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Abstract

Spatial panel data models are widely used in empirical studies. The existing
theories of spatial models so far have largely confine the analysis under the assump-
tion of parameters stabilities. This is unduely restrictive, since a large number of
studies have well documented the presence of structural changes in the relationship
of economic variables. This paper proposes and studies spatial panel data models
with structural change. We consider using the quasi maximum likelihood method to
estimate the model. Static and dynamic models are both considered. Large-T and
fixed-T setups are both considered. We provide a relatively complete asymptotic
theory for the maximum likelihood estimators, including consistency, convergence
rates and limiting distributions of the regression coefficients, the timing of structural
change and variance of errors. We study the hypothesis testing for the presence of
structural change. The three super-type statistics are proposed. The Monte Carlo
simulation results are consistent with our theoretical results and show that the max-
imum likelihood estimators have good finite sample performance.
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1 Introduction

Since the seminal works of Cliff and Ord (1973) and Ord (1975), spatial econometric

models have received much attention in the economic literature. A typical spatial au-

toregressive model specifies that one’s outcome is directly affected by the outcomes of

its spatial peers with some prespecified weights. With this particular specification, one

has the chance to study the spatial interactions among a number of spatial units.

Spatial econometric models have been widely used in empirical studies. In microe-

conomics, evoked by the influential work of Manski (1993), spatial models are one of

primary tools to study the endogenous effects or peer effects, see e.g., Bramoullé, Djeb-

bari and Fortin (2009), Calvó-Armengol, Patacchini and Zenou (2009), Lin (2010). In

public economics, spatial models are widely used to study the competitions for tax and

fiscal expenditure among local governments, see e.g., Lyytikäinen (2012), Chirinko and

Wilson (2007), etc. In international economics, spatial models are popular in the studies

of the spillover effects of foreign direct investment and the gravity model of trade, see

e.g., Bode, Nunnenkamp and Waldkirch (2012). In urban economics, spatial models are

used to study the diffusion process of housing prices, see Holly, Pesaran and Yamagata

(2011). In finance, Kou, Peng and Zhong (2017) show that the traditional capital asset

pricing model or the arbitrary pricing theory augmented with spatial interactions can

improve the model fitting to the real data. Spatial econometrics models are also used to

study some social issues. As one of motivating example in Anselin (1988), spatial term is

introduced to capture the social patten among different districts arising from the sphere

of criminals.

The literature has also witnesses rapid developments on the theory of spatial econo-

metric models. Early development has been summarized by a number of books, includ-

ing Anselin (1988) and Cressie (1993). Due to the presence of endogenous spatial term,

the ordinary least squares (OLS) method cannot deliver a consistent estimation. Gen-

eralized method of moments (GMM) and quasi maximum likelihood (ML) method are

two popular estimation methods to address this issue. The GMM are studied by Kelijian

and Prucha (1998, 1999, 2010), and Kapoor et al. (2007), among others. The ML method

is investigated by Anselin (1988), Lee (2004), Yu et al. (2008) and Lee and Yu (2010), and

so on.

The theoretical developments of spatial models so far have been much confined

within the assumption of parameters stabilities over the sample horizon. This assump-

tion is unduely restrictive, given that a large number of studies have well documented

the presence of parameters instabilities or structural changes in econometric models of

other types, see, for example, Bai (1997), Bai, Lumsdaine and Stock (1998) and Qu and

Perron (2007) in linear regression models, and Perron (1989), Zivot and Andrews (1992),

Bai and Carrion-I-Silvestre (2009) in unit root tests. This is particularly true in the sample

with a long or moderately long horizon, since the longer time span of the sample, the

more unobserved or observed factors affecting the parameters stabilities. Even for the

1



sample with a small number of periods, it is still necessary to take into account struc-

tural change as a conservative modeling step since one may be unlucky to have a sample

at hand, which has experienced one or more typical structural change events, such as

presidential adminstration switching, policy-regime shift, financial crisis, etc. It is well

known that failure to account for the structural change, if it does exist, would cause

inconsistent estimations and incorrect statistical inferences, resulting in misleading eco-

nomic implications. Introduction of structural change in model is not just for correct

statistical analysis concern. In some applications such as policy evaluations, specifying

a structural change allows one to quantify the effect of policy intervention, which has its

own independent interests.

This paper proposes and studies spatial panel data models in the presence of struc-

tural change. We consider using the quasi ML method to estimate model. Our asymp-

totic analysis first focuses on a static spatial panel model under large-T setup. The theory

is next extended to a dynamic model, as well as to a model under fixed-T setup. We also

consider the hypothesis testing issue on the presence of structural change. The supW,

supLM, supLR statistics, which are based on the classical Wald, Lagrange Multipliers

(LM) and Likelihood ratio (LR) tests, are proposed to perform this work. The asymptotic

properties of these three statistics are investigated. To my best knowledge, this paper is

the first to develop a relatively complete asymptotic theory on spatial panel data models

with structural change.

A main difficulty of the current theoretical analysis is to establish the global proper-

ties of the ML estimators. As far as I can see, one cannot directly apply the arguments

well developed by the previous studies, such as Bai (1997), Bai and Perron (1998), Bai,

Lumsdaine and Stock (1998), Qu and Perron (2007) and so forth, to the current model.

The reasons are twofold. First, because of nonlinearity arising from the spatial lag term,

we cannot concentrate out the regression coefficients from the objective function, which

makes the arguments in Bai (1997) and Bai and Perron (1998) not suitable to our model.

Second, the ML estimators would have biases due to the presence of incidental parame-

ters. As a consequence, the ML estimators have two convergence rates, and which one is

dominant depending on the values of N and T, where N is the number of spatial units

and T the number of periods. This feature makes the analysis of Bai, Lumsdaine and

Stock (1998) much complicated since their analysis implicitly specifies the convergence

rate. In addition, the particular identification issue in the spatial models requires some

exclusive analysis to address it. In this paper, we develop a set of different and new

arguments to establish the global properties, such as consistency and convergence rates.

The proposed model is related with spatial econometrics and structural change mod-

els, both of which have long histories and are very popular in empirical studies. As the

mixture, we believe that the proposed model would inherit their popularity.

There are few studies related with this paper. Sengupta (2017) considers the hypoth-

esis testing for a structural change in a spatial autoregressive models. An undesirable
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feature of this study is that the individual effects, which are the primary attractiveness

of panel data models, are abstracted from the model. In addition, only supLR statistic is

proposed in this study. In contrast, we propose three statistics. Among these three statis-

tics, the supLM statistic is of more practical interests, since it only involves the estimator

of the restricted model that is easier to compute. This can save much computation cost,

especially when the sample size is large.

The rest of the paper is organized as follows. In Section 2, we propose a basic static

model and write out the related likelihood function. The computation aspect of the

model is also considered in this section. Section 3 lists the assumptions needed for the

subsequent theoretical analysis. We also make a detailed discussion on the identification

issue. Section 4 presents the asymptotic results. Section 5 makes an extension to the

dynamic model. Section 6 gives the asymptotics under fixed-T setup. Section 7 con-

sider the hypothesis testing for the presence of structural change. Section 8 runs Monte

Carlo simulations to investigate the finite performance of the ML estimators. Section 9

concludes the paper.

2 Basic model and likelihood function

The model studied in this paper is a spatial autoregressive panel data model with a

structural change, which is written as

Yt = α∗ + ρ∗WNYt + ̺∗WNYt✶(t ≤ [Tγ∗]) + Ztβ
∗ + Xtδ

∗
✶(t ≤ [Tγ∗]) + Vt, (2.1)

or equivalently

Yt = α∗ + (ρ∗ + ̺∗)WNYt + Ztβ
∗ + Xtδ

∗ + Vt, for t ≤ [Tγ∗],

Yt = α∗ + ρ∗WNYt + Ztβ
∗ + Vt, for t > [Tγ∗],

where Yt is an N-dimensional vector of observations at time t for the dependent variable.

ρ∗WNYt and ̺∗WNYt✶(t ≤ [Tγ∗]) are two spatial terms. ✶(·) is an indicator function,

which is 1 if the expression in the brackets is true, and 0 otherwise. Zt and Xt are N × p

and N × q observable data matrices with p ≥ q at time t for explanatory variables. Here

the columns of Xt is a subset of those of Zt. The model is a pure change model if p = q;

and a partial change model if p > q. Our model specification implicitly assumes that

there is one break point and the structural change always appears in the spatial term.

The model with multiple structural changes is also of theoretical interests and practical

relevance. But such a topic is beyond the scope of this paper and is left as a future work.

In addition, the model with the structural change only present in the coefficients of Xt is

simpler than model (2.1). The analysis of this simpler model can be easily obtained by

slightly modifying the analysis of the current paper.

For notational simplicity, we introduce the following symbols:

Xt(γ) = Xt✶(t ≤ [Tγ]), Xt(γ, γ∗) = Xt✶(t ≤ [Tγ])− Xt✶(t ≤ [Tγ∗]),

3



Yt(γ) = Yt✶(t ≤ [Tγ]), Yt(γ, γ∗) = Yt✶(t ≤ [Tγ])− Yt✶(t ≤ [Tγ∗]),

Dt(ρ, ̺, γ) = IN − ρWN − ̺WN✶(t ≤ [Tγ]), D∗
t = Dt(ρ

∗, ̺∗, γ∗).

With these notations, the model now can be written as

D∗
t Yt = α∗ + Ztβ

∗ + Xt(γ
∗)δ∗ + Vt.

Let θ = (ρ, ̺, β′, δ′, γ, σ2)′. If Vt is normally and independently distributed with with

mean zero and variance σ2 IN , the gaussian log-likelihood function is

L(θ, α) = −1

2
ln σ2 +

1

NT

T

∑
t=1

ln
∣∣∣Dt(ρ, ̺, γ)

∣∣∣− 1

2NTσ2

T

∑
t=1

Xt(θ, α)′Xt(θ, α) (2.2)

where

Xt(θ, α) = Dt(ρ, ̺, γ)Yt − α − Ztβ − Xt(γ)δ.

