MPRA
 Munich Personal RePEc Archive

Econometric notes

Calzolari, Giorgio
Universita' di Firenze, Italy.

31 January 2012

Online at https://mpra.ub.uni-muenchen.de/85396/
MPRA Paper No. 85396, posted 24 Mar 2018 10:34 UTC

ECONOMETRIC NOTES - Giorgio Calzolari - Università di Firenze - calzolar@disia.unifiit Undergraduate, Graduate, Doctoral Students - Laurea Triennale, Magistrale, Dottorato di Ricerca

Revised: March 2018

Greene, W. H. (2008): Econometric Analysis (6th edition). Prentice-Hall, Inc. Upper Saddle River, NJ. (Sec. 2, 3, 4, 5, 6.1, 6.2, 6.4, 7.1, 7.2, 8.1, 8.4, 8.5, 8.6, 19.7, App. A).

Johnston, J. (1984): Econometric Methods (3rd edition). New York: McGraw-Hill, Inc. Traduzione dalla lingua inglese a cura di M. Costa e P. Paruolo (1993): Econometrica (terza edizione). Milano: Franco Angeli. (Sec. 4, 5, 6; 8.1, 8.2, 8.4, 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.7).

Stock, J. H., and M. W. Watson (2015): Introduction to Econometrics (Updated 3rd edition). Boston: Person Education Limited. Edizione italiana a cura di F. Peracchi (2016): Introduzione all' Econometria (quarta edizione). Milano: Pearson Italia S.p.A. (Sec. $2,3,4,5,6,7,8,12,17,18)$.

ELEMENTS OF LINEAR ALGEBRA

Vectors and matrices

Vectors with n components (or n-components vectors, or vectors in the Euclidean space of dimension n, or vectors with dimensions $n \times 1$, or simply with dimension n); notation using small letters and representation as columns.
Elements or components of vectors.
Null vector.
Representation with directed line segments (e.g. 2 or 3 dimensions).
Equality.
Sum of vectors (and graphical representation in 2 dimensions).
Opposite vector.
Difference of vectors.
Product of a vector with a scalar (and graphical representation in 2 dimensions).
Unit vectors (with n components).
Scalar product (or internal product) of two vectors.
Orthogonal vectors: the scalar product is zero (graphical example in 2 dimensions, based on similarity of triangles).
Linear combination of m vectors with n components: it is an n - component vector.
Linear dependence or independence of m vectors with n components.
If m vectors are linearly dependent, someone of them can be represented as a linear combination of the others.
The m unit vectors with m components are linearly independent (example in 2 dimensions).
Two vectors are linearly dependent if and only if they have the same direction; 3 vectors if and only if they lay on the same plane.
If 2 vectors with 2 components are linearly independent, any other 2 -components vector is a linear combinations of them (graphical example); analogously in 3 dimensions, a fourth vector is always a linear combination of three linearly independent vectors; etc; in general, there cannot be more than m linearly independent m-components vectors; in particular, any m-components vector can be represented as a linear combination of the m unit vectors.
A basis of an m-dimensional space is a collection of m linearly independent m-components vectors; for instance, the m unit vectors.
Any m-components vector has a unique representation as a linear combination of m basis vectors; ab absurdo, suppose that there are two different linear combinations that produce the same vector; subtracting one from the other, there would be a linear combination of the basis vectors that produces a null vector.
Subsets of linearly independent vectors are linearly independent.
The vectors in a set that contains a subset of linearly dependent vectors are themselves linearly dependent.
If, in a set of n vectors (with the same dimensions), k vectors can be found linearly independent (but not more than k), and
it is $k<n$, then all the other $n-k$ vectors in the set are linear combinations of these k vectors.
Matrices (with dimensions $m \times n$) and representation as rectangles.
Vectors can be considered matrices with a single column.
Row index and column index.
Columns can be called column vectors; rows can be called row vectors.
Notation for rows ($A_{i .}$) and columns ($A_{. j}$).
Null matrix.
Equality.
Multiplication by a scalar.
Linear combination of the columns of a matrix: it is a column vector.
Linear combination of the rows of a matrix: it is a row vector.
Sum, difference, linear combination of matrices with the same dimensions.
Matrix multiplication, or product rows by columns of two matrices conformable for multiplication; if the former (A) is an $m \times n$ matrix and the latter (B) has dimensions $n \times k$, the product $A B$ is an $m \times k$ matrix; its $i, j-t h$ element is the scalar product of the row vector A_{i}. with the column vector $B_{. j}$.

The $i-t h$ row of $A B$ is the product of the $i-t h$ row of A with the matrix $B:[A B]_{i .}=A_{i .} B$; the $j-t h$ column of $A B$ is the product of matrix A with the $j-t h$ column of $B:[A B]_{. j}=A B_{. j}$.
Matrix multiplication is associative: $(A B) C=A(B C)$; it is distributive with respect to the sum: $D(E+F)=D E+D F$ (when the matrices are conformable for the operations above; example of proof with small dimensions).
Matrix multiplication of two matrices is not commutative (with examples: for different dimensions as well as equal dimensions); pre- and post- multiplication.
Square matrices $(n \times n)$.
Identity matrix $\left(I\right.$, or $\left.I_{n}\right)$; its n columns are the n-dimensional unit vectors; for any $m \times n$ matrix A, it is always $A I_{n}=A$; for any $n \times k$ matrix B, it is always $I_{n} B=B$.
Diagonal matrix.
Scalar matrix.
Transpose of a matrix and transpose of a vector (row vector).
Transpose of the sum of two matrices.
Transpose of the product of two matrices: $(A B)^{\prime}=B^{\prime} A^{\prime}$ (example of proof with small dimensions).
Transpose of the product of 3 or more than 3 matrices.
Scalar (or internal) product of two vectors (a and b) as a particular case of matrix multiplication, using the transpose of the first vector $\left(a^{\prime} b\right)$.
External product of two vectors $\left(a b^{\prime}\right)$ is a matrix.
Symmetric (square) matrix.
The product of a (rectangular) matrix with its transpose is always a square symmetric matrix: $A^{\prime} A$ and $A A^{\prime}$ are both square symmetric matrices.
If b is a column vector, then $A b$ is a column vector, linear combination of the columns of the matrix A, the coefficients of the linear combination being the elements of the vector b; if c is a column vector, $c^{\prime} D$ is a row vector, linear combination of the rows of matrix D.
In a matrix, the maximum number of linearly independent columns and of linearly independent rows are equal; to simplify the proof, given a 4×3 matrix A, with $r=2$ maximum number of linearly independent rows, call \tilde{A} one of the 2×3 sub-matrices with all rows linearly independent (for simplicity, let be the first two rows of A); the 3 columns of \tilde{A} are 2 -dimensional vectors, thus they are linearly dependent; write explicitly the third column of \tilde{A} as linear combination of the first two columns of \tilde{A}; write explicitly all the elements of the third and fourth rows of the matrix A as linear combinations of the first two rows (which are the two rows of \tilde{A}); making substitutions, it appears that the whole third column of A depends linearly on the first and second column of A, so that there cannot be 3 independent columns in A; independent columns in A will thus be 2 or 1 ; thus, the maximum number of linearly independent columns of A would be $c \leq r=2$; repeating the whole procedure, but assuming that $c=2$ is the maximum number of linearly independent columns of A, it will be $r \leq c$; thus the conclusion is $r=c$.
The maximum number of linearly independent rows or columns is called rank of the matrix (in the examples, use a rectangular matrix X with more rows than columns).
If X has dimensions $n \times k$, with $k \leq n$, the rank will be $\leq k$; if $r(X)=k, X$ is called full rank matrix, or matrix with full rank.
A full rank square matrix (thus all columns are linearly independent and all rows are linearly independent) is called nonsingular, otherwise it is called singular, and its columns (and rows as well) will be linearly dependent.
Definition of inverse of a square matrix: if A is an $n \times n$ (square) matrix, inverse of A is a matrix B (with the same dimensions) such that $A B=I$.
If an $n \times n$ (square) matrix A is non-singular, the inverse matrix exists and is unique; to prove it, remember that the columns of A form a basis for the n-dimensional vectors; as it must be $A B=I$, then for each j-th column it must be $A B_{. j}=e_{j}$ (j-th unit vector); thus, each e_{j} must be representable as a linear combination of the columns of A; as columns form a basis, this representation exists and is unique.
For the same matrix A just considered, there exists also a unique matrix C (with the same dimensions) such that $C A=I$; the proof is analogous to the proof above, remembering that, being linearly independent, also the n rows of the matrix form a basis for the n-dimensional row vectors; thus for each i-th row there is a unique linear combination of the rows of A that produces the $i-$ th row of the identity matrix: $C_{i} . A=e_{i}^{\prime}$ ($i-$ th unit row vector).
The two matrices B and C, whose existence and uniqueness has just been proved, are equal; in fact, if $A B=I$ and $C A=I$; then $C A B$ is equal to B and also equal to C, thus $B=C$ (no right or left inverse, just inverse).
A^{-1} is used to indicate the inverse of A.
Inverse of the transpose: $\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}$; thus also symbols like $A^{\prime-1}$ or $A^{-1 \prime}$ can be used.
Inverse of the product of two or more square matrices: $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.
Inverse of a diagonal matrix.
Inverse of a 2×2 matrix.

Determinants

Permutations of n objects.
Factorial ($n!$).
Fundamental permutation and number of inversions.
Class of a permutation (even or odd).

Switching two elements, the class of the permutation changes (the proof is first for two consecutive elements, than for any pair of elements).
Product associated to a square matrix.
Definition of determinant of a square matrix as sum of the $n!$ products associated to the matrix.
Determinant of the transpose.
Switching two columns or two rows, the determinant changes sign.
If two rows or columns are equal, the determinant is zero.
Multiplying a row or a column by a scalar, the determinant is multiplied by the same scalar.
If a row (or a column) can be decomposed into the sum of two rows, the determinant is the sum of the determinants of two matrices.
If a row (or a column) is equal to the sum of two other rows (or columns) of the same matrix, the determinant is zero.
If a row (or column) is a linear combination of other rows (or columns) of the same matrix, the determinant is zero.
The determinant of the sum of two matrices is not the sum of the two determinants.
Multiplying the whole $n \times n$ matrix by a scalar, the determinant is multiplied by the $n-$ th power of the scalar (for instance, the opposite matrix is obtained multiplying by -1 , so the determinant remains unchanged if n is even, or it changes sign if n is odd).
Algebraic complements (or adjoints, or co-factors).
Expansion of the determinant using co-factors: it is equal to the scalar product of a row or column with the corresponding co-factors (only trace of the proof).
The scalar product of a row (or column) with the co-factors of another row (or column) is zero.
Adjoint matrix: it is the transpose of the matrix of co-factors.
Pre- or post-multiplying a matrix with its adjoint produces a diagnonal (scalar) matrix, whose diagonal elements are all equal to the determinant.
Singular matrix (determinant is zero).
Inverse of a non-singular matrix: it is obtained dividing the adjoint matrix by the determinant.
Determinant of the product (rows by columns) of two square matrices (only trace of the proof).
Determinant of the inverse.
Determinant of a diagonal matrix.

Equation systems

Solution of a linear system of n equations with n unknowns; Cramer's rule.
In a homogeneous system of n equations with n unknowns, if the coefficients matrix is non-singular, the unique solution is the null vector; other solutions are possible only if the matrix is singular.
In a non-singular matrix, rows (and columns) are linearly independent; if rows (and columns) are linearly dependent, the matrix is singular.

Partitioned matrices

Sottomatrici quadrate (di matrici rettangolari o quadrate) e minori.
Matrici partizionate.
Matrice rettangolare diagonale a blocchi.
Somma di matrici partizionate (uguali dimensioni delle matrici e uguali dimensioni dei blocchi corrispondenti): si sommano i blocchi corrispondenti.
Matrice quadrata $A(n \times n)$ partizionata in 4 blocchi, di cui quelli diagonali $A_{1,1}\left(n_{1} \times n_{1}\right)$ e $A_{2,2}\left(n_{2} \times n_{2}\right)$ quadrati (con $\left.n_{1}+n_{2}=n\right)$, mentre quelli non diagonali $A_{1,2}\left(n_{1} \times n_{2}\right)$ e $A_{2,1}\left(n_{2} \times n_{1}\right)$ non sono necessariamente quadrati; se una matrice B $(n \times n)$ viene partizionata in modo analogo, la matrice prodotto $A B(n \times n)$ può essere partizionata in modo analogo ad $A \mathrm{e}$ B; il blocco 1,1 della matrice prodotto vale $(A B)_{1,1}=A_{1,1} B_{1,1}+A_{1,2} B_{2,1}$; il blocco 1,2 vale $(A B)_{1,2}=A_{1,1} B_{2,1}+A_{1,2} B_{2,2}$, eccetera; si applicano cioè ai blocchi le stesse regole del prodotto righe per colonne.
La regola precedente vale anche per il prodotto di matrici rettangolari partizionate, purché le matrici siano di dimensioni compatibili, e i blocchi siano di dimensioni compatibili.
Se X è una matrice (rettangolare o quadrata) diagonale a blocchi, $X^{\prime} X$ è una matrice quadrata diagonale a blocchi, con blocchi diagonali quadrati.
Inversa di una matrice quadrata A partizionata in quattro blocchi, di cui $A_{1,1}$ e $A_{2,2}$ quadrati; si indica con B la matrice inversa $B=A^{-1}$, e la si partiziona in maniera analoga; i quattro blocchi della matrice inversa valgono: $B_{1,1}=\left(A_{1,1}-A_{1,2} A_{2,2}^{-1} A_{2,1}\right)^{-1}$; $B_{2,2}=\left(A_{2,2}-A_{2,1} A_{1,1}^{-1} A_{1,2}\right)^{-1} ; B_{1,2}=-A_{1,1}^{-1} A_{1,2} B_{2,2} ; B_{2,1}=-A_{2,2}^{-1} A_{2,1} B_{1,1} ;$ sviluppando il prodotto delle due matrici partizionate, si verifica che $A B=I$.
Caso particolare: se la matrice è diagonale a blocchi (e i due blocchi diagonali sono quadrati), l'inversa è diagonale a blocchi; i blocchi diagonali dell'inversa sono gli inversi dei corrispondenti blocchi diagonali della matrice data; per la dimostrazione, basta osservare che $A_{1,2}=0$ e $A_{2,1}=0$; questa proprietà vale anche per matrici diagonali a blocchi con tre o più blocchi diagonali; per la dimostrazione, basta considerare la matrice come se fosse partizionata con due blocchi diagonali, ognuno dei quali eventualmente partizionato come una matrice diagonale a blocchi.

