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Abstract  

 
The aim of this paper is to cast light on the relationship between sustainable 

development environmental policy and renewable energy use. We utilize a dynamic 

GMM approach over a panel of 34 European Union (EU) countries spanning the 

period 2005-2013. Our findings reveal a positive monotonic relationship between 

development and pollution. Energy saving positively affects environmental 

degradation, while energy intensity increases air pollution. Our findings imply 

important policy implications to policy makers toward sustainability. Despite the fact 

that the Europe “20-20-20” climate and energy package strategy seems to be 

achieved, the recently adopted Energy Roadmap 2050 must be updated on regular 

basis in order to be effectively implemented and monitored by government officials 

and firms’ stakeholders. Therefore, we argue that EU countries must increase the use 

of new technology and renewable energy capacity in order to align environmental 

policies towards more efficient energy use and sustainable development among the 

EU periphery.  
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1 Introduction  

 

In 2007 all EU member states adopted a new law intended to reduce at least 20% 

greenhouse gas emissions and to achieve 20% share of renewable energies in EU 

energy consumption by 2020. Within this framework, the European Commission (EC) 

aims to achieve the “20-20-20” targets, including a 20% reduction in EU greenhouse 

gas emissions from 1990 levels, a raise in the share of EU energy consumption 

produced from renewable resources to 20% and a 20% improvement in the EU's 

energy efficiency.   

The motivation of this paper stems from the relationship between sustainable 

development and enviromental policy regarding pollution. It is mainly based on the 

Environmental Kuznets Curve hypothesis (Kuznets 1955; Shafik and 

Bandyopandhyay 1992; Grossman and Krueger 1995; Holtz-Eakin and Selten 1995)2, 

which states that pollution rises with income at low income levels (degradation of 

environmental quality), but at a higher income level a turning point is reached and 

further development leads to lower pollution (Panayotou, 1995). An opposite line of 

reasoning states that the relationship between pollution and development is 

monotonically rising (Cole, 1999).   

This paper empirically explores the relationship between environmental pollution, 

development and renewable energy consumption. It also explores the effect of 

environmental efficient indicators on environmental pollutants and draws valuable 

policy implications towards energy efficiency targets of Europe “20-20-20” strategy.3 

For these purposes we utilize two pooled time-series cross-section yearly (panel) data 

sets for EU34 countries (EU28, 5 candidates and Norway) and EU28 countries 

                                                   
2 See also, inter alia, Dinda (2004), Richmond and Kaufmann (2006), Lopez-Menendez et al. (2014). 
3 In 2014 EU presented the new key achievements of its energy and climate policy framework (EU 

Energy Roadmap 2050, COM 2014, 15 final, p. 2). In this paper we focus on the “20-20-20” strategy 

on environmental pollution and growth.  

http://ec.europa.eu/energy/en/topics/energy-efficiency
http://ec.europa.eu/europe2020/index_en.htm
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covering the period from 2005 to 2013 and we employ Dynamic Panel Generalized 

Method of Moments (DPGMM) approaches to examine clustered patterns of 

environmental policy and sustainable development.  

This paper contributes to the existing literature through various channels. On the 

one hand we extent the literature by exploring the effect of various energy efficiency 

indicators, such as the share of renewable energy in gross final energy consumption 

(RENWES), the electricity generated from renewable sources of gross electricity 

consumption (RENWEG) and energy saving from primary energy consumption (ES), 

on four different environmental pollutants, Sulphur Oxides (SO2), Nitrogen Oxides 

(NOX), Non-methane volatile organic compounds (NMVOC) and Greenhouse Gas 

Emissions (CO2 equivalent, GGE). On the other hand, we utilize Dynamic Panel 

approaches such as SYS and DIF – GMM methodologies.4  

The empirical results reveal that development and environmental pollution 

exhibit a positive monotonic relationship, while renewable sources of energy 

negatively affects environmental policy towards pollution. The more the renewable 

energy we use the less the air pollution. Energy saving positively affects pollution, 

while energy intensity contributes to more air pollution.       

The remainder of this paper is organized as follows. Section 2 reviews the 

literature and section 3 presents the data and descriptive statistics of the employed 

variables. Section 4 presents the empirical models and the used methodology and 

section 5 reports the empirical results. Lastly, section 6 discusses the empirical results 

and section 7 concludes and provides some policy implications that emerge from the 

empirical analysis.   

                                                   
4 Lopez Menendez et al. (2014) examine the effect of energy efficient indicators on environmental 

pollutants by including renewable energy sources as explanatory variables in the empirical models 

within a static environment (panel data models with fixed and random effects). 
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2 Literature Review  

 

The effect of energy efficient indicators and development on environmental 

pollutants has been studied for the European Union and its subsequent members.5 The 

empirical results show a considerable heterogeneity between environmental and 

economic development variables. The main source of the divergence may be linked to 

the rate of productivity and nations’ specific characteristics.  

Particularly, at the EU level,6 Alvarez, Marrero and Puch (2005) analyze EU15 

countries, between 1990 and 2000 and reveal that air pollution, NOX & SO2, 

decreased in the 1990’s in most EU countries. However, the empirical results 

concerning CO2 reveal that income development does not play a critical role in 

environmental pollution. Richmond and Kaufmann (2006) state a positive monotonic 

relationship between development and carbon emissions, but there exists an inverted 

U-shaped relationship between the two of them if the effects of energy mix are 

included in the econometric model. Markandya et al., (2006) examine 12 Western 

European countries over a period of more than 150 years (1850-2001) and find an 

inverted U-shaped relationship between environmental pollution and income 

development. However, when they incorporate into their analysis environmental 

regulation (1972 - 2001) the empirical results show a less pronounced inverted U-

shaped relationship between the two variables.   

Coondoo and Dinda (2008) explore the relationship between the inter-country 

income inequality and CO2 emissions for a sample of 88 (22 EU) countries over the 

period 1960 – 1990. The empirical results confirm that inter country income 

                                                   
5 In this paper we focus on the presentation of literature review concerning the research within the EU. 

For a survey of the literature on an empirical and theoretical perspective see Bernard et al. (2014). For 

relevant studies prior to 2010 see Lopez-Menendez et al. (2014), Markandya et al., (2006), Galeotti et 

al. (2009), Kukla-Gryz (2006), Dinda (2004) and Stern (2004) Dögl and Behnam (2015). Panayotou 

(2000) has also given a critical overview of the research done from 1992 to 2000. 
6 See also Table A1 in the APPENDIX.  
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inequality has a significant effect on the mean emission for all the sample countries. 

Also, evidences in favour of existence of EKC hypothesis have been found for EU for 

the period 1966 onwards. Lee at al. (2009) explores the validity of EKC hypothesis 

for a sample of, inter alia, 19 EU countries over the period 1960 – 2000. They find 

evidence of the EKC hypothesis for CO2 emissions in a global data set, middle-

income, American and European countries. Atici (2009) confirms the existence of 

EKC relationship in Bulgaria, Hungary, Romania and Turkey, since CO2 emissions 

per capita decrease from 1980 to 2002 as the per capita GDP increases. The author 

also states that energy use positively affects environmental pollution, while 

international openness of the economies has not facilitated the degree of it.   

Marrero (2010) uses data on EU24 countries over the period from 1990 to 2006 

and concludes that the EKC hypothesis does not hold for the EU24 countries. 

Acaravci and Ozturk (2010) examine EU19 countries over the period from 1965 to 

2005 and state that the validity of EKC hypothesis holds only for Denmark and Italy. 

Jaunky (2011) uses the Blundell–Bond system generalized methods of moments 

(GMM) to test the EKC hypothesis for 36 high-developed (income) countries for the 

period 1980–2005 The author supports the existence of the EKC hypothesis for Malta, 

Oman, Portugal and the United Kingdom.  

