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Abstract

Bayes’ statistical rule remains the status quo for modeling belief updating in both norma-

tive and descriptive models of behavior under uncertainty. Recent research has questioned the

use of Bayes’ rule in descriptive models of behavior, presenting evidence that people over-

weight ‘good news’ relative to ‘bad news’ when updating ego-relevant beliefs. In this paper,

we present experimental evidence testing whether this ‘good-news, bad-news’ effect extends

to belief updating in the domain of financial decision making, i.e. the domain of most applied

economic decision making. We find no evidence of asymmetric updating in this domain. In

contrast, the average participant in our experiment is strikingly close to Bayesian in her belief

updating. However, we show that this average behavior masks substantial heterogeneity in

updating behavior, but we find no evidence in support of a sizeable subgroup of asymmetric

updators.
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1 Introduction

In recent decades, the subjective expected utility (SEU) theory has provided the foundation for

the majority of economic thinking regarding choice under uncertainty. Much of its appeal derives

from its elegance and simplicity in representing a wide range of choice behavior using two flexible

constructs: (i) subjective ‘beliefs’ and (ii) a utility function that reflects preferences over certain

outcomes. However, it is a purely paramorphic (‘as if’) model that makes no claims to capture

the underlying psychological processes driving choices. Consequently, the behavioral economics

literature was born with the objective of developing homeomorphic models that accurately reflect

choice behavior as well as the underlying psychological processes. Much of this literature has

focused on the second construct of SEU, the utility function, by developing and testing models

that move away from SEU. These models typically consider alternative representations of prefer-

ences, including classical examples such as reference dependence (Kahneman and Tversky, 1979;

Tversky and Kahneman, 1992; Kőszegi and Rabin, 2006) and social preferences (Kahneman et al.,

1986; Rabin, 1993; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000).

In contrast, the current paper focuses on the first construct of SEU, beliefs, and examines the

question of whether individuals update their beliefs symmetrically in response to ‘good-news’ and

‘bad-news’ in the domain of purely financial decision making. This paper therefore joins a rapidly

growing body of literature1 that draws inspiration from the hypothetical ‘beliefs’ of the SEU model,

instead taking the view that beliefs and expectations are real measurable objects that guide deci-

sion making. Much of this literature is devoted to studying the formation and dynamic evolution of

beliefs, taking the statistical rule for how conditional probabilities are determined when new infor-

mation arrives (i.e. Bayes’ rule2) as a benchmark for how beliefs evolve. Many empirical studies

in this literature document that people update their beliefs in a way that departs systematically

from Bayesian updating. Consequently, a lively theoretical literature has developed with the aim

of organizing the patterns observed in the empirical evidence through means of psychologically ac-

curate theories of belief updating, with noteworthy contributions on the wide range of departures

1This literature is divided into several branches examining: (a) the formation of beliefs (the area of focus of the

current paper); (b) the measurement of beliefs (for informative reviews, see Manski (2004); Attanasio (2009); Hurd

(2009); Delavande (2014); Schotter and Trevino (2014)); and (c) the mapping from beliefs to actions (e.g. probability

weighting in Kahneman and Tversky (1979) and experimental evidence on the belief-action relationship in Nyarko

and Schotter (2002) and Costa-Gomes et al. (2014), amongst others).
2Bayes’ rule is a statistical rule that represents the normative optimum for processing new information most effi-

ciently. One argument in favor of the use of Bayes’ rule in descriptive psychological models is that evolution should

therefore have selected individuals who were able to process new information efficiently according to Bayes’ rule

over individuals who could not, as the Bayesian individuals would have more accurate beliefs guiding their decision

making.

2



from Bayes’ rule including the representativeness bias (Grether, 1978, 1980, 1992), cognitive dis-

sonance3 (Akerlof and Dickens, 1982), anticipatory utility (Loewenstein, 1987; Caplin and Leahy,

2001; Brunnermeier and Parker, 2005), base rate neglect (Kahneman and Tversky, 1973; Holt and

Smith, 2009), confirmatory bias (Rabin and Schrag, 1999), motivated belief formation (Benabou

and Tirole, 2002), gambler’s and hot-hand fallacy (Rabin and Vayanos, 2010; Croson and Sundali,

2005; Ayton and Fischer, 2004), and correlation neglect (Enke and Zimmermann, 2015).

One important strand of this literature examines whether belief formation and updating is influ-

enced by the affective content of the new information4, i.e. whether individuals update their be-

liefs symmetrically in response to ‘good-news’ and ‘bad-news’ (see, for example, Eil and Rao

(2011); Ertac (2011); Mayraz (2013); Möbius et al. (2014); Coutts (2016); Heger and Papageorge

(2016); Gotthard-Real (2017)). Essentially, this literature tests an implicit assumption of Bayesian

updating, namely that the only object that is relevant for predicting an individual’s belief is her

information set, and therefore her beliefs are completely unaffected by the prizes and punishments

she will receive in different states of the world. This fundamental assumption - that people update

their beliefs symmetrically - is of paramount importance because it underpins the results of a wide

range of theoretical studies within economics, including all research in which agents receive new

information and form rational expectations. As noted by Brunnermeier and Parker (2005), since

Muth (1960, 1961) and Lucas (1976), the vast majority of economic research involving uncertainty

has built on the rational expectations assumption, with diverse applications including the vast lit-

eratures on social learning (see, for example, Chamley (2004) for a review), capital markets (e.g.

Fama (1970, 1976)), intertemporal portfolio choice problems (e.g. Mossin (1968); Merton (1969);

Samuelson (1969); Lewellen and Shanken (2002)) and consumption savings problems (e.g. Fried-

man (1957); Hall (1978)). Therefore, it is essential to empirically test whether the assumption

that people form beliefs symmetrically in response to ‘good-news’ and ‘bad-news’, such that their

posterior beliefs are completely unaffected by their hopes and wishes, is consistent with how belief

updating actually works.

With this objective in mind, in this paper we employ a laboratory experiment to study how in-

dividuals update their beliefs from exogenously assigned prior beliefs in a two-state world when

3This paper by Akerlof and Dickens (1982) is closely related and a precursor to the anticipatory utility models

discussed below in this paragraph (in particular, Brunnermeier and Parker (2005)) as their model allows the agent to

choose her belief by trading off her anticipatory preferences over states against the instrumental value of this infor-

mation. However, these chosen beliefs are persistent and the model shows that this can lead to surprising behavioral

patterns grouped under the heading of cognitive dissonance in the psychology literature.
4As an indication of the importance of this strand of the literature, in their recent paper taking stock of the current

state of the motivated reasoning literature, Bénabou and Tirole (2016) point to asymmetric updating as one of the main

testable implications of motivated reasoning.
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they receive a sequence of partially informative binary signals. In particular, we vary the financial

rewards associated with each of the two states of the world in order to test whether these state-

contingent financial rewards influence belief updating. A nice feature of this experimental design

is that it allows us to compare posterior beliefs in situations where the entire information set is

held constant, but the rewards associated with the states of the world are varied. For example, we

can compare how two groups of individuals revise their beliefs when both groups share the same

prior belief and receive an equally informative signal, but for one group of individuals the signal

is ‘good news’ and for others the signal constitutes ‘bad news’. Furthermore, we can conduct a

similar exercise for a single individual, by comparing two situations in which she has the same

information set, and receives the same signal, but the signal consistutes ‘good news’ in one in-

stance, and ‘bad news’ in the other. Our experimental design therefore permits a clean test of the

asymmetric updating hypothesis.

More specifically, in our experiment we study belief updating in two contexts. In our SYMMETRIC

treatment, we examine how subjects update their beliefs when they have an equal stake in each

of the underlying states and therefore are indifferent about which state is realized. We compare

this with updating behavior in our two ASYMMETRIC treatments, in which a large bonus payment

will be paid if one state of the world is realized. Here, one would expect that subjects prefer that

the state with the bonus payment is realized. In all treatments, subjects are told the true prior

probability with which each of the two states of the world will be realized, and then update their

beliefs upon receiving a sequence of informative but noisy signals regarding the true realized state.5

We elicit this sequence of beliefs. In our experiment, we can therefore make two comparisons.

Firstly, we can compare how the same individual responds to ‘good-news’ and ‘bad-news’ within

the ASYMMETRIC treatments. Secondly, we can compare the belief updating of two groups facing

different incentive environments in a between-subject comparison of the SYMMETRIC treatment

and the ASYMMETRIC treatments. Each individual in our experiment faces only one incentive

environment. However, since we exogenously endow participants with a prior over the states of

the world, we are able to repeat the exercise several times for each individual and study how they

update from each of five different priors, p0, chosen from the set {1
6
, 2
6
, 3
6
, 4
6
, 5
6
}.

The experimental design and analysis aim to address several challenges that are present when

studying belief updating in the presence of state dependent stakes. Firstly, we use exogenous vari-

ation in the priors to ensure that the estimates are robust to the econometric issues that arise when

5The ASYMMETRIC treatments correspond to the setup studied in Möbius et al. (2014) and Eil and Rao (2011),

where a ‘good’ underlying state is being higher in the IQ or attractiveness distribution in relation to the other partici-

pants in the experiment.
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a right-hand side variable (i.e. the prior) is a lagged version of the dependant variable (i.e. the pos-

terior). Secondly, we avoid a second type of endogeneity issue, which arises when the underlying

states are defined as a function of some personal characteristic of the individual (e.g. her relative

IQ) that might also be related to how she updates (see Appendix C for further details). Thirdly, we

measure the influence that hedging has on belief elicitation when there are state-dependent stakes.

Furthermore, we conduct several exercises to correct our estimates for this heding influence - both

experimentally, and econometrically. Fourth, our experimental design allows us to study belief up-

dating from priors spanning much of the unit interval. Furthermore, averaging across all subjects,

the design generates a balanced distribution of ‘good’ and ‘bad’ signals.

The empirical strategy employed permits testing for several commonly hypothesised deviations

from Bayesian updating, including confirmatory bias and base rate neglect, however the focus

of both the experimental design, and the analysis, is on testing for the presence of an asymme-

try in updating. Our results show no evidence in favour of asymmetric updating in response to

‘good-news’ in comparison to ‘bad-news’ in the domain of financial outcomes. Several robustness

exercises are carried out in support of this conclusion. Furthermore, we find that average updating

behavior is well approximated by Bayes’ rule.6 However, this average behavior masks substantial

heterogeneity in updating behavior, but we find no evidence in support of a sizeable subgroup of

asymmetric updators.

The absence of a ‘good-news, bad-news’ asymmetry in our context is in contrast to the evidence

reported in studies considering belief updating in the domain of self-image, which have typically

reported evidence in favour of asymmetric updating that is either positively (Eil and Rao, 2011;

Sharot et al., 2011; Möbius et al., 2014) or negatively (Ertac, 2011) skewed.

However, this result is consistent with complementary work by Gotthard-Real (2017) and Coutts

(2016) that also studies belief updating in the domain of financial updating. Gotthard-Real (2017)

uses a similar belief updating task as the current paper, with all subjects holding a $7 stake in one

of two possible states of the world and updating from a prior of 0.5. This corresponds to belief

updating from one of the five priors we consider, under one of our three treatment conditions. In

line with this paper, Gotthard-Real (2017) finds no evidence of asymmetric updating. Coutts (2016)

offers an important contribution to this literature with an experiment that considers belief updating

within both the financial and self-image domains. He finds that the average posterior belief is well

approximated by the Bayesian posterior. Furthermore, while he finds evidence for asymmetric

6This is in line with Holt and Smith (2009) and Coutts (2016), who find that average posteriors across all individuals

are well approximated by posteriors obtained by applying Bayes’ rule.
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updating, it appears to be unlinked to the desirability of the states. Rather, Coutts (2016) argues

that it is driven by the low objective probability of the good state and consequent unbalanced ratio

of positive to negative signals generated by his experimental design. Therefore, together with the

current paper, this evidence suggests that the asymmetry in updating in the self-image domain may

not extend to the domain of financial stakes.

One potential explanation for the difference in belief updating between the domains of self-image

and financial decision making is the idea that ego maintainance could yield evolutionary benefits.

In particular, a positive asymmetry in updating about one’s self-image would lead to overconfident

beliefs, and several authors have posited that maintaining a high self-confidence may be associated

with evolutionary advantages (see, e.g., Bernardo and Welch (2001); Heifetz et al. (2007); Johnson

and Fowler (2011); Burks et al. (2013); Schwardmann and Van der Weele (2016)). In contrast,

asymmetric updating about external states of the world would lead to overoptimism which is likely

to lead to costly mistakes.

The remainder of the paper proceeds as follows. Section 2 outlines the theoretical framework,

Section 3 details the experimental design, Section 4 provides some descriptive statistics, Section 5

presents the empirical specification, and Section 6 concludes.

2 Theoretical Framework

In the following section, we discuss a simple framework for belief updating that augments the

standard benchmark of Bayesian updating by allowing for several of the deviations from Bayes’

rule commonly discussed in the psychology and related economics literature. The basic idea is

that, while Bayes’ rule captures the normative benchmark for how we might think a rational agent

should update her beliefs7, it has been argued that, descriptively, people may update their beliefs

in ways that depart systematically from Bayes’ rule. The framework below serves to facilitate a

discussion of these different potential deviations, and motivates the empirical approach that we

7This statement is not uncontentious. One argument in favor of Bayes’ rule as a normative benchmark for belief

updating is that Bayes’ rule is a statistical theorem that captures the objective relationship between a prior probability

and a posterior probability, given new information. Therefore, if an individual updates her beliefs according to Bayes’

rule, she will always hold beliefs that are as accurate as possible, given her information set. This will allow her to use

these optimally accurate beliefs to guide her decision making and make decisions. This implies that the decision maker

can make decisions that are as informed as possible. However, this argument rests on the assumption that beliefs serve

only an instrumental role in guiding decision making. If, for example, we relax this assumption and allow beliefs to

yield intrinsic utility, then this argument no longer holds as it may be optimal for the decision maker to hold beliefs

that are distorted away from the Bayesian posterior.
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will use to test whether they are observed in our data.8

In short, below we describe a model that embeds the normative Bayesian benchmark, but also

allows for commonly discussed belief updating distortions. The aim will be to then make use

of this model to test whether subjects update their beliefs like a Bayesian automaton or display

some systematic deviations from this Bayesian benchmark. Most importantly, the model permits

a discussion of what observed updating behavior should look like if agents update their beliefs

asymmetrically in response to ‘good-news’ and ‘bad-news’.

