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1 Introduction

Nowadays, when study econometric models for panel data, the error components model is
one of the most frequently used. This frequency comes from its parsimonious specifcation
of heterogeneity accros the cross sectional units. And recently, there has been increasing
consideration in models with spatial interactions. In view of that, spatial regression meth-
ods are becoming an important part of the toolbox of applied econometrics and the interest
is increasingly shifting away from the single-equation cross-sectional background to more
sophisticated settings such as panel data models, qualitative variables models, simultaneous
models or multilevel models in a spatial context (see Anselin, 2006, for a related literature
review). The literature on the estimation of simultaneous systems of spatially interrelated
cross sectional equations has so far been limited with some exceptions. Kelejian and Prucha
(2004) extend the methodology developed in Kelejian and Prucha (1998) and Kelejian and
Prucha (1999) for single equations, an early development of generalized method of moments
(GMM) estimators for the simultaneous equation SAR model. They propose both limited
information two stage least squares (2SLS) and full information three stage least squares
(3SLS) estimators and derive for these estimators their asymptotic properties. Liu (2014)
and Zenou (2017) exploit the methodology of Kelejian and Prucha (2004) within the context
of social interaction models, and provide further refinements. Other recent contribution to
the literature on spatial simultaneous equation models are Wang et al. (2014) who anal-
yse the quasi maximum likelihood (QML) estimator for such a system in the cross section.
Prucha et al. (2016) developed an estimation methodology for network data generated from
a system of simultaneous equations. Their specification allows for network interdependencies
via spatial lags in the endogenous and exogenous variables, as well as in the disturbances.
By allowing for higher-order spatial lags, their specification provides important flexibility in
modeling network interactions. For a simultaneous equation SAR model, Liu and Saraiva
(2017) provided a GMM estimator and its heteroskedasticity-robust standard error. They
established the consistency and asymptotic normality of the proposed GMM estimator and
also show that it performs well in finite samples. Yang and Lee (2017) studied parame-
ter spaces, parameter identification and asymptotic properties of the QML estimation in
the framework of the simultaneous equation SAR model which includes simultaneity effects,
own-variable spatial lags and cross-variable spatial lags as explanatory variables, and allows
for correlation between disturbances across equations.

The specific innovatory aspects of the current paper are: (i) the extension of the generalized
moments estimators (GMM) estimation procedure that allow a spatial autoregressive (AR)
error process to simultaneous GMM (SGMM) with AR process. (ii) the extension of the
GMM estimation procedure that allow a spatial moving average (MA) error process to
SGMM with MA process. (iii) application of the method to real data.

For this purpose, the rest of the paper is organized as follow. Section 2 completly define the
model (equation and system); in section 3, we derive the simultaneous moment equations for
a SAR process as well as a SMA process. Section 4 derive the limited information estimator
and the full information estimator. In section 5 we regroup a battery of simulations in
model’s parameters and apply theses estimators on real data.
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2 The model

2.1 The Single equation

Consider the following lth structural equation,

yl = Ylαl + Xlβl + υl = Zlδl + υl l = 1, . . . , L (1)

where, yl are endogenous variables with dimension TN × 1, Yl is the set of TN × (Ml − 1)1

right-hand side endogenous variables included in equation l, Xl is a TN × Kl of right-hand
side exogenous variables of the model included in the equation and Zl = [Yl, Xl] is a matrix
of explanatory variables of the equation; δ⊤

l = (α⊤

l , β⊤

l ) are the associate coefficients of Zl.
The (·)⊤ is the transpose operator of an input matrix.
We assume that the disturbances are generated either by a spatially autoregressive (SAR)
process or a spatially moving average (SMA) process,

υl = Λl(ρl)ϵl =







ρlWlυl + ϵl = (I − ρlWl)
−1ϵl for SAR

ρlWlϵl + ϵl = (I + ρlWl)ϵl for SMA
(2)

In this section, i = 1, . . . , N and t = 1, . . . , T ; where N denotes the number of individu-
als and T the number of time periods. We order the observations first by time and then
individuals because this grouping is more convenient for modelling spatial correlation via
equation (2). Wl = IT ⊗ WlN with IT being an identity matrix of dimension T and WlN

being a N ×N spatial weighting matrix of known constants which does not involve time and
is usually row-normalized. For 1 ≤ l ≤ L, all diagonal elements of WlN are zero. |ρl| < 1 is
a scalar autoregressive parameter, and ϵl is a TN × 1 vector of innovations. The motivation
behind the double approach in the disturbance comes from the fact that: in SAR error pro-
cesses, the effect of shock at j is not the shock itself but the initial shock plus the feedback
to other location via the powers of W. In other words, a shock to j affects the neighbours,
and the neighbours of the neighbours, and eventually works its way back to j. In contrast,
the MA error process, so that a shock at location j will only affect the directly interacting
locations as given by the non-zero elements in the spatial matrix W. Hence shock-effects are
local rather than global.
To allow for the innovations to be correlated over time, we assume the following error com-
ponent structure for the innovation vector ϵl,

ϵl = Zηηl + ξl (3)

where Zη = ιT ⊗ IN , η⊤

l =
(

η1l . . . ηNl

)⊤

represents the vector of unit specific error

components; and ξ⊤

l =
(

ξ11l ξ12l . . . ηT Nl

)⊤

contains the error components that vary over
both the cross-sectional units and time periods; ιT is a T × 1 vector of ones. Let E(·)

1If we let M
−l the set of right-hand side endogenous variables excluded of the lth, we have Ml +M

−l = L.
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represents the expected value of an input random variable. Hence, ηl and ξl are centered
random vector with covariance matrix,

E
(

ηl

ξl

)
(

η⊤

q ξ⊤

q

)

=

[

σ2
ηlq

IN 0

0 σ2
ξlq

IT N

]

(4)

In light of equation (3), the covariance matrix Ωϵlq
= E(ϵlϵ

⊤

q ) between the lth and the qth
equation is,

Ωϵlq
= σ2

ηlq
(JT ⊗ IN) + σ2

ξlq
IT N for l, q = 1, . . . , L

and its spectral decomposition can be written in compact form as below,

Ωϵlq
=

1∑

h=0

σ2
hlq

Qh for l, q = 1, . . . , L (5)

where,
Qh = Bh ⊗ IN ,

Bh is a square matrix of order T with B0 = ET and Bl = J̄T ; J̄T = ιT ι⊤

T /T denoting average
matrix over time, ET = IT − J̄T , σ2

0lq
= σ2

ξlq
and σ2

1lq
= Tσ2

ηlq
+ σ2

ξlq
. The matrices Q0 and

Q1 are standard transformation matrices utilized in the error component literature, with the
appropriate adjustments implied by our adopted ordering of the data; compare, e.g., Baltagi
(2008). They are symmetric, idempotent and orthogonal to each other. Furthermore, by
letting tr(·) the trace operator, which returns the sum of the diagonal elements of an input
matrix,

Q0 + Ql = IT N , tr(Q0) = (T − 1)N and tr(Ql) = N

and the covariance matrix of Ωυlq
between the lth and the qth equation is,

Ωυlq
= Λl(ρl)E(ϵlϵ

⊤

q )Λ⊤

q (ρq)

= Λl(ρl)(σ
2
0lq

Q0 + σ2
1lq

Ql)Λ
⊤

q (ρq)

= σ2
0lq

Λl(ρl)Q0Λ
⊤

q (ρq) + σ2
1lq

Λl(ρl)QlΛ
⊤

q (ρq)

= σ2
0lq

Q0Λl(ρl)Λ
⊤

q (ρq) + σ2
1lq

QlΛl(ρl)Λ
⊤

q (ρq)

= σ2
0lq

Q0Λlq(ρl, ρq) + σ2
1lq

QlΛlq(ρl, ρq)

(6)

where Λlq(ρl, ρq) = Λl(ρl)Λ
⊤

q (ρq) and Λl(ρl) non-singular ∀l; This comes from the fact that,
for SMA process,
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Λl(ρl)Qh = (I + ρlWl)Qh

= [Qh + (IT ⊗ WlN)(Bh ⊗ IN)]

= [Qh + (Bh ⊗ IN)(IT ⊗ WlN)]

= Qh(I + ρlWl)

= QhΛl(ρl)

while for SAR process, since each |ρl| < 1, we have,

Λl(ρl)Qh = (I − ρlWl)
−1Qh

= (I + ρlWl + ρ2
l W

2
l + ρ3

l W
3
l + . . . )Qh

= (Qh + ρlWlQh + ρ2
l W

2
l Qh + ρ3

l W
3
l Qh + . . . )

= Qh(I + ρlWl + ρ2
l W

2
l + ρ3

l W
3
l + . . . ) = Qh(I − ρlWl)

−1

= QhΛl(ρl)

2.2 The System

The system of L equations can be obtained from equation (1), by iterate l = 1, . . . , L and
stack these L equations,

y = Zδ + υ (7)

where, y⊤ =
(

y⊤

1 · · · y⊤

L

)

, Z = diag(Zl), δ⊤ =
(

δ⊤

1 · · · δ⊤

L

)

and υ⊤ =
(

υ⊤

1 · · · υ⊤

L

)

with Zl =
[

Yl Xl

]

. By letting, diag(·) the operator which use an input matrix as a block
diagonal element of a block diagonal matrix, the disturbance process of the system can be
written as,

υ = Λ(ρ)ϵ =







diag(ρlWl)υ + ϵ = diag(I − ρlWl)
−1ϵ for SAR

diag(ρlWl)ϵ + ϵ = diag(I + ρlWl)ϵ for SMA
(8)

where Λ(ρ) = diag (Λl(ρl)), ρ = (ρ1, . . . , ρL) and ϵ⊤ =
(

ϵ⊤

1 · · · ϵ⊤

L

)

; with,

ϵ = (IL ⊗ ιT ⊗ IN)η + ξ = IL ⊗ Zηη + ξ (9)

where η⊤ =
(

η⊤

1 · · · η⊤

L

)

and ξ⊤ =
(

ξ⊤

1 · · · ξ⊤

L

)

.
We note that if the row-standardized spatial matrix Wl is common to all equation,i.e.,Wl = W
hence,
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





ρ1W · · · 0
... . . . ...
0 · · · ρLW







= diag(ρl) ⊗ W = ρ ⊗ W (10)

The covariance matrix of innovations for the system Ωϵ is,

Ωϵ =
(

Ωϵlq

)

=
(

σ2
0lq

)

⊗ Q0 +
(

σ2
1lq

)

⊗ Q1 = Ω0 ⊗ Q0 + Ω1 ⊗ Q1 (11)

with Ω1 =
(

σ2
1lq

)

and Ω0 =
(

σ2
0lq

)

. Using equation (8) the covariance matrix of the distur-
bance υ can be written as follow,

Ωυ = Λ(ρ)ΩϵΛ(ρ)⊤ = Λ(ρ) (Ω0 ⊗ Q0) Λ(ρ)⊤ + Λ(ρ) (Ω1 ⊗ Q1) Λ(ρ)⊤

3 The Simultaneous Moment Equations

3.1 Notation

For notation convenience, let
a
ϵ̄l = W aϵl,

this means that
0
ϵ̄l = W 0ϵl = ϵl,

1
ϵ̄l = Wϵ = ϵ̄l and

2
ϵ̄l = W 2ϵl = ¯̄ϵl. Such that QhE(ϵlϵ

⊤

q ) =
QhΩϵlq

= σ2
hlq

Qh, we have the following general relation,

E
(

a

ϵ̄⊤

q Qh

b
ϵ̄l

)