Eigenvalues and eigenvectors

Autovalori, o radici caratteristiche, o radici latenti di una matrice quadrata; autovettori, o vettori caratteristici, o vettori latenti corrispondenti; equazione caratteristica.

Autovalori e autovettori di una matrice quadrata reale possono essere reali o complessi (coniugati); ad autovalori reali corrispondono autovettori reali.
L'autovettore che corrisponde ad un certo autovalore non è definito in modo univoco; ad esempio, è certamente definito a meno di una costante moltiplicativa, nel qual caso è definita la direzione, ma non la lunghezza; nel caso di autovalori con molteplicità maggiore di uno non è definita in modo univoco nemmeno la direzione (ad esempio, per la matrice I, i cui autovalori sono tutti uguali a uno, qualsiasi vettore è autovettore, dunque l'autovettore non è definito univocamente nemmeno in direzione).
Una matrice quadrata simmetrica $n \times n$ ha n autovalori (distinti o multipli).
Una matrice quadrata simmetrica ha solo autovalori e autovettori reali.
In una matrice quadrata simmetrica, ad autovalori distinti corrispondono autovettori ortogonali.
In una matrice quadrata simmetrica, se un autovalore ha molteplicità k, esistono k autovettori ortogonali tra loro, corrispondenti a tale autovalore (senza dimostrazione).
Una matrice quadrata simmetrica $n \times n$, con autovalori non necessariamente distinti, ha n autovettori tra loro ortogonali; normalizzando ogni autovettore (lunghezza 1) si ottengono n autovettori ortonormali; questi n autovettori possono essere ordinati nelle colonne di una matrice quadrata Q, di ordine n, che gode della seguente proprietà: $Q^{\prime} Q=I$, quindi $Q^{\prime}=Q^{-1}$, quindi anche $Q Q^{\prime}=I$, quindi anche i vettori riga della matrice Q sono n vettori ortonormali.
Matrice ortogonale.
In una matrice ortogonale il determinante vale 1 o -1 .
Se A è una matrice quadrata simmetrica, la matrice ortogonale degli autovettori diagonalizza A, cioè $Q^{\prime} A Q=\Lambda$, dove Λ è la matrice diagonale degli n autovalori.
In una matrice quadrata simmetrica, il determinante è il prodotto degli autovalori.
Se A è una matrice quadrata simmetrica, gli autovalori di $A^{2}=A A$ sono i quadrati degli autovalori di A, mentre gli autovettori di A^{2} sono gli stessi di A.
Se A è una matrice quadrata simmetrica non singolare, gli autovalori di A^{-1} sono i reciproci degli autovalori di A, mentre gli autovettori di A^{-1} sono gli stessi di A.
Minore diverso da zero di ordine massimo.

Trace, idempotent matrices

$r\left(X^{\prime} X\right)=r\left(X X^{\prime}\right)=r(X)$; if X has full rank $=k(k<n)$, also $X^{\prime} X$ has full rank $(=k)$, but not $X X^{\prime}$ (whose rank is k, but dimensions $n \times n$) (without proof).
$r(A B)$ is less than or equal to the smaller between $r(A)$ and $r(B)$ (without proof).
If B is a non-singular (thus, full rank) square matrix, then $r(A B)=r(A)$; in fact $r(A B) \leq r(A)$ and $r(A)=r\left[(A B) B^{-1}\right] \leq$ $r(A B)$.
Il rango di una matrice quadrata simmetrica è uguale al numero degli autovalori diversi da zero.
Trace of a square matrix.
$\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ (if A e B have dimensions that allow both products).
La traccia di una matrice quadrata simmetrica è uguale alla somma degli autovalori.
Idempotent matrices.
Examples of idempotent matrices and their trace; matrix $0, I, A=I-\iota \iota^{\prime} / n$, the projection matrices $P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$, $M_{X}=I-P_{X}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$.
Use of the matrices A, P_{X} e M_{X} : if y is a vector, $A y$ is the vector containing the deviations of the elements of y from their arithmetical average $(A y=y-\bar{y}) ; P_{x} y$ is the projection of the vector y on the plane (hyperplane) spanned by the columns of the matrix X (example with a 2 -columns matrix X; first of all show what happens if y is one of the two columns of X, then show what happens if y is a generic vector of the plane and finally a generic vector y is decomposed into a component on the plane and a component orthogonal to the plane); $M_{x} y=y-P_{x} y$, that is the projection of the vector y on the straight line orthogonal to the plane (hyperplane) spanned by the columns of X.
In una matrice quadrata simmetrica idempotente gli autovalori valgono 0 o 1 ; il rango è quindi uguale alla traccia.

Quadratic forms

Quadratic form: if x is an n-dimensional vector and A is an $n \times n$ matrix, the scalar $x^{\prime} A x$ is called quadratic form; its value can be obtained from the (scalar) operation $\sum_{i} \sum_{j} a_{i, j} x_{i} x_{j}$.
Positive semidefinite square matrices.
Positive definite square matrices (a subset of the above).
A positive definite matrix is non-singular (columns are linearly independent).
$A^{\prime} A$ and $A A^{\prime}$ are always symmetric positive semidefinite matrices, whatever the (square or rectangular) matrix A.
Inequality between matrices: given two square matrices, positive semidefinite (or definite) with the same dimensions, the former is said to be greater than the latter if the difference matrix is not null and positive semidefinite.
The inverse of a positive definite matrix is itself positive definite (the proof would be based on the properties of eigenvalues). If a matrix is positive semidefinite, but not positive definite, it is singular (its columns are linearly dependent).
If P has dimensions $m \times n$, with $n \leq m$, and $r(P)=n$ (full rank), then $P^{\prime} P$ (square $n \times n$ matrix) is positive definite; to prove it, given any non-null n-dimensional vector c, build the quadratic form $c^{\prime} P^{\prime} P c=(P c)^{\prime} P c$; it is a sum of squares, where $P c$ cannot be the null vector, being a linear combination of all the linearly independent columns of P; thus the result is always a strictly positive number; in addition, if A is an $n \times n$ symmetric positive definite matrix, $P^{\prime} A P$ is also symmetric and positive definite.

In particular, if P is a non-singular square matrix (full rank), then both $P^{\prime} P$ and $P P^{\prime}$ are positive definite.

First and second derivatives

Vettore delle derivate prime di una funzione scalare rispetto al vettore delle variabili (gradiente); casi particolari: derivare un prodotto scalare rispetto a uno dei due vettori $\partial\left(x^{\prime} y\right) / \partial x=y, \partial\left(x^{\prime} y\right) / \partial y=x$; derivare la forma quadratica $x^{\prime} A x$ rispetto al vettore $x: \partial\left(x^{\prime} A x\right) / \partial x=\left(A+A^{\prime}\right) x$.
Matrice delle derivate prime di un vettore di funzioni rispetto al vettore delle variabili (Jacobiano); caso particolare $\partial(B x) / \partial x^{\prime}$ $=B$.
Matrice delle derivate seconde di una funzione scalare rispetto a un vettore di variabili (Hessiano): caso particolare: derivare due volte la forma quadratica $x^{\prime} A x$ rispetto al vettore $x: \partial^{2}\left(x^{\prime} A x\right) / \partial x \partial x^{\prime}=A+A^{\prime}$ (che è sempre una matrice simmetrica). Massimi e minimi di funzioni di più variabili: gradiente zero e Hessiano definito negativo o positivo.
Massimi e minimi vincolati; vettore dei moltiplicatori di Lagrange.

ELEMENTS OF STATISTICAL ANALYSIS

Probability and discrete random variables.
Expectation (or expected value, or mean), variance, standard deviation of a discrete random variable.
Expectation and variance of a random variable are not random variables.
Transforming a random variable with a function produces a new random variable.
Expectation and variance of a function of random variable (same formula, but the original variable is replaced by the transformed variable).
A function of several random variables is itself a random variable.
Variance is always non-negative; it is zero if the random variable is degenerate (a constant).
Variance is equal to the expectation of the square minus the square of the expectation.
Expectation of the product of a constant with a random variable: $E(a x)=a E(x)$.
Expectation of the sum of two random variables.
Expectation of a linear combination of random variables with constant coefficients; it is equal to the linear combination of the expectations (expectation is a linear operator).
Variance of the product of a constant with a random variable: $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$.
If k is a constant, $\operatorname{Var}(x)=\operatorname{Var}(x-k)$; in particular $\operatorname{Var}(x)=\operatorname{Var}[x-E(x)]$.
Continuous random variable.
Cumulated distribution function and probability density function.
Expectation, variance and standard deviation of a continuous random variable.
Bivariate and multivariate discrete random variables.
Bivariate and multivariate continuous random variables.
Probability density for bivariate and multivariate continuous random variables (also called joint probability density function). Marginal probability density.
Conditional probability density.
The joint probability density for a bivariate random variable is the product of the marginal density of the former variable with the conditional probability density of the latter given the former.
Independent random variables: marginal and conditional probability densities are equal; the joint probability density is the product of the marginal probability densities.
Expectations and variances of the components of a multivariate random variable (discrete or continuous) are computed from the marginal probability densities.
Covariance of two random variables: $\operatorname{Cov}(x, y)$.
Covariance is not a random variable.
$\operatorname{Cov}(x, y)=\operatorname{Cov}(y, x)$.
Covariance is equal to the expectation of the product minus the product of the two expectations $\operatorname{Cov}(x, y)=E(x y)-$ $E(x) E(y)$.
If a and b are constants, $\operatorname{Cov}(a x, y)=\operatorname{Cov}(x, a y)=a \operatorname{Cov}(x, y)$ and $\operatorname{Cov}(a x, b y)=a b \operatorname{Cov}(x, y)$.
Expectation of the product of two random variables is equal to the product of the two expectations plus the covariance.
In a multivariate random variable, covariances are for pairs or couples of component elements.
Covariance may be positive, null or negative.
Correlation (or correlation coefficient) between two random variables: it is the covariance divided by the square root of the product of the two variances.
Correlation coefficient is a number between -1 and 1 .
Two random variables are called uncorrelated when the covariance (and thus the correlation) is zero.
Independent random variables are always uncorrelated; not viceversa: uncorrelated random variables are not necessarily independent; for example sum of two dice and difference of the same dice are uncorrelated but not independent; (the multivariate normal variable is the most important counter-example; when two component elements are uncorralated, they are also independent).
Expectation of the product of two uncorrelated random variables is simply the product of the expectations (the covariance is zero).
Functions of independent random variables are themselves independent random variables (thus uncorrelated) functions of uncorrelated random variables are not necessarily uncorrelated.

The n component elements $X_{1}, X_{2}, \ldots, X_{n}$ of an n-variate random variable, x, (or the n random variables $X_{1}, X_{2}, \ldots, X_{n}$) can be represented with an n-dimensional vector, called random vector, or vector of random variables.
Expactation of a random vector: $E(x)$.
Variance-covariance matrix of a random vector x is defined as $\operatorname{Var}(x)=\operatorname{Cov}(x)=E\left\{\left[(x-E(x)]\left[x^{\prime}-E\left(x^{\prime}\right)\right]\right\}\right.$.
If a is a constant vector (non-random), then $a^{\prime} x$ is a scalar random variable, linear combination of the elements of x; its expectation is therefore $E\left(a^{\prime} x\right)=a^{\prime} E(x)$, being the expectation of a linear combination.
The variance of the scalar random variable $a^{\prime} x$ is $\operatorname{Var}\left(a^{\prime} x\right)=a^{\prime} \operatorname{Var}(x) a$.
The variance-covariance matrix of a random vector x is symmetric (because $\operatorname{Cov}\left(x_{i} x_{j}\right)=\operatorname{Cov}\left(x_{j}, x_{i}\right)$) and positive semidefinite infact, if a is a constant vector with the same dimension of x, then $a^{\prime} \operatorname{Var}(x) a$ is the variance of the scalar random variable $a^{\prime} x$, therefore it is always non-negative; if it cannot happen that $a^{\prime} x$ degenerates for some non-zero vector a (it cannot become a constant; its variance is therefore always strictly positive), then the variance-covariance matrix of x is positive definite.
If A is a constant (non-random) matrix (with conformable dimensions) $E(A x)=A E(x)$ and $\operatorname{Var}(A x)=A \operatorname{Var}(x) A^{\prime}$.
The variance-covariance matrix of uncorrelated random variables is a diagonal matrix; if the variance is the same for each component element, then the matrix is a scalar matrix (constant elements on the diagonal).
Uniform distribution (discrete and continuous).
The sum of two uniform random variables does not have uniform ditribution.
The normal distribution (or Gaussian distribution).
The formula of the probability density function defines a family of probability distributions, indexed by two parameters, usually called μ and σ^{2}; computing expectation and variance of the random variable, they turn out to be exactly equal to those two parameters.
The probability of a value of the normal random variable to be between $\mu \pm \sigma$ is approximately 66%; to be between $\mu \pm 2 \sigma$ is approximately 95%.
A normal random variable with expectazion zero and unit variance is called standard normal;
Any normal random variable is transformed into a standard normal subtracting the expected value and dividing by the standard deviation.
Tables for the standard normal distribution.
If a random vector (x) is such that any linear combination of its elements with constant coefficients $\left(a^{\prime} x\right)$ is a random variable with normal distribution, the distribution of the random vector x is called multivariate normal.
Explicit formula for the probability density of a multivariate normal exists if and only if the variance-covariance matrix is non-singular; the formula involves the vector of expected values and the variance-covariance matrix; the usual notation is $x \sim N(\mu, \Sigma)$.
Random vectors obtained as linear combinations (with constant coefficients) of the elements of a multivariate normal vector are themselves multivariate normal vectors; for instance, if x is a vector $N(\mu, \Sigma)$, then $A x$ is a vector $N\left(A \mu, A \Sigma A^{\prime}\right)$.
The χ^{2} distribution.
Summing the squares of n independent standard normal variables, the random variables obtained is called χ^{2} with n degrees of freedom: χ_{n}^{2}.
The χ^{2} family of probability distributions is indexed by one parameter (n, the number of degrees of freedom).
The expectation of a random variable χ^{2} with n degrees of freedom is n; the variance is $2 n$.
Tables for the χ^{2} distributions, for varying degrees of freedom.
The Student's $-t$ distribution.
Given two independent random variables, the former with standard normal distribution, the latter distributed a χ^{2} witn n degrees of freedom, divided by the constant n; the former divided by the square root of the latter produces a random variable called Studen's-t with n degrees of freedom: t_{n}.
The Student's $-t$ is a family of distributions indexed by one parameter (n, the number of degrees of freedom).
The probability density function is symmetric around zero.
Increasing n, the distribution becomes more and more close to the standard normal distribution (exactly equal when $n \rightarrow \infty$). Tables for the Student's $-t$ distribution, t_{n}, for varying degrees of freedom.
Fisher's $-F$ distribution.
Given two independent random variables with χ^{2} distribution, with n and k degrees of freedom, respectively, the ratio between the former (divided by n) and the latter (divided by k) is a random variable whose distribution is called Fisher's $-F$ with n, k degrees of freedom: $F_{n, k}$.
Fisher's $-F$ is a family of probability distribution indexed by two parameters (n and k, the numbers of degrees of freedom).
Tables for the Fisher's $-F$ distribution, $F_{n, k}$, for varying degrees of freedom.

