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Abstract 

The scope of this paper is to assess the impact of competition on industrial toxic 

pollution by using for the first time, a panel threshold model which allows evaluating 

the main drivers of toxic releases under two different market regimes. The empirical 

analysis is based on a micro level panel data set over the five year-period 1987-2012. 

We show that this relationship is statistically significant and robust above and below 

the threshold, even after accounting for alternative specifications of market 

concentration. Finally, we unmask an inverted “V-shaped” relationship between 

market concentration and industrial pollution.  
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1.  Introduction  

 Manufacturing activities such as metal mining, electric power generation, oil 

refining, recycling, use chemicals to produce the products we consume (i.e 

pharmaceuticals, computers, paints, clothing, automobiles, etc). While the majority of 

toxic chemicals are managed by industrial facilities via strict regulations in order to 

minimize chemicals into the air, water and land, toxic releases do still occur as part of 

their everyday business operations (Levinson, 2015). To give but an example, of the 

scale of their use, it is worth mentioning that in 2015 and only for the US almost 3.36 

billion pounds of total chemical disposals (including on-site and off-site releases) 

were released many of them can be regarded as hazardous waste. Hopefully, nearly 26 

billion pounds covering approximately the 92% of total chemical waste (excluding 

metal mines), was not released into the atmosphere due to the use of preferred waste 

management practices such as recycling, energy recovery, and treatment (EPA, 2017). 

Based on the above considerations, it is common knowledge that industrial 

pollution affects the entire spectrum of the optimal use of natural and environmental 

resources to economic activity (Hsueh, 2015; Shapiro and Walker, 2015; Harrington 

et al, 2014; Bi and Khanna, 2012; Levinson, 2009). Over the last ten years researchers 

have tried to disentangle this relationship. Specifically, one strand of literature tries to 

explore possible linkages between the level of environmental pollution and serious 

health problems such as asthma, infant health and mortality, lung cancer, 

cardiovascular diseases (see for example Rzhetsky et al, 2014; Agarwal et al, 2010; 

Currie et al 2009; Currie and Schmieder, 2008). The second strand of literature, tries 

to investigate the possible spillover effects between environmental degradation and 

market structure (e.g. Simon and Prince, 2016; Branco and Villas-Boas, 2015; Fowlie, 

2009). It is well documented from prior theoretical studies that increased competition 
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in an industry may result in lower levels of production per facility not allowing 

pollution to grow (Farber and Martin, 1986). On the other hand, recent theoretical 

work claims that increased competition triggers the incentives of a firm to reduce 

costs in order to reduce its final prices and thus the pollution control activities 

(Shleifer, 2004). This strand is rapidly growing. Our approach is one of the very few 

attempts at modeling and estimating the decision of US firms on their participation 

using facility level data. For this reason, we formulate a number of research questions 

including inter alia the following: How does market concentration affect chemical 

releases? How does competition generate industry output and emissions? In what way 

the level of pollution is determined under different market regimes? Why does the 

level of industrial pollution is lower (higher) under the presence of (non)-competitive 

conditions in the market? Will more concentrated industries pollute more because of 

inefficiency driven by lack of technological innovation and limited competition or are 

they polluting more because of the correlation between market concentration and 

fixed costs. Lastly, what policy implications could be drawn in order to boost an 

efficient abatement mechanism? 

The main novelty of our study is that we use for the first time in the relevant 

literature a panel sample splitting methodology (threshold model) accounting for the 

decomposition of Significant Market Power (SMP) in an industry and linking the 

possible interactions with the level of industrial pollution.1 In this way, we argue that 

an industry needs to cross a certain level of market concentration (competition) in 

order to restrict environmental degradation. Explanations offered to account for this 

argument broadly fall into two categories. According to the first, it is the nature of 

data and differences in empirical methodology (i.e misspecification and measurement 

                                                   
1 In oligopolistic markets, SMP is evident in an industry/sector when prices exceed marginal cost (MC) 

and long run average cost (LAVC), so the firm makes positive economic profits. 

https://en.wikipedia.org/wiki/Long_run_average_cost
https://en.wikipedia.org/wiki/Economic_profit
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error, existence of outliers, lack of data quality, etc) justifying that the effect of 

competition on industrial pollution might be non-linear. But there is also an economic 

motivation emphasizing for this justification. More specifically, in oligopolistic 

sectors (i.e energy, steel industry, oil refining, cement industry, etc) which are 

characterised by high market concentration and absence of effective competition as a 

result of the existence of SMP by the incumbent, there are usually strict 

environmental regulations (i.e taxes, tariffs, fees, etc) in order to limit environmental 

degradation (Halkos and Papageorgiou, 2016). On the other hand, pollution (i.e toxic 

chemical releases) rises (falls) with an increase (decrease) of market concentration 

suggesting that environmental damage is more likely to evolve in oligopolistic sectors 

(Simon and Prince, 2016; Fowlie, 2009). Based on these justifications, we argue that 

competition might be different in the two regimes (concentrated and non-concentrated 

industries). In other words, instead of assuming a linear effect in which we attribute 

the full impact to one variable (i.e market concentration) we allow this effect to vary 

at different values of market structure.    

Our approach strongly accounts for the presence of cross section dependence 

while it utilizes “second-generation” panel unit root tests in order to uncover possible 

cointegrated relationships an issue that has been overlooked by the existing empirical 

literature. The reason for using this kind of unit root testing can be justified by the fact 

that traditional stationarity tests (known as “first-generation” tests) suffer from size 

distortions and the ignorance of cross section dependence (Pesaran 2015).  

The contribution of this paper is three-fold. First, it goes beyond the existing 

literature in that it uses a unique micro level dataset originated from thousands 

industrial facilities (polluters) dispersed among the 50 US states. This will help us to 

empirically explore the net effect of competition on facility-level emissions. Second, 

it utilizes a panel threshold approach with certain innovations such as the inclusion of 
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structural market characteristics and the treatment of a second threshold in the sample. 

This technique has been widely used by the literature to identify threshold effects 

when the variable of interest is observable, but the position of the threshold is not 

known. Third, and foremost, the paper unveils a stable non-linear inverted “V-shaped” 

relationship between market concentration and industrial pollution already hidden by 

the existing literature. Taken together, this set of findings is important in that it 

provides useful policy implications towards the abatement of toxic chemical releases 

in order to achieve sustainability.   

Using a panel threshold framework in the spirit of Hansen (2000), we show 

that the reason for the mixed evidence of the impact of competition on environmental 

degradation, (proxied by toxic chemical releases) in an industry lies with its level of 

market concentration. This implies that market structure cannot assert its role in the 

process of environmental pollution until an industry crosses a certain threshold level 

of concentration. Our findings remain robust across alternative market concentration 

measures (CR4 and HHI). However, the driving force that pushes competition to alter 

its behaviour toward the level of environmental pollution based on a specific 

threshold point (generating a “kinked” curve) provides an interesting opportunity for 

future theoretical and empirical research. 

The rest of the paper is as follows. Section 2 reviews the empirical literature. 

Section 3 describes the data and the relevant empirical testing for cross-section 

dependence and unit roots. Section 4 portrays the econometric methodology used in 

the empirical analysis. Section 5 discusses the empirical findings of the study, while 

Section 6 performs some necessary robustness checks. Lastly, Section 7 concludes the 

paper and provides some policy implications.  
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2.  Literature review   

There is a widespread belief that competition is regarded as a reliable 

mechanism for stimulating both allocative and technical efficiency (Leibenstein 

1966). As suggested by many researchers (Zhang et al, 2005; Zhang et al, 2008; 

Akkemik and Oguz, 2011), in a competitive market, prices and profits provide the 

firm with incentives to improve efficiency minimising costs. Further, competition in 

network industries such as electricity would deliver production and allocative 

efficiency, hence lower prices, or lower mark-up over costs (Fiorio and Florio, 2013; 

Chiara Del Bo and Florio, 2012). This will lead to higher industrial output, while 

lower per-unit costs resulting from increased technical efficiency may be passed 

through in lower prices, thus increasing the quantity demanded and subsequently the 

level of environmental pollution (Polemis and Stengos, 2016). Although the positive 

impacts of competition on total welfare are widely acknowledged by the economists 

the effect that competition has on environmental pollution is under scrutiny.  