2.1 A Simple Model of Belief Formation

We consider a single agent who forms a belief over two states of the world, ω ∈ {A,B}, at each

point in time, t. One of these states of the world is selected by nature as the ‘correct’ (or ‘realized’)

state, where state ω = A is chosen with prior probability p̄0 (known to the agent). The agent’s

belief at time t is denoted by πt ∈ [0, 1], where πt is the agent’s belief regarding the likelihood that

ω = A and 1 − πt is the agent’s belief that ω = B. In each period, the agent receives a signal,

st ∈ {a, b}, regarding the state of the world, which is correct with probability q ∈ (1
2
, 1). In other

words, p(a|A) = p(b|B) = q > 1
2
. Furthermore, the history, Ht, is defined as the sequence of

signals received by the agent in periods 1, . . . , t, with H0 = ∅. Therefore, the history at time t is

given by Ht = (s1, ..., st).

We are interested in how the agent’s beliefs evolve over time in response to the sequence of in-

formation signals, st, she receives. As discussed above, Bayes’ rule provides a useful benchmark

by describing the objective evolution of the probabilities, given the agent’s information set at each

point in time. Therefore, we let pt ≡ P (ω = A|Ht, p̄0) be the Bayesian posterior probability at

time t, given the agent’s information set {Ht, p̄0}. Since, p0 ≡ p̄0
9, we will use p0 below to refer

to the initial objective prior probability of state A being the correct state. With these definitions

in hand, we can apply Bayes’ rule to show how objective probabilities evolve in response to the

signal st+1 = a

pt+1|st+1=a ≡ P (ω = A|Ht, p0, st+1 = a) =
q · pt

q · pt + (1− q) · (1− pt)
(1)

and similarly, in response to the signal, st+1 = b, the Bayesian posterior is given by:

8This framework is very similar to the one used in Möbius et al. (2014), amongst others.
9Notice that at t = 0, we have p0 ≡ P (ω = A|H0 = ∅, p0) = P (ω = A|p0) = p̄0.
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pt+1|st+1=b ≡ P (ω = A|Ht, p0, st+1 = b) =
(1− q) · pt

(1− q) · pt + q · (1− pt)
(2)

Therefore, if our agent is approximately Bayesian in her updating, her beliefs, πt+1, regarding

the likelihood that state ω = A is the correct state will evolve in a similar way to the statistical

rule described in Equations 1 and 2 above.10 Since we are dealing with binary states (as in our

experiment), a more convenient expression of Bayes’ rule can be written in terms of the logit

function:

logit(πt+1) = logit(πt) + log(
q

1− q
) · 1(st+1 = a)− log(

q

1− q
) · 1(st+1 = b) (5)

where 1(st+1 = a) [or 1(st+1 = b)] is an indicator function that takes a value of 1 if the signal

at time t is a [b], log( q

1−q
) is the log likelihood ratio for the signal st+1 = a, and log(1−q

q
) =

− log( q

1−q
) is the log likelihood ratio for the signal st+1 = b. This formulation of Bayes’ rule

provides a useful benchmark for testing for the presence of commonly hypothesized systematic

deviations from Bayes’ rule. In order to do this, we follow Möbius et al. (2014) in defining a

model of augmented Bayesian updating11:

logit(πt+1) = δlogit(πt) + γa log(
q

1− q
) · 1(st+1 = a)− γb log(

q

1− q
) · 1(st+1 = b) (6)

where this model is identical to Equation 5, with the exception of the additional parameters δ, γa

and γb. These parameters serve, firstly, to provide structure for a discussion of different ways in

which our agent may depart from Bayesian updating, and secondly, to provide a clear prescription

for how to test for these departures in our empirical analysis below.

10i.e. in Equations 1 and 2, Bayes’ rule dictated how objective probabilities, pt+1, should evolve if they efficiently

incorporate all new information into the posterior, and similarly, if an individual updates her beliefs, πt+1, in a statis-

tically efficient way, then they should evolve according to:

πt+1(st+1 = a) =
q · πt

q · πt + (1− q) · (1− πt)
(3)

and likewise, for st+1 = b:

πt+1(st+1 = b) =
(1− q) · πt

(1− q) · πt + q · (1− πt)
(4)

11For a discussion of core properties underlying Bayes’ rule, see Appendix B.1. This discussion serves as a moti-

vation for the approach taken in augmenting Bayes’ rule in Equation 6.
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If δ = γa = γb = 1 then the agent updates her beliefs according to Bayes’ rule. However, if we

consider deviations from this benchmark, we see that δ captures the degree to which the magnitude

of the agent’s prior affects her updating. For example, if δ > 1 then this suggests that the agent

displays a confirmatory bias12, whereby she is more responsive to information that supports her

prior. In contrast, δ < 1 suggests she is more responsive to information that contradicts her prior

(i.e. base rate neglect13). The former would predict that beliefs will polarize over time, while the

latter would predict that over time beliefs remain closer to 0.5 in a two-state world than Bayes’

rule would predict.

The parameters, γa and γb capture the agent’s responsiveness to information. If γa = γb < 1 then

the agent is less responsive to the information that she receives than a Bayesian updater would be.

And if γa = γb > 1, then she is more responsive than a Bayesian. For example, if γa = 2, then

whenever the agent receives a signal st = a, she updates her belief exactly as much as a Bayesian

would if he received two a signals, st = {a, a}. The interpretation of the parameters is summarized

in the first five rows of Table 1 below.

Table 1: Interpretation of Parameters: A Summary
Belief Updating Distortion Parameter Values

Bayesian Updating δ = 1, γa = 1 and γb = 1
Confirmatory Bias δ > 1
Base Rate Neglect δ < 1

Conservatism γj < 1 for ∀j ∈ {a, b}
Overresponsiveness γj > 1 for ∀j ∈ {a, b}

Optimistic updating (in ASYMMETRIC) γa > γb
Pessimistic updating (in ASYMMETRIC) γa < γb

Affective States

The simple belief updating framework developed in the preceding section has so far focused on

purely cognitive deviations from Bayes’ rule. The affect or desirability of different states of the

world has played no role. However, in most situations in which individuals form beliefs, there are

12For a detailed discussion of the confirmatory bias, see Rabin and Schrag (1999). Essentially, it is the tendency to

weight information that supports one’s priors more heavily than information that opposes one’s priors. In this case,

when one’s prior regarding state ω = A is greater than 0.5, i.e. πt > 0.5, a participant who is prone to the confirmatory

bias weights signals that support state ω = A more heavily than signals that support state ω = B; and vice versa when

her prior suggests state ω = B is more likely, i.e. πt < 0.5.
13One can think of this as the agent attenuating the influence of her prior belief in calculating her posterior - i.e.

acting as if her prior was closer to 0.5 than it actually was.
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some states that yield an outcome that is preferred to the outcome in other states - i.e. there are

good and bad states of the world. For example, an individual would generally prefer to be more

intelligent rather than less intelligent, to win a lottery rather than lose, and for the price of assets

in her possession to increase rather than decrease. This implies that new information is also often

either good-news or bad-news.

In order to allow for the possibility that individuals update their beliefs differently in response to

good-news in comparison to bad-news, we relax the assumption that belief updating is orthogonal

to the affect of the information.14 To do this, assume that each of the two states of the world is

associated with a single certain outcome - i.e. in state ω = A, the agent receives outcome xA, and

in state ω = B, she receives xB. We therefore consider two cases:

• Case 1 (SYMMETRIC): the agent is indifferent between outcomes (i.e. xA ∼ xB ); and

• Case 2 (ASYMMETRIC): the agent strictly prefers one of the two outcomes. Without loss of

generality, we assume that xA is preferred (i.e. xA ≻ xB).

Now, the question we wish to consider is whether the agent will update her beliefs differently in the

SYMMETRIC and ASYMMETRIC contexts. Under the assumption that the agent’s behavior is con-

sistent with the model described above in Equation 6, this involves asking whether the parameters

δ,γa and γb, differ between the two contexts.

In order to guide our discussion of the differences between the parameters in the two cases, we

consider the following two benchmarks. The first natural benchmark is Bayes’ rule. Bayes’ rule

prescribes that all three parameters equal 1 in both the SYMMETRIC and ASYMMETRIC contexts

as the statistically efficient updating of probabilities is unaffected by the state-dependent rewards

and punishments. According to Bayes’ rule, news is news, independent of its affective content.

The second benchmark that we consider is that individuals respond more to ‘good-news’ than

‘bad-news’. This benchmark derives from the literature which has presented evidence in favor

of a ‘good-news, bad-news’ effect in belief updating, specifically in the context of ego-relevant

beliefs where individuals may wish to preserve a positive self-image. Here, we test this asymmetric

updating hypothesis in two ways.

14In this paper, we are following Wakker’s (2010) homeomorphic approach to modeling behavior (i.e. where under-

lying parameters have psychological interpretations). In the discussion below, the term ‘preferences’ is used to refer

to preferences over sure outcomes, but not preferences over lotteries. We will also sometimes refer to ‘preferring’ one

state of the world to another. This simply captures the idea that an individual prefers the realisation of a state in which

a good outcome is realised.
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Firstly, we focus only on subjects within the ASYMMETRIC context (i.e. xA ≻ xB). For these

subjects, we ask whether there is an asymmetry in updating after signals that favor the more de-

sirable state ω = A (‘good-news’), relative to signals that favor the less desirable state ω = B

(‘bad-news’)15. For example, if γa > γb, this would indicate that the agent updates more in re-

sponse to signals that support the preferred state, ω = A (‘good-news’). We refer to such an agent

as an optimistic updater. Conversely, if we have γa < γb then the agent updates more in response

to signals supporting the less desirable state, ω = B (‘bad-news’). We refer to such an agent as a

pessimistic updater16.

Secondly, we can ask whether the parameters of Equation 6 differ between the SYMMETRIC (δ1,γ1
a

and γ1
b ) and ASYMMETRIC (δ2,γ2

a and γ2
b ) contexts, where we use the postscript c ∈ {1, 2} to

distinguish the parameters in the two cases. In the SYMMETRIC treatment, where the agent is

completely indifferent between the two states, we would expect her updating to be symmetric, with

γ1
a = γ1

b (i.e. responding equally to the signals st = a and st = b). Therefore, the difference γ2
a−γ1

a

reflects a measure of the increase in the agent’s responsiveness when information is desirable,

relative to when information is neutral in terms of its affect. Similarly, γ2
b − γ1

b is a measure of

the increase in the agent’s responsiveness when information is undesirable, relative to the case in

which information is neutral in affect.

In our experiment, we will provide evidence on both of these questions. Firstly, we will exam-

ine whether there is an asymmetry in updating behavior within the ASYMMETRIC context; and

secondly, we will examine whether the parameters of the updating process differ between the

SYMMETRIC and the ASYMMETRIC contexts, in a between subjects design. Furthermore, our

experiment will allow us to test for other systematic deviations from Bayes’ rule, such as those

mentioned in the discussion above. Table 1 summarizes the interpretations of the different values

that the belief updating parameters may take.

15In order to reduce the verbosity of my discussion, in the text below I will use the phrases desirable [undesirable]

information or good [bad] news to refer to “information that supports a desirable [undesirable] state of the world”.
16Notice that these definitions of optimistic and pessimistic updating relate only to the asymmetry in responsiveness

to signals supporting different states, but depend on how responsive the agent is to the signals she receives relative to

Bayes’ rule. Therefore, under the definition given, we can have an optimistic updater who is less responsive to signals

supporting the desirable state than a Bayesian (i.e. 1 > γa > γb). This agent is less responsive than a Bayesian

to both desirable and undesirable information, but more responsive to desirable information relative to undesirable

information.
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2.2 Belief Elicitation and Incentives

In order to empirically test the features of the model using an experiment, we would like to be

able to elicit our participants’ true beliefs. Belief elicitation is now fairly well established, with

a growing literature debating the merits of several belief elicitation techniques. Many of these

approaches assume that participants use a particular model to evaluate prospects (e.g. expected

value is often used) and show that under the incentives of the elicitation technique, a participant

following the assumed model should report her true belief (i.e. under the model, truthful revelation

is incentive compatible).

However, in the context of studying the relationship between preferences and beliefs, this approach

to the elicitation of beliefs is problematic for two reasons: firstly, the assumption that participants

follow expected utility involves a stronger assumption than we might wish to make; and secondly,

the inherent hedging motive faced by participants who have a stake in one state of the world poses

an additional challenge (see Karni and Safra (1995) for a discussion). Therefore we adopt the

approach developed by Offerman et al. (2009).

The central idea behind this approach is to acknowledge that the incentive environment within

which we elicit beliefs in the laboratory may exert a distortionary influence on the beliefs which

some participants report, relative to the beliefs they actually hold, and then measure this distor-

tionary influence of the incentive environment in a separate part of the experiment. Once we have

constructed a mapping from true beliefs to reported beliefs within the relevant incentive environ-

ment, we can use this function to recover the participant’s true beliefs from her reported beliefs.

In other words, our objective is to recover the function that each individual uses to map her true

beliefs to the beliefs that she reports within the given incentive environment.

