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Abstract

This paper proposes a class of parametric correlation models that apply a two-
layer autoregressive-moving-average structure to the dynamics of correlation matrices.
The proposed model contains the Dynamic Conditional Correlation model of Engle
(2002) and the Varying Correlation model of Tse and Tsui (2002) as special cases and
offers greater flexibility in a parsimonious way. Performance of the proposed model
is illustrated in a simulation exercise and an application to the U.S. stock indices.
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1 Introduction

Modeling the time-varying covariances between variables is an importance problem in
econometrics and empirical finance. An effective modeling strategy is to decompose the
covariance matrix into variances and correlations (Bollerslev (1990), Barnard et al. (2000)).
Univariate parametric (e.g. GARCH models of Engle (1982) and Bollerslev (1986)) or non-
parametric (e.g. Gaussian process as in Lan et al. (2017)) models are then fitted to the
component of variances while the correlation matrix is modeled separately. This paper
adopts this separation strategy and focuses on modeling the correlation matrix.

For multivariate economic and financial time series data, the family of multivariate
GARCH models has been a popular parametric tool to study their second order moments.
Two popular models of dynamic correlations in the multivariate GARCH family are the Dy-
namic Conditional Correlation (DCC) model of Engle (2002) and the Varying Correlation
(VC) model of Tse and Tsui (2002). Both models apply an autoregressive-moving-average
(ARMA) structure to either the correlation matrix itself or an auxiliary variable to ef-
fectively capture the dynamics of the correlations. A key advantage of these two models
is their parsimonious model structure which enables their scalability to large dimension
correlation matrices directly or after further extension (e.g. Engle et al. (2017)). Since
their introduction, various variants of the DCC and VC models have been proposed in the
literature to offer greater flexibility (e.g. Kwan et al. (2009), Cappiello et al. (2006), Aielli
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(2013)). See Bauwens et al. (2006) and Silvennoinen and Terasvirta (2008) for surveys of
multivariate GARCH models.

In this paper, we propose a class of generalized dynamic correlation (GDC) models to
unify and generalize the DCC and VC models. A two-layer ARMA structure is applied to
model the dynamics of the correlation matrix. At the bottom layer, an ARMA model for
an auxiliary matrix variable is used with the MA component being the outer product of
the vector of standardized residuals (demeaned and devolatilized data), while at the top
layer, an ARMA model for the correlation matrix is applied where the MA component is
the normalized auxiliary matrix variable from the bottom layer. This two-layer ARMA
structure is flexible and nests the DCC and VC models as special cases. Relative to the
DCC model, the GDC model applies a more flexible ARMA structure to the normalized
auxiliary matrix variable from the bottom layer to form the correlation matrix, while the
DCC model amounts to directly setting the correlation matrix equal to the normalized
auxiliary matrix variable. Compared with the VC model, the auxiliary matrix variable
to form the ARMA model for the correlation matrix is allowed to have a separate ARMA
structure in the GDC model, rather than being modeled by a simple moving average with a
pre-determined window as in the VC model. Allowing for greater flexibility in the structure
of the correlation dynamics as in the GDC model could potentially offer empirical benefits
and be used by researchers to examine if parameter restrictions of particular forms are
suitable for the data series under study. The performance of the proposed GDC model is
analyzed in a simulation exercise and an application to the U.S. stock indices.

The remainder of the paper is organized as follows. Section 2 provides the details
of the GDC model. Estimation of the GDC model by the Markov chain Monte Carlo
(MCMC) method is discussed in Section 3. The simulation exercise is presented in Section
4. The application to the U.S. stock indices is provided in Section 5. Section 6 concludes.
Additional details are provided in the appendices.

2 The Model

Assume the n-by-1 vector of variables yt follows a multivariate normal distribution yt ∼
N(µt,Σt), t = 1, 2, ..., T . In cases where a fixed number or a Dirichlet process mixture
of multivariate normal distributions is used to relax the distributional assumption, the
proposed GDC model could be applied to the individual components in the mixture.

The mean µt could be modeled by an ARMA process or n independent Gaussian pro-
cesses nonparametrically. In this section, we assume that the mean µt is known and focus
on modeling the covariance matrix Σt. Each element in the covariance matrix Σt is decom-
posed as σij,t = ρij,t

√
σii,tσjj,t, where ρij,t is the correlation coefficient, i, j = 1, 2, ..., n.