Iwata et al. (2011) explore a panel data analysis of 28 countries (17 EU countries) 

over the period 1960 – 2003 and show that CO2 emissions increase monotonically in 

all countries under scrutiny, the effects of nuclear energy on CO2 emissions are 

significantly negative and CO2 emissions decrease and increase with income in OECD 

and non-OECD countries respectively. Donfouet et al. (2013) use data from EU 

countries over the period of 1961-2009 and present evidences regarding spatial EKC 

hypothesis. The authors find evidence of an inverted U-shaped relationship between 
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CO2 emissions and development (per capita income) after controlling for spatial 

interdependence. Danaeifar (2014) uses spatial panel data model for 30 EU countries 

over the period of 1992-2008. The results confirm the existence of an inverse U-

shaped relationship between development, global CO2 emissions and local aerosols 

pollutants. Baycan (2013) examines the EKC relationship in EU25 countries over the 

period from 1995 to 2005. The empirical results show a statistically significant U-

shaped EKC relationship between each of the air pollutants employed and per capita 

income development for EU15 and EU25 member countries.  

Lopez-Menendez et al. (2014) explore EU27 countries over the period from 1996 

– 2010. They use fixed and random effects panel models with additional explanatory 

variables related to the high renewable energy intensity (the proportion of electricity 

generated from renewable sources) in order to investigate the relationship between 

CO2 emissions and development (per capita GPD). The empirical results show 

evidences of inverted-N shaped curve for the EU27 countries. However, the 

consideration of specific country effects in the empirical model lead to the conclusion 

that only 4 countries (Cyprus, Greece, Slovenia and Spain) exhibit an inverted U – 

shaped relationship, while 11 countries correspond to increasing patterns, 9 countries 

show a decreasing path and the remaining 3 countries lead to U-shaped curves. Chang 

et al. (2014) show that increased carbon emissions resulting from economic 

development cannot be outweighed by technological improves in environmental 

protection at different levels of economic development. The authors also state that 

industrial structure of economies under scrutiny plays a crucial role in lowering the 

degree of carbon emissions. Since this is associated with international activity and 

energy use, policy makers should evaluate all of them together in order to reduce 

environmental pollution.   
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Mazur et al. (2015) also use fixed and random effects panel models in order to 

explore the EKC hypothesis for a panel data on EU28 countries during the period 

1992–2010. The empirical results do not support strong evidences in favor of EKC 

hypothesis within EU28 countries. However, they find evidences in favor of an 

inverted U-shaped relationship for EU18 countries. Ajmi et al. (2015) consider annual 

data from 1960 to 2010 on per capita for energy consumption, economic development 

(real GDP per capita) and CO₂ emissions for the G7 countries excluding Germany 

and claim the non - existence of EKC hypothesis since they find evidences of cubic 

N-shaped (United Kingdom) and inverted N-shaped (Italy and Japan) relationships 

between CO₂ emissions and real GDP per capita. Apergis (2016) uses panel and time-

series based methods of cointegration for a dataset of EU13 countries from 1960 to 

2013. The empirical results are mixed both under panel or time-series techniques. 

However, when quantile cointegration is used the results support the validity of EKC 

hypothesis in the majority of the countries. Rodriguez et al. (2016) analyses a 

balanced panel data of EU13 countries, Japan and US over the period 1979-2004. 

They find a positive, but marginal decreasing relationship between CO2 emissions and 

development (GDP per capita) and a relative decoupling between two variables.7 

Halkos and Polemis (2017), argue that local (NOX per capita emissions) and 

global (CO2 per capita emissions) pollutants redefine the EKC hypothesis when 

financial development indicators are taken into consideration. They find that in the 

case of global pollution an N-shape relationship is evident both in static and dynamic 

framework with a very slow adjustment. Fotis and Pekka (2017) show that economic 

growth positively affects environmental pollutants within Eurozone. In a recent study 

Morse (2018) explores the relationship among environmental performance, as 

                                                   
7 Table A2 in APPENDIX presents the main research regarding the effect of energy efficient indicators 

and Growth on environmental pollutants at the country level within EU. 
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represented by Environmental Performance Index (EPI2016) 8 , development 

(GDP/capita) and income inequality (Gini coefficient) over the period from 1995 to 

2014. In general, the empirical results suggest that environmental performance 

increases with increasing development and declining Gini coefficients (less 

inequality). 

3 Data and sample statistics 
 

In this paper we use data from 2005 to 2013 to estimate the pure effects of “20-

20-20” targets and development on environmental pollution. The econometric 

estimations are based on two pooled time-series cross-section yearly (panel) data sets 

for EU34 countries (EU28, 5 candidates and Norway) (T = 9, N = 34) and EU28 

countries (T = 9, N = 28) covering the above mentioned period. The samples are from 

the Eurostat database.  

The reason for using panel data sets so as to investigate possible cointegrating 

vectors instead of time series analysis is that residual based cointegration tests are 

known to have low power and are subject to normalization problems. Since economic 

time series are typically short, it is desirable to exploit panel data in order to draw 

sharper inferences (Christopoulos and Tsionas, 2003, Polemis and Dragoumas, 2013). 

Besides, cross-section data suffers from assuming that the same characteristics (i.e. 

structure of the markets, degree of regulation, etc.) apply to all national economies, 

while there are difficulties in obtaining reliable time-series data of sufficient length.  

Proxies of Pollution, which is the dependent variable of this study, are presented 

by SO2, NOX and NMVOC, that is, Sulphur Oxides, Nitrogen Oxides and non-

methane volatile organic compounds correspondingly. GGE presents Greenhouse Gas 

                                                   
8 Mukherjee and Chakraborty (2013) use Environmental Performance Index (EPI2008) to explore the 

relationships among environmental quality, human and economic development and political and 

governance regimes through a cross-country framework of 146 countries in 2008. 
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Emissions (CO2 equivalent). The energy efficiency targets are the share of renewable 

energy in gross final energy consumption ( RENEWS), which denotes an indicator 

calculated on the basis of data covered by Regulation (EC) No 1099/2008 (OJ L 304, 

14.11.2008). 9  This indicator may be considered as an estimate of the indicator 

described in Directive 2009/28/EC (OJ L 140, 5.6.2009, p. 16–62).10 The indicator of 

electricity generated from renewable sources as a percentage of gross electricity 

consumption ( RENEWG ) is the ratio between the electricity produced from 

renewable energy sources (electricity generation from hydro plants, excluding 

pumping, wind, solar, geothermal and electricity from biomass/wastes) and the gross 

national electricity consumption (total gross national electricity generation from all 

fuels (including autoproduction), plus electricity imports, minus exports) for a given 

calendar year. It measures the contribution of electricity produced from renewable 

energy sources to the national electricity consumption. 

The indicator of energy saving for monitoring progress towards “20-20-20” 

targets  ( ESlog ) is implemented by Directive 2012/27/EU on energy efficiency (OJ L 

315, 14.11.2012, p. 1–56).11 The latter establishes a set of measures to help the EU 

reach its 20% energy efficiency target by 2020. Under the Directive, all EU member 

states are required to use energy more efficiently at all stages of the energy chain from 

its production to its final consumption. The indicator of energy intensity (MI) is the 

ratio between the gross inland consumption of energy (the sum of the gross inland 

consumption of five energy types: coal, electricity, oil, natural gas and renewable 

                                                   
9 Regulation (EC) No 1099/2008 of the European Parliament and of the Council of 22 October 2008 on 

energy statistics. 
10 Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the 

promotion of the use of energy from renewable sources and amending and subsequently repealing 

Directives 2001/77/EC and 2003/30/EC. 
11 Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy 

efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 

2006/32/EC. 