The first order condition for α gives

α(θ) =
1

T

T

∑
t=1

Dt(ρ, ̺, γ)Yt −
1

T

T

∑
t=1

Ztβ − 1

T

T

∑
t=1

Xt(γ)δ.

Substituting the preceding formula into the likelihood function to concentrate out α, we

have

Xt(θ) = D̃tYt − Z̃tβ − X̃t(γ)δ = Ỹt − ρWNỸt − ̺WNỸt(γ)− Z̃tβ − X̃t(γ)δ. (2.3)

where we use Ãt to denote At − T−1 ∑
T
t=1 At, for example

D̃tYt = DtYt −
1

T

T

∑
t=1

DtYt.

In addition, we suppress ρ, ̺ and γ from Dt in the places where no confusion arises for

notational simplicity. Now the likelihood function after concentrating out α is

L(θ) = −1

2
ln σ2 +

1

NT

T

∑
t=1

ln |Dt| −
1

2NTσ2

T

∑
t=1

Xt(θ)
′Xt(θ) (2.4)

where Xt(θ) is defined in (2.3). The MLE θ̂ is therefore defined as

θ̂ = argmax
θ∈Θ

L(θ). (2.5)

where Θ is the parameters space specified below.

The above maximization issue can be alternatively written as

max
θ∈Θ

L(θ) = max
γ∈[γL,γU ]

max
ϑ∈Par(ϑ)

L(ϑ, γ)

where ϑ = (ρ, ̺, β′, δ′, σ2)′ and Par(ϑ) is the parameters space for ϑ. We use the above

formula to obtain the numerical values of the MLE, i.e., for each given γ, we get ϑ̂(γ)
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by maximizing L(ϑ, γ), then we get γ̂ by maximizing L(ϑ̂(γ), γ). Once γ̂ is obtained,

the MLE θ̂ is θ̂ = (ϑ̂(γ̂), γ̂). In practice, the maximization in the first step may be time-

consuming, especially when N is large, since it involves the calculation of determinant

of large dimensional matrix. To economize the computation costs, we suggest the fol-

lowing estimation procedures. Let WNXt and WNXt(γ) be the instruments of WNYt and

WNYt(γ). The estimation procedures consist of three steps. In the first step, for each

given γ, we apply two-stage least square method to model (2.1) to obtain the sum of

squared residual, which we denote by SSR(γ). In the second step, we sort SSR(γ) in

ascending order and detect five γ values which corresponds to the five smallest SSR(γ)s.

In the last step, we conduct the above maximization issue by restricting γ to be these five

values.

3 Assumptions and identification issue

We make the following assumptions for the subsequent theoretical analysis. Hereafter,

we use C to denote a generic constant, which need not to be the same at each appearance.

Assumption A: The errors vit(i = 1, 2, . . . , N, t = 1, 2, . . . , T) are identically and inde-

pendently distributed with mean zero and variance σ∗2 > 0. In addition, we assume that

supi,t E(|vit|4+c) < ∞ for some c > 0.

Assumption B: WN is an exogenous spatial weights matrix whose diagonal elements

are all zeros. In addition, WN is bounded by some constant C for all N under ‖ · ‖1 and

‖ · ‖∞ norms.

Assumption C: Let DN(x) = IN − xWN . We assume that DN(x) is invertible over

Rρ and Rρ ⊕ R̺, where Rρ and R̺ are the respective parameters space for ρ and ̺,

which contain ρ∗ and ̺∗ as interior points, and Rρ ⊕ R̺ is the parameter space for ρ + ̺

with ρ ∈ Rρ and ̺ ∈ R̺. In addition, DN(ρ)
−1 and DN(ρ + ̺)−1 are bounded by some

constant C for all N under ‖ · ‖1 and ‖ · ‖∞ uniformly on Rρ and Rρ ⊕ R̺.

Assumption D: The underlying true value θ∗ = (ρ∗, ̺∗, β∗′, δ∗′, γ∗, σ∗2)’ is an interior

point of the parameter space Θ with Θ = Rρ × R̺ × Rp × Rq × Rγ × Rσ2 , where Rρ and

R̺ are both compact sets in R1, and Rγ = [γL, γU ] ⊂ (0, 1), and Rσ2 is a compact set

which is bounded away from zero, and Rd is d-dimensional Euclidean space. In addition,

the parameters θ are estimated in the set Θ.

Assumption E: Let ψ∗ = (̺∗, δ∗′)′ and C∗ be a (q + 1)-dimensional constant vector.

We assume Assumption E.1: ψ∗ = C∗, or Assumption E.2: ψ∗ = (NT)−νC∗ with 0 <

ν <
1
4 .

Assumption F: Let St =
[
Zt, Xt✶(t ≤ [Tγ∗])

]
, we assume that St are nonrandom

and supi,t ‖Zit‖2 < ∞ for all i and t, and the sample covariance matrix 1
NT ∑

T
t=1 S̃t

′S̃t is

positive definite.
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Let I1(ρ, σ2) and I2(ρ, σ2) be both 2 × 2 matrices, which are defined as

I1(ρ, σ2) =
1

N




σ◦2

σ2 tr(S∗′
1 S∗

1) + tr
[
ζ−1

1 (ρ)S∗
1ζ−1

1 (ρ)S∗
1

]
σ◦2

σ4 tr
[
ζ1(ρ)

′S∗
1

]

σ◦2

σ4 tr
[
ζ1(ρ)

′S∗
1

]
σ◦2

σ6 tr
[
ζ1(ρ)

′ζ1(ρ)
]
− N

2σ4




and

I2(ρ, σ2) =
1

N




σ◦2

σ2 tr(S∗′
2 S∗

2) + tr
[
ζ−1

2 (ρ)S∗
2ζ−1

2 (ρ)S∗
2

]
σ◦2

σ4 tr
[
ζ2(ρ)′S∗

2

]

σ◦2

σ4 tr
[
ζ2(ρ)′S∗

2

]
σ◦2

σ6 tr
[
ζ2(ρ)′ζ2(ρ)

]
− N

2σ4




where ζ1(ρ) = IN − (ρ − ρ∗ − ̺∗)S∗
1 , ζ2(ρ) = IN − (ρ − ρ∗)S∗

2 and σ◦2 = T−1
T σ∗2. We

further define

Jt(γ) =
[
St(γ, γ∗)µ∗

t , Xt(γ, γ∗)
]
, Kt(γ) =

[
S∗

t µ∗
t , S∗

t (γ)µ
∗
t , Zt, Xt(γ)

]
, (3.1)

where µ∗
t = α∗+ Ztβ

∗+ Xt(γ∗)δ∗, S∗
t = WN D∗−1

t and S∗
t (γ, γ∗) = S∗

t

[
✶(t ≤ [Tγ])−✶(t ≤

[Tγ∗])
]
. Let

ΠJ J(γ) =
1

NT

T

∑
t=1

J̃t(γ)
′
J̃t(γ), ΠJK(γ) =

1

NT

T

∑
t=1

J̃t(γ)
′
K̃t(γ)

ΠKJ(γ) =
1

NT

T

∑
t=1

K̃t(γ)
′
J̃t(γ), ΠKK(γ) =

1

NT

T

∑
t=1

K̃t(γ)
′
K̃t(γ)

We have the following assumption on the parameters identification.

Assumption G: One of the following assumption holds

Assumption G.1 (a): Matrices I1(ρ, σ2) and I2(ρ, σ2) are positive definite over the

parameter space (Rρ ⊕ R̺)× Rσ2 and Rρ × Rσ2 .

Assumption G.1 (b): The following condition

min

(
1

N

∥∥S∗′
1 + S∗

1 − ̺∗S∗′
1 S∗

1

∥∥2
,

1

N

∥∥S∗′
2 + S∗

2 − ̺∗S∗′
2 S∗

2

∥∥2
)
> 0,

holds for all N.

Assumption G.2 (a): There exists a constant c such that for all N and T

λmin

(
ΠKK(γ)

)
= λmin

(
1

NT

T

∑
t=1

K̃t(γ)
′
K̃t(γ)

)
≥ c.

Assumption G.2 (b): There exist a constant c such that for all N and T

λmin

(
ΠJ J(γ)− ΠJK(γ)ΠKK(γ)

−1ΠKJ(γ)
)
≥ c|γ − γ∗|,

or alternatively

λmin

(
1

NT

T

∑
t=1

H̃t(γ)
′
H̃t(γ)

)
≥ c|γ − γ∗|,
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where λmin(A) denotes the minimum eigenvalue of A and Ht(γ) = [Jt(γ), Kt(γ)].

Assumption A requires that disturbances are drawn from a random sample. Similar

assumption appears in a number of studies on QML estimations of spatial models, see

Lee (2004), Yu et al. (2008) and Lee and Yu (2010). In spatial models, this assumption

is not just for theoretical simplicity, but also serves as the base for the parameters iden-

tification in some special spatial models, see the discussions on Assumption G below.

Assumption B is about spatial weights matrix, which is standard in spatial econometric

literature. Our specification on spatial weights matrix implicitly assumes that it is time

invariant, so the case of time-varying weights matrix is precluded. However, we note

that the arguments in this paper can be easily extended to the time-varying case. As-

sumption C imposes the invertibilities of DN(ρ) and DN(ρ + ̺). Invertibilities of DN(ρ
∗)

and DN(ρ
∗ + ̺∗) are indispensable since they guarantee that the models before and af-

ter structural change are both well defined. Since DN(x) is a continuous function in x,

the invertibeilities of DN(ρ) and DN(ρ + ̺) can be maintained in some neighborhoods

of ρ∗ and ρ∗ + ̺∗. However, this invertibility is a local property. Assumption C goes

further to assume that this local invertibility can be extended over the parameters space.

Assumption D assumes that the underlying true values are in a compact set, which is

standard in econometric analysis. Assumption D also assumes that the parameters are

estimated in a compact set. Such an assumption is often made when dealing with non-

linear objective functions, see, for example, Jennrich (1969). Our objective function is

obviously nonlinear, due to the presence of spatial terms and structural change. This is

the difficulty source of theoretical analysis. Assumption E is standard in the structural

change literature. It gives the conditions under which the structural change is asymp-

totically identifiable. Assuming shrinking coefficients is important for developing the

limiting theory of the break date estimate that does not depend on the distributions of

the regressors and the errors.