The correlation matrix is denoted as Rt with its (i, j) element being ρij,t.
The variances σii,t, i = 1, 2, ..., n, in Σt could be modeled either parametrically or

nonparametrically (e.g. Lan et al. (2017)). In this paper, we model the variances as
independent GARCH processes:

σii,t = (1− αV,i − βV,i)σii + αV,i(yi,t−1 − µi,t−1)
2 + βV,iσii,t−1 (1)
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where the parameters αV,i and βV,i are both non-negative scalars and satisfy αV,i+βV,i ≤ 1.
The parameter σi,i is the unconditional mean of (yi,t−1 − µi,t−1)

2 for i = 1, 2, ..., n.
The correlation matrix Rt is modeled through a two-layer ARMA structure. At the

bottom layer, an auxiliary n-by-nmatrix variableXt is introduced and follows the equation:

Xt = S∗
X + AX ⊙ (ut−1u

′
t−1) + BX ⊙Xt−1 (2)

where the variable ut is a n-by-1 vector of the standardized residuals with the i-th element
being (yi,t − µi,t)/

√
σii,t. The parameters S∗

X , AX and BX are all n-by-n positive semi-
definite matrices. The operator ⊙ denotes the element-by-element multiplication or the
Hadamard product. The Schur product theorem ensures that the Hadamard product of two
positive semi-definite matrices remains a positive semi-definite matrix. It is straightforward
to see that the resulting auxiliary variable Xt is positive semi-definite given a starting value
of a positive semi-definite matrix X1.

Let X∗
t be the normalized Xt with the (i,j) element being:

X∗
ij,t =

Xij,t
√

Xii,tXjj,t

The top layer of the GDC model follows the equation:

Rt = (ll′ − AR −BR)⊙ SR + AR ⊙X∗
t +BR ⊙Rt−1 (3)

where l is a n-by-1 vector of ones. The parameters AR andBR are both n-by-n positive semi-
definite matrices and satisfy that (ll′ −AR −BR) is positive semi-definite. The parameter
SR is a n-by-n matrix and is the normalized unconditional mean of the outer product of
the standardized residual vector ut. It follows that the resulting correlation matrix Rt is
positive semi-definite with unitary diagonal elements given a starting value of a positive
semi-definite matrix R1 with unitary diagonal elements. If either AR, BR or (ll′−AR−BR)
is positive definite, the correlation matrix Rt is positive definite as well. See Ding and Engle
(2001) for detailed discussions of the properties of matrix ARMA structures as Equation
(3).

In practice, estimating the matrix parameters SX , AX , BX , AR and BR is likely to be
overwhelming for even modest size correlation matrices. If there is a prior partition of the
elements in ut into groups, individual parameters of these matrices within the same group
could be restricted to be identical to reduce the number of free parameters. Without such
partition, the scalar parameter version of the GDC model is:

Xt = ωXSX + αX(ut−1u
′
t−1) + βXXt−1

X∗
t = normalize(Xt)

Rt = (1− αR − βR)SR + αRX
∗
t + βRRt−1 (4)

where the parameters ωX , αX , βX , αR and βR are non-negative scalars and satisfy αR+βR ≤
1. The parameter SX is a n-by-n matrix and is the unconditional mean of the outer
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product of the standardized residual vector ut. Further parsimony can be achieved via the
unconditional-mean targeting for the auxiliary variable Xt:

ωX = 1− αX − βX

αX + βX ≤ 1 (5)

The scalar parameter version GDC model (Equation (4)) combined with the unconditional-
mean targeting (Equation (5)) is termed the GDC model hereafter for expositional con-
venience. An integrated version of the GDC model (IGDC hereafter) further imposes the
constraint αR + βR = 1 and reduces one more free parameter than the GDC model.

If one imposes the parameter restrictions αR = 1 and βR = 0 on Equation (4), the GDC
model is reduced to the DCC model of Engle (2002). On the other hand, the VC model of
Tse and Tsui (2002) is equivalent to imposing the following parameter restrictions on the
equation of the auxiliary variable Xt in Equation (4):

ωX = 0

αX =
1

M
1{lag≤M}

βX = 1 (6)

where the parameter M is a pre-determined positive integer and the indicator 1{lag≤M} = 1
if ut−j satisfies j ≤ M and 0 otherwise. Effectively the parameter restrictions imposed by
the VC model reduces the auxiliary variable Xt to be a M -period simple moving average
of the outer product utu

′
t.

