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Abstract

This paper investigates the effects of monetary policy on long-run economic growth via
different cash-in-advance constraints on R&D in a Schumpeterian growth model with vertical
and horizontal innovation. The relationship between inflation and growth is contingent on the
relative extents of CIA constraints and diminishing returns to two types of innovation. The
model can generate a mixed (monotonic or non-monotonic) relationship between inflation and
growth, given that the relative strength of monetary effects on growth between different CIA
constraints and that of R&D-labor-reallocation effects between different diminishing returns
vary with the nominal interest rate. In the empirically relevant case where horizontal R&D
suffers from greater diminishing returns than vertical R&D, inflation and growth can exhibit
an inverted-U relationship when the CIA constraint on horizontal R&D is sufficiently larger
than that on vertical R&D. Finally, the model is calibrated to the US economy, and we find
that the growth-maximizing rate of inflation is around 2.8%, which is closely consistent with
recent empirical estimates.

JEL classification: O30; O40; E41.
Keywords: Inflation; Endogenous growth; CIA constraint on R&D

1 Introduction

The relationship between inflation and growth has long been debated among monetary
economists. Is inflation negatively related to long-run economic growth conclusively? Further-
more, do they maintain a steadily monotonic relationship regardless of the inflation level? Earlier
studies indeed find a negative relationship between steady inflation and output/growth across
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countries (such as Fischer (1983) and Cooley and Hansen (1989)), whereas later works by Bullard
and Keating (1995), Bruno and Easterly (1998), and Ahmed and Rogers (2000) seemingly find no
robust or even a positive correlation in low-inflation industrialized economies.

Recent empirical works challenge most previous studies that document only monotonic re-
lationships between inflation and growth. They suggest a non-monotonic relationship whereby
the real growth effect of inflation could be either positive or negative, depending on the sta-
tus quo inflation rate. This series of studies can be traced back to Sarel (1996), who identifies
a structural break in the function that relates growth rates to inflation, showing that when in-
flation is low, specifically eight percent annually, there is no significant negative effect (or even
a slightly positive effect) on economic growth. When inflation is high, however, there exists a
robust, statistically significant negative effect on growth. Several studies (Ghosh and Phillips
(1998); Khan and Senhadji (2001); Burdekin et al. (2004); Eggoh and Khan (2014)) demonstrate
successively that there is a nonlinear correlation, but the specific threshold remains inconclusive,
varying from 1% to 15-18%.1 In this study, our model is calibrated to the aggregate data of the
US economy to provide a quantitative analysis. We find that the growth-maximizing inflation
rate is within the range for industrialized economies, i.e., 1-8%. Furthermore, we show that the
fraction of the CIA constraint on consumption is crucial in determining the inflation threshold.

In the present study, we reconcile the theories and recent empirical evidence on inflation and
growth in the context of an innovation-driven growth model characterized by two modes of inno-
vation. More precisely, various CIA constraints on R&D are incorporated, which sheds light on
how monetary policy can generate a non-monotonic relationship between inflation and growth
through these constraints. In particular, our analysis builds on the growth model developed by
Howitt (1999) and Segerstrom (2000), featuring both horizontal and vertical innovation.2 Vertical
innovation serves to improve the quality of existing products whereas horizontal innovation aims
at expanding product varieties, both of which are conducted by forward-looking entrepreneurs.
Monetary policy, which is exercised through nominal interest rate targeting, affects the long-run
growth rate by affecting the two types of innovation through the relative extents of different CIA
constraints and diminishing returns to two types of R&D.

Imposing (CIA) constraints on R&D is consistent with the following empirical findings. First,
monetary evidence (e.g., Hall (1992) and Himmelberg and Petersen (1994)) report a strong R&D-
cash flow sensitivity for firms. Hall and Lerner (2010) reports that more than 50 percent of
R&D spending is accounted for by the wages and salaries of R&D personnel. Hiring scientists
and engineers usually involves a very high adjustment cost.3 R&D-intensive firms are required
to hold cash in order to smooth their R&D spending over time. Brown and Petersen (2011)
provides direct evidence that US firms relied heavily on cash reserves to smooth R&D spending
during the 1998-2002 boom. The above evidence suggests that, relative to the traditional physical

1As is documented in López-Villavicencio and Mignon (2011), the reasons for the controversies include the fre-
quency of data, the considered framework and the methodologies applied, the countries under study, and the exis-
tence of high-inflation observations.

2This class of R&D-driven growth models with two-dimensional innovations developed by Smulders and Van de
Klundert (1995), Peretto (1996, 1998), Dinopoulos and Thompson (1998), Young (1998) and Howitt (1999) have received
strong empirical support in more recent years, such as Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008),
and Ang and Madsen (2011).

3Because their skills are highly specific and unique, their absence may make the whole R&D process fail and
dramatically decrease the firm’s profit. See Hall and Lerner (2010).
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investment, R&D activities exhibit a stronger investment-cash flow sensitivity.
In addition, several important empirical findings concerning firm characteristics motivate us

to capture these insights through an endogenous growth model with two modes of innovation.
First, larger firms induce a relatively greater amount of investment in process and incremental
(vertical) R&D, while smaller firms are usually involved in more radical (horizontal) product
innovation (e.g., Cohen and Klepper (1996); Akcigit (2009); Janiak and Monteiro (2011)). Sec-
ond, the requirements of cash holdings exhibit distinct patterns in relation to these two modes
of innovation. Existing empirical evidence shows that there is a stronger impact from cash hold-
ings on R&D in smaller firms, which are more likely to confront binding liquidity and financing
constraints (see Brown and Petersen (2009), Brown and Petersen (2011), Brown et al. (2012) and
Caggese (2015)). Together with the fact that radical and original R&D are more adequately
represented by horizontal innovation (see Acemoglu et al. (2014)), it is reasonable to consider
that horizontal R&D is subject to a more severe CIA constraint than vertical R&D. Accordingly,
vertical innovation gains a cost advantage relative to horizontal innovation. Finally, empirical
evidence in management (e.g., McDermott and O’Connor (2002)) shows that radical innovations
rely on less standardized capital, are often involved in new facilities and equipments, and face
higher technological uncertainty compared to incremental innovation.4 These features are consis-
tent with the findings in Audretsch et al. (2006) and are captured by Howitt (1999) in that radical
innovation is prone to suffering from greater diminishing returns than incremental innovation.

By taking into consideration various CIA constraints, monetary policy in this study can gen-
erate different impacts of inflation on economic growth subject to the relative extents of the
CIA constraints and the different diminishing returns to two innovations. To be specific, with a
change in the nominal interest rate, different CIA constraints imply the existence of a force that
transmits different inflation costs, which distort the incentives and the use of economic resources
in different sectors; at the same time, different extents of diminishing returns to R&D imply an-
other force that triggers a reallocation of resources between the two types of R&D activities. Both
forces jointly determine the long-run relationship between inflation and growth.

We first investigate the cases subject to each single type of CIA constraint and the results are
as follows. In the presence of a CIA constraint on consumption only, increasing the nominal
interest rate increases (decreases) the economic growth rate if horizontal R&D exhibits greater
(smaller) diminishing returns than vertical R&D. In this case, the degree of relative diminishing
returns to R&D plays a crucial role in determining the allocation of R&D resources, whereby
with along a rise in the nominal interest rate, a lager (smaller) diminishing returns to horizontal
R&D allow more R&D resources to be allocated to horizontal (vertical) innovation than to vertical
(horizontal) innovation, thereby increasing the growth of variety (quality) at the expense of the
growth of quality (variety) and thus leading to a decrease (an increase) in the long-run economic
growth. By contrast, in the presence of a CIA constraint on vertical (horizontal) R&D only,
increasing the nominal interest rate always decreases (increases) economic growth regardless of
the relative diminishing returns to both types of R&D. The reason is that R&D resources will
always be shifted away from the CIA-constrained sector to the non-constrained one regardless of
which R&D sector exhibits higher diminishing returns. The diminishing returns to R&D in these
cases only govern “the amount”, but not “the direction” of, the shifting R&D resources.

4Klepper and Simons (2005) document that firms engaging in incremental innovative activities are more likely to
gain success in their R&D projects.
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More interestingly, incorporating all the CIA constraints into the model yields a diverse re-
lationship between inflation and growth. In particular, by focusing on the empirically relevant
scenario where horizontal R&D exhibits greater diminishing returns, we find that increasing the
nominal interest rate may induce a non-monotonic (inverted-U) relationship between inflation
and growth, provided that the CIA constraint on horizontal R&D is sufficiently stronger than
that on vertical R&D. Specifically, with a sufficiently large CIA constraint on horizontal relative
to that on vertical R&D, increasing the nominal interest rate from a low level yields a strong
positive growth effect from the CIA constraint on horizontal R&D, which dominates the nega-
tive growth effects from the CIA constraints on consumption and vertical R&D; thus, a positive
relationship between inflation and growth is generated. Nevertheless, as the nominal interest
rate increases and then exceeds a threshold, the positive growth effect is dampened and be-
comes overwhelmed, leading to a negative relationship between inflation and growth. Overall, a
non-monotonic relationship (inverted-U shape) is formed in these circumstances.

By applying US aggregate data, our quantitative analysis in the benchmark case generates an
inverted-U relationship between inflation and growth, showing that the threshold value of the
inflation rate is around 2.8%, which is closely in line with the recent empirical estimates in Ghosh
and Phillips (1998) (i.e., 2.5%), López-Villavicencio and Mignon (2011)(i.e., 2.7%), and Eggoh and
Khan (2014)(i.e., 3.4%). Welfare, however, is monotonically decreasing in inflation, implying that
the Friedman rule is optimal. Interestingly, when the relative extent of the CIA constraint on
horizontal to vertical R&D decreases, the inflation-growth relationship becomes negative, which
conforms to our analytical finding. Welfare, instead, becomes inverted-U shaped in inflation,
implying the sub-optimality of the Friedman rule. Finally, sensitivity analysis is performed with
alternative calibrated values for several key parameters, and it shows that our quantitative results
are robust.