MULTIPLE LINEAR REGRESSION MODEL (the simple linear regression as a particular case)

The assumptions of the multiple linear regression model

(1) A dependent or explained variable (also called regressand) is assumed to be a linear combination of some independent or explanatory variables (or regressors); the relationship is not exact, as it includes an additive error term (or unexplained disturbance); dependent variable and regressors are observable (no latent variables) and measured without errors (no measurement error); the coefficients of the linear combination are "fixed constants" (they are not random variables), but are unknown; the error terms are random variables and are not observable; the vector containing the n observations of the dependent variable ($y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{n}$) is called $y(n \times 1)$; the n observations of the k explanatory variables are assembled
in a matrix $X(n \times k)$; if the model includes the intercept, matrix X has a column whose elements are all ones; the k coefficients of the linear combination are assembled in a vector $\beta(k \times 1)$; the vector $u(n \times 1)$ contains the error terms; the multiple linear regression model is represented as: $y=X \beta+u$; each element is $y_{i}=x_{i}^{\prime} \beta+u_{i}$, being x_{i}^{\prime} the $i-t h$ row of X. (2) All columns of X are linearly independent, thus $r(X)=k$; this implies, in particular, $n \geq k$; in other words, the number of observations (or sample size) cannot be smaller than the number of regressors (in practice, interest is confined to the case where strictly $n>k$).
(3) The expectation of all the error terms is zero: $E(u)=0$.
(4) The error terms are uncorrelated (all covariances are zero) and homoskedastic (the variance of each error, called σ^{2}, is constant, but unknown): $\operatorname{Var}\left(u_{1}\right)=\operatorname{Var}\left(u_{2}\right)=\sigma^{2}$, etc; $\operatorname{Cov}\left(u_{1}, u_{2}\right)=0$, etc; $E\left(u u^{\prime}\right)=\sigma^{2} I_{n}$ (scalar variance-covariance matrix).
(5) The contents of matrix X are known constants (non-random variables); since $E(u)=0$, one gets $E(y)=X \beta$; the expected value (or "conditional" expected value) of each y_{i} is always a point on the regression line (or plane, or hyperplane).
(6) The vector of error terms u has a multivariate normal distribution; thus, combining assumption 6 with assumptions 3 and $4, u$ is distributed $N\left(0, \sigma^{2} I_{n}\right)$.
The estimation method called "ordinary least squares" (OLS) provides an estimate of the unknown parameters of the model (coefficients β and variance σ^{2}); its algebraic properties are based on assumptions 1 and 2 (other assumptions being unnecessary); some statistical properties of the OLS estimation method are based on assumptions 1-5; finally, some other statistical properties need all assumptions (1-6).

OLS: algebraic properties (under assumptions 1-2)

Given a vector of coefficients β, the corresponding vector of "residuals" can be obtained as $u=y-X \beta$, thus each residual can be represented as a function of the variables y and X (observed) and coefficients (β, unknown); we look for the vector of coefficients (called $\hat{\beta}$) that minimize the sum of all squared residuals; the method is called OLS (ordinary least squares), and coefficients computed in this way are the OLS estimates of the regression coefficients (simply: OLS coefficients).
Under assumptions 1 and 2, OLS coefficients are available in closed form as $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$; this expression is obtained equating to zero the first order derivatives of the sum of squared residuals with respect to the k coefficients β (first order conditions); it can then be verified that the $(k \times k)$ matrix of second order derivatives (Hessian) is positive definite (second order condition).
The vector that contains the computed values (or fitted values) of the dependent variable is $\hat{y}=X \hat{\beta}$.
The vector of OLS residuals is the difference between the vector of observed values and the vector of computed values of the dependent variable (computed with OLS coefficients): $\hat{u}=y-\hat{y}=y-X \hat{\beta}=y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y=M_{x} y=M_{X} u$, where M_{X} is the idempotent symmetric matrix (or projection matrix) $M_{X}=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$, whose trace ($=$ rank) is $n-k$.
If the number of observations (or sample size) is equal to the number of explanatory variables $n=k$ (instead of $n>k$), X would be a square matrix, thus $\left(X^{\prime} X\right)^{-1}=X^{-1}\left(X^{\prime}\right)^{-1}$, thus $M_{X}=0$, thus $\hat{u}=0$; in other words, all the points of the sample would lie on the regression line (or plane, or hyperplane).
The vector of OLS residuals is orthogonal to each explanatory variable (or regressor): $X^{\prime} \hat{u}=0$; with different words, one can say that OLS residuals are uncorrelated in the sample with each regressor.
The vector of OLS residuals is orthogonal to the vector of computed value of the dependent variable: $\hat{y}^{\prime} \hat{u}=0$.
If the regression model includes the intercept, then the matrix of regressors includes a column whose values are all ones (a constant regressor); thus the sum of residuals is zero; if the model is without intercept, the sum of OLS residuals may be nonzero.
In particular, in a simple linear regression model with intercept $y=\beta_{1}+\beta_{2} z+u$, the point with coordinates $(\bar{z}, \bar{y}$, arithmetical averages) is on the regression line estimated by OLS; measuring variables y_{i} and z_{i} as deviations from their arithmetical averages is like shifting the origin of the Cartesian axes over the point (\bar{z}, \bar{y}); thus an OLS estimation of the model without intercept $y_{i}-\bar{y}=\beta_{2}\left(z_{i}-\bar{z}\right)+u$ would produce the same value $\hat{\beta}_{2}$ and the same residuals \hat{u} as the OLS estimation of the original model (with intercept).
Coefficient of determination $\left(R^{2}\right)$ for the model with intercept: it is a measure of the fit of the model (for the model without intercept the definition should be slightly modified; not done here).
Defining A as the symmetric idempotent matrix that produces deviations from the arithmetical average, $A=I_{n}-\iota \iota^{\prime} / n$, the sum of squares of the deviations of the y_{i} from their arithmetical average is: $T S S=(A y)^{\prime} A y=y^{\prime} A y$ (total sum of squares). $E S S=\hat{y}^{\prime} A \hat{y}=$ sum of squares of the deviations of the \hat{y}_{i} from their arithmetical average (explained sum of squares).
$R S S=\hat{u}^{\prime} \hat{u}=$ residual sum of squares (remembering that residuals have arithmetical average zero).
In the model with intercept, $T S S=E S S+R S S$; to prove it, from $y=\hat{y}+\hat{u}$, pre-multiplication by A gives $A y=A \hat{y}+\hat{u}$, then transposition of this expression and multiplication by the expression itself gives $y^{\prime} A y=\hat{y}^{\prime} A \hat{y}+\hat{u}^{\prime} \hat{u}$ (the cross products are zero because \hat{u} is orthogonal to \hat{y}, and $A \hat{u}=\hat{u}$ because the model has the intercept).
The coefficient of determination is defined as $R^{2}=E S S / T S S=1-R S S / T S S$.
The sample correlation coefficient between y and \hat{y} is $=\sqrt{R^{2}}$; the proof follows from observing that the sample variances of y and \hat{y} are, respectively, $T S S / n$ and $E S S / n$, and the sample covariance is $(A y)^{\prime}(A \hat{y}) / n=(A \hat{y}+\hat{u})^{\prime}(A \hat{y}) / n=E S S / n$.
R^{2} in the model with intercept is a number between 0 and 1.
$R^{2}=0$ means "no fit"; $R^{2}=1$ means "perfect fit"; as a rough indicator of goodness of fit; usually, the larger the R^{2}, the better the fit; a remarkable exception is when $k=1$ and the only regressor is the constant (all values $=1$), so that $\hat{\beta}=\bar{y}$; thus $T S S=R S S$, thus $R^{2}=0$, even if the fit is good.

Adding new explanatory variables to the same equation necessarily improves the R^{2} (that cannot decrease); intuitively, if the additional regressors are "meaningful", the improvement will be large, but if they are meaningless the improvement will be small or even null; it is possible to define an "adjusted" R^{2}, that takes into account the reduction of degrees of freedom due to the introduction of new regressors: $1-[R S S /(n-k)] /[T S S /(n-1)]$; it might become smaller after the introduction of a new regressor without explanatory power.
OLS: some statistical properties (under assumptions 1-5; valid even without intercept)
The vector of estimated coefficients is a random vector (unlike the "true" coefficients vector β, which is a non-random vector). The vector of coefficients estimation errors is $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$.
Under assumptions 1-5 (6 is unnecessary), OLS estimator is linear and unbiased, as $E(\hat{\beta}-\beta)=\left(X^{\prime} X\right)^{-1} X^{\prime} E(u)$, being X non-random.
Under assumptions 1-5, the variance-covariance matrix of the OLS coefficients is $\operatorname{Var}(\hat{\beta})=\left(X^{\prime} X\right)^{-1} \sigma^{2}$; the proof follows from computing $E\left[(\hat{\beta}-\beta)(\hat{\beta}-\beta)^{\prime}\right]=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u u^{\prime} X\left(X^{\prime} X\right)^{-1}\right]$ where expectation will be applied only to $u u^{\prime}$, being X non-random.
Gauss-Markov theorem: Under assumptions 1-5 (6 is unnecessary), OLS coefficients have the smallest variance-covariance matrix, among all linear unbiased estimators; thus, OLS estimator is the most efficient linear unbiased estimator.
Proof: any linear estimator of the coefficients vector would be $B^{\prime} y$, where B is a matrix with the same dimensions of X and does not contain random variables; unbiasedness of the estimator is ensured if and only if $B^{\prime} X=I_{k}$; defining $A^{\prime}=$ $B^{\prime}-\left(X^{\prime} X\right)^{-1} X^{\prime}$, unbiasedness of the estimator is ensured if and only if $A^{\prime} X=0$; the variance-covariance matrix of the coefficients obtained with the new estimation method is $B^{\prime} B \sigma^{2}$, which is greater than the variance-covariance matrix of the OLS coefficients $\left(X^{\prime} X\right)^{-1} \sigma^{2}$, the difference being $A^{\prime} A \sigma^{2}$, positive semi-definite, having taken into account the unbiasedness condition $A^{\prime} X=0$.
Corollary: With B satisfying the unbiasedness condition, defining the non-random $(n \times k)$ matrix $W=B X^{\prime} X$, it follows that $B^{\prime} y=\left(W^{\prime} X\right)^{-1} W^{\prime} y$; viceversa, if W is an arbitrary $(n \times k)$ matrix, not containing random variables, such that $W^{\prime} X$ is non-singular, then the linear estimator $\left(W^{\prime} X\right)^{-1} W^{\prime} y$ is unbiased; thus, any linear unbiased estimator can be expressed as $\tilde{\beta}_{W}=\left(W^{\prime} X\right)^{-1} W^{\prime} y$; its variance-covariance matrix, being W non-random, is $\left(W^{\prime} X\right)^{-1} W^{\prime} W\left(X^{\prime} W\right)^{-1} \sigma^{2}$; this matrix is always greater or equal to $\left(X^{\prime} X\right)^{-1} \sigma^{2}$ (Schwarz inequality).
OLS estimator is BLUE (best linear unbiased estimator).
$R S S=\hat{u}^{\prime} \hat{u}=u^{\prime} M_{x} u$ (even if the model has no intercept); its expected value is $E(R S S)=E\left(u^{\prime} M_{x} u\right)=E\left[\operatorname{tr}\left(u^{\prime} M_{x} u\right)\right]=$ $E\left[\operatorname{tr}\left(M_{x} u u^{\prime}\right)\right]=\operatorname{tr}\left[E\left(M_{X} u u^{\prime}\right)\right]=\operatorname{tr}\left[M_{X} E\left(u u^{\prime}\right)\right]=\operatorname{tr}\left(M_{X} \sigma^{2}\right)=\operatorname{tr}\left(M_{X}\right) \sigma^{2}=(n-k) \sigma^{2}$.
Thus $E[R S S /(n-k)]=\sigma^{2}$; thus an unbiased estimator of the variance of the error terms is $\hat{\sigma}^{2}=R S S /(n-k)$.
Summarizing: $\hat{\sigma}^{2}=R S S /(n-k)=\hat{u}^{\prime} \hat{u} /(n-k)=u^{\prime} M_{X} u /(n-k)$; its square root $(\hat{\sigma})$ is called "standard error" of the regression.
Since X does not contain random variables, $\left(X^{\prime} X\right)^{-1} \hat{\sigma}^{2}$ is an unbiased estimator of the variance-covariance matrix of the OLS coefficients; the j-th diagonal element $\left[\left(X^{\prime} X\right)^{-1}\right]_{j, j} \hat{\sigma}^{2}$ is an unbiased estimator of the variance of the $j-t h$ estimated coefficient ($\hat{\beta}_{j}$), and its square root is the standard error of $\hat{\beta}_{j}$.
Forecast (or prediction) at time h (not belonging to the sample estimation period $1,2, \ldots, n$): given the vector of explanatory variables at time h, x_{h}, assumed known (conditional prediction), the best prediction at time h of the dependent variable y would be the expectation (conditional on x_{h}) of y at time h, that will be indicated as $\bar{y}_{h}=x_{h}^{\prime} \beta$; if the model is correctly specified the "true" value of y at time h will be affected by a random error u_{h} and therefore will be $y_{h}=x_{h}^{\prime} \beta+u_{h}$; being the "true" coefficients β unknown, and being $\hat{\beta}$ the available estimate, the actual prediction will be the estimated conditional expectation of y at time h, that is $\hat{y}_{h}=x_{h}^{\prime} \hat{\beta}$; with a geometric notation, prediction would be the point on the estimated regression line (or plane, or hyperplane) corresponding to x_{h}.
Forecast error (or prediction error) at time h : it is the difference between prediction and the "true" value of y at time h, that is $\hat{y}_{h}-y_{h}$.
Variance of the forecast error (or simply variance of forecast): adding and subtracting the same quantity gives $\hat{y}_{h}-y_{h}=$ $\left(\hat{y}_{h}-\bar{y}_{h}\right)+\left(\bar{y}_{h}-y_{h}\right)=x_{h}^{\prime}(\hat{\beta}-\beta)-u_{h}=x_{h}^{\prime}\left(X^{\prime} X\right)^{-1} X^{\prime} u-u_{h}$; it is the sum of two uncorrelated random variables (since the forecast period h does not belong to the sample estimation period, u_{h} is uncorrelated with the n "in sample" elements of the vector u, according to assumption 4), thus the variance is the sum of the two variances; the variance of the second component is σ^{2} (constant for any x_{h}), while the variance of the first component is $x_{h}^{\prime}\left(X^{\prime} X\right)^{-1} x_{h} \sigma^{2}$, thus it depends on the values of the explanatory variables in the forecast period $\left(x_{h}\right)$; in the simple linear regression model, with two variables $y=$ $\beta_{1}+\beta_{2} z+u$, the variance has a minimum when z_{h} is equal to the arithmetical average of the elements of z in the sample, and becomes larger and larger as z_{h} moves far away from the average.