The incentive environment that we will use in our experiment to elicit beliefs is the quadratic

scoring rule (QSR).17

17There are several reasons for adopting this approach: firstly, the QSR has the advantage that it ensures that the

decision environment is clear and simple for the participants - essentially they are making a single choice from a

list of binary prospects; secondly, the quadratic scoring rule has been commonly used in the literature, with both

the theoretical properties and empirical performance having been studied in detail (see, e.g., Armantier and Treich

(2013)); thirdly, in a horse race between elicitation methods, Trautmann and van de Kuilen (2015) show that there is

no improvement in the empirical performance of more complex elicitation methods over the Offerman et al. (2009)

method, neither in terms of internal validity, nor in terms of behavior prediction. Out of the set of alternative elicitation

techniques, the two that are most theoretically attractive are, the binarized scoring rule, proposed by Hossain and Okui

(2013), and the probability matching mechanism, described by Grether (1992) and Karni (2009). However, in the

context of the current paper, we viewed neither of these approaches as being preferable to the Offerman et al. (2009)

technique, since both of these approaches introduce an additional layer of probabilities and in the study of probability

bias, this is an undesirable attribute of the elicitation strategy.
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Belief Elicitation Incentives

In this section, we discuss how beliefs reported under the QSR might be distorted, and how we

address this challenge. Consider the binary event, denoted by Eω, where ω ∈ {A,B}. Therefore,

EA refers to the event that state ω = A is realized. The object that we would like to elicit is

the participant’s belief, πt = P (EA) = P (ω = A), regarding the likelihood that state ω = A is

the correct state at time t. However, the object that we will observe is the participant’s reported

belief, rt, at each point in time under the incentives prescribed by the quadratic scoring rule. The

Quadratic Scoring Rule at time t is defined by:

SA(rt) = 1− (1− rt)
2 (7)

SB(rt) = 1− r2t (8)

where rt is the reported probability of event EA occurring; SA(rt) is the payment if the state ω = A

is realized; SB(rt) is the payment if the state ω = B is realized. Therefore, the QSR essentially

involves a single choice from a list of binary prospects, (1 − (1 − rt)
2)EA

(1 − r2t ). The QSR is a

‘proper’ scoring rule since, if the agent is a risk neutral EU maximizer then she is incentivized to

truthfully reveal her belief, πt:

πt = arg max
rtǫ[0,1]

πtSA(rt) + (1− πt)SB(rt)

However, the QSR is no longer incentive compatible once we allow for (i) risk aversion / loving

and (ii) participants who have exogenous stakes in the state of the world. The reasons for this

are the following. Firstly, it has been well documented theoretically that, if the participant is risk

averse, then the QSR leads to reporting of beliefs, rt, that are distorted towards 0.5, away from

her true belief, πt, when the participant has no exogenous stakes in the realized state.18 This

distortion has been observed in experimental data (Offerman et al., 2009; Armantier and Treich,

2013). Secondly, in our experiment, we will also be interested in eliciting beliefs when participants

have an exogenous stake associated with one of the two states. More precisely, we will be interested

in recovering the participant’s true belief when she receives an exogenous payment, x, if state ω =

18i.e. if πt > 0.5 then πt > rt > 0.5, and if πt < 0.5 then πt < rt < 0.5 for a risk averse individual reporting her

beliefs under QSR incentives.
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A is realized. This payment, x, is in addition to the payment she receives from the QSR. In other

words, she will choose from a menu of binary prospects of the form: (x+1− (1−rt)
2)EA

(1−r2t ).

In the context of state-dependant stakes, a risk averse EU maximizer19 will face two distortionary

motives in reporting her belief: (i) she will face the motive to distort her belief towards 0.5 as

discussed above; and (ii) in addition, there is a hedging motive, which will compel a risk averse

individual to lower her reported belief, rt, towards zero as x increases.

If the participants in our experiment are risk neutral expected utility maximizers, the reported be-

liefs, rt, that we elicit under the QSR will coincide with their true beliefs, πt. However, in order

to allow for choice behaviors consistent with a wider range of decision models, we will measure

the size of the distortionary influence of the elicitation incentives at an individual level and correct

the beliefs accordingly. This approach is valid under the weak assumption that individuals evaluate

binary prospects according to the biseparable preferences20 model and are probabilistically sophis-

ticated.21 This restriction on behavior is very weak and includes individuals who behave according

to EU with any risk preferences as well as the majority of commonly used NEU models.22

19A participant who is a risk averse EU maximizer will choose her reported belief rt by solving the following

maximization problem:

max
rtǫ[0,1]

πtU(x+ 1− (1− rt)
2) + (1− πt)U(1− r2t )

20The biseparable preference model holds if the preference ordering, %, over prospects of the form, yEz, can be

represented by:

yEz → W (E)U(y) + (1−W (E))U(z)

where U is a real-valued function unique up to level and unit; and W is a unique weighting function, satisfying

W (∅) = 0, W (S) = 1 and W (E) ≤ W (F ) if E ⊆ F . S is the set of all states and events are subsets of the full

set of states: i.e. E,F ⊆ S. In this paper, we only consider two-state prospects, where the state-space is partitioned

into two parts by an event, E and its complement Ec. Making the further assumption that the decision maker is

probabilistically sophisticated gives the following refinement:

yEz → w(P (E))U(y) + (1− w(P (E)))U(z)

21Probabilistic sophistication is the assumption that we can model that individual’s preferences over prospects as

if the individual’s beliefs over states can be summarized by a probability measure, P . In other words, probabilis-

tic sophistication implies that we can model the individual’s belief regarding the likelihood of an event E as being

completely summarized by a single probability judgment, P (EA).
22Amongst the models subsumed within the biseparable preferences model are EU, Choquet expected utility

(Schmeidler, 1989), maxmin expected utility (Gilboa and Schmeidler, 1989), prospect theory (Tversky and Kahneman,

1992), and α-maxmin expected utility (Ghirardato et al., 2004). See Offerman et al. (2009) for a discussion.
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A Non-EU ‘Truth Serum’

The discussion above has highlighted how beliefs might be distorted under QSR incentives. The

Offerman et al. (2009) approach proposes correcting the reported beliefs for the risk aversion

caused by the curvature of the utility function or by non-linear probability weighting. This ap-

proach involves eliciting participants’ reported belief parameter, r, for a set of risky events where

they know the objective probability, p (known probability). This is done under precisely the same

QSR incentive environment in which we elicit the participants’ subjective beliefs, π, regarding the

events of interest (where they don’t know the objective probability: unknown probability). If a

subject’s reported beliefs, r, differ from the known objective probabilities, p, this indicates that the

subject is distorting her beliefs due to the incentive environment (e.g. due to risk aversion). The

objective of the correction mechanism is therefore to construct a map, R, from the objective beliefs,

p ∈ [0, 1], to the reported beliefs, r, for each individual under the relevant incentive environment.

Offerman et al. (2009) show that under the assumption that individuals evaluate prospects in a

way that is consistent with the weak assumptions of the biseparable preferences model, then in

the case where there are no state-contingent stakes (i.e. x = 0), individuals evaluate the QSR

menu of prospects (1 − (1 − rt)
2)EA

(1 − r2t ) according to w(P (EA))U(1 − (1 − rt)
2) + (1 −

w(P (EA)))U(1−r2t ) for rt ≥ 0.5 and therefore the inverse of the map from objective probabilities

to reported probabilities, R, is given by:

p = R−1(r) = w−1

(
r

r + (1− r)U
′(1−(1−r)2)
U ′(1−r2)

)
(9)

In Appendix B.2, we provide a derivation for this equation, as well as augmenting the Offerman et

al. (2009) approach to allow for the case where there are state-contingent stakes (i.e. x 6= 0). In

our empirical analysis below, we will discuss how we use Equation 9 to recover the function, R,

for each individual and thereby recover their beliefs, πt, from their reported beliefs, rt.

3 Experimental Design

The experiment was designed to test the asymmetric updating hypothesis using both within-subject

and between-subjects comparisons of updating behavior. The experiment consisted of three treat-

ment groups. The treatment T1.SYMMETRIC corresponds to Case 1 (SYMMETRIC: no exogenous
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state-contingent stakes) and the other two treatment groups, T2.COMBINED and T3.SEPARATE,

correspond to Case 2 (ASYMMETRIC: state-contingent stakes) discussed above.

In T1.SYMMETRIC, one would expect the participants to be indifferent between each of the

two states being realized, while in T2.COMBINED and T3.SEPARATE, the larger payment as-

sociated with state ω = A should imply that the participants prefer that this state be realized.

T2.COMBINED and T3.SEPARATE are identical in terms of the financial incentives. The rationale

for running two treatments with identical incentives was to examine the influence of the hedging

motive discussed above. In order to examine this, we varied the way in which the information re-

garding the incentive environment was presented to participants (i.e. we only varied the framing of

the incentives). In T2.COMBINED, this information was summarized in a way that made it much

easier for participants to notice the hedging opportunity in comparison to T3.SEPARATE. This

allowed us to assess whether a hedging motive influenced the beliefs elicited, and also provided

an opportunity to assess the validity of the mechanism we use to correct reported beliefs. The dif-

ference between these two treatments is discussed in more detail in the ‘Incentives and Treatment

Groups’ section below.

The experiment proceeded in three stages. The first stage comprised the core belief updating task in

which we elicited a sequence of reported beliefs from subjects as they received a sequence of noisy

signals regarding the true state of the world, updating from an exogenously provided prior. In the

second stage we collected the reported probabilities associated with known objective probabilities

on the interval [0, 1] required for the Offerman et al. (2009) correction approach, as well as data

on risk preferences. In the third stage, we obtained data on several demographic characteristics as

well as some further non-incentivized measures. In each of the first two stages, one of the subject’s

choices was chosen at random and paid out. In addition the participants received a fixed fee of £5

[e5] for completing Stage 3, as well as a show-up fee of £5 [e5].23

The Belief Updating Task (Stage 1)

The Belief Updating Task was the primary task of the experiment. We used this task to collect data

about participants’ belief updating behaviour. The experimental design for this task is summarized

in Figure 1 and described in the following discussion.

23In the discussion below, I will always refer only to Pounds (£), however in the experiments run at the Technical

University in Berlin all the payments were made in Euros. In all cases, the payment in Pounds (£) was equivalent to

the payment in Euros (e). In other words, £1 was replaced with e1. In terms of the cost of living in the two locations,

this seemed more appropriate than using the actual exchange rate. In addition, it had the benefit of keeping all the

quantities constant across locations.
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The Belief Updating Task consisted of five rounds. In each round, participants were presented

with a pair of computerized ‘urns’ containing blue and red colored balls, with each of these two

urns representing one of the two states of the world. The composition of the two urns was always

constant, with the state ω = A represented by the urn containing more blue balls (5 blue and 3 red),

while the state ω = B was represented by the urn containing more red balls (5 red and 3 blue).

Figure 1: Overview of Experimental Design
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Urn Selection 

Ball Draw 1 
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Belief Report 1 
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The five rounds differed from one another only in the exogenous prior probability that ω = A

was the true state, with this prior, p0, chosen from the set {1
6
, 2
6
, 3
6
, 4
6
, 5
6
}. In each round, this prior
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was known to the participant. The order of these rounds was randomly chosen for each individual.

Conditional on the prior, p0, one of the two urns was then chosen through the throw of a virtual

die, independently for each individual, in each round.

Belief Updating

In each round, after being informed of this prior probability, p0, the participant received a sequence

of five partially informative signals, st, for t = {1, 2, 3, 4, 5}. These signals consisted of draws,

with replacement, from the urn chosen for that round. Therefore, if the state of the world in a

specific round was ω = A then the chance of drawing a red ball was 3
8

and the chance of drawing

a blue ball was 5
8

for each of the draws in that round (see Figure 1).

In each round, we elicited the participant’s reported belief, rt, about the likelihood that state ω = A

was the correct state of the world, six times (i.e. for t = {0, 1, 2, 3, 4, 5}). We first elicited her

reported belief, r0, directly after she was informed of the exogenous prior probability, p0, and

then after she received each of her five signals we elicited rt for t = {1, 2, 3, 4, 5}. Overall, we

therefore elicited 30 reported beliefs in Stage 1 from each individual (6 reported beliefs in each of

5 rounds).24

Incentives and Treatment Groups

The Belief Updating Task was identical across treatment groups with the exception of the incen-

tives faced by participants. In each treatment, participants’ payment consisted of two components:

(i) an exogenous state-contingent payment25, and (ii) an accuracy payment that depended their

stated belief26 and the true state (i.e. the QSR payment described in equations 7 and 8 above).

In treatments T2.COMBINED and T3.SEPARATE, the state-contingent payment was substantially

higher at £10 in state ω = A in comparison to £0.10 in state ω = B, making ω = A the more attrac-

tive state of the world. In T1.SYMMETRIC, participants simply received an equal state-contingent

payment of £0.10 in both states, ω = A and ω = B, implying neither was preferable.

In all three treatments, participants received nearly identical detailed written instructions describing

the belief updating task as well as the two payment components. In order to further simplify the

task faced by participants and try to ensure that they understood the incentive environment they

faced, we presented the QSR as a choice from a list of lotteries (this approach is also used, for

example, by Armantier and Treich (2013) and Offerman et al. (2009)). To this effect, subjects

24Participants were not informed about the correct urn at the end of each round. They only received feedback when

their payment was calculated at the very end of the experiment.
25This was called the “urn bonus” in the experiment.
26In the experiment, we refer to the object that individuals reported about the likelihood that one of the two urns

was the chosen one as their “probability judgment”. This corresponds to the reported belief in the discussion above.
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were presented with payment tables, which informed them of the precise prospect they would face

for each choice of rt, in increments of 0.01. An abbreviated version of the three payment tables

associated with each of the three treatment groups is presented in Table 2.27 In order to represent

all payments as integers in the instructions and payment tables, we adopted the approach of using

experimental points. At the end of the experiment, these experimental points were converted to

money using an experimental exchange rate of 6000 points = £1.

Table 2 highlights the difference between treatments T2.COMBINED and T3.SEPARATE. While,

participants in these two treatments faced precisely the same incentives, the treatments differed in

terms the salience of the hedging motive. In particular, the only difference between the two treat-

ments was the way in which the payment information was summarised in the payment table. As

shown in Table 2, in T2.COMBINED, the payment table showed the combined payment from both

(i) the exogenous state-contingent payment, and (ii) the accuracy payment, together. Therefore,

it summarised the reduced form prospect associated with each reported probability choice (rt) for

subjects.

The motivation behind having two treatments with identical incentives, but a different presentation

of the incentives, was following. The rationale for T2.COMBINED was that presenting the incen-

tives in a combined form is the simplest and clearest way of relaying the true incentives faced to

participants. The rationale for T3.SEPARATE was that if participants “narrowly bracket”, then the

separate presentation of incentives could reduce the influence of the hedging motive, and therefore

would induce more accurate belief reporting. By implementing both treatments, we were able to

evaluate the influence of the presentation of the incentives on the reported beliefs. As we will see

below, this influence was substantial and corresponds to the theoretical predictions for how a risk

averse individual would act if she were hedging more when the hedging opportunity was made

salient.

Furthermore, an additional benefit of running both treatments was that it provided us with a way

to test the internal validity of the correction mechanism we use. We will see below that, while the

uncorrected distribution of beliefs differ substantially between the two treatments, the distributions

of the corrected beliefs are very similar to one another.