The different model structures of the GDC, DCC and VC models imply interesting
differences in how information in the standardized residuals is incorporated to model the
dynamics of correlations. Table 1 shows a comparison of the GDC, DCC and VC models by
representing the ARMA structures in MA form. At the bottom layer of forming an auxiliary
matrix variable from historical standardized residuals, the VC model uses a simple moving
average with a pre-determined window while the GDC and DCC models apply an ARMA
structure and hence enable more flexible use of all historical standardized residuals. On
the other hand, at the top layer for the correlation matrix, the DCC model simply sets the
correlation matrix equal the contemporaneous normalized auxiliary matrix variable from
the bottom layer, while the GDC and VC models allows the correlation matrix to take an
ARMA structure and hence utilize both contemporaneous and past normalized auxiliary
matrix variables.

In terms of the number of free parameters for modeling the correlations, the DCC
model uses 2 parameters αX and βX , while the VC model uses 3 parameters αR, βR and
the window length parameter M , which is pre-determined by the researchers and is often
set to equal the dimension of the data vector yt. The GDC model uses 4 parameters αX ,
βX , αR and βR to model the correlation matrix and hence is at slight disadvantage in terms
of model parsimony as the cost of greater flexibility. The IGDC model achieves greater
parsimony by using 3 parameters αX , βX and αR at the expense of being less flexible than
the GDC model.

By recasting the DCC and VC models as restricted versions of the GDC framework, one
empirical strategy could be using the GDC model as the default and perform additional
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statistical tests, either by Bayesian or frequentist approaches, to assess the appropriateness
of the parameter restrictions the DCC or the VC model imposes in empirical applications
on a case by case basis. Given the empirical success of the DCC and VC models, it is
possible that the parameter restrictions they impose fit important empirical features of
economic and financial time series data and, in such cases, these restricted versions could
potentially outperform the unrestricted GDC model through greater model parsimony.

Table 1: Comparing the Structures of Correlation Models

Dynamics of Auxiliary Variable Xt Dynamics of Correlation Matrix Rt

(X∗
t is normalized Xt)

GDC At + αXut−1u
′
t−1 + ...+ αXβ

t−2
X u1u

′
1 Bt + αRX

∗
t + ...+ αRβ

t−2
R X∗

2

IGDC At + αXut−1u
′
t−1 + ...+ αXβ

t−2
X u1u

′
1 Ct + αRX

∗
t + ...+ αR(1− αR)

t−2X∗
2

DCC At + αXut−1u
′
t−1 + ...+ αXβ

t−2
X u1u

′
1 X∗

t

VC 1
M
(ut−1u

′
t−1 + ...+ ut−Mu′

t−M) Bt + αRX
∗
t + ...+ αRβ

t−2
R X∗

2
Note: The intercepts At, Bt and Ct are deterministic functions of the time index

t and starting values X1 and R1: At =
(

(1−αX−βX)(1−β
t−1

X
)

1−βX

SX + βt−1
X X1

)

,

Bt =
(

(1−αR−βR)(1−β
t−1

R
)

1−βR

SR + βt−1
R R1

)

and Ct equals Bt by replacing βR with

1− αR.

3 Estimation, Forecast and Model Comparison

Estimating the GDC and IGDC models does not require any specialized method beyond
the conventional ones for estimating the DCC and VC models. The maximum likelihood
approaches in Engle (2002) and Tse and Tsui (2002) could be directly applied to estimate
the GDC models. For the ease of finite-sample inference, we use the Bayesian Markov chain
Monte Carlo (MCMC) method to estimate the GDC models in this paper. A standard
Metropolis-within-Gibbs sampler is developed and is sketched below. The full details of
the algorithm can be found in Appendix A.

For convenience of developing the proposal distributions in the Metropolis-Hasings
(MH) steps, we reparametize the GDC model by γX = αX + βX , λX = αX

γX
, γR = αR + βR,

λR = αR

γR
and specify independent Beta prior distributions for γX , λX , γR and λR. Let θC

denote the vector collecting parameters for the model of the correlation matrix and p(θC)
denote their joint prior distribution.

Similarly for the GARCH models of the variances, the reparametization is γV,i = αV,i+
βV,i and λV,i =

αV,i

γV,i
for i = 1, 2, ..., n with independent Beta prior distributions. Let θV

denote the vector collecting parameters for the model of the variances and p(θV ) denote
their joint prior distribution.