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012L0027
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energy sources) and the Gross Domestic Product (GDP)12 for a given calendar year. It 

is measured in kgoe per 1 000 EUR and measures the energy consumption of an 

economy and its overall energy efficiency (Shahbaz et al. 2013; Martínez-Zarzoso et 

al. 2007).13 

Real GDP growth rate represents development. It is the final result of the 

production activity of resident producer units. It is defined as the value of all goods 

and services produced less the value of any goods or services used in their creation. 

The squared real GDP growth rate is a measure that aims to capture the changes in 

environmental indicators trend across national economies. It captures changes in 

production and consumption patterns which affect the impact of potential real GDP 

growth rate on environmental and comprises a measure of the economic activity. We 

use the percentage ratio of real GDP growth rate rather than other measures of income 

utilised in previous literature (such as income in physical units) since it allows 

comparisons of the dynamics of economic development both over time and between 

economies of different sizes and the computed volume changes are imposed on the 

level of a reference year and therefore development rate is not inflated by price 

movements (Table 1).14  

[Insert Table 1 about here] 

Figures 1 and 2 present mixed evidences concerning the relationship between 

environmental pollutants and development rate for the EU34 and EU28 countries 

during the period 2005-2013. Visual inspection of all figures supports a monotonic 

relationship between the variables under scrutiny. The majority of the sample 

countries exhibit high and low levels of positive development rate with low or at least 

                                                   
12 The GDP figures are taken at chain linked volumes with reference year 2005. 
13 All the environmental pollutants and control variables consist of emissions from all sectors of the 

country’s territory under scrutiny. 
14 See Fotis et al. (2017). 
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modest levels of environmental pollutants. These countries are Belgium, Czech 

Republic, Denmark, Estonia, Ireland, Croatia, Cyprus, Latvia, Lithuania, 

Luxembourg, Hungary, Malta, Austria, Slovenia, Slovakia, Finland, Sweden, the UK 

and Norway.  

[Insert Figure 1 about here] 

However, there exist a group of countries which exhibit a positive monotonic 

relationship between environmental pollutants with respect to development rate. The 

group of these countries is divided into two samples: the first sample consists of 

countries associated with high levels of development such as Poland, Bulgaria and 

Romania and the second group of countries consists of countries associated with low 

levels of economic growth such as Germany, Netherlands, France and Spain. 

Lastly, there exist 3 countries (Greece, Portugal and Italy) which exhibit negative 

real GDP growthdevelopment rates. Greece shows an almost double level of 

environmental pollutants with respect to the average level of EU34 countries and Italy 

exhibits the same level of environmental pollutants with the corresponding average 

level. On the contrary, Portugal exhibits low level of environmental pollutants with 

respect to the corresponding average value, but its development rate is much higher 

than the corresponding level in Italy and Greece. 

[Insert Figure 2 about here] 

The aforementioned figures 1 and 2 reveal that for some sample countries 

pollution shows a stable path with respect to their economic development. In other 

words, pollution increases in the initial level of growth, but remains at the same levels 

as growth continues to increase. For other countries pollution increases in the initial 

levels of growth and continues to increase as growth increases. Besides, we cannot 

find any point of return as the research in favor of EKC hypothesis claims.  
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Figure 3 presents the relationship between energy intensity (MI) and devlopment 

rate. It is evident from the aforementioned figure that there exist a group of countries 

that exhibit a positive monotonic relationship between MI and development, but also 

there exist a group of countries which reveal stable levels of energy intensity as 

development rate changes. This latter group of countries shows lower levels of 

economic growth than the former group of countries.  

[Insert Figure 3 about here] 

Four countries with the highest levels of development (Bulgaria, Czech Republic, 

Poland and Romania) exhibit high levels of energy intensity. As a matter of fact all of 

them show higher levels of MI than the corresponding mean level of EU34 and EU28 

countries, while Bulgaria exhibits the highest level of energy intensity among all the 

countries under scrutiny. 

4 Empirical framework and methodology  

4.1 Empirical framework  

 
Most of the researchers explore the relationship between pollution, development 

and energy efficiency indicators by estimating reduced-form models between per 

capita pollutant emissions, per capita real GDP and the squared-cubic values of per 

capita real GDP (Richmond and Kaufmann, 2006; Stern, 2014; Morse 2018), and per 

capita indicators of energy efficiency. An example of a cubic function is the semi - 

logarithm equation 1: 

titititititiiti XIIIEE ,,4

3

.3

2

,2,11,, logloglog                               (1) 
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Following standard notation t stands for the period and i stands for the countries under 

scrutiny.  
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LogE  denotes the vector of the environmental pollutants at 

period t-1. 2LogSO  is the natural logarithm of sulphur oxides emissions, XNOlog  is 

the natural logarithm of  nitrogen oxides emissions, NMVOClog  is the natural 

logarithm of  non-methane volatile organic compounds emissions and GGElog  is the 

natural logarithm of  total greenhouse gas emissions ( 2CO  equivalent).  

tiI ,  denotes development and 
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log ,  denotes the vector of control 

variables that influence environmental degradation. Particularly, MIlog  denotes the 

natural logarithm of energy intensity, RENEWSlog  denotes the natural logarithm of 

the share of renewable energy in gross final energy consumption, RENEWGlog  

denotes the natural logarithm of electricity generated from renewable sources (% of 

gross electricity consumption) and ESlog  denotes the natural logarithm of the 

indicator of energy saving for monitoring progress towards “20-20-20” targets. As 

usual ti ,  is the error term. All the variables are measured in MWh at 2005 constant 

prices for all the countries under scrutiny and are deflated by the annual average rate 

of change of Harmonised Index of Consumer Prices (HICP).  
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Following Marrero (2010) the country specific terms 
i in equation 1 captures all 

fixed effects inherent in each member state national economy which are either not 

considered in the empirical model or not directly observed. The error term ti ,  

encompasses random effects which are not considered in the empirical model.  

4.2 Dynamic Panel GMM (DPGMM) method of estimations 

 

Arellano (1989) argues that for dynamic error components models, the estimator 

that uses differences rather than levels for instruments has a singularity point and very 

large variances over a significant range of parameter values (Baltagi 2005, p. 136). 

Therefore, in order to allow for the dynamic aspects in our empirical models we 

investigate our main research questions by using dynamic panel data techniques such 

as DPGMM estimators attributed to Arellano and Bond (1991)15 and Arellano and 

Bover (1995)/Blundell and Bond (1998).16  

The DPGMM estimator by Arellano and Bond (1991) is also known as a two – 

step difference GMM (DIF-GMM) where the lagged levels of the regressors are 

instruments for the equations in first differences. The DPGMM estimator by Arellano 

and Bover (1995)/Blundell and Bond (1998) is also known as the System GMM 

estimator (SYS-GMM), since it combines regression in first differences with the 

original equation, included by further instrumental variables (see also Polemis, 2016). 

The SYS-GMM estimator uses lagged first differences of the variables as instruments 

in the level equations. Both estimators (DIF-GMM & SYS-GMM) are designed to 

deal with small T and large N panels, that is, few time periods and many individual 

units (cross sections). Recall that in this paper we deal with short T dynamic panel 

data sets (T = 9 and N = 34 or 28).  

                                                   
15 See, inter alia, Polemis and Fotis (2013), p. 428. 
16 See also Holtz-Eakin et al. (1988).  
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According to Arellano and Bond (1991) and Arellano and Bover (1995)/Blundell 

and Bond (1998) 
i  and ti ,  are independently distributed across i, ti ,  has zero mean 

and it is independent over t and i. Also, it is assumed that   0, ,1, tiiEE   for 

Ni .......1  and Tt ......2 . The last assumption concerning the initial conditions of 

environmental indicators in conjunction with the assumptions regarding 
i  and ti ,  

suffice for a consistent estimation of equation 1 using DPGMM estimators for 3T . 