27Note, these payment tables are abbreviated in comparison to the tables presented to participants. The only sub-

stantive difference is that Table 2 contains 21 rows, one for each 5% increment in the reported belief. In contrast, the

participants received payment tables that contained 101 rows, one for each 1% increase in the reported belief.
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Table 2: Comparison of Incentive Summary Tables between Treatment Groups
T1 SYMMETRIC T2 COMBINED T3 SEPARATE

Probability

judgment for

Urn A

True Urn Probability

judgment for

Urn A

True Urn Probability

judgment for

Urn A

True Urn

Urn A Urn B Urn A Urn B Urn A Urn B

100 12 600 600 100 72 000 600 100 12 000 0

95 12 570 1 770 95 71 970 1 770 95 11 970 1 170

90 12 480 2 880 90 71 880 2 880 90 11 880 2 280

85 12 330 3 930 85 71 730 3 930 85 11 730 3 330

80 12 120 4 920 80 71 520 4 920 80 11 520 4 320

75 11 850 5 850 75 71 250 5 850 75 11 250 5 250

70 11 520 6 720 70 70 920 6 720 70 10 920 6 120

65 11 130 7 530 65 70 530 7 530 65 10 530 6 930

60 10 680 8 280 60 70 080 8 280 60 10 080 7 680

55 10 170 8 970 55 69 570 8 970 55 9 570 8 370

50 9 600 9 600 50 69 000 9 600 50 9 000 9 000

45 8 970 10 170 45 68 370 10 170 45 8 370 9 570

40 8 280 10 680 40 67 680 10 680 40 7 680 10 080

35 7 530 11 130 35 66 120 11 130 35 6 930 10 530

30 6 720 11 520 30 66 120 11 520 30 6 120 10 920

25 5 850 11 850 25 65 250 11 850 25 5 250 11 250

20 4 920 12 120 20 64 320 12 120 20 4 320 11 520

15 3 930 12 330 15 63 330 12 330 15 3 330 11 730

10 2 880 12 480 10 62 280 12 480 10 2 280 11 880

5 1 770 12 570 5 61 170 12 570 5 1 170 11 970

0 600 12 600 0 60 000 12 600 0 0 12 000

2
0



The Offerman et al. (2009) Correction Task (Stage 2)

In the second stage of the experiment we elicited the twenty reported beliefs, r, for events with

known objective probabilities required to estimate the incentive distortion function, R, for each

individual. In each of the three treatments, we estimate the function R using belief from Stage 2

elicited under the same incentive environment as in the Belief Updating Task in Stage 1.

In Stage 2, participants were asked to report their probability judgment regarding the likelihood

that statements of the form: “the number the computer chooses will be between 1 and 75” (i.e.

p = 0.75), were true, after being told that the computer would randomly choose a number between

1 and 100, with each number equally probable. For T1.SYMMETRIC, this specific example of

the probability of the randomly chosen number being in the interval between 1 and 75 essentially

involves choosing r from the list of prospects defined by 1−(1−r)20.75(1−r2). For T2.COMBINED

and T3.SEPARATE, this example would involve choosing r from the list of prospects defined by

x + 1 − (1 − r)20.75(1 − r2). As in Stage 1, in each of the treatments, the Stage 2 payment table

summarized the relevant payment information. For each treatment, this payment table contained

identical values in Stage 1 and Stage 2. Therefore, Table 2 above also provides a summary of the

Stage 2 payment tables.

The twenty reported beliefs corresponded to the objective probabilities 0.05, 0.1, . . . , 0.95.28 At

the end of the experiment, one choice from Stage 2 was randomly chosen to contribute to each

participant’s final payment.

4 Data and Descriptive Evidence

The experiment was conducted at the UCL-ELSE experimental laboratory in London as well as at

the WZB-TU laboratory in Berlin, with two sessions for each of the three Treatment groups at each

location, making twelve sessions and 222 participants in total.29 At both locations, participants

were solicited through an online database using ORSEE (Greiner, 2015) and the experiment was

run using the experimental software, z-Tree (Fischbacher, 2007). On average, sessions lasted

28These objective probabilities were presented in a random order. Furthermore, in the likelihood statement used,

such as the example in the main test, the interval given started at a randomly chosen lower bound (from the feasible

set of lower bounds for that specific objective probability). Nineteen of the twenty reported beliefs were unique, and

the twentieth was a randomly chosen repitition of one of the first nineteen.
29The experiment was therefore completely symmetric between the two locations, with approximately the same

number of participants in each treatment group from each location.
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about 1.5 hours and the average participant earned £19.7 in London and e20.3 in Berlin. Realized

payments ranged between £11 [e11] and £34 [e34].

One challenge faced by belief updating studies is ensuring that subjects understand and engage with

the task. In order to facilitate this, we were careful to ensure that the instructions received were as

clear and simple as possible. Nonetheless, there remained a non-trivial fraction of participants who

took decisions to update in the ‘incorrect’ direction30 upon receiving new information. In order to

ensure that the behavior we are studying is reflective of actual updating behavior of individuals who

understood and engaged with the task, we restrict our sample for our main analysis by removing

rounds where an individual updates in the incorrect direction31. However, we also estimate all the

main results on the full sample, and the general patterns of behavior are similar.

While randomization to treatment group should ensure that the samples are balanced on observable

and unobservable characteristics, Table 10 provides a check that the selection of our preferred

sample has not substantially biased our treatments groups by reporting the sample means of a

set of individual characteristics for each treatment group. Overall, the treatments appear to be

balanced, with the exception that individuals in T3.SEPARATE are more likely to speak English at

home than individuals in T2.COMBINED.

Figure 2 provides a first overview of the reported belief data by reporting the cumulative density

functions of reported beliefs for each of the three treatment groups. One interesting feature of this

figure is that, in spite of the fact that the T2.COMBINED and T3.SEPARATE treatments are offering

subjects precisely the same incentives with only the way in which they are presented being slightly

varied, the distributions of reported beliefs of these two groups are significantly different from

one another (Mann-Whitney rank-sum test, p < 0.01). The larger mass of reported beliefs to the

left of 50 in T2.COMBINED suggests that individuals are more likely to respond to the hedging

opportunity when the incentives are presented in the simpler reduced form lottery format. The

correction mechanism we use helps to remove this distortive effect of the incentive environment

on the reported beliefs.

30‘Incorrect’ in the sense that the participant received a signal that increased the likelihood that one state was the

true state, but the individual updated her reported belief in the opposite direction. For example, if the individual drew

a red ball, but increased her reported belief regarding the probability that the state was ω = A, then we would label

this as an update in the incorrect direction.
31More specifically, for our preferred sample, we remove all individuals who make more than five out of twenty five

updating decisions in the incorrect direction. This comprised eighteen percent of our subjects. This is comparable to

the twenty five percent of individuals who make at least one mistake out of four decisions in Möbius et al. (2014). For

those who updated in the wrong direction five or fewer times, we remove only the round of decisions in which they

made a mistake. This removes 210 out of the remaining 910 rounds. We estimate our results on the full sample and all

the main results remain the same.
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Figure 2: CDF of Reported Beliefs
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5 Empirical Specification

In this section, we first discuss the calibration exercise used to correct the reported beliefs. Second,

we describe the core estimation equations used in our analysis. These build on the work by Möbius

et al. (2014) as their data has a similar structure to ours. One key difference in our data is the

exogenous assignment of the participants’ entire information set. We exploit this feature of our

data to address endogeneity issues that can arise when studying belief updating.

Calibration of the Belief Correction Procedure

The belief correction procedure that we adopt involves assuming a flexible parametric form for

the participants’ utility and probability weighting functions in order to estimate the R function

discussed in Equation 9 above. We estimate this function for each individual separately in order to

correct the reported beliefs at the individual level. In addition, we estimate this function at the ag-

gregate level for each of the treatment groups in order to obtain a measure of the average distortion

of the incentive environment faced in each of the treatment groups. A detailed discussion of the

mechanics of the Belief Correction Procedure we use is relegated to Appendix B.3. Essentially,

we are simply fitting a curve through each subject’s belief elicitation incentive distortion.
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Figure 3: Average Correction Functions across Treatments.

0 0.2 0.4 0.6 0.8 1

R
e

p
o

rt
e

d
 B

e
lie

f 
(r

)

0

0.2

0.4

0.6

0.8

1
NEUTRAL (T1)

0 0.2 0.4 0.6 0.8 1

R
e

p
o

rt
e

d
 B

e
lie

f 
(r

)

0

0.2

0.4

0.6

0.8

1
COMBINED (T2)

True probability (p)

0 0.2 0.4 0.6 0.8 1

R
e

p
o

rt
e

d
 B

e
lie

f 
(r

)

0

0.2

0.4

0.6

0.8

1
SEPARATE (T3)

Data

Estimate-R

45 deg
24



Figure 4: Individual Level Estimates of the Incentive Correction Function.
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Figure 3 displays the average correction curves for each of the treatment groups. Comparing the

three subgraphs, we see that the average individual distorts the beliefs she reports in a way that is

consistent with what risk aversion under EU would predict, with the inverse-S shape distortion in

the T1.SYMMETRIC stakes treatment and the strong distortion downwards (away from the more

desirable state) in both of the ASYMMETRIC stakes treatments. Furthermore, we see that the

different ways of framing the same incentives in the two ASYMMETRIC treatments has a clear

influence on behavior. In T2.COMBINED, the participants hedge far more when choosing their

reported beliefs in comparison to those in the T3.SEPARATE group. This is in spite of the fact that

the incentives are identical in these two treatments. This indicates that the reported beliefs in the

T3.SEPARATE treatment are closer to the participants’ true beliefs and motivates this presentation

of incentives as preferable for future work that calls for the elicitation of beliefs when there are

exogenous state-contingent payments.

At the individual level, there is a large degree of heterogeneity in the degree to which individuals

distorted their reported belief away from their actual belief, given the incentive environment. Fig-

ure 4 displays the correction curves estimated for two individuals from each treatment group. It is

clear from this figure that some individuals responded very strongly to the incentive environment

in which their belief was elicited, while others reported their belief more accurately. The belief

correction procedure is therefore very helpful for recovering the true beliefs of participants who

responded strongly to the incentive environment. In cases where the individual simply reported

their belief accurately, the corrected beliefs and the reported beliefs are exactly the same.

In Figure 5 we plot the CDFs of the uncorrected reported beliefs as well as the reported beliefs that

have been corrected at the individual level. This figure suggests that the belief correction approach

that we use was successful in removing the strong hedging influence in the COMBINED treatment

as the correction procedure removes the majority of the difference between the distributions of

beliefs for the two treatments with identical incentives, COMBINED and SEPARATE. This evidence

provides support for the hypothesis that combining the payment incentives into a single summary

table made it easier for the subjects to identify the hedging opportunity and distort the belief they

reported away from the belief they held in the COMBINED treatment. Furthermore, this evidence

underscores the usefulness of the belief correction mechanism in reducing the bias in the reported

beliefs.
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Figure 5: CDFs of Corrected and Uncorrected Reported Beliefs
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With the corrected beliefs in hand, we can proceed to the main analysis of belief updating in our

sample. The analysis is done using both the corrected and uncorrected beliefs.32

Core Estimation Specifications

Our core estimation equations aim to test for systematic patterns in updating behavior, within the

framework developed in Equation 6. Firstly, we examine whether there are systematic deviations

from Bayes’ rule in updating behavior, independent of having a stake in one of the two states of the

world. Secondly, we assess the influence that having a stake in one of the two states of the world

has by (i) testing for an asymmetry in updating within treatments where there is a state-contingent

stake (i.e. T2.COMBINED and T3.SEPARATE); and (ii) testing whether there are differences in

updating behavior between the treatments with and without a state-contingent stake.

The first estimation equation follows directly from Equation 6, allowing us to test the asymmetric

updating hypothesis, and also to test for other common deviations from Bayes’ rule, such as a

32The analysis using the uncorrected beliefs is essentially an analysis using beliefs elicited using the QSR, which is

by far the most common approach used in the belief elicitation literature to date. Therefore, these results have greater

comparability with much of the experimental literature. However, in line with the discussion above, our preferred

specification uses the corrected beliefs as these should be closer to the subjects’ true beliefs.
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confirmatory bias or base rate neglect33:

π̃i,j,t+1 = δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γbq̃ · 1(si,j,t+1 = b) + ǫi,j,t+1 (10)

where π̃i,j,t = logit(πi,j,t) and q̃ = log( q

1−q
); j refers to a round of decisions; and the errors, ǫijt,

are clustered at the individual (i) level.

In order to determine the belief updating pattern within each incentive environment, we estimate

this equation separately for each treatment; and then to test for significant differences between

the coefficients in different incentive environments, we pool our sample and interact the treatment

variable with all three of the coefficients in this equation (i.e. δ,γa, and γb). This provides us with

a test of whether the parameters differ between either of the two ASYMMETRIC treatments and the

SYMMETRIC treatment.

Endogeneity of the Lagged Belief

One potential concern with the identification of the parameters of Equation 10 is the common

issue where the right hand side contains lagged versions of the dependent variable. This implies

that there is a possible endogeneity of the lagged beliefs, πi,j,t, if they are correlated with the error

term34, E{π̃i,j,tǫi,j,t+1} 6= 0. If this is the case, it can result in biased and inconsistent estimators

for the parameters of the regression. Our experiment was designed to avoid this issue by virtue of

exogenously assigning the subjects’ entire information set. This allows us to use the exogenously

assigned prior probability of state ω = A being the true state, pi,j,t=0, as well as the sequence of

signals observed, st, to construct an instrument for the lagged belief, πi,j,t, in Specification 10.35

We do this by calculating the objective Bayesian posterior, given the agent’s information set at time

t, and using this as an instrument for her belief, πi,j,t.

The approach used here also avoids a second type of endogeneity issue that can arise when study-

ing belief updating when the states of the world are a functions of personal characteristics (e.g.

when examining beliefs regarding individual attributes, such as one’s own skills, IQ, or beauty) or

33Here, base rate neglect is the tendency to underweight or partially disregard one’s prior regarding which urn is

more likely to be generating the signal. This implies that when the individual receives a new signal, she weights

information that supports her prior less heavily than information that opposes it, relative to a Bayesian. In this case,

when one’s prior regarding state ω = A is greater than 0.5, πt−1 > 0.5, a participant who is prone to base rate neglect

weights signals that support state ω = A less heavily than signals that support state ω = B; and vice versa when her

prior is πt−1 < 0.5, using Bayesian updating as the benchmark.
34For example, this would be the case if there is individual heterogeneity in the way individuals respond to infor-

mation. We provide evidence below that this individual heterogeneity is present.
35More precisely, we instrument using the logit of the accurate Bayesian posterior, logit(pi,j,t), as an instrument for

the logit of the lagged belief, π̃i,j,t = logit(πi,j,t) in Specification 10.
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personal choices. When this is the case, the conditional probability of observing a specific signal

depends on the state of the world, and therefore can be correlated with personal characteristics.36

6 Results

Table 3 reports the results from estimating Equation 10 for each of the treatment groups separately.