The literature pertaining to the analysis of monetary policy and growth is too large and di-
verse for a detailed review. Nevertheless, the closely related works are those that use endogenous
growth models with R&D to analyze the effects of monetary policy on long-run growth. The pi-
oneering work is that of Marquis and Reffett (1994) who explore the effects of monetary policy
on growth via a CIA constraint on consumption in the framework of Romer (1990). Subsequent
studies (e.g., Chu and Lai (2013), Chu and Cozzi (2014), and Oikawa and Ueda (2015)) analyze
monetary policy in a Schumpeterian model with a quality ladder. The present study differs from
the above works by considering a scale-invariant Schumpetarian growth model that features two
dimensions of innovation. Another strand of the literature such as Huang et al. (2015) and Chu
and Ji (2016) also analyzes the growth and welfare effects of monetary policy in a scale-invariant
fully endogenous growth model based on Peretto (1998) that features both horizontal and ver-
tical innovation. Nonetheless, their models only predict a monotonic linkage between inflation
and long-run growth, whereas our model can yield a non-monotonic relationship between them,
depending on the status quo inflation. Finally, to characterize a non-linear relationship between
inflation and growth, Arawatari et al. (2017) use a variety expansion model with heterogeneous
R&D abilities. They find a cutoff inflation level around which a negative nonlinear relation-
ship between inflation and growth is found to exist but they do not generate a non-monotonic
relationship between them. Wang and Xie (2013), however, find evidence of a non-monotonic
relationship between inflation and growth (i.e., a growth-maximizing inflation rate) based on a
neoclassical model that features labor friction. One notable exception is Chu et al. (2017), who
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also find evidence of an inverted-U relationship between inflation and growth in a canonical
Schumpeterian growth model featuring random quality improvements. Our results complement
their work in several respects. First, their framework only considers vertical innovation, whereas
our model considers vertical innovation in addition to horizontal innovation, and these two types
of innovation are shown to play very different roles in explaining the impact of monetary policy
on economic growth. Second, the model in Chu et al. (2017) removes scale effects by normaliz-
ing the size of the population, whereas our model is made to be scale invariant by taking into
account the product proliferation. Furthermore, when the model setting is generalized to allow
for elastic labor supply, the result of an inverted-U relationship between inflation and growth
does not hold in Chu et al. (2017), whereas our model is still robust to produce this relationship
between inflation and growth.

The remainder of this study proceeds as follows. The basic model is spelled out in section
2. Section 3 analyzes the effects of monetary policy in different cases for CIA constraints. The
numerical analysis is displayed in section 4, and the final section concludes.

2 Model

We consider a monetary variant of Howitt (1999) and Segerstrom (2000) that features two
dimensional innovations. The model is extended to examine the effects of monetary policy by
allowing for an elastic labor supply and various CIA constraints on consumption and R&D
investments. The economy consists of households, firms (including the incumbents for interme-
diate goods production and entrants for two types of R&D (i.e., vertical and horizontal R&D)),
and a government that is solely represented by the monetary authority.

2.1 The Household

Consider a closed economy that admits a household and is populated by a mass of individuals
Lt with the population size growing at an exponential rate gL. Each individual supplies labor
elastically and faces a life-time utility function given by

U =
∫

∞

0
e−ρt[ln ct + θ ln(1 − lt)]dt, (1)

where ρ is the discount rate, ct is the consumption of final goods per capita at time t, lt is the
supply of labor per person at time t, and θ determines the preference for leisure relative to
consumption.

An individual maximizes (1) subject to the budget constraint and a CIA constraint, which are
respectively given by:

ȧt + ṁt = (rt − gL)at + wtlt + itbt + ζt − (πt + gL)mt − ct, (2)

and
ξcct + bt ≤ mt, (3)

where at refers to the real assets owned by each person, and rt is the real interest rate. Each
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individual supplies labor lt to earn a real wage rate wt, and loans out an amount bt of money to
the entrepreneurs, with a return rate it (i.e., the nominal interest rate). Each individual receives
a lump-sum transfer ζt from the government. Moreover, mt represents the real money balances
held by the individual, and πt is the inflation rate.

The CIA constraint in (3) states that the holding of real money balances mt by each household
is used not only to finance the R&D investments, but also to partly purchase consumption ct,
where ξc ∈ [0, 1] represents the share of consumption required to be purchased by cash/money.

Denote ηt, ωt as the multipliers associated with the budget constraint in (2) and the CIA
constraint in (3), respectively. The utility in (1) is maximized subject to (2) and (3) from which
the first-order conditions for ct, lt, at, mt, and bt can be derived. After some manipulations, the
first-order conditions can be reduced to the following optimality conditions. The standard Euler
equation governs the growth of consumption given by

ċt

ct
= rt − ρ − gL. (4)

The optimal condition determines the consumption-leisure tradeoff such that

wt(1 − lt) = θct(1 + ξcit), (5)

and the no-arbitrage condition between all assets and money implies the Fisher equation given
by

it = rt + πt. (6)

2.2 Final Goods

Final goods are produced by a mass of identical perfectly competitive firms that employ
labor and a continuum of intermediate inputs according to the same constant returns to scale
production technology. The production function of a typical firm k at time t is:

Ykt = L1−α
ykt

∫ Nt

0
Aitx

α
iktdi, (7)

where Lykt is the amount of labor employed by final-good firm k. Nt is the number of input
varieties (or industries). Ait is the productivity level attached to the latest version of intermediate
product i. xikt is the i-th type of intermediate inputs employed by firm k, and α ∈ (0, 1) is the
elasticity of demand for intermediate products.

Firm k faces the following profit-maximization problem

max
Lykt,xikt

πkt = pytYkt − wtLykt − pitxikt

subject to (7) in which the final-good price pyt is set as the numeraire (i.e., pyt ≡ 1). Firm k

chooses the amount of labor Lykt and intermediate input xikt to maximize its profit, taking as
given the wage rate wt and the price of intermediate input pit. The first-order condition with
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respect to xikt leads to the inverse demand for xikt:

pit = αAit(Lykt/xikt)
1−α.

Since all firms face the same price pit, the input ratios must be identical across firms (i.e.,
Lykt/xikt = Lyt/xit), where Lyt =

∫
Lyktdk and xit =

∫
xiktdk. Therefore, the above expression

can be reduced to
pit = αAit(Lyt/xit)

1−α. (8)

Similarly, the inverse demand for Lykt is given by

wt = (1 − α)
∫ Nt

0
Ait

(
xit

Lyt

)α

di. (9)

2.3 Incumbents

There is a continuum of industries Nt producing differentiated intermediate goods. Each
industry is occupied by an industry leader that holds a patent on the latest innovation and
monopolizes the production of one differentiated intermediate good i. The monopolistic leader
dominates the market temporarily until its displacement by the next innovation.

The production technology across all incumbent firms is assumed to be identical, in which
each incumbent requires α2 units of final goods to produce one unit of intermediate good as in
Acemoglu et al. (2012). Accordingly, firm i faces the following profit-maximization problem:

max
xit

πit = pitxit − α2xit.

Then the solution yields the optimal price pit = α, and thus the quantity of intermediate product
i is given by

xit = Lyt A
1

1−α

it . (10)

Substituting these results into πit yields the equilibrium profit:

πit = α(1 − α)xit = α(1 − α)Lyt A
1

1−α

it . (11)

The industry leader i possesses this profit flow in each period until the arrival of next innovation.

2.4 Entrants

Following Howitt (1999) and Segerstrom (2000), a new firm (an entrant) can enter the market
by either engaging in a vertical or a horizontal innovation. An entrant that engages in vertical
innovation targets an existing industrial product line and devotes resources to improving the
quality of that product. The product with the improved quality allows the innovator to replace
the incumbent that introduced the original product and then become the industry leader until
the next innovation in this industry occurs.

An entrant that engages in horizontal innovation devotes resources to create an entirely new
industry. She then becomes a new industry leader with an exclusive patent right to produce a
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differentiated good until the arrival of the next vertical innovation targeted at this industry.

2.4.1 Vertical R&D

First, consider that the entrant j engages in vertical R&D by targeting an existing industry i

to improve its product quality at time t with a successful rate of innovation φijt that follows a
Poisson process, which is given by

φijt =
λ(Lv,ijt)

δ(Kijt)
1−δ

At
; 0 < δ < 1, (12)

where λ is a positive R&D productivity parameter, Lv,ijt is the level of firm j’s R&D employment,
Kijt is the stock of the firm-specific knowledge possessed by firm j, and δ measures the degree of
diminishing returns to vertical R&D expenditures. At is the leading-edge productivity parameter
at time t defined as At ≡ max{Ait; i ∈ [0, Nt]}, and is also interpreted as the force of increasing
research complexity. The evolution of At will be discussed in detail in a later subsection.

To capture the monetary effect of the CIA constraint on vertical R&D, we assume that a
fraction ξv of vertical R&D spending is constrained by cash/money. This cash constraint forces
the R&D firm to borrow an amount ξvwtLv,ijt of money at the nominal interest rate i from the
household for financing the R&D expenditure. Accordingly, the profit-maximization problem for
each potential entrant is

max
Lv,ijt

φijtΠvt − wtLv,ijt(1 − ξv)− wtLv,ijtξv(1 + it)

= φijtΠvt − wtLv,ijt(1 + ξvit),

where Πvt ≡
∫

∞

t e−
∫ τ

t (r+φs)dsπ̂tτdτ is the expected present value of the innovative firm’s profit
flows before the replacement of the next successful innovation, and π̂tτ is the monopoly profit
flow at time τ from a firm whose technology is of vintage t. As assumed in Howitt (1999)
and Segerstrom (2000), each innovation at time t produces a new generation of products in that
industry, which embodies the leading-edge productivity parameter At. This results in a con-
tinuous flow of the same monopoly profit π̂tτ across industries after time t and is given by

π̂tτ = α(1 − α)Lyτ A
1/(1−α)
t . Moreover, r is the instantaneous interest rate, and φs is the rate of

creative destruction, namely, the instantaneous flow probability of being displaced by an innova-
tion. Along with the same instantaneous discount rate r + φs applying the same amount of profit
flow π̂tτ earned by each industry leader, it is easy to deduce that the expected reward for vertical
innovation Πvt does not vary across industries.

At time t, a potential entrant j that targets the vertical R&D in industry i solves the above
profit-maximization problem, yielding the first-order condition such that

λδΠvt

At

(Lv,ijt

Kijt

)δ−1
= wt(1 + ξvit), (13)

which reveals that the marginal expected benefit of an extra unit of vertical R&D equals its
marginal cost. It is clear from (13) that the marginal cost is positively correlated with the param-
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eter ξv, capturing the adverse effect of the nominal interest rate i on the firm’s R&D decision Lv,ijt

through increasing the marginal cost of vertical innovation.
Following Segerstrom (2000), Kijt is considered to be the same and infinitesimally small for all

j.5 Given this assumption, (13) implies that Lv,ijt/Kijt = Lv,it/Kit for all j, where Lv,it =
∫

Lv,ijtdj

and Kit =
∫

Kijtdj. In addition, we assume that Kit ≡
∫

Kijtdj = Lt/Nt for all i, which is in line
with Romer (1990), Segerstrom (2000), and Ha and Howitt (2007).6 Thus, (13) can be re-expressed
as

λδΠvt

At
(lvt)

δ−1 = wt(1 + ξvit), (14)

where lvt ≡ Lvt/Lt (Lvt ≡
∫

Lv,itdi) is the fraction of total labor employment that is allocated
to vertical R&D. We further assume that the returns on conducting vertical R&D are identical
across firm j and across time (see Segerstrom (2000)). This assumption together with the fact that
lvt ≡ Lvt/Lt and Kit = Lt/Nt indicates that the Poisson arrival rate of vertical innovation in each
industry becomes

φt =
∫

φijtdj =
λ(Lvt/Nt)δ(Lt/Nt)1−δ

At
= λlδ

vtιt, (15)

where ιt ≡ Lt/(AtNt). The expression (15) shows that the arrival rate of vertical innovations is
increasing in per industry vertical R&D expenditure Lvt/Nt and the knowledge spillover Lt/Nt

but decreasing in the R&D difficulty term At.

