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Abstract

We develop a model of a prediction market with ambiguity and derive testable

implications of the presence of Knightian uncertainty. Our model can also explain two

commonly observed empirical regularities in betting markets: the tendency for longshots

to win less often than odds would indicate and the tendency for favorites to win more

often. Using historical data from Intrade, we further present empirical evidence that

is consistent with the predicted presence of Knightian uncertainty. Our evidence also

suggests that, even with information acquisition, the Knightian uncertainty of the world

may be not �learnable� to the traders in prediction markets.
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1 Introduction

At least since the work of Knight (1921), economists have understood that economic agents

may behave di¤erently in risky circumstances, where outcomes are random but governed

by known probabilities, as opposed to uncertain circumstances, where risks are unknown.

Ellsberg (1961) provides examples that highlight the tendency for some decision makers to

be averse to the presence of Knightian uncertainty�or, ambiguity.

In recent years, there has been an explosion of theoretical work developing models

that incorporate ambiguity aversion, building o¤ of the seminal contribution of Gilboa

and Schmeidler (1989). In the literature to date, Knightian uncertainty has been a factor

inserted in a model that could possibly explain puzzling observations. It has served a

role analogous to that of dark matter in cosmological models, lurking behind the scenes

to explain observed phenomena, never being directly observed. At the same time, a rich

literature has evolved exploring the e¢ciency of betting and prediction markets that price

speci�c events. Following on the early work of Kahneman and Tversky (1979) and Asch,

Malkiel and Quandt (1982), the ability of these markets to predict future events has been

studied extensively, and a number of empirical anomalies have been identi�ed.

In this paper, we extend the theoretical literature and connect it to the prediction-

market application. In so doing, we develop more direct observable implications of the

presence of Knightian uncertainty than has been achieved previously in the literature, and

a method to test for its presence.

While we below will formally derive a model that suggests our test, the intuition of our

approach is quite straightforward and can be illustrated using an example from Ellsberg

(1961). Suppose that we have two urns. In one urn, we have 50 black balls and 50 red balls.

In another urn�the �Knightian urn��we have 100 balls, but we have no information

regarding the proportions. A subject is o¤ered a game. If she pulls a black ball out of the

urn, she wins $1. If she pulls a red ball out she wins nothing. The literature has documented

a tendency for individuals to prefer the urn with the known probabilities, suggesting that
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they exhibit the aversion to ambiguity discussed above.

Suppose that an econometrician could observe games played with both of the urns in

Ellsberg�s game. With a number of repeated trials, the sample proportions from the �rst

urn would fairly rapidly indicate an estimate that the binomial probability of victory is 50

percent. With enough data, one would say that with great con�dence. On the other hand,

if one observed repeated play with the second, Knightian urn which, after all, has some

number of black balls in it, then the sample proportion would also converge to an estimated

binomial probability, but that probability would not necessarily be 50 percent.

The observation that motivates this paper stems from this thought experiment. Given a

market derived ex ante probability of a binary event, as one frequently observes in betting

markets, there will naturally be circumstances where information is extremely solid, and

odds are quite far from 50 percent. There will also be situations where information suggests

there is an even match (as with a coin �ip), and the contract suggests there is close to a 50

percent chance of either outcome. This often happens, for example, in presidential futures

markets in the U.S. after the conventions are over. But it is also possible that there are

contracts that suggest that the odds of either outcome are 50 percent because the event

is shrouded in ambiguity. If we were to estimate the ex post sample proportions from just

these contracts with ex ante 50 percent probabilities, then they could, as in the Ellsberg

example above, be anything. If we were to estimate the ex post sample proportions of the

high information contracts with probabilities far from 50 percent, the proportions and ex

ante probabilities should, if markets are e¢cient, align. But close to 50 percent, they might

not, and if they do not, it is an indication of the presence of Knightian uncertainty. Thus,

the pattern by which the relationship between ex post proportions and ex ante probabilities

deviates from the 45 degree line becomes informative regarding the presence of Knightian

uncertainty. We also discuss the extent to which learning can occur in markets over time.

If Knightian uncertainty induces knowledge acquisition, then the relationship between pro-

portions and probabilities will evolve as a market matures, a possibility we explore in the
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paper.

The next subsection brie�y reviews the literature. In Sections 2 and 3, we draw on

the work of Gilboa and Schmeidler (1989) and Dow and Werlang (1992) and develop a

model that suggests that the pattern described by our intuitive example would emerge in

a market in�uenced by the present of signi�cant Knightian uncertainty. In Section 4, we

provide some high-level evidence that the relationship between ex post proportions and ex

ante probabilities is consistent with the predictions of our model. Section 5 concludes.

1.1 Literature Review

This paper draws from two di¤erent strands in the literature. First, theorists have made

remarkable strides in recent years incorporating Knightian uncertainty and ambiguity aver-

sion into models of �nancial markets.

These models have, according to an exhaustive recent review, �implications for portfolio

choice and asset pricing that are very di¤erent from those of SEU (subjective expected

utility theory) and that help to explain otherwise puzzling features of the data.�1 Ambiguity

aversion could help explain the tendency of markets to stop operating during �nancial crises,

for prices to not be completely informative, and even for there to be bank runs.2

This branch of the literature has focused on �nancial markets in general. At the same

time, an equally impressive literature has emerged exploring the functioning of prediction

markets, which, for the most part, price in the probability of speci�c binary events. As

Thaler and Ziemba (1988) �rst noted, these prediction markets may be a better laboratory

to test cutting edge theories, as they contain contracts with known durations, and observable

discrete events that stop the trading. While an equity might live on virtually forever, a

presidential election future has a speci�c end date, and its ability to forecast the outcome

can be precisely evaluated.

1See Epstein and Schneider (2010), p. 315.