= E




ϵ⊤

q W ⊤

q . . . W ⊤

q
︸ ︷︷ ︸

a times

QhWl . . . Wl
︸ ︷︷ ︸

b times

ϵl






= E
(

ϵ⊤

q W ⊤a
q QhW b

l ϵl

)

= tr
(

(W ⊤a
q )W b

l QhΩϵlq

)

= σ2
hlq

tr(Bh)tr
(

(W ⊤

lN)aW b
lN

)

(12)

with tr(W 0
lN) = tr(IN) = N and tr(WlN) = 0;

3.2 SAR case

Recently, a number of approaches have been outlined to estimate the coefficients in a spatial
error model as an application of general principles underlying the method of moments. Kele-
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jian and Prucha (1998) develop a set of moment conditions that yield estimation equations
for the parameter of an SAR error model. We follow and adapt the moments conditions in
simultaneous equations case. For spatial autoregressive process, the general form of the six
moment conditions can be derived as follow:

E(ϵ⊤

q Qhϵl) = σ2
hlq

tr (Qh) (13)

E(ϵ̄⊤

q Qhϵ̄l) = σ2
hlq

tr (Bh) tr
(

WlNW ⊤

qN

)

(14)
E(ϵ̄⊤

q Qhϵl) = σ2
hlq

tr (Bh) tr (WlN) = 0 (15)

which lead to general system for T ≥ 2

E
[

ϵ⊤

q Qhϵl

tr(Qh)

]

= σ2
hlq

E
[

ϵ̄⊤

q Qhϵ̄l

tr(Qh)

]

= σ2
hlq

tr
(

WlNW ⊤

qN

)

N
(16)

E
[

ϵ⊤

q Qhϵ̄l

tr(Qh)

]

= 0

To get each equation, one should replace each notation by its corresponding form (see Kapoor
et al., 2007, for more details). Our three GMM estimators of ρl, σ2

0lq
and σ2

llq
are based on

these moment relationships. If ϵl were observed, then ϵ⊤

q Qhϵl/tr(Qh) represents the (unbi-
ased) analysis of variance estimators of σ2

hlq
.

Starting with,

υl = (I − ρlWl)
−1ϵl =⇒







ϵl = υl − ρlῡl

ϵ̄l = ῡl − ρl
¯̄υl

and substituting these expressions for ϵl and ϵ̄l into equations (13) to (15), we obtain the
general form of system of three equations,







ϵ⊤

q Qhϵl = (υ⊤

q Qhυl) − ρl(υ
⊤

q Qhῡl) − ρq(ῡ
⊤

q Qhυl) + ρlρq(ῡ
⊤

q Qhῡl)

ϵ̄⊤

q Qhϵ̄l = (ῡ⊤

q Qhῡl) − ρl(ῡ
⊤

q Qh
¯̄υl) − ρq(¯̄υ⊤

q Qhῡl) + ρlρq(¯̄υ⊤

q Qh
¯̄υl)

ϵ⊤

q Qhϵ̄l = (υ⊤

q Qhῡl) − ρl(υ
⊤

q Qh
¯̄υl) − ρq(ῡ

⊤

q Qhῡl) + ρlρq(ῡ
⊤

q Qh
¯̄υl)

(17)

Hence the six equations can be easily obtained by simply iterate h = 0, 1 on system (17).
This system involves ρl, ρq and σ2

hlq
and can be expressed as,

Γlq,hΞlq,h − Θlq,h = 0 (18)

where
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Γlq,h =







γlq,h
01 γlq,h

10 −γlq,h
11 1

γlq,h
12 γlq,h

21 −γlq,h
22 ϕlq

γlq,h
02 γlq,h

11 −γlq,h
21 0







Θlq,h =







γlq,h
00

γlq,h
11

γlq,h
01







Ξlq,h =









ρl

ρq

ρlρq

σ2
hlq









where the elements of the matrices γlq,h
ab and ϕlq have the following form,

γlq,h
ab =

a
ῡ

⊤

q Qh

b
ῡl

tr (Qh)
, ϕlq =

tr(W ⊤

qNWlN)

N
.

The system (18) is non-linear and overidentified due to the presence of the product ρlρq.
However, the overidentification can be resolve by focusing on each equation. Indeed, for the
lth specified equation we have γlq,h

ab = γl,h
ab , ϕlq = ϕl and ρl = ρq. Now system (18) becomes,

Γl,hΞl,h − Θl,h = 0 (19)

where,

Γl,h =







2γl,h
01 −γl,h

11 1

2γl,h
12 −γl,h

22 ϕl

(γl,h
02 + γl,h

11 ) −γl,h
21 0







Θl,h =







γl,h
00

γl,h
11

γl,h
01







Ξl,h =






ρl

ρ2
l

σ2
hll






where the elements of the matrices γl,h
ab and ϕlq have the following form,

γl,h
ab =

a
ῡ

⊤

l Qh

b
ῡl

tr (Qh)
, ϕl =

tr(W ⊤

lNWlN)

N
.

3.3 SMA case

If the disturbance is generate as spatial moving average process we have,

υl = (I + ρlWl)ϵl =⇒







υl = ϵl + ρlϵ̄l

ῡl = ϵ̄l + ρl
¯̄ϵl
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then,

υ⊤

q Qhυl = ϵ⊤

q Qhϵl + ρl(ϵ
⊤

q Qhϵ̄l) + ρq(ϵ̄
⊤

q Qhϵl) + ρlρq(ϵ̄
⊤

q Qhϵ̄l)

ῡ⊤

q Qhῡl = ϵ̄⊤

q Qhϵ̄l + ρl(ϵ̄
⊤

q Qh
¯̄ϵl) + ρq(¯̄ϵ

⊤

q Qhϵ̄l) + ρlρq(¯̄ϵ
⊤

q Qh
¯̄ϵl)

υ⊤

q Qhῡl = ϵ⊤

q Qhϵ̄l + ρl(ϵ̄
⊤

q Qhϵ̄l) + ρq(ϵ
⊤

q Qh
¯̄ϵl) + ρlρq(ϵ̄

⊤

q Qh
¯̄ϵl)

(20)

to obtain the expectation of each equation of system (20), we use relation (12)

E
(

υ⊤

q Qhυl

)

= σ2
hlq

tr(Bh)
{

N + ρltr (WlN) + ρqtr (WlN) + ρlρqtr
(

W ⊤

qNWlN

)}

E
(

ῡ⊤

q Qhῡl

)

= σ2
hlq

tr(Bh)
{

tr
(

W ⊤

qNWlN

)

+ ρltr
(

W ⊤

qNW 2
1N

)

+ ρqtr
(

W ⊤2
qN WlN

)

+ ρlρqtr
(

W ⊤2
qN W 2

1N

)}

E
(

υ⊤

q Qhῡl

)

= σ2
hlq

tr(Bh)
{

tr (WlN) + ρltr
(

W 2
lN

)

+ ρqtr
(

W ⊤

qNWlN

)

+ ρlρqtr
(

W ⊤

qNW 2
lN

)}

which lead to

E
(

υ⊤

q Qhυl

tr (Qh)

)

= σ2
hlq



1 + ρlρq

tr
(

W ⊤

qNWlN

)

N



 (21)

E
(

ῡ⊤

q Qhῡl

tr (Qh)

)

= σ2
hlq




tr
(

W ⊤

qNWlN

)

N
+ ρl

tr
(

W ⊤

qNW 2
1N

)

N
+ ρq

tr
(

W ⊤2
qN WlN

)

N
+ ρlρq

tr
(

W ⊤2
qN W 2

1N

)

N





(22)

E
(

υ⊤

q Qhῡl

tr (Qh)

)

= σ2
hlq



ρl
tr (W 2

lN)

N
+ ρq

tr
(

W ⊤

qNWlN

)

N
+ ρl

tr
(

W ⊤

qNW 2
lN

)

N



 (23)

Ignoring the expectations, and put these equations together using the 3 × 3 matrix Γlq,h, the
3 × 1 vector Θlq,h and by letting

ϕlq
ab =

tr
(

W ⊤a
qN W b

lN

)

N
, γlq,h

ab =

a
ῡ

⊤

q Qh

b
ῡl

tr (Qh)
.

so that,
ΓlqΞlq,h − Θlq,h = 0 (24)

where

Γlq,h =







1 0 0 ϕlq
11

ϕlq
11 ϕlq

12 ϕlq
21 ϕlq

22

0 ϕlq
02 ϕlq

11 ϕlq
12







, Θlq,h =







γlq,h
00

γlq,h
11

γlq,h
01







Ξlq,h = σ2
hlq








1
ρl

ρq

ρlρq








As in SAR case, the SMA moment system (24) is non-linear and overidentified due to the
presence of the product ρlρq. the overidentification can be resolve by focusing on each
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equation. Hence, for the lth specified equation we have ϕlq
ab = ϕl

ab, γlq,h
ab = γl,h

ab and ρl = ρq.
Now system (18) becomes,

ΓlqΞlq,h − Θlq,h = 0 (25)

where

Γl,h =







1 0 ϕl
11

ϕl
11 2ϕl

12 ϕl
22

0
(

ϕl
02 + ϕl

11

)

ϕl
12







, Θl,h =







γl,h
00

γl,h
11

γl,h
01







Ξl,h = σ2
hll






1
ρl

ρ2
l






Now,

ϕl
ab =

tr
(

W ⊤a
lN W b

lN

)

N
, γl,h

ab =

a
ῡ

⊤

l Qh

b
ῡl

tr (Qh)
.

4 The Estimators

4.1 The GM-IV-S2SLS Estimator

To obtain the limited Information Estimator of δl, we follow this three-stage procedure:

1. In first stage, because of simultaneity problem, equation (1) is estimate using 2SLS
approach based on the matrix of instruments X. Thus, the 2SLS estimator of δl is
defined as,

δ̂l,2SLS =
(

Z⊤

l PXZl

)−1 (

Z⊤

l PXyl

)

(26)

where PX = X(X⊤X)−1X⊤

2. In the second stage, the parameters ρl, σ2
0ll

and σ2
1ll

are estimated using GM approach
from the corresponding sub-section of 3 based on 2SLS residuals, i.e. υ̂l = yl −Zlδ̂l,2SLS.
The GM estimates are obtained from the sample counterpart of the reduced system
(19) or (25) which is,

e(ρl, σ2
hll

) =







Γ̂l,hΞl,h − Θ̂l,h for SAR
Γ̂lΞl,h − Θ̂l,h for SMA

(27)

where,

Ξl,h =







Ξl,h
SAR =

(

ρl ρ2
l σ2

hll

)⊤

for SAR
Ξl,h

SMA =
(

σ2
hll

ρlσ
2
hll

ρ2
l σ

2
hll

)⊤

for SMA

and e(ρl, σ2
hll

) is a vector of residuals. The unweighted GM estimators of ρl and σ2
hll

are the
nonlinear least squares estimators based on (27),

(ρ̂1, σ̂2
h11

) = arg min{e(ρl, σ2
hll

)⊤e(ρ1, σ2
h11

)} (28)

In practice, we only use the first three moments which do not involve σ2
1ll

and yield estimates
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of ρl and σ2
0ll