Despite the profound interest by policy makers and government officials on 

the possible spillovers between market competition and environmental degradation 

the existing literature is still in its infancy, with controversial results. These can be 

justified by the fact that many researchers acknowledge that competition may have 

positive as well as negative effects on environmental pollution (Simon and Prince, 

2016; Branco and Villas-Boas, 2015; Fowlie, 2009; Mansur 2007; Shleifer, 2004).  

In a seminal theoretical paper, Farber and Martin (1986) argue that increased 

competition lowers industrial output, and thus, at least lowers average production per 

plant. Therefore, an increase in the environmental pollution along with the production 

expansion will create a positive effect on the environmental degradation resulting in 

less pollution per facility. Moreover, they posit that increased competition leads to 
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less abatement efforts by firms, since firms in more concentrated industries spend 

more on combating air and water pollution than firms in less concentrated industries.  

Subsequent work by Shleifer (2004) indicates that effective competition tends 

to increase the incentives of a firm to undercut costs in order to reduce prices. This 

can be broadly implemented to combating pollution in a sense that companies may 

pursue cost reducing strategies, by reducing pollution control activities.  

In another study, Fowlie (2009) develops a theoretical model for analyzing the 

rate of environmental emissions pass-through in tandem with certain welfare 

implications when effective competition is absent (unregulated industry). This paper 

highlights the role of market structure on determining the extent of emissions leakage 

by acclaiming that the more competitive the industry, the greater the effect of 

incomplete participation on industry emissions. Moreover, the study links the net 

welfare effects of pollution with the regulation-induced reallocation of production 

among heterogeneous producers. However more recent work (Branco and Villas-

Boas, 2015) tries to shed some light on the theoretical controversy between 

competition, abatement and pollution. Their main argument, documents that lower 

production reduces pollution while presumed lower abatement increases facility-level 

pollution. In other words, the net effect of an increase in competition on facility-level 

pollution is ambiguous. Cole at al (2013), use the toxic release inventory database for 

the period 1990 - 2005 to examine the relationship between ethnic divisions and US 

toxic releases neglecting totally the role of market structure. They argue that measures 

of ethnic divisions have a positive relationship with toxic releases. Similarly, Zwickl 

et al (2014), examine the spatial variation between racial and ethnic disparities in 

industrial air toxic releases in U.S. cities. They claim that the latter are strongest 

among regions with median income below 25,000 USD dollars. On the other hand, 
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their empirical findings support the argument that income-based disparities are 

stronger among regions with median incomes above that threshold.  

Lastly, in a similar to ours empirical study by Simon and Prince (2016), it is 

examined the role of market competition on controlling the level of industrial 

pollution in a form of toxic chemicals. They employ simple estimation techniques 

(OLS with fixed effects) using a micro panel dataset consisting of a small time period 

(five years from 1987 to 2007) and a large cross-section element (thousands of 

industrial facilities in the US). Their empirical findings indicate a robust linear 

scheme where competition is a stimulating mechanism achieving a reduced level of 

industrial pollution. In addition, they claim that competition increases abatement since 

the relevant estimate comes with a negative sign indicating that each percentage-point 

increase in the level of market concentration (proxied by Hirschman-Herfindahl 

Index) is associated with a 2.9% reduction in the abatement ratio. 

Based on the above, the existing studies do not properly incorporate the 

spillovers generated by the inclusion of competition on the pollution-abatement nexus 

since they totally neglect the notion of a sample splitting variable acting as a separator 

between two different market regimes (more competition vs less competition). Our 

model estimates an unknown threshold parameter in a data driven approach that 

“endogenously” sorts the data into the two different market regimes, whereby each 

regime would differ according to the prevailing attitudes of its members towards 

competition (Polemis and Stengos, 2017). The threshold variable that we use to sort 

observations is the level of concentration measured by well documented in the 

literature structural indices (CRn, and Hirschman-Herfindahl index or HHI).  

Subsequently, the sample facilities will be sorted according to the level of market 

concentration placing them into competitive (i.e taking low values of the index) and 

non-competitive (i.e. taking high values of the index). The purpose of this study is to 
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fill these research gaps by combining certain structural industry characteristics (i.e 

level of employment, capital intensity, market concentration, value added, etc) drawn 

from a micro economic perspective with the facility-level of toxic chemical releases.  

3.  Data and empirical testing  

The primary source for our data was drawn from the Toxics Release Inventory 

(TRI) which covers the period 1987-2015. The latter is a plant-level database that 

includes information about the industrial facility (e.g., name, state zip code, primary 

industry, etc), and releases of toxic chemicals to the air and water, as well as transfers 

to any kind of land disposal in the US territory. The reason for using industrial toxic 

chemical releases as a proxy for pollution and not the classical (global and local) 

pollutants such as CO2, NOX or SO2 is that the latter are only available at a state level. 

However, we argue that the empirical findings from the use of toxic chemicals can be 

easily extrapolated to other pollutants in a future research.  

The above information is submitted by U.S. facilities in industry sectors such 

as manufacturing, metal mining, electric utilities, and commercial hazardous waste 

management. Under the Emergency Planning and Community Right-to-Know Act 

(EPCRA), facilities must report their toxic chemical releases for the prior calendar 

year to EPA by 1st of July of each year. Moreover, the Pollution Prevention Act also 

requires facilities to submit information on pollution prevention and other waste 

management activities of TRI chemicals (EPA, 2017). Each basic data file contains 

108 data fields, which generally represent these categories:  

a) Facility name, address, latitude and longitude coordinates, SIC or NAICS codes 

and Industry Sector Codes  

b) Chemical identification and classification information  

c) On-site release quantities 
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d) Publicly Owned Treatment Works (POTW) Transfer Quantities  

e) Off-site Transfer Quantities for Release/Disposal and Further Waste Management  

f) Summary Pollution Prevention Quantities  

The relevant database is rapidly growing since in 1987, it included nearly 275 

toxic chemicals, while by 2015 this number had nearly doubled, to 600 chemicals, 

with some of the original chemicals dropped from the reporting requirements. 

However, for purposes of consistency, we restrict our sample to the 234 chemicals 

that appeared in the 1987 dataset and have been reported in every year since (Simon 

and Prince, 2016). Lastly, it is worth mentioning that the set of chemicals included in 

the TRI has evolved over time since primarily new chemicals have been added. 

However for consistency purposes we have excluded them from the sample selection.2  

The structural variables such as market concentration, level of employment, 

value added that correspond to each 6-digit code were drawn from the National 

Bureau of Economic Research (NBER) and especially from Manufacturing Industry 

Database (CES). This database contains annual industry-level data from 1958-2011 on 

output, employment, payroll and other input costs, investment, capital stocks, and 

various industry-specific price indexes. Because of the change from SIC to NAICS 

industry definitions in 1997, the database is provided in two versions (one with 459 

four-digit 1987 SIC industries and the other with 473 six-digit 1997 NAICS 

industries). Especially for the year 2012, and due to data restrictions concerning the 

level of market concentration as measured by certain indicators (i.e CR4, CR8, CR20, 

CR50 and HHI), we used data directly from the US Census of Manufacturers. The 

                                                   
2 Facilities are required to report their toxic releases to the EPA if they meet the following three 

criteria: (1) They have ten or more full-time employees (or the equivalent); (2) They are in a covered 

industry (all manufacturing industries, mining, electricity generation, hazardous waste facilities, along 

with some publishing and wholesale trade industries); and (3) They “manufactured" or "processed" 
more than 25,000 pounds or "otherwise used" more than 10,000 pounds of any listed toxic chemical 

during a calendar year. Plants that meet the first two criteria must report releases for each toxic 

chemical that exceeds the threshold in (3). 
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latter is only conducted every five years limiting our time span to six years (1987, 

1992, 1997, 2002, 2007 and 2012). We must mention though that while there are 

obvious benefits of having a strongly-balanced panel, there are costs as well. Due to 

the fact that TRI database constitutes an unbalanced panel, observations were dropped 

to balance the panel thus restricting a 25 year panel to 6 years.  

