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Abstract 
In this paper the appropriate background in Mathematics and Statistics is considered in 
developing methods to investigate Risk Analysis problems associated with Environmental 
Economics uncertainty. New senses of uncertainty are introduced and a number of sources of 
uncertainty are discussed and presented. The causes of uncertainty are recognized helping to 
understand how they affect the adopted policies and how important their management is in 
any decision-making process. We show Mathematical Models formulate the problem and 
Statistical models offer possible solutions, restricting the underlying uncertainty, given the 
model and the error assumptions are correct. As uncertainty is always present we suggest 
ways on how to handle it. 
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1. Introduction 

Human activities have caused environmental damages and degradation and the 

internalization of externalities has been the main concern worldwide. At the same time, 

uncertainty and unconvincing scientific evidence of many biological and biophysical 

processes are present in many policy decisions. In such cases uncertainty cannot be 

disregarded or be ignored in any analysis. Uncertainty has to be taken into consideration in 

all decision-making agendas.   

Recognizing the causes of uncertainty, realizing how they affect decision making and 

managing them as possible is crucial in any decision-making process. In Economics, a 

distinction is made between risk and uncertainty with risk referring to the probability of an 

outcome taking place being measurable, while uncertainty refers to the lack of information 

about outcomes and their probability and magnitude of taking place. Managing risk can be 

handled in a fairly simple way in a cost-benefit analysis setup while uncertainty requires the 

tackling of many issues together with the nature of uncertainty.   

The easiest way to understand uncertainty is the situation for which we are not certain! 

That is there is limited knowledge, restricted information for the phenomenon under 

investigation and this justifies why eventually is related to Fisher’s information, as well as 

with other information measures, involving probability density functions. As Fisher’s 

information matrix is the inverse of the variance-covariance matrix, uncertainty is related to 

the degree of precision one variable is measured. When the uncertainty is such, with some 

levels of it causing undesired results (in politics, health, environment etc) – or even a 

significant loss (such as in Economics) we are referring to risk. To be more precise we should 

refer to Relative Risk (Halkos 2006, 2011), usually defined as the log(odds).  

In Economics the early work of Knight (1921) clearly distinguished uncertainty and 

risk. Risk management is based on the fact that all processes and activities are controlled, so 
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that to minimize the adverse effects of accidental loses on the organization under 

investigation. Let us underline that variability refers to how spread out a set of data is and 

how capable is to change. Similarly, in Statistics it is measured by dispersion (standard 

deviation). Variability has not to be confused with variation, actually meaning something 

different of the same type! In principle variability cannot be reduced (that is why it should be 

characterized as well as possible), while uncertainty can (enlarging the data set). This is not 

always easy to be succeeded with typical example being problems from Political Science (see 

the pioneering book on Political Statistics by Davis, 1954) or data applying in the extreme 

value theory (EVT) (see Gomes et. al., 2015). Actually the idea of analysing “risk” started 

investigating political conflicts, or even war (see the early work of Wright, 1942).  

In this paper we search the appropriate background in Mathematics and/or Statistics, 

and the developed methods to investigate Risk Analysis problems associated with 

Environmental Economics uncertainty. 

2. Background 

When we refer to the term environment (to us) we have to clarify that we mean the 

complementary set to our self. So the environment to an industry B is simply Bc, the 

complementary set of B, that certainly includes physical and chemical forces. The set Bc can 

be considered that includes almost all Universe, besides B – the Universe (or Cosmos) is all 

the space and time and its content. The Mathematical Model (MM), which attempts to 

express the Universe (Cosmos) and its current behaviour, as well as its evolution over time, is 

known as Cosmological Model (CM). The most well known CM is the Λ-CDM (Lambda 

Cold Dark Matter) that insures Universe is flat in shape with only 0.4% margin of error (see 

among others Zeldovich and Novikov, 1983). This is why by Natural Environment we are 

restricted to Earth (recently) or part of Earth (as it was some years ago) for a certain time 

interval. 
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In principle we need to formalize uncertainty in Natural Resources and Environmental 

Economics problems to reflect the incomplete information available. A representation of 

uncertainty can be obtained by a global consideration of the involved uncertain quantities on 

the statements. In practice we know them (the quantities on the statements) only for a restrict 

number of values, only for a given set (S), subset of the real domain (D), i.e. S  D. 