2See Caballero and Krishnamurthy (2008), Caballero and Simsek (2013), Guidolin and Rinaldi (2010),

Routledge and Zin (2009), and Uhlig (2013).
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This second literature has advanced both empirically and theoretically. On the the-

oretical side, Ali (1977) and Manski (2004) illustrate that the beliefs of bettors may not

necessarily yield a market-based probability. More recently, Wolfers and Zitzewitz (2006)

identify the conditions under which prediction-market prices coincide with bettors� mean

beliefs about probabilities. On the empirical side, prediction markets have been found to

be informative regarding the odds of events occurring. Berg et al. (2008), for example, �nd

that the Iowa Electronic Markets outperformed polls in predicting election outcomes. At

the same time, markets have been found to exhibit a favorite-longshot bias, with favorites

outperforming their odds, and longshots underperforming (see, e.g., Cain, Law and Peel,

2000). A number of possible explanations for this pattern include insider trading (Shin,

1992), risk-loving behavior (Weitzman, 1965; Quandt, 1986), belief dispersion (Gandhi and

Serrano-Padia, 2015), and imperfect ability to process information (Snowberg and Wolfers,

2010).

The connection of these two literatures seems quite promising, as betting markets often

exist for events, such as Brexit or elections, for which Knightian uncertainty may well

be present. Since they also have �nite and determinate life spans, they also allow the

econometrician the ability to evaluate their performance ex post. We now turn to illustrating

the utility of this approach.

2 A Model of Prediction Market with Ambiguity

2.1 Setup

Events and Contracts. Consider a prediction market for the occurrence of a binary

event. There are two all-or-nothing contracts corresponding to the two possible realizations.

One contract pays $1 if event A occurs and $0 otherwise, while the other contract pays $1

if the complementary event Ac occurs and $0 otherwise. Let � denote the price of contract

A. No-arbitrage condition dictates that, in equilibrium, the price of contract Ac be 1� �.
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Traders. There is a continuum I of competitive traders, each endowed with homogeneous

initial wealth w. The �net� position on contract A held by trader i is denoted by xi 2 R.
3

Given price �, the �nal wealth wi of trader i is

wi =

8
><
>:
w + (1� �)xi if event A occurs,

w � �xi if event Ac occurs.

All traders have log utility of their �nal wealth: u (wi) = lnwi.

Beliefs and Ambiguity. Suppose trader i has a subjective belief that event A occurs

with probability eq 2 [0; 1]. Then, the subjective expected utility of trader i from holding

position xi at price � is given by

U (�; xi; eq) = eq ln (w + (1� �)xi) + (1� eq) ln (w � �xi) :

However, ambiguity exists, for traders may be uncertain about how likely event A

is to occur. We follow Gilboa and Schmeidler (1989) and model ambiguity using the

�multiple-prior� framework. Speci�cally, suppose each trader i considers every probability

eq 2 [qi � �; qi + �], where � � 0, an admissible probability that governs the realization of

the binary event. Under this framework, qi represents the �mean� belief of trader i, while

� is interpreted as a measure of ambiguity. Given price �, trader i chooses position xi to

maximize the minimum�that is, the worst-case scenario�of all her admissible, subjective

expected utilities:

max
xi2R

�
min

eq2[qi��;qi+�]
U (�; xi; eq)

�
: (1)

3 In practice, trader i can long and/or short contract A and/or contract Ac; but some strategies are

mathematically equivalent. For example, holding mi > 0 units of contract A and ni > mi > 0 units of

contract Ac would be equivalent to holding mi units of cash, 0 unit of contract A , and ni �mi > 0 units

of contract Ac: Therefore, without loss of generality, we let a single decision variable xi = mi � ni (which

could be positive, zero, or negative) represent the �net� position held by trader i:
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Traders are heterogeneous in mean belief. Let the distribution of traders� mean beliefs

be characterized by a cumulative distribution function F over interval [�; 1� �]. That is,

for the most pessimistic trader, the worst-case belief that A occurs is probability 0 while,

for the most optimistic trader, the best-case belief that A occurs is probability 1.

2.2 Optimal Demand and Portfolio Inertia

Solving the inner minimization reduces the optimization problem (1) to

max
xi2R

U (�; xi; qi � sgn (xi) �) ;

where sgn (�) is an indicator function that takes the sign of its argument.

The intuition behind the above expression is straightforward. If trader i has a positive

position on contract A, then the worst-case scenario would be that event A occurs with

probability qi � �, the lower bound. Similarly, if the position of trader i is negative, then,

in the worst-case scenario, event A occurs with the upper-bound probability, qi + �.

Solving the maximization problem gives the optimal (net) demand for contract A by

trader i,

x (�; qi) =

8
>>>>><
>>>>>:

qi����
�(1��)w if � 2 [0; qi � �) ;

0 if � 2 [qi � �; qi + �] ;

qi+���
�(1��)w if � 2 (qi + �; 1] ;

(2)

as a function of price and mean belief. Therefore, trader i longs contract A when the price is

lower than her most pessimistic belief, and shorts contract A when the price is higher than

her most optimistic belief. For any price in the intermediate range [qi � �; qi + �], trader i

does not participate in the prediction market�the phenomenon of portfolio inertia.

That portfolio inertia arises when investors have maxmin preferences is well known in

the �nance literature since the work by Dow and Werlang (1992). The setup of this model

replicates this phenomenon in the context of prediction markets. In particular, for each
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trader, the size of price region at which portfolio inertia occurs is given by 2�. In other

words, the higher the degree of ambiguity, the more inertial the traders� portfolios.

2.3 Equilibrium

Given price � for contract A and distribution function F of traders� mean beliefs, the

aggregate (net) demand for the contract is given by

XF (�) =

Z 1��

�

x (�; q) dF (q) : (3)

The prediction market is in equilibrium when the aggregate demand for contract A

equals zero, that is, XF (�) = 0. The following proposition establishes the equilibrium

price.4

Proposition 1 Given distribution function F , the equilibrium price ��F is such that

��F = EF (q) +

Z ��
F
+�

��
F
��

F (q) dq � �:

When ambiguity is absent (i.e., � = 0) the prediction market aggregates the �wisdom of

crowds:�

��F j�=0= EF (q) :

That is, the equilibrium price of contract A corresponds to the average of traders� mean

beliefs about the occurrence of event A.