In order to check the robustness of our findings, we take five measures of 

market concentration: HHI is the Herfindahl-Hirschman index for the 50 largest firms 

in the industry3, CR4 is the four-firm concentration ratio, CR8 is the eight-firm 

concentration ratio, CR20, is the twenty-firm concentration ratio and finally CR50, is 

the fifty-firm concentration ratio. It is worth mentioning that our measures of market 

structure reveal the existence or the absence of effective competition in the industry 

since concentration is simply the inverse of competition (Cabral, 2017).   

Our sample consists of thousands observations, namely, 2,461 panels 

(facilities) times 6 years, and the panel data set is strongly balanced. We excluded 

observations for facilities with missing values for toxic chemical releases. Hence our 

sample includes 14,767 plants, spread across 356 six-digit NAICS industry codes. 

Especially, for the years 1987 and 1992 we used the SIC classification. Similarly to 

Simon and Prince (2016) we used the TRI database in order to incorporate the level of 

toxic chemical releases in our sample. However, there is significant difference in the 

magnitude of the two samples. Our sample consists of nearly 11,900 facility year 

observations, while the aforementioned study includes more than 80,000 observations. 

This discrepancy is the result of merging the two databases (i.e TRI with the NBER 

dataset). Lastly, similarly to Simon and Prince (2016), we were able to merge 

                                                   
3 The calculation of the HHI squares each market share (MS) and places a higher importance on those 

firms that have a larger market share.  The formula is as follows: HHI = MS1
2 + MS2

2 + MS3
2 + …+ 

MSn2. The HHI ranges from zero (Perfect competition) to unity (Monopoly).  
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chemical releases data with national industry concentration ratios drawn from the 

NBER database and the Census of Manufacturers (only for the year 2012) since each 

facility must indicate the primary operated industry.  

The starting date for the study was dictated by data availability, while the final 

date (2012), represents the last year for which data regarding the Census of 

Manufacturers were available at the time the research was conducted. Table 1 depicts 

the descriptive statistics for our sample variables. For the sample of facilities, the level 

of toxic releases averages 461,833 pounds (or 10.12 pounds in logged values). 

Similarly, the level of market concentration (measured by the four concentration 

ratios) ranges from 38 to 80. This masks a wide disparity across facilities and across 

time. It is also worth mentioning that the starting year of our sample (1987) where the 

TRI was reported, the median facility released 50,498 pounds of toxic chemicals. By 

2012, median facility releases had fallen to below 16,858 pounds, a roughly 67% 

reduction. 

<Insert Table 1 about here> 

 

3.1 Preliminary Testing for Cross-Section Dependence and Unit Roots  

One of the additional complications that arise when dealing with panel data 

compared to the pure time-series case, is the possibility that the variables or the 

random disturbances are correlated across the panel dimension. The early literature on 

unit root and cointegration tests adopted the assumption of no cross-sectional 

dependence (Pesaran, 2015). However, it is common for macro-level data to violate 

this assumption which will result in low power and size distortions of tests that 

assume cross-section independence. For example, cross-section dependence in our 

data may arise due to common unobserved effects due to changes in federal 

legislation.  Therefore, before proceeding to unit root and cointegration tests we test 
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for cross-section dependence (Halkos and Polemis, 2017). We use the cross-section 

dependence tests proposed by Breusch and Pagan (1980) and Pesaran (2004).4  

The tests are based on the estimation of the linear panel model of the form: 

       (1) 

where  and  are the time and panel dimensions respectively,  the 

provincial-specific intercept, and  a  vector of regressors, and  the random 

disturbance term. The null hypothesis in both tests assumes the existence of cross-

section correlation:  for all  and for all . This is tested against 

the alternative hypothesis that  for at least one pair of  and . The 

Breusch and Pagan (1980) and Pesaran (2004) tests are a type of Lagrange-Multiplier 

test that is based on the errors obtained from estimating Equation 1 by the OLS 

method. Both tests strongly reject the null hypothesis of cross-section independence 

(P-value = 0.000) for all the models, providing evidence of cross-sectional 

dependence in the data given the statistical significance of the CD statistic (see Table 

2).  In light of this evidence we proceed to test for unit roots using tests that are robust 

to cross-section dependence. 

<Insert Table 2 about here> 

 
To examine the stationarity properties of the variables in our models we use 

the “second generation” unit root tests for panel-data proposed by Breitung and Das 

(2005) and Pesaran (2007) that allow for cross-section dependence. Both tests are 

based on OLS regressions; however the Breitung and Das approach breaks down if it 

is assumed that cross-correlation is due to common factors while the Pesaran (2007) 

test, denoted as CIPS, remains valid (Halkos and Polemis, 2017). The test results 

                                                   
4 Since the cross-section dependence tests demonstrate that the error terms are correlated across 

facilities, it is worth mentioning that this issue could be alternatively addressed with the estimation of 

clustered standard errors, on the condition that the regimes have already been determined.  
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suggest that all the sample variables are stationary I(0).5 Hence we proceed with 

testing for the presence of thresholds.   

<Insert Table 3 about here> 

 

4.  Econometric framework  

We proceed with the estimation of the threshold regression model, where the 

concentration ratio (CR4) is used as the sorting (threshold) variable that classifies the 

facilities in a competitive and a non-competitive industry regime. Hansen (1999; 

2000) provides an estimation method based on a Concentrated Least Squares (CLS) 

procedure and he obtains the properties of the threshold and slope parameter 

estimators. In other words, the approach that we employ here does not rely on a 

known threshold parameter, but one that needs to be estimated along-side the other 

unknown parameters of the model. However, the method is based on first testing for 

the presence of a threshold effect. Once we reject the null of no threshold(s) we 

proceed in the estimation of the model that includes the estimation of the threshold(s) 

and allows for the sample split. The technique is based on a CLS method that splits 

the model into the two regimes, whereby there is a full interaction of all the variables 

with the (estimated) threshold.   

We proceed to test for the presence of a (significant) threshold that allows for 

the comparison between the TR model and the simple linear benchmark without a 

threshold. It is worth noting that the threshold parameter is not identified under the 

null hypothesis of no threshold and usual test statistics have non-standard 

distributions. For that reason, Hansen (1999, 2000) suggests a bootstrap methodology 

                                                   
5 In accordance with the LM-statistic of Breusch and Pagan (1980), we can reject cross-sectional 

independence among the sample variables (with p-values virtually equal to zero). 
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based on the utilization of a heteroskedasticity consistent Lagrange Multiplier (LM) 

bootstrap procedure to test H0 of a linear formulation against a threshold formulation.  

We argue though that an alternative, but less sophisticated approach to 

investigating non-linear effects would be to simply use higher order polynomial 

regressors of market concentration (squared, cubed terms, etc) instead of a panel 

threshold model.  One could also resort alternatively to a semiparametric specification 

using local smoothers or splines/series to capture possible turning points. However 

such methods involve bandwidth choices and they do not lend themselves to 

estimating sharp turning points/thresholds as it is the case in the threshold model that 

we adopt in a fully interactive way (Kourtelos et al, 2016). Moreover, one important 

advantage of this methodology is that it avoids the ad hoc, subjective pre-selection of 

threshold values which has been a major critique of previous studies (Christie, 2014). 