Distribution of linear and quadratic forms (built from multivariate normal vectors)
(1) If the random vector z (whose dimension is $n \times 1$) has a multivariate standard normal distribution $N\left(0, I_{n}\right)$, then $z^{\prime} z$ has a χ^{2} distribution with n degrees of freedom $\left(\chi_{n}^{2}\right)$.
(2) If the vector z (whose dimension is $n \times 1$) contains $k<n$ elements $=0$, while the other $n-k$ elements form a vector $N\left(0, I_{n-k}\right)$, then $z^{\prime} z$ has a χ^{2} distribution with $n-k$ degrees of freedom $\left(\chi_{n-k}^{2}\right)$.
(3) If the random vector z (whose dimension is $n \times 1$) has a multivariate standard normal distribution $N\left(0, I_{n}\right)$ and A is a matrix of constants, with dimensions $n \times n$, symmetric, idempotent with rank $n-k \leq n$, then the univariate random variable $z^{\prime} A z$ has a χ^{2} distribution with $n-k$ degrees of freedom; the proof is based on the decomposition $A=Q^{\prime} \Lambda Q$, where Q is an orthogonal matrix ($Q^{\prime}=Q^{-1}$) and Λ is the diagonal matrix containing the eigenvalues; among eigenvalues, there are
$n-k$ ones, while the others are zeroes; also Λ is idempotent $(\Lambda \Lambda=\Lambda)$; the vector $Q z$ has a multivariate normal distribution $N\left(0, I_{n}\right)$ (since $\left.Q Q^{\prime}=I_{n}\right) ; \Lambda Q z$ is a random vector with n elements; $n-k$ elements have a $N\left(0, I_{n-k}\right)$ distribution, while the other k elements are zeroes; finally, $z^{\prime} A z=(\Lambda Q z)^{\prime} \Lambda Q z$ and the results follows from applying (2).
(4) If the random vector x (whose dimension is $n \times 1$) has a multivariate normal distribution $N(0, \Sigma)$, where Σ is a $n \times n$ symmetric positive definite matrix, then the univariate random variable $x^{\prime} \Sigma^{-1} x$ has a χ^{2} distribution with n degrees of freedom; to prove it, first Σ must be decomposed as $\Sigma=P^{\prime} P$, where P is a non-singular square matrix; it follows that $z=$ $\left(P^{\prime}\right)^{-1} x$ has a zero mean multivariate normal distribution with variance-covariance matrix $\left(P^{\prime}\right)^{-1} \Sigma P^{-1}=\left(P^{\prime}\right)^{-1} P^{\prime} P P^{-1}$ $=I_{n}$; thus, z has a multivariate standard normal distribution, and the result follows from (1).
(5) If the random vector z (whose dimension is $n \times 1$) has a multivariate standard normal distribution $N\left(0, I_{n}\right)$, if A and B are two "constant" matrices with dimensions $m \times n$ and $k \times n$ respectively, and their product is $A B^{\prime}=0$ (null matrix), then the two random vectors $A z(m \times 1)$ and $B z(k \times 1)$ are independent random vectors; to prove it, $A z$ and $B z$ must be regarded as two sub-vectors of a multivariate normal random vector $[(m+k) \times 1]$, and the matrix that contains covariances between all the elements of $A z$ and $B z$ is $A B^{\prime}$ (thus $=0$); finally it is enough to remember that uncorrelated elements of a multivariate normal are independent.
(6) If A, B and z are as in (5), any transformation of the vector $A z$ and any transformation of the vector $B z$ will produce independent random variables (or vectors).
(7) If A and B are as in (5), and the random vector x (with dimension $n \times 1$) is distributed $N\left(0, \sigma^{2} I_{n}\right.$), the random vectors $A x$ and $B x$ will be independent multinormal random vectors, and any transformation of each of the two vectors will produce independent random variables (or vectors); the proof follows from (5) or (6) simply dividing each vector by the scalar constant σ, and remembering that $z=x / \sigma$ is $N\left(0, I_{n}\right)$.
(8) As a particular case of (7), if the random vector x (with dimension $n \times 1$) is distributed $N\left(0, \sigma^{2} I_{n}\right)$, and A and B are both square symmetric idempotent matrices $(n \times n)$ such that $A B=0$, then the two quadratic forms $x^{\prime} A x / \sigma^{2}$ and $x^{\prime} B x / \sigma^{2}$ are independent scalar random variables; in addition, it follows from (3) that each of the two quadratic forms has a χ^{2} distribution with degrees of freedom equal to the rank (therefore also equal to the trace) of the matrix A or B, respectively.

Statistical inference in the multiple linear regression model (under assumptions 1-6; also 6 is necessary)
Coefficients estimated by (Gaussian) maximum likelihood are equal to the OLS coefficients, and their variance-covariance matrix is the inverse of Fisher's information matrix (Cramér-Rao bound); remember that Gauss-Markov theorem did not use the assumption of normality, and proved efficiency among "linear unbiased" estimators; here, under the additional assumption of normality (6), OLS is efficient with respect to "any unbiased" estimator (proof, see sect. 16.6).
The vector of coefficient estimation errors $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$ is a linear combination of u (multivariate normal); thus it has a multivariate normal distribution $N\left[0,\left(X^{\prime} X\right)^{-1} \sigma^{2}\right]$.
The $j-t h$ estimated coefficient $\left(\hat{\beta}_{j}\right)$ has a normal distribution with mean β_{j} and variance $\left[\left(X^{\prime} X\right)^{-1}\right]_{j, j} \sigma^{2}$.
The vector u / σ has a multivariate normal distribution $N(0, I)$.
$R S S / \sigma^{2}=\hat{u}^{\prime} \hat{u} / \sigma^{2}=\left(u^{\prime} / \sigma\right) M_{X}(u / \sigma)$, where M_{X} is symmetric, idempotent and its rank is $n-k$, is a random variable with distribution χ^{2} with $(n-k)$ degrees of freedom.
Since $\hat{\sigma}^{2}=R S S /(n-k)$, then the ratio $\hat{\sigma}^{2} / \sigma^{2}$ is a random variable χ_{n-k}^{2} divided by the number of degrees of freedom $n-k$. The two random vectors $\hat{\beta}-\beta$ and \hat{u} are independent, since $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u, \hat{u}=M_{x} u$, and the product of the two matrices $\left(X^{\prime} X\right)^{-1} X^{\prime} M_{X}=0$.
Any transformation of $\hat{\beta}-\beta$ and of \hat{u} will produce independent random variables; in particular, $\hat{\beta}-\beta$ is independent of $\hat{\sigma}^{2}$. (1) $\hat{\beta}_{j}-\beta_{j}$, divided by the square root of its variance $\left[\left(X^{\prime} X\right)^{-1}\right]_{j, j} \sigma^{2}$, is a standard normal random variable.
(2) If R is a constant row vector, the scalar variable $(R \hat{\beta}-R \beta)$ divided by the square root of its variance $\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right] \sigma^{2}$, is a standard normal random variable.
(3) The quadratic form $(\hat{\beta}-\beta)^{\prime}\left(X^{\prime} X / \sigma^{2}\right)(\hat{\beta}-\beta)$ is a random variable χ_{k}^{2}.
(4) If R is a constant matrix with dimensions $(q \times k)$ and rank q, the quadratic form $(R \hat{\beta}-R \beta)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-R \beta) / \sigma^{2}$ is a random variable χ_{q}^{2}; the proof follows observing that $R \hat{\beta}-R \beta=R(\hat{\beta}-\beta)$ is a $q \times 1$ random vector with multivariate normal distribution, zero mean and variance-covariance matrix $\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right] \sigma^{2}$.
Case (1) is a particular case of (2), obtained when R is a row vector of all zeroes, but the $j-t h$ element $=1$.
Case (3) is a particular case of (4), obtained when R is the identity matrix $k \times k$.
If r is a constant vector with dimension $q \times 1$, then $R \beta=r$ is a system of q linear restrictions (or linear constraints) on the k coefficients; in particular, if $q=1$ (that is matrix R is a row vector and r is a scalar constant), $R \beta=r$ represents "one" linear restriction on coefficients.
Suppose that σ^{2} is known, then a test of "one" coefficient or a test of "one" linear restriction on coefficients (cases 1 and 2) could be done using the standard normal distribution.
Suppose that σ^{2} is known, then a test of q linear restrictions on coefficients (also called multiple restriction, case 4) could be done using the χ_{q}^{2} distribution; in particular a test of all coefficients (case 3) would use the χ_{k}^{2} distribution.
Usually σ^{2} is unknown, and the formulas of cases $1,2,3$ and 4 can be applied replacing σ^{2} with its unbiased estimate $\hat{\sigma}^{2}$; as a consequence, the test statistics that had a standard normal distribution (cases 1 and 2) are now distributed as a Student's $-t$ with $n-k$ degrees of freedom; the test statistics that had χ^{2} distributions with k or q degrees of freedom (cases 3 and 4) are now distributed as by Fisher's $-F$ with $k, n-k$ or $q, n-k$ degrees of freedom, after the expressions of the test statistics are divided by k or q, respectively.
The proof follows observing that, in all cases, σ^{2} is always at the denominator (under square root in cases 1 and 2); replacing σ^{2} with $\hat{\sigma}^{2}$ is equivalent to multiplying the denominator by the ratio $\hat{\sigma}^{2} / \sigma^{2}$, that is a random variable $\chi_{n-k}^{2} /(n-k)$ (under
square root in cases 1 and 2) independent of the numerator; thus, the standard normal will produce a Student's $-t$ with $n-k$ degrees of freedom (cases 1 and 2); in case 3 , the random variable χ_{k}^{2} will be divided by an independent random variable $\chi_{n-k}^{2} /(n-k)$, thus a further division by k will produce a Fisher's $-F$ with $k, n-k$ degrees of freedom; in case 4 , the random variable χ_{q}^{2} will be divided by an independent random variable $\chi_{n-k}^{2} /(n-k)$, thus a further division by q will produce a Fisher's $-F$ with $q, n-k$ degrees of freedom.
(1bis) $\left(\hat{\beta}_{j}-\beta_{j}\right) / \sqrt{\left[\left(X^{\prime} X\right)^{-1}\right]_{j, j} \hat{\sigma}^{2}}$, is a random variable with Student's $-t$ distribution $\left(t_{n-k}\right)$.
(2bis) If R is a row vector of constants, the scalar $(R \hat{\beta}-R \beta) / \sqrt{R\left(X^{\prime} X\right)^{-1} R^{\prime} \hat{\sigma}^{2}}$ is a random variable with Student's $-t$ distribution $\left(t_{n-k}\right)$.
(3bis) The quadratic form $(\hat{\beta}-\beta)^{\prime}\left[X^{\prime} X /\left(k \hat{\sigma}^{2}\right)\right](\hat{\beta}-\beta)$ is a random variable with Fisher's $-F$ distribution $\left(F_{k, n-k}\right)$.
(4bis) If R is a matrix of constants, with dimensions $(q \times k)$ and rank q, the quadratic form $(R \hat{\beta}-R \beta)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-$ $R \beta) /\left(q \hat{\sigma}^{2}\right)$ is a random variable with Fisher's $-F$ distribution $\left(F_{q, n-k}\right)$.
Examples of tests that use the Student's $-t$ distribution.
The null hypothesis concerns the exact value of the $j-t h$ coefficient, while the alternative is that such a coefficient has a different value; this is usually written as $H_{0}: \beta_{j}=r ; H_{1}: \beta_{j} \neq r$, where r is a given constant; under the null hypothesis the ratio between $\left(\hat{\beta}_{j}-r\right)$ and the standard error of $\hat{\beta}_{j}$ will be a random variable with Student's- t distribution (t_{n-k}); as a "default" option, all software packages test the null hypothesis $\beta_{j}=0$, thus they simply compute the ratio between $\hat{\beta}_{j}$ and its standard error; under the null hypothesis such a ratio is a random variable with Student's $-t$ distribution $\left(t_{n-k}\right)$; if this ratio (in absolute value) is greater than the critical value (at 5%, for instance), the null hypothesis is rejected in favour of the alternative hypothesis ($\beta_{j} \neq 0$, thus concluding that the $j-t h$ regressor is significant).
The null hypothesis concerns the "equality" of two coefficients, that is $H_{0}: \beta_{1}=\beta_{2} ; H_{1}: \beta_{1} \neq \beta_{2}$; the null hypothesis is a linear restriction that can be represented as $R \beta=r$, where $r=0$ (scalar) and R is a row vector whose first two elements are 1 and -1 , while all the others are zeroes; then, under the null hypothesis, the ratio between the scalar random variable $(R \hat{\beta}-r)$ and the square root of $\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right] \hat{\sigma}^{2}$ is a t_{n-k}; if this ratio (in absolute value) is greater than the critical value (at 5%, for instance), the null hypothesis is rejected in favour of the alternative hypothesis (thus concluding that the two coefficients are different).
The null hypothesis concerns the "sum" of two coefficients: $H_{0}: \beta_{1}+\beta_{2}=1 ; H_{1}: \beta_{1}+\beta_{2} \neq 1$; for instance, the exponents of the two production factors in a Cobb-Douglas log-linear function become the coefficients of a linear regression model after variables have been transformed into logarithms, and the constant returns to scale hypothesis has to be tested; the null hypothesis is a linear restriction representable as $R \beta=r$, where $r=1$ (scalar) and R is a row vector whose first two elements are 1, while all the others are zeroes; then the procedure is the same as in the previous case.
Examples of tests that use the Fisher's $-F$ distribution.
If the matrix R has dimensions $1 \times k$ (row vector) and its elements are all zeroes with the only exception of the $j-t h$ element, which is 1 , then the test statistic is distributed as a $F(1, n-k)$ and it is exactly equal to the square of the test statistic discussed above (when testing the hypothesis $\beta_{j}=0$), which was distributed as a Student's $-t\left(t_{n-k}\right)$; the two tests always give the same result, since the critical value (for instance at 5%) of the $F(1, n-k)$ is exactly the square of the t_{n-k} critical value.
If r is a vector of k zeroes, and R is the identity matrix with dimensions $k \times k$, then the system of linear restrictions $R \beta=r$ means $\beta_{1}=0, \beta_{2}=0, \ldots, \beta_{k}=0$, and the $F(k, n-k)$ test statistic is obtained from $\hat{\beta}^{\prime} X^{\prime} X \hat{\beta} /\left(k \hat{\sigma}^{2}\right)$; this could be considered a significance test of the whole regression; in fact, the null hypothesis would be accepted if no regressor is significant; in practice, this is done only for linear regressions without intercept.
Significance test for a subset of regressors; the usual procedure is applied using a suitable matrix $R(q \times k)$ with elements zeroes or ones, and a $(q \times 1)$ vector $r=0$; as a "default" option for regression models with intercept, software packages test the null hypothesis that "all coefficients but the intercept" are zeroes, and this is the usual significance test of the whole regression.