Denote the estimation sample as YT containing y1, y2, ..., yT . The posterior distribution
of the model parameters is p(θC , θV |YT ). The Gibbs sampler iterates sampling over the two
conditional posterior distributions p(θC |θV , YT ) and p(θV |θC , YT ), which satisfy:

p(θC |θV , YT ) ∝ p(θC |θV )p(YT |θC , θV )
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and

p(θV |θC , YT ) ∝ p(θV |θC)p(YT |θC , θV )

Given the independent prior distributions, we further have p(θC |θV ) = p(θC) and p(θV |θC) =
p(θV ).

To sample from the conditional posterior distributions p(θC |θV , YT ) and p(θV |θC , YT ), a
MH step is applied for each individual parameter within θC and θV with a generic random-
walk proposal of a normal distribution truncated between 0 and 1. The details can be
found in Appendix A.

Given a large numberK of draws {θ(i)C , θ
(i)
V }Ki=1 from the posterior distribution p(θC , θV |YT ),

the predictive distribution for the next-period observation yT+1 is:

p(yT+1|YT ) =

∫

p(yT+1|θC , θV , YT )p(θC , θV |YT )dθCdθV

≈ 1

K

K
∑

i=1

p(yT+1|θ(i)C , θ
(i)
V , YT ) (7)

where the density function p(yT+1|θC , θV , YT ) is N(µT+1,ΣT+1) with the covariance matrix
ΣT+1 calculated by iterating forward the GARCH equations for the variances (Equation
(1)) and the GDC equations for the correlation matrix (Equations (4) and (5)).

To compare the performance of two correlation models M1 and M2, one could use
the predictive likelihoods over the test sample yT+1, yT+2, ..., yT+H under the two mod-
els p(yT+1, yT+2, ..., yT+H |YT ,M1) and p(yT+1, yT+2, ..., yT+H |YT ,M2). It is straightforward
to apply the decomposition p(yT+1, yT+2, ..., yT+H |YT ) =

∏H
h=1 p(yT+h|YT , yT+1, ..., yT+h−1)

where each component p(yT+h|YT , yT+1, ..., yT+h−1) can be calculated by Equation (7) with
expanded training samples. The difference between the log of the predictive likelihoods of
M1 and M2 is the log Bayes factor and is the tool used in this paper for model comparison.
A positive log Bayes factor suggests that the data favors the model M1. The larger the
log Bayes factor, the stronger evidence there is to favor the model M1 over the alternative
model M2.

4 Simulation Study

A simulation exercise is conducted to study the performance of the GDC models. The data
generating process (DGP) is a tri-variate normal distribution yt ∼ N(0,Σt) for t = 1, 2, ...,
200. The variances are generated by the GARCH process σii,t = 0.01+0.2y2i,t−1+0.7σii,t−1

with σii,1 = 0.1 for i = 1, 2, 3. The correlation matrix is Rt = 1{t≤70}R1 + 1{70<t≤135}R2 +
1{t>135}R3 with:

R1 =





1 −0.7 0.7
−0.7 1 0
0.7 0 1
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R2 =





1 0 0
0 1 0.7
0 0.7 1





R3 =





1 0.7 −0.7
0.7 1 −0.7

−0.7 −0.7 1





The (1,2) and (1,3) elements of the correlation matrix Rt are step-wise increasing and
decreasing functions of t respectively, while the (2,3) element of Rt is a step-wise concave
function of t. This setup of the correlation matrix is to test if the GDC models are able
to estimate the various shapes of the time-varying correlations based on modest size data
samples. We generate one set of data {yt}200t=1 from the DGP as the training sample for the
correlation models.

The mean µt in the models is assumed to be a constant and has the prior N(0, 100).
The priors for the parameters γX , γR, γV,1, γV,2 and γV,3 are specified as Beta(9, 1) and favor
values close to one. For the parameters λX , λV,1, λV,2 and λV,3, their priors are Beta(1, 4)
and favor values close to zero. We experiment plotting the likelihoods of the GDC and
IGDC models as functions of the parameter λR, conditional on plausible values of the
other model parameters, and find that the maximum often occurs at points towards one.
Therefore for the GDC and IGDC models, the prior of the parameter λR is Beta(9, 1) and
favors values close to one. For the VC model, the prior for λR is Beta(1, 4). The difference
in the prior λR between the GDC models and the VC model reflects the fact that the VC
model only captures the autoregressive dynamics at the top layer and hence its coefficient
βR on the AR term Rt−1 tends to be close to one while its coefficient αR on the MA term
X∗

t is smaller. On the contrary, the GDC models already apply an ARMA structure at the
bottom layer and hence the AR coefficient at the top layer would be much lower than the
case in the VC model.