These estimates provide an overview of the updating behavior of the average individual within

each of the three treatment groups. Within each treatment group, we report the results for both the

OLS (top panel) and the IV (bottom panel) estimates discussed above. Columns (1a), (2a) and (3a)

use the uncorrected reported beliefs, while columns (1b), (2b) and (3b) use the corrected beliefs.

Every coefficient in the table is statistically different from 0 at the 1% level. Since our primary

interest is in testing whether the coefficients are different from 1, in this table, we use asterisks to

reflect the significance of a t-test of whether a coefficient is statistically different from 1.

Perhaps the most striking features of this table are: (i) the similarity in the updating patterns across

the three treatment groups; and (ii) that for the average individual, the observed updating behavior

is close to Bayesian in all three treatment groups. The p-values from the test of the null hypothesis,

H0 : γa = γb, show that in none of the three treatment groups do we observe a statistically

significant difference (at the 5% level) between the responsiveness to the signals in favor of ω = A

and ω = B (i.e. we don’t observe asymmetric updating).

Both the OLS results in the top panel, and the IV results in the bottom panel, indicate that the

responsiveness to new information of the average participant was not statistically different to that

of a Bayesian, since both γa and γb are not significantly different to 1 at the 5 percent level. The

primary difference between the OLS results and the IV results is that, while the OLS estimates

suggest a small degree of base rate neglect across all three treatments (δ < 1), once we control for

36Consider the following toy example to illustrate this. Assume there are two states of the world - being TALL and

SHORT - and being tall is viewed as “good”. Individuals are initially uncertain about their height group (because only

relative height is important). Now, assume that TALL individuals are more responsive to new information than SHORT

individuals. For example, assume TALL individuals update exactly according to Bayes’ rule, but SHORT individuals

don’t update their prior beliefs at all in response to new information. Now, let subjects receive a sequence of noisy

signals that are informative (in the sense that, for each type, the signal they receive is correct more than fifty percent of

the time). In this toy example, both types respond symmetrically to ‘good-news’ and ‘bad-news’, but because TALL

individuals are always more likely to receive ‘good-news’, and SHORT individuals are always more likely to receive

‘bad-news’, the resulting aggregate behavior will appear to display the “good-news, bad news effect”. This is due to

the fact that, on average, a good signal was more likely received by a TALL individual, who updates like a Bayesian,

and a bad signal is more likely to go to a SHORT individual who doesn’t update at all. Furthermore, updating would

display conservatism on average. See Appendix C for further details.
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the possible sources of endogeneity discussed above using our instrumental variable strategy, the

estimates no longer indicate base rate neglect. Interestingly, although we observed a substantial

difference in the levels of the corrected and uncorrected beliefs in Figure 5 above, the estimates for

updating in Table 3 are quite similar.

Table 3: Average Updating Behavior across Treatments

T1: SYMMETRIC T2: COMBINED T3: SEPARATE

Reported Corrected Reported Corrected Reported Corrected

(1a) (1b) (2a) (2b) (3a) (3b)

OLS

δ 0.90 0.90 0.86 0.86 0.91 0.93

(0.03)*** (0.03)*** (0.04)*** (0.04)*** (0.03)*** (0.02)***

γa 1.12 1.09 1.05 1.06 1.25 1.16

(0.12) (0.11) (0.12) (0.12) (0.14)* (0.11)

γb 1.21 1.17 1.19 1.12 1.20 1.13

(0.13)* (0.11) (0.15) (0.13) (0.12) (0.10)

p (H0 : γa = γb) 0.30 0.32 0.20 0.48 0.58 0.73

N 1,075 1,075 1,285 1,285 1,140 1,140

R2 0.71 0.73 0.73 0.74 0.81 0.84

IV

δ 0.99 0.99 1.00 0.99 0.99 0.99

(0.03) (0.03) (0.02) (0.02) (0.03) (0.02)

γa 1.12 1.09 1.08 1.02 1.22 1.14

(0.12) (0.11) (0.12) (0.11) (0.13)* (0.11)

γb 1.21 1.16 1.11 1.12 1.18 1.11

(0.12)* (0.11) (0.13) (0.12) (0.12) (0.10)

p (H0 : γa = γb) 0.30 0.31 0.76 0.25 0.63 0.74

N 1,075 1,075 1,285 1,285 1,140 1,140

1st Stage F 61.38 84.04 107.98 107.01 76.90 95.45

(i) Standard errors in parentheses (clustered at the individual level).

(ii) All coefficients are significantly different from 0 at the 1% level. Therefore, t-tests of the null

hypothesis (H0: Coefficient = 1) are reported: * = 10%, ** = 5%, *** = 1%.

(iii) The rows corresponding to p (H0 : γa = γb) report the p-statistic from a t-test of the equality

of the coefficients γa and γb (i.e. a test of the asymmetric updating hypothesis).
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Robustness Exercises

To check for the robustness of the belief updating results for the average individual presented

in Table 3, we conducted several robustness exercises. These exercises, and their corresponding

results, are discussed in detail in Appendix A.

The first exercise considers a comparison of information-set-equivalent posterior beliefs after in-

dividuals have received only (i) the exogenous prior and (ii) a single ball draw. This is an in-

formative exercise as it allows for a model-free test of the asymmetric updating hypothesis in

situations where the exogenous information set is kept constant, and the only factor that differs is

the payment associated with different states. The second subsection examines whether the results

from the main specification described in Equation 10 are robust to first differencing the dependent

variable (i.e. this considers how new information shifts the change in beliefs, imposing the as-

sumption that δ = 1). The third subsection extends the main empirical specification to allow for

individual-specific updating parameters. The fourth subsection pools all the observations across

the three treatments together, and then tests whether the average updating parameters differ across

treatments by interacting treatment group dummies with the regressors of the main specification

described in Equation 10.

The results from all of these exercises are highly consistent with those in Table 3 and fail to provide

any evidence in favor of an asymmetry in updating.

Heterogeneity in Updating Behavior

In order to investigate whether the aggregate results are masking heterogeneity in updating behav-

ior, we estimate Specification 10 at the individual level and collect the parameters. The distribu-

tions of these individual level parameters are reported in Figure 6. Perhaps the most conspicuous

feature of this figure is the fact that all three treatment groups display such similar distributions in

each of the panels - i.e. for each of the parameters. The upper-right panel shows that the majority

of individuals have an estimated δ parameter in the interval [0.6, 1.1], with a large proportion of

these concentrated around 1 in all three treatment groups. The two left-hand panels show that there

is substantially more individual heterogeneity in the estimated γa and γb parameters, which are

dispersed over the interval [0, 3.5] in all three treatments.
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Figure 6: Distributions of Individual Level Updating Parameters.
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With such a large degree of variation in the individual level parameters, a natural conjecture to

make is that, while we do not observe asymmetric updating at the aggregate level, it is entirely

plausible that there may be a subsample of individuals who are optimistic updaters and another

subsample of individuals who are pessimistic updaters. If these two subsamples are of a similar

size and their bias is of a similar magnitude, we would observe no asymmetry at the aggregate level.

The lower-right panel of Figure 6 suggests that this is not the case by plotting the distribution of

the individual level difference between the γa and γb parameters. The majority of the distribution

is concentrated in a narrow interval around 0 for all three treatment groups, suggesting that there

is no asymmetry for any sizable subsample. In order to further investigate whether there exists a

subgroup of asymmetric updators, we estimate a a mixture model, which uses maximum likelihood

to classify the data into the predominant ‘types’ of updaters in the sample, where the ’types’ are

determined endogenously. The results are reported in Appendix D and also show no support for

the existence of a subgroup of asymmetric updators in any of the treatments groups.
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7 Concluding Discussion

The objective of this paper was to study belief updating when an individual prefers one state of

the world to another. In particular, the experiment was designed to test the asymmetric updating

hypothesis in the domain of financial decision making, and contribute to the body of work that is

constructing a descriptive understanding of how individuals form beliefs.

The main finding of the current paper is that, in contrast to the literature considering belief updating

over ego-related attributes, we find no evidence for asymmetric updating when there are financial

state-dependent stakes. Instead, we find that the updating behavior of the average individual is

approximately Bayesian, irrespective of the presence or absence of financial stakes. This is highly

consistent with the results reported in Coutts (2016) and Gotthard-Real (2017), who also consider

belief updating in the presence of financial rewards. The current paper complements this contem-

poraneous work in several ways. Firstly, we consider belief updating from a wider range of prior

beliefs. Secondly, our experimental design ensures that the distribution of realised signals observed

is balanced in terms of the frequency of ‘good’ and ‘bad’ signals. This is useful as it removes the

potential influence of the signal distribution that is documented by Coutts (2016). Thirdly, our data

allows us to conduct both within subject and between subject tests, as well as several robustness

exercises in support of the main result.

Exploring heterogeneity in updating behavior, we find that the Bayesian behavior of the average

individual masks a large degree of heterogeneity in individual’s responsiveness to new information,

however, we don’t find any evidence in support of a sizeable subgroup of asymmetric updators.

Overall, the results suggest that the average individual updates her beliefs symmetrically in con-

texts of structured belief updating,37 even if one of the states yields a larger financial reward.

One caveat to the results described here is that the financial stakes in play are not extremely large,

and therefore it is feasible that the results would change in the presence of larger financial stakes.

While small stake sizes are a standard caveat to most laboratory experiments, it is perhaps a larger

concern here, since the asymmetric updating hypothesis may rely on the degree to which individ-

uals desire the occurance of the good state of the world. However, Coutts (2016) investigates the

role played by stakes, increasing the stake size up to $80 and finds no evidence that it plays a role.

37It is useful to consider a taxonomy of the papers in this literature along two dimensions: (i) the domain over

which beliefs are formed (e.g over attributes relating to self-image or events associated with financial outcomes); and

(ii) whether they examine structured belief updating (updating from a prior belief known to the analyst) or unstructured

belief formation (forming a belief where priors are unknown to the analyst, or on the basis of ambiguous information).
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This suggests that stake size may not be a pivotal concern. Nonetheless, it is worth keeping this

caveat in mind when interpreting the results.

The aim of this paper was to contribute towards a descriptive understanding how individuals update

their beliefs in the presence of state-contingent stakes. This is instructive as there is a large class

of economically important situations in which individuals form beliefs, preferring one state to

another, ranging from capital markets to intertemporal portfolio choice problems to consumption

savings problems. An appealing conclusion of this paper is that, while standard economic models

may not be appropriate when an individual’s ego is involved, in a large class of situations when an

individual’s ego is not involved, standard theory, which assumes Bayesian updating, may do just

fine.
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APPENDICES

Appendix A: Robustness Checks

The empirical specification used in the main text of this paper assumes that updating follows the

flexible parametric process described in Equation 6. This specification allows for a wide range of

deviations from Bayes’ rule, as discussed in Section 2. However, as one of the primary objectives

of this paper is to test the asymmetric updating hypothesis, this section provides further evidence

assessing this hypothesis, while relaxing the assumptions of the parametric process described in

Equation 6.

The first subsection considers a comparison of information-set-equivalent posterior beliefs after

individuals have received only (i) the exogenous prior and (ii) a single ball draw. This is an in-

formative exercise as it allows for a model-free test of the asymmetric updating hypothesis in

situations where the exogenous information set is kept constant and the only factor that differs is

the payment associated with different states. The second subsection examines whether the results

from the main specification described in Equation 10 are robust to first differencing the dependent

variable (i.e. this considers how new information moves the change in beliefs, imposing the as-

sumption that δ = 1). The third subsection extends the main empirical specification to allow for

individual-specific updating parameters. The fourth subsection pools all the observations across

the three treatments together, and then tests whether the average updating parameters differ across

treatments, by interacting treatment group dummies with the regressors of the main specification

described in Equation 10.

Robustness Check 1: Model Free Test of the Asymmetric Updating Hypothesis

Perhaps the simplest and most direct test of the asymmetric updating hypothesis is obtained by

comparing the posterior beliefs formed in two contexts where the information set is identical, but

the rewards associated with one of the states of the world are varied. This allows us to test the

asymmetric updating hypothesis while remaining agnostic regarding the process that guides belief

updating, testing only whether it is symmetric. In the context of our experiment, we can achieve

this model-free comparison of posteriors with identical information sets by comparing the posterior

beliefs formed after a single ball draw (i.e. the information set consists of the exogenously assigned
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prior, p0, and a single signal, s1 ∈ {a, b}). We can then conduct two comparisons of information-

set-equivalent posterior beliefs.

Firstly, we can compare posterior beliefs, π1, formed with identical information sets {p0, s1} be-

tween treatment groups, where the payments associated with states of the world differ. For exam-

ple, we can compare the average posterior formed after an identical prior p0 = 1
6

and an identical

signal s1 = a (i.e. a blue ball) differs between treatments.

Secondly, we can compare information-set-equivalent posterior beliefs within treatment groups.

This comparison involves comparing π1 after {p0 = p, s1 = s} with 1−π1 after {p0 = 1− p, s1 =

sc} where sc is the complementary signal to s.38 For example, we can compare the posterior, π1,

formed after a prior of p0 = 1
6

and the signal s1 = a (i.e. a blue ball), with 1 − π1 after a prior of

p0 =
5
6

and the signal s1 = b (i.e. a red ball). To see why this comparison involves a comparison of

information-set-equivalent posterior beliefs, recall that the experiment is designed to be completely

symmetric in terms of information, with the information content of a red ball exactly the same as

a blue ball, except in support of the other state of the world. Therefore, if an individual updates

symmetrically, then π1|{p0=p,s1=s} = 1 − π1|{p0=1−p,s1=sc}. This prediction results directly from

assuming that the individual updates symmetrically and does not rely on Bayes’ rule (although it is

an implication of Bayes’ rule), therefore it provides us with a non-parametric test of the asymmetric

updating hypothesis.