2.4.2 Horizontal R&D

An entrant q that engages in horizontal innovation devotes resources to create a new variety
(and thus an entirely new industry). She faces the following rate of discovering new innovations,
denoted as Ṅqt:

Ṅqt =
λ(Lhqt)

γ(Kqt)1−γ

At
; 0 < γ < 1, (16)

where Lhqt is the level of firm q’s R&D employment, Kqt is the firm-specific knowledge possessed
by firm q that is useful for horizontal innovation, and the exponent γ measures the degree of
diminishing returns to horizontal R&D expenditures. At reflects the fact of increasing research
complexity.

As in Howitt (1999) and Segerstrom (2000), we assume that each horizontal innovation at
time t results in a new intermediate good variety whose productivity parameter is drawn ran-
domly from an invariant long-run distribution of the existing productivity parameters Ait across
industries i. This assumption ensures that the process of expanding variety will not affect the
convergence of the distribution of existing parameters Ait to an invariant distribution in the long
run. See the detailed discussion in the next subsection.

Next, to capture the monetary effect of the CIA constraint on horizontal R&D, we assume that
a fraction ξh of horizontal R&D expenditure is constrained by cash/money. This cash constraint

5An infinitesimally small Kijt implies that the optimal amount of firms’ R&D resources Lv,ijt is also infinitesimally
small, governed by (13). Hence, the likelihood of any one firm winning a vertical R&D race can be negligible, given
that the vertical R&D races are perfectly competitive.

6We mainly follow Ha and Howitt (2007) to capture the insight that the total amount of firm-specific knowledge in
each industry equals per industry labor, which grows over time in equilibrium.
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forces the innovative firm to borrow an amount ξhwtLhqt of money at the nominal interest rate
i from the household for financing the R&D expenditure. In addition, throughout the rest of
this study, the assumption that ξh > ξv is imposed to capture the empirical evidence that the
investment on radical innovations is more constrained by cash/money than that on incremen-
tal innovations (e.g., Akcigit (2009) and Caggese (2015)). Accordingly, the profit-maximization
problem for horizontal R&D firm q is

max
Lhqt

πhqt = ṄqtΠht − wtLhqt(1 + ξhit),

and
Πht = Γ

−1
Πvt, (17)

where Γ ≡ 1 + [σ/(1 − α)] and Πht is the expected value of a successful horizontal innovation.
(17) reveals the relationship between Πht and Πvt from the aforementioned assumption regarding
the random draw of the productivity parameters, and the derivation of (17) will be provided in
the next subsection.

Then, the first-order condition for horizontal R&D firms profit maximization is given by

λγΠht

At

(Lhqt

Kqt

)γ−1
= wt(1 + ξhit). (18)

This equation clearly shows that the marginal cost is positively related to the CIA parameter
ξh, capturing the negative effect of the nominal interest rate it on the firm’s R&D decision Lhqt

through increasing the marginal cost of horizontal innovation wt(1 + ξhit).
Moreover, (18) states that Πht only scales Πvt with a constant factor, implying that Πht is also

identical across all entrants q. Together with the same marginal cost faced by each entrant, the
above first-order condition implies that Lhqt/Kqt = Lht/Kt for all q, where Lht ≡

∫
Lhqtdq and

Kt ≡
∫
Kqtdq. Furthermore, a similar assumption is made such that Kqt = Lt/Nt for all q as in

the previous subsection. Substituting Kqt = Lt/Nt and Lhqt/Kqt = Lht/Kt into (18) yields:

γλΠht

At
(lht)

γ−1 = wt(1 + ξhit), (19)

where lht ≡ Lht/Lt is the fraction of labor allocated to horizontal R&D. The growth rate of the
measure of industries is the summation of the discovery rates for all the individual firms that
engage in horizontal R&D, such that

gNt ≡
Ṅt

Nt
=

∫
Ṅqt

Nt
dq =

λ(Lht/Nt)γ(Lt/Nt)1−γ

At
= λl

γ
htιt. (20)

2.4.3 Spillovers

As in Caballero and Jaffe (1993), Howitt (1999), and Segerstrom (2000), the leading-edge
productivity parameter At grows over time as a result of knowledge spillovers produced by
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vertical innovation. The growth rate of At is proposed to take the following standard form

gAt ≡
Ȧt

At
=

( σ

Nt

)

(φtNt) = σφt = σλlδ
vtιt, (21)

where σ > 0 measures the R&D spillover effect and φt =
∫

φijtdj is the Poisson arrival rate of
vertical innovation in each industry i ∈ [0, Nt] (namely, a summation of all potential vertical
entrants).

As shown in (21), gAt
can essentially be decomposed as a product of two factors σ/Nt and

φtNt, where φtNt is the aggregate flow of vertical innovation in this economy. (21) states that the
growth of knowledge spillovers is assumed to be proportional to the aggregate flow of vertical
innovation φtNt. The factor of proportionality σ/Nt measures the marginal effect of each vertical
innovation on the stock of public knowledge. The divisor Nt captures the fact that each vertical
innovation has a smaller impact on the aggregate economy as the number of specialized products
expands with the development of the economy.

Because the distribution of productivity parameters among new products at any time is iden-
tical to the distribution across existing products at that time, one can show that the distribution of
relative productivity parameters, which is defined as zit ≡ Ait/At, will converge monotonically
to the invariant distribution Pr{zit ≤ z} ≡ F(z) = z1/σ, wherein 0 < z ≤ 1. It follows that in the
long run:

E

[(
Ait

At

)1/(1−α)
]

= Γ
−1, (22)

where Γ ≡ 1 + [σ/(1 − α)].7

Recall that the productivity parameter of each new innovative variety is drawn randomly
from the above distribution. This implies that the realized monopoly profit flow for each hori-

zontal R&D firm at date τ and its realized present value at time t are πiτ = α(1 − α)Lyτ A
1/(1−α)
it

and Πht =
∫

∞

t e−
∫ τ

t (r+φs)dsπiτdτ, respectively. Along with the fact that a successful vertical in-

novation gains the profit flow π̂tτ = α(1 − α)Lyτ A
1/(1−α)
t with the leading-edge productivity

parameter At, it is easy to deduce that Πht = (Ait/At)
1/(1−α)

Πvt. Taking expectations on both
sides of this equation yields (17).

2.5 Monetary Authority

The monetary authority implements its monetary policy by targeting a long-run nominal
interest rate it. Denote the nominal money supply by Mt, and thus the growth rate of nominal
money supply is Ṁt/Mt = µt. Recall that mt is real money balances per capita and is given
by mt = Mt/(Lt pyt), so the growth rate of real money balance per capita is gmt ≡ ṁt/mt =
µt − πt − gL. Substituting this expression and the Euler equation (4) into the Fisher equation (6),

7See Howitt (1999) and Segerstrom (2000) for the detailed proof.
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along with the fact that gmt = gct in the steady state,8 we obtain

it = rt + πt = (ρ + gct + gL) + (µt − gmt − gL) = ρ + µt. (23)

This equation illustrates the existence of a one-by-one monotonic relationship between the nom-
inal interest rate it and the growth rate of nominal money supply µt, which indicates an isomor-
phic choice of monetary instruments between it and µt. Specifically, an exogenous increase in it

corresponds to an endogenous increase in µt.
Upon increasing the nominal interest rate it, the government earns the seigniorage revenue

through an inflation tax. To balance the budget, it is assumed that the government returns the
revenues as a lump-sum transfer to the household. Therefore, the government’s budget constraint
(in terms of per capita level) is given by Ṁt/(Lt pyt) = ṁt + (πt + gL)mt = ζt.

2.6 Characterization of Equilibrium

The equilibrium in this economy consists of a time path of prices {wt, rt, it, pit, pyt}∞
t=0, and a

time path of allocations
{

ct, mt, lt, Ykt, Yt, xit, xt, Lykt, Lv,ijt, Lhqt

}∞

t=0
, where Yt =

∫
Yktdk and xt =

∫ Nt

0 xitdi. Moreover, at each instant of time,
• individuals maximize utility taking {it, rt, wt} as given;
• the competitive final-goods firms produce {ykt} to maximize profits taking {pyt} as given;
• the monopolistic intermediate-goods firms produce {xit} and choose {Yt, pit} to maximize

profits taking {pyt} as given;
• the labor market clears such that Lyt + Lvt + Lht = ltLt;
• the final-goods market clears such that Yt = Ct + xt;
• the asset market clears such that the value of monopolistic firms adds up to the value of

households’ assets: Πvt + Πht = atLt; and
• the amount of money borrowed by the two types of innovation entrants is given by btLt =

ξvwtLvt + ξhwtLht.

Using (22), we obtain
∫ Nt

0 A
1

1−α

it di = A
1

1−α
t Nt

∫ 1
0 z

1
1−α F

′
(z)dz = A

1
1−α
t NtΓ

−1. Substituting this
equation, (10), and Yt =

∫
Yktdk into (7) yields the equilibrium final-goods production function:

Yt =
Lyt A

1
1−α
t Nt

Γ
. (24)

Accordingly, the per-capita consumption and the production-labor shares of output are, respec-
tively,

ct =
(1 − α2)lyt A

1
1−α
t Nt

Γ
, (25)

and

wt = (1 − α)
Yt

Lyt
=

(1 − α)A
1

1−α
t Nt

Γ
. (26)

8According to the CIA constraint (3), it can be shown that on the balanced growth path, mt and ct grow at the same
rate.
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2.7 Balanced-Growth Properties

In this section, we follow Segerstrom (2000) to focus on the analysis of the balanced-growth
equilibrium properties of the model. In the balanced-growth equilibrium, the fraction of labor
supplied to each sector must be constant over time (i.e., lvt = lv, lht = lh, lyt = ly for all t). Since
both gAt and gNt must be constant in a balanced-growth equilibrium, (12) implies that the arrival
rate of vertical innovations must be constant as well (i.e., φt = φ for all t). Furthermore, according
to (21) and (20), ιt must be constant in the balanced-growth equilibrium (i.e., ιt = ι for all t). Thus,
the quality and variety growth rates can, respectively, be written as

gA = σλlδ
vι, (27)

and
gN = λl

γ
h ι. (28)

2.7.1 Economic Growth

Denote by g the growth rate of consumption per capita ct on the balanced-growth path (and
economic growth rate thereafter). Differentiating the per-capita consumption share of output (25)
with respect to time yields

g = gN +
1

1 − α
gA. (29)

This equation, called the iso-growth condition, demonstrates that on the balanced-growth path
(BGP), the growth rate of the measure of industries gN and the growth rate of productivity of
industries gA jointly determine the overall rate of economic growth g.