In contrast to a simple case where the sample is split according to a known pre-

assigned threshold value, the method that we use first tests for the presence of such a 

threshold and then estimates it (see for example Hansen, 2000; Caner and Hansen, 

2004 and Kourtellos et al, 2016).  In principle, one can test for additional sample 

splits, something that we did and we were able to detect. Based on the above, our 

threshold model takes the following form: 

( )ijt it it i t itY X b X I z d n v                                               (2) 

where subscripts j = 1,...ν, denote the facility (plant) that generates the 

chemical releases, i = 1, ..., N represent the six-digit code industry and t = 1, … , T 

indexes the time. ni is the firm-specific fixed effect that control for differences across 

facilities such as technological innovations and chemicals used in the production 

process, capturing individual heterogeneity. We also include the relevant year (time) 

fixed effect (vt) which captures the co movement of the series due to external shocks 
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(Asimakopoulos and Karavias, 2016). Yijt denotes the dependent variable (LREL). z is 

the vector of threshold variables namely CR4it and HHIit.6 In addition, Xit is the vector 

of exogenous control variables (LSHIP, LVADD, LEMP, LINVEST, LCAP) where 

slope coefficients are assumed to be regime independent. I (·) is the indicator function 

taking the value 1 when the condition in the parenthesis is satisfied and 0 otherwise 

which represents the regime defined by each threshold variable (CR4 and HHI 

respectively), and the threshold value γ that needs to be estimated within the model. 

Finally εit denotes the idiosyncratic i.i.d error term. 

We complement the threshold model with a benchmark linear analysis in order 

to draw sharp differences between these results and the traditional benchmark linear 

specifications. We provide below the general exposition of the two linear models 

accounting for the presence of CR4 (Model I) and HHI (Model II) respectively7   

0 1 2 3 4 5 6ln ln ln 4 ln ln ln lnitit it itijt it it i t itREL a a SHIP a CR a VADD a EMP a INVEST a CAP n u          
   

(3) 

0 1 2 3 4 5 6ln ln ln ln ln ln lnit itit itijt it it i t itREL a a SHIP a HHI a VADD a EMP a INVEST a CAP n u          
  
(4) 

The interpretation of the variables comes as follows. lnRELijt, denotes the 

logged total (on-site and off-site) chemical releases emitted by facility j in industry i 

across the year t. lnSHIPit is the logged value of shipments as a proxy for market size 

for industry i during year t. CR4it, is one of our four concentration ratios of market 

structure allowing for certain cyclical behaviour (nonlinearities) in the impact of the 

covariates on the dependent variable.8 lnVADDit, is the total value added for industry 

i during year t as a proxy for industry output expressed in natural logarithm. lnEMPit, 

is the logged value of total employment for industry i during year t as a proxy for 

                                                   
6 We have also estimated our threshold model with the inclusion of the other three market 

concentration measures (i.e CR8, CR20 and CR50) as a robustness check and the results do not change 

significantly. The results are available upon request. 
7 The results do not drastically change if we estimate a semi logged model similar to Simon and Prince 

(2016).  
8 For the use of concentration ratios see also Polemis and Stengos (2015).  
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labour. lnINVESTit, denotes the total capital expenditure for industry i during year t as 

a proxy for capital, and subsequently lnCAPit, is the total real capital stock for 

industry i during year t as a proxy for intermediate inputs. Moreover, ni is the unit-

specific residual that differs between sectors but remains constant for any particular 

sector (unobserved sector level effect); while ut captures the time effect and therefore 

differs across years but is constant for all sectors in a particular year. Finally εit 

denotes the error term. 

 

 

5.  Results and discussion  

In this section, we present the results of the threshold fixed effects model 

along with the benchmark linear specification for each of the two alternative measures 

of market concentration (threshold variables). In addition, we offer a comparative 

discussion between the threshold effects and the static panel fixed effects linear 

specification benchmark models.  

5.1  Testing for thresholds and estimating the linear model   

We carry out the first part of the empirical analysis by determining the number 

of thresholds. For this reason, Equation (2) is estimated by OLS, allowing for 

(sequentially) zero, one and two thresholds respectively. The test statistics LM1 and 

LM2, along with their bootstrap p-values, are shown in Table 4. Specifically, we find 

that the test for a single threshold LM1 is highly significant in both models with a 

bootstrap p-value of 0.00. On the other hand, the test for a second threshold LM2 is 

also highly statistically significant, with a bootstrap p-value for each of the two 

models (Model I and II) equal to 0.00 and 0.00 respectively. As a consequence, we 

infer that there are two thresholds in all of the regression relationships.  

<Insert Table 4 about here> 
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The point estimates of the thresholds for the two models are also reported in 

the relevant table. The estimates range from 3.70 to 4.20 (Model I) and 6.00 to 6.50 

(Model II). The estimated values for the second threshold split the sample into two 

regimes. The first regime captures the medium and high levels of concentration since 

it includes the facilities where the sum of the four largest companies are below the 

value of 67 (or 4.20 in logged levels), while in the second regime the firms are 

characterised by significantly high levels of market concentration since only four 

firms possess more than 67% of the market. Similar interpretation applies to the HHI.9 

As a consequence, the two classes of facilities indicated by the point estimates are 

those with medium-high and very high level of market concentration respectively. In 

other words, the existence of a second threshold classifies the industrial facilities into 

competitive and non-competitive conditions respectively.    

After having estimated the appropriate number of thresholds, we proceed with 

the exposition of results generated from the benchmark linear specification that will 

be contrasted with the threshold model. From the following table, it is evident that 

nearly all of the variables are statistically significant in either of the two specifications 

(with or without the time effects). However, the relevant signs of most of the 

regressors entering the two models (Model I and Model II) differ drastically.  

Specifically, there is evidence supporting the argument that the market 

concentration proxied by the lnCR4 is positively correlated with a higher level of 

pollution, in both models. Regarding Model II, our estimates are higher than the ones 

reported by Simon and Prince (2016), ranging from 0.323 to 0.346 compared with the 

estimated value of 0.107. We argue that each percentage-point reduction in the lnHHI 

results in more than three percent reduction in a facility’s toxic releases. The range of 

                                                   
9 The first (second) regime includes the facilities where the sum of the squared market shares of the 

fifty largest companies is below (above) the value of 665 (or 6.50 in logarithmic scale). 
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this discrepancy could be attributed to the different samples as well as the model 

specifications followed in two studies. 

Similarly, market size (lnSHIP) increases the level of industrial pollution when 

lnCR4 and lnHHI are taken into account respectively. In addition, the estimates for 

the level of industry output (lnVADD) reveal a negative correlation with the level of 

toxic chemical releases (see Model I and II respectively). The adverse result is evident 

when intermediate inputs (lnCAP) are taken into account. More specifically, it seems 

that real capital stock is positively correlated with the level of industrial pollution 

emitted by the facilities. On the other hand, there is strong evidence that labour 

intensive facilities do not stimulate toxic chemical releases since the relevant 

estimates (lnEMP) although positive in most specifications are not statistically 

significant. The opposite result is evident when the level of capital expenditures 

(lnINVEST) interacts with industrial pollution. From the magnitude of the relevant 

elasticities, we argue that a 10 percentage point increase (decrease) in the level of 

capital expenditures will lead to a 7.5 percentage point increase (decrease) in the level 

of toxic chemical releases.              

< Insert Table 5 about here > 
 

However, as it will be shown below, the results of the benchmark static model 

compared with the threshold effects model that we use in the present study reveal 

significant differences in the interpretation of the key variable of interest (market 

concentration). This means that the benchmark model does not capture the nonlinear 

effects stemmed from the existence of a double threshold according to the 

bootstrapped P-values of the relevant LM tests (see Table 4). Therefore, the threshold 

model is better suited to assess these effects on chemical releases under two different 

regimes (competitive and non-competitive conditions).  
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5.2  The threshold model   

The results for the empirical relation between the (logged) toxic chemical 

releases and its main drivers under the tow regimes (competitive and non-competitive 

conditions) are depicted in Table 6. When the level of the four largest industries in the 

sector (CR4) is taken into account as the threshold variable (Model I) it is evident that 

nearly all of the control variables are statistically significant and plausibly signed. 