. The fourth moment condition is then used to solve for σ2
1ll

given estimates of
ρl and σ2

0ll
as,

σ2
1ll

=







σ2
1SAR

= γ̂l,1
00 − 2ρlγ̂

l,1
01 + ρ2

l γ̂
l,1
11

σ2
1SMA

= γ̂l,1
00

(

1 + ρ2
l ϕ

l
11

)−1 (29)

with,

ϕl
ab =

tr
(

W ⊤a
lN W b

lN

)

N
and γ̂l,1

ab =

a

ˆ̄υ
⊤

l Q1

b

ˆ̄υl

tr (Q1)

1. In the third stage, using GM estimates of ρl, σ2
0ll

and σ2
1ll

, one calculates the estimated
spatial function Λl(ρl) and then, the estimated variance-covariance matrix of Ωυll

as,

Ω̂υll
= σ̂2

0ll
Q0Λll(ρ̂l) + σ̂2

1ll
QlΛll(ρ̂l) (30)

such that Λll(ρ̂l) = Λl(ρ̂l)Λ
⊤

l (ρ̂l) and,

Λl(ρ̂l) =







(I − ρ̂lWl)
−1 for SAR

(I + ρ̂lWl) for SMA
(31)

Now, premultiply equation (1) by Σ−1/2
υll

= σ0ll
Ω−1/2

υll
and apply 2SLS on the transformed

equation using X⋆
l = Σ−1/2

υll
X as a set of instruments gives the Feasible Generalized Moment

IV S2SLS estimator of δl,

δ̂l,F GM−IV −S2SLS =
(

Ẑ⋆⊤

l PX̂⋆
l
Ẑ⋆

l

)−1 (

Ẑ⋆⊤

l PX̂⋆
l
ŷ⋆

l

)

=
[

Z⊤

l Σ−1
υll

X(X⊤Σ−1
υll

X)−1X⊤Σ−1
υll

Zl

]−1

×
[

Z⊤

l Σ−1
υll

X(X⊤Σ−1
υll

X)−1X⊤Σ−1
υll

yl

]

(32)

with

Ẑ⋆
l = Σ̂−1/2

υll
Zl, ŷ⋆

l = Σ̂−1/2
υll

yl, X̂⋆
l = Σ̂−1/2

υll
X and PX⋆ = X⋆(X⋆⊤X⋆)−1X⋆⊤

The estimated variance-covariance matrix of the parameters is given by,

var
(

δ̂l,F GM−IV −S2SLS

)

= σ2
0ll

(

Ẑ⋆⊤

l PX̂⋆Ẑ⋆
l

)−1

= σ2
0ll

[

Z⊤

l Σ−1
υll

X(X⊤Σ−1
υll

X)−1X⊤Σ−1
υll

Zl

]−1
(33)

After the third step, we can improve the quality of the variance components by iterate theses
steps. This means that, results of FGM-IV-S2SLS are used in simultaneous GM procedure
to re-estimate parameters. We used this technique in our Monte Carlo to compare how much
gain in efficiency we have.
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4.2 The GM-IV-S3SLS Estimator

The single equation estimation described in the previous section provides consistent estima-
tors in the presence of a spatially autocorrelated error. But like all single equation estimators,
this GM-IV-S2SLS estimator ignores the cross equation correlation between υl and υq, and
the information content of the full system of simultaneous equations. This is bound to result
in loss of efficiency.
This section focuses on GM-IV-3SLS estimation which utilizes the correlation across equa-
tions and should lead to gains in efficiency over its 2SLS counterpart. Of course, this system
estimation has to handle the spatial autocorrelation structure, the presence of right hand-
side endogenous variables as well as individual random effect.
So, to obtain the Full Information Estimator of δ, we follow this five-stage procedure:

1. In first stage equation (1) is estimate using 2SLS approach based on the matrix of
instrument X to obtain the 2SLS estimator of each δ̂l,2SLS defined as in equation (26).

2. In second stage, the parameters ρl, σ2
hll

of each equation and their interaction σ2
hlq

are
estimated using GM approach from the corresponding sub-section of 3 based on 2SLS
residuals, i.e. υ̂l = yl −Zlδ̂l,2SLS. Let’s note theses unweighted GM estimates as ρ̂l, σ̂2

hll

and σ̂2
hlq

. In fact, ρ̂l, σ̂2
0ll

and σ̂2
1ll

are estimated as in equation (28) and (29) while the
lq-components σ̂2

hlq
are obtained from the first and the fourth simultaneous moment

condition of the reduced system (18) or (24) which is defined as,

σ2
hlq

=







σ2
hlq,SAR

= γ̂lq,h
00 − ρlγ̂

lq,h
01 − ρqγ̂

lq,h
10 + ρlρqγ̂

lq,h
11

σ2
hlq,SMA

= γ̂lq,h
00

(

1 + ρlρqϕ
lq
11

)−1 (34)

with,

ϕlq
ab =

tr
(

W ⊤a
qN W b

lN

)

N
and γ̂lq,h

ab =

a

ˆ̄υ
⊤

q Qh

b

ˆ̄υl

tr (Qh)

3. In third stage, equation (7) is estimate using 3SLS approach based on the matrix of
instruments IL ⊗ X and the estimated variance-covariance matrix of the system Ω̂ϵ

(see equation (11)). Thus, the 3SLS estimator of δ is therefore defined as,

δ̃3SLS =
(

Z⊤
(

Ω̂−1
ϵ ⊗ PX

)

Z
)−1 (

Z⊤
(

Ω̂−1
ϵ ⊗ PX

)

y
)

(35)

where PX = X(X⊤X)−1X⊤

4. In fourth stage, the parameters ρl, σ2
hll

of each equation and their interaction σ2
hlq

are
re-estimated using GM approach from the corresponding sub-section of 3 based on
3SLS residuals, i.e. υ̃l = yl − Zlδ̃l,3SLS. We note theses unweighted GM estimates as
ρ̃l, σ̃2

hll
and σ̃2

hlq
.

5. In the fith stage, using GM estimates ρ̃l, σ̃2
hll

and σ̃2
hlq

, one calculates the estimated
spatial function Λ(ρ̃) and then, the estimated variance-covariance matrix of Ω̃υ as,

Ω̃υ = Λ(ρ̃)
(

Ω̃0 ⊗ Q0

)

Λ(ρ̃)⊤ + Λ(ρ̃)
(

Ω̃1 ⊗ Q1

)

Λ(ρ̃)⊤ (36)
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such that Λ(ρ̃) = diag (Λl(ρ̃l)) and Λl(ρ̃l) defined as in equation (31). Now, premultiply
equation (7) by Ω−1/2

υ and apply 3SLS on the transformed equation using Ω−1/2
υ (IL⊗X)

as a set of instruments gives the Feasible Generalized Moment IV 3SLS estimator of δ,

δ̃F GM−IV −3SLS =
(

Z̃⋆⊤PX̃⋆Z̃⋆
)−1 (

Z̃⋆⊤PX̃⋆ ỹ⋆
)

(37)

with

Z̃⋆ = Ω̃−1/2
υll

Z, ỹ⋆
l = Ω̃−1/2

υll
y, X̃⋆ = Ω̃−1/2

υ (IL ⊗ X) and PX⋆ = X⋆
(

X⋆⊤X⋆
)−1

X⋆⊤

The estimated variance-covariance matrix of the parameters is given by the inverted of the
right-hand side.

5 Simulations

5.1 Design of sampling

The purposes of our Monte Carlo experiment are threefolds: Firstly, we study the small
sample behavior of our proposed estimators that can handle endogeneity, spatial error corre-
lation and random individual effects in function of spatial coefficient, spatial matrix, variance
covariance of specific component and the increase of time. These estimators are compared
with those that may ignore one or more of these symptoms. For example, OLS ignores all
these symptoms, while EC-2SLS only ignore spatial error correlation. Secondly, we also in-
vestigate the gain in efficiency; for example when we move from usual one way to spatial one
way estimator. Also, when we move from spatial two stage that does not take into account
simultaneity, to spatial three stage least squares. Thirdly, we study the sample properties
of the spatial component ρl, which is necessary to get σ2

hlq
and our spatial estimators. We

note that, the estimations of ρl, σ2
hll

are done on each equation l; and we use four (04) values
of ρl namely, -0.8, -0.4, 0.4 and 0.8. Hence, we can write the linear simultaneous equation
model in equation (1) as,

Γyit + Λxit = υit (38)

Here yit, xit and υit are column vectors of dimensions 2, 4 and 2 respectively. We simplify the
Monte Carlo design by using the same weight matrix W in both equations. The disturbance
υitl, l = 1, 2, for each equation has the following form,

υitl = (I − ρlW )−1ϵl (39)

where ϵitl = ηil + ξitl. Γ is a 2 × 2 matrix of coefficients of current endogenous variables and
Λ is a 2 × 4 matrix coefficients of predetermined variables,

Γ =

(

1 0.5
4 1

)

, Λ =

(

2 −1.5 0 0
0 0 3 −1.8

)
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There are four exogenous variables X11, X12, X21 and X22 in the system, two for each
equation. The data generating process for the exogenous variables follows the approach used
in Baltagi et al. (2013),

xp,it = ζp,i + zp,it p = 11, 12, 21, 22

where ζp,i  iidU [−10, 10], and zp,it  iidU [−5, 5]. We follow two steps to generate the
error terms. First, we generate 2(N + NT ) independent N (0, 1) random numbers. For each
equation, the first 2N are used for generating first cross section specific effects and the re-
maining 2NT are used to generate the idiosyncratic errors.
Second, we transform these N (0, 1) disturbances to obtain the appropriate covariance ma-
trices Ωη, Ωξ respectively. Four combinations are considered:

V1. Ωη =

(

16 8
8 16

)

and Ωξ =

(

4 2
2 4

)

V2. Ωη =

(

12 6
6 12

)

and Ωξ =

(

8 4
4 8

)

V3. Ωη =

(

8 4
4 8

)

and Ωξ =

(

12 6
6 12

)

V4. Ωη =

(

4 2
2 4

)

and Ωξ =

(

16 8
8 16

)

For all experiments, we keep the total variance fixed at Ωϵ =

(

20 10
10 20

)

For the spatial weights matrices, we use regular2 structures. We decide to use four weight
matrices, W3,W7 and W9, which essentially differ in their degree of sparseness. In fact, the
matrix WJ where J is a positive integer is labelled as “J ahead and J behind”. Since in panel
data many studies are not done in all the countries, we relax the hypothesis of a circular
world in the construction of the matrix WJ . We consider several individuals N = 25 and
time dimensions T = (7, 10, 15). First, we consider five simultaneous equation estimators of
the one-way error component model which ignore spatial dependence:

1. Ordinary Least Squares (OLS).
2. Two Stage Least Square (2SLS).
3. Fixed Effects Two Stage Least Squares (FE-2SLS).
4. Error Component Two Stage Least Squares (EC-2SLS).
5. Error Component Three Stage Least Squares (EC-3SLS).

Second, we consider three simultaneous equation estimators which take into account cross-
section spatial dependence:

1. Generalized moment instrumental variables two Stage Least Squares at initial value
(GM-IV-S2SLS-I).

2. Generalized moment instrumental variables two Stage Least Squares at with the cor-
rected parameters (GM-IV-S2SLS-C).

3. Generalized moment instrumental variables three Stage Least Squares (GM-IV-S3SLS).
2Irregular lattices structures are left for application on real data.
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To sum up, we will have a total of sixteen (15) Monte Carlo designs. We run 200 replications
for each experiment.