2.7.2 Population-Growth Condition

Moreover, differentiating ιt = Lt
At Nt

= ι with respect to time t yields the population-growth
condition such that

gL = gA + gN . (30)

This equation states that to guarantee a BGP, the growth rate of the leading-edge productivity
parameter At and that of the measure of variety Nt are required to grow in a manner in the sense
that these growth rates are constrained by the population-growth rate gL. The intuition behind
this constraint is as follows. As the economy grows with higher levels of At and Nt, research
becomes more complex, and thus the productivity of researchers ιt falls in response. To maintain
a constant innovation rate in gN and gA over time as stipulated in (20) and (21), more workers are
needed to focus on R&D activities. The population-growth rate gL determines the rates at which
labor resources can be devoted into both horizontal and vertical R&D activities and therefore
determines the overall growth rate of the economy.

Additionally, examining both equations (29) and (30) yields the following result:

Lemma 1. In the steady-state equilibrium, the economic growth rate is increasing in the vertical R&D

growth rate.
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The intuition underlying this lemma is straightforward. The population-growth condition
(30) implies that there is an equal tradeoff between gA and gN (i.e., an increase in gA comes at
the cost of an identical amount of reduction in gN to maintain a constant population-growth
rate). However, the iso-growth condition (29) reveals that the economic growth rate stems from a
larger contribution of gA than gN (i.e., 1/(1− α) > 1). Therefore, an increase in gA at the sacrifice
of gN comes with a higher economic growth rate. This theoretical attribute is also available
in Howitt (1999) in that the economic growth rate is eventually supported by the growth from
creative destruction (vertical innovation) rather than variety expansion (horizontal innovation) in
the steady-state equilibrium. In addition, this implication is consistent with the empirical finding
in Garcia-Macia et al. (2016), who decompose the aggregate total factor productivity growth for
the US within the periods 1976-1986 and 2003-2013 and find that the contribution of growth from
creative destruction is overwhelmingly larger than that from new varieties.

3 Growth Effects of Monetary Policy

In this section, we analyze the growth effects of monetary policy (in terms of nominal interest
rate targeting) on growth with various CIA constraints. To fully comprehend the underlying
mechanism, we first proceed in our analysis with different scenarios, each of which is subject
to one distinct type of CIA constraint. After picking up the intuition behind each scenario, we
impose all types of CIA constraints simultaneously and then provide a complete analysis.9

3.1 CIA constraint on Consumption

First, we analyze the case in which only a CIA constraint on consumption is present, and the
following proposition is obtained:

Proposition 1. In the presence of a CIA constraint on consumption only (i.e., ξc > 0, ξv = ξh = 0), a

higher nominal interest rate decreases (increases) the economic growth rate if γ < δ (γ > δ).

Fig.1 illustrates the effects of a permanent increase in the nominal interest rate i on the eco-
nomic growth rate when the model only features a CIA constraint on consumption. Using both
the iso-growth condition in (29) and the population-growth condition in (30), we can derive two
downward sloping lines with a slope of −1/(1− α) and of −1, respectively, in the (gA, gN) space.
Thus, the slope of each iso-growth line exceeds the slope of the population-growth condition (in
absolute value terms).

To better understand the intuition underlying Proposition 1, we, first, analyze the instant ef-
fect of raising i starting from the initial balanced-growth equilibrium. When only consumption
is subject to the CIA constraint, increasing the nominal interest rate i raises the cost for consump-
tion purchases relative to leisure. As a result, individuals enjoy more leisure by reducing their
labor supply, and thus the equilibrium labor for both R&D activities lh and lv declines. More
importantly, lh decreases by a smaller (larger) amount than lv if horizontal R&D exhibits greater
(smaller) diminishing returns than vertical R&D (i.e., γ < (>)δ). In Fig.1, to reflect the case
where γ < δ, a higher i leads the economy to jump from the initial steady state A to B

′
with a

9The detailed technical proofs of the propositions in this section are available from the authors upon request.
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smaller reduction in gN than in gA. By contrast, to reflect the case where γ > δ, a higher i shifts
the economy from A to C

′
, with a larger reduction in gN than in gA.

Next, we follow Segerstrom (2000) to provide an intuitive explanation about how the economy
adjusts after its instant shift off the balanced-growth path. The corresponding decreases in gA

and gN indicate that the research complexity grows at a slower rate than usual. It follows that the
research productivity ιt rises gradually over time, which drives up gA and gN again as indicated
in (27) and (28), until they are back to the balanced-growth equilibrium. That is, the population-
growth condition is satisfied again. Therefore, there are two cases to be considered.

When γ < δ, raising i initially drives the economy to jump from A to B
′

(i.e., a larger decrease
in gA than in gN). Then the research productivity ιt rises over time, driving up gA and gN

gradually by a similar magnitude, which induces the economy to move from point B
′

to the
new balanced-growth path B. It is clear that the long-run effect of raising the nominal interest
rate boosts the horizontal innovation rate gN at the expense of reducing gA. Then the economic
growth rate will decrease in response as shown in Lemma 1.

When γ > δ, raising i initially drives the economy to jump from A to C
′

(i.e., a smaller
decrease in gA than in gN). This force subsequently induces the economy to move from point
C

′
to the new balanced-growth path C. In this case, the long-run effect of raising the nominal

interest rate boosts the vertical innovation rate gA at the expense of reducing gN . As a result, the
economic growth rate will increase in response as implied by Lemma 1.

B

A

CB
′

C
′

Population growth

Iso-growth

gN

gA

γ < δ

γ > δ

Fig. 1. Adjustment process: CIA constraint on consumption.

3.2 CIA constraint on Vertical R&D

In this subsection, we analyze the case in which only a CIA constraint on vertical R&D is
present, and the following result is obtained:

Proposition 2. In the presence of a CIA constraint on vertical R&D only (i.e., ξv > 0, ξc = ξh = 0),

a higher nominal interest rate decreases the economic growth rate under both γ < δ and γ > δ, but by a

larger amount under γ < δ.
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Fig.2 illustrates the effects of a permanent increase in the nominal interest rate i on growth
when the model only features a CIA constraint on vertical R&D. Similar to Subsection 3.1, the
analysis starts off by exploring the instant effect of raising i from the initial balanced-growth
equilibrium.

When only vertical R&D is subject to the CIA constraint, an increase in i raises the cost for
vertical R&D. The labor force will be reallocated from vertical R&D lv to production ly, horizontal
R&D lh, and leisure. Under γ < δ, greater diminishing returns to horizontal R&D will reallocate
less labor force to lh, allowing only for a smaller increase in gN ; in addition, a high level of δ

causes a decrease in lv to transmit a larger reduction in gA as shown in (27). In Fig.2, the economy,
therefore, moves from A to B

′
in this case. By contrast, under γ > δ, smaller diminishing returns

to horizontal R&D will reallocate more labor force to lh, leading to a higher gN ; in addition, a low
level of δ also causes a decrease in lv to transmit a smaller reduction in gA. In Fig.2, the economy
will move from A to C

′
if the gap between γ and δ is small (i.e., γ is slightly larger than δ), and

thus the magnitudes of the changes in gN and gA are close. Otherwise, the economy will move
from A to C

′′
if the gap between γ and δ is large (i.e., γ is much larger than δ), and thus the size

of the increase in gN is much more significant than that of the decrease in gA.

B

C

A

B
′

C
′

C
′′

Population growth

Iso-growth

gN

gA

γ < δ

γ > δ

Fig. 2. Adjustment process: CIA constraint on vertical R&D.

Next, we turn to intuitively explain the adjustment process. There are three scenarios to be
considered. First, when γ < δ, since the magnitude of the decrease in gA is much larger than that
of the increase in gN as shown in the movement from point A to point B

′
, the growth of research

complexity is driven down to a lower rate than usual. It follows immediately that the research
productivity ιt rises over time. Hence, gA and gN grow gradually in a similar manor, inducing
the economy to move from point B

′
to the new balanced-growth path B. Second, when γ > δ

and the gap between γ and δ is small, the close magnitudes of the changes in gA and gN may still
drive down the growth of research complexity to a lower rate than usual. It then follows that ιt

rises over time. Hence, gA and gN grow gradually in a similar manner, inducing the economy to
move from point C

′
to the new balanced-growth path C. Third, when γ > δ and the gap between

γ and δ is large, the magnitude of the increase in gN is greater than that of the decrease in gA. In
this case, the growth of research complexity is driven up to a higher rate than usual. It follows
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that the research productivity ιt will fall over time. Hence, gA and gN are lowered gradually in a
similar manner, inducing the economy to move from point C

′′
to the new balanced-growth path

C.
To sum up, the long-run growth effect of raising i increases gN at the expense of reducing

gA regardless of the comparison between γ and δ. Nevertheless, the reduction in gA turns out
to be more significant under γ < δ than under γ > δ. Consequently, according to Lemma 1, the
economic growth rate is decreasing in i more considerably under γ < δ than under γ > δ.

3.3 CIA constraint on Horizontal R&D

In this subsection, we analyze the case in which only a CIA constraint on horizontal R&D is
present, and the following result is obtained:

Proposition 3. In the presence of a CIA constraint on horizontal R&D only (i.e., ξh > 0, ξv = ξc = 0),

a higher nominal interest rate increases the economic growth rate under both γ < δ and γ > δ, but by a

larger amount under γ < δ.

Fig.3 illustrates the growth effects of a permanent increase in the nominal interest rate i when
the model only features a CIA constraint on horizontal R&D. Again, the analysis starts off by
studying the instant effect of raising i from the initial balanced-growth equilibrium.

When horizontal R&D is subject to the CIA constraint, the instant effects of raising i are just
the opposite to those in Subsection 3.2. An increase in i raises the cost for horizontal R&D,
reallocating workers from horizontal R&D lh to production ly, vertical R&D lv, and leisure. On
the one hand, when γ < δ, namely, the diminishing returns to vertical R&D are small, more labor
force will be reallocated to lv leading to a larger rise in gA. In Fig.3, if the gap between γ and δ

is small, then the economy will move from point A to B
′
, since the magnitude of the increase in

gA is not significant compared to the magnitude of the decrease in gN , as shown in (27) and (28).
By contrast, if the gap between γ and δ is large, the economy would move from point A to B

′′
,

since the magnitude of the increase in gA becomes larger than the magnitude of the decrease in
gN . On the other hand, when γ > δ, namely, the diminishing returns to vertical R&D are large,
less labor force will be reallocated to lv leading to a smaller rise in gA. Therefore, the economy
will move from point A to C

′
, given that the size of the decrease in gN is significantly larger than

that of the increase in gA.
Now, we turn to intuitively explain the adjustment process. Under γ < δ, if the gap between

γ and δ is small, the increase in gA is not significant enough to dominate the decrease in gN . As
a result, the research productivity ιt grows over time, driving up both gA and gN , and therefore
the economy moves from point B

′
to the new balanced-growth path B, as displayed in Fig.3.

However, if the gap between γ and δ is large, the increase in gA is, instead, more likely to
dominate the decrease in gN , which drives up the growth of research complexity to a higher rate
than usual. As a result, the research productivity falls over time and gA and gN are reduced, so
the economy moves from point B

′′
to B.