4.3 Empirical results  

4.3.1 Panel unit root and cointegration results 

 

To test for the existence of a unit root in a panel data setting, we have used 

various econometric tests (Im, Pesaran and Shin W-test, Fisher type tests, Levin, Lin 

and Chu–t test).17 In all the above mentioned tests the null hypothesis is that of a unit 

root.  

Particularly, the W-test is based on the application of the ADF test to panel data, 

and allows heterogeneity in both the constant and slope terms of the ADF regression 

(Polemis and Fotis, 2013). It tests the null hypothesis that all panels have a unit root 

against the alternative that some of the panels are stationary. It also allows for cross 

sectional dependence. The ADF and PP tests are distributed as χ2 with degrees of 

freedom twice the number of cross-section units (2N), under the null hypothesis. This 

test has the advantage over the W-test that its value does not depend on different lag 

lengths in the individual ADF regressions. Moreover, Baltagi and Kao (2000) report 

that Fisher type tests such as ADF and PP are superior to the aforementioned one in 

terms of size-adjusted power.  

                                                   
17 The residual-based Lagrange multiplier stationary test by Hadri (2000) is used to test the null 

hypothesis of stationarity. This panel stationarity test extends the univariate KPSS test of Kwaitkowski 

et al (1992) and is particularly well suited for panel datasets in which T is large and N is moderate. 

However, in this paper we do not perform the said test since the panel data set under scrutiny is not 

strongly balanced.  
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The results in Table B1 of Appendix indicate that all the variables under scrutiny 

are integrated of order one. Also, the Johansen test for the existence of a cointegrated 

relationship between the non-stationary variables of the models depicts that there is 

(at least) one cointegration vector for each model (Table B2 of the Appendix). 

4.3.2 Empirical results from DPGMM estimations 

 

Tables 2 and 3 present the DIF-GMM and SYS-GMM parameter estimates of 

equation 1 respectively regarding the EU34 and EU28 countries. The said estimates 

are almost all highly statistically significant and robust given that equation 1 

represents structural and not spurious long-run relation. GMM parameter estimates are 

shown for the one-step GMM estimator case with standard errors that are 

asymptotically robust to heteroskedasticity and have been found to be more reliable 

for finite sample inference than the GMM standard errors. Notice that in the majority 

of empirical models employed the SYS-GMM estimate of 1  in equation 1, that is the 

estimated coefficient of development rate (I), is bigger in magnitude than the 

corresponding estimate of DIF-GMM, as predicted by the theory when instruments 

are weak in the latter case and the SYS-GMM alternative helps to overcome this 

problem. 

[Insert Table 2 about here] 

The estimation of   in equation 1 (
1tE ) is always highly statistical significant 

and smaller than 1 for all the dependent variables employed within the EU34 

countries. For instance, the highest estimate is 0.77 for EU34 under DIF-GMM and 

0.75 for EU34 under SYS-GMM. This result reveals the importance of the inclusion 

of the lagged dependent variable in the right hand side of equation 1. 
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Under EU34 countries and DIF-GMM method the coefficient of development is 

statistical significant and positive, except from the growth coefficient in the empirical 

model with NMVOC dependent variable. Under EU34 countries and SYS-GMM 

method the development coefficient is always highly statistical significant and 

positive. However, the square and cube growth coefficients for both DIF and SYS-

GMM methods are not always statistical significant. For instance, under DIF-GMM 

method within the EU34 countries (Table 2) the cube growth coefficients are always 

statistical insignificant and in the cases where the square growth coefficients are 

statistical significant, either they exhibit a positive effect of growth rate on 

environmental pollutant (see i.e. the empirical model with SO2 dependent variable) or 

they exhibit a negative effect between the two variables (see i.e. the empirical model 

with GGE dependent variable).  

Under SYS-GMM method (Table 3) the square growth coefficients are always 

statistical insignificant and in the cases where the cube growth coefficients are 

statistical significant the estimated coefficients are almost zero (see i.e. the empirical 

models with SO2 and NMVOC dependent variables). These results show a positive 

relationship between environmental pollutants and development rate and minimal or 

zero evidence for the EKC hypothesis in the EU34 countries for the time period in 

question.  

Within EU28 countries the effect of development on environmental pollutants is 

less pronounced than within EU34 countries. Even thought it continues to exist a 

positive relationship between the two variables the effect of real per capita GDP 

growth rate on all the environmental pollutants employed is quite close to zero. 

However, the non statistically significant parameter estimates of square and cube 

coefficients of income indicate that the EKC hypothesis does not exist in the EU28 
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countries for the time period in question, which coincides with the discussion made 

for the EU34 countries.18  

In terms of the effect of control variables of equation 1 on environmental 

pollutants it is evident that energy intensity (MI) positively affects all the 

environmental pollutants (the parameter estimates of coefficient MI under all 

empirical models employed within EU28 is statistically significant except from the 

estimated parameter in the empirical model with GGE dependent variable under SYS-

GMM method).19  

[Insert Table 3 about here] 

The empirical results reveal that within EU28 countries energy intensity 

positively affects SO2 emissions. For instance, an increase of energy intensity by 1% 

causes almost half increase of SO2 emissions (SYS-GMM), while under DIF-GMM 

the corresponding response of SO2 emissions is almost 80%. The magnitude of this 

effect is less pronounced within EU34 countries.  

When we deal with the effect of energy saving on environmental pollutants an 

interesting remark emerges. Under all models and methodologies employed the effect 

of energy saving on environmental pollutants is positive. This effect reveals an 

inefficient way of energy use within EU. Different technological or regulatory aspects 

within EU countries may be critical factors affecting the way they use energy saving 

towards monitoring EU’s energy policy.  

However, emissions from all the environmental pollutants are eliminated by the 

increase of the share of renewable energy in gross final energy consumption increases. 

This result reveals that the more the renewable energy we use the less the pollution. 

                                                   
18 As in the case of EU34 countries the estimation of   in equation 1 (

1tE ) is always highly statistical 

significant and smaller than 1 for all the dependent variables employed within the EU28 countries. For 

instance, the highest estimate is 0.89 under SYS-GMM and 0.32 under DIF-GMM. 
1919 See also figure 4 in section 3.2. 
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The same could be said for the effect of electricity generated from renewable sources 

of gross electricity consumption (RENEWG) on environmental pollutants, at least in 

most of the models employed which the parameter estimate of RENEWG is statistical 

significant. 

5 Results and discussion  

 
The estimated parameters of the empirical models employed in this paper suggest 

the existence of a monotonic pattern between environmental pollutants and real per 

capita GDP growth rate, since the square and cubic coefficients of economic growth 

in equation 1 are found to be not statistically significant. These results are not 

surprising since they agree with the empirical results by Morse (2018), Mazur et al. 

(2015), Change t al. (2014), Baycan (2013), Iwata et al. (2011), Marrero (2010), 

Martínez-Zarzoso et al., (2007), Azomahou et al. (2006), who also find increasing or 

non-inverted U patterns (see also Tables A1 and A2 in APPENDIX). 

The inclusion of the renewable energy intensity indicators (RENEWS & 

RENEWG) as explanatory variables in equation 1 improve the empirical models. For 

both quantitative indicators significant negative coefficients are estimated for almost 

all the dependent variables (SO2, NOX, NMVOC and GGE, CO2 equivalent), as is 

showed in Tables 2 and 3. The share of electricity produced from renewable energy 

sources to the national electricity consumption (RENEWG) contributes to the 

elimination of emissions, but a more pronounced effect is revealed by the contribution 

of the share of renewable energy in gross final energy consumption ( RENEWS ). 