(Model I)  

< Insert Table 6 about here > 
 

The main variable of interest is the level of market concentration measured by 

the four largest firms in terms of their market shares. Recall, that when entered 

linearly, the coefficient is positive and statistically significant at the 1% level 

indicating that a one-percentage point decrease in market concentration reduces the 

level of industrial pollution by nearly 0.7 of a percentage point (see Table 5). On the 

other hand, the results for the non-linear model with a (double) threshold on market 

concentration at 67 percent, do suggest a strong non-linear relationship between 

competition and pollution. The point estimates suggest that the level of concentration 

(competition) is positively (negatively) related to the level of toxic chemical releases 

when time dummies are taken into account (see columns 1 and 2). However, it is 

evident that the CR4 index is more important in the sample below the threshold 

(competitive regime) since the relevant coefficient (2.336) is highly statistically 

significant. This means that a 10% decrease in the level of market concentration leads 

to a 23% decrease in the total chemical releases. This finding concurs that for already 

competitive sectors the level of market concentration does affect industrial output and 

subsequently the level of toxic releases emitted in the atmosphere. These results are in 

alignment with existing studies (Farber and Martin, 1986; Simon and Prince, 2016) 
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where it is supported that competition effect would tend to lower pollution per 

facility.       

Notably, the other control variables have the expected signs and are all 

statistically significant in both models (with and without time effects). More 

specifically, the level of industrial output proxied by the logged value added 

(lnVADD) has a negative impact on industrial pollution, indicating the presence of a 

strong technological effect since industrial facilities operating to high value added 

sectors are more prone to undertake actions limiting chemical releases (i.e energy 

conservation, waste management, etc). The magnitude of the estimates range from -

2.037 (column 6) to -2.715 (column 1) indicating that a one percentage percent 

increase (decrease) in the level of industrial output (value added) results in 

approximately 2.5 percent decrease (increase) of the toxic chemical releases.  

It is noteworthy that the aforementioned estimates do not vary substantially in 

their magnitude under the two different regimes. On the contrary the market size as 

expressed by the (logged) value of shipments (lnSHIP) varies considerably when the 

threshold value is taken into account. Specifically, for observations falling in the high 

(non-competitive) regime, further increases in the level of market size increase toxic 

chemical releases by 2.5 percentage points. This is contrasted against increases in the 

level of value added below the threshold value which displays a less direct effect on 

pollution. While the coefficients in both models (with and without time dummies) 

remain positive, are small in their magnitude and statistically significant not 

exceeding the value of 0.85. The relevant magnitude of the estimates although smaller 

than their counterparts in the model above the threshold (see columns 2 and 6) they 

are significantly higher than the ones reported by the existing literature (see Simon 

and Prince, 2016). The discrepancy could be justified by the fact that we uncovered a 

non-linear relationship between competition and industrial pollution.    
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  Also as expected, increases in employment (lnEMP) reduce toxic pollution, 

but the estimated coefficients are small and only significant at the model above the 

threshold (-0.411 and -0.425 respectively). The magnitude of the relevant estimates 

denotes that for the non-competitive regime a 10 percent increase (decrease) of the 

level of employment in the industry would tend to lower (increase) pollution per 

facility by nearly 4 percent. This could be attributed to the fact that an increase in the 

level of employment would lower the capital to labour ratio (K/L) and hence the level 

of industrial emissions.  

The coefficient on the level of total capital expenditure (lnINVEST) is positive 

and highly statistically significant in all of the specifications. For the model below the 

threshold (see columns 1 and 5), it is evident that a one-percentage point increase in 

capital investment can stimulate toxic releases by nearly 0.44 of a percentage point on 

average in each of the two specifications (with and without time effects). The rate of 

change is larger in its magnitude when we account for the model above the threshold 

(non-competitive) in which elasticities are equal to 0.527 and 0.492 respectively (see 

columns 2 and 6). These findings compared with the previous ones indicate that 

industrial pollution is evident (hidden) in capital (labour) intensive sectors. Lastly, the 

positive effect of intermediate inputs proxied by the total real capital stock (lnCAP) 

on pollution is evident in all of the specifications (see columns 1,2,5 and 6).   

The discussion now turns to the alterative measure of market concentration 

namely the logged value of the Hirschman-Herfindahl index (lnHHI). Although 

difficult in its computation, the HHI provides a better measure of market 

concentration since it takes into account all the market shares of the firms in an 

industry (here the first fifty firms) compared to the concentration ratio of the four 

largest firms (Cabral, 2017). 
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Table 6 depicts the results for the empirical relation between market 

concentration (lnHHI) and the other covariates with the level of toxic releases under a 

competitive and non-competitive regime. According to the relevant table, nearly all of 

the main covariates are statistically significant and plausibly signed (Model II). Our 

key variable of interest is the level of market concentration (lnHHI). In this case, the 

impact of concentration on industrial pollution alternates its sign depending on the 

different competitive regime.  

More specifically, the relationship between competition and toxic releases is 

negative (positive) when the threshold is high (low). This means that for observations 

falling into low regime (competitive) market concentration induces firms to increase 

output and hence the total level of pollution highlighting a positive net effect of 

competition, while the opposite holds for the high regime (non-competitive). This 

finding traces out the existence of an inverted “V-shaped” relationship between 

market concentration and industrial pollution at facility level.10 More specifically, we 

are the first to uncover a non-linear statistically significant relationship between 

competition and industrial toxic releases for both above and below the threshold (665 

units or 6.5 in logarithmic scale).  

In particular, when the market concentration of the average facility is below 

the threshold, a one percent increase in the level of competition will reduce toxic 

emissions by 0.81 and 1.15 percent respectively (see columns 3 and 7). In this case we 

are on the upward slopping part of the curve. However, if the average facility is above 

the threshold then a one percent decrease in the level of competition will result in an 

increase of toxic releases by 0.52 and 0.65 percent respectively in both specifications 

(with and without time effects). This means that we are on the downward sloping part 

                                                   
10 Since competition is the inverse of market concentration, we can also argue that there is a “V’ shape 
relationship between competition and industrial pollution at plant level (facility). 
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of the concentration-pollution curve. As a consequence, the impact of competition on 

industrial pollution is larger quantitatively when it is below the estimated threshold. 

Lastly, regarding the remaining variables we find that the estimated value of 

shipments is positive and statistically significant in both regimes ranging from 0.550 

to 0.954. Similarly to Model I, the magnitude of this variable is larger when the 

observations fall above than below the threshold (0.929 compared to 0.595 when time 

dummies exist). The level of value added and the employment are negatively 

correlated with the level of industrial pollution, while capital expenditures reveal a 

strong positive effect on toxic releases. Finally, the coefficient of capital stock is 

around to unity on average when the observations are classified above and below the 

threshold.  

6.  Robustness checks    

In order to check for the robustness of our findings, we re-estimate our basic 

linear model which is accordingly adjusted for the presence of three distinct 

concentration variables namely CR8, CR20 and CR50 respectively. These structural 

indicators capture the impact of the eight, twenty and fifty largest firms (measured on a 

1-100 scale) in the industry respectively.  

The empirical results when different aspects of market power are taken into 

account do not reveal significant differences regarding the competition variables and 

the set of the other covariates including the interaction terms. It is worth mentioning 

that, these interaction terms completely change the meaning of the coefficient on 

concentration. In other words the latter indicates the marginal effect of concentration 

when all the other RHS variables (that are interacted with concentration) are equal to 

zero (i.e when the logged values of these variables are equal to one). Despite the 

presence of so many interaction terms the empirical findings do not reveal significant 
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discrepancies between the linear specifications and the TR model as already examined 

implying that the results are rather robust.   

Nearly in all of the specifications, the control variables are statistically 

significant with the appropriate signs (see Table I in the Appendix).  More 

specifically, when entered linearly, the estimate of the market concentration in all of 

the specifications (with and without time effects) is positive and statistically 

significant at the 1% level. It is noteworthy that the relevant magnitude ranges from 

0.996 to 3.137 In other words a ten-percentage point increase in market concentration 

increases toxic chemical releases by 9.6% and 31.3% respectively. As a consequence, 

the negative relationship between the level of competition and the pollution emitted 

from industrial facilities seems to be in alignment with the possibly positive effect on 

abatement (Simon and Prince, 2016). In contrast to other studies, the possibility of a 

non-linear effect is well captured by the inclusion of the cross terms. More 

specifically, nearly all of the interaction terms in the three models are statistically 

significant denoting the existence of a possible non-linear relationship between the 

level of market power (and hence competition) and environmental damage.    