5.2 Efficiency Criteria

To compare the performance of these estimators, we use three criteria. The first is an
adjusted version of the root mean square error (RMSE) criterion proposed by Kelejian and
Prucha (1998),

RMSE∗(α̂k) =



bias2(α̂k) +

(

IQ(α̂k)

1.35

)2




1/2

where median is used instead of mean for bias. So bias is the difference between median and
the true parameter. IQ is the inter-quartile range defined as the difference between the 0.75
quantile and the 0.25 quantile of our estimates, α̂k is the estimator of kth parameter αk.

As a supplement to RMSE∗ for each structural parameter, we employ two other comprehen-
sive criteria proposed by Sasser (1969). The normalized mean absolute deviation (NOMAD)
and normalized root mean square deviation (NORMSQD). These measures were also used
by Baltagi (1984) in his Monte Carlo experiments. Specifically, NOMAD is defined as,

NOMAD(α̂) =
1

RK

K∑

k=1

R∑

r=1

∣
∣
∣
∣
∣

α̂k,r − αk

αk

∣
∣
∣
∣
∣

where K is the number of parameters, i.e., the dimension of parameter vector, R is the
number of replications, α̂k,r is the estimator of kth parameter k in rth replication. Since
NORMSQD relies on moments as well, we will also use quantiles instead to adjust for this
criterion. Therefore, NORMSQD becomes,

NORMSQD∗(α̂) =







1

K

K∑

k=1

[

bias2(α̂k) +
(

IQ(α̂k)
1.35

)2
]

α̂2
k







1/2

where bias and IQ are defined similarly to those in RMSE. For simplicity of notation, we
still use RMSE and NORMSQD in the text when using these adjusted measures.

5.3 Results

5.3.1 Changes in the Variance-Covariance matrix

Tables 1, 2, 3 and 4 show the bias, the standard deviation, the RMSE, the NOMAD and the
NORMSQD based on 200 replications. The structural parameters (α1, β11, β12, α2, β21, β22)
take the values (−0.5, −2, 1.5, −4, −3, 1.8), the spatial coefficients (ρ1, ρ2) are fixed at
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(−0.8, 0.8), and the weighting matrix is fixed at W3. The four tables differ only in the
degree of heterogeneity in the individual effects and in the cross-equation correlation3.
For the first three (03) usual estimators, with not surprise, OLS gives the largest NOMAD
and NORMSQD. This is due to it inconsistency in a panel data (see Kelejian et al., 2004;
Baltagi and Deng, 2015, for similar results). In contrast, when endogeneity is taken care of,
i.e., we applied 2SLS, NOMAD gives an average gain of around 58.03% over OLS. However
when taking into account of simultaneity, by applying 3SLS, NOMAD exhibits a slighty
average gain of around 1.35% over 2SLS. In addition of 2SLS, when we swipe off all the
specific effects, i.e., FE-2SLS is applied, NOMAD exhibits an average gain of around 49.38%
over 2SLS. Whereas, as we move from V1 to V4, i.e. the variances of the individual effects
decrease, 2SLS shows smaller RMSE as well as NOMAD and NORMSQD than FE-2SLS
(see the second graph of Figure 1). For example, in Table 4 the NORMSQD gives an average
gain of 32.1% over FE-2SLS4.
Next, we compare 2SLS, FE-2SLS, EC-2SLS and EC-3SLS. As we see, as the variance
covariance of the idiosyncratic term becomes small (i.e. we move from Table 4 to Table
1), Fixed Effect estimators become more close of EC estimators whereas, when the
variance-covariance σ2

ξ increase, now we move from Table 1 to Table 4, 2SL and 3SLS
estimators become more close of EC (see Figure 1). According to NOMAD and NORMSQD,
EC-(3SLS and 2SLS) give better results than FE and 2SLS.
Now, comparing EC estimators, EC-3SLS exhibits better results than EC-2SLS This is not
surprising considering the fact that 2SLS does not take into account simultaneity. However,
an interesting result is that, when the lq-covariance of the specific individual component,
σ2

η12
, decreases this gain in efficiency also decreases. Indeed, in Table 1 the gain is around

of 5% while in Table 4 it’s almost null (see first graph of figure 1).
Next, we compare classical error component estimators and GM-IV-spatial estimators. As
we see, when the spatial component structure is taking into account, NOMAD (respectively
NORMSQD) exhibits an average gain in efficiency of 25% for V1 to 19.61% for V4 (resp.
NORMSQD of 5% for V1 to 18.92% for V4). Finally, we focus on GM-IV spatial estimators
group. They give better results than all our estimator considered when equation (1) holds.
A graphical analysis reveals the following inequalities: GM-IV-S2SLS initial ≤GM-IV-S2SLS
corrected≤GM-IV-S3SLS. This means that: (i) iterate GM procedure leads to a gain in
efficiency than GM initial estimator classes. For example in Table 1 NOMAD exhibits an
average of 3.33%; (ii) When have an identified system taking into account of simultaneity
also leads to gain in effeciency than S2SLS Iterate estimator classes. And, move from V1 to
V4, i.e. when lq-component of idiosyncratic terms of ξ increase, leads to an increase of the
gain in efficiency between GM-IV-S2LS classes and GM-IV-S3SLS classes.

5.3.2 Change in the number of Neighbours

Tables 5 and 6 differ from Table 1 in the number of neighbours J . In Table 1 J = 3, in Table
3 J = 7 and J = 9 in Table 6. The structural parameters (α1, β11, β12, α2, β21, β22) take the
value (−0.5, −2, 1.5, −4, −3, 1.8) with the spatial coefficients (ρ1, ρ2) are fixed at (−0.8, 0.8),

3This respectively correspond to the following covariance setup: V1, V2, V3 and V4.
4one can revisit Baltagi and Deng (2015) for similar results
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Figure 1: Estimators Average NOMAD evolution under covariance.

and the variance covariance matrix design is fixed at V1. This means that, the four tables
differ only in the degree of sparseness. The non-zero rate of spatial matrices W3, W7 and
W9 are respectively 22.08%, 47.04% and 57.6%. For three neighbours ahead (W3), results
reveal that spatial three stage least squares give better results than spatial two stages. The
average gain in effeciency of NOMAD is 3.45%. And as the number of neighbours increase
i.e. as we move from W3 to W9, this inequality holds. A graphical analysis of Figure 1 reveal
that GM-IV estimators NOMADs and NORMSQD increase with the number of neighbours
however, this augmentation is less than that caused by an increase in the variance covariance
matrix of the rest of the disturbance.

5.3.3 Change in time

Tables 1, 7 and 8 deal with the change in temporal size. Indeed, the first table consider T = 7
the second T = 10 and the third T = 15. The structural parameters (α1, β11, β12, α2, β21, β22),
the coefficient of spatial dependence of each equation (ρ1, ρ2) take the same values as above
and the variance covariance matrix design is fixed at V1. Comparing the results from Table
1 to 8 we see that an increase of temporal size leads to (i) a decrease in NOMAD and
NORMSQD in all estimators (see Figure 2); (ii) GM-IV-S3SLS give better results than
GM-IV-S2SLS according to NOMAD and NORMSQD.
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Figure 2: GM Estimators Average NOMAD path under different design.

5.3.4 Change in coefficient of spatial dependence

Tables 1, 9, 10 and 11 show the bias, the standard deviation, the RMSE, the NOMAD and the
NORMSQD based on 200 replications5. The structural parameters (α1, β11, β12, α2, β21, β22)
take the values (−0.5, −2, 1.5, −4, −3, 1.8), the weighting matrix is fixed at W3, we use the
first covariance design V1 and time dimension is fixed at 7. In this investigation, ρ2 is fixed
at the value 0.8. In the first table ρl = −0.8, in the second ρl = −0.4, in the third ρl = 0.4
and in the fourth ρl = 0.8. As we see in the first graph of Figure 2 when ρl is negative,
RMSE, NOMAD and NORMSQD are progressively decreasing while when this coefficient
changes sign, NOMAD and NORMSQD progressively increase.

5.3.5 GM Estimation of the coefficient of spatial dependence and variance-
covariance components

In Table 1 to 11 we also estimate coefficient of spatial dependence and variance covariance
components of the disturbance. Results reveal that, when model of equation (1) holds, only
GM classes gives better estimates and low biases of variance components than all estimators
considered. When we focus on GM estimator of components of the disturbance, we note
some points.
Firstly, the corrected GM-IV-S2SLS gives better results - low average bias- when estimating
the spatial coefficient of each equation. This means that iterate GM procedure imply better
estimates. For example, in table 1, the corrected S2SLS had an average gain in efficiency
of 75.25% on the initial S2SLS and 75.49% on the initial S3SLS. Secondly, the corrected

5We only report the first and the last tables. The others are available on request.
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GM-IV-S2SLS also gives, in average, better estimates of variance covariance components.
For example, in table 2, the corrected S2SLS had an average gain in efficiency of 13.59% on
the initial S2SLS. Thirdly, the second graph of figure 2 shows different path of average bias
for one spatial coefficient in different cases. In all cases -except time design- the average
bias of spatial component decreases. It seems that GM estimate of the spatial coefficient is
better when the corresponding spatial coefficient is -in absolute value- around of zero. We
found that estimates are very good when |ρ| ≤ 0.4.

5.4 Application on African Data

5.4.1 The Empirical Model

In this section our SGMM estimators are applied to 20 Sub-Saharan African countries. To
estimate the link between per capita health care expenditure (HCE) and economic growth,
we taking the lead from and specify the following spatial simultaneous empirical model:







Yti = β01 + α1Hti + β1Fti + β2Kti + β3Tti + υ1,ti

Hti = β02 + α2Yti + β4Pti + β5Oti + β6Jti + υ2,ti

(40)

where Hti and Yti, the dependent variables of the system, respectively indicate, per capita
health care expenditure and real GDP per capita for the ith country at time t; the exogenous
variables of the model X1 = [L, K, T ] and X2 = [P, O, J ] respectively indicate labor force,
physical capital, trade openness, public expenditure on health care, the dependency rates
for old and young people, defined as the population aged 65 and over divided by the popu-
lation aged 15–64, and the population aged 0–14 divided by the population aged 15–64. All
variables in equation (40) are expressed in natural logarithm. The structural disturbances
for each equation follows a SAR process defined as in equation (2) with l = {1, 2}.

υl = Λlϵl = (I − ρlW )−1ϵl = A−1
l ϵl (41)

Where the nonnegative matrix WN = (ωij), known as spatial weights matrix, provides infor-
mation on the neighborhood linkages among Sub-Saharan African countries. In this study,
we define neighborliness via a contiguity criterion, and assign ωij = 1 when country i and j
share a common border or vertex, and ωij = 0 otherwise. This spatial matrix WN gives a
non-zero rate of 13%. The innovations ϵl follows a one-way error component model defined
as in equation (3)

ϵl = Zηηl + ξl

5.4.2 Data

We used annual data of 20 SSA countries over the period 1995 to 2015. The data comes from
the World Development Indicators as published by the World Bank (2017). The selected
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Figure 3: Spatial matrix of 20 SSA countries

countries under study and time span are dictated by data availability. Figure 4 displays the
evolution of per capita HCE and per capita GDP for Sub-Saharan African countries.
We first made a preliminary exploratory data analysis this means: check whether our vari-
ables are nonstationary, then test their cointegrating properties and therefore, if they are
linked in the long-run6.