Therefore, Europe’s energy policy within EU should be strengthened towards more 

installed renewable energy and the recent update by the EC of a new 30% energy 

efficiency target for 2030 verifies this. 
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The empirical results derived from the indicator of energy saving (ES) suggest 

that EU energy policy should be also strengthened towards a more efficient use of 

energy at all stages of the energy chain. A convergence of environmental policies 

towards more efficient energy use among EU countries should be in the merit of 

Europe’s energy policy the next years. For this purpose the adoption of new 

technology plays crucial role in determining the level of emissions.20  

Energy intensity positively affects environmental pollutants (Morse 2018).21 Even 

though energy intensity of the EU countries has reduced by 24% between 1995 and 

2011, it seems that this endeavor must be reinforced in the future. As in the case of the 

renewable energy intensity indicators the recent update by the EU of a new 30% 

energy efficiency target for 2030 will certainly improve more the elimination of 

emissions. However, energy intensity flows must be kept up more closely in 

nowadays since the empirical effects regarding MI continue to be against EU’s energy 

roadmap 2050. 

The role of firms’ stakeholders on the reduction of pollution is of great 

importance. Firms should use technological improved techniques and renewable 

sources of energy in order to enhance environmental quality. The adverse effect of 

energy saving indicator on pollution highlights this priority and firms’ stakeholders 

should follow a more environmental friendly strategy. Stakeholders’ engagement in 

favour of environment, foremost, helps them to improve the products or services they 

supply to the consumers. 

 

                                                   
20 Makridou et al. (2016) have stated that technology change is primarily responsible for the energy 

improvements achieved in most sectors of the economy for 23 EU countries. 
21 A similar result regarding Carbon Dioxide Emissions (CO2) has been reported in the literature by 

Martínez-Zarzoso et al., (2007). 
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6 Conclusions and policy implications 

 
In this paper we empirically explore the effect of development and various energy 

efficiency indicators on environmental pollutants. For these purposes we utilize 

Dynamic Panel data methodologies (SYS and DIF – DPGMM) to examine clustered 

patterns of energy pollutants.  

The empirical findings indicate that sustainable development positively affects 

environmental pollutants. The results also reveal that the use of renewable sources of 

energy negatively affects environmental pollutants. The more the renewable energy 

we use the less the air pollution. Energy saving positively affects pollution, while 

energy intensity contributes to more air pollution.  

Technological improvements and stakeholders’ engagement in favour of 

environment are also two important tools against pollution. Stakeholders should adopt 

technologically improved lines of production at regular intervals so as to keep up their 

technology with environmental needs. For this purpose, the majority of stakeholders, 

at least the ones that own multinationals firms, must commit to reduce energy 

consumption from non-renewable sources and replace obsolete technology with 

environmental friendly one. National governments should encourage private sector to 

adopt innovations which improve the quality of products/services produced, balancing 

the costs of R&D expenditures against the generated firms’ profits.  

The persistence of pollution with high levels of development indicates once again 

the important role of governmental policies in favour of renewable energy use. 

Governments should enforce their endeavor against pollution and in favour of 

economic development. Financial contribution of firms along with the reduction of 

bureaucratic procedures for the adoption of cleaner technologies of production will 
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reinforce the important role of energy saving on the reduction of environmental 

pollution. 

National tax policy consists of another tool against pollution.22  Since demand for 

a cleaner environment increases with development level, the sooner the adoption of 

taxes against environmentally harmful industries, the cleaner the environment. 

However, this scenario is not always easy to be adopted across different tax regimes. 

Therefore, environmental policy across member states should be carefully designed in 

order to address the basic needs against pollution of each member state. A flat 

environmental strategy against pollution across member states will probably result in 

the adoption of new technology that is not suitable for all the member states.  

Even though Energy Roadmap 2050 seems to be satisfied, policy implications 

should be strengthened towards more installed renewable energy, a convergence of 

environmental policies towards more efficient energy use among EU countries and 

energy intensity flows must be kept up more closely in nowadays since the empirical 

results point out its substantially positive contribution on air pollution. The recent 

adopted 30% energy efficiency target for the year of 2030 by EC aims to implement 

such policies. This target must be updated at regular intervals in order that to be 

monitored effectively.  

 

 

 

 

 

                                                   
22 As soon as population increases the demand for energy increases as well as the public concern 

related to harmful effects of pollution (scale effect). Government taxation focuses on abating emissions 

and merely compensating part of the scale effect (Ansuategi 2003). Following Smulders et al. (2011) 

this is called “the alarm phase”. 
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List of Figures and Tables 
 
Figure 1: The relationship between the Environmental pollutants and the Real Gross Domestic Product 

Growth Rate for European Union 34 (EU34) countries  

 
Notes:  

For all the graphs the horizontal axis depicts the Real GDP Growth Rate at 2005 constant prices and the vertical axis depicts the 

average (2005 – 2013) environmental pollutant per capita at 2005 constant prices. 

The explanation of the variables is given in Table 3. 

Source:  

Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA), (http://ec.europa.eu/-

eurostat/web/energy/data). 
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Figure 2: The relationship between the Environmental pollutants and the Real Gross Domestic Product 

Growth Rate for European Union 28 (EU28) countries: 2005 – 2013  

 
Notes:  

For all the graphs the horizontal axis depicts the Real GDP Growth Rate at 2005 constant prices and the vertical axis depicts  the 

average (2005 – 2013) environmental pollutant per capita at 2005 constant prices. 

The explanation of the variables is given in Table 3. 

Source:  

Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA), (http://ec.europa.eu/-

eurostat/web/energy/data). 
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Figure 3: The relationship between the Energy Intensity and the Real per capita GDP Growth Rate for 

European Union (EU) 34 –28 countries 

 
Notes:  

For all the graphs the horizontal axis depicts the Real GDP Growth Rate at 2005 constant prices and the vertical axis depicts  the 

average (2005 – 2013) environmental pollutant per capita at 2005 constant prices. 

The explanation of the variables is given in Table 3. 

Source:  

Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA), 

(http://ec.europa.eu/eurostat/web/energy/data). 
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Table 1: Summary statistics 

 Environmental pollutants Control variables GDP Growth rate 

 SO2 NOX NMVOC GGE ES RENEWS RENEWG MI I  

 

EU34 

Mean 4.87 5.24 5.14 4.81 1.15 1.03 1.16 2.36 1.41 

Standard Deviation 0.73 0.57 0.61 0.63 0.66 0.45 0.47 0.41 3.90 

Min 3.10 3.56 3.41 3.47 -0.41 -0.72 -1 1.92 -14.67 

Max 6.41 6.21 6.13 5.99 2.34 1.82 2.02 7.87 10.88 

Variance 0.53 0.32 0.38 0.40 0.44 0.20 0.28 0.17 15.21 

Skewness 0.50 -0.23 -0.60 -0.04 -0.25 -1.17 -1.30 8.37 -0.81 

Kurtosis 2.43 2.68 3.38 2.14 2.50 5.80 1.67 11.13 5.19 

EU28 

Mean 4.84 5.22 5.11 4.80 1.24 1.01 1.13 2.31 1.37 

Standard Deviation 0.69 0.57 0.62 0.64 0.62 0,43 0.44 0.23 3.99 

Min 3.10 3.56 3.41 3.47 -0.41 0.72 -1 1.92 -14.67 

Max 6.12 6.21 6.13 5.99 2.34 1.71 1.83 2.93 10.88 

Variance 0.47 0.33 0.38 0.38 0.39 0.18 0.25 0.05 15.88 

Skewness -0.14 -0.18 -0.57 -0.57 -0.32 -1.35 -1.40 0.53 -0.80 

Kurtosis 2.39 2.67 3.35 3.35 2.92 6.25 2.01 2.53 5.05 

Notes: SO2: Sulphur oxides, NOX: Nitrogen oxides, NMVOC: Non-methane volatile organic compounds, GGE: Greenhouse Gas 

Emissions (CO2 equivalent), MI: Energy Intensity, RENEWG: The ratio between the electricity produced from renewable energy 

sources and the gross national electricity consumption (% of gross electricity consumption), RENEWS: Share of renewable energy 

in gross final energy consumption (%), ES: Energy saving from Primary Energy Consumption, I: Real GDP Growth Rate. 