Uncertainty analysis aims at exhausting/ spanning/ tracing this range S, so that to extract 

decision for D under some confidence.  

Decision makers in Environmental Economics aspects are usually willing to depart 

from default assumptions and adopt a model to describe the problem under investigation. But 

what model: mathematical or statistical? The latter is flexible, considers (and accepts that 

exist) in principle errors, while the former is solid, strictly defined. The propagation of errors 

is also covered by Numerical Analysis, as far as the Mathematical point of view considering 

“errors”. But the main difference, considering the theory of errors, between Mathematics and 

Statistics is the Normal distribution assumption adopted by Statistics. That is why we believe 

the Generalized Normal distribution with an extra (shape) parameter added to position and 

scale parameters is vital (see Kitsos and Tavoularis, 2009).  

A number of different orientation approaches to represent the underlying uncertainty 

were considered. Namely:  

 Interval Mathematics facing the imprecise measurement situation (see Broadwater et al., 

1994; for a review Alefed and Mayer, 2000 and for the optimization problem Wolfe, 

2000). The interesting point is the solution of simultaneous equations under the Interval 

Mathematics, for the environmental problem we discuss as an interval approach, i.e. 

working not with exact values x, but with the interval [x, x] might be useful. That is we 

try to include uncertainty in the solution of the problem, accepting more than one value 

for the “unknown”. 
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 Evidence Theory which is defined through set theory (see Dempster, 1968); Shafer, 

1976). Thus, a “distance” measure can be defined (see Jouselme and Maupin, 2012). The 

Quantitative Risk Analysis (QRA) is a particular branch of Risk Analysis (see Zarikas 

and Kitsos, 2015) investigating and assessing probability to “what can be wrong”. Poor 

knowledge on the phenomenon under investigation, with Chernobyl accident being a 

typical example, provides obscure knowledge of the probability level that such “extreme’ 

events are possible (Kitsos, 2005). The probability assigned is positive implying the event 

under consideration can take place but the Qualified Risk Analysis level is rather difficult 

to be estimated. That is why two new senses of uncertainty were introduced. 

- Epistemic uncertainty is the one due to lack of knowledge of quantities of the 

Environment (or the System, more general). 

- Aleatory uncertainty is the one associated with the Environment under consideration. 

The variation of the atmospheric conditions is an example for the latter, while the lack of 

experimental data is for the former. The variation of the estimated life of the 

“components” of a “system” is an aleatory uncertainty 

 Fuzzy Theory is based on the analysis of vagueness of the involved variables, rather than 

the stochastic nature of them (see among others Klir and Yan, 1995). The Fuzzy Logic 

extends our current believes that an element x belongs or does not belong to the set Q 

from the (universal) set Ω, QΩ. In mathematical terms the binary system true-false or 

either 0 or 1 i.e. a sentence belongs to {0,1} is extended. The binary response is now the 

set [0,1]. That is the “characteristic function” is extended to “membership function” for 

the given fuzzy set Q  Ω as 

[0,1] : ( )Q QM Q x M x       (1) 

The number MQ(x) in [0,1] declares the degree of participation of the element x in Q which 

belongs/participates in the fuzzy set Q of Ω. In particular: 
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MQ(x)   =   1   declares x belongs to Q 

0 declares  x does not belong to Q 

q in (0,1) declares x belongs “partially”, i.e. to some degree to Q. 

          We would like to stress that fuzziness and randomness are different terms approaching 

different lines of thought. Randomness concerns a well-defined event but it is uncertain if 

will take place or not. Fuzziness is referred to situation which is not well defined and can 

only be described, in a sufficient way, when it is known how we shall move between different 

classes. 

 Probabilistic Analysis as appears in the pioneering work of Feller (1950) offers almost 

nothing to uncertainty, while Pfeiffer (1978), among others, associates uncertainty with 

Fishers information. Tan (1991) approaches the risk problem of cancer through a 

completely mathematical approach, while Bernado and Smith (1994) approach the 

Probabilistic Analysis from the Bayesian point of view. The Evidence Theory and the 

Fuzzy Theory introduce new terms, far from the classical theories, either measure theory 

or Bayesian. That is the probability and distribution function are not any more valid, but 

the details are beyond the target this paper. The pioneering work of Bliss (1934, 1939) 

addressed the Probability Theory to measure risk and uncertainty, and since then the 

statistical modelling was providing a theoretical background to calculate Relative Risks, 

rather, than probability levels. Under this line of though the Logit (and to a lesser extend) 

Probit models appear an “aesthetic appeal” in Risk Analysis especially for Cancer 

problems (see among others, Edler and Kitsos 2005). 