Lastly, the inclusion of market concentration as an indicator of SMP might 

raise a possible endogeneity issue. Knowledge of the actual causality direction 

between market concentration and industrial pollution has important implications for 

modeling suitable environmental policies. Specifically, if the causality runs from 

market concentration to pollution, then environmental policies for combating toxic 

emissions may not affect the level of competition in the industry. On the other hand, if 

the causality is reversed, then environmental policies aimed at restricting industrial 

output and thus emissions may negatively affect the level of market structure by 

distorting effective competition.  To tackle the presence of a possible endogeneity in 

the concentration variables, we have also used the lagged CR4 and HHI as regressors 
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and our results remained fairly robust to whether we used current or lagged values of 

market concentration. All in all, we feel that the issue of endogeneity is not as severe 

in our case.11 

7.  Conclusions and policy implications  

Toxic chemical prevention is emphasized in the U.S. environmental agenda as 

one of the primary means of industrial pollution abatement. The latter however, has 

been thoroughly investigated at an industry level neglecting the role of market 

structure and effective competition. In this study, we use a unique data set at the plant 

level comprising by thousands of industrial facilities dispersed among the US states 

over the period 1987-2012, in order to investigate the effects of industrial pollution 

prevention activities on toxic chemical releases under the presence of two market 

regimes (competitive and non competitive conditions).    

For this reason, we utilised for the first time a static panel threshold model 

which allows for the presence of non-linear effects. The methodology applied 

supports new empirical findings that are of interest to policy makers and government 

officials regarding the non-linear nature of pollution. Moreover, our empirics cast 

doubt on the existence of a unilateral positive or negative effect of competition on 

pollution since we claim that a rather mixed (non-linear) effect prevails.  

We uncover that the non-linear relationship is statistically significant above 

and below the estimated (double) threshold value, even after allowing for alternative 

specifications of market concentration. Our empirical findings do indicate that on 

average, each percentage-point reduction (increase) in the HHI results in a nearly one 

percent reduction (increase) in a facility’s toxic releases when we are below the 

threshold level. On the other side of the curve, a ten percent reduction (increase) in the 

                                                   
11 To preserve space, the results are available from the authors upon request.  
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concentration index induces an approximately six percent increase (reduction) in the 

level of pollution. 

Taken together, these sets of findings fully justify the existence of an inverted 

"V-shaped" curve linking concentration and industrial pollution. This relationship 

provides new insights into the environmental policy design toward releases abatement 

since the policy makers must take into account if they are on the upward or the 

downward slopping part of the curve. It is worth emphasizing that the increasing 

nonparametric regression line up to a certain concentration level (threshold) of 665 

units approximately indicates a negative effect on facilities’ emissions levels whereas 

a decreasing line indicates a positive effect. Moreover, our models concur that the 

results remained robust under different specifications not driven by endogeneity.   

The empirical findings indicate that when concentration level increases up to 

that point industries’ toxic releases levels are also increasing. However after that 

estimated peak (“turning point’’) it is evident that the regression line slightly 

decreases henceforth, revealing a negative effect of competition on environmental 

degradation. In other words, within this interval, the logged level of concentration has 

a positive impact on environmental pollution (decreasing part of the curve) creating 

an inverted "V-shaped" curve. Lieb (2003) asserts that the upturn of an inverted "U-

shaped" Environmental Kuznets Curve (EKC) may be justified by the achievement of 

the internalization of the pollution externality on top of that the control chances are 

exhausted. On the contrary, the declining part of the curve may be because of a shock.  

 These set of empirical findings could be important for policy makers, academic 

researchers and practitioners. More specifically, they call for the need to strengthen 

the effectiveness of ecological-friendly policies by taking into consideration the 

market structure and the subsequent level of competition in an industry in order to 

drastically abate chemical pollution. Specifically, policy makers and government 
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officials have to stimulate investments in value added sectors (i.e energy sector) and 

more likely to promote the use of renewable energy sources. This can be accompanied 

by more financial resources for research and development and more cost effective 

mitigation methods. 
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List of Tables 

 

Table 1: Descriptive statistics  

      
Variable Observations Mean Standard Deviation  Min  Max  

      
lnREL 14,772 10.12 2.77 0.69 18.78 
lnSHIP 14,292 16.18 1.49 4.38 20.18 
CR4 14,299 38.10 20.27 2.00 100.00 

CR8 14,297 51.57 22.59 2.00 100.00 
CR20 14,266 67.51 22.30 5.00 100.00 
CR50 14,230 80.07 20.86 8.00 100.00 
HHI 11,878 617.8 591.00 15.00 2.99 
lnCR4 14,271 3.47 0.62 0.69 4.60 
lnCR8 14,297 3.82 0.55 0.69 4.60 
lnCR20 14,225 4.14 0.44 1.60 4.60 

lnCR50 14,117 4.34 0.34 2.08 4.60 
lnHHI 11,729 5.97 1.09 2.71 8.00 
lnEMP 11,906 3.67 0.91 0.10 6.25 
lnVADD 11,906 8.58 1.11 4.69 11.61 
lnINVEST 11,906 5.98 1.36 0.99 9.72 
lnCAP 11,906 8.65 1.28 3.92 11.51 
      

Note: All variables except for the concentration measures (i.e CR4, CR8, CR20, CR50 and HHI) are expressed in natural 

logarithms. lnREL denotes the logged total (on-site and off-site) chemical releases. lnSHIP is the logged value of shipments. 

lnCR4 is the logged concentration ratio of the four largest companies in the sector. lnCR8 is the logged concentration ratio of the 

eight largest companies in the sector. lnCR20 is the logged concentration ratio of the twenty largest companies in the sector  

lnCR50 is the logged concentration ratio of the fifty largest companies in the sector. lnHHI is the logged Hirschman-Herfindahl 

index of the fifty largest companies in the sector. lnVADD, is the natural logarithm of the total value added. LEMP  denotes the 

logged value of total employment. lnINVEST stands for the total capital expenditure and lnCAP is the total real capital stock. 
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Table 2: Cross-section dependence test  

Variable      CD test   P-value          Correlation  Absolute  

(correlation) 

lnREL 133.05*** 0.000 0.692 0.692 

lnSHIP 143.34 *** 0.000 0.768 0.768 

CR4 155.27*** 0.000 0.831 0.831 

CR8 157.21*** 0.000 0.842 0.842 

CR20 155.89 *** 0.000 0.836 0.836 

CR50 159.52 *** 0.000 0.858 0.858 

HHI 85.33*** 0.000 0.468 0.535 

lnCR4 157.56*** 0.000 0.845 0.845 

lnCR8 161.55*** 0.000 0.866 0.866 

lnCR20 163.82*** 0.000 0.882 0.882 

lnCR50 164.14*** 0.000 0.886 0.886 

lnHHI 103.39*** 0.000 0.596 0.608 

lnEMP 122.95*** 0.000 0.806 0.806 

lnVADD 127.28*** 0.000 0.835 0.835 

lnINVEST 127.54*** 0.000 0.837 0.837 

lnCAP 134.45 *** 0.000 0.883 0.883 
Note: Under the null hypothesis of cross-sectional independence the CD statistic is distributed as a two-tailed standard normal. 

Results are based on the test of Pesaran (2004). The p-values are for a one-sided test based on the normal distribution. 