Restricted least squares estimation

The method aims at producing coefficient values that minimize the sum of squared residuals satisfying, at the same time, $\mathrm{q} \leq \mathrm{k}$ linear restrictions $R \beta=r ; \lambda$ indicates a $q \times 1$ vector of Lagrange multipliers and is used to build the Lagrangean function: f $=(y-X \beta)^{\prime}(y-X \beta)-2 \lambda^{\prime}(R \beta-r)$ (minus sign and the factor 2 are introduced to simplify computation); estimates of β and λ are the solution of the system of first order conditions, obtained differentiating f with respect to β and λ; differentiating with respect to β gives $\partial f / \partial \beta=-2 X^{\prime} y+2 X^{\prime} X \beta-2 R^{\prime} \lambda$; differentiating with respect to λ gives $\partial f / \partial \lambda=-2(R \beta-r)$; the first order conditions are obtained equating to zero the two vectors of derivatives: (1) $X^{\prime} X \hat{\alpha}-X^{\prime} y-R^{\prime} \hat{\lambda}=0$; (2) $R \hat{\alpha}-r$ $=0$ (the system (1) and (2) is a system of $k+q$ linear equations with $k+q$ unknowns; to avoid confusion with the OLS coefficients of the unrestricted model, $\hat{\alpha}$ will be used to indicate the solution for coefficients, while $\hat{\lambda}$ will be the solution for the multipliers); pre-multiplying (1) by $R\left(X^{\prime} X\right)^{-1}$ gives $R \hat{\alpha}-R\left(X^{\prime} X\right)^{-1} X^{\prime} y-R\left(X^{\prime} X\right)^{-1} R^{\prime} \hat{\lambda}=0$, where substitution of $R \hat{\alpha}$ with r gives $r-R \hat{\beta}-R\left(X^{\prime} X\right)^{-1} R^{\prime} \hat{\lambda}=0$, that produces the solution for the vector of Lagrange multipliers $\hat{\lambda}=$ $\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R \hat{\beta})$; this expression of $\hat{\lambda}$ can be substituted into (1) giving $X^{\prime} X \hat{\alpha}-X^{\prime} y-R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(r-R \hat{\beta})$ $=0$, that provides the solution $\hat{\alpha}=\hat{\beta}-W(R \hat{\beta}-r)$, having indicated $W=\left(X^{\prime} X\right)^{-1} R^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}$.
After estimating coefficients that satisfy the system of linear restrictions, $\hat{\alpha}$, the corresponding residuals are $\hat{e}=y-X \hat{\alpha}=$ $y-X \hat{\beta}-X(\hat{\alpha}-\hat{\beta})=\hat{u}-X(\hat{\alpha}-\hat{\beta})$ where \hat{u} is the vector of OLS residuals (unrestricted); pre-multiplication by the transpose gives $\hat{e}^{\prime} \hat{e}=\hat{u}^{\prime} \hat{u}+(\hat{\alpha}-\hat{\beta})^{\prime} X^{\prime} X(\hat{\alpha}-\hat{\beta})$ (the cross products vanish, because $X^{\prime} \hat{u}=0$); substituting the value of $\hat{\alpha}-\hat{\beta}$ computed above gives $\hat{e}^{\prime} \hat{e}-\hat{u}^{\prime} \hat{u}=(R \hat{\beta}-r)^{\prime}\left[R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1}(R \hat{\beta}-r)$.

The above expression is the difference between the sums of squared residuals in the least squares estimations with restrictions and without restrictions, respectively; $\hat{e}^{\prime} \hat{e}=R R S S$ is the restricted residual sum of squares, $\hat{u}^{\prime} \hat{u}=U R S S$ is the unrestricted residual sum of squares, (obviously the former is always greater or equal to the latter); the explicit formula just obtained for such a difference is equal to the numerator of the Fisher's $-F$ statistic when testing the system of q linear restrictions $R \beta=$ r (4bis).
Thus, an alternative expression of the Fisher's $-F$ test statistic can be used: $[(R R S S-U R S S) / q] /[U R S S /(n-k)]$, where $R R S S$ is the restricted residual sum of squares (that is, after restrictions have been imposed to the model), URSS is the unrestricted residual sum of squares (the model estimated by OLS, without imposing any restriction), q is the number of restrictions; the denominator, as above, is the OLS unbiased estimate of the variance of the unrestricted model: $\hat{\sigma}^{2}=$ $U R S S /(n-k)$; obviously, it is always $R R S S \geq U R S S$, so that the value cannot be negative.
The above alternative expression of the Fisher's $-F$ test statistic can always be applied when testing a set of linear restrictions $R \beta=r$; instead of estimating by OLS the unrestricted model, and then applying the formula (4bis), the alternative procedure needs two OLS estimations, one of the original model (unrestricted) and one of the model after restrictions have been imposed (restricted model); URSS and $R R S S$ are computed from the two set of residuals.
When restrictions produce a model whose OLS estimation is simple (in other words, when restricted least squares can be performed easily) the alternative procedure can be easier than the application of the formulas (3bis and 4bis); it does not lead to a simplification when restricted least squares is of difficult application.
As a "default" option for regression models with intercept $\left(\beta_{1}\right)$, software packages test the null hypothesis that "all coefficients but the intercept" are zeroes, and this is the usual significance test of the whole regression, that is $H_{0}: \beta_{2}=0, \beta_{3}=0$, $\ldots, \beta_{k}=0$; thus the number of restrictions is $q=k-1$, and the alternative expression of the Fisher's $-F$ is quite simple; the restricted model has a unique regressor (the constant), thus its coefficient is the arithmetical average of the dependent variable; thus $R R S S$ is the sum of squared deviations of the observed elements of y from their arithmetical average (called $T S S$, when dealing with the definition of R^{2}); therefore in this particular case the computation of the $F_{k-1, n-k}$ test statistic is quite similar to the computation of the R^{2} (in particular, the R^{2} adjusted for the degrees of freedom); a value of the test statistic greater than the critical value (for instance at 5%) of the $F_{k-1, n-k}$ distribution leads to rejection of the null hypothesis, thus accepting some sort of significance of the whole regression.
Other cases where it is simple to estimate the restricted least squares coefficients (thus the alternative form of the Fisher's $-F$ test statistic is of simple computation): when the null hypothesis is $\beta_{1}=\beta_{2}$, or $\beta_{1}+\beta_{2}=0$, or $\beta_{1}+\beta_{2}=1$, or the hypothesis concerns a structure of distributed lags where weights decrese linearly.
Expected values of coefficients estimated by restricted least squares: since $\hat{\alpha}=\hat{\beta}-W(R \hat{\beta}-r)$, it is $E(\hat{\alpha})=E(\hat{\beta})-W(R E(\hat{\beta})-$ $r)=\beta-W(R \beta-r)$; thus, if the restrictions are "valid" so that $R \beta-r=0$, the consequence is $E(\hat{\alpha})=\beta$, thus estimation is unbiased; on the contrary, if restrictions are not valid, $R \beta-r \neq 0$ and the restricted least squares estimates are usually biased, the bias being $E(\hat{\alpha})-\beta=-W(R \beta-r)$.
The variance-covariance matrix of coefficients estimated by restricted least squares is $\operatorname{Var}(\hat{\alpha})=\operatorname{Var}[\hat{\beta}-W(R \hat{\beta}-r)]=$ $\operatorname{Var}(\hat{\beta}-W R \hat{\beta})=\operatorname{Var}[(I-W R) \hat{\beta}]=(I-W R)\left(X^{\prime} X\right)^{-1}(I-W R)^{\prime} \sigma^{2}=\left(X^{\prime} X\right)^{-1} \sigma^{2}-W R\left(X^{\prime} X\right)^{-1} \sigma^{2}-\left(X^{\prime} X\right)^{-1} R^{\prime} W^{\prime} \sigma^{2}+$ $W R\left(X^{\prime} X\right)^{-1} R^{\prime} W^{\prime} \sigma^{2}$ (when W is replaced by its full expression, two terms will cancel out) $=\left(X^{\prime} X\right)^{-1} \sigma^{2}-\left(X^{\prime} X\right)^{-1} R^{\prime}$ [$\left.R\left(X^{\prime} X\right)^{-1} R^{\prime}\right]^{-1} R\left(X^{\prime} X\right)^{-1} \sigma^{2}$; thus it is equal to the variance-covariance matrix of OLS coefficients "minus" a symmetric positive semidefinite matrix; thus restricted least squares coefficients always have a variance-covariance matrix smaller than (at most equal to) the unrestricted OLS coefficients, no matter if restrictions are valid (thus the restricted estimate is unbiased) or not valid (thus the restricted estimate is usually biased); it must be noticed that the vector r does not appear in the expression of this matrix.
Specification error due to omission of relevant explanatory variables: let $X=\left[X_{1}, X_{2}\right]$, but instead of the correctly specified model $y=X_{1} \beta_{1}+X_{2} \beta_{2}+u$, with $k=k_{1}+k_{2}$ regressors, the model that is estimated is $y=X_{1} \alpha_{1}+e$, with k_{1} regressors, omitting k_{2} relevant regressors $\left(X_{2}\right)$; it is like estimating the original model with restricted least squares, after imposing the restrictions $\beta_{2}=0$, which are not valid; thus there will usually be a bias in the estimated coefficients; explicit computation gives $E\left(\hat{\alpha}_{1}\right)=E\left[\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y\right]=E\left[\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+u\right)\right]=\beta_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}$; thus, bias depends, among other things, on the omitted variables and coefficients $\left(X_{2} \beta_{2}\right)$; however, in a particular case the restricted estimate might be unbiased for the included coefficients: when the omitted regressors are orthogonal to the included regressors, that is when $X_{1}^{\prime} X_{2}=0$; also the estimate of the variance is biased (overestimated); in fact $\hat{\sigma}^{2}=\left(\hat{e}^{\prime} \hat{e}\right) /\left(n-k_{1}\right)=\left(y^{\prime} M_{X_{1}} y\right) /\left(n-k_{1}\right)=$ $\left(X_{1} \beta_{1}+X_{2} \beta_{2}+u\right)^{\prime} M_{X_{1}}\left(X_{1} \beta_{1}+X_{2} \beta_{2}+u\right) /\left(n-k_{1}\right)=\left(X_{2} \beta_{2}+u\right)^{\prime} M_{X_{1}}\left(X_{2} \beta_{2}+u\right) /\left(n-k_{1}\right)$ (being $\left.M_{X_{1}} X_{1}=0\right)$, and its expectation is $E\left(\hat{\sigma}^{2}\right)=\sigma^{2}+\beta_{2}^{\prime} X_{2}^{\prime} M_{X_{1}} X_{2} \beta_{2} /\left(n-k_{1}\right)$; this sistematic overestimation occurs also when the omitted regressors are orthogonal to the included regressors: in fact, if $X_{1}^{\prime} X_{2}=0$, the expected value is $\sigma^{2}+\beta_{2}^{\prime} X_{2}^{\prime} X_{2} \beta_{2} /\left(n-k_{1}\right)$.
Specification error due to the inclusion of irrelevant explanatory variables (regressors that do not help explanation of the dependent variable): the correctly specified model is $y=X_{1} \beta_{1}+e$, but OLS estimation is applied to a model that includes additional regressors, X_{2}, which are not relevant; this is like saying that the "unrestricted" model $y=X_{1} \beta_{1}+X_{2} \beta_{2}+u$ is correctly specified, with "true" values of the β_{2} coefficients $=0$; thus OLS estimation of the unrestricted model is unbiased (in particular with $E\left(\hat{\beta}_{2}\right)=0$); the original model, $y=X_{1} \beta_{1}+e$, can be viewed as obtained from the unrestricted model imposing the set of "valid" restrictions $\beta_{2}=0$, so OLS estimation is also unbiased and, having imposed restrictions, it has a variance-covariance matrix smaller than the unrestricted OLS coefficients; thus, including some irrelevant explanatory variables on the right hand side of the equation does not produce any bias, but reduces efficiency.
Test of structural change (also called Chow test): in a linear regression model, where the sample size is n, a change in the structure may have occurred; it is possible that the coefficients in the first sub-sample (n_{1} observations) are different from coefficients in the second sub-sample (n_{2} observations, where $n_{1}+n_{2}=n$); the null hypothesis to be tested is that coefficients
remained constant over the whole sample; vector y (n elements) is divided into the two sub-vectors y_{1} e y_{2}, corresponding to the two sub-samples of the dependent variable; analogously, the matrix of regressors is divided into the two sub-matrices X_{1} $\left(n_{1} \times k\right)$ and $X_{2}\left(n_{2} \times k\right)$ and two vectors of coefficients are considered, β_{1} and β_{2}, both $k \times 1$; the coefficients vector $\beta(2 k \times 1)$ contains the elements of β_{1} followed by the elements of β_{2}; matrix $X(n \times 2 k)$ is a block-diagonal matrix whose diagonal blocks are X_{1} and X_{2}, while off-diagonal blocks contain all zeroes; OLS estimation is applied to the model $y=X \beta+u$; the coefficients in the vector $\hat{\beta}(2 k \times 1)$ are exactly the same that would be obtained from two separate OLS estimations of the model $y_{1}=X_{1} \beta_{1}+u_{1}$ using the first n_{1} observations, and the model $y_{2}=X_{2} \beta_{2}+u_{2}$ on the last n_{2} observations (the proof is straightforward, remembering that $X^{\prime} X$ is a block-diagonal square matrix, thus it can be inverted simply inverting the two diagonal blocks that are $X_{1}^{\prime} X_{1}$ and $X_{2}^{\prime} X_{2}$); the sum of the n squared residuals is $U R S S$; the null hypothesis is that $\beta_{1}=\beta_{2}$ (no structural change); this test is based on the Fisher's $-F$ distribution and is usually applied using the alternative form of the test; so it is now necessary to estimate the model after imposing the k linear restrictions (or constraints) $\beta_{1}=\beta_{2}$; the restricted model has a matrix of regressors $X(n \times k)$ where X_{1} and X_{2} are two consecutive blocks (rather than diagonal blocks), and has a vector of coefficients β containing k elements; this restricted model $y=X \beta+u$ is estimated by OLS on the whole sample period (n observations) computing $R R S S$ as the sum of n squared residuals; it must be noticed that the unrestricted model has $2 k$ regressors, and that the restricted model is obtained imposing k restrictions; thus the Fisher's $-F$ test statistic $(k, n-2 k)$ is obtained as $[(R R S S-U R S S) / k] /[U R S S /(n-2 k)]$; a value of the test statistic greater than the critical value (for instance at 5%) of the $F_{k, n-2 k}$ distribution leads to rejection of the null hypothesis (that coefficients did not change in the two sub-samples), thus evidencing a structural change.
The test of structural change can be applied to a subset of coefficients; this can be done in the unrestricted model by "duplicating" only the coefficients that might change in the sample, and splitting the corresponding regressors, while the other regressors and coefficients remain unchanged; the degrees of freedom of the Fisher's $-F$ depend on the number of coefficients that are tested; for instance, when testing only one coefficient, the degrees of freedom of the Fisher's $-F$ will be $1, n-k-1$ (1 restriction, k regressors in the original model, $k+1$ regressors in the unrestricted model, after the split of one column into two columns).
The test of structural change can be applied also when two or more changes may have occurred in the sample; for instance it is possible that all coefficients have changed their values when passing from the first sub-sample (n_{1} observations) to the second sub-sample (n_{2} observations) and again to the third sub-sample (n_{3} observations, where $n_{1}+n_{2}+n_{3}=n$); the unrestricted model will have a block-diagonal matrix of regressors with 3 diagonal blocks (its dimensions will be $n \times 3 k$), and a $(3 k \times 1)$ vector of coefficients.
Remark. Estimation of the unrestricted model would be impossible if the block-diagonal matrix $X^{\prime} X$ is singular; this happens if one of the sub-periods has a number of observations $<k$ (insufficient observations); for instance, if $n_{2}<k, X_{2}^{\prime} X_{2}$ is singular, so $X^{\prime} X$ cannot be inverted, being $X_{2}^{\prime} X_{2}$ its second diagonal block; a solution to this problem is the Chow predictive test, that estimates the restricted model on the longer sub-sample, uses it to predict the shorter sub-period, and finally considers the distribution of the prediction error.