In the presence of ambiguity, however, the prediction market does not necessarily ag-

gregate the wisdom of crowds. In particular, it aggregates the wisdom of crowds if and only

if the distribution function F is such that
R ��

F
+�

��
F
�� F (q) dq = �. The next proposition shows

that the situations in which such equality happens to hold are topologically rare.

4We relegate all proofs to Appendix A.
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Proposition 2 With ambiguity, the prediction market �rarely� aggregates the wisdom of

crowds. Formally, let � be the space of probability distributions over [�; 1� �], endowed with

the weak topology. Then, the subset of probability distributions such that the equilibrium

price equals the average of traders� mean beliefs is nowhere dense in �.

Propositions 1 and 2 together suggests that the presence of ambiguity renders the pre-

diction market ine¤ective in aggregating the beliefs held by heterogeneous traders.

Proposition 3 The equilibrium quantity of trades is strictly decreasing in the degree of

ambiguity.

Proposition 3 is a direct consequence of portfolio inertia. As the degree of ambiguity

increases, the �inaction range� of each trader i, [qi � �; qi + �], becomes wider. Since each

trader is more likely to stay put in a more ambiguous environment, the aggregate trades

must be fewer as well. This result is reminiscent of well-known models of ambiguity in �nan-

cial economics (e.g., Caballero and Krishnamurthy, 2008; Guidolin and Rinaldi, 2010; and

Routledge and Zin,2009), which suggest that a signi�cant increase in Knightian uncertainty

may contribute to liquidity hoarding and market breakdown.

Moreover, the deterrence of trades in a particular way is what causes the failure of

the prediction market to aggregate beliefs. Speci�cally, for any prevailing price �, the

traders who stay put are those with moderate beliefs such that their inaction ranges cover

�. Those who trade have beliefs that are more extreme�either more optimistic or more

pessimistic�than the abstainers. Suppose the abstaining traders did trade, the chance of

the hypothetical market price, after aggregating the abstaining traders� beliefs, happens to

be exactly the same as � is zero.

3 Testable Implications

The previous section has derived the equilibrium results under ambiguity. However, since

the degree of ambiguity is not observable, those results cannot be tested directly. In this
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section, we impose more structures on the model and derive implications that are testable

with prediction-market data.

3.1 Preliminaries

Suppose the true probability that event A occurs is given by p 2 [�; 1� �]. Traders do not

know the true probability, but each holds an interval of (subjective) admissible beliefs. We

assume that, for a mass m 2 (0; 1) of traders, their mean beliefs coincide with p. For the

other traders, their mean beliefs are continuously distributed over [�; 1� �]. Assumption 1

embeds these additional structures into the distribution function F .

Assumption 1 The distribution function F takes the following form:

F (q) �

8
><
>:
(1�m)F (q) if q 2 [�; p) ;

(1�m)F (q) +m if q 2 [p; 1� �] ;

where F is some continuous distribution function of q over [�; 1� �].

The functional form of F is left unspeci�ed. We let � denote the integral of F , i.e.,

� (q) �
R q
�
F (q0) dq0.

The interpretation of Assumption 1 is that there are some traders whose beliefs happen

to be correct. One could provide a micro-foundation for this setup by assuming that, prior

to trading, the mass m of traders have received imperfect private signals that are partially

informative of the true probability, while other traders have received no such signals. With

such a micro-foundation, the traders� (multiple) beliefs can be interpreted as their (multiple)

posteriors. In this section, we adopt a reduced-form approach and build these details directly

into the distribution function F .

One may wonder to what extent the mass of traders with correct mean beliefs matters

to deriving testable implications. As will be clear in the next subsection, our theoretical

result does not depend on the exact value of m. Whether the mass is extremely small, in
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which case few traders have the correct beliefs, or very large, which means most traders do,

the main result is unchanged. The essence of this setup is that a fraction of traders are,

to some extent, �informed� about the true probability. Therefore, whether they trade�or

not, should they choose to abstain�makes a qualitative di¤erence in the equilibrium price.

3.2 Implications

Since the distribution function F is given and parameterized by the true probability p,

applying Proposition 1 allows us to solve for the equilibrium price as a function of p, as

shown below.

Proposition 4 Under Assumption 1, the equilibrium price �� (p) is:

1. continuous, with �� (�) > � and �� (1� �) < 1� �;

2. such that �� (p) = b� for any p 2 [b� � �; b� + �];

3. strictly increasing for p =2 [b� � �; b� + �];

where b� is identi�ed by b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �).

Figure 1 plots the equilibrium price in a p�� diagram, where the true probability p =

(��)�1 (�) is a correspondence of the equilibrium price �. Speci�cally, it attains a non-

singleton set value when � = b�, with the size of that set equal to 2�.

The most important feature of the equilibrium (part 2) is that there exists a range

of true probabilities, [b� � �; b� + �], within which the market price is not at all responsive

to any change in the underlying state of the world. That is, ��0 (p) = 0 for any p in

that range. Instead of predicting, the prediction market simply �assigns� an uninformative

number b�, the mid-point of the range [b� � �; b� + �], as the price. The reason for this result

is straightforward: Since the traders who have the correct mean beliefs about p are not

trading, what exactly those traders think about the true state of the world must not be

re�ected in the market price.
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As noted earlier, the exact value of the mass m does not a¤ect the size of the vertical

segment [b� � �; b� + �], which equals twice the degree of ambiguity. Even ifm is in�nitesimal,

the market price stops re�ecting the true probability once these traders abstain from betting.