Correlation and Absolute (correlation) are the average (absolute) value of the off-diagonal elements of the cross-sectional 

correlation matrix of residuals. lnREL denotes the logged total (on-site and off-site) chemical releases. lnSHIP is the logged 

value of shipments. lnCR4 is the logged concentration ratio of the four largest companies in the sector. lnCR8 is the logged 

concentration ratio of the eight largest companies in the sector. lnCR20 is the logged concentration ratio of the twenty largest 

companies in the sector  lnCR50 is the logged concentration ratio of the fifty largest companies in the sector. lnHHI is the logged 

Hirschman-Herfindahl index of the fifty largest companies in the sector. lnVADD, is the natural logarithm of the total value 

added. LEMP denotes the logged value of total employment. lnINVEST stands for the total capital expenditure and lnCAP is the 

total real capital stock. Significant at ***1%.  
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Table 3: Panel unit root tests 

 Statistic  

Variable Breitung and Das  (2005)  Pesaran (2006)  

lnREL -23.0000*** -51.4745*** 

lnSHIP -23.5125 *** -46.2411*** 

lnCR4 -37.8671 *** -54.1824 *** 

lnCR8   -39.4864***   -54.5119 *** 

lnCR20   -41.8846 *** -55.9387  *** 

lnCR50 -39.3244***   -57.3004*** 

lnHHI -39.6548*** -53.0001*** 

lnEMP -34.5414*** -54.7660*** 

lnVADD -24.3578***   -48.9113*** 

lnINVEST     -21.8293*** -47.5499*** 

lnCAP   -23.6705*** -47.2386*** 
 Note: The number of lags has been set to two according to BIC. The Augmented Dickey Fuller test is used rather than Phillips-

Perron test. The null hypothesis assumes that the variable contains unit root. lnREL denotes the logged total (on-site and off-site) 

chemical releases. lnSHIP is the logged value of shipments. lnCR4 is the logged concentration ratio of the four largest compa nies 

in the sector. lnCR8 is the logged concentration ratio of the eight largest companies in the sector. lnCR20 is the logged 

concentration ratio of the twenty largest companies in the sector  lnCR50 is the logged concentration ratio of the fifty largest 

companies in the sector. lnHHI is the logged Hirschman-Herfindahl index of the fifty largest companies in the sector. lnVADD, 

is the natural logarithm of the total value added. LEMP denotes the logged value of total employment. lnINVEST stands for the 

total capital expenditure and lnCAP is the total real capital stock. Significant at ***1%.      

 

 

 

 

 

 

 

Table 4: Test for the existence of threshold(s)  

Test for single threshold  Model with lnCR4 Model with lnHHI 

Threshold estimate γ  3.700 6.00 

LM1 488.46*** 402.76*** 

Bootstrap P-value 0.00 0.00 

Test for double threshold  Model with lnCR4 Model with lnHHI 

Threshold estimate γ 4.20 6.50 

LM2 137.28*** 111.74*** 

Bootstrap P-value 0.00 0.00 
Note: Test of Null of No Threshold Against Alternative of Threshold Allowing Heteroskedastic Errors (White Corrected). The 

trimming percentage is set to 0.15 and the Bootstrap replications are set to 1000. Significant at ***1%  
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Table 5: Linear Estimation Results  
 With time effects  Without time effects  

Variable  Model I Model II Model I Model II 

lnSHIP 0.433*** 

(0.0756) 

0.401*** 

(0.0765) 

0.445*** 

(0.0754) 

0.412*** 

(0.0764) 

lnCR4 0.682*** 

(0.0923) 

- 0.692*** 

(0.0446) 

- 

lnHHI - 0.323*** 

(0.0533) 

- 0.346*** 

(0.0258) 

lnVADD -1.451*** 

(0.0992) 

-1.430*** 

(0.101) 

-1.440*** 

(0.0991) 

-1.411*** 

(0.101) 

lnEMP 0.0922* 

(0.0552) 

0.0710 

(0.0563) 

0.0772 

(0.0547) 

0.0430 

(0.0557) 

lnINVEST 0.491*** 
(0.0705) 

0.519*** 
(0.0720) 

0.485*** 
(0.0704) 

0.506*** 
(0.0719) 

lnCAP 0.750*** 

(0.0639) 

0.745*** 

(0.0650) 

 

0.745*** 

(0.0639) 

0.747*** 

(0.0648) 

Constant 3.462*** 

(0.688) 

4.014*** 

(0.699) 

3.337*** 

(0.686) 

3.904*** 

(0.698) 

Diagnostics 

Observations  11,878 11,607 11,878 11,607 

Facilities 2,375.6 2,321.4 2,375.6 2,321.4 

Years 6 6 6 6 

R-squared (within) 0.1254 0.1326 0.1248 0.1233 

F-statistic  170.11***  

[0.000] 

164.15***  

[0.000] 

282.14***  

[0.000] 

272.33*** 

[0.000] 

HW 32.21*** 

[0.000] 

31.26*** 

[0.000] 

32.06*** 

[0.000] 

31.73*** 

[0.000] 

W-T 405.281*** 

[0.0000] 

205.875*** 

[0.0001] 

387.344*** 

[0.000] 

194.132*** 

[0.0002] 

Note: The market concentration variable is either the concentration ratio of the four largest companies (CR4) in the sector 

(Model I) or the Hirschman-Herfindahl index of the 50 largest companies (HHI) in the sector (Model II). lnREL denotes the 

logged total (on-site and off-site) chemical releases. lnSHIP is the logged value of shipments. lnCR4 is the logged concentration 

ratio of the four largest companies in the sector. lnHHI is the logged Hirschman-Herfindahl index of the fifty largest companies 

in the sector. lnVADD, is the natural logarithm of the total value added. LEMP denotes the logged value of total employment. 

lnINVEST stands for the total capital expenditure and lnCAP is the total real capital stock. W-T denotes the Wooldridge test for 

autocorrelation in panel data. The use of the fixed compared to random effects is justified after a Hausman test for each model. 

All models include state year fixed effects. Standard errors are in parentheses. To preserve space, we have deleted the results of 

the time dummies and their interactions with the threshold variables CR4 and HHI respectively. The numbers in square brackets 

are the p-values. Significant at ***1%, **5% and *10% respectively. HW is the Huber/White test for groupwise heteroscedasticity. 

W-T is the Wooldridge test for autocorrelation in panel data.   



 39 

     Table 6: Regression Estimates for the Double Threshold Model 
 With time effects Without time effects 

 Model I Model II Model I Model II 

Variables 

(1) 

Threshold  

1 4.20a   

(2) 

Threshold 

2 4.20a   

(3) 

Threshold 

1 6.5a   

(4) 

Threshold 

2 6.5a   

(5) 

Threshold 

1 4.20a   

(6) 

Threshold 

2 4.20a   

(7) 

Threshold 

1 6.5a   

(8) 

Threshold 

2 6.5a   

lnSHIP 0.855*** 

(0.136) 

2.581*** 

(0.275) 

0.595*** 

(0.143) 

0.929*** 

(0.140) 

2.515*** 

(0.274) 

0.713*** 

(0.129) 

0.550*** 

(0.141) 

0.954*** 

(0.139) 

lnVADD -2.715*** 

(0.175) 

-2.045*** 

(0.275) 

-1.880*** 

(0.239) 

-2.260*** 

(0.164) 

-2.037*** 

(0.274) 

-2.541*** 

(0.169) 

-1.815*** 

(0.237) 

-2.324*** 

(0.163) 

lnEMP -0.0190 

(0.0872) 

-0.411*** 

(0.117) 

0.119 

(0.156) 

-0.317*** 

(0.0738) 

-0.425*** 

(0.117) 

-0.0713 

(0.0860) 

0.119 

(0.156) 

-0.289*** 

(0.0734) 

lnINVEST 0.415*** 

(0.128) 

0.527** 

(0.210) 

0.716*** 

(0.157) 

0.396*** 

(0.123) 

0.492** 

(0.205) 

0.462*** 

(0.126) 

0.641*** 

(0.153) 

0.432*** 

(0.122) 

lnCAP 1.564*** 

(0.122) 

0.732*** 

(0.212) 

0.777*** 

(0.160) 

1.367*** 

(0.116) 

-0.633*** 

(0.209) 

1.543*** 

(0.119) 

0.832*** 

(0.158) 

1.364*** 

(0.116) 

lnCR4  4.20 

2.336** 

(1.029) 

- - - 1.315*** 

(0.425) 

- - - 

4.20 < lnCR4 

- -2.556* 

(1.650) 

- - - -0.691*** 

(0.214) 

- - 

lnHHI  6.50 

- 
- 

0.813* 

(0.451) 

- 
- - 

1.150*** 

(0.421) 

- 

6.50 < lnHHI 

- - - -0.516* 

(0.291) 