Assumption F is the identification condition for β and δ. It assumes that the exoge-

nous explanatory variable are non-random. Similar assumption also appears in various

spatial studies, such as Lee (2004), Yu et al. (2008), Lee and Yu (2010), etc. If exogenous

regressors are assumed to be random instead, the analysis of this paper can be conducted

similarly with covaraince stationarity of Zt with appropriate mixing conditions and mo-

ment conditions. Assumption F also assumes that St is of full column rank in the sense

that 1
NT ∑

T
t=1 S̃t

′S̃t is positive definite, which is standard in linear regression models.

Assumption G is the identification condition for ρ, ̺, σ2 and γ. Consider the following

model that the exogenous regressors are absent and the timing of structural change, γ,

is observed. Now the model can be written as the following two models,

Yt = α + (ρ + ̺)WNYt + Vt, for t ≤ [Tγ], (3.2)

Yt = α + ρWNYt + Vt, for t > [Tγ] + 1, (3.3)

Matrix I1(ρ
∗ + ̺∗, σ◦2) is the information matrix of the MLE for model (3.2), and ma-
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trix I2(ρ∗, σ◦2) the information matrix for model (3.3). To make the MLE well defined,

we need the positive definiteness of I1(ρ
∗ + ̺∗, σ◦2) and I2(ρ∗, σ◦2). Since the matrix

Ii(ρ, σ2) for i = 1, 2 is a continuous function of ρ and σ2, the positive definiteness is

maintained in some neighborhood of ρ∗ and σ◦2. Assumption G.1 (a) is therefore made

in this direction to assume that Ii(ρ, σ2) for i = 1, 2 is positive definite over the param-

eters space. Now we see that Assumption G.1 (a) is the identification condition for ρ, ̺

and σ2 in pure panel spatial autoregressive models. Lee (2004) considers the identifi-

cation issue for pure spatial autoregressive models. We can make a set of identification

conditions analogous to the Lee’s type. The conditions include: (i) for all ρ+ ̺ 6= ρ∗ + ̺∗,

lim
N→∞

(
1

N
ln
∣∣∣σ◦2D−1′

N (ρ∗+ ̺∗)D−1
N (ρ∗+ ̺∗)

∣∣∣− 1

N
ln
∣∣∣σ2

1 (ρ+ ̺)D−1′
N (ρ+ ̺)D−1

N (ρ+ ̺)
∣∣∣
)
6= 0,

where

σ2
1 (ρ) =

1

N
tr
[
σ◦2D−1′

N (ρ∗ + ̺∗)DN(ρ)
′DN(ρ)D−1

N (ρ∗ + ̺∗)
]
.

and (ii) for all ρ 6= ρ∗,

lim
N→∞

(
1

N
ln
∣∣∣σ◦2D−1′

N (ρ∗)D−1
N (ρ∗)

∣∣∣− 1

N
ln
∣∣∣σ2

2 (ρ)D−1′
N (ρ)D−1

N (ρ)
∣∣∣
)
6= 0,

where

σ2
2 (ρ) =

1

N
tr
[
σ◦2D−1′

N (ρ∗)DN(ρ)
′DN(ρ)D−1

N (ρ∗)
]
.

Assumption G.1 can be viewed as variance identification conditions. These conditions

are designed exclusively for some special models such as model (1.1) or

Yt = ρWNYt + ̺WNYt✶(t ≤ [Tγ]) + Vt.

In these so-call pure spatial autoregressive models, the mean of Yt provides little or no

information on the identification of parameters. So one has to resort to the variance

and covariance structure of Yt to gain the identification. To achieve this goal, we must

assume no cross sectional correlations in Vt. With this assumption, the cross sectional

correlations pattern of Yt is totally due to the spatial terms and therefore identification is

possible.

Assumption G.2 proposes an alternative set of identification conditions, which can

be viewed as the mean identification conditions. Assumption G.2(a) is for the identi-

fication of ϑ. Intuitively, Assumption G.2(a) uses the relationship between Zt, Xt and

E(Yt) to identify ρ∗ and ̺∗ as well as other parameters. However, if Zt and Xt have

no effects on E(Yt), which means β∗ = 0 and δ∗ = 0, Assumption G.2(a) would break

down. In addition, if β∗ = 0 and δ∗ shrinks to zero with the rate specified in Assumption

E.2, it can be shown that the minimum eigenvalue in Assumption G.2 (a) is of magnitude

Op[(NT)−ν], which also violates the required identification condition. Whether Assump-

tion G.2(a) can be used for identification or not depends on the other parameters. So it is

a local identification condition. Assumption G.2(b) is for the identification of γ. We note
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that Assumption G.2 (b) may hold even Assumption G.2 (a) break down. Consider the

case that β∗ = 0 and δ∗ shrinks to zero. If |γ− γ∗| = O[(NT)−ν], Assumption G.2 (b) still

hold. This means we can use the mean information to identify γ even this information

fails to identify ρ and ̺.

4 Asymptotic properties

This section presents the asymptotic results of the MLE. We have the following proposi-

tion on the consistency.

Proposition 4.1 Let θ̂ = (ρ̂, ˆ̺, β̂′, δ̂′, γ̂, σ̂2)′ be the MLE defined in (2.5). Under Assumptions

A-G, as N, T → ∞, we have θ̂
p−→ θ∗. Let ϑ◦ = (ρ∗, ̺∗, β∗′, δ∗′, σ◦2)′ and ϑ̂ = (ρ̂, ˆ̺, β̂′, δ̂′, σ̂2)′,

we also have (NT)ν(ϑ̂ − ϑ◦) = op(1), where σ◦2 = T−1
T σ∗2.

Proposition 4.1 not only shows the consistency of the MLE, but also give some rough

convergence rate on ϑ̂. As regard γ̂, the estimator of break point location, we need the

following assumption to establish its convergence rate.

Assumption H: Let

Ψ∗
1,NT =

1

Nℓσ∗2

T∗+ℓ

∑
t=T∗+1

[
Y′

t W ′
NWNYt Y′

t W ′
NXt

X′
tWNYt X′

tXt

]
+

1

N




tr(S∗
2S∗

2) 0
1×k

0
k×1

0
k×k


 , (4.1)

Ψ•
1,NT =

1

Nℓσ∗2

T∗

∑
t=T∗−ℓ

[
Y′

t W ′
NWNYt Y′

t W ′
NXt

X′
tWNYt X′

tXt

]
+

1

N




tr(S∗
1S∗

1) 0
1×k

0
k×1

0
k×k


 ,

There exist ℓ0 > 0 and c > 0 such that for all ℓ > ℓ0,

min
[
λmin(Ψ

∗
1,NT), λmin(Ψ

•
1,NT)

]
> c,

where λmin(·) is defined in Assumption G.2 and T∗ = Tγ∗.

The convergence rate of γ̂ is given in the following proposition.

Proposition 4.2 Under Assumptions A-H, as N, T → ∞ and (NT)2ν/N → ∞, we have

γ̂ = γ∗ + Op(
1

(NT)1−2ν ).

Remark 4.1 Proposition 4.2 is crucial for the subsequent analysis. With this result, it can

be shown that the estimation error of γ̂ would have no effect on the asymptotic properties

of the remaining ML estimators. More specifically, the asymptotic representation and

limiting distribution of ϑ̂ under γ = γ̂ are the same with those under γ = γ∗, a property

which is a primary step in proving Theorem 4.1. �

To present the limiting distribution of ϑ, we introduce the following notations. Let

k̄ = p+ q+ 1, ht,1 = diag[(S∗
1(γ

∗)+ S∗
2 − S∗

2(γ
∗)] and ht,2 = diag[S∗

1(γ
∗)], where diag(M)
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denote the operation which puts the diagonal elements of M into a vector. Furthermore,

define

Ξ1,NT =
1

N




tr(S∗
2S∗

2) 0
1×k̄

1
σ◦2 tr(S∗

2)

0 0
1×k̄

0

0
(p+q)×1

0
(p+q)×k̄

0
(p+q)×1

1
σ◦2 tr(S∗

2) 0
1×k̄

0




, Ξ2,NT =
1

N




tr(S∗
2 ◦ S∗

2) 0
1×k̄

1
2σ◦2 tr(S∗

2)

0 0
1×k̄

0

0
(p+q)×1

0
(p+q)×k̄

0
(p+q)×1

1
2σ◦2 tr(S∗

2) 0
1×k̄

N
4σ◦4




Ξ3,NT =
1

N




tr(S∗
1S∗

1) tr(S∗
1S∗

1) 0
1×(p+q)

1
σ◦2 tr(S∗

1)

tr(S∗
1S∗

1) tr(S∗
1S∗

1) 0
1×(p+q)

1
σ◦2 tr(S∗

1)

0
(p+q)×1

0
(p+q)×1

0
(p+q)×(p+q)

0
(p+q)×1

1
σ◦2 tr(S∗

1)
1

σ◦2 tr(S∗
1) 0

1×(p+q)
0




,

Ξ4,NT =
1

N




tr(S∗
1 ◦ S∗

1) tr(S∗
1 ◦ S∗

1) 0
1×(p+q)

1
2σ◦2 tr(S∗

1)

tr(S∗
1 ◦ S∗

1) tr(S∗
1 ◦ S∗

1) 0
1×(p+q)

1
2σ◦2 tr(S∗

1)

0
(p+q)×1

0
(p+q)×1

0
(p+q)×(p+q)

0
(p+q)×1

1
2σ◦2 tr(S∗

1)
1

2σ◦2 tr(S∗
1) 0

1×(p+q)

N
4σ◦4




.