5.4.3 Results and Discussions

Table 12 shows results from: Ordinary Least Squares (column 1), Two Stage Least Squares
(column 2), Least Square Dummy Variable 2SLS (column 3), Error component 2SLS (column
4), Error Components 3SLS (column 5), Spatial Error Component 2SLS (column 6) and
Spatial Error Component Three Stage Least Squares (column 7) estimations when income is
the dependent variable in the regression (Equation 1), as well as when health expenditure is
the dependent variable (Equation 2). Equation 1 reveals the following results. The impact
of Health Care Expenditure on per capita income is negative in SSA; so an increment of
1% in HCE leads to a reduction of 0.037% in per capita GDP. Capital Stock and Trade
Openness positively and significantly affect per capita Income; for example when we focus
on 3EC-3SLS, an increase of 1% on capital stock (respectively Trade Openness) leads ceteris
paribus in long run, to an increment of 0.305% (respectively 0.18%) of per capita GDP.
Interestingly, per capita GDP is negatively affected by Labor force. This can be explaining
by the properties of real Income. Indeed, our dependent variable is per capita GDP this
means gross domestic product of a country divide by the population of the same year. So

6We found that our variables are nonstationary in level, i.e, they are I(1). And the Johansen cointegration
test reveals that they are cointegrated. For space requirement, results are not plot here but are availabe in
request.
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Figure 4: Health Expenditure and Income versus in SSA

a negative impact of Labor force on per capita GDP in Sub-Saharan Africa means that the
total quantity value-added by Labor force is less than the quantity absorbed by the excess of
the population in the same period. In others words, even if Labor force play a positive role on
GDP, if the natural growth is significantly high, it can imply a reduction of per capita GDP.
In the second equation 2 health expenditure is the dependent variable. As we can see, health
care expenditure is positively impact by per capita GDP and the magnitude vary according
to the estimator used. Indeed, a 1% increase in per capita real income leads in long run
to an increase of 0.894% in health care expenditure for 3EC-3SLS and 1.431% in HCE for
2EC-3SLS. Public expenditure positively and significantly affects health expenditure while
old ratio dependency rate and young ratio dependency rate negatively affect Health care
expenditure.

Conclusion

This paper develops estimation for a simultaneous panel data with spatially autocorrelated
error componenent. For the disturbance, we considered SAR process developped by Kelejian
and Prucha (2004) in which the global effect shock occurs because it is transmitted also to
location that are “neigbours of neighbours” via the power of the spatial matrix. We also
consider SMA process developped by Fingleton (2008) in which a shock at a specific location
will only affect the directly interacting location. We derive a limited information estimator,
termed GM-IV-S2SLS estimator, and a full information estimator, termed GM-IV-S3SLS.
To derive each spatial error component estimators and spatial coefficient, we propose a
simultaneous GM procedure.
The purpose of our Monte Carlo experiment were threefolds: Firstly, we study the small
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sample behavior of our estimators that can handle endogeneity, spatial error correlation
and random individual effects in function of spatial coefficient, contiguity matrix, variance
covariance of specific component and the increase of time. These estimators are compared
with those that may ignore one or more of these symptoms. Secondly, we also investigate the
gains in efficiency by comparing GM-IV spatial to others estimators. Thirdly, we study the
sample properties of the spatial component ρl in limited and full information cases. Results
suggesting many conclusions. Our estimators are consistent. According to NOMAD and
NORMSQD, GM-IV-S3SLS is better than GM-IV-S2SLS. When we estimate the coefficient
of spatial dependence it seems better to use IV estimator that takes into account simultaneity.
This means that when it is possible use 3SLS in lieu of 2SLS and after iterate to improve
the quality of variance components.
Finally, we apply these estimators to real data of 20 Sub-Saharan African countries . We
used these set of estimators to evaluate the modification of the magnitude in the model of
health care expenditure and per capita real income.
In future research it should be of interest to extend the analysis of this paper to the case
that contains spatial lag and spatially autocorrelated error components.

A Tables
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Table 1: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.102 0.814 0.603 0.035 0.042 0.037 0.193 10.794 38.716
(0.01) (0.095) (0.077) (0.029) (0.088) (0.08) (0.438) [11.288] [41.728]
[0.106] [0.859] [0.639] [0.068] [0.175] [0.165]

2SLS 0.003 0.024 0.023 0.002 0.017 0.006 0.081 20.253 39.347
(0.013) (0.121) (0.098) (0.029) (0.089) (0.08) (0.116) [21.617] [42.426]
[0.04] [0.345] [0.276] [0.063] [0.156] [0.157]

3SLS 0.003 0.02 0.021 0.003 0.013 0.013 0.081 20.253 39.347 7.908
(0.018) (0.153) (0.12) (0.03) (0.089) (0.077) (0.121) [21.617] [42.426] [8.867]
[0.039] [0.346] [0.306] [0.062] [0.159] [0.147]

Specific Estimators
FE-2SLS 0.002 0.006 0.005 0.006 0.006 0.009 0.041 1.094 9.69

(0.019) (0.162) (0.129) (0.039) (0.113) (0.103) (0.054) [1.364] [10.093]
[0.018] [0.155] [0.115] [0.035] [0.107] [0.096]

BE-2SLS 0.003 0.027 0.026 0.003 0.021 0.005 0.1 14.81 26.192
(0.047) (0.41) (0.321) (0.075) (0.223) (0.199) (0.137) [16.439] [29.582]
[0.047] [0.385] [0.324] [0.082] [0.185] [0.207]

Error Component Estimators
EC-2SLS 0.006 0.05 0.035 0.005 0.001 0.01 0.04 1.094 14.81 9.69 26.192

(0.017) (0.144) (0.115) (0.033) (0.097) (0.089) (0.053) [1.364] [16.439] [10.093] [29.582]
[0.018] [0.149] [0.115] [0.03] [0.095] [0.089]

EC-3SLS 0.001 0.01 0.005 0.004 0.004 0.013 0.038 1.094 14.81 9.69 26.192 0.277 6.126
(0.017) (0.144) (0.114) (0.033) (0.096) (0.085) (0.053) [1.364] [16.439] [10.093] [29.582] [0.532] [7.271]
[0.016] [0.151] [0.122] [0.029] [0.092] [0.089]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.009 0.006 0.001 0.001 0 0.03 0.101 0.64 10.704 0.037 2.854 13.818

(0.007) (0.062) (0.049) (0.01) (0.029) (0.026) (0.043) [0.2] [1.238] [12.055] [0.069] [3.036] [14.633]
[0.014] [0.126] [0.103] [0.02] [0.062] [0.053]

S2SLS C 0.001 0.009 0.007 0.001 0.002 0 0.029 0.025 0.115 11.02 1.836 13.457
(0.007) (0.062) (0.049) (0.01) (0.029) (0.026) (0.039) [0.164] [0.561] [12.093] [0.047] [1.904] [14.193]
[0.013] [0.117] [0.089] [0.019] [0.061] [0.054]

S3SLS 0.001 0.009 0.006 0 0 0.003 0.028 0.102 0.631 10.913 0.036 2.83 14.021 0.014 5.694
(0.015) (0.126) (0.1) (0.021) (0.059) (0.052) (0.039) [0.212] [1.257] [12.252] [0.068] [3.01] [14.859] [0.533] [6.664]
[0.014] [0.129] [0.088] [0.017] [0.055] [0.046]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 2: Efficient Criteria under σ2
ξll

=08, σ2
ηll

= 12, T=07, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 08 12 0.8 08 12 04 06
Usual Estimators

OLS 0.103 0.83 0.615 0.042 0.054 0.043 0.195 11.658 41.915
(0.01) (0.096) (0.078) (0.031) (0.093) (0.084) (0.444) [11.996] [44.041]
[0.106] [0.87] [0.638] [0.066] [0.163] [0.161]

2SLS 0.003 0.021 0.021 0.001 0.015 0.006 0.074 21.355 42.618
(0.013) (0.122) (0.099) (0.031) (0.094) (0.085) (0.107) [22.47] [44.777]
[0.038] [0.318] [0.255] [0.059] [0.145] [0.149]

3SLS 0.002 0.017 0.018 0.002 0.012 0.013 0.073 21.355 42.618 8.623
(0.018) (0.155) (0.122) (0.032) (0.094) (0.082) (0.11) [22.47] [44.777] [9.374]
[0.037] [0.317] [0.269] [0.056] [0.147] [0.145]

Specific Estimators
FE-2SLS 0.002 0.01 0.007 0.008 0.008 0.013 0.057 6.831 20.528

(0.027) (0.231) (0.184) (0.055) (0.159) (0.146) (0.077) [7.109] [21.34]
[0.026] [0.225] [0.162] [0.05] [0.151] [0.135]

BE-2SLS 0.002 0.022 0.022 0.003 0.018 0.004 0.09 10.555 17.787
(0.042) (0.362) (0.283) (0.067) (0.198) (0.177) (0.124) [11.978] [20.832]
[0.043] [0.353] [0.294] [0.071] [0.168] [0.187]

Error Component Estimators
EC-2SLS 0.008 0.074 0.05 0.005 0.001 0.013 0.051 6.831 10.555 20.528 17.787

(0.021) (0.182) (0.145) (0.04) (0.118) (0.107) (0.071) [7.109] [11.978] [21.34] [20.832]
[0.023] [0.194] [0.155] [0.037] [0.117] [0.116]

EC-3SLS 0.001 0.014 0.006 0.004 0.006 0.016 0.049 6.831 10.555 20.528 17.787 2.838 3.909
(0.021) (0.183) (0.145) (0.04) (0.116) (0.103) (0.07) [7.109] [11.978] [21.34] [20.832] [3.016] [5.121]
[0.023] [0.19] [0.168] [0.038] [0.101] [0.112]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.002 0.011 0.01 0.001 0.001 0 0.038 0.048 5.056 7.406 0.018 5.738 9.117

(0.006) (0.055) (0.044) (0.009) (0.026) (0.024) (0.056) [0.177] [5.456] [8.558] [0.049] [5.894] [9.931]
[0.018] [0.169] [0.133] [0.024] [0.077] [0.071]

S2SLS C 0.002 0.013 0.011 0.001 0.002 0 0.038 0.021 4.369 7.729 4.867 8.783
(0.006) (0.056) (0.045) (0.009) (0.026) (0.024) (0.054) [0.173] [4.556] [8.798] [0.047] [4.972] [9.512]
[0.018] [0.166] [0.123] [0.023] [0.079] [0.072]

S3SLS 0.001 0.01 0.008 0 0 0.004 0.037 0.05 5.037 7.595 0.018 5.717 9.29 2.053 3.566
(0.018) (0.153) (0.121) (0.025) (0.071) (0.062) (0.053) [0.181] [5.422] [8.708] [0.05] [5.875] [10.103] [2.252] [4.582]
[0.018] [0.173] [0.121] [0.023] [0.071] [0.06]

1 In each cell of columns 2-7, the upper number denotes the bias. The middle one in parentheses denotes the standard deviation.
2 The bottom number denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 3: Efficient Criteria under σ2
ξll

=12, σ2
ηll

= 08, T=07, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 12 08 0.8 12 08 06 04
Usual Estimators