Outside the range [b� � �; b� + �], however, the prediction market works (part 3). Specif-

ically, if all parameters of the model were known, one would be able to infer the true

probability p from the equilibrium market price �� (p). The higher the true probability, the

higher the price.

Part 1 of the proposition also shows that, for a true probability that is very high (near

1� �) or very low (near �), the equilibrium price exhibits a favorite-longshot bias commonly

observed in the literature (e.g., Cain, Law, and Peel, 2000): favorite events are under-priced

while longshot events are over-priced. The intuition is as follows. For a longshot event where

p = �, for example, if the market price was as low as �, that would imply all traders� mean

beliefs were greater than the prevailing price and, hence, all traders would long the contract,

which cannot be an equilibrium. Therefore, the equilibrium price of a longshot must be

signi�cantly larger than the longshot�s odds.

Note that, although the degree of ambiguity, �, is not directly observable in real-

ity, Proposition 4 yields implications of the presence of ambiguity that are testable with

prediction-market data. Suppose an econometrician could conduct a large number of re-

peated trials for each value of the true probability. Then, with enough data, the ex post

sample proportion, denoted by P , would converge to the corresponding true probability, p.

It follows that the estimated relationship between P and the market price, �, would con-

verge to the graph of the correspondence p = (��)�1 (�). As in Figure 1, such ideal trials

would show a big jump at price level � = b�, with P being generally below the 45-degree line

below but close to b�, and above it just thereafter. Moreover, since the relationship between

P and � fundamentally shifts between the two continuous segments, our result suggests a

testable structural change near the jump in at b�.
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Before conducting the test, the econometrician may not know where the jump would

appear, because b�, given by

b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �) ;

depends on the distribution of mean beliefs among all prediction-market traders. It follows

from the above equation that b� would be smaller than 0:5 if F is skewed towards the lowest

mean belief �, and larger than 0:5 if F is skewed towards the highest mean belief 1� �. But

when F is symmetrically distributed over [�; 1� �], b� would be equal to 0:5, which is the

following corollary.

Corollary 5 Under Assumption 1,

b� = 0:5

if F is a symmetric distribution function over [�; 1� �] (i.e., F (1� x) = 1� F (x) for any

x 2 [�; 1� �]).

In practice, the empirical chart would precisely follow Figure 1 with the jump at 0:5 in

the case of symmetry, but not if asymmetries were present. But even if one might expect

skewness to be present for some contracts but not others, the range for the crossover point

could be scattered about the neighborhood of 0:5. The aggregation of a large number of

contracts, therefore, could push the average b� to be in the neighborhood of 0:5. Since

each contract would exhibit a similar (if slightly shifted) pattern, the overall pattern should

loosely follow Figure 1 if Knightian uncertainty is important in these markets, even though

some re�ect symmetry whereas others do not.

Accordingly, the theory suggests that the empirical relationship between P and � would

contain a testable structural break about the neighborhood of 0:5, where one would expect

to see observations scattered below the 45-degree line to the left of the break-point, and

above the 45-degree line to the right. The presence of a structural break adjacent to 0:5,
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therefore, would be an indication that Knightian uncertainty is a factor in the market, and

would be consistent with the intuition provided in the introduction.

4 Empirical Evidence

In this section, we provide some high-level evidence that is consistent with the theoretical

predictions.5

We use the historical data from Intrade, a popular online prediction platform which

operated from 2003 to 2013. The platform hosted prediction contracts across wide-ranging

categories of events, such as business (e.g., whether the CEO of a certain company would

step down), current events (e.g., which city would host the Olympic), entertainment (e.g.,

which movie would win the Academy Award for the Best Picture), politics (e.g., which

candidate would be elected the U.S. president), etc. We collect all those contracts that

are on binary events, regardless of their categories, and record how each binary event had

turned out.

The aim of the empirical analysis is to estimate the ex post sample proportion, P , of

event A�s occurrence as a function of the ex ante price, �, of contract A. We process the

data in the following way. The observations are sorted by price and evenly partitioned into

a number of percentile bins. For each percentile bin, we calculate the sample proportion

of event A�s occurrences whose corresponding prices fall into that bin. Finally, we plot the

sample proportions against the mid-points of the corresponding price bins.

If the theory developed in the previous section holds, the following is what one would

expect in the empirics. Recall that the value of b� depends on the distribution of mean

beliefs among traders. Since each observation in the dataset is from a certain market with

a certain distribution of mean beliefs held by the participating traders, we can interpret

each observation as a single draw from the data-generating process associated with a certain

5See Appendix B for the details of the data.
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version of Figure 1. For a price bin closer to 0, therefore, it is more likely that the obser-

vations contained in the bin have been drawn from the left part of Figure 1, i.e., below the

break-point. Similarly, for a price bin closer to 1, the observations are more likely to have

been drawn from the right part of Figure 1, i.e., above the break-point. More important,

when the price bin is near 0:5, the observations are more likely to be from just around the

jump, suggesting a structural break.

We start with the empirical evidence from political events, one of the largest categories

in the Intrade dataset. These events, like Brexit and U.S. presidential elections, often see

a high volume of transactions between bettors. Figure 2, based on a partition into 50

bins (i.e., 2% of observations per bin), plots the sample proportion for all bins against the

corresponding price. Since prices evolve in the prediction markets until the random events

are realized, the two panels of the �gure together capture the e¤ect of timing by showing

the estimation for two di¤erent dates: (a) the �rst day market opens to bettors, and (b) the

last trading day before the event starts to take place. For example, the market for whether

Barack Obama would win the 2008 U.S. presidential election �rst opened on October 23,

2006. For our purpose, November 3, 2008�the day before the election day�is identi�ed as

the last trading day.