Multiple linear regression model where the variance-covariance matrix is not scalar and it is "known"

(4-bis) If assumption (4) is not valid, the variance-covariance matrix of the error terms is represented as $E\left(u u^{\prime}\right)=\sigma^{2} \Omega$, where $\Omega(n \times n)$ is symmetric and positive definite; OLS estimation is unbiased, since $E(\hat{\beta}-\beta)=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u\right]=0$; the variance-covariance matrix of the OLS coefficients is $\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1} \sigma^{2}$; if assumption (4) is not valid, Gauss-Markov may be not applicable; thus OLS may be inefficient.
Aitken's theorem: under assumptions $1,2,3,4$-bis and 5 (6 is unnecessary), if Ω is known (that is, the variance-covariance matrix is almost completely known, the only unknown being a scalar multiplicative constant called σ^{2}), coefficient estimated by generalized least squares (GLS) $\dot{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y$ have the smallest variance-covariance matrix among all linear unbiased estimators; in other words, GLS is efficient with respect to any other linear unbiased estimator.
The proof follows from a straightforward application of Gauss-Markov theorem to an appropriate transformation of the model; first of all the GLS estimator is unbiased because $E(\dot{\beta}-\beta)=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u=0$, and its variance-covariance matrix is $\left(X^{\prime} \Omega^{-1} X\right)^{-1} \sigma^{2}$; to prove efficiency, first of all matrix Ω must be decomposed as $\Omega=P^{\prime} P$, where P is a non-singular square matrix $(n \times n)$; the model is then transformed pre-multiplying by $P^{\prime-1}$, which gives $P^{\prime-1} y=P^{\prime-1} X \beta+P^{\prime-1} u$; the transformed variables are now called $q=P^{\prime-1} y, Q=P^{\prime-1} X$ and the transformed error terms are called $\varepsilon=P^{\prime-1} u$; the transformed variable are thus related through the linear regression model $q=Q \beta+\varepsilon$, where coefficients are the same as in the original model, and the error terms are such that $E(\varepsilon)=0, E\left(\varepsilon \varepsilon^{\prime}\right)=P^{\prime-1} E\left(u u^{\prime}\right) P^{-1}=P^{\prime-1} \Omega P^{-1} \sigma^{2}=\sigma^{2} I_{n}$; thus the transformed model satisfies all the conditions underlying Gauss-Markov theorem, thus OLS is efficient when it is applied to the transformed model (instead of the original model), which gives: $\dot{\beta}=\left(Q^{\prime} Q\right)^{-1} Q^{\prime} q=\left(X^{\prime} P^{-1} P^{\prime-1} X\right)^{-1} X^{\prime} P^{-1} P^{\prime-1} y=$ $\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y$, which is the GLS estimation of the original model.
Substituting $y=X \beta+u$ into $\dot{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y$, it follows that $\dot{\beta}-\beta=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} u$, so that the variance $\operatorname{Var}(\dot{\beta})=\left(X^{\prime} \Omega^{-1} X\right)^{-1} \sigma^{2}$.
If the model is estimated by OLS, being $\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u$, it follows that $\operatorname{Var}(\hat{\beta})=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} \Omega X\right)\left(X^{\prime} X\right)^{-1} \sigma^{2}$. This variance-covariance matrix is greater or equal to the GLS matrix, the proof being obtained computing the product $\left[\left(X^{\prime} X\right)^{-1} X^{\prime} P^{\prime}-\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} P^{-1}\right]\left[P X\left(X^{\prime} X\right)^{-1}-P^{\prime-1} X\left(X^{\prime} \Omega^{-1} X\right)^{-1}\right]=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} \Omega X\right)\left(X^{\prime} X\right)^{-1}-\left(X^{\prime} \Omega^{-1} X\right)^{-1}$ which is positive semi definite, being the product of a matrix with its transpose.
Remark. The result does not change if, in the final GLS formula, the whole expression of the variance-covariance matrix $\sigma^{2} \Omega$ is used instead of Ω (the scalar constant σ^{2} would cancel out).

A list of other topics

Dummy variables.

Regression specification error test (Reset).
Heteroskedastic errors: OLS is unbiased but not efficient; heteroskedasticity of "known" form and weighted least squares; Breusch and Pagan test; heteroskedasticity of "unknown" form and "sandwich" estimator of the variance-covariance matrix; White's test.
Autocorrelated errors: OLS is unbiased but not efficient; first order autoregressive errors AR(1); Cochrane-Orcutt estimation method; Breusch and Godfrey test (LM test or Fisher's $-F$ test); optimal prediction when errors are AR(1). Multicollinearity; perfect and near multicollinearity.
\qquad

1.1 Products of matrices and vectors

$X^{\prime}=\left[\begin{array}{cccccc}x_{1,1} & x_{2,1} & \ldots & x_{i, 1} & \ldots & x_{n, 1} \\ x_{1,2} & x_{2,2} & \ldots & x_{i, 2} & \ldots & x_{n, 2} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{1, k} & x_{2, k} & \ldots & x_{i, k} & \ldots & x_{n, k}\end{array}\right] \quad X=\left[\begin{array}{cccc}x_{1,1} & x_{1,2} & \ldots & x_{1, k} \\ x_{2,1} & x_{2,2} & \ldots & x_{2, k} \\ \ldots & \ldots & \ldots & \ldots \\ x_{i, 1} & x_{i, 2} & \ldots & x_{i, k} \\ \ldots & \ldots & \ldots & \ldots \\ x_{n, 1} & x_{n, 2} & \ldots & x_{n, k}\end{array}\right] \quad(n \times k) \quad(n \times 1)\left[\begin{array}{c}u_{1} \\ u_{2} \\ \ldots \\ u_{i} \\ \ldots \\ u_{n}\end{array}\right], ~ u=10$
$\begin{array}{c}x_{i}= \\ (k \times 1)\end{array}\left[\begin{array}{c}x_{i, 1} \\ x_{i, 2} \\ \ldots \\ x_{i, k}\end{array}\right]=$ column i of $\left.X^{\prime} \quad \begin{array}{cccc}x_{i}^{\prime}= \\ (1 \times k)\end{array} \begin{array}{llll}x_{i, 1} & x_{i, 2} & \ldots & x_{i, k}\end{array}\right]=$ row i of $X \quad u_{i}=$ is a scalar
There are n matrices $x_{i} x_{i}^{\prime}$ of dimensions $(k \times k)$.
$X^{\prime} X=\sum_{i=1}^{n} x_{i} x_{i}^{\prime}$ is the matrix $(k \times k)$ sum of these n matrices.
$\frac{1}{n} X^{\prime} X=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{\prime}$ is the matrix $(k \times k)$ arithmetical average of these n matrices.
There are n vectors $x_{i} u_{i}$ of dimensions $(k \times 1)$.
$X^{\prime} u=\sum_{i=1}^{n} x_{i} u_{i}$ is the vector $(k \times 1)$ sum of these n vectors.
$\frac{1}{n} X^{\prime} u=\frac{1}{n} \sum_{i=1}^{n} x_{i} u_{i}$ is the vector $(k \times 1)$ arithmetical average of these n vectors.
$(k \times n)\left[\begin{array}{cccccc}w_{1,1} & w_{2,1} & \ldots & w_{i, 1} & \ldots & w_{n, 1} \\ w_{1,2} & w_{2,2} & \ldots & w_{i, 2} & \ldots & w_{n, 2} \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ w_{1, k} & w_{2, k} & \ldots & w_{i, k} & \ldots & w_{n, k}\end{array}\right] \quad W=\left[\begin{array}{cccc}w_{1,1} & w_{1,2} & \ldots & w_{1, k} \\ w_{2,1} & w_{2,2} & \ldots & w_{2, k} \\ \ldots & \ldots & \ldots & \ldots \\ w_{i, 1} & w_{i, 2} & \ldots & w_{i, k} \\ \ldots & \ldots & \ldots & \ldots \\ w_{n, 1} & w_{n, 2} & \ldots & w_{n, k}\end{array}\right]$
$\begin{gathered}w_{i}= \\ (k \times 1)\end{gathered}\left[\begin{array}{c}w_{i, 1} \\ w_{i, 2} \\ \ldots \\ w_{i, k}\end{array}\right]=$ column i of $W^{\prime} \quad \begin{gathered}w_{i}^{\prime}=\left[\begin{array}{llll}w_{i, 1} & w_{i, 2} & \ldots & w_{i, k}\end{array}\right]=\text { row } i \text { of } W \\ (1 \times k)\end{gathered}$
There are n matrices $w_{i} x_{i}^{\prime}$ of dimensions $(k \times k)$.
$W^{\prime} X=\sum_{i=1}^{n} w_{i} x_{i}^{\prime}$ is the matrix $(k \times k)$ sum of these n matrices.
$\frac{1}{n} W^{\prime} X=\frac{1}{n} \sum_{i=1}^{n} w_{i} x_{i}^{\prime}$ is the matrix $(k \times k)$ arithmetical average of these n matrices.
There are n vectors $w_{i} u_{i}$ of dimensions $(k \times 1)$.
$W^{\prime} u=\sum_{i=1}^{n} w_{i} u_{i}$ is the vector $(k \times 1)$ sum of these n vectors.
$\frac{1}{n} W^{\prime} u=\frac{1}{n} \sum_{i=1}^{n} w_{i} u_{i}$ is the vector $(k \times 1)$ arithmetical average of these n vectors.

1.2 Quadratic forms and rectangular forms

If u is a $(n \times 1)$ vector and A is a $(n \times n)$ matrix, the quadratic form has the following scalar expression:
$u^{\prime} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} u_{i} u_{j}$
If v is a $(k \times 1)$ vector and B is a $(n \times k)$ matrix, the rectangular form has the following scalar expression:
$u^{\prime} B v=\sum_{i=1}^{n} \sum_{j=1}^{k} b_{i, j} u_{i} v_{j}$

1.3 A special product of three matrices

If X is a $(n \times k)$ matrix as above, and Σ is a $(n \times n)$ diagonal matrix
$\Sigma=\left[\begin{array}{cccccc}\sigma_{1}^{2} & 0 & \ldots & 0 & \ldots & 0 \\ 0 & \sigma_{2}^{2} & \ldots & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & \sigma_{i}^{2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & 0 & \ldots & \sigma_{n}^{2}\end{array}\right]$
then $X^{\prime} \Sigma X=\sum_{i=1}^{n} x_{i} x_{i}^{\prime} \sigma_{i}^{2}$

1.4 Schwarz inequality

Between scalars, with scalar notation: $\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$
Between scalars, with vector notation (if $\left.a^{\prime} b \neq 0\right):\left(a^{\prime} b\right)^{2} \leq\left(a^{\prime} a\right)\left(b^{\prime} b\right) \Rightarrow\left(a^{\prime} b\right)^{-1} a^{\prime} a\left(b^{\prime} a\right)^{-1} \geq\left(b^{\prime} b\right)^{-1}$

It is a particular case of the following inequality between positive semidefinite matrices (with dimensions of X and W as above, and provided $n \geq k$ and $W^{\prime} X$ is non-singular): $\left(W^{\prime} X\right)^{-1} W^{\prime} W\left(X^{\prime} W\right)^{-1} \geq\left(X^{\prime} X\right)^{-1}$
Proof: $\left(W^{\prime} X\right)^{-1} W^{\prime} W\left(X^{\prime} W\right)^{-1}-\left(X^{\prime} X\right)^{-1}=\left[\left(W^{\prime} X\right)^{-1} W^{\prime}-\left(X^{\prime} X\right)^{-1} X^{\prime}\right]\left[\left(W^{\prime} X\right)^{-1} W^{\prime}-\left(X^{\prime} X\right)^{-1} X^{\prime}\right]^{\prime}$, being the product of a matrix with its transpose, is a positive semidefinite matrix.