Under γ > δ, since the magnitude of the decrease in gN is much larger than that of the
increase in gA as shown in the movement from point A to point C

′
, the growth of research

complexity is driven down to a lower rate than usual. It follows immediately that the research
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productivity ιt rises over time. Hence, gA and gN grow gradually in a similar manner, inducing
the economy to move from point C

′
to the new balanced-growth path C.

In sum, the long-run growth effect of raising i increases gA at the expense of reducing gN

regardless of the comparison between γ and δ. Nevertheless, the increase in gA turns out to
be more significant under γ < δ than under γ > δ. Consequently, according to Lemma 1, the
economic growth rate is increasing in i more considerably under γ < δ than under γ > δ.

A

C

B

B
′

B
′′

C
′

Population growth

Iso-growth

gN

gA

γ > δ

γ < δ

Fig. 3. Adjustment process: CIA constraint on horizontal R&D.

3.4 CIA constraint on Consumption and R&D

After building up the intuition underlying each scenario in which only one type of the CIA
constraints is present, we are now in a position to analyze a more general case by incorporating all
types of CIA constraints into the model. To highlight the interesting non-monotonic relationship
between inflation and growth, our analysis focuses on the empirically relevant case where γ <

δ.10 Accordingly, we obtain the following result:

Proposition 4. Suppose that γ < δ holds. Then (a) for a sufficiently large gap between ξh and ξv, the

economic growth rate g has a non-monotonic (i.e., an inverted-U) relationship with the nominal interest

rate i, and there exists a threshold value i∗ below (above) which g is increasing (decreasing) in i; (b) for an

insufficiently large gap between ξh and ξv, g is monotonically decreasing in i.

To intuitively explain the results of Proposition 4, we need to combine the results obtained
in Propositions 1-3. Recall that from Propositions 1 and 2, in the case where γ < δ, the CIA
constraints on both consumption and vertical R&D yield a negative relationship between the
nominal interest rate i and the economic growth rate g, and only Proposition 3 (i.e., the CIA
constraint on horizontal R&D) can generate a positive relationship between them. It is obvious
that an inverted-U shape requires a positive relationship between the nominal interest rate and
economic growth at the relatively low levels of i. This implies that the growth effect of i from

10In the case where γ > δ, the economic growth rate is monotonically increasing in the inflation rate when all CIA
constraints are present. The detailed analysis for this case is available from the authors upon request.
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the CIA constraint on horizontal R&D has to be relatively strong to dominate the other two
effects from the CIA constraints on consumption and vertical R&D. At the initial increase in i,
the distortions of the CIA constraints are mild, which implies that the above three effects are all
weak. Therefore, to ensure a strong positive effect of the constraint on horizontal R&D at the
initial increase in i, there must be a sufficiently large extent of the constraint on horizontal R&D
relative to vertical R&D (i.e., a sufficiently large gap in ξh > ξv), so that raising i yields a strong
reallocation effect from lh to lv to generate a high level of gA to enhance g.

Nevertheless, as i continues to rise, the greater diminishing returns to horizontal R&D relative
to vertical R&D (i.e., γ < δ) come into play and exert a counter-force that weakens the reallocation
effect from lh to lv. This counter-force increases non-linearly in i which, henceforth, results in
the negative growth effects from the constraints on vertical R&D and consumption becoming
stronger than the positive effects from the constraint on horizontal R&D. This implies that there
will be a threshold rate of nominal interest i∗ across which the two negative growth effects play
the dominant role, so that g becomes monotonically decreasing in i.

Finally, if the gap in ξh > ξv is not sufficiently large, the reallocation effect of i from the
constraint on horizontal R&D is weak at the initial increase in i, so it will be dominated by
the two negative effects as i rises. Accordingly, it is straightforward to explain that g becomes
monotonically decreasing in i for all levels of i.

4 Quantitative Analysis

In this section, our model is calibrated to quantify the growth effects of monetary policy. We
show that by using an empirically plausible range of parameter values, there exists an inverted-U
relationship between the nominal interest rate and economic growth in the calibrated economy,
which is consistent with the existing empirical findings. In addition, we evaluate the effects of
monetary policy on (steady-state) social welfare.

4.1 Calibration

To make the quantitative analysis more realistic, our model is calibrated to match the aggre-
gate data of the US economy. Our model features the following set of parameters {ρ, α, gL, ξc, ξv, ξh, γ, δ}
and the policy variable i. The discount rate is set to a standard value ρ = 0.02 as in Grossmann
et al. (2013). We follow Jones and Williams (2000) to set the capital share to a standard value
such that α = 0.36, which is an estimate of the US economy during 1951-2000. According to
the Conference Board Total Economy Database, gL is thereafter set to 1.2% to correspond to the
population growth rate in the US during this period.

As for the degree of various types of CIA constraints {ξc, ξv, ξh}, the degree of the CIA con-
straint on consumption ξc is set to 0.29, which lies in a reasonable range of M1-consumption
ratios (see, for example, Dotsey and Sarte (2000) and Chu et al. (2010)). We focus on the case
where ξh > ξv to capture the empirical findings that firms which tend to engage in radical inno-
vation are more constrained by cash/money than their old and large counterparts that conduct
incremental innovation (e.g., Akcigit (2009) and Caggese (2015)). Additionally, following Chu
et al. (2015), the strengths of CIA constraints on horizontal and vertical innovative activities are
set to ξh = 0.6 and ξv = 0.4, respectively, as the benchmark values, which are considered to
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feature a sufficiently large gap between ξh and ξv. Our analysis will also consider the case with
ξh = 0.5 and ξv = 0.4, and the case where ξh = 0.45 and ξv = 0.4, respectively, which are re-
ferred to as the cases of an insufficiently large gap in the CIA constraints between the two R&D
activities.

Next, as for the values of the two R&D diminishing returns γ and δ, we choose the empirically
plausible case of γ < δ in the benchmark.11 Specifically, we set δ = 0.8 and γ = 0.6,12 respectively,
both of which lie in the range of the estimated elasticity of innovative outputs with respect to
R&D expenditures documented in Anselin et al. (1997) and Acs et al. (2002).13.

Moreover, we follow Jones and Williams (2000) to set the equilibrium rate of economic growth
in the benchmark as g = 1.25%. Then the market-level nominal interest rate i is calibrated
by targeting at π = 2.5%, which is in line with the average inflation rate in the US economy.
Given the above calibrated parameter values, we calibrate σ and θ simultaneously to match the
equilibrium growth rate and the standard time of employment l = 0.33 by using the labor-
leisure choice (5), the first-order conditions for the vertical and horizontal R&D (13) and (18), the
iso-growth condition (29), the population growth condition (30), and the labor-market-clearing
condition. The detailed calibration procedure is relegated to the online Appendix. The parameter
values are summarized in Table 1.

Table 1: Calibration

Targets
r g π

0.0445 0.0125 0.025

Parameters ξh ξv ξc γ δ θ σ i
0.6 0.4 0.29 0.6 0.8 1.5051 0.2789 0.0695

0.5 0.4 0.29 0.6 0.8 1.5054 0.2812 0.0695

0.45 0.4 0.29 0.6 0.8 1.5056 0.2824 0.0695

4.2 Growth and Welfare Implications of Monetary Policy

Fig.4 displays the quantitative results under the benchmark parameter values, wherein we
find that the rate of economic growth is an inverted-U function of the inflation rate given that
ξh − ξv = 0.2. This result supports the implication of Proposition 4; when the difference between
ξv and ξh is relatively large, at low levels of i the positive growth effect of i through the CIA
constraint on horizontal R&D strictly dominates the negative growth effects through the CIA
constraints on vertical R&D and consumption. Nevertheless, as i rises, this domination becomes
increasingly weaker and finally the negative effects overwhelm the positive one. In addition, the
threshold value of i is roughly 2.8%, which is in line with the empirical estimates of Ghosh and
Phillips (1998) (i.e., 2.5%), López-Villavicencio and Mignon (2011) (i.e., 2.7%), and Eggoh and
Khan (2014) (i.e., 3.4%).

11We examine γ > δ in the sensitivity check to complete the quantitative illustrations.
12We also perform a sensitivity analysis by choosing alternative values to show that our basic results are robust to

this change.
13Anselin et al. (1997) and Acs et al. (2002) estimate this elasticity by using the number of patents as a proxy for

new knowledge, resulting in a range of [0.54, 0.85].
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Fig. 4. Inflation and economic growth(ξh − ξv = 0.2)
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Fig. 5. Inflation and social welfare(ξh − ξv = 0.2)

To explore the welfare effects of monetary policy, we impose balanced growth on (1) to derive
the steady-state welfare function

U =
1
ρ

[

ln c0 +
g

ρ
+ θ ln(1 − l)

]

(31)

where the exogenous terms have been dropped and c0 = (1 − α2)ly/Γ is the steady-state level of
consumption along the BGP. Fig.5 accordingly depicts the welfare effect of the inflation rate. It
is shown that the level of welfare is monotonically decreasing in the inflation rate. Specifically,
a 10 percentage points increase in the inflation rate, from -4.45% (corresponding to the zero
nominal interest rate) to 5.55%, leads approximately to a welfare loss of 0.587%. The intuition
can be explained as follows. There are two positive welfare effects of a higher rate of inflation
(or raising the nominal interest rate). The first effect stems from the growth effect for an inflation
rate that is below the threshold value, as previously mentioned. The second effect comes from
the increase in leisure, which leads to a higher utility level. However, given our benchmark
parameter values, these two positive welfare effects are completely dominated by the negative
welfare effect from the decrease in the households’ initial income level. This mainly arises from
the CIA constraint on consumption, which reduces labor employment in the final-goods sector
and hence the level of c0. Furthermore, as the inflation rate increases to a permanently higher rate
that is above the threshold, the positive growth effect becomes negative, resulting in the overall
welfare effect of inflation always be negative. Therefore, this model predicts a monotonically
decreasing relationship between welfare and inflation in the benchmark case.
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Fig. 6. Inflation and economic growth(ξh − ξv = 0.1)
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Fig. 7. Inflation and social welfare(ξh − ξv = 0.1)

Nevertheless, some existing empirical studies (e.g.,Vaona (2012) and Barro (2013)) also find
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a evidence of long-run negative effect of inflation on economic growth. In fact, given that the
majority of the current calibrated values of parameters are preserved, our model is also suffi-
ciently flexible to generate a negative relationship between inflation and economic growth. Fig.6
illustrates this scenario accordingly. We recalibrate the values of the parameters such that the gap
between ξv and ξh from 0.2 (i.e., ξv = 0.4, ξh = 0.6) is shrunk to 0.1 (i.e., ξv = 0.4, ξh = 0.5). It
is found that the inflation-growth relationship becomes strictly negative, which is still consistent
with the predictions of the analytical part. The welfare is also decreasing in the rate of inflation,
as shown in Fig.7. There is approximately a 0.180% welfare loss when the inflation rate is in-
creased by 10 percentage points (from -4.45% to 5.55%), and a larger welfare loss (i.e., 0.592%) is
thereafter attained when the inflation rate continues to increase from 5.55% to 15.55%.
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Fig. 8. Inflation and economic growth(ξh − ξv = 0.05)
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Fig. 9. Inflation and social welfare(ξh − ξv = 0.05)

Moreover, if the gap between ξv and ξh is shrunk to an even smaller value of 0.05 (i.e.,
ξv = 0.4, ξh = 0.45), Fig.8 shows that the monotonically decreasing relationship between the
inflation rate and economic growth rate continues to hold. Interestingly, a higher inflation rate
generates an inverted-U shaped effect on welfare in this case (see Fig.9). As the inflation rate
becomes higher, the positive welfare effect from the increase in leisure will initially dominate the
negative welfare effects from a lower economic growth rate and a lower level of consumption, but
this domination is reversed as the inflation rate increases. This in turn implies that the Friedman
rule, which is optimal in the aforementioned cases, becomes suboptimal. In this case, our model
predicts a welfare-maximizing inflation rate of 1.7%.