We are interested in whether there is a discontinuity in the relationship between the

price and the sample proportion, which falls into the well-developed literature about test-

ing structural breaks. For each panel of Figure 2, we conduct three analyses. First, a linear

regression assuming no structural breaks is shown as the dashed line in the diagram. Next,

we run two types of break-point tests�an F test6 and a �moving sum of residuals� (MO-

SUM) test7�against the null hypothesis that there is no structural breaks for the entire

sample. Lastly, we re-run the linear regression by estimating the location of one break-point

6The F test is an extension of the �Chow test� (1960), against the alternative hypothesis of an unknown

break-point. See, e.g., Andrews (1993) and Andrews and Ploberger (1994) for details.

7The MOSUM test analyzes the moving sum of residuals and detects whether a strong shift of the

�uctuation process exists. See, e.g., Chu, Hornik, and Kuan (1995a, b) for details.
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(as suggested by our theory). The estimation returns (i) a linear segment on each side of

the estimated structural break, plotted as the solid lines in the diagram, as well as (ii) the

location of the structural break, identi�ed by two red dots in the diagram corresponding to,

respectively, the last observation of the �rst segment and the �rst observation of the second

segment. The details of the three analyses are shown in the column �50 bins� of Table 1.

A few remarks on the results follow. First, in both panels, the regression lines without

structural breaks fall very close to the 45-degree line, suggesting the overall e¢ciency of

markets in pricing the probabilities of random events. The evidence of market e¢ciency

on the �rst trading day is remarkable because, for politics, a lot of markets opened a long

time�sometimes years�ahead of the resolution of the events. Yet, as the regression table

shows, the slopes are statistically signi�cant and very close to 1.

Second, although panel (a) is relatively noisier, panel (b) shows a clear pattern as

predicted by our theory: The null hypothesis of no structural breaks is cleared rejected

by the tests, and the break-point estimation shows a signi�cant jump near price level 0:5.

The diagram, hence, resembles our prediction shown in Figure 1. For observations in the

intermediate price range, one might think that the price is close to 0:5 because traders have

solid information suggesting an �even match� between outcome A and Ac. It is also possible,

however, that the market is shrouded in ambiguity as some traders, albeit partially informed,

are reluctant to trade. Just like in the example of a Knightian urn, an intermediate price in

this case could mean a wide range of true probabilities. In panel (b), for a price in the break

region between 0:57 and 0:69, the sample proportion could be as low as 33%, or as high as

83%. In other words, the degree of ambiguity, �, in this particular example is about 0:25 (i.e.,

half of 83%� 33%). Such a magnitude is signi�cant not only statistically�as the rejection

of null hypothesis �no structural breaks� implies the rejection of �� equals to zero��but

also economically. According to the multiple-prior framework, it would mean that a typical

trader would consider all the probabilities within an interval of length 0:5 equally admissible

in governing the realization of the binary event. A signi�cant jump near price level 0:5 like
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the one in panel (b), therefore, is an indication of the presence of Knightian uncertainty. As

the linear regression without breaks shows, the speci�c pattern of observations also causes

the regression line to have a slope larger�albeit only slightly�than 1.

Another important di¤erence between the two panels is that, in panel (b), more obser-

vations are clustered near price levels 0 and 1. This means, by the last day, more traders

hold (posterior) beliefs that some outcome�either A or Ac�is very likely to be realized,

suggesting a decrease in risks over time. Such a decrease in risks can be a result of in-

formation acquisition by the traders, who, until the random events resolve, may have the

incentives to learn about the events and update their bets accordingly. Since risks have

decreased while ambiguity remains, our empirical evidence also suggests an observational

distinction between the concepts of risk and Knightian uncertainty.

Furthermore, the above empirical patterns are to some extent robust against the choice

of the number of bins. Figure 3 reproduces the diagram by partitioning the data into 30

bins instead. The column �30 bins� of Table 1 shows the details of the regression and

break-point analysis. Overall, the observations drawn earlier still hold.8

The observation that ambiguity remains until the last trading day suggests, unlike risks,

Knightian uncertainty may be not �learnable� in practice to the traders. The intuition

can be illustrated using the Knightian urn where the composition of black and red balls is

unknown. Imagine two di¤erent scenarios. In the �rst scenario, a subject observed repeated

draws from the same Knightian urn. In this case, the sample proportion over time would

reveal the true composition of the two colors because, after all, the composition is �xed

over time. In the second scenario, there was an experimenter who replaced the Knightian

urn with a new one every time a ball was drawn by the subject. In this case, the sample

proportion may not inform the subject of what to expect in the next Knightian urn, simply

because the composition of black and red balls in the new urn could be anything of the

8We have checked other variations between 30 and 50, which yield similar results (omitted to limit space).

Obviously, the number of bins should be neither too small (which would leave too few points in the diagram),

nor too large (which would leave too few observations per bin).
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experimenter�s choosing. If the underlying data-generating process�that is, the way the

experimenter changed every other Knightian urn�was not learnable to the subject, then

the degree of ambiguity would not decrease over time.9 One might think that, in politics,

it is intuitively easy for traders to acquire knowledge�from polls, news reports, political

analyses, etc. Yet, our empirical evidence, which is based on a large number of prediction

markets about various political events, seems to �t the second scenario, suggesting that

the Knightian uncertainty of politics may indeed be not �learnable� through information

acquisition.

We now turn to another major category: entertainment events, such as the winners of

cinematic awards or the box o¢ces of movies. Figures 4 and 5 reproduce the P -� diagram

for 30 bins and 50 bins, respectively, and Table 2 reports the details of the regressions

and break-point tests. Although qualitatively similar, the patterns are less pronounced

compared to politics. The jump near 0:5 is less clear and, interestingly, the clustering near

0 and 1 is less marked. This evidence suggests less learning in entertainment than in politics,

which is understandable since it is more di¢cult for bettors to acquire information about

the general public�s personal tastes of movies and music.

Politics and entertainment together account for over 80% of the Intrade dataset. How-

ever, for completeness, we reproduce the empirical evidence with the full sample, as shown

in Figures 6 and 7, as well as Table 3. The patterns, essentially by construction, are similar

to what we established above.