2 AN EXAMPLE OF SIMULTANEOUS EQUATIONS: KLEIN-I MODEL

The structural form of the model is

$$
\left[\begin{array}{ll}
C_{t}=\alpha_{1}+\alpha_{2} P_{t}+\alpha_{3} P_{t-1}+\alpha_{4} W_{t}+u_{1, t} & \text { Consumption } \tag{2.1}\\
I_{t}=\alpha_{5}+\alpha_{6} P_{t}+\alpha_{7} P_{t-1}+\alpha_{8} K_{t-1}+u_{2, t} & \text { Investment (net) } \\
W_{t}^{p}=\alpha_{9}+\alpha_{10} X_{t}+\alpha_{11} X_{t-1}+\alpha_{12} A_{t}+u_{3, t} & \text { Private wages } \\
X_{t}=C_{t}+I_{t}+G_{t} & \text { Equilibrium demand } \\
P_{t}=X_{t}-T_{t}-W_{t}^{p} & \text { Profits } \\
K_{t}=K_{t-1}+I_{t} & \text { Capital stock } \\
W_{t}=W_{t}^{p}+W_{t}^{g} & \text { Total wages }
\end{array}\right.
$$

The model is usually presented as a system of 6 equations with 6 endogenous variables, as it was originally proposed in Klein (1950). The last (seventh) equation and endogenous variable, introduced here in addition to the original 6, avoids the need of equality restrictions in the first equation (otherwise the coefficient α_{4} would multiply the sum of two variables $W_{t}^{p}+W_{t}^{g}$). Also, the third and fourth equations are usually presented in a slightly different way; the representation adopted here (2.1), taken from Greene (2008, 15.2), is perfectly equivalent to the original, but can be treated more easily.
This is an excellent example of a small, linear and manageable macroeconomic dynamic model, widely used in the literature as a test ground for estimation methods. The original Klein's data set contains data of the U.S. economy from 1920 to 1941 (interwar years, including the depression years; all variables are at constant prices). Due to the lag-1 variables, the estimation period (or sample period) is 1921-1941.
Endogenous variables are the 7 variables appearing on the left hand side of each structural equation, labeled on the right.
The exogenous variables are 5:
$1=$ Constant
$W_{t}^{g}=$ Government wages
$T_{t}=$ Business taxes
$A_{t}=$ Linear time trend, measured as annual deviations from 1931, positive or negative; it is used as a proxy for increased bargaining power of labour (or union strength) during the sample period
$G_{t}=$ Government nonwage expenditure.
The model also includes 3 lagged endogenous variables:
X_{t-1}
P_{t-1}
K_{t-1}.
The model contains 3 behavioural stochastic equations (the first 3 equations) and 4 identities, the first of which is an equilibrium condition, while the last three equations are accounting (or definitional) identities.
No variable appears in this model with an order lag greater than one; also there are no lagged exogenous variables. The original data set and detailed numerical results are in Appendix (13).

3 SIMULTANEOUS EQUATIONS: STRUCTURAL FORM AND REDUCED FORM

There are problems for which it is necessary to distinguish between exogenous and lagged endogenous variables (for example, dynamic solution, multi steps ahead forecast, delay or cumulated multipliers). In these cases we use an explicit dynamic notation.
There are cases where such a distinction is unnecessary, for example when studying identification, estimation methods and solution of the model one step ahead, and the notation can be slightly simplified, becoming essentially a static notation.

3.1 Dynamic notation

Structural form and reduced form of a system of dynamic simultaneous equations can be represented as

$$
\left[\begin{array} { l }
{ \text { Structural form } } \tag{3.2}\\
{ B y _ { t } + C z _ { t } + D y _ { t - 1 } = u _ { t } } \\
{ u _ { t } : \text { i.i.d. } } \\
{ E (u _ { t }) = 0 } \\
{ \operatorname { V a r } (u _ { t }) = \Sigma }
\end{array} \quad \left[\begin{array}{l}
\text { Reduced form } \\
\\
y_{t}=\Pi_{1} z_{t}+\Pi_{0} y_{t-1}+v_{t} \\
v_{t}: i . i . d . \\
E\left(v_{t}\right)=0 \\
\operatorname{Var}\left(v_{t}\right)=\Psi
\end{array}\right.\right.
$$

The $(G \times 1)$ vector of endogenous variables at time t is called $y_{t}\left(7 \times 1\right.$ in the example); with the same dimensions, y_{t-1} is the vector of lagged endogenous variables; z_{t} is the ($K \times 1$) vector of exogenous variables at time t (5×1 in the example); u_{t} and v_{t} are the $(G \times 1)$ vectors of error terms at time t, Σ and Ψ their variance-covariance matrices (assumed constant $\forall t$). With reference to the model used as example it is
$\left.\begin{array}{l}y_{t}= \\ (G \times 1) \\ (7 \times 1)\end{array}\left[\begin{array}{l}C_{t} \\ I_{t} \\ W_{t}^{p} \\ X_{t} \\ P_{t} \\ K_{t} \\ W_{t}\end{array}\right] \quad y_{t-1}=\left[\begin{array}{l}C_{t-1} \\ I_{t-1} \\ W_{t-1}^{p} \\ X_{t-1} \\ P_{t-1} \\ K_{t-1} \\ W_{t-1}\end{array}\right] \quad z_{t}=\quad\left[\begin{array}{l}1 \times 1) \\ W_{t}^{g} \\ T_{t} \\ A_{t} \\ G_{t}\end{array}\right] \quad \begin{array}{l}u_{t}= \\ (G \times 1) \\ (7 \times 1)\end{array}\left[\begin{array}{l}u_{1, t} \\ u_{2, t} \\ u_{3, t} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right] \quad \begin{array}{l}v_{t}= \\ (G \times 1) \\ (7 \times 1) \\ v_{3, t} \\ v_{4, t} \\ v_{5, t} \\ v_{6, t} \\ v_{7, t}\end{array}\right]$
B is the $(G \times G)$ matrix of structural form coefficients of the endogenous variables (7×7 in the example); C is the $(G \times K)$ matrix of structural form coefficients of the exogenous variables (7×5 in the example); D is the ($G \times G$) matrix of structural form coefficients of the lagged endogenous variables $(7 \times 7$ in the example). Although being of dimensions (7×7), the matrix D has 4 columns of zeroes, corresponding to the 4 endogenous variables that do not appear in the model with lag-1.

$$
\begin{align*}
& \begin{array}{l}
B= \\
(G \times G) \\
(7 \times 7)
\end{array}\left[\begin{array}{rrccccc}
1 & 0 & 0 & 0 & -\alpha_{2} & 0 & -\alpha_{4} \\
0 & 1 & 0 & 0 & -\alpha_{6} & 0 & 0 \\
0 & 0 & 1 & -\alpha_{10} & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \left.C=\left[\begin{array}{rrrcr}
-\alpha_{1} & 0 & 0 & 0 & 0 \\
-\alpha_{5} & 0 & 0 & 0 & 0 \\
-\alpha_{9} & 0 & 0 & -\alpha_{12} & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0
\end{array}\right] \quad D=\begin{array}{rrrrrrr}
\\
0
\end{array}\right]\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & -\alpha_{3} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\alpha_{11} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \tag{3.4}
\end{align*}
$$

Remark. Higher order lags as well as lagged exogenous could be easily accomodated for by augmenting the vector of endogenous variables and including appropriate definitional identities. For example, should we want to include the lagged exogenous T_{t-1} into some equations, the simplest technique would be to introduce an $8-t h$ endogenous variable (called for instance H_{t}), complete the structural model with the $8-t h$ equation $H_{t}=T_{t}$, and replace everywhere in the model T_{t-1} with the lagged endogenous H_{t-1}.
The vector of error terms in the structural form equations, u_{t}, has some elements identically zero (4 in the example), corresponding to the identities. So, the $(G \times G)$ matrix of variances and covariances of the structural form errors $\Sigma(7 \times 7$ in the example) has a 3×3 nonzero block (Σ_{3}, assumed symmetric and positive definite), while all the other elements are zero.

$$
\begin{align*}
& \Sigma= \tag{3.5}\\
& (G \times G) \\
& (7 \times 7)
\end{align*}\left[\begin{array}{ccccccc}
\sigma_{1,1} & \sigma_{1,2} & \sigma_{1,3} & 0 & 0 & 0 & 0 \\
\sigma_{2,1} & \sigma_{2,2} & \sigma_{2,3} & 0 & 0 & 0 & 0 \\
\sigma_{3,1} & \sigma_{3,2} & \sigma_{3,3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{3} & 0 \\
0 & 0
\end{array}\right]
$$

Π_{1} is the $(G \times K)$ matrix of reduced form coefficients of exogenous variables $\left(7 \times 5\right.$ in the example). Π_{0} is the $(G \times G)$ matrix of reduced form coefficients of lagged endogenous variables (7×7 in the example). Ψ is the $(G \times G)$ variance-covariance matrix of the reduced form error terms $v_{t}(7 \times 7$ in the example; of course, its rank cannot be greater than 3).

$$
\begin{align*}
& \Psi=B^{-1} \Sigma B^{\prime-1} \\
& (G \times G) \tag{3.7}\\
& (7 \times 7)
\end{align*}
$$

Matrices B, C and D are usually sparse matrices. Zeroes and ones represent a-priori restrictions on the structural form. In particular, considering only the behavioural stochastic equations (the first three equations in the example) zeroes represent exclusion restrictions, ones represent normalization restrictions. For instance, in the first equation the coefficient of the endogenous variable Consumption $\left(C_{t}\right)$ is 1 , and not a generic $b_{1,1}$ (normalization); the coefficient of I_{t}, is 0 , and not a generic $b_{1,2}$ (exclusion); the coefficient of T_{t}, is 0 , and not a generic $c_{1,3}$ (exclusion); etc.
Matrix Π_{1} is usually a full matrix; some of its elements are zeroes only exceptionally.
Matrix Π_{0} has 4 columns of zeroes (like matrix D); the other 3 columns have usually no zeroes.

3.2 Static notation

When it is unnecessary to distinguish between exogenous and lagged endogenous variables, a simplified notation can be adopted. We still use the same vectors y_{t}, u_{t}, v_{t} and the matrix B exactly as in the dynamic notation. but z_{t} becomes a (8×1) vector containing the 5 exogenous variables at time t and the 3 lagged endogenous variables that really appear in the model. The matrix of structural form coefficients of the exogenous and lagged endogenous variables has therefore dimensions (7×8) and will be called Γ; in the example, the first 5 columns of Γ will be the columns of the matrix C adopted with the dynamic notation,, while the last 3 columns will be the nonzero columns of D. When using the static notation, K indicates the total number of exogenous and lagged endogenous variables (8 in the example).

$$
\begin{align*}
& \begin{array}{l}
z_{t}= \\
(K \times 1) \\
(8 \times 1)
\end{array}\left[\begin{array}{l}
1 \\
W_{t}^{g} \\
T_{t} \\
A_{t} \\
G_{t} \\
X_{t-1} \\
P_{t-1} \\
K_{t-1}
\end{array}\right] \quad\left[\begin{array}{ll}
B y_{t}+\Gamma z_{t}=u_{t} & \text { Structural form } \\
y_{t}=\Pi z_{t}+v_{t} & \text { Reduced form }
\end{array}\right. \tag{3.8}\\
& \begin{array}{l}
B= \\
(G \times G) \\
(7 \times 7)
\end{array}\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & -\alpha_{2} & 0 & -\alpha_{4} \\
0 & 1 & 0 & 0 & -\alpha_{6} & 0 & 0 \\
0 & 0 & 1 & -\alpha_{10} & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
(G \times K) \\
(7 \times 8)
\end{array} \quad\left[\begin{array}{rrrrrrrr}
-\alpha_{1} & 0 & 0 & 0 & 0 & 0 & -\alpha_{3} & 0 \\
-\alpha_{5} & 0 & 0 & 0 & 0 & 0 & -\alpha_{7} & -\alpha_{8} \\
-\alpha_{9} & 0 & 0 & -\alpha_{12} & 0 & -\alpha_{11} & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \tag{3.9}\\
& \begin{array}{l}
\left.\Pi=-B^{-1} \Gamma=\left[\begin{array}{llllllll}
\pi_{1,1} & \pi_{1,2} & \pi_{1,3} & \pi_{1,4} & \pi_{1,5} & \pi_{1,6} & \pi_{1,7} & \pi_{1,8} \\
\pi_{2,1} & \pi_{2,2} & \pi_{2,3} & \pi_{2,4} & \pi_{2,5} & \pi_{2,6} & \pi_{2,7} & \pi_{2,8} \\
\pi_{3,1} & \pi_{3,2} & \pi_{3,3} & \pi_{3,4} & \pi_{3,5} & \pi_{3,6} & \pi_{3,7} & \pi_{3,8} \\
\pi_{4,1} & \pi_{4,2} & \pi_{4,3} & \pi_{4,4} & \pi_{4,5} & \pi_{4,6} & \pi_{4,7} & \pi_{4,8} \\
\pi_{5,1} & \pi_{5,2} & \pi_{5,3} & \pi_{5,4} & \pi_{5,5} & \pi_{5,6} & \pi_{5,7} & \pi_{5,8} \\
\pi_{6,1} & \pi_{6,2} & \pi_{6,3} & \pi_{6,4} & \pi_{6,5} & \pi_{6,6} & \pi_{6,7} & \pi_{6,8} \\
\pi_{7,1} & \pi_{7,2} & \pi_{7,3} & \pi_{7,4} & \pi_{7,5} & \pi_{7,6} & \pi_{7,7} & \pi_{7,8}
\end{array}\right], ~\right], ~
\end{array} \tag{3.10}
\end{align*}
$$

4 MULTIPLIERS, FORECASTS, GOODNESS OF FIT MEASURES

Recursive substitution into the reduced form system (3.2) gives

$$
\begin{align*}
y_{t} & =\Pi_{1} z_{t}+\Pi_{0} y_{t-1}+v_{t} \\
& =\Pi_{1} z_{t}+\Pi_{0} \Pi_{1} z_{t-1}+\Pi_{0}^{2} y_{t-2}+v_{t}+\Pi_{0} v_{t-1} \\
& =\Pi_{1} z_{t}+\Pi_{0} \Pi_{1} z_{t-1}+\Pi_{0}^{2} \Pi_{1} z_{t-2}+\Pi_{0}^{3} y_{t-3}+v_{t}+\Pi_{0} v_{t-1}+\Pi_{0}^{2} v_{t-2} \tag{4.11}\\
& =\text { etc }
\end{align*}
$$

The long run dynamic behaviour of the system depends on the powers of Π_{0}. In the example, Π_{0} is a (7×7) nonsymmetric matrix, with 4 columns of zeroes; it has therefore 3 nontrivial eigenvalues (one of which is necessarily real, the other two can be real or conjugate complex) that ensure stability if all are less than one in modulus.

$$
\begin{array}{lll}
\Pi_{1} & =\partial E\left[y_{t} \mid z_{t}, z_{t-1}, \ldots\right] / \partial z_{t} & \text { matrix of } \text { impact multipliers; } \\
\Pi_{0} \Pi_{1}=\partial E\left[y_{t} \mid z_{t}, z_{t-1}, \ldots\right] / \partial z_{t-1} & \text { matrix of lag-1 delay multipliers; } \tag{4.12}\\
\Pi_{0}^{2} \Pi_{1}=\partial E\left[y_{t} \mid z_{t}, z_{t-1}, \ldots\right] / \partial z_{t-2} & \text { matrix of lag-2 delay multipliers; } \\
& & \text { etc. }
\end{array}
$$

In the example, all these matrices have dimensions (7×5). Their sum, up to a given lag, is the matrix of cumulated or sustained multipliers.