4.3 Sensitivity

In this subsection, we undertake sensitivity checks to test the robustness of our numerical
results in terms of quantitative magnitudes. Specifically, this sensitivity exercise is conducted by
varying several key parameters. The parameter values that will be altered are summarized in
Table 2.

First, we perform a sensitivity analysis by examining the analytical results in three special
scenarios, namely, ξc > 0(ξv = ξh = 0), ξv > 0(ξc = ξh = 0), and ξh > 0(ξc = ξv = 0),
respectively. Fig.10, Fig.12, and Fig.14 illustrate that the inflation rate and economic growth rate
are negatively correlated in the cases of the CIA constraint on only consumption and on only
vertical R&D, but positively correlated in the case of the CIA constraint on only horizontal R&D.
These quantitative results are in line with our analytical implications in Propositions 1-3. In
addition, the corresponding effects of a higher inflation rate on social welfare are depicted in
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Table 2: Sensitivity

Targets
r g π

0.0445 0.0125 0.025

Parameters ξh ξv ξc θ σ γ δ i
0 0 0.29 1.6152 0.2862 0.6 0.8 0.0695

0 0.4 0 1.5374 0.2937 0.6 0.8 0.0695

0.6 0 0 1.6449 0.2713 0.6 0.8 0.0695

0.6 0.4 0.26 1.5082 0.2788 0.6 0.8 0.0695

0.6 0.4 0.29 0.0439 0.0211 0.8 0.6 0.0695

0.6 0.4 0.29 1.4811 0.3511 0.5 0.75 0.0695

0.7 0.4 0.29 1.4807 0.3489 0.5 0.75 0.0695

Note: The parameters θ and σ are re-calibrated in each case to maintain the
standard moments of the equilibrium economic growth rate and time of em-
ployment as shown in the benchmark case.

Fig.11, Fig.13, and Fig.15, respectively. That is, the inflation-welfare relationship is inverted-U-
shaped under ξc > 0(ξv = ξh = 0), positive under ξv > 0(ξc = ξh = 0), and negative under
ξh > 0(ξc = ξv = 0), respectively.
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Fig. 10. Inflation and economic growth (ξc > 0).
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Fig. 11. Inflation and social welfare (ξc > 0).
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Fig. 12. Inflation and economic growth (ξv > 0).
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Fig. 13. Inflation and social welfare (ξv > 0).

Second, a sensitivity analysis is performed by changing the value of parameter ξc from 0.29

in the benchmark to 0.26. By comparing Fig.4 and Fig.16, a lower degree of ξc shifts the inflation-
growth curve to the right, implying a higher threshold value of inflation i∗. A smaller ξc weakens
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Fig. 14. Inflation and economic growth (ξh > 0).
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Fig. 15. Inflation and social welfare (ξh > 0).

the negative inflation-growth effect arising from the CIA constraint on consumption, as shown
in Proposition 1. Therefore, for a given level of ξv and of ξh, which, respectively, determines the
negative inflation-growth effect and the positive one, a larger increase in the inflation rate (and
also the nominal interest rate) is required to make the negative inflation-growth effect sufficiently
strong to dominate the positive inflation-growth effect from the CIA constraint on horizontal
innovation. As a result, the threshold value i∗ increases to around 8%, which is close to the
empirical estimates in Sarel (1996), Burdekin et al. (2004), and Yilmazkuday (2013) (i.e., 8%). As
for social welfare, a 10 percentage points increase in the inflation rate slightly enlarges the welfare
loss under a smaller ξc (i.e., 0.773%) as compared to the benchmark case (i.e., 0.587%).
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Fig. 16. Inflation and economic growth (ξc = 0.26)
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Fig. 17. Inflation and social welfare (ξc = 0.26)

Third, to capture the impacts of diminishing returns in the two types of innovation, we con-
sider an alternative case in which γ > δ (i.e., γ = 0.8 and δ = 0.6), although it is less empirically
realistic. Our model predicts that under γ > δ, the economic growth rate is monotonically in-
creasing in the inflation rate as shown in footnote 9. The quantitative result displayed in Fig.18

is consistent with the prediction of the model; an increase in the nominal interest rate (and then
an increase in the inflation rate) monotonically raises the economic growth rate. As illustrated
in Proposition 1, γ > δ leads to a positive inflation-growth effect in the presence of the CIA
constraint on consumption, and, as a result, together with another positive effect from the CIA
constraint on horizontal R&D, an increase in the inflation rate always raises the economic growth
rate. In addition, the inflation rate is monotonically increasing in social welfare (see Fig.19). In
particular, raising the inflation rate by 10 percentage points from -4.45% to 5.55% yields a wel-
fare gain of 3.889%. In this case, the positive welfare effect, stemming from the positive growth
effect under a higher inflation rate, reinforces another positive welfare effect from a higher de-
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gree of leisure to strictly dominate the negative welfare effect due to a lower initial income level.
Therefore, a higher inflation rate results in welfare gains.
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Fig. 18. Inflation and economic growth (γ > δ).
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Fig. 19. Inflation and social welfare (γ > δ).

Fourth, we perform a sensitivity analysis by altering the values for γ and δ to γ = 0.5 and
δ = 0.75, respectively, while other parameters remain unchanged. In this case, the growth rate
is monotonically decreasing in the inflation rate (see Fig.20). Moreover, the welfare level is an
inverted-U function of the inflation rate (see Fig.21), in which the welfare-maximizing rate of
inflation is roughly 2%, implying that the Friedman rule is suboptimal.
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Fig. 20. Inflation and economic growth.
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Fig. 21. Inflation and social welfare.

Finally, we consider a case in which the gap between ξv and ξh is enlarged from 0.2 to 0.3 by
singly raising ξh = 0.7, while other parameters remain the same as in the previous case (where
γ = 0.5 and δ = 0.75). The purpose of this experiment is to show that the inverted-U relationship
between inflation and economic growth rate is robust to the changes in the two parameters that
govern the extent of diminishing returns. Fig.22 shows that the inverted-U relationship between
inflation and economic growth still holds, which is similar to Fig.4. A comparison of Fig.20 and
Fig.22 shows that a larger ξh strengthens the positive inflation-growth effect arising from the
CIA constraint on horizontal R&D, which in turn makes it possible for the positive inflation-
growth effect to initially dominate the negative inflation-growth effects. As explained in the
benchmark case, the negative inflation-growth effects from the CIA constraints on consumption
and vertical R&D eventually dominate the positive effect as the inflation rate becomes higher.
Thus, the inverted-U pattern for inflation and economic growth is generated, and the threshold
value in this case is approximately 1.8%, which is close to the empirical estimates in Khan and
Senhadji (2001) (i.e., 1-3%) and Omay and Kan (2010) (i.e., 2%). In addition, social welfare is also
monotonically decreasing in the inflation rate as shown in Fig.23. For example, a 10 percentage
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points increase in the inflation rate, from -4.45% to 5.55%, leads to a welfare loss of roughly
0.215%, which is smaller as compared to the benchmark case (i.e., 0.587%).
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Fig. 22. Inflation and economic growth.
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Fig. 23. Inflation and social welfare.

5 Conclusion

In this study, we explore the growth and welfare effects of monetary policy in an endogenous
growth model with both vertical and horizontal innovation by incorporating cash-in-advance
constraints on consumption and two R&D sectors. The novel contribution of this work, in con-
trast to most of the previous studies, is that our model is flexible enough to generate a mixed (i.e.,
monotonically decreasing or an inverted-U) relationship between inflation and economic growth,
depending on the relative extents of CIA constraints and of diminishing returns to the two types
of innovation. In particular, in a more empirically supportive case where horizontal R&D suffers
a greater diminishing returns than vertical R&D, our model can generate an inverted-U rela-
tionship between inflation and growth when a sufficiently larger extent of a CIA constraint on
horizontal R&D than on vertical R&D is met. This result holds in our general model setting with
elastic labor supply and without a scale effect, which differs from Chu et al. (2017). Moreover, our
model is calibrated by applying aggregate data for the US economy. We find that the threshold
value of the inflation rate is around 2.8%, which is consistent with recent empirical estimates.

A.1 Proofs of Proposition 1, 2, and 3.

To analytically prove these propositions, first, we follow Segerstrom (2000) to establish the
mutual R&D condition. This condition is derived from both vertical and horizontal R&D no-
arbitrage conditions (14) and (19) for vertical R&D and horizontal R&D. As for the expected
profit of each successful vertical innovator, substituting (11) into (14) yields

Πvt =
∫

∞

t
e−

∫ τ
t (r+φs)dsπ̂tτdτ =

α(1 − α)Lyt A
1

1−α
t

ρ + gL +
( 1

1−α − 1 + 1
σ

)
gA

. (A.1.1)

Thus, the two R&D conditions are, respectively,

δΓαλlyι

ρ + gL +
( 1

1−α − 1 + 1
σ

)
gA

lδ−1
v = 1 + ξvi, (A.1.2)
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and
γαλlyι

ρ + gL +
( 1

1−α − 1 + 1
σ

)
gA

l
γ−1
h = 1 + ξhi. (A.1.3)

Combining (A.1.3) and (A.1.2) yields the mutual R&D condition such that

δΓlδ−1
v

1 + ξvi
=

γl
γ−1
h

1 + ξhi
. (A.1.4)

Also, using (27) and (28), (A.1.4) can be re-expressed as a relationship with two growth rates
such that

gN = σΩ
γ

γ−1 l
γ−δ
1−γ
v gA, (A.1.5)

where Ω = 1+ξhi
1+ξvi Ψ, and Ψ = δΓ

γ . Plugging (24), (26) and ct = Ct/Lt into the individuals’
consumption-leisure condition (5)yields the relationship between leisure and the production la-
bor

l = 1 − θ(1 + α)(1 + ξci)ly. (A.1.6)

Using (A.1.4), (A.1.6), and the labor-market-clearing condition ly + lv + lh = l yields

ly =
1 − lv − Ω

1
γ−1 l

1−δ
1−γ
v

Υ
, (A.1.7)

where Υ = 1 + θ(1 + α)(1 + ξci). Substituting (A.1.7) into (A.1.3) yields the general R&D condi-
tion:

gA







1 − lv

(1 + ξvi)lv
−

Ω
1

γ−1 l
γ−δ
1−γ
v

1 + ξvi
−

Υ
[
1 + σ

( 1
1−α − 1

)]

Γδα






=

σΥ(ρ + gL)

Γδα
. (A.1.8)

In addition, substituting (A.1.6) into the population-growth condition (30) yields

gL =

(

1 + σΩ
γ

γ−1 l
γ−δ
1−γ
v

)

gA. (A.1.9)

Consequently, (A.1.8) and (A.1.9) represent a system of two equations with two unknowns (lv

and gA), which can be solved for a balanced-growth equilibrium.