Figure 7 depicts both of these comparisons, with each group of six bars collecting together the

relevant information-set-equivalent groups. Each bar presents the mean posterior belief for that

group, as well as a 95% confidence interval around the mean.39 Each group is labeled on the x-axis

by the prior belief associated with the red bars, which are the information sets which include a

red ball as a signal (i.e. s1 = b). The blue bars report the mean of 1 − π1, for information sets

containing a blue ball (i.e. s1 = a) and the x-axis label corresponds to 1− p0. Within each group,

the first two bars represent the average posterior beliefs in Treatment group 1 (SYMMETRIC) after a

single red ball draw (‘bad-news’ in the ASYMMETRIC treatments) or blue ball draw (‘good-news’

in the ASYMMETRIC treatments); the second pair of bars depict the same for Treatment group

2 (ASYMMETRIC COMBINED); and the third pair of bars for Treatment group 3 (ASYMMETRIC

SEPARATE).

The results depicted in Figure 7 show that there are no systematic differences between poste-

rior beliefs within information-set-equivalent groups, neither within nor between treatment groups.

38Therefore, if s = a then sc = b and vice versa.
39The calculation of these confidence interval assumes a t-distribution.
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Furthermore, when testing non-parametrically whether there are differences within or between

treatment groups for information-set-equivalent groups, none of the 45 relevant binary compar-

isons40 are significant at the 5 percent significance level under a Mann-Whitney test, suggesting

that we cannot reject the hypothesis that the posterior beliefs within information-set-equivalent

groups are drawn from the same population. This lends support to the results described in the main

text, which indicate that we fail to find evidence in support of the asymmetric updating hypothesis.

Figure 7: Comparison of Beliefs after the Receipt of a Single Signal and an Exogenous Prior
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Robustness Check 2: First-Differences Specification and Power Calculation

This section of the robustness checks serves two purposes. The first purpose is to check for the

robustness of the results from the core empirical specification to the use of a first differences

specification (DIFF), which essentially involves imposing the assumption that δ = 1. The second

purpose of this section is to report the size of the minimum detectable effect (MDE) from power

calculations for both our main OLS and IV empirical specification, and the DIFF specification.

40For these comparisons, for each exogenous prior, we test the following binary comparisons: (i) within treatment

group, we test between those that received the s1 = a and s1 = b signals (3 × 5 binary comparisons); (ii) for those

that received the same signal, s1, we test between treatment groups (6× 5 binary comparisons).
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One of the challenges in carrying out a statistical analysis of belief updating behavior is that an

individual’s current posterior belief necessarily depends upon her prior belief, which in turn is the

result of updating in response to past information. Therefore, when estimating a parametric belief

updating function, one concern is that the individual’s prior belief is correlated with unobservables.

In the main text, we devoted substantial space to discussing how the experiment was designed ex-

plicitly to address this concern by generating a completely exogenous information set, facilitating

a natural instrumental variables (IV) approach to estimation. The first differences specification

results presented here serve to further complement the IV analysis, since the DIFF specification

avoids the potential endogeneity issue by removing the lagged belief from the set of dependent

variables in the regression.

In columns (#a) and (#b), Table 4 repeats the OLS and IV results from Table 3 for the corrected

beliefs, with one minor change to the core specification in Equation 10. Here we report, instead,

the results for the equivalent specification:

π̃i,j,t+1 = δπ̃i,j,t + γaq̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + ǫi,j,t+1 (11)

where π̃i,j,t = logit(πi,j,t) and q̂ = log( q

1−q
) · [1(si,j,t = a) − 1(si,j,t = b)]; while as above,

q̃ = log( q

1−q
); j refers to a round of decisions; t counts the decision numbers within a round, and

the errors ǫijt+1 are clustered at the individual (i) level. The difference γb − γa denotes a single

parameter estimated in the regression, but is denoted as the difference between γb and γa as this

is the natural way to think about this parameter in the context of the discussion above (i.e. the

difference between how subjects update in response to ‘bad news’ and ‘good news’).

The reason for the rearrangement of the equation is that, while it is equivalent41 to the specification

in Equation 10, it displays the test of the difference between γa and γb more clearly (i.e. the test of

the asymmetric updating hypothesis), and thereby also facilitates calculating the MDE. In Table 3,

we have presented the MDE for a power of κ = 0.8.

41Notice that the regression coefficients and standard errors on δ and γa are the same in Tables 3 and 4 (where

we are only considering the corrected beliefs). Furthermore, we can see the equivalence from the following simple

rearrangement:

π̃i,j,t+1 = δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γbq̃ · 1(si,j,t+1 = b)

= δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γaq̃ · 1(si,j,t+1 = b) + γaq̃ · 1(si,j,t+1 = b)− γbq̃ · 1(si,j,t+1 = b)

= δπ̃i,j,t + γaq̃ · [1(si,j,t+1 = a)− q̃ · 1(si,j,t+1 = b)] + [γa − γb] · q̃ · 1(si,j,t+1 = b)

43



Columns (#c) report the results for the first difference specification, which imposes the restriction

that δ = 1:

∆π̃i,j,t+1 = γaq̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + ǫi,j,t+1 (12)

where ∆π̃i,j,t+1 = logit(πi,j,t+1) − logit(πi,j,t) and q̂ = log( q

1−q
) · [1(si,j,t = a) − 1(si,j,t = b)]; j

refers to a round of decisions; t counts the decision numbers within a round, and the errors ǫijt+1

are clustered at the individual (i) level.

Table 4: First Difference Specification and Power Calculations

T1: SYMMETRIC T2: COMBINED T3: SEPARATE

OLS IV DIFF OLS IV DIFF OLS IV DIFF

(1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) (3c)

δ 0.90 0.99 0.86 0.99 0.93 0.99

(0.03)*** (0.03) (0.04)*** (0.02) (0.02)*** (0.02)

γa 1.09 1.09 1.09 1.06 1.02 1.01 1.16 1.14 1.13

(0.11) (0.11) (0.11) (0.12) (0.11) (0.11) (0.11) (0.11) (0.10)

γb − γa 0.08 0.08 0.08 0.07 0.10 0.11 -0.03 -0.03 -0.02

(0.08) (0.08) (0.08) (0.10) (0.09) (0.09) (0.08) (0.08) (0.08)

p(γa = γb) 0.32 0.31 0.32 0.48 0.25 0.25 0.73 0.74 0.75

MDE (κ = 0.8) 0.24 0.22 0.22 0.27 0.25 0.26 0.24 0.22 0.22

R2 0.73 0.31 0.74 0.21 0.84 0.34

1st Stage F 84.04 107.01 95.45

N 1,075 1,075 1,075 1,285 1,285 1,285 1,140 1,140 1,140

(i) Standard errors in parentheses (clustered at the individual level)

(ii) T-tests of H0: δ = 1; γa = 1; γb − γa = 0 indicated by * = 10%, ** = 5%, *** = 1%

(iii) MDE reports the minimum detectable effect size for a power of κ.

The results indicate that the γb − γa parameter is robust to the different empirical specifications

adopted, and also doesn’t vary substantially across treatment groups. In all treatment groups, and

for each of the empirical specifications considered, we cannot reject the null hypothesis that this

parameter is equal to zero, which implies that we do not find support for the asymmetric updating

hypothesis. Furthermore, we calculate the MDE for each specification, considering a significance
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level of α = 0.05 and a power of κ = 0.8. Under these assumptions, the MDE for the difference

between the γb and γa parameters in each of the regressions considered in isolation ranges between

0.22 and 0.27. As a result, we cannot conclusively reject the possibility that there exists a small

asymmetry in updating; however none of our results provide any support for this conclusion.

Robustness Check 3: Allowing for Individual-Specific Updating Parameters

As discussed above, one reason we might think that endogeneity of the lagged belief could lead

to biased estimates is if there is heterogeneity in individual updating behavior and this leads to a

correlation between the unobserved error term and the lagged belief variable amongst the regres-

sors. We have tried to address this issue above using, firstly, an instrumental variable approach,

and secondly, a first differences empirical specification. However, since the data were collected

in the form of a panel of belief updates for each individual, the data lends itself to controlling

for individual-specific behavior through exploiting the panel. A typical fixed effects model is not

appropriate here, as it is not the level of the regression that shifts from individual to individual.

However, we can include individual-specific updating parameters to control for the slope to shift

at the individual level. This allows us to extract the individual heterogeneity in how responsive

individuals are to their prior belief, and to new information in general, and reduce the possible bias

in the main parameter of interest, the average difference in responsiveness to ‘bad news’ and ‘good

news’ : γb − γa. With this in mind, our third robustness check involves estimating the following

empirical specification:

π̃i,j,t+1 = δiπ̃i,j,t + γ
i
q̂ − (γb − γa)q̃ · 1(si,j,t+1 = b) + ǫi,j,t+1 (13)

where δi and γi are estimated at the individual level, and the remaining parameters and variables

are defined as above. The results from this exercise using the corrected beliefs are reported in Table

5.

These results are very consistent with the estimates from the core specification, as well as from

the DIFF specification in Robustness Check 2. In summary, all the empirical estimates provide

support for the same underlying story that the data collected in this experiment provide no support

for the asymmetric updating hypothesis in this context.
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Table 5: Allowing for Individual-Specific Updating Parameters.

T1 SYMMETRIC T2 COMBINED T3 SEPARATE T2+T3

(1) (2) (3) (4)

γb − γa 0.09 0.14 -0.04 0.06

(0.10) (0.10) (0.09) (0.07)

p(γa = γb) 0.35 0.18 0.67 0.41

MDE (κ = 0.8) 0.28 0.29 0.26 0.20

MDE (κ = 0.9) 0.33 0.33 0.30 0.23

N 1,075 1,285 1,140 2,425

R2 0.80 0.84 0.89 0.86

(i) Standard errors in parentheses

(ii) T-tests of H0: Coefficient = 0 reported: * = 10%, ** = 5%, *** = 1%

(iii) MDE reports the minimum detectable effect size for a power of κ.

Robustness Check 4: Between Treatments Comparison of Updating Parameters

This section tests whether the belief updating parameters in our core specification are significantly

different between the three treatment groups. This is done by pooling together the three treatment

groups and estimating Equation 10, but with the inclusion of treatment dummies interacted with

the updating coefficients. This provides us with a test of whether the parameters differ between

either of the two ASYMMETRIC treatments and SYMMETRIC.

More specifically, this involves estimating the following equation:

π̃i,j,t+1 =δπ̃i,j,t + γaq̃ · 1(si,j,t+1 = a)− γbq̃ · 1(si,j,t+1 = b)+

3∑

k=2

[δkπ̃i,j,t · T
k
i,j,t + γk

a q̃ · 1(si,j,t+1 = a) · T k
i,j,t − γk

b q̃ · 1(si,j,t+1 = b) · T k
i,j,t] + ǫi,j,t+1

where T k
i,j,t is an indicator variable for treatment k [i.e. T k

i,j,t = 1(Ti,j,t = k)], with Ti,j,t a treatment

variable taking the values {1, 2, 3} corresponding to the three treatment groups. The coefficients

δ,γa, and γb reflect the baseline parameters without the influence of state-contingent stakes and
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the parametersδk, γk
a and γk

b estimate the movement from these parameters for each of the two

state-contingent stake treatments, k ∈ {2, 3}.

The results from this exercise are presented in Table 6. The results show that, for the average

individual, there are no systematic differences in the updating parameters across treatment groups.

This implies that the differences in exogenous state-contingent incentives do not exert a strong

influence on how individuals update their beliefs in the different treatments.
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Table 6: Testing for Differences in Average Updating Behavior between Treatment Groups.

Belief 1 Belief 2 Belief 3 Belief 4 Belief 5 Pooled Full Sample

(1) (2) (3) (4) (5) (6) (7)

Priors

δ 0.92 0.92 0.99 1.01 1.03 0.99 0.99

(0.04) (0.03) (0.03) (0.03) (0.04) (0.02) (0.02)

δ * T2 -0.01 -0.00 0.01 0.01 0.00 -0.00 -0.04

(0.06) (0.07) (0.06) (0.06) (0.06) (0.03) (0.03)

δ * T3 0.03 0.04 -0.07 0.08 -0.05 0.00 0.01

(0.07) (0.05) (0.05) (0.05) (0.08) (0.03) (0.03)

Signal: Blue (s = a)

γa 0.85 0.91 0.94 1.10 1.36 1.04 0.78

(0.10) (0.12) (0.11) (0.13) (0.16) (0.08) (0.06)

γa * T2 0.05 0.04 -0.07 0.13 -0.24 -0.02 0.05

(0.19) (0.22) (0.18) (0.30) (0.26) (0.13) (0.11)

γa * T3 0.07 0.05 -0.01 0.28 0.12 0.10 0.09

(0.19) (0.17) (0.15) (0.22) (0.28) (0.13) (0.11)

Signal: Red (s = b)

γb 0.83 0.85 0.99 1.20 1.45 1.06 0.78

(0.10) (0.11) (0.11) (0.13) (0.15) (0.07) (0.06)

γb * T2 0.08 -0.00 -0.13 -0.01 0.48 0.06 0.10

(0.19) (0.19) (0.20) (0.22) (0.36) (0.15) (0.13)

γb * T3 0.17 -0.02 0.05 -0.17 0.29 0.05 0.10

(0.18) (0.16) (0.16) (0.19) (0.27) (0.12) (0.10)

Observations 894 894 894 894 894 4,470 7,175

Kleibergen-Paap F 46.78 47.64 56.84 60.68 64.26 93.33 53.95

(i) Robust standard errors in parentheses (clustered at the individual level).

(ii) Estimates use the corrected beliefs and are instrumented using the correct lagged Bayesian posterior.

(iii) All of the non-interacted coefficients are significantly different from 0 at the 1% level. None of the

interaction coefficients are significantly different from zero at the 10% level.
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Appendix B.1: Core Properties of Bayes’ Rule

Möbius et al. (2014) argue that the core structure of Bayesian updating is captured by the following

three properties:

1. invariance, whereby the difference in logit beliefs between t and t + 1 depends only on the

history of signals, Ht+1, and the initial prior, p0 (i.e. on the agent’s information set). An

updating process is invariant if we can find a function gt such that:

logit(πt+1)− logit(πt) = gt(st+1, st, ..., s1; p0)

If an individual displayed base rate neglect or confirmatory bias, this would constitute a vio-

lation of invariance (i.e. in the context of the model outlined in the main text, this assumption

stipulates that δ = 1).