 Statistical Analysis has been adopted as a Data Analysis tool for a number of different 

fields. When Risk is involved, related to uncertainty, a number of models have been 

applied and as far as the Cancer field concerns, Breslow and Day (1980) provide an 

extensive analysis. But more is needed for particular environmental problems based on 
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the statistical modelling as it was faced by Halkos (1996), Halkos and Kitsos (2005) and 

Halkos and Kitsou (2018). Adopting Logit method, a Statistical Analysis was presented 

by Halkos and Kitsos (2010, 2012) while Kitsos (2011) proved that Logit model remains 

invariant to linear transformations, which practically means that Logit model is valid (or 

just transformed) to areas with over polluted CO2 and just polluted, provided the 

underlying source of pollution is the same. 

 Other Methods were also discussed, for particular problems, either with Statistics or 

Mathematics orientation. Modelling extreme rainfall, Alves and Rosario (2015) adopted 

the extreme value theory – which models and measures events occurred, in principle, with 

a very small probability - and they evaluated the quartiles (even the 0.01 quartile) of 

monthly maximum rainfall. The acid rain problem, which involves environmental and 

economic analysis beyond the technical one, has been tackled through Linear 

Programming (Halkos 1993, 1994). Halkos (1996) provided results for abatement rates 

under certainty and uncertainty, which are compared with the Nash relative measures. As 

far as the Risk Analysis in Business, Zarikas and Kitsos (2015) worked under the 

reference class forecasting (RCF) adopting the tolerance regions rather than confidence 

regions. 

The adopting modelling in Environmental Economics provide food for thought for the 

imposed dilemma: Mathematics or Statistics provide the appropriate background to solve an 

imposed Environmental Economics problem. From the above discussed methods is evident 

that both Mathematics and Statistics provide a “tool kit” for Environmental Economics 

analysts, who have to choose the appropriate one for the problem under consideration. 

It is true that the Mathematical thinking is successfully adapted in a number of 

economic applications. Dynamic modelling is recently an attractive way to tackle a dynamic 

economic problem relying on Pontryagin’s maximum principle with the main variables of the 
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dynamic model differentiated into the state and control variables. The former is defined as a 

variable describing the state of the economic system transferred optimally from time zero 

(initial time) to the terminal time. Similarly, control variables may help this optimal transfer 

from initial to terminal time of the system’s state (Halkos and Papageorgiou, 2016). 

In principle the economic approach does not have the framework of Engineering, 

where the adoption of similar Mathematical Techniques seems a natural consequence (Pierre, 

1986). Moreover Economics is not an Experimental Science. Mathematics in such cases 

formulates a physical phenomenon while in Environmental Economics helps in reducing the 

involved uncertainty. The problem becomes more crucial as in Environmental Economics a 

number of candidate and different models can be adopted, therefore there is neither the solid 

background of Engineering, nor that of the Economical fields mentioned already. 

Moreover we would like to indicate that different approaches produce quite different 

measurements of probability, not the probability that everybody understands. That results to 

the Maximum Likelihood Estimator (MLE) assigned to a probability density function (pdf) it 

is not any more valid in Evidence Theory were the likelihood is assigned to sets. Under the 

Fuzzy Logic the probability function and the distribution function are replaced by the 

possibility function and the possibility distribution function.  

This analysis (and comparison) is beyond the target of this paper, which focuses on 

trying to understand, handle and analyse uncertainty involved in Environmental Economics. 

Under the classical theory a Mathematical or a Statistical approach might be proved a useful 

tool in the hands of environmental economists and more generally policy makers to evaluate 

or reduce uncertainty. 
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3. Modelling and measuring uncertainty 

Uncertainty is strongly related to the physical problem under investigation. There is 

an intrinsic relation between the underlying mechanistic problem and the sources of 

uncertainty. When an environmental system tends to produce pollution responses beyond the 

existing interval of observations (what we called set S in the beginning of section 2) i.e. 

within the range D-S, what are actually uncertain are the predictions, the extrapolations 

beyond the set S itself and not the responses themselves. Moreover the model, among various 

contestant models, adopted to approach the response of the environmental problem under 

investigation causes uncertainty.  