Lemma 2. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint

on consumption only, a permanent increase in the nominal interest rate i (a) decreases the fraction of labor

allocated to vertical R&D lv and increases the long-run product-quality growth rate gA if γ > δ, and (b)

decreases lv and gA if γ < δ.

Proof. Imposing ξv = ξh = 0 reduces (A.1.5), (A.1.8) and (A.1.9) to

gN = σΨ
γ

γ−1 l
γ−δ
1−γ
v gA, (A.1.10)

gA

{

1 − lv

lv
− Ψ

1
γ−1 l

γ−δ
1−γ
v −

Υ
[
1 + σ

( 1
1−α − 1

)]

Γδα

}

=
σΥ(ρ + gL)

Γδα
, (A.1.11)
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and

gL =

(

1 + σΨ
γ

γ−1 l
γ−δ
1−γ
v

)

gA, (A.1.12)

respectively. The last two equations are graphed in Fig.24 assuming that γ > δ. The curve for the
R&D condition (A.1.11) is unambiguously upward sloping and goes through the origin, whereas
the curve for the population-growth condition (A.1.12) is unambiguously downward sloping and
has a strictly positive vertical intercept. As illustrated in Fig.24, there is a unique intersection of
these two curves at point A, which pins down the balanced-growth equilibrium values of lv and
gA. With these values determined, (A.1.10) pins down gN , (27) pins down ι, and thereby (28) pins
down lh. Thus, the model has a unique balanced-growth equilibrium when γ > δ.

The effect of permanently increasing the nominal interest rate i is illustrated in Fig.24 by the
movement from point A to point B. An increase in i unambiguously causes the curve for the R&D
condition (A.1.11) to shift up, whereas it has no effect on the curve for the population-growth
condition (A.1.12). Thus, a higher nominal interest rate decreases lv and increases gA if γ > δ.
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Fig. 24. The effect of a higher nominal interest rate
for γ > δ.
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Fig. 25. The effect of a higher nominal interest rate
for γ < δ.

Equations (A.1.11) and (A.1.12) are graphed in Fig.25 assuming that γ < δ. For γ < δ, the
slope of the curve for the population-growth condition turns to be positive because a higher lv

is correlated with a higher gA, whereas the positiveness of the slope of the curve for the R&D
condition remains unchanged. Again, there is a unique intersection of these two curves at point
A, which pins down the balanced-growth equilibrium values of lv and gA in addition to other
variables. Thus, the model also has a unique balanced-growth equilibrium if γ < δ.

The effect of permanently increasing the nominal interest rate i is illustrated in Fig.25 by the
movement from point A to point B. An increase in i unambiguously shifts the curve for the
R&D condition (A.1.11) upward, whereas it has no effect on the curve for the population-growth
condition (A.1.12). Thus, a higher nominal interest rate decreases lv and decreases gA if γ < δ.

Proof of Proposition 1. Based on the above results, we now proceed to the analysis of the
overall effects of monetary policies on gA and gN . In the (gA, gN) space, the slope of each
iso-growth line(i.e.,1/(1 − α)) exceeds the slope of the population-growth condition(i.e.,1) (in
absolute value). The effects of a higher nominal interest rate are illustrated in Fig.26 accordingly.
The mutual R&D condition (given by (A.1.13)) is an upward-sloping line that goes through the
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Fig. 26. The growth effect of a higher i with CIA constraint on consumption.

origin in the (gA, gN) space, when lv is fixed at the initial equilibrium value. An increase in i

shifts down the mutual R&D condition to a new intersection C if γ > δ, leading to an increase
in gA as shown in Lemma 2. In contrast, an identical increase in i shifts up the mutual R&D
condition to another new intersection B if γ < δ, leading to an decrease in gA. Combining (29)
with (30) to express the aggregate economic growth rate exclusively as the vertical innovation
growth rate such that g = gL + [1/(1− α)− 1]gA. It then shows that an increase in i, which leads
to an decrease in gA when γ < δ, decreases the long-run growth rate g(i.e., the movement from
A to B); while an identical increase in i, which results in an increase in gA when γ > δ, increases
the long-run growth rate g(i.e., the movement from A to C).

Lemma 3. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint

on vertical R&D only, a permanent increase in i (a) decreases lv and gA if γ > δ, and (b) yields an identical

decreasing and larger effect on lv and gA if γ < δ.

Proof. We make use of ξc = ξh = 0 to reduce (A.1.5), (A.1.8) and (A.1.9) to

gN = σΨ
γ

γ−1 (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v gA, (A.1.13)

gA








1 − lv

lv(1 + ξvi)
− Ψ

1
γ−1 (1 + ξvi)

γ
1−γ l

γ−δ
1−γ
v

︸ ︷︷ ︸

(−)

−
(1 + θ + θα)(Γ − σ)

Γδα







=

σ(1 + θ + θα)(ρ + gL)

Γδα
,

(A.1.14)
and

gL =

[

1 + σΨ
γ

γ−1 (1 + ξvi)
γ

1−γ l
γ−δ
1−γ
v

]

gA, (A.1.15)

respectively. Equations (A.1.14) and (A.1.15) are graphed in Fig.27 given γ > δ. There is a unique
intersection of these two curves at point A, which pins down the balanced-growth equilibrium
values of all endogenous variables as in the previous case (in which only CIA constraint on
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consumption is present). Thus, the model has a unique balanced-growth equilibrium when
γ > δ. The effect of permanently increasing the nominal interest rate i is illustrated in Fig.27 by
the movement from point A to point B. An increase in i unambiguously causes the curve for the
R&D condition (A.1.14) (the negative sign means that the value of those terms overall decreases
as i increases) to shift upward, and unambiguously causes the curve for the population-growth
condition (A.1.15) to shift downward. Hence, a higher rate of nominal interest surely decreases
lv.
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Fig. 27. The effect of a higher nominal interest rate
for γ > δ.
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Fig. 28. The effect of a higher nominal interest rate
for γ < δ.

As to determine the effect on gA, first, suppose that for some γ > δ, an increase in i increases

(or has no effect on) gA. According to (A.1.15), this implies that (1 + ξvi)γ/(1−γ)l
(γ−δ)/(1−γ)
v

must decrease (or remain unchanged) when i increases. That is, [(1 + ξvi)lv]−1l
δ/γ
v must increase

(or remain unchanged). Given that lv decreases as i increases, [(1 + ξvi)lv]−1 must increase in

response. Therefore, (A.1.14) implies that (1 − lv)/[(1 + ξvi)lv]− Ψ1/(γ−1)(1 + ξvi)
γ

1−γ l
(γ−δ)/(1−γ)
v

must increase, and thereby gA will decrease. This yields a contradiction. As a result, gA must
always decrease in response to an increase in i when γ > δ.

Equation (A.1.14) and (A.1.15) for γ < δ are graphed in Fig.28. There is still a unique inter-
section of these two curves at point A, so the model has a unique balanced-growth equilibrium
when γ < δ. The effect of permanently increasing i is illustrated in Fig.28 by the movement
from point A to point B. An increase in i unambiguously causes the curve for the R&D condi-
tion (A.1.14) to shift upward, while it unambiguously shifts the curve for the population-growth
condition (A.1.15) downward. Hence, a higher i unambiguously decreases lv. A similar proof
applies for the change in gA. The only difference in γ < δ from γ > δ is that a higher i amplifies
the negative effect on gA in the former case, leading to a larger magnitude of the reduction in gA.

Proof of Proposition 2. The effects of a higher rate of nominal interest on the aggregate rate of
economic growth g are displayed in Fig.29. An increase in i shifts up the line for the mutual R&D
condition (given by (A.1.13)), which eventually decreases the vertical R&D growth rate if γ > δ

(namely the movement from A to C). Also, a higher i continues to shift the line for the mutual
R&D condition if γ < δ, but the scale becomes larger, implying that the reduction in gA (namely
the movement from A to B) is larger. In other words, the overall effect of a higher nominal interest
rate is to increase the product-variety growth rate at the expense of the product-quality growth
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Fig. 29. The growth effect of a higher i with CIA constraint on vertical R&D.

rate, with a larger sacrifice in vertical innovation growth rate when γ < δ. Combining (29) with
(30) to express the aggregate economic growth rate exclusively as the vertical innovation growth
rate such that g = gL + [1/(1 − α)− 1]gA. It states that a movement on the population-growth
condition in the northwest direction(gN increases and gA decreases) is growth-retarding given
1 < 1/(1 − α). Therefore, a larger sacrifice in the product-quality growth rate gA in the case of
γ < δ implies a larger decrease in the aggregate economic growth rate comparing to the case of
γ > δ.

Lemma 4. The model has a unique balanced-growth equilibrium. In the equilibrium with a CIA constraint

on horizontal R&D only, a permanent increase in i (a) increases lv and gA if γ > δ, and (b) yields an

identical increasing and larger effect on lv and gA if γ < δ.

Proof. In an analogous fashion of the proof of Lemma 3, imposing ξc = ξv = 0 reduces (A.1.5),
(A.1.8) and (A.1.9) to

gN = σΨ
γ

γ−1 (1 + ξhi)
−γ

1−γ l
γ−δ
1−γ
v gA, (A.1.16)

gA






1
lv
− 1−Ψ

1
γ−1 (1 + ξhi)

−1
1−γ l

γ−δ
1−γ
v

︸ ︷︷ ︸

(+)

−
(1 + θ + θα)(Γ − σ)

Γδα




 =

σ(1 + θ + θα)(ρ + gL)

Γδα
, (A.1.17)

and

gL =

[

1 + σΨ
γ

γ−1 (1 + ξhi)
−γ

1−γ l
γ−δ
1−γ
v

]

gA, (A.1.18)

respectively. Equations (A.1.17) and (A.1.18) are graphed in Fig.30 given γ > δ. There is a unique
intersection of these two curves at point A, which pins down the balanced-growth equilibrium
values of all endogenous variables. Thus, the model also has a unique balanced-growth equilib-
rium when γ > δ. The effect of permanently increasing the nominal interest rate i is illustrated
in Fig.30 by the movement from point A to point B. An increase in i unambiguously causes the
curve for the R&D condition (A.1.17) to shift downward, and it unambiguously causes the curve
for the population-growth condition (A.1.18) to shift upward. Hence, a higher i surely increases
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lv.
As to determine the effect on gA, first, suppose that for some γ > δ, an increase in i decreases

(or does not change) gA. Then, (A.1.18) implies that (1 + ξhi)−γ/(1−γ)l
(γ−δ)/(1−γ)
v increases (or re-

mains unchanged) when i increases, from which it follows that [(1+ ξhi)l−1
v ]−γ/(1−γ)l

−δ/(1−γ)
v in-

creases(or remain constant). Since lv increases in response to an increase in i, [(1+ ξhi)l−1
v ]−γ/(1−γ)

increases and [(1 + ξhi)l−1
v ] decreases. According to (A.1.17), 1−lv

lv
− Ψ

1
γ−1 (1 + ξhi)

−1
1−γ l

γ−δ
1−γ
v =

1
1+ξhi

[

(1+ξhi)(1−łv)
lv

− Ψ
1

γ−1 (1 + ξhi)
−γ

1−γ l
γ−δ
1−γ
v

]

must decrease and gA must increase. This yields a

contradiction. As a result, gA must always increase in response to an increase i when γ > δ.