With the above notations, we define

Ω1,NT =
1

NTσ◦2




∑
T
t=1 Z̃t

′Z̃t
(p+q+2)×(p+q+2)

0
(p+q+2)×1

0
1×(p+q+2)

NT/(2σ◦2)
1×1


+ γ∗Ξ3,NT + (1 − γ∗)Ξ1,NT, (4.2)

Ω2,NT =
κ4 − 3σ∗4

σ∗4

[
γ∗Ξ4,NT + (1 − γ∗)Ξ2,NT

]
, (4.3)

Ω3,NT =
κ3

NTσ∗2σ◦2

T

∑
t=1




2Ỹt
′
W ′

Nht,1 Ỹt
′
W ′

Nht,2 + Ỹt(γ∗)
′
W ′

Nht,1 h′
t,1Z̃t h′

t,1X̃t(γ∗) 0

∗ 2Ỹt(γ∗)
′
W ′

Nht,2 h′
t,2Z̃t h′

t,2X̃t(γ∗) 0

∗ ∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0




(4.4)

where Zt = [WNYt, WNYt(γ∗), Zt, Xt(γ∗)], κ3 = E(v3
it) and κ4 = E(v4

it) and “◦” denotes

the Hadamard product. We have the following theorem on the limiting distribution of ϑ̂.

Theorem 4.1 Under Assumptions A-G, as N, T → ∞, we have

√
NT(ϑ̂ − ϑ◦)

d−→ N
(

0, Ω−1
1 (Ω1 + Ω2 + Ω3)Ω

−1
1

)
,
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or equivalently

√
NT(ϑ̂ − ϑ∗ +

σ∗2

T
v)

d−→ N
(

0, Ω−1
1 (Ω1 + Ω2 + Ω3)Ω

−1
1

)
,

where ϑ∗ = (ρ∗, ̺∗, β∗′, δ∗′, σ∗2)′ and Ω1 = plim
N,T→∞

Ω1,NT, Ω2 = lim
N,T→∞

Ω2,NT, Ω3 = plim
N,T→∞

Ω3,NT,

and v is a (p + q + 3)-dimensional vector, whose first (p + q + 2) elements are all 0 and the last

one 1. If vit is normally distributed, then

√
NT(ϑ̂ − ϑ∗ +

σ∗2

T
ι)

d−→ N(0, Ω−1
1 ).

Remark 4.2 Theorem 4.1 indicates that the limiting variance of the MLE involves both

the skewness and the kurtosis of errors. This is in contrast with the results in standard

spatial panel data models that the limiting variance only involves the kurtosis, see Yu

et al. (2008), Lee and Yu (2010), Li (2017). When conducting the asymptotic analysis in

spatial econometrics, one would encounter the following expression

1√
NT

T

∑
t=1

A′
tVt +

1√
NT

T

∑
t=1

V ′
t BtVt,

where At is an N-dimensional vector which belongs to Ft−1, where Ft is the σ-field gen-

erated by V1, V2, . . . , Vt, and Bt is an N × N nonrandom matrix. Generally, the limiting

variance of this expression involves the skewness with the value E(v3
it)

1
NT ∑

T
t=1 A′

tdiag(Bt).

However, with the conditions (i) ∑
T
t=1 At = 0, and (ii) Bt is a constant, we can easily check

1
NT ∑

T
t=1 A′

tdiag(Bt) = 0, so the skewness term is gone. In standard spatial panel data

models, the two conditions are both satisfied. But in the models with structural change,

Bt is a piecewise constant, so the skewness term is maintained. �

Remark 4.3 We can use the plug-in method to estimate the bias and the limiting variance

by replacing the unknown true parameters with the corresponding the ML estimators.

The validity of this method can be easily verified by the following two basic facts (i) the

bias and the limiting variance are both continuous functions of the unknown parameters,

(ii) the MLE are consistent due to Proposition 4.1. So the plug-in estimators of the

bias and the limiting variances are consistent due to the continuous mapping theorem.

As regard the estimations of κ3 and κ4, they can be estimated by 1
NT ∑

N
i=1 ∑

T
t=1 v̂3

it and
1

NT ∑
N
i=1 ∑

T
t=1 v̂4

it, where v̂it is the estimated residual. �

To give the limiting distribution of γ̂ − γ∗, we introduce the following notations. Let

T∗ = [Tγ∗] and

Ψ∗
2,N =

κ4 − 3σ∗4

Nσ∗4




tr(S∗
2 ◦ S∗

2) 0
1×q

0
q×1

0
q×q


 , (4.5)

Ψ∗
3,NT =

κ3

Nℓσ∗4

T∗+ℓ

∑
t=T∗+1




2Sd∗′
2 (α∗ + Ztβ

∗) Sd∗′
2 Xt
1×q

X′
tS

d∗
2

q×1

0
q×q


 , (4.6)
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with Sd∗
2 = diag(S∗

2). For the limiting distribution of γ̂, we make the following assump-

tion.

Assumption I: The limits of Ψ∗
1,NT, Ψ∗

2,N and Ψ∗
3,NT exist, where Ψ∗

1,NT is defined in

(4.2) in Assumption H. Let Ψ∗
1 = plim

N,T→∞

Ψ∗
1,NT, Ψ∗

2 = lim
N→∞

Ψ∗
2,N and Ψ∗

3 = lim
N,T→∞

Ψ∗
3,NT.

We assume that Ψ∗
1 and Ψ∗

3 are also the limits of the expressions in (4.1) and (4.6) with
T∗+ℓ

∑
t=T∗+1

replaced by
T∗

∑
t=T∗−ℓ

.

Under Assumption I, the asymptotic behavior of γ̂ − γ∗ adjusted with some appro-

priate scale factor would have a symmetric distribution, which makes the calculation of

confidence interval somewhat easier. Similar assumptions also appear in a number of

break point studies, e.g., Bai, Lumsdaine and Stock (1998), Bai and Perron (1998), etc.

In some applications such as government intervention, Assumption I is plausible since

the exogenous explanatory variables are unlikely subject to a structural change given

the usually prudent behavior of the government. However, if the exogenous regressors

are believed to experience a structural change, we can easily modify Assumption I to

accommodate this general case. The analysis under this general case is almost the same

with the one under Assumption I by analyzing the cases γ > γ∗ and γ ≤ γ∗ separately.

For a related treatment, see Bai (1997), Qu and Perron (2007).

We have the following theorem on the limiting distribution of γ̂.

Theorem 4.2 Under Assumptions A-D, E.2, F-I, as N, T → ∞ and (NT)2ν/N → ∞, we have

(NT)1−2ν(γ̂ − γ∗)
d−→ C∗′(Ψ∗

1 + Ψ∗
2 + Ψ∗

3)C
∗

(C∗′Ψ∗
1C∗)2

argmax
s

M(s)

with

M(s) = −1

2
|s|+ B(s).

where B(s) is a two-sided Brownian motion on (−∞, ∞), which is defined as B(s) = Ba(−s) for

s < 0 and B(s) = Bb(s) for v ≥ 0, where Ba(·) and Bb(·) are two independent Brownian motion

processes on [0, ∞) with Ba(0) = Bb(0) = 0. If vit is normally distributed, then

(NT)1−2ν(γ̂ − γ∗)
d−→ 1

C∗′Ψ∗
1C∗ argmax

s
M(s)

Remark 4.4 The above limiting distribution can be written alternatively as

[
(ψ∗′Ψ∗

1ψ∗)2

ψ∗′(Ψ∗
1 + Ψ∗

2 + Ψ∗
3)ψ

∗

]
N(T̂ − T∗)

d−→ argmax
s

M(s)

where ψ∗ = (̺∗, δ∗′)′, a value depending on N and T according to Assumption E.2, and

T̂ = Tγ̂ and T∗ = Tγ∗①. Again, we can use the plug-in method to estimate the unknown

value of ψ∗, Ψ∗
1 , Ψ∗

2 and Ψ∗
3 .

①The difference between Tγ and [Tγ] are negligible due to the condition (NT)2ν/N → ∞.
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The (1 − α) confidence interval, where α is the significance level, which should not

be confounded with the intercept in the model, now can be constructed as
[

T̂ − z α
2

ψ̂′(Ψ̂1 + Ψ̂2 + Ψ̂3)ψ̂

N(ψ̂′Ψ̂1ψ̂)2
, T̂ + z α

2

ψ̂′(Ψ̂1 + Ψ̂2 + Ψ̂3)ψ̂

N(ψ̂′Ψ̂1ψ̂)2

]
,

where z α
2

is the critical value such that P(argmax M(s) > z α
2
) = α

2 , and ψ̂, Ψ̂1, Ψ̂2 and

Ψ̂3 are the respective plug-in estimators for ψ∗, Ψ∗
1 , Ψ∗

2 and Ψ∗
3 . The limiting distribution

“argmax M(s)” have been well studied in the previous studies, see Picard (1985), Yao

(1987) and Bai (1997). The 90th and 95th percentiles are 4.67 and 7.63, respectively. �

5 Dynamic model

This section considers the extension of the previous analysis to the dynamic spatial panel

data model with structural change

Yt = α∗ + ρ∗WNYt + ̺∗WNYt✶(t ≤ [Tγ∗]) + φ∗Yt−1 + ϕ∗Yt−1✶(t ≤ [Tγ∗])

+ Ztβ
∗ + Xtδ

∗
✶(t ≤ [Tγ∗]) + Vt.

Our model specification assumes that the structural change appears in the lag of depen-

dent variable. If the lag of dependent variable is just introduced to capture the dynamics

and no structural change appears on the lag, the analysis can be easily modified to ac-

commodate this simpler case.

To conform with the analysis in Section 3 to the largest extent, we absorb Yt−1 into Zt

and Yt−1✶(t ≤ [Tγ∗]) into Xt✶(t ≤ [Tγ∗]). So the columns of Zt and Xt are augmented

to p + 1 and q + 1, respectively. We arrange that Yt−1 and Yt−1✶(t ≤ [Tγ∗]) are the first

columns of Zt and Xt✶(t ≤ [Tγ∗]). Note that Zt and Xt now are not nonrandom matrices

due to the presence of lag dependent variable. We additionally make the following

assumption for theoretical analysis.