Therefore the relation between data and response it might be proved as a source of 

uncertainty: are the involved data set of variables sufficient? Are all the variables actually 

needed to explain the underlying problem included? The model uncertainty needs a special 

consideration. The Heisenberg principle is certainly applied in environmental problems to 

estimate uncertainty, as Fisher’s information is related to Uncertainty (see among others, 

Rehacek and Hradil, 2004). We cannot assign appropriate damage estimations in the large 

number of Chernobyl accidents gathering reliable data. We cannot provide a large number of 

atomic bomb experiments to estimate atomic bomb survivors and the environmental damages 

caused. But certainly there are epidemiological studies of industrial pollutants (Diggle and 

Richardson, 1993) while their cost is still unevaluated.  

The ‘usual pollution’ levels have been studied more precise due to the industrial 

development although the kind of pollution has changed, we moved from smog to new types 

of pollution such as asbestos. Although it seems clear that if we would like to quantify the 

level of uncertainty this depends on time, we will avoid including time to our discussion. 

Moreover it is not clear that uncertainty is a decreasing function of time for all problems.  
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3.1   Modelling uncertainty  

A typical example comes from cancer (not only influenced from environmental 

conditions): it is unclear if cancer is best described as a multistage or a multi-hit process 

(Kitsos, 2012). Moreover there are various models tackling the cancer problem. Therefore 

there is an uncertainty about the model’s structure, strongly related to theoretical knowledge 

about the underlying phenomena. From an environmental economics point of view, Halkos 

and Kitsos (2005) worked with a number of model specifications estimating eventually the 

Benefit Area as the intersection of given marginal abatement (hereafter MAC) with marginal 

damage cost functions (hereafter MD).   

Another source of model uncertainty is emerged from the imposed assumption: either 

coming from the statistical process involved or from the distributions used to describe errors 

or the uncertainty itself. This line of thought covers a statistical approach, while the 

mathematical point of view reflects uncertainty for the moment you obtained that particular 

model and the involved assumptions.  

It has to be clear that model uncertainty is not ‘lack of fit’ (Draper and Smith, 1998), 

and therefore it is not the error itself. In any case either under Mathematical or under 

Statistical approaches researchers have to work with consistence in the line of thought they 

adopt: the assumed model is correctly specified.  

Even under Bayesian or Decision Theory the model uncertainty plays an important 

role. From the Bayesian point of view, Bernando and Smith (1994) refer to: 

i. M-closed case, i.e. to believe that one of the models is ‘true’ without the explicit 

knowledge of which one it is.  

ii. M-complete case, i.e. to work ‘as if’ the models are compared to a reference (not 

necessary the unknown one) model. 
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iii. M-open case i.e. is based on the model comparison, in the absence of reference 

model.  

From the Decision Theory point of view the ‘data are correct on average’ and there is a 

number of loss functions, researchers choose the appropriate one to quantify the distance 

between model predictions and given data. The choice of the model is crucial and this will be 

clarified for the Environmental Economics Uncertainly in section 4. 

3.2  Measuring uncertainty    

One of the problems associated with the Normal distribution is the “fat tails” one. 

There are cases were the assumed Normal distribution in tails “contains more probability” 

than the usual 0.05. This is true in a number of economic applications and certainly in some 

environmental problems where pollution affects the “tails” more than 0.05. That is a need for 

a generalization of Normal was a necessity. There are some attempts to generalize the well-

known Normal distribution or Gaussian. But the γ- order Generalized Normal Distribution (γ-

GND) emerged from a completely mathematical problem – Logarithm Sobolev Inequality 

(LSI), which provides a solid background for it. The generalisation of the well-known 

multivariate distribution is discussed by Kitsos and Tavoularis (2009), Toulias et al. (2014) 

and Halkos and Kitsou (2015). 

One of the merits of γ-GND is that for γ=2 coincides with the typical multivariate 

Normal while for γ=1 corresponds to Uniform and γ tends to ±∞ coincides with the Laplace. 