A
B

Population growth-1

Population growth
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R&D-1

gA

lv

Fig. 30. The effect of a higher nominal interest rate
for γ > δ.
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Fig. 31. The effect of a higher nominal interest rate
for γ < δ.

Equation (A.1.17) and (A.1.18) for γ < δ are graphed in Fig.31. There is also a unique inter-
section of these two curves at point A, and the model has a unique balanced-growth equilibrium
when γ < δ. The effect of permanently increasing the nominal interest rate i is illustrated in
Fig.31 by the movement from point A to point B. An increase in i unambiguously causes the
curve for the R&D condition (A.1.17) to shift downward, whereas it unambiguously shifts the
curve for the population-growth condition (A.1.18) upward. Thus, a higher i unambiguously
increases lv. A similar proof applies for the change in gA. The difference in γ < δ from γ > δ is
that a higher i amplifies the positive effect on gA in the former case, leading to a larger magnitude
of the increase in gA.

Proof of Proposition 3. The effects of a higher rate of nominal interest on the aggregate rate of
economic growth g are displayed in Fig.32. An increase in the nominal interest rate i shifts down
the line for mutual R&D condition (given by (A.1.16)), which eventually increases the vertical
R&D growth rate if γ > δ (namely the movement from A to C). Also, a higher i shifts down the
line for the mutual R&D condition if γ < δ, but the scale becomes large, which implies that the
increase in gA is larger (namely the movement from A to B). In other words, the overall effect of
a higher nominal interest rate is to increase the product-quality growth rate at the expense of the
product-variety growth rate, with a larger sacrifice in horizontal innovation growth rate when
γ < δ. A combination of (29) and (30) yields g = gL + [1/(1 − α)− 1]gA, which implies that a
movement on the population-growth condition in the southeast direction(gA increases and gN

decreases) is growth-promoting given 1 < 1/(1 − α). Therefore, a larger sacrifice in the product-
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variety growth rate implies a larger increase in the aggregate economic growth rate when γ < δ.
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γ > δ

γ < δ

Fig. 32. The growth effect of a higher i with CIA constraint on horizontal R&D.

A.2 Proof of Proposition 4

To prove Proposition 4, the model is solved in a slightly different way. Given the equation
(A.1.7), equation (A.1.2) is used to set up another correlation between lyt and lvt. To do this,
ι needs to be eliminated. Rewriting the economic growth rate solely as the vertical innovation
growth rate by combining (29) and (30) yields

g = gL +

(
1

1 − α
− 1

)

gA.

Together with gA = σλlδ
vι and gN = λl

γ
h ι, we obtain

gL = ιλ

(

σlδ
v + Ω

γ
γ−1 l

γ(δ−1)
γ−1

v

)

. (A.2.1)

Then, we reduce ι in (A.1.2) by making use of (A.2.1) to derive ly as

ly =
(1 + ξvi)[ρ + gL + ( 1

1−α − 1 + 1
σ )gA]

δαΓλι
l1−δ
v

=
(1 + ξvi)(ρ + gL)

δαΓλgL

[

σλlδ
v + λΩ

γ
γ−1 l

(δ−1)γ
γ−1

v

]

l1−δ
v +

(1 + ξvi)( 1
1−α − 1 + 1

σ )σλlδ
vι

δαΓλι
l1−δ
v

=
(1 + ξvi)

δαΓgL

(

ρσ + ΓgL

)

lv +
(1 + ξvi)(ρ + gL)

δαΓgL
Ω

γ
γ−1 l

δ−1
γ−1
v

= (1 + ξvi)

(

Θlv + ΛΩ
γ

γ−1 l
δ−1
γ−1
v

)

(A.2.2)
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where Θ = ρσ+gLΓ

δαΓgL
, and Λ = ρ+gL

δαΓgL
. By plugging (A.2.2) into (A.1.4), the labor-market-clearing

condition can be rewritten as

lv[ΥΘ(1 + ξvi) + 1] + Ω
γ

γ−1 l
1−δ
1−γ
v [ΥΛ(1 + ξvi) + Ω

−1] = 1. (A.2.3)

Finally, to find the relationship between i and g, we need to derive a function of g on lv. By
combining (29) with (30) and using the expression of ι, we obtain

g = gL



1 +

( 1
1−α − 1

)
σ

σ + Ω
γ

γ−1 l
γ−δ
1−γ
v



 . (A.2.4)

Differentiating g with respect to i yields

∂g

∂i
=

−gL(
1

1−α − 1)σ
(

σ + Ω
γ

γ−1 l
γ−δ
1−γ
v

)2

{
γ

γ − 1
Ω

1
γ−1

∂Ω

∂i
l

γ−δ
1−γ
v + Ω

γ
γ−1

γ − δ

1 − γ

∂lv

∂i
l

γ−δ
1−γ−1
v

}

=
σgL(

1
1−α − 1)Ω

1
γ−1 l

γ−δ
1−γ
v

(1 − γ)

(

σ + Ω
γ

γ−1 l
γ−δ
1−γ
v

)2

{

γΨ
ξh − ξv

(1 + ξvi)2 + (δ − γ)Ψ
1 + ξhi

1 + ξvi

∂lv
∂i

lv

}

=
σδΓgLΩ

1
γ−1 l

γ−δ
1−γ
v

( 1
1−α − 1

)

(1 − γ)(1 + ξvi)2

(

σ + Ω
γ

γ−1 l
γ−δ
1−γ
v

)2

︸ ︷︷ ︸

(+)

{

(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi)
∂lv
∂i

γlv

}

.

(A.2.5)

Therefore, the sign of ∂g/∂i depends on the sign of
[

(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi) ∂lv/∂i
γlv

]

.

Differentiating (A.2.3) with respect to i to derive ∂lv/∂i (note that Ψ, Θ, and Λ are unrelated to i)
yields

{

[ΥΘ(1 + ξvi) + 1] +
1 − δ

1 − γ
Ω

1
γ−1 l

γ−δ
1−γ
v [ΥΛ(1 + ξvi) + Ω

−1]

}

︸ ︷︷ ︸

χ1>0

∂lv

∂i

=







(ξh − ξv)

[
γΥΛ + γΨ−1(1 + ξhi)

(1 − γ)(1 + ξhi)
+

1
Ψ(1 + ξhi)2

]

︸ ︷︷ ︸

χ2>0

−Λ[θξc(1 + α)(1 + ξvi) + Υξv]
︸ ︷︷ ︸

χ3>0







Ω
γ

γ−1 l
1−δ
1−γ
v

− Θ[θξc(1 + α)(1 + ξvi) + Υξv]
︸ ︷︷ ︸

χ4>0

lv

(A.2.6)
It is apparent that χ2 monotonically decreases, while χ3 and χ4 monotonically increases. Thus
for a positive χ1, ∂lv/∂i monotonically decreases as i increases. Therefore, ∂g/∂i eventually goes
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to negative(positive) on the condition of γ < (>)δ. To see whether ∂g/∂i > 0, one can substitute

(A.2.6) into
[

(ξh − ξv) + (δ − γ)(1 + ξvi)(1 + ξhi) ∂lv/∂i
γlv

]

to show that

(
∂g

∂i

)

i=0
> 0

⇔ (ξh − ξv) + (δ − γ)







Ψ
γ

γ−1 l
γ−δ
1−γ
v

γχ1
[(ξh − ξv)χ2 − χ3]−

χ4

γχ1







i=0

> 0

⇔ (ξh − ξv) >







(δ − γ)

(

χ4 + χ3Ψ
γ

γ−1 l
γ−δ
1−γ
v

)

γχ1 + (δ − γ)χ2Ψ
γ

γ−1 l
γ−δ
1−γ
v







i=0

> 0,

(A.2.7)

where lv is determined in the implicit function (A.2.3) evaluated at i = 0. Accordingly, a suffi-
ciently large (ξh − ξv) is a sufficient and necessary condition for a local maximum of function
g(i). It in turn implies that g increases as i becomes higher when i < i∗ and decreases as i

increases when i > i∗, where i∗ can be solved according to

(ξh − ξv) =

(δ − γ)

(

χ4 + χ3Ω
γ

γ−1 l
γ−δ
1−γ
v

)

γχ1 + (δ − γ)χ2Ω
γ

γ−1 l
γ−δ
1−γ
v

. (A.2.8)

In addition, if γ > δ, the condition (A.2.7) surely holds, because (ξh − ξv) > 0 while the RHS
of (A.2.7) turns to negative. Therefore, (∂g/∂i)i=0 > 0. However, when γ > δ, ∂g/∂i remains
positive as i increases. Therefore, under the condition of γ > δ, g is monotonically increasing in
i.

A.3 Calibration Strategy

In this section, given all other parameters and values, we illustrate the strategy to calibrate
σ and θ simultaneously to match the growth rate 1.25% and the standard time of employment
l = 0.33. Using the individual’s optimal decision on the labor-leisure choice (5), equilibrium final-
good production function (24), the per-capita consumption share of outputs (25), the production-
labor share of outputs (26), and ct = Ct/Lt, we obtain

l = 1 − θ(1 + α)(1 + ξci)ly.

Together with (A.2.2), we derive the first equation for calibration such that

l = 1 − θ(1 + α)(1 + ξci)(1 + ξvi)

{

Θlv + ΛΩ
γ

γ−1 l
1−δ
1−γ
v

}
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Given all other parameters, there are three unknowns {σ, θ, lv}, and another two equations are
needed for solution, which are (A.2.3) and (A.2.4), namely

lv[ΥΘ(1 + ξvi) + 1] + Ω
γ

γ−1 l
1−δ
1−γ
v [ΥΛ(1 + ξvi) + Ω

−1] = 1

and

g = gL



1 +

( 1
1−α − 1

)
σ

σ + Ω
γ

γ−1 l
γ−δ
1−γ
v



 .

Finally, we have three equations to pin down the above three unknowns.
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