Source: Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA) 

(http://ec.europa.eu/eurostat/web/energy/data). 
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Table 2: Estimation results (DIFF-GMM)  

 EU34  EU28  

Ind. Var. 
Dep. Var.b Dep. Var.b 

SO2 NOX NMVOC GGE SO2 NOX NMVOC GGE 

c c 62.15*** (35.49) 0.91* (16.16) -70.39* (23.31) -75.38 (24.21) -0.13 (0.88) 1.54* (0.39) 1.40* (0.52) 0.81 (0.63) 

1tE
d 0.44* (0.11) 0.71* (0.09) 0.77* (0.08) 0.53* (0.08) 0.52* (0.10) 0.48* (0.09) 0.59* (0.09) 0.32* (0.08) 

I 0.74* (0.24) 0.30*** (0.15) 0.13 (0.12) 0.51* (0.15) 0.01* (0.00) 0.01** (0.00) 0.00*** (0.00) 0.02** (0.00) 

I2 0.05** (0.25) -0.01 (0.02) -0.00 (0.02) -0.03**(0.02) 0.00 (0.00) -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) 

I3 -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) -0.00  (0.02) -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) 

ES d 0.39*(0.11) 0.79* (0.11) 0.57* (0.13) 0.75*   (0.09) 0.62** (0.25) 0.63* (0.10) 0.36* (0.10) 0.72*(0.22) 

RENEWS d -0.12* (0.01) -0.03* (0.01) 0.00 (0.01) -0.03** (0.01) -0.23** (0.10) -0.15** (0.06) -0.04 (0.04) 0.04 (0.04) 

RENEWG d -0.18* (0.09) 0.81 (0.04) 0.02 (0.04) 0.09** (0.04) -0.00 (0.00) 0.00 (0.00) -0.00 (0.00) 0.00 (0.00) 

MI d 0.08 (0.07) 0.10*** (0.05) 0.01 (0.07) 0.12*** (0.07) 0.85** (0.40) 0.22*** (0.13) 0.13** (0.06) 0.63* (0.20) 

Wald chi2 407.90* (0,00) 923.59* (0,00) 695. 91* (0,00) 258.45* (0,00) 368.19* (0,00) 1495.52* (0,00) 513.90* (0,00) 411.82* (0,00) 

No of 

Instruments 
33 33 33 33 33 178 91 120 

Max lags 5 5 5 5 5 5 5 5 

Notes: a One step results, b Dependent variables (in logs), c c denotes the constant term d in logs. The numbers in parentheses of the parameter 

estimations refer to the Robust Standard Errors (heteroskedasticity consistent asymptotic standard errors). The italic numbers in parentheses 

of the Wald chi2 estimations refer to the p- values of the individually significance tests.  

Significant at *1% **5% and ***10% respectively.  

Source: Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA) (http://ec.europa.eu/euro-

stat/web/energy/data). 
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Table 3: Estimation results (SYS-GMM) 

 EU34  EU28  

Ind. Var.b 
Dep. Var.b Dep. Var.b 

SO2 NOX NMVOC GGE SO2 NOX NMVOC GGE 

c  c 18.47 (18.37) -9.25 (16.48) 8.28 (18.15) 4.31 (24.56) -0.40 (0.37) 0.57** (0.24) 0.22* (0.07) 0.46 (0.30) 

1tE  0.75* (0.08) 0.72* (0.07) 0.70* (0.06) 0.60* (0.14) 0.78* (0.07) 0.80* (0.07) 0.89* (0.02) 0.85* (0.08) 

I 0.64* (0.25) 0.46** (0.20) 0.34* (0.13) 0.52** (0.22) 0.01* (0.00) 0.01** (0.00) 0.01** (0.00) 0.01* (0.00) 

I2 0.00 (0.02) -0.02 (0.02) -0.01 (0.02) -0.02  (0.02) 0.00 (0.00) -0.00 (0.00) -0.00 (0.00) -0.00 (0.00) 

I3 -0.01** (0.00) -0.00 (0.00) -0.00** (0.00) -0.00  (0.003) -0.00 (0.00) -0.00 (0.00) -0.00* (0.00) -0.00* (0.00) 

ES d 0.21*(0.07) 0.41* (0.09) 0.26* (0.06) 0.39*(0.15) 0.28*(0.10) 0.21* (0.07) 0.10* (0.02) 0.14 (0.10) 

RENEWS d -0.13* (0.02) -0.06* (0.02) -0.01 (0.01) -0.05* (0.02) -0.05 (0.10) -0.01 (0.03) 0.00 (0.02) -0.01 (0.06) 

RENEWG d 0.01 (0.07) -0.05 (0.04) -0.06*** (0.03) 0.02 (0.04) -0.00 (0.00) -0.00*** (0.00) 0.00 (0.00) 0.00  (0.00) 

MI d 0.15* (0.05) 0.04 (0.03) -0.02 (0.05) 0.1(0.06) 0.51* (0.19) 0.10** (0.05) 0.07* (0.02) 0.04 (0.08) 

Wald chi2 1076.82* (0.00) 631.90* (0,00) 953.25* (0,00) 698.36* (0,00) 1058.19* (0,00) 14129.45* (0,00) 16779.01* (0,00) 33910.11* (0,00) 

No of 

Instruments 
40 40 40 40 40 216 246 140 

Max lags 5 5 5 5 5 5 5 5 

Notes: a One step results, b Dependent variables (in logs), c c denotes the constant term d in logs. The numbers in parentheses of the parameter 

estimations refer to the Robust Standard Errors (heteroskedasticity consistent asymptotic standard errors). The italic numbers in parentheses of the 

Wald chi2 estimations refer to the p- values of the individually significance tests.  

Significant at *1% **5% and ***10% respectively.  

Source: Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA) (http://ec.europa.eu/euro-

stat/web/energy/data). 
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APPENDIX 

 
Table A1: Main empirical studies and findings – group of countries 

Study Period Pollutants Number of 

countries 

Methodology Results 

Rodriguez et al. (2016) 1979 - 2004 CO2 13 Fixed – effects Non – existence of 

inverted U-shape 

Apergis (2016) 1960 - 2013 CO2 13  CCE & CUP models Mixed results  

Ajmi et al. (2015) 1960 - 2010 CO2 3 VAR model Non – existence of 

inverted U-shape (N-

shaped & inverted N-

shaped) 

Mazur et al. (2015) 1992 - 2010 CO2 28 Fixed and Random effects Non – existence of 

inverted U-shape 

Lopez-Menendez et al. 