5 Concluding Remarks

Knightian uncertainty�an important theoretical concept in the literature that is often used

to explain observed phenomena�has never been directly evidenced in an empirical setting.

In this paper, we have developed a model of a prediction market with ambiguity, where

9See Epstein and Schneider (2007) for a theoretical treatment of learning under ambiguity.
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traders have maxmin preferences. We have derived more direct, observational implications

of the presence of Knightian uncertainty. Using the historical betting data from Intrade, we

have further presented some high-level evidence that is consistent with the prediction of our

model. In particular, for price levels close to 0:5, the market-implied, ex ante probability of

a random event is not indicative of the ex post sample proportion, suggesting the presence

of Knightian uncertainty.

Moreover, our empirical evidence has shown that, although traders seem to have acquired

information which leads to a decrease in risks, ambiguity remains until the last trading

day, suggesting that the Knightian uncertainty of the world may be not �learnable� to

traders. By comparing political events and entertainment events, we have also shown that

the empirical patterns we identi�ed are more pronounced in politics than in entertainment.

The evidence we have provided is only preliminary, since the empirics of this paper are

based on a single prediction platform that is skewed towards political and entertainment

events. In a future, empirical study, we will collect more prediction-market data across

di¤erent platforms and di¤erent event types, and we will examine more closely the relation-

ship between the ex post sample proportion and the ex ante price by taking into account

the type of events, the time ahead of the resolution of randomness, and other aspects of the

betting markets.

Chairman, Council of Economic Advisers

American Enterprise Institute
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Appendix A Proofs

Proof of Proposition 1. Note that any equilibrium price � has to satisfy (i) � > 2� and

(ii) � < 1� 2�. If (i) does not hold, then �� � qi + � for all i, which means any trader will

have either a long position or a zero position�not an equilibrium. Similarly, if (ii) does not

hold, no trader will have a long position, which cannot be an equilibrium either.

Substitute (2) into (3) and rewrite the aggregate demand as

XF (�) =

Z ���

�

q + �� �

� (1� �)
wdF (q) +

Z 1��

�+�

q � �� �

� (1� �)
wdF (q) :

Hence, XF (�) = 0 if and only if

Z ���

�

(q + �� �) dF (q) +

Z 1��

�+�
(q � �� �) dF (q) = 0

,

Z ���

�

(q � �) dF (q) +

Z 1��

�+�
(q � �) dF (q) +

Z ���

�

�dF (q)�

Z 1��

�+�
�dF (q) = 0

, EF (q)� � �

Z �+�

���

(q � �) dF (q) + � [F (� � �) + F (� + �)� 1] = 0

, EF (q)� � +

Z �+�

���

F (q) dq � [(q � �)F (q)]�+���� + � [F (� � �) + F (� + �)� 1] = 0;

where the last step follows from integration by parts. Simplifying and rearranging terms

yields the stated expression in the proposition.

Proof of Proposition 2. Let G be the space of distribution functions over [�; 1� �],

endowed with the Lévy metric `, where

` (G1; G2)

� inf f" > 0 j G1 (q � ")� " � G2 � G1 (q + ") + " for all q 2 [�; 1� �]g

for any G1; G2 2 G. Let F be the subset of G that satis�es ��F = EF (q) for any F 2 F .
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Since the Lévy metric metrizes the weak topology,10 the proposition is equivalent to the

claim that F is nowhere dense in (G; `).

Note that F is closed. Since a set is nowhere dense if and only if the complement of its

closure is dense,11, it remains to be shown G n F is dense, that is, for any point in G, there

is a sequence from G nF converging to that point. It is thus enough to show, for any F 2 F

and any � > 0, there exists some G 2 G n F such that ` (F;G) < �.

F is non-decreasing since it is a distribution function. It follows that

lim
q![EF (q)+�]

�
F (q) � F (EF (q)� �) :

We show prove the results by examining two cases.

Case 1 : limq![EF (q)+�]� F (q) > F (EF (q)� �).

Given � > 0, we construct a distribution function G from F as

G (q) �

8
>>>><
>>>>:

F (q) if q 2 [�;EF (q)� �� �1) ;

F (EF (q)� �) if q 2 [EF (q)� �� �1;EF (q) + �+ �2) ;

F (q) if q 2 [EF (q) + �+ �2; 1� �] ;

where �1; �2 > 0 are such that function g � G� F satis�es conditions

Z
EF (q)+�+�2

EF (q)����1

g (q) dq = 0

and

max fg (EF (q)� �� �1) ;�g (EF (q) + �+ �2)g =
�

2
:

It is easily veri�ed that G is a mean-preserving spread of F , with two new atoms created

10See, e.g., Huber and Ronchetti (2009), p. 28.

11See, e.g., Sutherland (1975), p. 64.
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at points EF (q)� �� �1 and EF (q) + �+ �2. By construction, this implies that

Z
EG(q)+�

EG(q)��
G (q) dq =

Z
EF (q)+�

EF (q)��
G (q) dq

=

Z
EF (q)+�

EF (q)��
[F (q) + g (q)] dq

= �+

Z
EF (q)+�

EF (q)��
g (q) dq < �;

where the last equality holds because F 2 F , and the inequality is due to g (EF (q) + �) < 0

which implies
R
EF (q)+�
EF (q)��

g (q) dq < 0. Since
R
EG(q)+�
EG(q)��

G (q) dq < �, G 2 G n F . Finally, let �

be the uniform metric, that is,

� (G1; G2) � sup fjG1 (q)�G2 (q)j j q 2 [�; 1� �]g

for any G1; G2 2 G. By construction, � (F;G) =
�
2 . Since the Lévy metric is bounded by

the uniform metric from above, that is, ` (G1; G2) � � (G1; G2) for any G1; G2 2 G, we have

` (F;G) � �
2 < �.