2. πt is a sufficient statistic for all information received at time t or earlier, such that the change

in logit beliefs depends only on the new information in time t+ 1: logit(πt+1)− logit(πt) =

gt(st+1)

3. stability of the updating process over time. This property is satisfied if gt = g for all t.

Under the assumption that these properties are satisfied, the authors note that the class of updating

processes that remain can be fully described by the two parameter function, g(st), where:

g(st) = log(
q

1− q
) · 1(st+1 = a)− log(

q

1− q
) · 1(st+1 = b)

This serves to motivate the model described in Equation 6.

Appendix B.2: Augmenting the Offerman et al. (2009) ‘Truth

Serum’ Approach to Include Stakes

In the case where x 6= 0, the main text discussed how participants who face the quadratic scoring

rule incentives, along with the non-zero state-contingent bonus x, essentially face a choice from

a menu of lotteries denoted by (x + 1 − (1 − rt)
2)EA

(1 − r2t ). An individual who satisfies the
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biseparable preferences model and is probabilistically sophisticated will evaluate this prospect

using the following Equations42:

For x ≥ 1 or rt ≥ 0.5 :

w(P (EA))U(x+ 1− (1− rt)
2) + (1− w(P (EA)))U(1− r2t ) (14)

and similarly,

For x = 0 & rt < 0.5 :

(1− w(P (Ec
A)))U(x+ 1− (1− r)2t ) + w(P (Ec

A))U(1− r2t ) (15)

The reason for the two separate conditions is due to the way in which many NEU models, subsumed

within biseparable preferences model, allow the probability weighting function, w(.), over events

to be influenced by the ordinal ranking over the associated outcomes, from best to worst43. Since

the case where x = 0 is discussed extensively in Offerman et al. (2009), we will focus on the case

where x ≥ 1 in the discussion that follows. This case only requires a very minor adjustment to

their discussion. The key results are the following (adjusted to include the influence of x):

Result 1: Under NEU with known probabilities, p, the optimal reported probability, r = Rx(p)

satisfies:

If x ≥ 1,then p = R−1
x (rt) = w−1


 rt

rt + (1− rt)
U ′(x+1−(1−rt)2)

U ′(1−r2
t
)


 (16)

Result 2: Under NEU with unknown probabilities, the optimal reported probability, r, satisfies:

If x ≥ 1,then P (E) = w−1


 rt

rt + (1− rt)
U ′(x+1−(1−r)2

t
)

U ′(1−r2
t
)


 (17)

This motivates the simple strategy for recovering the agent’s subjective beliefs from her reported

42For expositional simplicity, we don’t consider xǫ(0, 1). The discussion below is easily extended to these cases,

but they are irrelevant for the purposes of this paper. This case is slightly different due to the fact that the probability

weights on events or states may depend on their ordinal ranking according to preferences in this model.
43When x = 0 and rt < 0.5, then 1− r2t > 1− (1− rt)

2 (i.e. in this case, Ec
A becomes the preferred event, rather

than EA, and therefore the probability weighting function is reversed).
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beliefs under the specific incentive environment that she faces. Since the RHS of (16) and (17)

agree, we have:

P (E) = R−1
x (r) (18)

which implies that if we can recover the function R−1
x then we can map the reported beliefs to the

participant’s subjective beliefs. Equation 16 shows that we can recover this R−1
x function in the

same way here, with the bonus payment of x, as in the case where x = 0 considered in Offerman

et al. (2009). Essentially, we provide the participant with prospects over known probabilities, p,

and ask them for their belief regarding the likelihood that one state will be realized. In order to

ensure the incentives to distort one’s reported beliefs are kept constant, we do this exercise under

precisely the same incentive environment as in the main belief updating task. By eliciting these

reported beliefs associated with known probabilities spanning the whole unit interval, we can use

these (p, rt) pairs to estimate Rx(p) for each individual for the relevant incentive environment

created by the belief elicitation. Having estimated Rx(p), we can calculate its inverse, R−1
x (r).

We can take any beliefs reported by the participant under the same belief elicitation incentives and

then use this estimated R−1
x (r) to recover her true beliefs. In particular, we can use this estimated

function to recover her true beliefs from her reported beliefs in the belief updating task that is the

focus of this paper. Essentially, we are using this procedure to remove any misreporting effect that

the belief elicitation incentive environment may have. It allows us to correct for the possibility that

individuals may hold some belief P (E) or π, but instead report a different belief, r.

If the incentive environment does not cause the participant to report a belief different from her true

belief, then this procedure is unnecessary, but applying the procedure to her reported beliefs will

not have any effect. In this case, the corrected beliefs will be the same as the reported beliefs.

Appendix B.3: Calibration of the Belief Correction Procedure

It is clear from the discussion in the main text and Equation 9, that we could recover R(.) non-

parametrically for each individual if we were to collect a large number of (p, r) pairs from partic-

ipants, such that the interval between the known probabilities, p, is sufficiently small. However,

since it is not practical here to elicit such a large number of observations from each participant, we

instead impose a parametric structure similar to the one used by Offerman et al. (2009).
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For the utility function, U(.), we use the constant relative risk aversion (CRRA)44 functional form:

U(x) =





xρ if ρ > 0

ln x if ρ = 0

−xρ if ρ < 0

(19)

For the probability weighting function, w(.), we adopt Prelec’s (1998), one-parameter family45:

w(p) = exp[−(− ln(p))α] (20)

Substituting these parametric functional form specifications into Equation 9 for the case where

x = 0 gives:

p = R−1(rt) = exp

(
−

[
− ln

(
rt(2rt − r2t )

1−ρ

rt(2rt − r2t )
1−ρ + (1− rt)(1− r2t )

1−ρ

)] 1

α

)
(21)

For the the case where x 6= 0, substituting these parametric functional form specifications de-

scribed in Equations 19 and 20 into Equation 16 gives:

p = R−1
x (rt) = exp

(
−

[
− ln

(
rt(1− (1− rt)

2 + x)1−ρ

rt(1− (1− rt)2 + x)1−ρ + (1− rt)(1− r2t )
1−ρ

)] 1

α

)
(22)

We therefore use this adapted specification for our correction mechanism for the COMBINED and

SEPARATE treatment groups.

44It is worth noting that the name “constant relative risk aversion (CRRA)” is not appropriate here as risk attitudes

are also captured in the probability weighting function.
45This is a special case of Prelec’s two-parameter family of weighting functions:

w(p) = exp[−β(− ln(p))α]

For the purposes of the current context, the two-parameter family is not practically suitable due to the limited data

we use at the individual level. This functional form permits the standard inverse-S shaped probability weighting

function that has been found to be consistent with the majority of the existing empirical evidence. When β = 1
in the one-parameter family, the α parameter captures the degree of curvature of the inverse-S shape but the point at

which w(p) intersects the 45 degree line is predetermined. Adding the second parameter, β, extends the one-parameter

specification by allowing this fixed point to vary.
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In our core analysis, for our individual level reported belief corrections, we will make the simpli-

fying assumption that α = 1, such that risk aversion is captured only through the curvature of the

utility function and not through the probability weighting function. The results are similar when

we use Prelec’s one parameter weighting function. Furthermore, it is substantially easier to inter-

pret the risk aversion parameter estimates when we estimate ρ alone, due to the strong relationship

between the ρ and α estimates .

We therefore estimate the following model, for each participant, in order to acquire a numerical

estimate for the inverse of this function, R(.):

logit[R(j/20)] = logit[h(j/20, α, ρ)] + uj (23)

where R(j/20) is the probability reported by the individual that corresponds to true known prob-

ability, p = j

20
where 1 ≤ j ≤ 1946. As discussed above, α is the parameter of the probability

weighting function; ρ gives the curvature of the utility function. The function h(.) is the inverse

of R−1. We estimate this function, h(.) numerically at each step47 within the maximum likelihood

estimation. The error terms, uj , are independently and identically distributed across participants

and choices and are drawn from a normal distribution. Essentially, here we are using each partic-

ipant’s 20 (r, p) pairs in order to estimate an R function that reflects the distortion in her reported

beliefs due to the particular quadratic scoring rule incentive structure that she is subject to. Notice,

that this structure varies across treatments as x varies and therefore the same subject would require

a different adjustment curve if she were reassigned to a different treatment.

Using these estimates at an individual level allows us to recover the participants’ true subjective

beliefs, πt, from the first stage of the experiment in which they report their beliefs, rt, regarding

the likelihood of ω = A being the true state. In Figure 4 in the main text, we graph the individual

level correction curve estimates for two individuals in each treatment group. It is clear from these

examples, firstly, that individuals in the sample are distorting their reported beliefs substantially

relative to the known probabilities, and secondly, that the estimated correction curves are suffi-

ciently flexible to fit different types of belief distortion behavior reasonably well. Furthermore,

importantly, the graph in the top-left panel of the figure shows that, when an individual accurately

reports her beliefs, then the correction mechanism has no harmful effect.

At the aggregate level, for each treatment group, T ∈ {1, 2, 3}, we estimate:

46In other words, for known probabilities, p, between 0.05 and 0.95 at intervals of 0.05.
47i.e. given the current parameter guesses.
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logit[Ri(j/20)] = logit[hi(j/20, α, ρ)] + ui,j (24)

where j indexes the 20 reported probabilities of individual i. This specification allows us to ex-

amine the distortion caused by the incentive environment to the average individual in each of the

three treatment groups.
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Appendix C: Endogeneity: An Illustrative Example

This section provides a simple illustrative example of why it is important to exercise a little caution

in addressing endogeneity when studying belief updating. When studying belief updating we are

often interested in considering beliefs about the self. This is the case for much of the nascent belief

updating literature (understandably, since beliefs about the self are extremely interesting and im-

portant). However, the way this belief updating has typically been studied implies that distribution

of “exogenous” noisy signals that an individual observes is related to individual characteristics,

and to her prior belief.

The following discussion has the simple objective of highlighting the importance of paying atten-

tion to the endogeneity of the signal distribution. In particular, I use a very simple “toy” simulation

to demonstrate that ignoring this issue can (in principal) lead to mistakenly find evidence for asym-

metric updating when all individuals update symmetrically. It is important to point out that I am

not suggesting that this is the explanation for asymmetric updating results observed in the litera-

ture48 - I am simply highlighting a potential issue that should be addressed in this literature going

forwards. In this regard, I also suggest a simple solution for dealing with the issue.

Much of the belief updating literature considers situations that resembles the following basic struc-

ture: consider an agent who updates about two states of the world, ω ∈ {High, Low}, and receives

a sequence of noisy signals, st ∈ {UP,DOWN}. This also reflects the setup considered in the

current paper. However, since it is important to also understand how we form beliefs about self, in

some studies the states are determined by personal characteristics of the individual (e.g. IQ). This

means that states are essentially equivalent to personal types (i.e. states = types). The implication

of this is that if signals are informative about the state of the world, then High types are more likely

than Low types to receive Up signals (and vice versa for Down signals). If High types update their

beliefs differently from Low types, this can (in principal) lead to finding evidence that the average

individual updates asymmetrically when no individual actually does.

In order to show this, I conduct a very simple simulation exercise. I construct a population of 10

000 individuals who are randomly assigned to one of two types, ω ∈ {High, Low}. Within each

type, the agents’ prior beliefs about the likelihood of being the High type are assigned randomly

48For example, Figure 3 in Möbius et al. (2014) suggests that this is probably not a major concern for their main

results. However, it is still important to control for this potential endogeneity issue as a robustness check.
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using a uniform distribution, distributed between zero and one49. High types receive an Up signal

with probability q = 5
8

and Low types receive a Down signal with probability q = 5
8
. Using a

seed of 1000 in STATA, the empirical observed distribution of signals across types is given by the

following figure.

Figure 8: Frequencies of Signals by Type
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Now, the important part of this story is that belief updating may (in principal) be related to the

underlying characteristic of interest. For example, it is conceivable that high IQ individuals process

information and update their beliefs differently from low IQ individuals.50

49Note, this is an unrealistic assumption. In general, prior beliefs are related to the true state of the world. For exam-

ple, beliefs about one’s rank in an IQ distribution tend to be correlated with one’s actual rank. However, constructing

type and prior belief to be orthogonal allows us to isolate only the effect of the endogeneity of types and signals (with

exogenous priors).
50Note, even if one doesn’t find the story that the two types might update their beliefs differently compelling, a

very similar pattern could also be generated if there is a relationship between prior beliefs and updating. This follows

because: (i) prior beliefs are related to actual types (e.g. higher IQ individuals believe they are more likely to have a

high IQ), (ii) types are mechanically related to the distribution of signals in the class of experiments we’re considering,

and therefore (iii) prior beliefs are related to the distribution of signals observed. Therefore, the story described in this

section is worth paying attention to if one is not willing to assume both:

56



Here, we consider two types that use different, but always symmetric, updating rules. In particular,

we consider a High type that is perfectly Bayesian, and a Low type that is not very responsive to

new information (but otherwise very well behaved her belief updating).51

The High type updates according to the following rule (δ = 1, γUP = 1, γDOWN = 1):

logit(πt+1) = 1 · logit(πt) + 1 · log(
5

3
) · 1(st+1 = UP )− 1 · log(

5

3
) · 1(st+1 = DOWN) (25)

The Low type updates according to the following rule (δ = 1, γUP = 0.2, γDOWN = 0.2):

logit(πt+1) = 1·logit(πt)+(0.2)·log(
5

3
)·1(st+1 = UP )−(0.2)·log(

5

3
)·1(st+1 = DOWN) (26)

However, if we as the analyst neglects the possibility that the two types update their beliefs dif-

ferently, then we can obtain biased parameters. This is illustrated by the regression estimates

presented in column 1 and 2 of Table 7 below. These columns reflect the estimates from the stan-

dard specification used in this literature (i.e. equation 10). These parameter estimates, along with

the true population averages are summarised as follows:

True Parameter Values (Population Ave.) Estimates

δ 1 1

γUP 0.6 0.7

γDOWN 0.6 0.5

It is clear from this that in spite of the fact that there is not a single individual in this population

who updates asymmetrically that the estimated parameters suggest that there is an asymmetry.

Notice, the standard errors are small and the adjusted R2 suggests a good model fit (see Table 7).