As a measure of uncertainty the Shannon entropy is usually adopted. It can be proved that the 

Shannon entropy of a random variable ( , )pX N     is  

1 det( ) log
( . )

H X p
c p


 
 

              (2) 

As the H(X) can be considered as a measure of uncertainty, expression (2) provides a 

measure of uncertainty for a number of distributions, belonging to the family of distributions 
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of γ-GND. It can be proved that from (2) and X coming from the p-variate Normal, NP(μ, Σ) 

it is:      1( ) log(2 ) det
2

p
NH X e             (3) 

While for the p-variate Laplace with mean μ and variance Σ is 

2!( ) log det
( 1)

2

p

pH X p p


  
 

                                       (4) 

It is easy to be proved that when p = 1, one dimension exists then  

For the Uniform distribution   U (μ-σ, μ+σ) the entropy is  HU(X)=log2σ 

For the normal    Ν (μ, σ2) is  HN(X) = log           (5) 

And for the Laplace    L(μ, σ) is HL(X)=1+log2σ 

Ιt is clear that the entropy depends only on the variance-covariance matrix Σ or σ in 

case p=1. In practice this means that the uncertainty is irrelevant to mean value μ (of 

pollution to an industry, say) but depends on the standard deviation (the experimental error). 

The Uniform distribution can be adopted if it is assumed that pollution levels are (almost) the 

same around the area [a, b], while the Laplace when it is assumed a “sharp explosion” around 

the center and much lower far from it. Estimates of (5) can be obtained in practical situations.  

More specifically, as an example let us consider an analysis of the Total Pollution 

Cost (TPC) and provide food for thought of the involved uncertainty despite the extension 

and the accurate and sophisticated, so to speak, mathematical evaluations. The easiest way, as 

far as the mathematical calculations are concerned, despite its unrealistic character, is to 

assume that the stochastic “pollutant” variable X  is uniformly distributed in the interval 

1 1,
2 2

     
, say, equivalently TPC is derived from the Uniform 1 1( , )

2 2
U     implying 

a uniform density function for X of the form  

                            1 1 1( ) ,
2 2 2

f X for X  


      
        (6) 
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From the definition of the expected value the pollution related t- social cost for the linear tax 

equals to               

1
2

1
2

( )
lt

TPC TPC f x dx








                                     (7) 

 It holds that (Halkos and Kitsou, 2015):  

1

2 2 2 2

1(3 )
( ) ( ) ( ) ( 2 )11 ( )





       









          
    

1
2

2 4 4 3

2

1 1(5 ) (3 )
(( )) ( ) ( ) 4 ( ) ( 4 )1 11 ( ) ( )

Var



 
       

 
 



    
      

    
  

 

                       

2 2 2

1(3 )
2 12( ) 2 ( ) 2 ( ) 11 ( )


     

 





      
          

With different values of κ and λ a number of calculations for the corresponding TPC can be 

obtained.  From the evaluated expectations it obviously holds that the quantity ,
lt

TPC       

in the case of Uniform distribution is less than the corresponding Normal distribution, which 

is less that the corresponding Laplace distribution. That is (Halkos and Kitsou, 2015): 

1 ,2, ,
l l lt t tTPC TPC TPC                    

   ( ) ( ) ( )U N LVar TPC Var TPC Var TPC       

Now, recall that we have with γ=1 (the case of uniform) the expected value is less than in the 

case of γ=2 (the case of normal) and flatter compared to the other two cases. Similarly the 

results for the comparison between γ=2 (Normal) and γ= (the case of Laplace) show that 

Laplace is sharper among them. Thus estimates of Shannon entropy can be obtained.  
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As has been shown in Halkos and Kitsou (2015) if 2( , )X N    then Proposition 1 

for the expected value and the variance of TPC=(κX+λ)2  are evaluated as functions of κ, λ, γ. 

With different values of κ and λ a number of calculations for the corresponding TPC can be 

obtained. Any general form of TPC=(κX+λ)2 is presenting the appropriate area for TPC.             

An extension of the calculation of expected value is needed as it can be either normal 

with the known tails or a “sharp” one around the ‘center’ with ‘heavy tails’, a Laplace 

distribution among others. Therefore the γ-order generalized Normal distribution was 

adopted. The expected value of TPC can be evaluated and it can be seen that that the 

distribution is not only the Uniform but the 2( , )N   . Figure 1a represents the univariate γ-

order generalized Normal distribution for various values of γ: γ=2 (normal distribution), γ=5, 

γ=10, γ=100, while Figure 1b, represents the bivariate 10-order generalized Normal 

2
10 2(0, )KT I  with mean 0 and covariance matrix 2I  . Alike, Figure 2 represents the 

relationship between Uniform, Normal and Laplace. 