Assumption J: |φ∗|+ |ϕ∗| < 1 and

∞

∑
l=1

(|φ∗|+ |ϕ∗|)l
[

max(‖D∗−1
1 ‖1, ‖D∗−1

1 ‖∞, ‖D∗−1
2 ‖1, ‖D∗−1

2 ‖∞)
]l

< ∞,

where D∗
1 = DN(ρ

∗ + ̺∗) and D∗
2 = DN(ρ

∗).

Assumption J can be viewed as a variant of absolute summability condition in time

series models, which guarantees that the stochastic part of Yt is stationary, a property

which is needed for the large sample analysis. Similar conditions are also made in

dynamic spatial panel data models, such as Assumption E in Li (2017) and Assumption

6 in Yu et al. (2008). A sufficient condition for Assumption J is
[
|ρ∗|+ |̺∗|+ |φ∗|+ |ϕ∗|

]
max(‖WN‖1, ‖WN‖∞, 1) < 1.

The consistency results of the dynamic model are summarized in the following

proposition.
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Proposition 5.1 Let θ∗ = (ρ∗, ̺∗, φ∗, ψ∗, β∗′, δ∗′, γ∗, σ∗2)′ and θ̂ be the corresponding MLE.

Under Assumptions A-G and J, as N, T → ∞ and (NT)2ν/T → 0, we have (NT)ν(ϑ̂ − ϑ∗) =

op(1) and γ̂ − γ∗ = op(1). Under Assumptions A-H, and J, as N, T → ∞, (NT)2ν/N → ∞

and (NT)2ν/T → 0, we have the same conclusion with Proposition 4.2.

Remark 5.1 In dynamic models, we additionally impose (NT)2ν/T → 0 to obtain the

consistency. This condition makes sure that the effect of the within group transforma-

tion on errors can be ignored asymptotically when deriving the consistency. We note that

such an effect also exists in the static model. As seen in Proposition 4.1, the preliminary

convergence rate is given by (NT)ν(ϑ̂ − ϑ◦) = op(1) instead of (NT)ν(ϑ̂ − ϑ∗) = op(1).

However, in static models, the within group transformation only affects the estimation

of σ∗2, the remaining parameters are unaffected, see Theorem 4.1. But in dynamic mod-

els, all the parameters estimations are affected by the within group transformation, see

Theorem 5.1 below. This is the reason why we present the consistency result in different

ways in static and dynamic models, although they are essentially the same under the

condition (NT)2ν/T → 0. �

For ease of exposition, we define the following notations. Let

Z⋄
t =

[
Yt−1, Zt

]
, X⋄

t (γ
∗) =

[
Yt−1(γ

∗), Xt(γ
∗)
]
, Z⋄

t =
[
WNYt, WNYt(γ

∗), Z⋄
t , X⋄

t (γ
∗)
]

∆⋄
N =

1

N

[
tr(S∗

γ), γ∗tr(S∗
1 ), γ∗tr(D∗−1

1 ) + (1 − γ∗)tr(D∗−1
2 ), 0

1×p
, γ∗tr(D∗−1

1 ), 0
1×q

,
1

2σ∗2

]′
,

where

D∗
1 = (1 − φ∗ − ϕ∗)IN − (ρ∗ + ̺∗)WN , D∗

2 = (1 − φ∗)IN − ρ∗WN ,

S∗
1 = WND∗−1

1 , S∗
2 = WND∗−1

2 , S∗
γ = γ∗S∗

1 + (1 − γ∗)S∗
2 .

Furthermore, let Ω⋄
1,NT, Ω⋄

2,NT and Ω⋄
3,NT be defined similarly as Ω1,NT, Ω2,NT and Ω3,NT

in (4.2), (4.3) and (4.4) except that Zt, Zt, Xt(γ∗), S∗
1 and S∗

2 are replaced with Z⋄
t , Z⋄

t ,

X⋄
t (γ

∗), S∗
1 and S∗

2 , respectively. Likewise, let Ψ⋄
1,NT and Ψ⋄

3,NT be defined similarly

as Ψ∗
1,NT and Ψ∗

3,NT with Zt and Xt replaced by Z⋄
t and X⋄

t . Given these definitions,

Assumption I should be modified by replacing Ψ∗
1,NT and Ψ∗

3,NT with Ψ⋄
1,NT and Ψ⋄

3,NT.

We have the following theorem on the limiting distribution of the MLE.

Theorem 5.1 Under Assumptions A-H and J, as N, T → ∞ and (NT)2ν/T → 0 and N/T3 →
0, we have

√
NT(ϑ̂ − ϑ∗ +

1

T
Ω⋄−1

1,NT∆⋄
N)

d−→ N
(

0, Ω⋄−1
1 (Ω⋄

1 + Ω⋄
2 + Ω⋄

3)Ω
⋄−1
1

)
.

Under Assumptions A-D, E.2 and F-J, as N, T → ∞, (NT)2ν/N → ∞ and (NT)2ν/T → 0,

we have

(NT)1−2ν(γ̂ − γ∗)
d−→ C∗′(Ψ⋄

1 + Ψ∗
2 + Ψ⋄

3)C
∗

(C∗′Ψ⋄
1C∗)2

argmax
s

M(s)
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with

M(s) = −1

2
|s|+ B(s).

where Ψ⋄
1 = plim

N,T→∞

Ψ⋄
1,NT and Ψ⋄

3 = plim
N,T→∞

Ψ⋄
3,NT. Ψ∗

2 and B(s) are defined the same as in

Theorem 4.2.

6 Fixed-T setup

In microeconomics, panel data often exhibits a large-N, small-T feature, which raises the

necessity to investigate the asymptotics under fixed-T setup. This section addresses this

concern. It is well known that the within group estimators for dynamic panel data mod-

els are inconsistent due to the incidental parameters issue, see, e.g., Anderson and Hsiao

(1981). So we only consider the static model. We note, however, that the within-group

estimators with some carefully designed bias correction method would have remarkable

finite sample performance in dynamic panel models even it is inconsistent, see Dhaene

and Jochmans (2015). So the ML estimators, which reduces to the within group estima-

tors, are still useful in practical application in this viewpoint.

A close investigation on the analysis of the theoretical results in Section 3 verifies

that all the analysis continue to hold under fixed-T. The only difference is that when T

is fixed, the condition (NT)2v/N → ∞ breaks down. A concomitant consequence is that

we are now capable of estimating the location of break point T∗ instead of the fraction

value γ∗, a result that we are happy to see since it means that we can estimate the break

point more accurately.

We therefore have the following theorem on the MLE under fixed-T setup.

Proposition 6.1 Let θ̂ be the MLE defined the same with Proposition 4.1. Under Assumptions

A-G, as N → ∞, we have the same conclusions with Proposition 4.1. Under Assumptions A-H,

N → ∞, we have P(T̂ = T∗) → 1, where T̂ = [Tγ̂] and T∗ = [Tγ∗].

Let Ω4,NT be defined as

Ω4,NT =
σ∗4

NTσ◦2




γ∗tr(S∗
1S∗

1) + (1 − γ∗)tr(S∗
2S∗

2)− tr(S∗
γS∗

γ) γ∗(1 − γ∗)tr(S∗
1S∗

1 − S∗
1S∗

2) 0
1×k̄

γ∗(1 − γ∗)tr(S∗
1S∗

1 − S∗
1S∗

2) γ∗(1 − γ∗)tr(S∗
1S∗

1) 0
1×k̄

0
k̄×1

0
k̄×1

0
k̄×k̄




We have following limiting result under fixed T.

Theorem 6.1 Under Assumptions A-H, as N → ∞, we have

√
NT(ϑ̂ − ϑ◦)

d−→ N

(
0, Ω†−1

1

( T

T − 1
Ω†

1 + Ω†
2 + Ω†

3 − Ω†
4

)
Ω†−1

1

)
.

where Ω†
1 = plim

N→∞

Ω1,NT, Ω†
2 = plim

N→∞

Ω2,NT, Ω†
3 = plim

N→∞

Ω3,NT and Ω†
4 = plim

N→∞

Ω4,NT, where

Ω1,NT, Ω2,NT and Ω3,NT are defined the same as in (4.2), (4.3) and (4.4).
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Remark 6.1 Parameters σ∗2 and σ◦2 can be estimated by T
T−1 σ̂2 and σ̂2, respectively. Note

that the limiting variance of T
T−1 σ̂2 would be enlarged with T2

(T−1)2 . So when conducting

the hypothesis testing, we should take into account this factor in the calculation of the

standard deviation.

Remark 6.2 The limiting variances can be estimated by the method given in Remark 4.3.

As regard κ3 and κ4, they should be estimated in a different way. This is because that the

estimated residual V̂t is a consistent estimator for Ṽt instead of Vt. When T is large, the

difference between Ṽt and Vt is negligible. But for a fixed T, the difference is considerably

large and cannot be ignored. To adjust this difference, we estimate these two parameters

by the following formulas,

κ̂3 =
T3

(T − 1)3 − (T − 1)

1

NT

N

∑
i=1

T

∑
t=1

v̂3
it,

κ̂4 =

[
T4

(T − 1)4 + T − 1

][
1

NT

N

∑
i=1

T

∑
t=1

v̂4
it − 3

2(T − 1)3 + (T − 1)(T − 2)

T4
(

T

T − 1
σ̂2)2

]
.

Apparently, when T tends to infinity, the above two expressions converge to 1
NT ∑

N
i=1 ∑

T
t=1

v̂3
it and 1

NT ∑
N
i=1 ∑

T
t=1 v̂4

it, respectively, the estimating formulas which are given in Remark

4.3 under large-T setup.

7 Testing on the presence of structural change

Testing the presence of structural change is an important issue in structural change mod-

els, which has received much attention in econometric literature. A striking feature of

this hypothesis testing is that the parameter governing the timing of structural change

only appears under the alternative hypothesis, which makes the test essentially different

from the classical one. Andrews (1993) gives a comprehensive treatment on this issue.

The current analysis departures somewhat from the Andrews’s setup in that the model

suffers model misspecification issue if the disturbance eit is not gaussian. In addition,

the presence of incidental parameters make the partial assumptions such as Assumption

1(c) in Andrews (1993) does not hold.