As mentioned above, this is simply an illustration of why it is important to pay attention to the

relationship between the distribution of signals and the types. Furthermore, it is important to point

out that I could have made an equivalent argument to show that even if the majority of individuals

(1) types ⊥ belief updating and (2) priors ⊥ belief updating

51Note, neither of the types makes any errors in their belief updating. They both follow their updating rule perfectly.

This exercise therefore rules out several other channels that can make life challenging for the analyst (e.g. errors

related to priors or types).
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in the population are asymmetric updaters that the neglect of this relationship between signals and

types could (in principal) generate estimates that suggest completely symmetric updating.

Fortunately, this particular endogeneity issue is easy to deal with by simply considering updating

behavior within each type (e.g. interacting the RHS variables of equation 10 with the Type dummy

variable). This is illustrated in column 3 of Table 7. Notice, also, that simply including the Type

dummy variable in the regression does not solve the problem (see column 2).

Table 7: Estimates of Simulated Data Parameters

Model 1 Model 2 Model 3
(1) (2) (3)

δ 1.002 1.002 1.000
(0.001) (0.001) (.)

γUP 0.696 0.683 0.200
(0.005) (0.007) (.)

γDOWN 0.504 0.513 0.200
(0.006) (0.006) (.)

High Type (=1) 0.0114
(0.004)

High Type (=1) * δ 0.000
(.)

High Type (=1) * γUP 0.800
(.)

High Type (=1) * γDOWN 0.800
(.)

N 10000 10000 10000

Adjusted R2 0.99 0.99 1.00

(i) Standard errors in parentheses

(ii) Note: Std errors in column 3 missing due to perfect fit.
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Appendix D: Heterogeneity using a Finite Mixture Model

To complement the heterogeneity results presented in the main text, we adopt a second approach

to examining the individual level heterogeneity in the sample by conducting a finite mixture model

analysis within each treatment group. This allows us to examine whether we can find distinct

subgroups that differ substantially in terms of updating behavior. In particular, we can test whether

there is a subgroup of individuals who are asymmetric in their updating behavior.

To address this question, we consider a mixture model extension to our core empirical specification

in Equation 10.

Empirical Specification

In order to examine individual heterogeneity in updating behavior by means of a mixture model,

we use maximum likelihood to estimate the specification below, with f(·) denoting the likelihood

contribution of a particular observation:

f(π̃i,j,t+1|π̃i,j,t, si,j,t+1; θ1, θ2, θ3;µ1, µ2, µ3) =
M∑

m=1

µmfm(π̃i,j,t+1|π̃i,j,t, si,j,t+1; θm) (27)

where:

fm(π̃i,j,t+1|π̃i,j,t, si,j,t+1; θm) =

{
1√
2πσ2

m

exp

{
−
1

2

[π̃i,j,t+1 − g(π̃i,j,t, si,j,t+1; θm)]
2

σ2
m

}}
(28)

and:

g(π̃i,j,t, si,j,t+1; θm) = δmπ̃i,j,t + γa,mq̃ ∗ 1(si,j,t+1 = a)− γb,mq̃ ∗ 1(si,j,t+1 = b) (29)

such that the following conditions are satisfied: 0 < µm < 1 and
∑3

m=1 µm = 1 . The parameters

µm denote the mixing weights. Therefore, we estimate the parameters of Equation 10, δm, γa,m,

γb,m and σ2
m for each type, m ∈ {1, 2, . . .M}. As indicated by Equation 28, we are assuming a

mixture over M Gaussian distributions, each with variance denoted by σ2
m. In addition, we are

assuming that observations are independently distributed across individuals, but allow for errors to

be correlated for decisions made by a single individual.
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In essence, the estimation procedure involves using maximum likelihood to estimate the three

parameters of the core model (δm, γa,m and γb,m) for each of the m updating types in the mixture

model. We refer to each ‘type’ as a mixture class. In addition to estimating these three parameters

for each mixture class, the mixture model procedure estimates two further parameters for each

class: (i) a weighting parameter, which is referred to as the prior probability, µm, of an observation

being in that mixture class; and (ii) the variance term, σ2
m, for each class. Each group m therefore

has distinct δm, γa,m, γb,m, µm and σ2
m parameters.

This empirical approach allows the data to dictate how it should best be split into subgroups in

terms of updating behavior, choosing the combination of subgroups that best52 explains updating

in the sample as a whole. For example, this would allow us to detect if there were substantial

subgroups of optimistic updaters and pessimistic updaters in the sample. Table 8 reports the re-

sults from the finite mixture model (fmm) analysis, allowing for three types53. The corresponding

distributions of the posterior beliefs are reported in Table 9.

52Here, we refer to “best” in the sense of the parameters that maximize the likelihood function.
53As in any mixture model analysis, the choice of the number of mixture classes requires substantial consideration.

Here, this issue is further complicated by the fact that there are three treatment groups and we wanted to estimate the

mixture model separately for each treatment group, allowing for the possibility of distinct updating types (classes)

across treatment groups. Given this context, the reasons for choosing a mixture model with three classes are the

following. We estimated the mixture model for each treatment group with two mixture classes, three mixture classes

and four mixture classes. In moving from two classes to three classes, the AIC and BIC were substantially reduced,

suggesting an improved model fit, in two of the three treatment groups (COMBINED and SEPARATE). In moving from

three classes to four classes, the extra parameters didn’t seem justified as in one treatment group (COMBINED), one

mixture class had zero observations assigned to it according to posterior probabilities, and another had a substantially

worse AIC and BIC (SEPARATE). Furthermore, in each of the treatments, the mixture classes under four types were

generally all similar to those under three types (i.e. two of the mixture classes had similar parameter values to one

another). Therefore, the choice of three mixture classes followed from these considerations.
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Table 8: Mixture Model Results

T1 SYMMETRIC T2 COMBINED T3 SEPARATE
(1) (2) (3)

Class 1

δ 1.00 1.00 1.00
(0.00) (0.00) (0.00)

γa 0.00 0.00 0.00
(0.00) (0.00) (0.00)

γb 0.00 0.00 0.00
(0.00) (0.00) (0.00)

Class 2

δ 1.00 0.96 0.99
(0.01) (0.01) (0.01)

γa 0.58 0.77 0.70
(0.08) (0.09) (0.08)

γb 0.56 0.84 0.78
(0.09) (0.07) (0.07)

Class 3

δ 0.87 0.55 0.87
(0.06) (0.10) (0.05)

γa 3.03 4.47 3.32
(0.26) (0.46) (0.29)

γb 3.26 4.32 3.00
(0.27) (0.51) (0.27)

Error Variance

σ1 0.00 0.00 0.00
(0.00) (0.00) (0.00)

σ2 0.25 0.28 0.23
(0.02) (0.03) (0.02)

σ3 1.06 1.55 1.06
(0.07) (0.13) (0.10)

Prior Probability

µ1 0.22 0.35 0.24
(0.03) (0.04) (0.03)

µ2 0.52 0.50 0.54
(0.04) (0.04) (0.04)

µ3 0.26 0.14 0.23
(0.03) (0.02) (0.03)

Entropy 0.83 0.90 0.84

Model Fit

AIC -48,833.39 -109,702.65 -59,983.90
BIC -48,763.67 -109,630.43 -59,913.35

(i) With the exception of γa and γb from Class 1, all δ, γa and γb coefficients
are significantly different from 0 at the p < 0.1 level.
(ii) Entropy gives a measure of the quality of a classification (Ramaswamy
et al. (1993)).
(iii) There are no significant differences between the γa and γb parameters
within a mixture class.
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The striking feature of this table is the similarity in the fmm patterns observed in each of the

treatments. Firstly, in each treatment, there is one group (Class 1) which didn’t update their beliefs

at all (δ = 1; γa = γb = 0). The prior probability of being classified in this updating group ranges

from µ1 = 0.22 in SYMMETRIC to µ1 = 0.35 in COMBINED. Secondly, there is a group (Class 3)

in each treatment group who are (i) highly responsive to new information (3.0 < γa, γb < 4.5), and

(ii) tend to update more away from the the state favored by their prior, than towards it (δ < 1). To

get a sense of the magnitude of the responsiveness of these agents to new information, notice that

γa = 3 implies that upon seeing a single signal in support of the state ω = A, the subject updates

as a Bayesian would in response to three consecutive signals of this type. The prior probability of

this group ranges from µ1 = 0.14 in COMBINED to µ1 = 0.26 in SYMMETRIC. Thirdly, there is

a group that contains the majority of observations (Class 2) and updates in a manner that is less

responsive to information than a Bayesian (0.56 < γa, γb < 0.84). The prior probability of this

group ranges from µ1 = 0.50 in COMBINED to µ1 = 0.54 in SEPARATE.

Since one of the primary objectives of this paper is to test for the existence of an asymmetry in

updating behavior, it is interesting to observe that in none of the treatments do we observe a sub-

group whose updating displays a statistically significant asymmetry in updating behavior. Rather,

the overall pattern of updating is reasonably similar across the three treatments groups, although

there is substantial heterogeneity in updating between the different types within each treatment

group.54 This suggests that the variation in state-contingent rewards across the treatment groups

did not influence the way in which subjects updated their beliefs.

Posterior Probabilities

Table 9 reports the average distribution of posterior probabilities for each mixture model class.

Essentially, it shows that, when an observation is assigned to a particular mixture model class,

then on average it has a posterior probability of at least 0.9 associated with that mixture class,

as opposed to all other mixture classes. This is comforting as it suggests that observations are

generally well classified into one of the three mixture classes. The last column of the Table also

reports the proportion of observations classified to each of the mixture classes according to the

posterior probabilities. In contrast to the prior probabilities reported in Table 8, which reflect

54Interestingly, Palfrey and Wang (2012) demonstrate that such heterogeneity in belief updating can lead to asym-

metric fluctuations in prices in an asset market, with the price responding more to ‘good-news’ than ‘bad-news’. It is

important to note that this asymmetry is different from the belief updating asymmetry we test for in this paper as the

price-response asymmetry that they document can result from completely symmetric, but heterogenous, belief updat-

ing (such as the heterogeneity demonstrated in our results). Therefore, the results of the two papers are consistent.
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weights placed on each class for all observations, these proportions give a sense of how well

observations fit into a given class.

Table 9: Average Posterior Probabilities from the Mixture Model

Posterior 1 Posterior 2 Posterior 3 Proportions

Treatment 1

Class 1 1.00 0.00 0.00 0.22
Class 2 0.00 0.90 0.10 0.56
Class 3 0.00 0.04 0.96 0.21

Treatment 2

Class 1 1.00 0.00 0.00 0.36
Class 2 0.00 0.95 0.05 0.52
Class 3 0.00 0.06 0.94 0.12

Treatment 3

Class 1 1.00 0.00 0.00 0.25
Class 2 0.00 0.91 0.09 0.57
Class 3 0.00 0.05 0.95 0.18

(i) Posteriors reflect average posterior probabilites by fmm class.
(i) Proportions report the fraction of observations assigned to each fmm class.
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Appendix E: Supplementary Figures, Results and Experimental

Instructions

Figure 9: Comparison of Initial (Period 0) Belief with the Exogenous Prior
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Table 10: Testing for Sample Balance Across Treatment Groups

T1 SYMMETRIC T2 COMBINED T3 SEPARATE D(2,1) D(3,1) D(3,2)

Gender (Male = 1) 0.56 0.58 0.58 0.02 0.02 0

(0.50) (0.50) (0.50)

Age 22.88 23.02 21.88 0.14 -0.99 -1.13

(3.46) (4.47) (3.11)

Location (London = 1) 0.51 0.48 0.52 -0.03 0.01 0.04

(0.50) (0.50) (0.50)

Economics Class 0.44 0.54 0.42 0.10 -0.02 -0.12

(0.50) (0.50) (0.50)

Home Language German 0.42 0.45 0.42 0.03 -0.00 -0.03

(0.50) (0.50) (0.50)

Home Language English 0.28 0.20 0.38 -0.08 0.10 0.18**

(0.45) (0.40) (0.49)

Cognitive Reflection Score 2.07 2.02 2.05 -0.05 -0.02 0.03

(0.94) (0.93) (1.05)

N 57 65 60

(i) Standard deviations in parentheses

(ii) T-test for difference being significant: * = 10%, ** = 5%, *** = 1%

6
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Table 11: Average Updating Behavior across Treatments (Full Sample)

T1: SYMMETRIC T2: COMBINED T3: SEPARATE

Reported Corrected Reported Corrected Reported Corrected

(1a) (1b) (2a) (2b) (3a) (3b)

OLS

δ 0.74 0.73 0.80 0.80 0.84 0.86

(0.05)*** (0.06)*** (0.03)*** (0.03)*** (0.04)*** (0.03)***

γa 0.95 0.92 0.86 0.91 1.00 0.93

(0.10) (0.09) (0.10) (0.10) (0.11) (0.10)

γb 0.83 0.78 0.99 0.90 0.96 0.91

(0.10)* (0.10)** (0.14) (0.12) (0.10) (0.09)

p (H0 : γa = γb) 0.26 0.19 0.25 0.90 0.64 0.80

N 1,875 1,875 1,850 1,850 1,825 1,825

R2 0.52 0.51 0.62 0.64 0.67 0.70

IV

δ 0.99 1.00 0.96 0.95 0.99 1.00

(0.03) (0.03) (0.02) (0.02)** (0.02) (0.02)

γa 0.87 0.84 0.87 0.83 0.95 0.88

(0.09) (0.09)* (0.10) (0.09)* (0.11) (0.09)

γb 0.82 0.78 0.89 0.89 0.92 0.88

(0.09)* (0.09)** (0.12) (0.12) (0.09) (0.08)

p (H0 : γa = γb) 0.47 0.44 0.83 0.51 0.74 0.98

N 1,875 1,875 1,850 1,850 1,825 1,825

1st Stage F 70.89 82.63 82.83 82.45 54.72 59.90

(i) Standard errors in parentheses (clustered at the individual level).

(ii) All coefficients are significantly different from 0 at the 1% level. Therefore, t-tests of the null

hypothesis (H0: Coefficient = 1) are reported: * = 10%, ** = 5%, *** = 1%.

(iii) The rows corresponding to p (H0 : γa = γb) report the p-statistic from a t-test of the equality

of the coefficients γa and γb (i.e. a test of the asymmetric updating hypothesis).
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