A new generalized entropy type measure of information ( )XJ , defined by Kitsos and 

Tavoularis (2009), a function of density function f(x), is 

    ( ) ( ) ln ( )
p

X f x f x dx
  J



                                      (8) 

For α=2, the measure of information 2( )XJ  is the Fisher’s information measure 

   
 

2
2( )( ) ( ) 4 ( )

( )p p

f xX f x dx f x dx
f x

 
   

 
 J
   

i.e. 2( ) ( )X XJ J . That is, ( )XJ is a generalized Fisher’s entropy type information measure, 

and as the entropy, it is a function of density. 
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Figure 1: The univariate γ-order generalized Normals 1(0,1)KT  for 2,5,10,100  (1a) and 
the bivariate 10-order generalized Normal 2

10(0,1)KT (1b) 

 
   1a      1b 
 
Figure 2: Graphical presentation of the relationship between Uniform, Normal and Laplace   

                      
 
Source: Halkos and Kitsou (2018) 

 

Recall that the Shannon entropy H(X) is defined as ( ) ( ) ln ( )
p

X f x f x dx H


 (see 

Kitsos and Toulias, 2010]. The entropy power N(X) is defined through H(X) as 

     

2 H( )1( )
2

p XX e
e

N
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The definition of the entropy power of a random variable X  was introduced by Shannon 

(1948) as the independent and identically distributed components of a p-dimensional white 

Gaussian random variable with entropy Η(Χ). 

The generalized entropy power ( )XN is of the form 

     
2 H( )( ) p XX M e N , 

with the normalizing factor being the appropriate generalization of (2πe)-1, i.e. 

    
 

 
2

1
2

1

11 π ( ) (9)
1

a
p p

p
aM M

e p




 












             
                          

is still the power of the white Gaussian noise with the same entropy. Trivially, with α=2, the 

definition in (6) is reduced to the entropy power, i.e. Ν2(Χ)=Ν(Χ). In turn, the quantity  

      

 
 

2

1

1

1

p
p

p 





 

 

  

appears very often when we define various normalizing factors, under this line of thought. 

 

Theorem 1:  For the variance of X, Var(X) and the generalizing Fisher’s entropy type 

information measure Jα(X), it holds  
1 2 1

2π 1Var( ) ( ) 1e
p pX M X



        J   

with Mα as in (8). 

 

Corollary 1:   When α=2 then Var(X)J2(X)p2, and the Gramer-Rao inequality holds. 
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4. Environmental Economics Modeling  

An environmental economics system, like any economic system, needs a compact 

description to study the effect of the differently involved components or to make prediction 

for the system under investigation through a Mathematical model. That is we translate the 

Environmental Economics problem into a Mathematical one. The first question arisen is if 

such a model exists. In limited cases a true functional relationship between a response and a 

variable (usually considered as independent) exists, mainly in Natural Science problems.  

These functional models are not always available, and even if exist, the range of the 

involved variables are not always controllable. So we restrict the domain, to obtain Control 

models. The imposed assumptions and relationships constitute the Mathematical Model 

(MM), with typical examples in Economics and Statistics being the population growth 

models, the spread of technological innovations, etc. In principle a MM is referred to one 

response, needs the existing underlying mechanism, translating it into Mathematics and is 

based on clear and accurate definition of the problem (see for an approach to Mathematical 

Economics, among others, Chiang and Wainwright, 2005). 

Needless to say there is a significant difference between economic models and 

engineering. In Engineering the underlying mechanism is (solid and experimentally verified) 

known and mathematically well interpreted (Pierre, 1986). Still, in Environmental Economics 

we are obliged to adopt the calibration procedure (see Halkos and Kitsos, 2005). This 

innovating approach helps us to tackle and solve the problem, overpassing calculation 

difficulties but at the same time creates a source of unexpected uncertainty. Although there is 

an optimal design approach for calibration (see Kitsos, 2002; Halkos, 1994; Hutton and 

Halkos, 1995) the non-experimental character of Environmental Economics, as well as that 

the Environmental conditions are unstable, calibration feeds the system with extra uncertainty 

(Halkos, 1996). 
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Working in these lines, Halkos and Papageorgiou (2008, 2016) presented the 

essentials of optimal control theory with reference to differential game as a theoretic 

analogue to optimal control. They discuss the Pontryagin’s Maximum Principle as the main 

tool of analysis in open loop information structure for environmental models and the 

Hamilton–Jacobi–Bellman equation as tool for any closed loop informational structure.  