(2014) 

1996 - 2010 CO2 27 Fixed and Random effects Existence of inverted U-

shape only for Cyprus, 

Greece, Slovenia and 

Spain 

Danaeifar (2014) 

 

1992 - 2008 CO2 30 Spatial panel data 

econometric techniques 

Existence of (spatial) 

inverted U-shape 

Wang Y-C (2013) 1870 - 2001 SO2 & CO2 19** OLS, Fixed and Random 

effects 

Existence of inverted U-

shape 

Baycan (2013) 1995 - 2005 SPM, NOx, 

SO2, CO2 

25 Fixed and Random effects  Non – existence of 

inverted U-shape (U-

shaped) 

Donfouet et al. (2013) 1961 - 2009 CO₂ 43 Spatial econometric 

techniques 

Existence of (spatial) 

EKC 

Jaunky (2011) 

 

1980 - 2005 CO₂ 36 SYS GMM in a VECM Existence of inverted U-

shape only for Portugal 

and the UK 

Iwata et al. (2011) 1960 - 2003 CO₂ 17  ARDL model Non – existence of 

inverted U-shape 

Acaravci and Ozturk (2010) 1965 - 2005 CO₂ 19 ARDL model 

 

Existence of EKC only 

for Denmark and Italy 

Marrero (2010) 1990 - 2006 GGE* 24 DIF & SYS GMM Non – existence of 

inverted U-shape 

Lee et al. (2009) 1960 - 2000 CO₂ 19 Fixed, Random effects and 

DIF GMM  

Existence of inverted U-

shape 

Coondoo and Dinda (2008) 1960 - 1990 CO2 22 Fixed and Random effect 

econometric models 

Existence of inverted U-

shape 

Wagner M. (2007) 1950 - 2000 SO2 & CO2 100** DOLS, FM-OLS, 2-STEP 

LS 

Non – existence of 

inverted U-shape 

Azomahou et al. (2006) 1960 - 1996 CO2 21 Non - Parametric Non – existence of 

inverted U-shape 

(positive effects) 

Markandya et al., (2006) 1850-2001 SO2, 12 Fixed and Random effects Existence of inverted U-

shape 

 1973 - 1997 CO2 16 Random Coefficient 

Estimation 

Mixed results 

1990 - 2000 

 

NOx, SO2, CO2 

 

15 

 

Fixed – effects & Cross - 

section estimations 

Mixed results (positive & 

negative effects) 

1985, 1987-1992 SO2 21 Fixed – effects Non – existence of 

inverted U-shape 

(negative effects) 

Zaim and Taskin (2000) 1980 - 1990 CO₂ 18 Common, Fixed and 

Random effects 

Existence of inverted U-

shape 

Notes: *Greenhouse Gas Emissions; **among other OECD countries 

Source: Author’s elaboration of data. 
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Table A2: Main empirical studies and findings – single countries 

Papers Period Pollutants Number of 

countries 

Methodology Results 

Yang et al. (2017) 1998 - 2013 GHG* Russia - Existence of inverted 

U-shape 

Wang et al. (2017) 2000 - 2013 CO2 China Semi-parametric 

panel fixed effect 

Mixed results per 

industrial sector 

Sephton and Mann 

(2016) 

1830 - 2003 

1850 - 2002 

SO2 & CO2 UK Threshold 

Cointegration 
Techniques  

Existence of EKC 

Zhang & Zhao (2014) 1995 - 2010 CO2 China Fixed Effect, FGLS, 

PCSE, etc, 

techniques 

Mixed results per 

region 

Shahbaz et al. (2013) 1970 - 2010 CO2 Turkey VECM Granger 

causality approach 

Existence of inverted 

U-shape 

Sephton and Mann 

(2013) 

1857 - 2007 CO2 Spain Threshold 

Cointegration 
Techniques 

Existence of inverted 

U-shape 

Fosten et al.(2012) 1830 - 2003 
1850 - 2002 

SO2 & CO2 UK Threshold 
Cointegration 

Techniques 

Existence of inverted 
U-shape 

Esteve and Tamarit 

(2012) 

1857 - 2007 CO2 Spain Two-regime 

threshold 

cointegration model 

Existence of inverted 

U-shape 

Wang et al. (2012) 1997 - 2010 CO2 Beijing City, 

China 

Partial least square 

regression 

Non – existence of 

inverted U-shape 

Akbostanci et al. 
(2009) 

1992 - 2001 
1968 - 2003 

CO2 Turkey VAR model 
GLS model 

Non – existence of 
inverted U-shape 

Positive monotonic/N-

shaped 

Soytas and Sari 

(2009) 

1960 - 2000 CO₂ Turkey VAR model Non – existence of 

EKC 

Brannlund & 

Ghalwash (2008) 

1984, 1988, 

1996 

SO2, CO2 NOx  Sweden Seemingly Unrelated 

Regressions (SURE) 

Positive (concave) 

relationship 

Kunnas and 

Myllyntaus (2007) 

1800 - 2003 SO2, CO2 NOx  Finland OLS Existence of EKC for 

SO2 and NOx 

Johansson & Kriström 
(2007) 

1900-2002 SO2 Sweden OLS – AR(2) 
process 

Non – existence of 
inverted U-shape 

Lise (2006) 1980 - 2003 CO₂ Turkey OLS Non – existence of 
inverted U-shape 

Linear (positive) 

relationship 

Friedl and Getzner 

(2003) 

1960 - 1999 CO₂ Austria OLS with structural 

break 

Non – existence of 

inverted U-shape  
(N-shaped) 

Notes: *Greenhouse Gas Emissions  

Source: Author’s elaboration of data.  
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Table B1: Panel unit root test results 

 Breuting-t 
testa 

Im, Pesaran 
and Shin W-testa 

ADF–Fisher 
Chi-squarea 

PP–Fisher 
Chi-squarea 

Variable c Levels 

SO2 0.34 0.69 42.24  

 NOX -0.83 -0.30 36.21 63.33 

NMVOC 2.24 0.61 65.88 76.40 

GGE -0.16 -0.73 56.40 66.57 

ES d 1.14 -0.60 86.02 74.93 

RENEWS 1.45 4.09 23.26 28.74 

RENEWG 3.80 -0.11 22.29 26.03 

MI -1.31 -0.38 78.63 84.74 

I 0.26 -0.38 68.62 69.34c 

Variable First differences 

Δ(SO2) -3.73* -4.36* 126.77* 160.48* 

 Δ(NOX) -5.70* -6.01* 155.90* 238.30* 

Δ(NMVOC) -2.83* -4.20* 123.27* 134.08* 

 Δ(GGE) -5.04* -6.38* 162.62* 249.98* 

Δ(ES) -6.94* -9.52* 224.41* 381.44* 

Δ(RENEWS) -6.94* -7.20* 171.02* 212.58* 

Δ(RENEWG) -6.01* -5.24* 141.62* 182.65* 

Δ(MI) -2.60* -5.74* 161.86* 102.05* 

Δ(I) -7.37* -5.45* 147.47* 98.87* 

Notes: aThe lag lengths were selected by using Akaike, Schwarz & Modified Hannan-Quinn criteria with an individual intercept 

as an exogenous regressor, bSmall sample adjusted to T without time trend (only for EUROZONE sample countries), cIn logs, 
dThe lag lengths were selected by using Modified Akaike Criterion. Significant at *1%. 

SO2: Sulphur oxides (Total sectors of emissions for the national territory - Tonnes), NOX: Nitrogen oxides (Total sectors of 

emissions for the national territory - Tonnes), NMVOC: Non-methane volatile organic compounds (Total sectors of emissions for 

the national territory - Tonnes), GGE: Greenhouse Gas Emissions (CO2 equivalent - All sectors and indirect CO2 - Thousand 

tonnes), MI: Energy Intensity (the ratio between the gross inland consumption of energy and the GDP - in kgoe per 1 000 EUR), 

RENEWG: The ratio between the electricity produced from renewable energy sources and the gross national electricity 

consumption (% of gross electricity consumption), RENEWS: Share of renewable energy in gross final energy consumption (%), 

ES: Energy saving from Primary Energy Consumption (million tonnes of oil equivalent, TOE), I (Real GDP Growth Rate): 

Annual growth rate of GDP volume (percentage change on previous year). 