The resulting priors for the parameters αX , αV,1, αV,2 and αV,3 have the 10th, 50th and
90th percentiles of about 0.02, 0.14 and 0.39, while the resulting priors for the parameters
βX , βV,1, βV,2 and βV,3 have the 10

th, 50th and 90th percentiles of about 0.49, 0.75 and 0.91.
For the parameter pair (αR, βR), the 10th, 50th and 90th percentiles are (0.65, 0.01), (0.83,
0.07) and (0.94, 0.20) respectively in the GDC model and are (0.02, 0.49), (0.14, 0.75) and
(0.39, 0.91) respectively in the VC model. These priors are deemed reasonably dispersed
over empirically plausible ranges.

The proposal distribution for the MH steps is a generic random-walk normal distribution
truncated between 0 and 1. The proposal distributions are tuned to result in acceptance
rates between 17% and 43%. The draws of all correlation models appear to stabilize quickly
after a couple of initial draws. We keep a total of 1,000 posterior draws after thinning
every 10-th draw for analysis after a burn-in of 200. The Geweke convergence test (Geweke
(1992)) is performed to check the convergence of the posterior draws. The details of the
Geweke test are provided in Appendix B. The resulting p-values of the Geweke convergence
tests are all greater than 5% and suggest no rejection of the null hypothesis of convergence.

7



0 50 100 150 200
−1

−0.5

0

0.5

1
True (solid), GDC (dashed)

0 50 100 150 200
−1

−0.5

0

0.5

1
True (solid), IGDC (dashed)

0 50 100 150 200
−1

−0.5

0

0.5

1
True (solid), DCC (dashed)

0 50 100 150 200
−1

−0.5

0

0.5

1
True (solid), VC (dashed)

Figure 1: The (1,2) Element of the Correlation Matrix: Simulation Study

The true values of the mean and GARCH parameters are all within their respective
estimated 95% credible intervals. The detailed parameter estimates are available upon
request. We focus on the estimates of the correlations. Figures 1, 2 and 3 plot the posterior
means of the (1,2), (1,3) and (2,3) elements of the correlation matrix estimated from the
GDC, IGDC, DCC and VC models along with their true values. The correlation estimates
from the four models are very close. The VC model appears to produce slightly more
volatile estimates of correlations than the other three models.

Table 2 shows the root mean squared errors (RMSE) of the three correlation estimates
from the four correlation models respectively. The GDC model generally has the smallest
RMSE for all the three correlation estimates, while the VC model tends to have the largest
RMSE. Nevertheless the differences in the RMSE measures are minimal across the four
models. We conclude that the four correlation models produce comparable performance in
this simulation exercise. Despite that all the four models are misspecified in this simulation
exercise, their correlation estimates are able to track the shapes of the true correlations
based on a relatively short sample of data, which is an encouraging indication of their
usefulness in empirical applications.

5 Empirical Application

As an empirical illustration, we apply the GDC models to daily log returns of the NASDAQ
composite, S&P500 and Dow Jones Industrial Average indices. All data are from the FRED
database of the federal reserve bank of St. Louis. The data sample is from January 3, 2017
to February 14, 2018 with a total of 282 daily observations. In estimation, the log returns
are scaled up by 100. Figure 4 plots the daily return data. Frequent simultaneous declines
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Figure 2: The (1,3) Element of the Correlation Matrix: Simulation Study
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Figure 3: The (2,3) Element of the Correlation Matrix: Simulation Study
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Table 2: Comparing the Correlation Estimates of Correlation Models

The (1,2) Element The (1,3) Element The (2,3) Element
of Correlation Matrix of Correlation Matrix of Correlation Matrix

GDC: 0.2398 0.2752 0.3285
IGDC: 0.2408 0.2819 0.3284
DCC: 0.2413 0.2829 0.3287
VC: 0.2662 0.2759 0.3757

Note: This table compares the root mean squared errors of the posterior means
of the correlation estimates from the GDC, IGDC, DCC and VC models relative
to the true values of the correlations.
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Figure 4: Daily Log Returns of NASDAQ Composite, S&P500 and Dow Jones Industrial
Average Indices (in Percent)

and spikes of the three daily return series can be observed in the data. In particular, all
three daily return series experienced 5- to 8-standard-deviation declines on February 5 and
8 of 2018. We estimate both the GDC and IGDC models for the stock index data, along
with the DCC and VC models for comparison. We model the mean process of the models by
a constant. The priors for the parameters are the same as those in the simulation exercise
of Section 4. We consider that these priors cover the empirically plausible ranges of the
parameters’ values while being reasonably dispersed. In the estimation, the truncated-
normal random-walk proposals are tuned to result in acceptance rates between 15% and
43% for all parameters. After a burn-in of 500 draws, we keep 20,000 subsequent draws
for analysis. The Geweke convergence tests of the posterior draws return p-values greater
than 5% and hence indicate no rejection of the null hypothesis of convergence.

