean norm ||ẽ|| doesn’t see.

(8) For the latter case we also have w = p z + ε and Cos[w, z] = Sqrt[b p]. The parameter-free
measure of similarity is also a geometric average of slope. This dual face appears to be
an advantage, allowing us to switch between these perspectives.

(9) On content, we have highlighted the key difference between DR-elections and EPR-
elections, so that outcomes about inequality / disproportionality are only comparable for
EPR, and rather incomparable even within DR situations (with masked data and
obliterated votes). Empirical researchers are invited to help re-engineer the “political
science on electoral systems”, see Colignatus (2018c).
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The new measure SDID provides a better description of the inequality / disproportionality of
votes and seats compared to existing measures ALHID, EGID and CWSID. The new measure
has been tailored to votes and seats, by means of (1) greater sensitivity to small inequalities,
and (2) a sign, since a small change in inequality may have a crucial impact on the (political)
majority. For different fields, one could taylor measures in similar fashion.

The proposed measure SDID provides an enlightening bridge between descriptive statistics
and statistical decision making. This comes with a better understanding of what kind of
information the cosine or R-squared provides, in relation to regressions with and without a
constant. Statistics textbooks would do well by providing their students with this new topic for
both theory and practical application. If textbooks would not change then they run the risk of
perpetuating the misunderstanding that they already created and which have been highlighted
here too.
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