OLS 0.106 0.852 0.631 0.037 0.049 0.033 0.193 12.48 38.116
(0.01) (0.096) (0.078) (0.03) (0.09) (0.082) (0.452) [12.702] [39.35]
[0.11] [0.877] [0.644] [0.053] [0.115] [0.12]

2SLS 0.002 0.016 0.018 0 0.009 0 0.061 22.478 38.572
(0.013) (0.123) (0.1) (0.03) (0.091) (0.082) (0.091) [23.455] [39.889]
[0.033] [0.254] [0.233] [0.035] [0.104] [0.108]

3SLS 0.002 0.014 0.016 0 0.007 0.007 0.061 22.478 38.572 9.358
(0.018) (0.156) (0.122) (0.031) (0.091) (0.079) (0.09) [23.455] [39.889] [9.72]
[0.032] [0.26] [0.229] [0.036] [0.098] [0.103]

Specific Estimators
FE-2SLS 0.003 0.012 0.009 0.01 0.01 0.016 0.07 12.763 31.548

(0.033) (0.287) (0.228) (0.067) (0.195) (0.178) (0.095) [13.214] [32.752]
[0.031] [0.276] [0.196] [0.062] [0.183] [0.166]

BE-2SLS 0.002 0.015 0.017 0.001 0.011 0.004 0.073 7.447 2.382
(0.035) (0.308) (0.241) (0.044) (0.131) (0.117) (0.105) [8.67] [5.665]
[0.037] [0.303] [0.257] [0.042] [0.12] [0.132]

Error Component Estimators
EC-2SLS 0.009 0.079 0.053 0.003 0.004 0.006 0.052 12.763 7.447 31.548 2.382

(0.022) (0.194) (0.155) (0.035) (0.103) (0.093) (0.074) [13.214] [8.67] [32.752] [5.665]
[0.026] [0.206] [0.169] [0.032] [0.106] [0.097]

EC-3SLS 0.001 0.015 0.006 0.001 0.005 0.01 0.051 12.763 7.447 31.548 2.382 5.46 1.748
(0.023) (0.195) (0.154) (0.035) (0.1) (0.087) (0.073) [13.214] [8.67] [32.752] [5.665] [5.685] [2.831]
[0.025] [0.205] [0.175] [0.032] [0.101] [0.101]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.002 0.011 0.011 0.001 0.001 0.001 0.041 0.025 9.499 5.416 0.008 8.548 0.872

(0.006) (0.048) (0.039) (0.007) (0.02) (0.018) (0.06) [0.173] [9.836] [6.298] [0.048] [8.68] [1.924]
[0.021] [0.187] [0.144] [0.019] [0.078] [0.067]

S2SLS C 0.002 0.014 0.013 0.001 0.001 0.001 0.041 0.016 8.972 5.591 0.001 8.142 0.55
(0.006) (0.049) (0.039) (0.007) (0.02) (0.018) (0.058) [0.172] [9.18] [6.404] [0.047] [8.274] [1.59]
[0.02] [0.185] [0.133] [0.019] [0.08] [0.067]

S3SLS 0.001 0.005 0.006 0 0 0.004 0.038 0.026 9.457 5.576 0.008 8.529 1.005 4.167 1.564
(0.018) (0.157) (0.124) (0.022) (0.063) (0.054) (0.056) [0.166] [9.805] [6.435] [0.048] [8.667] [1.989] [4.307] [2.476]
[0.02] [0.174] [0.136] [0.02] [0.063] [0.052]

1 In each cell of columns 2-7, the upper number denotes the bias. The middle one in parentheses denotes the standard deviation.
2 The bottom number denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 4: Efficient Criteria under σ2
ξll

=16, σ2
ηll

= 04, T=07, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 16 04 0.8 16 04 08 02
Usual Estimators

OLS 0.106 0.854 0.633 0.057 0.078 0.054 0.196 13.637 48.513
(0.01) (0.096) (0.078) (0.033) (0.101) (0.092) (0.446) [13.818] [50.052]
[0.107] [0.866] [0.64] [0.073] [0.142] [0.13]

2SLS 0.002 0.012 0.014 0.001 0.009 0.005 0.055 23.749 49.506
(0.013) (0.123) (0.1) (0.033) (0.102) (0.093) (0.078) [24.372] [51.11]
[0.026] [0.237] [0.178] [0.039] [0.114] [0.109]

3SLS 0.001 0.009 0.012 0 0.009 0.01 0.054 23.749 49.506 10.198
(0.018) (0.157) (0.123) (0.035) (0.103) (0.09) (0.079) [24.372] [51.11] [10.5]
[0.026] [0.243] [0.181] [0.039] [0.102] [0.104]

Specific Estimators
FE-2SLS 0.003 0.015 0.011 0.011 0.012 0.018 0.081 18.983 42.662

(0.039) (0.334) (0.266) (0.078) (0.226) (0.206) (0.108) [19.713] [44.305]
[0.036] [0.314] [0.22] [0.071] [0.211] [0.193]

BE-2SLS 0.001 0.008 0.011 0.001 0.012 0.001 0.064 2.507 1.316
(0.028) (0.246) (0.193) (0.047) (0.138) (0.123) (0.091) [3.787] [5.972]
[0.032] [0.268] [0.213] [0.046] [0.12] [0.129]

Error Component Estimators
EC-2SLS 0.008 0.069 0.044 0.003 0.004 0.009 0.051 18.983 2.507 42.662 1.316

(0.021) (0.186) (0.148) (0.038) (0.112) (0.101) (0.074) [19.713] [3.787] [44.305] [5.972]
[0.024] [0.213] [0.163] [0.036] [0.116] [0.107]

EC-3SLS 0.001 0.013 0.003 0.001 0.007 0.012 0.051 18.983 2.507 42.662 1.316 8.19 0.359
(0.021) (0.186) (0.147) (0.038) (0.11) (0.096) (0.072) [19.713] [3.787] [44.305] [5.972] [8.462] [1.705]
[0.024] [0.196] [0.172] [0.036] [0.109] [0.106]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.011 0.011 0.001 0.002 0 0.041 0.01 14.073 1.623 0.007 11.932 0.451

(0.005) (0.04) (0.032) (0.007) (0.019) (0.017) (0.06) [0.162] [14.356] [2.431] [0.049] [12.083] [1.794]
[0.02] [0.187] [0.137] [0.026] [0.087] [0.077]

S2SLS C 0.002 0.013 0.013 0.001 0.001 0 0.041 0.013 13.755 1.633 0.001 11.484 0.064
(0.005) (0.04) (0.032) (0.006) (0.019) (0.017) (0.059) [0.167] [14.002] [2.458] [0.046] [11.648] [1.567]
[0.02] [0.183] [0.135] [0.026] [0.087] [0.076]

S3SLS 0.001 0.005 0.007 0 0 0.005 0.039 0.012 14.047 1.737 0.007 11.923 0.541 6.4 0.357
(0.017) (0.152) (0.12) (0.025) (0.071) (0.062) (0.056) [0.163] [14.349] [2.48] [0.049] [12.089] [1.959] [6.589] [1.478]
[0.019] [0.178] [0.134] [0.023] [0.07] [0.061]

1 In each cell of columns 2-7, the upper number denotes the bias. The middle one in parentheses denotes the standard deviation.
2 The bottom number denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 5: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = −0.8 and J=07

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.093 0.745 0.552 0.009 0.006 0.009 0.172 9.258 23.016
(0.01) (0.093) (0.075) (0.023) (0.07) (0.063) (0.383) [9.811] [24.052]
[0.099] [0.786] [0.597] [0.047] [0.14] [0.11]

2SLS 0.003 0.024 0.021 0.004 0.013 0.001 0.071 16.447 23.106
(0.013) (0.115) (0.093) (0.023) (0.07) (0.063) (0.106) [17.82] [24.142]
[0.039] [0.326] [0.253] [0.048] [0.129] [0.116]

3SLS 0.003 0.021 0.019 0.004 0.01 0.005 0.07 16.447 23.106 6.999
(0.016) (0.14) (0.109) (0.024) (0.069) (0.06) (0.108) [17.82] [24.142] [7.982]
[0.038] [0.33] [0.27] [0.047] [0.116] [0.103]

Specific Estimators
FE-2SLS 0.001 0.006 0.004 0.005 0.006 0.009 0.036 0.349 6.291

(0.017) (0.15) (0.119) (0.033) (0.095) (0.087) (0.048) [0.733] [6.686]
[0.017] [0.135] [0.104] [0.03] [0.092] [0.085]

BE-2SLS 0.003 0.026 0.023 0.005 0.016 0.004 0.088 11.833 14.08
(0.043) (0.372) (0.291) (0.058) (0.171) (0.154) (0.135) [13.491] [15.193]
[0.046] [0.423] [0.32] [0.059] [0.152] [0.147]

Error Component Estimators
EC-2SLS 0.005 0.041 0.03 0.003 0 0.007 0.035 0.349 11.833 6.291 14.08

(0.015) (0.133) (0.106) (0.028) (0.081) (0.074) (0.048) [0.733] [13.491] [6.686] [15.193]
[0.017] [0.135] [0.113] [0.026] [0.07] [0.069]

EC-3SLS 0 0.006 0.003 0.002 0.003 0.01 0.034 0.349 11.833 6.291 14.08 0.079 5.463
(0.015) (0.133) (0.105) (0.027) (0.079) (0.069) (0.048) [0.733] [13.491] [6.686] [15.193] [0.412] [6.594]
[0.016] [0.137] [0.114] [0.025] [0.079] [0.074]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.01 0.008 0.001 0 0 0.03 0.06 0.451 10.031 0.032 2.36 12.423

(0.007) (0.063) (0.05) (0.01) (0.029) (0.027) (0.044) [0.323] [1.244] [11.412] [0.07] [2.45] [13.094]
[0.015] [0.131] [0.102] [0.02] [0.063] [0.061]

S2SLS C 0.001 0.011 0.008 0.002 0 0.001 0.03 0.076 0.114 10.95 0.014 1.855 13.481
(0.007) (0.064) (0.051) (0.01) (0.03) (0.027) (0.042) [0.329] [0.539] [12.012] [0.066] [1.906] [14.235]
[0.014] [0.123] [0.096] [0.02] [0.061] [0.06]

S3SLS 0.001 0.012 0.008 0 0.003 0.003 0.029 0.064 0.434 10.171 0.032 2.332 12.596 0.035 5.588
(0.015) (0.128) (0.101) (0.02) (0.058) (0.051) (0.042) [0.308] [1.252] [11.584] [0.069] [2.418] [13.326] [0.485] [6.679]
[0.014] [0.127] [0.101] [0.018] [0.056] [0.052]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 6: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = −0.8 and J=09

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.092 0.736 0.545 0.006 0.002 0.005 0.169 9.064 20.517
(0.01) (0.093) (0.075) (0.022) (0.067) (0.06) (0.373) [9.52] [21.226]
[0.097] [0.783] [0.581] [0.044] [0.126] [0.105]

2SLS 0.003 0.025 0.022 0.003 0.012 0.002 0.069 16.02 20.571
(0.013) (0.115) (0.092) (0.022) (0.067) (0.06) (0.103) [17.34] [21.26]
[0.037] [0.312] [0.258] [0.044] [0.119] [0.104]

3SLS 0.003 0.023 0.019 0.003 0.008 0.004 0.068 16.02 20.571 6.868
(0.016) (0.139) (0.108) (0.023) (0.066) (0.057) (0.107) [17.34] [21.26] [7.777]
[0.037] [0.329] [0.27] [0.045] [0.107] [0.103]