- - - -0.652*** 

(0.119) 

Constant 7.457*** 

(2.023) 

-14.35*** 

(3.761) 

-2.312 

(3.016) 

6.249*** 

(1.521) 

-14.09*** 

(3.759) 

7.725*** 

(2.020) 

-1.768 

(3.007) 

6.358*** 

(1.515) 

Diagnostics 

Observations 2,626 1,220 2,063 3,035 2,626 1,220 2,063 3,035 

Facilities 525 244 413 607 525 244 413 607 

Years 6 6 6 6 6 6 6 6 

Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes 

Time effects  Yes Yes Yes Yes No No No No 

R-squared (within) 0.212 0.122 0.200 0.181 0.206 0.113 0.198 0.176 

F-statistic  70.21*** 

[0.000] 

16.78*** 

[0.000] 

73.09*** 

[0.000] 

66.71*** 

[0.000] 

112.93*** 

[0.0000] 

25.78*** 

[0.0000] 

84.41*** 

[0.0000] 

107.82*** 

[0.0000] 

HW 8.50 

[0.1309] 

8.98 

[0.1098] 

26.68*** 

[0.0001] 

4.40 

[0.4938] 

8.50 

[0.1306] 

8.86 

[0.1146] 

26.27*** 

[0.0001] 

4.46 

[0.4855] 

W-T 43.192*** 

[0.0028] 

15.464** 

[0.0171] 

41.762*** 

[0.0030] 

208.276*** 

[0.0001] 

44.196*** 

[  0.0027] 

16.707** 

[0.0150] 

41.874*** 

[0.0029] 

212.557*** 

[0.0000] 

Note: lnREL denotes the logged total (on-site and off-site) chemical releases. lnSHIP is the logged value of shipments. lnCR4 is the logged concentration ratio of the four largest companies in the sector. lnHHI is the logged Hirschman-Herfindahl index 

of the fifty largest companies in the sector. lnVADD, is the natural logarithm of the total value added. LEMP  denotes the logged value of total employment. lnINVEST stands for the total capital expenditure and lnCAP is the total real capital stock. All 

models include state year fixed effects.Significant at ***1%, **5% and *10% respectively. HW is the Huber/White test for groupwise heteroscedasticity. W-T is the Wooldridge test for autocorrelation in panel data.   
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Appendix 

 
Table I: Alternative Linear Estimation Results  

 With time effects Without time effects 

Variable  Model III Model IV Model V Model III Model IV Model V 

lnSHIP 3.242*** 

(1.042) 

4.670*** 

(1.116) 

0.828** 

(0.403) 

-0.130 

(0.746) 

0.600 

(0.793) 

0.537 

(0.492) 

lnCR8 0.996*** 

(0.166) 
- - 0.466*** 

(0.137) 
- - 

lnCR20 - 2.022*** 

(0.346) 
- - 1.330*** 

(0.332) 
- 

lnCR50 - - 3.137*** 
(0.359) 

- - 1.960*** 
(0.507) 

lnVADD 0.723 
(2.903) 

-2.928 
(3.080) 

1.245 
(1.112) 

9.491*** 

(2.127) 
7.958*** 
(2.180) 

4.284*** 
(1.374) 

lnEMP 16.90*** 

(1.212) 

17.71*** 

(1.269) 

6.499*** 

(0.514) 

12.98*** 

(0.901) 

12.79*** 

(0.908) 

8.734*** 

(0.632) 

lnINVEST -5.332*** 

(1.084) 

-4.775*** 

(1.122) 

-3.016*** 

(0.531) 

-6.905*** 

(0.948) 

-6.629*** 

(0.958) 

-4.293*** 

(0.696) 

lnCAP -12.17*** 

(1.156) 

-11.55*** 

(1.177) 

-3.240*** 

(0.549) 

-11.52*** 

(1.098) 

-10.91*** 

(1.120) 

-6.357*** 

(0.746) 

lnCR8  lnSHIP -0.661*** 

(0.232) 

- - 0.0913 

(0.167) 

- - 

lnCR8 lnVADD -0.438 

(0.649) 

- - -2.408*** 

(0.474) 

- - 

lnCR8 lnEMP -3.715*** 

(0.268) 

- - -2.841*** 

(0.198) 

- - 

lnCR8 lnINVEST 1.280*** 
(0.245) 

- - 1.641*** 

(0.214) 
- - 

lnCR8 lnCAP 2.862*** 
(0.262) 

- - 2.719*** 

(0.248) 
- - 

lnCR20  lnSHIP - -0.980*** 

(0.249) 
- - -0.0709 

(0.176) 
- 

lnCR20 lnVADD - 0.375 

(0.688) 

- - -2.068*** 

(0.485) 

- 

lnCR20 lnEMP - -3.890*** 

(0.281) 

- - -2.795*** 

(0.199) 

- 
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lnCR20 lnINVEST - 1.161*** 

(0.253) 
- - 1.583*** 

(0.216) 
- 

lnCR20 lnCAP - 2.716*** 

(0.267) 
- - 2.578*** 

(0.253) 
- 

lnCR50  lnSHIP - - -0.0785 
(0.101) 

- - -0.0394 
(0.116) 

lnCR50 lnVADD - - -0.696** 

(0.273) 

- - -1.317*** 

(0.317) 

lnCR50 lnEMP - - -1.528*** 

(0.121) 

- - -1.948*** 

(0.142) 

lnCR50 lnINVEST - - 0.877*** 

(0.132) 

- - 1.108*** 

(0.162) 

lnCR50 lnCAP - - 0.959*** 

(0.140) 

- - 1.617*** 

(0.177) 

Constant 5.915***  

(0.922) 

2.946* 

(1.650) 

-5.504*** 

(1.529) 

5.761*** 

(0.920) 

1.964 

(1.643) 

-1.873 

(2.323) 

Diagnostics 

Observations  11,756 11,718 11,756 11,756 11,718 11,718 

Facilities 2,177 2,177 2,177 2,177 2,177 2,177 

Years 6 6 6 6 6 6 

R-squared (within) 0.164 0.165 0.158 0.162 0.161 0.162 

F-statistic  153.74*** 
[0.000] 

153.80*** 
[0.000] 

146.29*** 
[0.000] 

205.88*** 
[0.000] 

204.35*** 
[0.0001] 

205.91*** 
[0.000] 

HW 31.04*** 

[0.000] 

24.91*** 

[0.0001] 

23.77*** 

[0.0006] 

31.33*** 

[0.000] 

26.18*** 

[0.0001] 

23.77*** 

[0.0002] 

W-T 238.951*** 

[0.0001] 

170.125*** 

[0.0002] 

199.510*** 

[0.0002] 

202.977*** 

[0.0001] 

162.978*** 

[0.0001] 

170.438*** 

[0.0002] 

Note: The market concentration variable is either the concentration ratio of the eight largest companies (CR8) in the sector (Model III), the twenty largest companies (CR20) in the sector (Model IV) or the fifty largest  

companies (CR50) in the sector (Model V). lnREL denotes the logged total (on-site and off-site) chemical releases. lnSHIP is the logged value of shipments. lnCR8 is the logged concentration ratio of the eight largest 

companies in the sector. lnCR20 is the logged concentration ratio of the twenty largest companies in the sector. lnCR50 is the logged concentration ratio of the fifty largest companies in the sector. lnVADD, is the natural 

logarithm of the total value added. LEMP denotes the logged value of total employment. lnINVEST stands for the total capital expenditure and lnCAP is the total real capital stock. W-T denotes the Wooldridge test for 

autocorrelation in panel data. The use of the fixed compared to random effects is justified after a Hausman test for each model. All models include state year fixed effects.Standard errors are in parentheses. To preserve 

space, we have deleted the results of the time dummies and their interactions with the threshold variables CR8, CR20 and CR50 respectively. The numbers in square brackets are the p-values. Significant at ***1%, **5% 

and *10% respectively. HW is the Huber/White test for groupwise heteroscedasticity. W-T is the Wooldridge test for autocorrelation in panel data.   

 