 Halkos (1992, 1994) discusses uncertainty in the damage cost function in a game 

theoretic set-up. The damage is defined as a function of depositions and takes the form 

    Qi=Qi(Di)    i   =1,...,27          (10) 

where Qi(.) is an increasing function of Di. The total cost from a given level of pollutants 

emissions for country i is represented as,  

   Ci = cost of abatement + damage cost               (11) 

And assuming damage costs are quadratic in deposition then: 

    Ci = Ai
2 + β1i Di + β2i Di

2  (12) 

 In this way the total cost is minimized when  

    β2i = (Ai/diiDi) - (β1i/2Di)   (13) 

and this is the information available to "calibrate" damage functions assuming  national 

authorities perform as Nash partners in a non-cooperative game.  If we set β2i=0, then 

β1i=(2Ai/dii), and total cost in the optimum is  

   Ci = Ai
2 + (2AiDi/dii)                   (14) 

Restrict β1i to zero and calibrate β2i as β2i=(Ai/diiDi) yielding total costs of  

   Ci = Ai
2 + (AiDi/dii)                        (15)  

This assumption halves the implied damage costs at the optimum; the positive second 

derivative means that the benefits from reductions in depositions will also be less than implied 

by a linear damage function, while the costs of additional depositions will be greater. This, 

obviously, indicates the importance of damage cost functions uncertainty.  
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The situation is not the same when a Statistical Model (SM) is adopted. The main 

difference is that, in principle, a Linear Model is assumed to approach “reasonably” the 

existent data. To measure how well the, assumed correct, linear (usually regression) model, 

“fits the data”, there is a number of well-known Statistical indexes. We shall not investigate 

the Statistical model as in the mathematical approach of McCullagh (2002), but we shall try 

to clarify how a regression model (Draper and Smith, 1998) works: Let n be the observed 

values of the input variable X. Each observed value of X, xi , i=1,2,…n determines a 

commutative distribution function (cdf) Fi , i=1, 2,…n. From this cumulative density function 

(cdf) a random sample of size one, each time, is selected and denoted, usually, yi, i=1,2,…,n. 

Thus the observed data are (xi , yi), i=1,2,…,n.  

  The possibility of different Mathematical models has been extensively discussed by 

Halkos and Kitsos (2005), when the evaluation of the Benefit Area (BA) is considered. Recall 

that Economic theory suggests that the optimal pollution level occurs when the marginal 

damage cost equals the marginal abatement cost. Consider the typical situation of the optimal 

pollution level as in Figure 3. The curves g(z) and φ(z) denote a country or a province or a 

municipality area’s abatement and damage costs functions respectively. The point of their 

intersection I = I(zo , ko) represents the optimal level of pollution.  

 For modelling MAC three cases are considered : MAC=g(z)= linear [β0+β1z, β10]; 

quadratic [β0+β1z+β2z2,  β2 > 0]; exponential [
ze 1

0
 ,β1  0]. Also for modelling MD three 

cases were considered: MD=φ(z)=α+βzo linear, or quadratic as 

2MB = ( ) ,     0φ z z z a       and 1
0 0 0 00,  θ 0( ) e ,   βzMD φ z     . We believe 

that these three cases cover the majority of the real life problems. 

 In Figure 3 bellow it is assumed that the linear curves, MAC and MD, have an 

intersection (Mathematically this might not be true, when βο > α), and therefore the area of the 
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region AIB, created by these curves, is what is known as Benefit Area (Kneese, 1972, among 

others). We shall denote hereafter by BA = (AIB). As it discussed below the benefit area (BA), 

is evaluated, as   BA = (ABI) = (AIz00) - (BIz00) 

with the areas represented in Figure 3. 