Case 2 : limq![EF (q)+�]� F (q) = F (EF (q)� �).

Given � > 0, we construct a distribution function H from F as

H (q) �

8
>>>><
>>>>:

F (q) if q 2 [�;EF (q)� �) ;

F (EF (q)� �) + �3 if q 2 [EF (q)� �;EF (q) + �+ �4) ;

F (q) if q 2 [EF (q) + �+ �4; 1� �] ;

where �3; �4 > 0 are such that function h � H � F satis�es conditions

Z
EF (q)+�+�4

EF (q)��
h (q) dq = 0

and

max f�3;�h (EF (q) + �+ �4)g =
�

2
:
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It is easily veri�ed that H is a mean-preserving spread of F , with two new atoms created

at points EF (q)� � and EF (q) + �+ �4. By construction, this implies that

Z
EG(q)+�

EG(q)��
H (q) dq =

Z
EF (q)+�

EF (q)��
H (q) dq

=

Z
EF (q)+�

EF (q)��
[F (q) + h (q)] dq

= �+

Z
EF (q)+�

EF (q)��
h (q) dq

= �+ 2��3 > �;

where the last but second equality holds because F 2 F , and the last equality follows from

the construction of H. Since
R
EG(q)+�
EG(q)��

H (q) dq > �, H 2 G n F . Finally, similar to Case 1,

we have � (F;H) = �
2 and, hence, ` (F;H) < �.

Proof of Proposition 3. Decompose XF (�) into the aggregate supply (shorts) SF (�)

and the aggregate demand (longs) DF (�), where

SF (�) =

Z ���

�

�
q + �� �

� (1� �)
wdF (q) ; DF (�) =

Z 1��

�+�

q � �� �

� (1� �)
wdF (q) ;

and SF (�
�
F ) = DF (�

�
F ) in equilibrium. We show that an increase in � shifts the supply

curve inwards. That is,

dSF (�)

d�
= 0 +

�+ �� �

� (1� �)
wdF (�)�

Z ���

�

@

@�

q + �� �

� (1� �)
wdF (q) < 0:

Similarly, an increase in � shifts the demand curve inwards (i.e., dDF (�)
d�

< 0). It follows that

the equilibrium quantity of trade�SF (�
�
F ), or DF (�

�
F )�has to be smaller as the degree

of ambiguity increases.

23



Proof of Proposition 4. Let � denote the integral of F , i.e., � (q) �
R q
�
F (q0) dq0. It

follows from the de�nition of F that

� (q) =

Z q

�

F
�
q0
�
dq0 =

8
><
>:
(1�m)� (q) if q 2 [�; p) ;

(1�m)� (q) +m (q � p) if q 2 [p; 1� �] ;

where � is the integral of F . The equilibrium condition becomes

� = EF (q) + � (� + �)� � (� � �)� �

= 1� 2�� � (1� �) + � (� + �)� � (� � �) ;

where the second equality follows from integration by parts. Since � (q) has a kink at point

p, the equilibrium price depends on the position of p relative to � + � and � � �.

Case 1 : � � � � p � � + �.

The equilibrium condition is rewritten as

� = 1� 2�� (1�m)� (1� �)�m (1� �� p)

+ (1�m)� (� + �) +m (� + �� p)� (1�m)� (� � �) :

Rearranging terms and dividing both sides by 1�m yields

� � � (� + �) + � (� � �) = 1� 2�� � (1� �) :

Case 2 : p > � + �.

The equilibrium condition is rewritten as

� = 1� 2�� (1�m)� (1� �)�m (1� �� p)

+ (1�m)� (� + �)� (1�m)� (� � �) :
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Rearranging terms yields

�

1�m
� � (� + �) + � (� � �) = 1� 2�� � (1� �) +

(p� �)m

1�m
: (4)

Note that the left-hand side of equation (4) is strictly increasing in �. Thus, the solution

�� to the equation is a continuous and strictly increasing function of p. Furthermore, as

p ! b� + �, where b� is the equilibrium price in Case 1, the right-hand side of equation (4)

converges to 1� 2�� � (1� �) + b�m
1�m , and the solution to the equation converges to b�. In

other words, the equilibrium price is continuous at point p = b� + �.

Next, we show �� (1� �) < 1 � 2�, which implies �� (1� �) < 1 � � in part 1 of the

proposition. Let LHS (�) and RHS (p) denote the left- and right-hand sides of equation

(4), as functions of � and p, respectively. Note that

LHS (1� 2�)�RHS (1� �) =

�
1� 2�

1�m
� � (1� �) + � (1� 3�)

�

�

�
1� 2�� � (1� �) +

(1� 2�)m

1�m

�

= �(1� 3�) > 0:

Since LHS is strictly increasing in �, the solution to the equation when p = 1� � must be

smaller than 1� 2�.

Case 3 : p < � � �.

The equilibrium condition is rewritten as

� = 1� 2�� (1�m)� (1� �)�m (1� �� p)

+ (1�m)� (� + �) +m (� + �� p)

� (1�m)� (� � �)�m (� � �� p) :
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Rearranging terms yields

�

1�m
� � (� + �) + � (� � �) = 1� 2�� � (1� �) +

(p+ �)m

1�m
: (5)

Similar to Case 2, the solution �� to equation (5) is continuous and strictly increasing in

p, and it converges to b� as p ! b� � �. Hence, the equilibrium price is continuous at point

p = b� � � as well.

Next, we show �� (�) > 2�, which implies �� (�) > � in part 1 of the proposition. Again,

let LHS (�) and RHS (p) denote the left- and right-hand sides of equation (5). Note that

LHS (2�)�RHS (�) =

�
2�

1�m
� � (3�) + � (�)

�

�

�
1� 2�� � (1� �) +

2�m

1�m

�

=
�
� (1� �)� � (3�)

�
� [(1� �)� 3�] < 0;

where the last inequality holds because � is the integral of distribution function F over

[�; 1� �]. Since LHS is strictly increasing in �, the solution to the equation when p = �

must be larger than 2�.