Estimates of the means of the models are basically the sample average daily returns and
are not reported here. The estimates of the GARCH processes are very close in the three
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models. The posterior means of αV,i and βV,i, i = 1, 2, 3, are about 0.2 and 0.7 respectively
with 90% credible intervals of about (0.01, 0.50) and (0.40, 0.95). Details of the estimates
of the means and GARCH parameters in the models are available upon request.

We focus on the estimates of the correlation models. Table 3 provides the posterior
means of the correlation model parameters along with their 90% credible intervals. Figures
5 and 6 compare the posterior distributions of the parameters in the four correlation models.
For the IGDC model, posterior draws of βR is obtained by calculating 1 − αR. There is
considerable uncertainty in the parameter values reflected by their relatively wide credible
intervals. The posterior distributions of the parameters βX and αR in the IGDC model
appear to have bimodal shapes. For the parameter βX in the IGDC model, the two modes
appear to be one slightly below 0.5 and the other one slightly above 0.5, while the two
modes for αR in th IGDC model appears to be one slight above 0.5 and the other one close
to one. Between the GDC and IGDC models, the IGDC model estimates tend to have
a smaller MA coefficient αX at the bottom layer and a larger MA coefficient αR and AR
coefficient βR at the top layer than the GDC model estimates. The estimated persistence
level αR + βR of the top layer in the GDC model is well below one.

Table 3: Parameter Estimates of Correlation Models
Posterior Mean 5-th Percentile 95-th Percentile

GDC:
αR 0.52 0.23 0.85
βR 0.18 0.01 0.46
αX 0.26 0.02 0.64
βX 0.48 0.11 0.82
IGDC:
αR 0.67 0.34 0.97
αX 0.16 0.01 0.47
βX 0.47 0.11 0.83
DCC:
αX 0.08 0.01 0.20
βX 0.54 0.15 0.86
VC:
αR 0.06 0.01 0.14
βR 0.55 0.23 0.87

Note: This table provides the posterior means and the 90% credible intervals of
the parameters in the correlation component of the GDC, IGDC, DCC and VC
models. The data is the daily log returns of the NASDAQ composite, S&P500
and Dow Jones Industrial Average indices from January 3, 2017 to February
14, 2018 with a total of 282 daily observations. The data are scaled by 100.
For the VC model, the length of the moving average window is 3.

The DCC model estimates have a smaller MA coefficient αX than the IGDC model
estimates. But the estimated AR coefficient βX is higher in the DCC model than the
IGDC model. The estimated persistence levels αX + βX of the bottom layer in the two
models are very close and are both below that of the GDC model.

11



0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

α
X
: DCC(solid),GDC (dashed)

0 0.5 1
0

0.005

0.01

0.015

0.02

β
X
: DCC(solid),GDC (dashed)

0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

α
X
: DCC(solid),IGDC (dashed)

0 0.5 1
0

0.005

0.01

0.015

0.02

β
X
: DCC(solid),IGDC (dashed)

Figure 5: Posterior Distributions of Correlation Model Parameters: Bottom Layer
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Figure 6: Posterior Distributions of Correlation Model Parameters: Top Layer
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Figure 7: Estimated Correlation Between the Daily Returns of NASDAQ Composite and
S&P500 Indices

Comparing with the VC model, the estimated persistence level αR + βR of the top
layer in the GDC model is higher than the VC model. The GDC model has a higher
MA coefficient αR than its AR coefficient βR while the opposite is true in the VC model
estimates. A possible reason, as discussed in Section 4, is that the GDC model already
applies an ARMA structure at the bottom layer and hence the persistence level at the
top layer could be lower than the VC model as the bottom layer of the GDC model helps
absorb some persistence in the correlations.