Source: Author’s elaboration of data from European Commission, Eurostat, European Environment 

Agency (EEA) (http://ec.europa.eu/eurostat/web/energy/data). 
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Table B2: Johansen Fisher panel cointegration testing  

 Johansen Fisher Panel Cointegration Test 

Series Trace statistic  Maximum eigenvalues 
SO2 - I 392.2* [r=0], 145.5* [r=1] 368.5* [r=0], 145.5* [r=1] 

SO2 – I2 414.9* [r=0], 145.1* [r=1] 397.1* [r=0], 145.1* [r=1] 

SO2 – I3 344.5* [r=0], 131.0* [r=1] 315.2* [r=0], 131.0* [r=1] 

SO2 - ES 398.2* [r=0], 159.4* [r=1] 369.4* [r=0], 159.4* [r=1] 

SO2 - RENWES 435.7* [r=0], 142.9* [r=1] 407.5* [r=0], 142.9* [r=1] 

SO2 - RENWEG 314.9* [r=0], 138.2* [r=1] 272.5* [r=0], 138.2* [r=1] 

SO2 - MI 411.8* [r=0], 193.8* [r=1] 361.5* [r=0], 193.8* [r=1] 

NOX - I 317.9* [r=0], 104.0* [r=1] 300.7* [r=0], 104.0* [r=1] 

NOX – I2 337.1* [r=0], 143.7* [r=1] 353.3* [r=0], 143.7* [r=1] 

NOX – I3 259.0* [r=0], 100.8* [r=1] 242.2* [r=0], 100.8* [r=1] 

NOX - ES 388.6* [r=0], 114.4* [r=1] 375.9* [r=0], 114.4* [r=1] 

NOX - RENWES 291.5* [r=0], 101.6* [r=1] 289.4* [r=0], 101.6* [r=1] 

NOX - RENWEG 194.8* [r=0], 90.27*, b [r=1] 169.5* [r=0], 90.27* [r=1] 

NOX - MI 213.5* [r=0], 110.4* [r=1] 181.7* [r=0], 110.4* [r=1] 

NMVOC - I 412.3* [r=0], 147.7* [r=1] 387.2* [r=0], 147.7* [r=1] 

NMVOC – I2 408.8*, c [r=0], 112.0*, c [r=1] 397.4*, c [r=0], 112.0*, c [r=1] 

NMVOC – I3 292.1* [r=0], 120.3* [r=1] 226.2* [r=0], 120.3* [r=1] 

NMVOC - ES 292.4* [r=0], 176.1* [r=1] 229.0* [r=0], 176.1*  [r=1] 

NMVOC - RENWES 4232.* [r=0], 177.7* [r=1] 312.8* [r=0], 177.7* [r=1] 

NMVOC - RENWEG 2657.* [r=0], 147.3* [r=1] 207.8* [r=0], 147.3* [r=1] 

NMVOC - MI 4232.* [r=0], 164.8* [r=1] 312.8* [r=0], 164.8* [r=1] 

GGE - I 369.2*, c [r=0], 95.51*, c [r=1] 359.4*, c [r=0], 95.51*, c [r=1] 

GGE – I2 315.4*, c [r=0], 111.2*, c [r=1] 297.5*, c [r=0], 111.2*, c [r=1] 

GGE – I3 4493.* [r=0], 215.7* [r=1] 328.4* [r=0], 215.7* [r=1] 

GGE - ES 4234.* [r=0], 190.3* [r=1] 314.1* [r=0], 190.3* [r=1] 

GGE - RENWES 3708.* [r=0], 176.9* [r=1] 278.7* [r=0], 176.9* [r=1] 

GGE - RENWEG 4230.* [r=0], 166.2* [r=1] 310.0* [r=0], 166.2* [r=1] 

GGE - MI 5018.* [r=0], 196.0* [r=1] 363.9* [r=0], 196.0* [r=1] 

SO2 - NOX 4758.* [r=0], 156.8* [r=1] 348.2* [r=0], 156.8* [r=1] 

SO2 - NMVOC 2924.* [r=0], 154.3* [r=1] 229.0* [r=0], 154.3* [r=1] 

SO2 - GGE 3972.* [r=0], 207.4* [r=1] 297.1* [r=0], 207.4* [r=1] 

NOX - NMVOC 3972.* [r=0], 161.1* [r=1] 297.1* [r=0], 161.1* [r=1] 

NOX - GGE 2662.* [r=0], 220.0* [r=1] 211.9* [r=0], 220.0* [r=1] 

NMVOC - GGE 3972.* [r=0], 136.3* [r=1] 297.1* [r=0], 136.3* [r=1] 

I – I2 3446.* [r=0], 178.3* [r=1] 261.6* [r=0], 178.3* [r=1] 

I – I3 4232.* [r=0], 256.3* [r=1] 312.8* [r=0], 256.3* [r=1] 

I2 – I3 3446.* [r=0], 260.4* [r=1] 261.6* [r=0], 260.4* [r=1] 

I – ES 5018.* [r=0], 167.0* [r=1] 363.9* [r=0], 167.0* [r=1] 

I – RENWES 2921.* [r=0], 206.2* [r=1] 226.2* [r=0], 206.2* [r=1] 

I – RENWEG 3966.* [r=0], 138.2* [r=1] 291.6* [r=0], 138.2* [r=1] 

I – MI 3184.* [r=0], 182.8* [r=1] 244.6* [r=0], 182.8* [r=1] 

ES - RENEWS 4494.* [r=0], 159.2* [r=1] 329.8* [r=0], 159.2* [r=1] 

ES - RENEWG 5016.* [r=0], 122.5* [r=1] 361.1* [r=0], 122.5* [r=1] 

ES - MI 4759.* [r=0], 357.1* [r=1] 349.6* [r=0], 357.1* [r=1] 

RENEWS - RENEWG 4230.* [r=0], 213.9* [r=1] 310.0* [r=0], 213.9* [r=1] 

RENEWS - MI 3708.* [r=0], 157.0* [r=1] 278.7* [r=0], 157.0* [r=1] 

RENEWG - MI 4754.* [r=0], 144.6* [r=1] 344.0* [r=0], 144.6* [r=1] 

Notes: a Null hypothesis implies absence of cointegration, while r denotes the number of cointegrating equations with intercept 

and deterministic trend in CE, no deterministic trend in VAR,  b No intercept or trend in CE or VAR, c Intercept (no trend) in CE 

or VAR. Significant at *1%.  

SO2: Sulphur oxides (Total sectors of emissions for the national territory - Tonnes), NOX: Nitrogen oxides (Total sectors of 

emissions for the national territory - Tonnes), NMVOC: Non-methane volatile organic compounds (Total sectors of emissions for 

the national territory - Tonnes), GGE: Greenhouse Gas Emissions (CO2 equivalent - All sectors and indirect CO2 - Thousand 

tonnes), MI: Energy Intensity (the ratio between the gross inland consumption of energy and the GDP - in kgoe per 1 000 EUR), 

RENEWG: The ratio between the electricity produced from renewable energy sources and the gross national electricity 

consumption (% of gross electricity consumption), RENEWS: Share of renewable energy in gross final energy consumption (%), 

ES: Energy saving from Primary Energy Consumption (million tonnes of oil equivalent, TOE), I (Real GDP Growth Rate): 

Annual growth rate of GDP volume (percentage change on previous year). 

Source: Author’s elaboration of data from European Commission, Eurostat, European Environment Agency (EEA) 

(http://ec.europa.eu/eurostat/web/energy/data). 
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