Figure 3: Graphical presentation of the optimal level of Pollution 
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 Halkos and Kitsos (2005) considered the abatement cost function MAC=g(z), as a 

continuous function g(.) and  the marginal damage function MD=φ(z), as a continuous 

function φ(.), a number of cases were extensively discussed, and analytical results were 

imposed for the existence of the optimal pollution level. The BA was analytically evaluated 

in all the possible cases.  
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The possible mathematical cases discussed and the corresponding evaluated BA were: 

Case 1:  MD and MAC functions are both linear 

                       
2

0 0 0 0

1

( )( ) ( )(0 ) ( )
( )

2 2 2( )LL
AB Ik zBA ABI    

 
 

   


                           (16) 

Case 2:   MD linear and MAC quadratic functions 
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Case 3:  MD linear and MAC exponential functions 
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Case 4:  MD quadratic and MAC linear functions 
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Case 5:   MD and MAC functions both quadratic 
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Case 6:   MD quadratic and MAC exponential functions 
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Case 7: MD and MAC both exponential   functions                                                                                                           
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In Case 3 point zo, the optimal level of reduction pollution numerically (through Numerical 

iteration schemes) while in all cases was analytically evaluated. That is the optimal restriction 

of damages level, z0, in the exponential case only approximately can be evaluated. That is the 

cause the corresponding optimal cost or benefit level can only approximated evaluated too.   

Figure 4: Graphical presentation of the optimal level of pollution 
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It is clear that in all  the above cases,  the intersection of φ(z) and g(z) is fulfilled, i.e. 

g(z0)=φ(z0), when z0 is the optimal restriction in damages, for the case under consideration. In 

principle this is true for any MAC and MD. For Cases 2-7 the evaluated BA is a function of 

the corresponding zo, the optimal level of pollution reduction, which has been evaluated 

explicitly in each case. Halkos and Kitsou (2015) considered the cases were BA is not 
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possible, Mathematically, to be evaluated while Halkos and Kitsou (2018) considered the 

whole problem for a rather global and theoretical approach.  

From the above, it is obvious that in Environmental Economics problems uncertainty 

has to be appropriately modelled. Needless to say all models serve a theoretical need and 

there is a certain target in each case to be adopted. The second point is how the assumed 

models will be evaluated. Halkos and Kitsos (2005) worked using regression analysis of the 

current abatement level. Facing the problem of limited or not existing data they moved to 

apply calibrating methods. 

 

5.  Discussion 

A number of sources of uncertainty were discussed and presented. A fundamental 

source of model uncertainty is emerged from the imposed assumption either coming from the 

statistical process involved and from the distributions used to describe errors or the 

uncertainty itself as shown in section 3.1. The assumption for the assumed distribution has 

been enlarged, considering a broader family of distributions, the γ-order Generalized Normal, 

and the appropriate measures of uncertainty, mainly based on Shannon entropy were 

presented. Shannon entropy although so well working for engineering applications, does not 

have been applied widely in Environmental Economics – we shall encourage to be adopted 

and applied at least in the cases discussed above.  

Despite the probability level contribution, which results to a variety of possible 

assumptions, depending on the scale parameter γ, the discussion on the model selection might 

be considerable. 

 

The fact that the estimated, estMAC and estMD say, offer a source of error from the 

real MAC and MD, give the possibility to reduce it, considering the confidence intervals (L, 

U) and (l, u) for the MAC and MD respectively, as shown in Figure 4. Therefore there is the 
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possibility of 4 intersections, plus the initial, so eventually it is possible to have 5 Benefit 

Areas for each case considered as above. The uncertainty we tried to reduce is still there, but 

under measurement! Nevertheless yet it is unknown which of the 5 BA is closer to the true 

one, so roughly speaking there is a 1/5 chance to choose the right one. We strongly believe 

we have to evaluate them: choose the model with some uncertainty, estimate the parameters 

with OLS to reduce error and evaluate the possible Benefit Areas. 

Figures 3 and 4 provide evidence for the above analysis of Mathematics vs Statistics 

in coping with uncertainty in Environmental Economics. Specifically, Figure 3 provides due 

to solid MM ONE Benefit Area, while Figure 4 discusses the possibility of FIVE BA and a 

confidence interval for zo, the optimal level of pollution reduction, as well as for ko, the 

optimal cost level. That is MM formulates the problem and SM offers possible solutions, 

restricting the underlying uncertainty, provided the error assumptions is correct, as well as the 

model. When more complicated models are assumed (Halkos and Kitsou, 2018) it is clear 

that the evaluation of the Benefit Area is more complicated, that one might believe. Moreover 

uncertainty is always present but we now have insights on where and how we can handle it. 
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