Proof of Corollary 5. Recall that b� is identi�ed by equation

b� � � (b� + �) + � (b� � �) = 1� 2�� � (1� �) :

The symmetry of F implies �� (1� x) = (x� �) � � (x) for any x 2 [�; 1� �]. Thus, the

equilibrium condition becomes

b� �
�
b� +�(1� b� � �)

�
+�(b� � �) = 1� 2��

�
1� 2�+�(�)

�

, � (1� b� � �)� � (b� � �) = � (�) = 0;
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to which b� = 0:5 is the only solution.
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Appendix B Intrade Historical Data

The historical data of Intrade was archived by Ipeirotis (2013) and is available on GitHub.

Table 4 lists all the categories of events and the number of markets within each category. We

complete the dataset by creating an outcome variable and recording how each random event

had turned out. The outcome equals 1 if an event occurs, and it equals 0 if its complement

event occurs.

Some markets have correlated outcomes, because they are about the same, uncertain cir-

cumstances. For example, concerning the 2012 U.S. Republican Party presidential nominee,

there are 53 separate markets corresponding to 53 possible winners, including Mitt Romney,

Rick Santorum, Ron Paul, Newt Gingrich, and �any other individual� not speci�ed by the

prediction platform. To avoid such correlation in the observations, for each group of these

correlated markets, we randomly select one market into the aggregate sample and disregard

the rest.

The total number of selected markets included in the �nal analysis also shown in Table 5.

The table lists the number of observations�the total as well as the number of observations

per percentile bin�for political events, entertainment events, and the full sample. The

dataset is skewed towards political and entertainment events, as the two categories together

accounts for 82% of the full sample.
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Table 1: Estimation and Test of Structural Breaks: Politics

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins

(a) �rst trading day
slope (no breaks) 0.953��� 0.950���

(22.7) (21.5)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected rejected�

structural break estimation
slope (segment 1) 0.727��� 0.690���

(5.75) (5.13)

break region [0.45, 0.47] [0.43, 0.47]
slope (segment 2) 0.863��� 0.867���

(7.70) (7.56)

(b) last trading day
slope (no breaks) 1.03��� 1.04���

(44.8) (44.8)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected� rejected�

structural break estimation
slope (segment 1) 0.617��� 0.767���

(15.6) (21.4)

break region [0.57, 0.69] [0.60, 0.75]
slope (segment 2) 0.464��� 0.229�

(5.10) (2.13)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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Table 2: Estimation and Test of Structural Breaks: Entertainment

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins

(a) �rst trading day
slope (no breaks) 0.933��� 0.936���

(20.9) (23.3)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected not rejected

structural break estimation
slope (segment 1) 0.859��� 0.929���

(8.66) (16.2)

break region [0.50, 0.50] [0.68, 0.73]
slope (segment 2) 0.881��� 1.49���

(6.80) (4.89)

(b) last trading day
slope (no breaks) 1.04��� 1.04���

(33.7) (37.8)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected^ not rejected
structural break estimation

slope (segment 1) 0.744��� 0.697���

(10.3) (10.3)

break region [0.50, 0.51] [0.44, 0.49]
slope (segment 2) 0.866��� 1.00�

(9.02) (16.2)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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Table 3: Estimation and Test of Structural Breaks: Full Sample

Dependent variable: ex post sample proportion
Independent variable: ex ante price

50 bins 30 bins

(a) �rst trading day
slope (no breaks) 0.917��� 0.929���

(63.6) (27.7)

tests of �no breaks�
F test not rejected not rejected
MOSUM test not rejected not rejected

structural break estimation
slope (segment 1) 0.936��� 0.739���

(18.0) (8.50)

break region [0.59, 0.61] [0.44, 0.48]
slope (segment 2) 1.26��� 0.876���

(9.56) (10.5)

(b) last trading day
slope (no breaks) 1.03��� 1.03���

(56.6) (46.5)

tests of �no breaks�
F test rejected��� rejected���

MOSUM test rejected� rejected^

structural break estimation
slope (segment 1) 0.853��� 0.812���

(25.2) (20.9)

break region [0.62, 0.68] [0.55, 0.65]
slope (segment 2) 0.693��� 0.765�

(7.84) (9.27)

t statistics in parentheses
^ p < 0:1, � p < 0:05, �� p < 0:01, ��� p < 0:001
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Table 4: Intrade Data: Event Categories and Number of Markets.

Event category Number of markets

Art 60
Business 43
Chess 52
Climate & Weather 861
Construction & Engineering 9
Current Events 1540
Education 1
Entertainment 8715
Fine Wine 5
Foreign A¤airs 87
Legal 310
Media 10
Politics 5460
Real Estate 2
Science 20
Social & Civil 30
Technologies 65
Transportation 11

Table 5: Intrade Data: Number of Observations in Final Analysis.

Event category Total observations Observations per bin
(50 bins) (30 bins)

Politics 897 18 30
Entertainment 1157 23 39
Full sample 2509 50 84
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Figure 1: Prediction Market Equilibrium in the P -� Diagram.

36



Figure 2: Prediction Market Data in the P -� Diagram: Politics (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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Figure 3: Prediction Market Data in the P -� Diagram: Politics (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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Figure 4: Prediction Market Data in the P -� Diagram: Entertainment (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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Figure 5: Prediction Market Data in the P -� Diagram: Entertainment (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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Figure 6: Prediction Market Data in the P -� Diagram: Full Sample (50 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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Figure 7: Prediction Market Data in the P -� Diagram: Full Sample (30 bins).

(Note: The dashed lines are regression lines without breaks. The solid lines are regression lines

with one estimated break, with two red dots identifying the location of the break.)
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