When the timing of structural change is given under the alternative, the issue reduces

to the one covered by the well-known Chow test. The classical Wald (W), Lagrange

multiplers (LM) and likelihood ratio (LR) tests are all applicable in this simpler case. To

formulate these three classical tests, we first define the ML estimators for the unrestricted

and restricted models. Note that the likelihood function for the restricted model is

Lr(ϑ) = −1

2
ln σ2 +

1

N
ln |DN(ρ)| −

1

2NTσ2

T

∑
t=1

[
Ỹt − ρWNỸt − Z̃tβ

]′[
Ỹt − ρWNỸt − Z̃tβ

]
,

(7.1)

where DN(ρ) = IN − ρWN , which is defined in Assumption C. The likelihood function

for the unrestricted model is given in (2.4). Let ϑ̂r = (ρ̂r, β̂r′, σ̂r2)′ be the MLE which
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maximizes the likelihood function (7.1) and ϑ̂u
γ = (ρ̂u

γ, ˆ̺u
γ, β̂u′

γ , δ̂u′
γ , σ̂u2

γ )′ the MLE that max-

imizes the likelihood function (2.4) with the timing of structural change set to γ. We

attach the superscript “u” to the MLE for the unrestricted model and the superscript “r”

for the resstricted one. Let ϑ̂ur = (ρ̂r, 0, β̂r′, 01×q, σ̂r2)′ be the restricted MLE adapted to

the unrestricted model. Furthermore, we define the (p + q + 3)× (q + 1) matrix e as

e =




0 1 0
1×p

0
1×q

0

0
q×1

0
q×1

0
q×p

Iq 0



′

.

The Wald, LM and LR statistics on testing the null hypothesis ψ∗ = 0 versus the alterna-

tive that ψ∗ 6= 0 and the timing of break point is γ, are

WNT(γ) = NTψ̂u′
γ

{
e′[Ω̂u

1(γ)]
−1
[
Ω̂u

1(γ) + Ω̂u
2(γ) + Ω̂u

3(γ)
]
[Ω̂u

1(γ)]
−1e

}−1

ψ̂u
γ, (7.2)

LMNT(γ) = NTĴ(γ)
′[

e′[Ω̂r
1(γ)]

−1e
]{

e′[Ω̂r
1(γ)]

−1[Ω̂r
1(γ) + Ω̂r

2(γ) + Ω̂r
3(γ)] (7.3)

× [Ω̂r
1(γ)]

−1e

}−1[
e′[Ω̂r

1(γ)]
−1e
]
Ĵ(γ),

LRNT(γ) = 2NT
[
L(ϑ̂u

γ, γ)−Lr(θ̂r)
]
− NT

[(
ϑ̂ur − ϑ̂u

γ

)′
e
][

e′[Ω̂u
1(γ)]

−1e (7.4)

+ e′[Ω̂u
1(γ)]

−1e
(

e′[Ω̂u
1(γ)]

−1[Ω̂u
2(γ) + Ω̂u

3(γ)][Ω̂
u
1(γ)]

−1e
)−1

× e′[Ω̂u
1(γ)]

−1e
]−1[

e′
(
ϑ̂ur − ϑ̂u

γ

)]
,

where Ĵ(γ) = [Ĵ1(γ), Ĵ2(γ)
′
]′ with

Ĵ1(γ) =
∂L(ϑ̂ur, γ)

∂̺
=

1

NTσ̂r2

T

∑
t=1

Yt(γ)
′W ′

N(D̂rỸt − Z̃t β̂
r)− γ

1

N
tr
[
WN(D̂r)−1

]
,

Ĵ2(γ) =
∂L(ϑ̂ur, γ)

∂δ
=

1

NTσ̂r2

T

∑
t=1

Xt(γ)
′(D̂rỸt − Z̃t β̂

r).

where Ω̂u
1(γ), Ω̂u

2(γ) and Ω̂u
3(γ) [Ω̂r

1(γ), Ω̂r
2(γ) and Ω̂r

3(γ)] are the respective estimators

of Ω1(γ), Ω2(γ) and Ω3(γ), by replacing the unknown parameters by the MLE for the

unrestricted (restricted) model.

Note that the above three statistics would change with γ. If γ is not specified under

the alternative, to make our statistics possess the most conservative size, we should

choose a γ which is the most favorable to the alternative. Obviously we would accept

the alternative with a large WNT(γ) (or LMNT(γ) and LRNT(γ)). As a result, we should

maximize the above WNT(γ) (or LMNT(γ) and LRNT(γ)), which leads to the so-called

supW, supLM and supLR statistics, which are defined as

supWald = sup
γ∈[γL,γU ]

WNT(γ), supLM = sup
γ∈[γL,γU ]

LMNT(γ), supLR = sup
γ∈[γL,γU ]

LRNT(γ).
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To establish the asymptotics of the above three super tests under the null, we need to

establish the convergences of WNT(·), LMNT(·) and LRNT(·) under the Skorohod metric,

otherwise we cannot invoke the continuous mapping theorem to derive the final limiting

distributions. To present the results, we first introduce some notations.

Ψ⋆
1,NT =

1

NTσ∗2

T

∑
t=1

[
Y′

t W ′
NWNYt Y′

t W ′
NXt

X′
tWNYt X′

tXt

]
+

1

N




tr(S∗
NS∗

N) 0
1×q

0
q×1

0
q×q




Ψ⋆
2,N =

κ4 − 3σ∗4

Nσ∗4




tr(S∗
N ◦ S∗

N) 0
1×q

0
q×1

0
q×q




Ψ⋆
3,NT =

κ3

NTσ∗4

T

∑
t=1




2Sd∗′
N (α∗ + Ztβ

∗) Sd∗′
N Xt
1×q

X′
tS

d∗
N

q×1

0
q×q




Now we have the following theorem on the basic results.

Theorem 7.1 Under Assumptions A-H and G.1, if the null hypothesis holds, as N, T → ∞, we

have

e′[Ω̂u
1(γ)]

−1
[
Ω̂u

1(γ) + Ω̂u
2(γ) + Ω̂u

3(γ)
]
[Ω̂u

1(γ)]
−1e

=
1

γ(1 − γ)
Ψ⋆−1

1 (Ψ⋆
1 + Ψ⋆

2 + Ψ⋆
3)Ψ

⋆−1
1 + opγ(1),

and √
NTψ̂u

γ ⇒ 1

γ(1 − γ)
Ψ⋆−1

1 (Ψ⋆
1 + Ψ⋆

2 + Ψ⋆
3)

1/2
[

Bq+1(γ)− γBq+1(1)
]
,

where opγ(1) denotes some term which is op(1) uniformly on γ ∈ [γL, γU ], Bq(·) is the q-

dimensional standard Brownian motion on [0, 1], and “⇒” denotes the weak convergence in the

Skorohod topology. In addition, Ψ⋆
1 = plim

N,T→∞

Ψ⋆
1,NT, Ψ⋆

2 = lim
N→∞

Ψ2,N and Ψ⋆
3 = lim

N,T→∞
Ψ⋆

3,NT.

Given the above results, we have

WNT(γ) ⇒
1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
.

In addition, we also have

LMNT(γ) ⇒
1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
,

LRNT(γ) ⇒
1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
.

Corollary 7.1 Under the assumptions in Theorem 7.1, we have

sup
γ∈[γL,γU ]

WNT(γ)
d−→ sup

γ∈[γL,γU ]

1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
,

18



sup
γ∈[γL,γU ]

LMNT(γ)
d−→ sup

γ∈[γL,γU ]

1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
,

sup
γ∈[γL,γU ]

LRNT(γ)
d−→ sup

γ∈[γL,γU ]

1

γ(1 − γ)

[
Bq+1(γ)− γBq+1(1)

]′[
Bq+1(γ)− γBq+1(1)

]
.

Remark 7.1 The powers of the supW, supLM and supLR tests can be studied in the same

way under the local alternative ̟⋆ = ̟∗ + µ(t/T)/
√

NT, where ̟∗ = (ρ∗, β∗′
a )

′ with β∗
a

is the coefficients of the exogenous regressors that are suspected to experience a struc-

tural change, and µ(·) is a bounded real-valued function on [0, 1], which satisfies some

regularity conditions. For more details, see Assumption 1-LP and the related discussions

in Andrews (1993). We will not pursuit this work for the sake of space. �

Remark 7.2 The critical values for the supW, supLM and supLR tests are given in An-

drews (2003) and Estrella (2003). The critical values depend on the column dimension

of Xt (i.e., the value q) and the chosen interval [γL, γU ]. As γL decreases to zero and γU

increases to one, the critical values would diverge to infinity, a result which is shown

in Corollary 1 of Andrews (1993). Many studies recommend that the interval is chosen

to be [0.15, 0.85], e.g., Andrews (1993). We will adopt this interval in our simulations

investigation. Given this interval, according to Estrella (2003), the critical values for 10%,

5% and 1% significance levels are 10.14, 11,87 and 15.69 when p = 1, and 12.46, 14.31

and 18.36 when p = 2. �

Remark 7.3 The supW, supLM and supLR statistics in the dynamic model can be con-

structed similarly as those in the static model. The only caveat is that these statistics

should be computed through the bias-corrected MLE, instead of the original one, to re-

move the effect of bias. The analyses on the three statistics in the dynamic model are

similar as in the static model, by treating Yt−1 as a part of Zt. Under the condition that

N/T3 → 0, we can show that these three statistics have the same limiting distribution as

in Corollary 7.1. �

8 Simulations

We run Monte Carlo simulations to investigate the finite sample performance of the ML

estimators in this section.