Figures 7, 8 and 9 plot the posterior means of the correlations between the pairs
(NASDAQ, S&P500), (NASDAQ, DowJones) and (S&P500, DowJones) estimated from
the GDC, IGDC, DCC and VC models. The correlation estimates form the GDC, IGDC
and DCC models are very close with inter-model correlations above 0.95, while the corre-
lation estimates from the VC model are noticeably different than the other three models.
In particular, for the date of February 5, 2018 when all three return series had extreme de-
clines, the GDC, IGDC and DCC models generate noticeably higher correlation estimates
than previous days while the correlation estimates from the VC model appear less respon-
sive. Among the GDC, IGDC and DCC models, the correlation estimates from the DCC
model tend to have more extreme spikes than the two GDC models, while the two GDC
models tend to produce sharper declines in correlation estimates than the DCC model.
Nevertheless the difference in the correlation estimates between the GDC models and the
DCC model is small.
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Figure 8: Estimated Correlation Between the Daily Returns of NASDAQ Composite and
Dow Jones Industrial Average Indices
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Figure 9: Estimated Correlation Between the Daily Returns of S&P500 and Dow Jones
Industrial Average Indices
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5.1 Predictive Likelihoods and Model Comparison

The predictive likelihoods discussed in Section 3 are used to compare the performance of
the GDC, IGDC, DCC and VC models. The test sample is from January 2 to February
14, 2018 with a total of 31 observations. A recursive out-of-sample forecast exercise is
performed over the test sample. We first use the sample from January 3, 2017 to December
29, 2017 to estimate the four models and calculate the one-day-ahead predictive likelihood
(Equation (7)) for the first observation in the test sample, i.e. January 2, 2018. Next the
training sample is expanded to include the data of January 2, 2018 and all the four models
are re-estimated based on the expanded training sample. The one-day-ahead predictive
likelihood for the second observation in the test sample (January 3, 2018) is calculated.
This procedure is iterated forward and produces a 31-by-1 vector of the one-day-ahead
predictive likelihoods over all the observations in the test sample.

The cumulative log Bayes factors for the GDP and IGDC models against the DCC and
VC models are calculated based on the one-day-ahead predictive likelihoods as discussed
in Section 3. One unique pattern of the test sample is the unusually sharp declines (5
to 8 standard deviations away from historical average) of all three stock index returns on
February 5 and 8 of 2018 and, to a less extent (3 to 4 standard deviations away from
historical average), on February 2 of 2018. The one-day-ahead predictive likelihoods from
all the four correlation models deteriorate significantly on these three days, reflecting the
inadequacy of the multivariate normality assumption for stock returns on extremely volatile
periods. To isolate the impact of these three days of extreme stock returns on model
comparison, we discuss the patterns of the cumulative log Bayes factors with and without
the three unusual days.

Figure 10 plots the cumulative log Bayes factors along with the daily log returns in
the full test sample. The sharp declines of the stock returns on February 2, 5 and 8 of
2018 are evident in the plot. For the pair of the GDC and IGDC models, the GDC model
appears gradually accumulating gains in Bayes factor over the IGDC model until February
1 of 2018 right before the sharp decline of the stock returns on February 2 of 2018 and
deteriorates thereafter. One possible reason could be that the GDC model puts a positive
weight on the constant matrix SR at the top layer and hence might dampen the impact of
the extreme returns on correlations relative to the IGDC model.

The advantage of the GDC and IGDC models relative to the VC model is evident in
the right bottom panel of Figure 10. Both the GDC and IGDC models steadily accumulate
gains in Bayes factors over the VC model. Relative to the DCC model, the IGDC model
shows largely equal predictive performance until after Feb 8 of 2018, the last of the three
days of extreme stock returns, and begins to accumulate gains in Bayes factor thereafter.
The performance of the GDC model relative to the DCC model is more mixed. Similar to
its pattern against the IGDC model, the GDC model appears gradually accumulating gains
in Bayes factor over the DCC model until February 1 of 2018 and deteriorates during the
period of extreme stock returns from February 2 to 8 of 2018. After these days of extreme
stock returns, the relative performance of the GDC model against the DCC model appears
stabilized and resumes its upward trend in Bayes factor. As discussed in comparing the
GDC and IGDC models, the GDC model might adapt less quickly to extreme returns than
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Figure 10: Cumulative Log Bayes Factor: Stock Indices
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Figure 11: Cumulative Log Bayes Factor: Stock Indices (Test Sample Excluding February
2, 5 and 8 of 2018)

the DCC model due to its positive weight on the constant matrix SR at the top layer.
Figure 11 shows the daily log stock returns and cumulative log Bayes factors of the GDC

models in the test sample excluding the three days of extreme stock returns (February 2, 5
and 8 of 2018). That is, the cumulative log Bayes factors are calculated based on only the
one-day-ahead predictive likelihoods in the days of the test sample excluding the three days
of extreme stock returns. The purpose is to isolate the impact of the extreme stock returns
and to compare the models’ predictive performances in more “normal” time periods. The
patterns of the relative performance between the pairs of GDC vs. IGDC, GDC/IGDC vs.
VC and IGDC vs. DCC remain largely the same as in Figure 10. For the pair of GDC
vs. DCC, the log Bayes factor shows a generally upward trend favoring the GDC model
throughout the test days.