Specific Estimators
FE-2SLS 0.002 0.008 0.006 0.004 0.006 0.009 0.035 0.263 5.768

(0.017) (0.148) (0.118) (0.032) (0.092) (0.084) (0.048) [0.697] [6.203]
[0.016] [0.138] [0.103] [0.029] [0.085] [0.089]

BE-2SLS 0.003 0.027 0.023 0.004 0.014 0.004 0.086 11.503 12.186
(0.042) (0.369) (0.288) (0.055) (0.162) (0.145) (0.128) [13.003] [12.885]
[0.044] [0.394] [0.313] [0.056] [0.142] [0.135]

Error Component Estimators
EC-2SLS 0.004 0.037 0.027 0.002 0 0.007 0.034 0.263 11.503 5.768 12.186

(0.015) (0.132) (0.105) (0.027) (0.078) (0.071) (0.046) [0.697] [13.003] [6.203] [12.885]
[0.016] [0.135] [0.104] [0.025] [0.069] [0.066]

EC-3SLS 0 0.003 0.001 0.002 0.002 0.01 0.033 0.263 11.503 5.768 12.186 0.046 5.369
(0.015) (0.132) (0.104) (0.026) (0.076) (0.066) (0.047) [0.697] [13.003] [6.203] [12.885] [0.388] [6.391]
[0.015] [0.135] [0.111] [0.024] [0.071] [0.066]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.009 0.007 0.001 0.001 0 0.031 0.041 0.442 9.988 0.036 2.284 12.191

(0.007) (0.063) (0.05) (0.01) (0.029) (0.027) (0.046) [0.372] [1.269] [11.25] [0.073] [2.363] [12.87]
[0.016] [0.141] [0.104] [0.02] [0.065] [0.062]

S2SLS C 0.001 0.009 0.006 0.002 0 0 0.03 0.104 0.12 10.936 0.021 1.861 13.445
(0.007) (0.064) (0.051) (0.01) (0.03) (0.027) (0.044) [0.363] [0.561] [11.898] [0.068] [1.911] [14.173]
[0.015] [0.142] [0.098] [0.02] [0.064] [0.06]

S3SLS 0.001 0.011 0.007 0 0.002 0.003 0.03 0.045 0.421 10.093 0.035 2.26 12.386 0.027 5.605
(0.015) (0.129) (0.101) (0.02) (0.058) (0.051) (0.045) [0.364] [1.245] [11.447] [0.073] [2.327] [13.082] [0.477] [6.565]
[0.015] [0.142] [0.107] [0.019] [0.057] [0.053]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 7: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=10, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.1 0.795 0.612 0.033 0.044 0.018 0.191 10.844 38.709
(0.009) (0.079) (0.064) (0.024) (0.073) (0.067) (0.419) [11.384] [41.23]
[0.103] [0.808] [0.643] [0.078] [0.183] [0.147]

2SLS 0.003 0.03 0.007 0.006 0.013 0.017 0.081 20.187 39.397
(0.011) (0.1) (0.082) (0.025) (0.073) (0.068) (0.114) [22.127] [41.959]
[0.039] [0.357] [0.25] [0.07] [0.187] [0.149]

3SLS 0.003 0.03 0.01 0.006 0.012 0.004 0.081 20.187 39.397 7.864
(0.015) (0.126) (0.099) (0.026) (0.073) (0.066) (0.116) [22.127] [41.959] [9.102]
[0.039] [0.365] [0.257] [0.072] [0.192] [0.149]

Specific Estimators
FE-2SLS 0.001 0.009 0.004 0.003 0.012 0.014 0.036 1.136 9.94

(0.015) (0.132) (0.105) (0.032) (0.093) (0.085) (0.05) [1.345] [10.22]
[0.016] [0.145] [0.112] [0.031] [0.095] [0.087]

BE-2SLS 0.003 0.032 0.006 0.009 0.02 0.017 0.103 14.888 26.24
(0.047) (0.4) (0.317) (0.076) (0.218) (0.201) (0.143) [17.253] [30.557]
[0.051] [0.423] [0.318] [0.086] [0.238] [0.195]

Error Component Estimators
EC-2SLS 0.003 0.027 0.024 0.002 0.009 0.012 0.036 1.136 14.888 9.94 26.24

(0.014) (0.121) (0.097) (0.029) (0.083) (0.076) (0.051) [1.345] [17.253] [10.22] [30.557]
[0.016] [0.146] [0.115] [0.032] [0.09] [0.083]

EC-3SLS 0 0.001 0.005 0.001 0.008 0.01 0.035 1.136 14.888 9.94 26.24 0.352 6.101
(0.014) (0.121) (0.096) (0.029) (0.082) (0.073) (0.051) [1.345] [17.253] [10.22] [30.557] [0.496] [7.407]
[0.016] [0.155] [0.11] [0.031] [0.098] [0.082]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.001 0.002 0 0.001 0.005 0.026 0.114 0.666 10.792 0.034 2.864 13.785

(0.006) (0.052) (0.041) (0.008) (0.024) (0.022) (0.037) [0.207] [1.277] [12.137] [0.06] [2.949] [14.602]
[0.013] [0.114] [0.087] [0.019] [0.054] [0.049]

S2SLS C 0.001 0.002 0 0 0.001 0.005 0.025 0.019 0.097 11.03 0.002 1.937 13.536
(0.006) (0.052) (0.041) (0.008) (0.024) (0.022) (0.036) [0.144] [0.421] [11.932] [0.037] [1.972] [14.227]
[0.012] [0.107] [0.088] [0.019] [0.051] [0.048]

S3SLS 0.001 0.004 0 0 0.001 0.002 0.024 0.115 0.676 11.026 0.033 2.842 13.996 0.011 5.641
(0.012) (0.106) (0.083) (0.017) (0.05) (0.044) (0.034) [0.211] [1.298] [12.418] [0.056] [2.929] [14.838] [0.465] [7.012]
[0.012] [0.108] [0.075] [0.018] [0.049] [0.048]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 8: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=15, N=25, ρ1 = −0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.102 0.822 0.615 0.041 0.05 0.026 0.193 10.401 38.625
(0.007) (0.062) (0.052) (0.02) (0.06) (0.055) (0.443) [11.002] [40.715]
[0.105] [0.858] [0.649] [0.066] [0.186] [0.159]

2SLS 0.004 0.044 0.024 0.005 0.005 0.007 0.075 19.028 39.221
(0.009) (0.078) (0.065) (0.02) (0.06) (0.055) (0.106) [20.36] [41.43]
[0.035] [0.263] [0.255] [0.06] [0.174] [0.17]

3SLS 0.004 0.043 0.021 0.004 0.003 0.005 0.075 19.028 39.221 8.11
(0.011) (0.098) (0.078) (0.021) (0.06) (0.053) (0.105) [20.36] [41.43] [9.263]
[0.035] [0.273] [0.245] [0.058] [0.192] [0.156]

Specific Estimators
FE-2SLS 0.001 0.006 0.001 0.005 0.001 0.001 0.025 1.13 9.855

(0.012) (0.105) (0.084) (0.026) (0.074) (0.068) (0.034) [1.263] [10.07]
[0.01] [0.09] [0.073] [0.028] [0.08] [0.067]

BE-2SLS 0.006 0.056 0.032 0.007 0.007 0.012 0.096 13.844 26.465
(0.044) (0.377) (0.303) (0.074) (0.22) (0.201) (0.136) [15.668] [30]
[0.042] [0.349] [0.313] [0.072] [0.215] [0.219]

Error Component Estimators
EC-2SLS 0.004 0.037 0.024 0.003 0.001 0.002 0.026 1.13 13.844 9.855 26.465

(0.011) (0.099) (0.079) (0.024) (0.069) (0.063) (0.035) [1.263] [15.668] [10.07] [30]
[0.011] [0.095] [0.077] [0.026] [0.071] [0.059]

EC-3SLS 0.002 0.018 0.01 0.003 0.001 0.003 0.024 1.13 13.844 9.855 26.465 0.339 6.348
(0.011) (0.099) (0.078) (0.024) (0.068) (0.061) (0.033) [1.263] [15.668] [10.07] [30] [0.447] [7.746]
[0.01] [0.088] [0.071] [0.026] [0.071] [0.061]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.009 0.003 0 0 0.002 0.018 0.118 0.466 10.248 0.033 2.758 13.736

(0.005) (0.042) (0.034) (0.007) (0.02) (0.018) (0.025) [0.188] [0.971] [11.483] [0.051] [2.848] [14.545]
[0.008] [0.076] [0.057] [0.014] [0.04] [0.033]

S2SLS C 0.001 0.006 0.002 0 0 0.002 0.018 0.008 0.067 11.026 0.002 1.914 13.673
(0.005) (0.042) (0.033) (0.007) (0.02) (0.018) (0.025) [0.109] [0.357] [11.78] [0.031] [1.944] [14.384]
[0.008] [0.08] [0.056] [0.014] [0.037] [0.033]

S3SLS 0.001 0.008 0.003 0 0 0.003 0.017 0.118 0.469 10.544 0.032 2.748 14.04 0.066 5.824
(0.01) (0.084) (0.067) (0.014) (0.04) (0.035) (0.024) [0.181] [0.939] [11.715] [0.048] [2.835] [14.872] [0.4] [7.129]
[0.007] [0.07] [0.055] [0.014] [0.045] [0.032]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 9: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = −0.4 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.088 0.705 0.522 0.036 0.043 0.038 0.171 9.24 38.703
(0.01) (0.093) (0.075) (0.029) (0.088) (0.08) (0.352) [9.725] [41.704]
[0.094] [0.746] [0.562] [0.07] [0.173] [0.167]

2SLS 0.003 0.024 0.023 0.002 0.017 0.006 0.076 15.744 39.32
(0.012) (0.113) (0.091) (0.029) (0.089) (0.08) (0.105) [16.859] [42.372]
[0.038] [0.306] [0.248] [0.063] [0.155] [0.157]

3SLS 0.003 0.021 0.02 0.003 0.014 0.013 0.075 15.744 39.32 7.889
(0.016) (0.138) (0.108) (0.03) (0.089) (0.077) (0.11) [16.859] [42.372] [8.936]
[0.037] [0.315] [0.269] [0.061] [0.16] [0.147]

Specific Estimators
FE-2SLS 0.001 0.006 0.004 0.006 0.006 0.009 0.038 0.219 9.69

(0.017) (0.147) (0.117) (0.039) (0.113) (0.103) (0.051) [0.64] [10.095]
[0.016] [0.145] [0.106] [0.035] [0.107] [0.096]

BE-2SLS 0.003 0.027 0.026 0.003 0.021 0.005 0.094 11.305 26.162
(0.042) (0.366) (0.287) (0.075) (0.222) (0.198) (0.131) [12.679] [29.519]
[0.046] [0.37] [0.307] [0.081] [0.183] [0.206]

Error Component Estimators
EC-2SLS 0.004 0.038 0.027 0.005 0.001 0.01 0.037 0.219 11.305 9.69 26.162

(0.015) (0.131) (0.105) (0.033) (0.097) (0.089) (0.05) [0.64] [12.679] [10.095] [29.519]
[0.016] [0.135] [0.108] [0.03] [0.095] [0.088]

EC-3SLS 0 0.005 0.002 0.004 0.004 0.013 0.036 0.219 11.305 9.69 26.162 0.313 6.07
(0.015) (0.131) (0.104) (0.033) (0.095) (0.084) (0.049) [0.64] [12.679] [10.095] [29.519] [0.587] [7.38]
[0.015] [0.134] [0.11] [0.029] [0.087] [0.086]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.01 0.007 0.001 0.001 0 0.03 0.026 0.419 10.023 0.037 2.844 13.797

(0.007) (0.064) (0.051) (0.01) (0.029) (0.026) (0.045) [0.153] [1.185] [11.231] [0.069] [3.012] [14.624]
[0.015] [0.138] [0.105] [0.019] [0.062] [0.053]

S2SLS C 0.001 0.01 0.007 0.001 0.002 0 0.029 0.024 0.101 11.042 1.834 13.45
(0.007) (0.064) (0.051) (0.01) (0.029) (0.026) (0.042) [0.157] [0.533] [12.092] [0.046] [1.901] [14.187]
[0.014] [0.132] [0.098] [0.019] [0.061] [0.054]

S3SLS 0.001 0.01 0.007 0 0 0.003 0.029 0.027 0.41 10.221 0.036 2.81 13.947 0.006 5.702
(0.015) (0.128) (0.101) (0.021) (0.06) (0.052) (0.041) [0.145] [1.157] [11.417] [0.07] [2.977] [14.792] [0.503] [6.738]
[0.014] [0.135] [0.094] [0.018] [0.056] [0.047]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.