8.1 Static spatial panel data models

The data are generated according to

Yt = α + ρ∗WNYt + ̺∗WNYt✶(t ≤ [Tγ∗]) + Xt1β∗
1 + Xt2β∗

2 + Xt1✶(t ≤ [Tγ∗])δ∗ + Vt,

with (ρ∗, ̺∗, β∗
1, β∗

2, δ∗, γ∗, σ∗2) = (0.4,−0.1, 2, 1,−1, 0.25, 0.36). Our data generating pro-

cess specifies two exogenous regressors and one regressor experiences structural change,
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the other does not. The spatial weights matrices used in simulations are “q ahead and

q behind” spatial weights matrix as in Kelejian and Prucha (1999), which is obtained as

follows: all the units are arranged in a circle and each unit is affected only by the q units

immediately before it and immediately after it with equal weight. Following Kelejian

and Prucha (1999), we normalize the spatial weights matrix by letting the sum of each

row equal to 1. In our simulations, we consider “3 ahead and 3 behind”.

All the elements of the exogenous regressors Xt1, Xt2 and the intercept α are drawn

independently from N(0, 1). The disturbance vit, the ith element of Vt, is 0.6 times of a

normalized χ2(2), i.e., [χ2(2)− 2]/2. Once Xt1, Xt2, α and Vt are generated, we calculate

Yt by

Yt =
[

IN − ρ∗WN − ̺∗WN✶(t ≤ [Tγ∗])
]−1[

α + Xt1β∗
1 + Xt2β∗

2 + Xt1✶(t ≤ [Tγ∗])δ∗ + Vt

]
.

Throughout this section, we use bias and root mean square error (RMSE) as the mea-

sures of the performance of the ML estimators. To investigate the estimation accuracy

of asymptotic variances, we calculate the empirical sizes of the t-statistic for 5% nominal

level. Table 1 presents the simulation results under the combinations of N = 50, 75, 100

and T = 50, 75, 100, which are obtained by 1000 repetitions. In this section, we do not

evaluate the performance of γ̂, partly because the bias and RMSE are not appropriate

measures with respect to γ̂, and partly because the performance of γ̂ is implicitly shown

in the performance of the ML estimators for the other parameters. From Table 1, we

have following findings. First, the ML estimators are consistent. As N and T tends to

large, the RMSE decrease stably. Second, the ML estimators for ρ, ̺, β and δ are unbi-

ased. In all the sample sizes, the biases of these ML estimators are very small in terms

of both absolute values and relative values, where the relative value is defined by the

ratio of bias and RMSE. Third, the ML estimator for σ2 is biased, and the bias is loosely

related with N and closely related with T. Consider the case of T = 50, the biases are

−0.0073,−0.0077 and −0.0074 for N = 50, 75 and 100. Obviously, the increase of N has

no effect on the bias, but when T grows larger, the bias decrease dramatically. This is

consistent with our theoretical result in Theorem 4.2. Table 2 presents the results under

the combination of N = 300, 500, 700 and T = 8, 12. The results are similar as those in

Table. So we do not repeat the analysis.

Tables 3 and 4 present the empirical sizes of the t-test for nominal 5% significance

level. We see that all the empirical sizes are close to the nominal one except the estimator
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Table 1: The performance of the MLE with moderate large T in the static model

N T
ρ ̺ β1 β2 δ σ2 (before) σ2 (after)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

30 50 -0.0008 0.0101 -0.0007 0.0273 0.0004 0.0140 0.0005 0.0122 0.0003 0.0290 -0.0073 0.0213 -0.0001 0.0204

75 50 0.0000 0.0085 -0.0018 0.0231 0.0002 0.0121 -0.0001 0.0100 0.0003 0.0247 -0.0077 0.0179 -0.0005 0.0165

100 50 0.0000 0.0074 -0.0005 0.0202 -0.0003 0.0097 0.0003 0.0083 0.0015 0.0204 -0.0074 0.0160 -0.0002 0.0144

50 75 -0.0006 0.0084 -0.0007 0.0222 0.0003 0.0116 -0.0001 0.0095 0.0001 0.0237 -0.0047 0.0165 0.0001 0.0161

75 75 -0.0001 0.0069 -0.0009 0.0189 -0.0000 0.0095 0.0002 0.0078 -0.0005 0.0193 -0.0056 0.0145 -0.0008 0.0136

100 75 0.0001 0.0057 -0.0003 0.0156 -0.0004 0.0080 -0.0000 0.0070 -0.0000 0.0162 -0.0051 0.0122 -0.0003 0.0112

50 100 -0.0002 0.0073 0.0002 0.0195 0.0002 0.0101 0.0002 0.0087 -0.0009 0.0196 -0.0032 0.0147 0.0004 0.0145

75 100 -0.0001 0.0060 -0.0007 0.0154 -0.0002 0.0081 -0.0004 0.0071 -0.0001 0.0164 -0.0040 0.0124 -0.0004 0.0119

100 100 -0.0002 0.0052 0.0000 0.0136 -0.0001 0.0068 -0.0002 0.0058 -0.0001 0.0140 -0.0037 0.0105 -0.0001 0.0099

Table 2: The performance of the MLE with small T in the static model

N T
ρ ̺ β1 β2 δ σ2 (before) σ2 (after)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

300 8 -0.0006 0.0114 -0.0024 0.0280 0.0003 0.0155 -0.0002 0.0132 -0.0004 0.0315 -0.0456 0.0491 -0.0006 0.0210

500 8 -0.0000 0.0088 -0.0009 0.0222 -0.0001 0.0117 -0.0001 0.0100 -0.0009 0.0243 -0.0452 0.0473 -0.0003 0.0160

700 8 0.0002 0.0075 -0.0014 0.0186 -0.0002 0.0100 0.0000 0.0085 -0.0000 0.0201 -0.0448 0.0466 0.0002 0.0144

300 12 -0.0005 0.0088 -0.0017 0.0230 0.0006 0.0121 0.0003 0.0109 -0.0010 0.0238 -0.0306 0.0345 -0.0007 0.0173

500 12 0.0002 0.0068 -0.0001 0.0181 0.0002 0.0095 -0.0000 0.0080 0.0004 0.0185 -0.0298 0.0322 0.0002 0.0132

700 12 -0.0003 0.0059 -0.0004 0.0146 -0.0003 0.0080 0.0004 0.0067 -0.0004 0.0157 -0.0308 0.0324 -0.0008 0.0113

Note: σ2 (before) and σ2 (after) denote the estimators before and after the bias correction, respectively.
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Table 3: The empirical sizes of t-test under nominal 5% significance level in moderate

large-T setup

N T ρ ̺ β1 β2 δ
σ2

before after

50 50 4.6% 5.3% 5.1% 5.0% 5.1% 10.1% 6.8%

75 50 5.4% 5.6% 6.1% 6.2% 6.0% 9.7% 6.1%

100 50 5.8% 5.9% 5.3% 4.2% 5.1% 10.2% 4.8%

50 75 5.2% 4.4% 4.6% 4.4% 5.7% 5.8% 4.9%

75 75 5.3% 5.5% 5.7% 4.3% 5.5% 9.6% 6.4%

100 75 3.8% 5.0% 4.3% 5.8% 5.1% 7.9% 4.0%

50 100 5.4% 5.2% 5.4% 5.7% 5.1% 6.0% 4.7%

75 100 4.9% 4.1% 5.0% 5.5% 5.2% 6.8% 5.5%

100 100 5.3% 5.4% 4.1% 4.4% 5.1% 7.0% 4.7%

Table 4: The empirical sizes of t-test under nominal 5% significance level in small-T

setup

N T ρ ̺ β1 β2 δ
σ2

before after

300 8 4.7% 4.8% 5.5% 6.5% 5.1% 67.8% 9.6%

500 8 5.7% 5.0% 4.5% 4.7% 6.5% 85.4% 8.8%

700 8 5.6% 4.4% 4.8% 4.3% 5.2% 92.6% 8.5%

300 12 4.6% 5.6% 4.7% 5.0% 5.6% 52.5% 8.3%

500 12 4.9% 5.3% 5.5% 4.3% 5.3% 68.2% 7.6%

700 12 5.2% 4.8% 5.2% 4.4% 4.7% 82.9% 7.7%

σ̂2, which suffers a mild size distortion under moderate large T and a severe size distor-

tion under fixed T. But after conducting bias correction, the performance has been much

improved. Overall, the performance of the MLE after bias correction are satisfactory.

8.2 Dynamic spatial panel data models

We next examine the performance of the ML estimators in the dynamic model. The data

are generated according to

Yt = α + ρ∗WNYt + ̺∗WNYt✶(t ≤ [Tγ∗]) + Yt−1φ∗ + Xt1β∗
1 + Xt2β∗

2

+ Yt−1✶(t ≤ [Tγ∗])ϕ∗ + Xt1✶(t ≤ [Tγ∗])δ∗ + Vt,

with (ρ∗, ̺∗, φ∗, β∗
1, β∗

2, ϕ∗, δ∗, γ∗, σ∗2) = (0.4,−0.1, 0.5, 2, 1,−0.2,−1, 0.25, 0.36). The inter-

cept α∗, the exogenous regressors Xt1 and Xt2 and the disturbance Vt are generated by the

same way in the static model. The data of dependent variable is calculated recursively

by

Yt =
[

IN − ρ∗WN − ̺∗WN✶(t ≤ [Tγ∗])
]−1[

α∗ + Yt−1φ∗ + Xt1β∗
1 + Xt2β∗

2
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+ Yt−1✶(t ≤ [Tγ∗])ϕ∗ + Xt1✶(t ≤ [Tγ∗])δ∗ + Vt

]
.

with Y1 = 0. To eliminate the effect of initial values, we generate T + 200 periods for

data and discard the first 200 periods.

Tables 5 and 6 present the simulation results measured by the bias and RMSE. Tables

7 and 8 present the simulation results measured by the empirical sizes. From table 5,

we see that the ML estimators have the bias issue. This issue is relatively severe for the

estimators of φ, ϕ and σ2. The other estimators seem fine for this issue. If we conduct

bias correction, the bias issue is effectively removed since, as seen, all the estimators

are centered approximately around zero. The results for empirical sizes of the t-tests in

Tables 7 and 8 echo those in Tables 5 and 6. The t-statistics for φ and σ2 suffer mild size

distortion. But after bias corrections, the empirical sizes are improved with some extent.