6 Conclusion

In this paper, we propose a class of GDC models that applies a two-layer ARMA structure
to model the dynamics of a correlation matrix. The popular DCC and VC models can be
recast as special cases of the proposed GDP model. The greater flexibility of the GDC
model is obtained in a parsimonious way. In the scalar version of the GDC model with
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unconditional mean targeting, there are two more parameters than the DCC model, while
in the integrated version of the GDC model, there is only one more parameter than the DCC
model. Therefore the GDC model could be implemented in empirical applications without
significantly increasing the computation burden and model complexity, while allowing for
greater flexibility than the existing DCC and VC models. Performance of the GDC models
is illustrated by a simulation exercise and an empirical application to the U.S. stock indices.

Appendix A: Details of the MCMC Algorithm

Let φ be a generic scalar variable representing an arbitrary parameter in θC (γR, λR, γX ,
λX) or θV (γV,i, λV,i, i = 1, 2, ..., n). The MH step for φ is as follows. Given its i-th draw
φ(i), a proposal φ∗ is simulated from the truncated normal distribution N(φ(i), τ)1{0<φ∗<1}.
The (i+1)-th draw φ(i+1) equals φ∗ with the probability min(1, x) and φ(i) otherwise, where

x is
p(φ∗|Y,θ

−φ)TN(φ(i)|φ∗,τ)

p(φ(i)|Y,θ
−φ)TN(φ∗|φ(i),τ)

, TN(·|z, τ) is the density function of a normal distribution with

mean z and variance τ truncated between 0 and 1 and p(φ|Y, θ−φ) is the density function
of the parameter φ conditional on the data and all other model parameters θ−φ. The
posterior density p(φ|Y, θ−φ) is calculated by the Bayes rule p(φ|Y, θ−φ) ∝ p(φ)p(Y |φ, θ−φ).
The prior p(φ) is discussed in Section 3. To calculate the likelihood p(Y |φ, θ−φ), one could
iterate the GARCH equations (Equation 1) and the GDC equations (Equation 4 and 5) to
calculate the covariance matrix Σt. The mean µt of the data yt is assumed to be a vector of
constants and is conveniently sampled from univariate regressions of each variable in yt on
a constant, conditional on draws of the covariance matrix Σt. The likelihood p(Y |φ, θ−φ)
can be calculated as the product of multivariate normal density functions with mean µt and
covariance matrix Σt. To avoid numerical overflow, log likelihoods are calculated instead.
Given draws of θC and θV , one could obtain draws of αR, βR, αX , βX , αV,i, βV,i, i = 1, 2,
..., n by the formula α = γλ and β = γ − α. It should be noted that, for the GARCH
parameters, we sample them as n univariate GARCH models, which is less efficient than
utilizing the correlations between the n data series but is more convenient for use in large
dimension applications. Also note that the parameters SX is calculated as the sample
average of the outer product of the standardized residual vector ut and the parameter SR

is the normalized SX .

Appendix B: Geweke Test of Convergence

The Geweke test is first proposed in Geweke (1992) as a practical and convenient method
to check the convergence of simulation draws. See Chib (2001) for further discussions of
convergence tests in general.

The full sample of the draws of a given parameter is divided into three parts: the
first 10%, the second 50% and the final 40% of the draws. The intuition is that, if
the draws are converged, the first subsample and the final subsample should be approxi-
mately independent. By the central limit theorem, the average of the draws in a subsample
should follow a normal distribution with the variance calculated by a heteroscedasticity-
and-autocorrelation-consistent (HAC) method to account for the possible serial correlations
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in the draws. It is straightforward to derive that the difference of the averages in the first
and the final subsamples should follow a normal distribution with zero mean and the vari-
ance being the sum of the variances in the two subsamples, which is the statistic to perform
the Geweke test. If the value of the statistic lies in the extreme tails of its distribution,
we conclude that the draws are not converged. Otherwise, we do not reject the hypothesis
that the draws are indeed converged. In this paper, we use the Newey-West HAC method
to calculate the variances of the subsamples of draws with the truncation lag being the
integer part of 4(T/100)2/9 where T is the number of draws in the subsample.
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