31



Table 10: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = 0.4 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.086 0.687 0.509 0.027 0.029 0.03 0.167 9.441 38.852
(0.011) (0.095) (0.077) (0.029) (0.089) (0.08) (0.337) [10.019] [41.996]
[0.09] [0.733] [0.543] [0.068] [0.169] [0.165]

2SLS 0.003 0.028 0.025 0.002 0.017 0.006 0.074 15.431 39.264
(0.013) (0.114) (0.092) (0.029) (0.089) (0.08) (0.102) [16.769] [42.449]
[0.037] [0.292] [0.248] [0.063] [0.154] [0.154]

3SLS 0.003 0.024 0.022 0.003 0.014 0.016 0.073 15.431 39.264 10.332
(0.016) (0.136) (0.106) (0.03) (0.088) (0.074) (0.102) [16.769] [42.449] [11.674]
[0.036] [0.308] [0.239] [0.061] [0.147] [0.15]

Specific Estimators
FE-2SLS 0.001 0.007 0.003 0.006 0.006 0.009 0.039 0.466 9.698

(0.017) (0.152) (0.12) (0.039) (0.113) (0.103) (0.052) [0.818] [10.105]
[0.017] [0.158] [0.098] [0.036] [0.107] [0.096]

BE-2SLS 0.003 0.031 0.028 0.003 0.02 0.005 0.092 10.724 26.099
(0.041) (0.357) (0.28) (0.075) (0.222) (0.198) (0.128) [12.218] [29.545]
[0.044] [0.379] [0.294] [0.081] [0.185] [0.206]

Error Component Estimators
EC-2SLS 0.004 0.035 0.026 0.005 0 0.01 0.038 0.466 10.724 9.698 26.099

(0.015) (0.134) (0.107) (0.033) (0.097) (0.089) (0.051) [0.818] [12.218] [10.105] [29.545]
[0.016] [0.145] [0.114] [0.029] [0.095] [0.086]

EC-3SLS 0 0.003 0.001 0.003 0.004 0.013 0.036 0.466 10.724 9.698 26.099 1.109 7.585
(0.015) (0.133) (0.105) (0.033) (0.094) (0.082) (0.048) [0.818] [12.218] [10.105] [29.545] [1.437] [9.453]
[0.016] [0.134] [0.106] [0.029] [0.091] [0.086]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.002 0.01 0.008 0.001 0.001 0 0.029 0.037 0.434 9.992 0.036 2.827 13.767

(0.007) (0.064) (0.051) (0.01) (0.029) (0.026) (0.042) [0.106] [1.262] [11.269] [0.069] [2.994] [14.561]
[0.015] [0.129] [0.097] [0.019] [0.062] [0.053]

S2SLS C 0.002 0.009 0.008 0.001 0.002 0 0.028 0.012 0.076 11.118 1.833 13.443
(0.007) (0.065) (0.051) (0.01) (0.029) (0.026) (0.04) [0.1] [0.522] [12.301] [0.045] [1.899] [14.165]
[0.014] [0.12] [0.091] [0.019] [0.061] [0.054]

S3SLS 0.002 0.011 0.007 0 0 0.003 0.029 0.037 0.415 10.116 0.034 2.762 13.814 0.079 5.923
(0.015) (0.131) (0.103) (0.021) (0.06) (0.052) (0.043) [0.103] [1.278] [11.381] [0.067] [2.923] [14.59] [0.492] [6.97]
[0.014] [0.133] [0.101] [0.019] [0.056] [0.049]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 11: Efficient Criteria under σ2
ξll

=04, σ2
ηll

= 16, T=07, N=25, ρ1 = 0.8 and J=03

Method α1 β11 β12 α2 β21 β22 Nomad ρ1 σ2
ξ11

σ2
η11

ρ2 σ2
ξ22

σ2
η22

σ2
ξ12

σ2
η12

value -0.5 -2.0 1.5 -4.0 -3.0 1.8 Normsqd -0.8 04 16 0.8 04 16 02 08
Usual Estimators

OLS 0.136 1.088 0.809 0.001 0.016 0.005 0.25 15.917 38.844
(0.011) (0.103) (0.085) (0.029) (0.088) (0.08) (0.708) [16.912] [41.92]
[0.139] [1.109] [0.831] [0.068] [0.18] [0.163]

2SLS 0.003 0.039 0.031 0.002 0.017 0.006 0.091 37.338 39.217
(0.015) (0.146) (0.119) (0.029) (0.088) (0.08) (0.126) [42.319] [42.595]
[0.048] [0.382] [0.3] [0.062] [0.154] [0.151]

3SLS 0.003 0.032 0.026 0.002 0.01 0.019 0.088 37.338 39.217 17.94
(0.023) (0.199) (0.155) (0.03) (0.087) (0.072) (0.121) [42.319] [42.595] [21.072]
[0.049] [0.377] [0.277] [0.062] [0.143] [0.145]

Specific Estimators
FE-2SLS 0.001 0.013 0.001 0.006 0.006 0.01 0.058 8.063 9.736

(0.029) (0.25) (0.197) (0.039) (0.113) (0.103) (0.083) [8.864] [10.16]
[0.032] [0.261] [0.185] [0.035] [0.107] [0.094]

BE-2SLS 0.003 0.041 0.034 0.003 0.019 0.005 0.113 24.151 26.036
(0.058) (0.505) (0.394) (0.075) (0.222) (0.198) (0.157) [29.596] [29.864]
[0.057] [0.478] [0.363] [0.078] [0.179] [0.203]

Error Component Estimators
EC-2SLS 0.012 0.09 0.069 0.003 0.002 0.009 0.055 8.063 24.151 9.736 26.036

(0.023) (0.204) (0.163) (0.033) (0.097) (0.089) (0.081) [8.864] [29.596] [10.16] [29.864]
[0.029] [0.241] [0.179] [0.029] [0.094] [0.086]

EC-3SLS 0.003 0.018 0.013 0.003 0 0.015 0.05 8.063 24.151 9.736 26.036 3.767 12.112
(0.023) (0.202) (0.158) (0.033) (0.093) (0.079) (0.073) [8.864] [29.596] [10.16] [29.864] [4.363] [16.073]
[0.025] [0.231] [0.166] [0.028] [0.081] [0.087]

Generalized Simultaneous Moments-IV spatial Estimator
S2SLS I 0.001 0.008 0.007 0.001 0 0 0.028 0.041 1.017 11.734 0.036 2.806 13.735

(0.007) (0.061) (0.049) (0.01) (0.029) (0.026) (0.041) [0.072] [1.971] [13.426] [0.065] [2.981] [14.51]
[0.015] [0.125] [0.097] [0.019] [0.062] [0.053]

S2SLS C 0.002 0.008 0.008 0.001 0.002 0 0.027 0.005 0.071 11.131 1.833 13.441
(0.007) (0.062) (0.049) (0.01) (0.029) (0.026) (0.039) [0.045] [0.538] [12.16] [0.045] [1.899] [14.165]
[0.013] [0.117] [0.089] [0.019] [0.061] [0.054]

S3SLS 0.002 0.01 0.006 0.001 0 0.003 0.028 0.04 0.96 11.684 0.033 2.713 13.719 0.222 6.319
(0.015) (0.134) (0.105) (0.021) (0.06) (0.052) (0.04) [0.071] [1.827] [13.196] [0.062] [2.858] [14.534] [0.587] [7.396]
[0.015] [0.119] [0.094] [0.018] [0.058] [0.051]

1 In each cell of columns 2-7, the upper number denotes the bias. The one in parentheses denotes the standard deviation.
2 The number in brackets denotes the RMSE. In each cell of column 8, the upper number denotes NOMAD. The lower one in parentheses denotes NORMSQD.
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Table 12: Health and Income in SSA SPE-SAR Estimates 1

Variables OLS 2SLS LSDV EC2SLS EC3SLS GMS2SLS GMS3SLS
Real Income
Constant 8.062* 10.664* 0.349 8.445* 10.459* 8.734* 7.048*

(0.433) (0.702) (190.776) (3.279) (2.99) (3.242) (3.258)
Health 0.324* -0.101 -0.099 -0.024 -0.003 -0.019 -0.037

(0.032) (0.087) (0.056) (0.069) (0.064) (0.068) (0.068)
Labour -0.463* -0.804* 0.336* -0.281 -0.45* -0.3 -0.196

(0.034) (0.075) (0.113) (0.234) (0.213) (0.231) (0.232)
Capital 0.424* 0.789* 0.201* 0.288* 0.337* 0.289* 0.305*

(0.033) (0.077) (0.024) (0.031) (0.029) (0.03) (0.03)
Openness 0.255* 0.325* 0.112* 0.181* 0.203* 0.18* 0.18*

(0.049) (0.06) (0.034) (0.034) (0.032) (0.034) (0.032)
Health Expenditure
Constant -5.653* -6.239* -16.314 -11.155* -9.351* -12.004* -6.143*

(0.472) (0.516) (14.198) (0.917) (0.887) (0.868) (1.01)
Income 1.005* 1.064* 2.264* 1.784* 1.663* 1.886* 1.327*

(0.032) (0.038) (0.094) (0.078) (0.073) (0.077) (0.091)
Public 0.583* 0.607* 0.53* 0.673* 0.682* 0.646* 0.528*

(0.044) (0.045) (0.044) (0.042) (0.042) (0.039) (0.041)
Old -0.353* -0.411* -0.604* -0.157 0.134 -0.171 0.256

(0.125) (0.127) (0.21) (0.233) (0.224) (0.213) (0.205)
Young -0.486* -0.242 -1.28* -0.227 -0.226 -0.432 -0.043

(0.184) (0.204) (0.264) (0.262) (0.267) (0.242) (0.255)
1 Simultaneous Panel Equation with Spatial Autoregressive Error.
2 The number in parentheses denotes the standard deviation.
3 * Denote significance at 5% of the parameter.
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