8.3 Three super statistics

In this subsection, we investigate the performance of the three super statistics. We only

consider the size of tests. The data are generated according to

Yt = α∗ + ρ∗WNYt + Xtβ
∗ + Vt.

with (ρ∗, β∗, σ∗2) = (0.5, 1, 0.36). The intercept α∗, the exogenous regressor Xt and the

disturbance Vt are generated by the same way in the static model. The dependent vari-

ables are calculated according to the preceding equation. We calculate the three super

statistics through (7.2), (7.3) and (7.4) by setting [γL, γU ] = [0.15, 0.85]. The critical val-

ues, according to Estrella (2003), is 10.14, 11.87 and 15.69 for 10%, 5% and 1%. Note

that the critical values of Estrella (2003) are calculated by the numerical method. Due to

the nature of super statistics, Estrella’s critical values are greater than those under finite

sample sizes. As a result, the empirical sizes of the simulations would be downward

relative to the nominal size.

Table 9 presents the empirical sizes of three super statistics. As expected, all the

empirical sizes are smaller than the nominal ones and suffer mild size distortion, due to

the reason of critical values. If one is unpleasant with such mild size distortions, he can

use simulation method to get the critical values of finite sample, see Andrews (1993) for

a related discussion. Beside this result, we also find that the three statistics almost have

the same empirical sizes. However, the computation times of the three statistics are quite

different. The supLM statistics takes the shortest time, the supW one next, and the supLR

takes the longest time. Given the close performance of these three statistics, as well as

the computation times, we recommend the supLM statistics in real data applications.
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Table 5: The performance of the MLE in the dynamic model before bias correction

N T
ρ ̺ φ β1 β2 ϕ δ σ2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 50 0.0003 0.0077 -0.0039 0.0242 -0.0022 0.0053 0.0005 0.0138 0.0005 0.0125 -0.0022 0.0130 -0.0003 0.0292 -0.0080 0.0224

75 50 0.0004 0.0063 -0.0020 0.0199 -0.0021 0.0047 -0.0003 0.0115 0.0003 0.0099 -0.0018 0.0107 0.0008 0.0245 -0.0082 0.0186

100 50 0.0002 0.0054 -0.0018 0.0167 -0.0022 0.0041 -0.0003 0.0097 -0.0004 0.0089 -0.0014 0.0089 -0.0002 0.0213 -0.0081 0.0159

50 75 -0.0003 0.0058 -0.0027 0.0193 -0.0014 0.0043 -0.0005 0.0110 -0.0001 0.0098 -0.0011 0.0102 0.0006 0.0235 -0.0056 0.0171

75 75 0.0001 0.0050 -0.0011 0.0152 -0.0014 0.0035 0.0001 0.0095 -0.0007 0.0082 -0.0014 0.0085 0.0007 0.0200 -0.0058 0.0148

100 75 0.0004 0.0043 -0.0008 0.0136 -0.0014 0.0032 0.0002 0.0078 -0.0003 0.0072 -0.0013 0.0073 0.0001 0.0174 -0.0053 0.0127

50 100 -0.0001 0.0053 -0.0006 0.0161 -0.0010 0.0036 0.0002 0.0100 -0.0006 0.0086 -0.0008 0.0087 -0.0002 0.0190 -0.0036 0.0148

75 100 -0.0001 0.0044 -0.0003 0.0131 -0.0009 0.0030 -0.0000 0.0081 0.0001 0.0067 -0.0011 0.0072 -0.0003 0.0161 -0.0044 0.0125

100 100 0.0002 0.0036 -0.0008 0.0116 -0.0010 0.0026 -0.0004 0.0070 -0.0001 0.0060 -0.0010 0.0060 0.0006 0.0141 -0.0043 0.0114

Table 6: The performance of the MLE in the dynamic model after bias correction

N T
ρ ̺ φ β1 β2 ϕ δ σ2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

50 50 0.0000 0.0077 -0.0030 0.0240 -0.0000 0.0048 0.0008 0.0138 0.0006 0.0126 -0.0005 0.0128 -0.0005 0.0292 -0.0008 0.0214

75 50 0.0001 0.0063 -0.0011 0.0198 0.0001 0.0042 -0.0000 0.0115 0.0004 0.0099 -0.0001 0.0106 0.0006 0.0245 -0.0011 0.0170

100 50 -0.0001 0.0054 -0.0009 0.0165 -0.0001 0.0034 0.0000 0.0097 -0.0003 0.0089 0.0002 0.0088 -0.0003 0.0213 -0.0009 0.0140

50 75 -0.0006 0.0059 -0.0021 0.0192 -0.0000 0.0041 -0.0004 0.0110 -0.0001 0.0098 0.0000 0.0102 0.0005 0.0235 -0.0008 0.0164

75 75 -0.0001 0.0050 -0.0005 0.0151 0.0000 0.0032 0.0003 0.0095 -0.0006 0.0082 -0.0004 0.0084 0.0006 0.0200 -0.0010 0.0139

100 75 0.0001 0.0043 -0.0002 0.0135 -0.0001 0.0028 0.0003 0.0078 -0.0002 0.0072 -0.0003 0.0072 -0.0000 0.0173 -0.0005 0.0118

50 100 -0.0003 0.0053 -0.0001 0.0161 0.0001 0.0035 0.0002 0.0100 -0.0005 0.0086 0.0001 0.0087 -0.0003 0.0191 0.0000 0.0145

75 100 -0.0003 0.0044 0.0001 0.0130 0.0001 0.0029 0.0001 0.0081 0.0001 0.0067 -0.0003 0.0071 -0.0004 0.0161 -0.0008 0.0118

100 100 -0.0000 0.0036 -0.0003 0.0116 -0.0000 0.0024 -0.0003 0.0070 -0.0000 0.0060 -0.0002 0.0060 0.0005 0.0141 -0.0007 0.0106
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Table 7: The empirical sizes of t-test under nominal 5% significance level before bias

correction

N T ρ ̺ φ β1 β2 ϕ δ σ2

50 50 5.8% 5.1% 6.6% 5.1% 5.8% 4.7% 5.4% 10.6%

75 50 5.9% 5.1% 9.6% 4.5% 5.2% 6.0% 6.2% 11.5%

100 50 4.7% 4.9% 9.4% 5.3% 5.8% 4.8% 6.0% 10.9%

50 75 3.4% 5.0% 8.0% 4.7% 5.4% 5.3% 4.7% 8.5%

75 75 5.0% 4.8% 7.1% 6.9% 4.2% 6.5% 6.5% 10.3%

100 75 5.1% 5.2% 8.5% 5.0% 5.8% 5.2% 6.0% 8.8%

50 100 4.4% 4.7% 6.0% 6.1% 5.3% 5.8% 4.4% 7.9%

75 100 5.7% 4.5% 6.7% 5.0% 4.1% 5.3% 5.0% 8.5%

100 100 5.2% 5.5% 6.6% 6.0% 5.1% 4.8% 5.6% 9.9%

Table 8: The empirical sizes of t-test under nominal 5% significance level after bias

correction

N T ρ ̺ φ β1 β2 ϕ δ σ2

50 50 5.8% 4.6% 4.2% 5.0% 5.9% 5.1% 5.3% 7.9%

75 50 6.1% 5.1% 5.8% 4.3% 5.1% 6.2% 6.1% 7.1%

100 50 4.3% 5.0% 5.0% 5.2% 5.8% 4.3% 6.0% 5.6%

50 75 4.6% 4.7% 6.4% 4.5% 5.2% 4.6% 4.7% 6.1%

75 75 5.3% 4.9% 5.5% 6.6% 4.4% 5.9% 6.5% 6.3%

100 75 5.1% 5.1% 5.3% 5.0% 5.8% 5.0% 6.0% 5.4%

50 100 4.3% 4.5% 5.1% 6.1% 5.4% 5.5% 4.4% 6.9%

75 100 5.6% 4.5% 5.5% 5.1% 4.2% 5.0% 5.0% 5.9%

100 100 5.1% 5.2% 4.0% 5.8% 5.0% 4.9% 5.6% 6.0%

Table 9: The empirical sizes of three super statistics

N T
Nominal 1% Nominal 5% Nominal 10%

supW supLM supLR supW supLM supLR supW supLM supLR

100 100 0.7% 0.7% 0.7% 3.4% 3.3% 3.4% 7.8% 7.7% 7.9%
125 100 0.7% 0.7% 0.7% 3.4% 3.4% 3.4% 7.8% 7.8% 7.8%
150 100 0.9% 0.9% 0.9% 4.1% 4.1% 4.1% 7.9% 7.9% 7.9%

100 150 0.8% 0.8% 0.8% 3.7% 3.7% 3.7% 7.7% 7.6% 7.7%
125 150 0.9% 0.9% 0.9% 3.9% 3.9% 3.9% 8.2% 8.2% 8.2%
150 150 0.8% 0.8% 0.8% 3.9% 3.9% 4.0% 8.1% 8.1% 8.1%

100 200 0.7% 0.7% 0.7% 3.6% 3.6% 3.6% 7.0% 7.0% 7.0%
125 200 0.7% 0.7% 0.7% 4.0% 4.0% 4.0% 8.5% 8.3% 8.3%
150 200 0.8% 0.8% 0.8% 4.2% 4.2% 4.2% 8.5% 8.5% 8.4%

9 Conclusion

Spatial models are widely used in empirical studies. So far spatial models are developed

under the assumption of parameters stabilities, which greatly limits the potential appli-
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cabilities of models. This paper proposes and studies spatial panel data models with

structural change. Quasi maximum likelihood method are considered to estimate the

model. We build up a relatively complete asymptotic theory, including the consistencies,

convergence rates and limiting distributions of the regression coefficient, the timing of

structural change and the variance of regression errors. Static and Dynamic models are

both considered. Large-T and fixed-T setups are both considered. We also investigate

the hypothesis testing issue on the presence of structural change. The super statistics are

proposed and the associated asymptotic properties are studied.

As the first step to study spatial models with structural change, we only consider one

structural change in our model. This assumption is restrictive and implausible in some

real data applications. Extension to the allowance of multiple structural changes is of

both theoretical and practical interests. We will investigate this issue in the future work.
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