Multipliers are fundamental tools for economic policy simulations.
The reduced form equations (3.8 or 3.2), coefficients $\left(\Pi, \Pi_{0}\right.$ or Π_{1}) and variance-covariance matrix (Ψ) are called restricted if they derive (i.e. are computed) from the structural form (inverting matrix B, etc.). Otherwise they are called unrestricted (when we consider directly each reduced form equation as a the linear regression of an endogenous variable against all the exogenous and lagged endogenous variables).
All the expressions restricted reduced form, reduced form derived from the structural form, simultaneous solution of the structural form equations have exactly the same meaning. When talking of static or one step ahead solution of the structural form equations, reference is always done to (3.8). When talking of dynamic solution of the structural form equations, reference is always done to (3.2).
Forecasts, simulations and economic policy experiments are usually conducted using the restricted reduced form, deriving it from the structural form after a convenient estimate of the unknown coefficients has been computed $\left(\alpha_{1}, \ldots, \alpha_{12}\right.$ in the example).
There is much more economic theory in the structural form than in the unrestricted reduced form.
Forecasts one step ahead are usually produced using the static notation (3.8), setting the random error terms v_{t} to zero (expected value). When data are available till time n (last sample observation) and forecast is performed for time $n+1$, some elements of the vector z_{n+1} are available from the sample (the lagged endogenous variables, since they are related to time n). But the other elements of z_{n+1} (the exogenous variables) must be supplied from outside (usually, financial plans of the government, forecasts produced by central banks, etc.).
To produce forecasts multi steps ahead it is necessary to resort to the dynamic notation (3.2), still setting the random error terms v_{t} to zero at any time. For example, if data are available till time n (last sample observation) and forecast is performed for time $n+1$ and $n+2$, we first forecast at $n+1$ as above. Then, to forecast at $n+2$, the values of the lagged endogenous variables in z_{n+2} are taken from the forecast at $n+1$, while the exogenous variables at $n+2$ must be supplied from outside. Etc.
In sample forecasts (historical tracking) and goodness of fit measures over the sample period can be both static or dynamic. In the static case, the structural form is always solved one step ahead, taking values of the lagged endogenous variables from the observed sample. In the dynamic case, the dynamic notation is used (3.2) and the values of the lagged endogenous variables, in each period, are taken from the solution of the previous period. Initial values of the endogenous variables are always taken from the sample, so there is no difference between static and dynamic solution at the beginning of the sample period.
The following are the most common univariate measures of goodness of fit. Each formula is related to one endogenous variable; O_{t} is the observed value of the variable at time $t ; C_{t}$ is the value of the variable at time t computed with the model (static or dynamic solution); o_{t} is the observed growth rate of the variable at time t (the annual percentage change, in the example); c_{t} is the growth rate of the variable at time t computed with the model (static or dynamic solution).

$$
\begin{array}{lll}
R M S E & =\sqrt{\frac{\sum_{t=1}^{n}\left(O_{t}-C_{t}\right)^{2}}{n}} & \text { Root Mean Squared Error } \\
\text { RMSE }(\operatorname{dim}) & =\sqrt{\frac{\sum_{t=1}^{n}\left(O_{t}-C_{t}\right)^{2}}{\sum_{t=1}^{n} O_{t}^{2}}} & \text { Dimensionless Root Mean Squared Error } \\
\text { MAPE } & =\frac{1}{n} \sum_{t=1}^{n} \frac{\left|O_{t}-C_{t}\right|}{O_{t}} \tag{4.13}
\end{array} 100 \quad \text { Mean Absolute Percentage Error } \quad \text { Theil's } U_{1}=\sqrt{\frac{\sum_{t=1}^{n}\left(o_{t}-c_{t}\right)^{2}}{\sum_{t=1}^{n} o_{t}^{2}}} \quad \text { Theil Inequality Coefficient (1966, eq.4.5) } \quad \text { Theil Inequality Coefficient (1966, eq.4.6) }
$$

MAPE and Theil's inequality coefficients are not computed for variables that change sign over the sample period (such as I_{t} in the example).

5 IDENTIFICATION BY MEANS OF A-PRIORI RESTRICTIONS

We consider in detail the case of a-priori restrictions on coefficients, in particular exclusion restrictions. Covariance restrictions are briefly discussed at the end.

Definition. Two different structural form systems

$$
\left[\begin{array} { l }
{ B y _ { t } + \Gamma z _ { t } = u _ { t } } \tag{5.14}\\
{ \operatorname { V a r } (u _ { t }) = \Sigma }
\end{array} \quad \text { and } \quad \left[\begin{array}{l}
B^{*} y_{t}+\Gamma^{*} z_{t}=u_{t}^{*} \\
\operatorname{Var}\left(u_{t}^{*}\right)=\Sigma^{*}
\end{array}\right.\right.
$$

are called observationally equivalent if they have the same reduced form.
More precisely, let the corresponding reduced form systems be

$$
\left[\begin{array} { l }
{ y _ { t } = \Pi z _ { t } + v _ { t } } \tag{5.15}\\
{ v _ { t } = B ^ { - 1 } u _ { t } } \\
{ \Pi = - B ^ { - 1 } \Gamma ; } \\
{ \Psi = \operatorname { V a r } (v _ { t }) = B ^ { - 1 } \Sigma B ^ { \prime - 1 } }
\end{array} \quad \text { and } \quad \left[\begin{array}{l}
y_{t}=\Pi^{*} z_{t}+v_{t}^{*} \\
v_{t}^{*}=B^{*-1} u_{t}^{*} \\
\Pi^{*}=-B^{*-1} \Gamma^{*} ; \\
\Psi^{*}=\operatorname{Var}\left(v_{t}^{*}\right)=B^{*-1} \Sigma^{*} B^{*-1}
\end{array}\right.\right.
$$

then, the two structural form systems (5.14) are called observationally equivalent till the second moments if $\Pi^{*}=\Pi$ and $\Psi^{*}=\Psi$. If this happens, it will be impossible to discriminate between the two different structural forms on the basis of the observed data, since data (the values of y_{t}) are produced by the reduced form.

Definition. A parameter (or an equation) of the structural form is identified if it (or the equation's parameters) can be deduced from knowledge of the reduced form parameters Π and Ψ.
Theorem. Two structural forms (5.14) are observationally equivalent if and only if there exists a non-singular square matrix F (same dimensions as B) such that $B^{*}=F B, \Gamma^{*}=F \Gamma$, and $\Sigma^{*}=F \Sigma F^{\prime}$.
The proof is straightforward. In fact, if $B^{*}=F B, \Gamma^{*}=F \Gamma$, and $\Sigma^{*}=F \Sigma F^{\prime}$, then $\Pi^{*}=-B^{*-1} \Gamma^{*}=-(F B)^{-1}(F \Gamma)$ $=-B^{-1} F^{-1} F \Gamma=-B^{-1} \Gamma=\Pi$; moreover $\Psi^{*}=B^{*-1} \Sigma^{*} B^{* \prime-1}=(F B)^{-1} F \Sigma F^{\prime}(F B)^{\prime-1}=B^{-1} F^{-1} F \Sigma F^{\prime} F^{\prime-1} B^{\prime-1}=$ $B^{-1} \Sigma B^{\prime-1}=\Psi$.
Viceversa, if $\Pi^{*}=\Pi$, then $B^{*-1} \Gamma^{*}=B^{-1} \Gamma$ and pre-multiplication of both sides by B^{*} gives $\Gamma^{*}=B^{*} B^{-1} \Gamma$; thus, $B^{*}=F B$ and $\Gamma^{*}=F \Gamma$, having defined $F=B^{*} B^{-1}$. Also, $\Psi^{*}=\Psi$ implies that $B^{*-1} \Sigma^{*} B^{* \prime-1}=B^{-1} \Sigma B^{\prime-1}$, where pre-multiplication of both sides by B^{*} and post-multiplication by $B^{* \prime}$ gives $\Sigma^{*}=B^{*} B^{-1} \Sigma B^{\prime-1} B^{* \prime}=F \Sigma F^{\prime}$, having defined F as above.

The theorem implies that, given a structural form $B y_{t}+\Gamma z_{t}=u_{t}$, there will be an infinity of other structural forms, different from it, but observationally equivalent to it: any non-singular square matrix F, arbitrarily chosen, will in fact produce the matrices B^{*}, Γ^{*} and Σ^{*} of an observationally equivalent structural form. Notice that each row of B^{*} and Γ^{*} would be a linear combination ot the rows of B and Γ.

5.1 Restrictions and admissible transformations

It may happen that pre-multiplication by F produces matrices B^{*} and Γ^{*} that do not satisfy the a-priori restrictions of B, Γ and Σ. For instance, it may happen that $\beta_{1,2}^{*}$ is nonzero, while $\beta_{1,2}=0$ in the original model; this means that the variable I_{t} was excluded, by the economic theory of the model's builder, from the first equation of $B y_{t}+\Gamma z_{t}=u_{t}$, but is included in the first equation of $B^{*} y_{t}+\Gamma^{*} z_{t}=u_{t}^{*}$. Exclusion restrictions are a particular case of homogeneous restrictions. They are the only type of homogeneous restrictions in the model used as example.

Definition. A linear transformation produced by a non-singular matrix F is admissible if the transformed structural form coefficients $\left[B^{*} ; \Gamma^{*}\right]$ satisfy all the a-priori restrictions on $[B ; \Gamma]$ and the transformed variance-covariance matrix Σ^{*} satisfies all the a-priori restrictions on Σ.

To simplify the problem, we only consider restrictions on coefficients, without considering possible restrictions on the variancecovariance matrix (which are rather unusual); for further simplification, we first consider only homogeneous restrictions (and later normalization restrictions). To fix ideas, we focus on the first equation of the structural form model (consumption, in the example).
The $(G \times G)$ unit (or identity) matrix obviously produces an admissible transformation. Any $(G \times G)$ scalar matrix (the identity matrix multiplied by a nonzero scalar) also produces an admissible transformation (exclusion restrictions are preserved, as well as homogeneous restrictions in general).
If an admissible matrix F exists, and it is different from a scalar matrix, this implies that an alternative structural form $B^{*} y_{t}+\Gamma^{*} z_{t}=u_{t}^{*}$ exists, which is observationally equivalent to the original model $B y_{t}+\Gamma z_{t}=u_{t}$, satisfies all the a-priori restrictions on the original model, but has one or more coefficients different from the original model: thus, some coefficients (or equations) are not identified. If this happens for some coefficients of the first equation, then the first equation is not identified. If this cannot happen in the first equation (even if it may happen in other equations), then the first equation is identified.
Notice that, when pre-multiplying by F the matrices B and Γ to produce B^{*} and Γ^{*}, the first row (structural coefficients of the consumption equation, in the example) is

$$
\begin{equation*}
\left[B^{*} ; \Gamma^{*}\right]_{1, \bullet}=[F(B ; \Gamma)]_{1, \bullet}=F_{1, \bullet}[B ; \Gamma] \tag{5.16}
\end{equation*}
$$

If such a $F_{1, \bullet}$ produces a first row of structural coefficients satisfying all the restrictions on the first equation of the original model, the first equation is not identified. If only the first row of the unit matrix or the first row of a scalar matrix can do it, and no other $F_{1, \bullet}$, then the first equation is identified.
A representation of the exclusion restrictions in the first equation can be obtained introducing the matrix Φ_{1}. In the example such a matrix is

$$
\left.\Phi_{1}=\left[\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \times R_{1}\right]
$$

The number of columns, R_{1}, is the number of exclusion restrictions from the first structural form equation of the model. The whole system includes $G+K=15$ variables, and the first structural form equation includes 5 variables (a dependent variable, and 4 variables on the right hand side); therefore the number of exclusions is $R_{1}=15-5=10$. Each column corresponds to an excluded variable, and contains a unique nonzero element $(=1)$, indicating which variable is excluded.
For example, considering the list of all the variables of the model (beginning with the endogenous variables, followed by the exogenous and lagged endogenous variables) the first variable of the list is C_{t}, which is included in the first equation, and therefore corresponds to no column. The following variable in the list is I_{t} and it is excluded from the equation. Since it is the first variable excluded from the equation, and it is the second variable in the list of all variables, then in the first column there is a value $=1$ in the second row. The following variable in the list is W_{t}^{p}, and it is also excluded from the equation. Since it is the second variable excluded from the equation, and it is the third in the list of all variables, then in the second column there is a value $=1$ in the third row. And so on.
Matrix Φ_{1} is such that the coefficients of the first structural form equation satisfy the system of R_{1} ($=10$ in the example) linear homogeneous equations

$$
\begin{equation*}
[B ; \Gamma]_{1, \bullet} \Phi_{1}=0 \tag{5.18}
\end{equation*}
$$

5.2 Rank condition - Order condition

An admissible transformation matrix F has its first row $\left(F_{1, \bullet}\right)$ that must produce transformed coefficients satisfying the analogous system of equations

$$
\begin{equation*}
\left[B^{*} ; \Gamma^{*}\right]_{1, \bullet} \Phi_{1}=0 \tag{5.19}
\end{equation*}
$$

that is, substituting (5.16)

$$
\begin{equation*}
F_{1, \bullet}[B ; \Gamma] \Phi_{1}=0 \tag{5.20}
\end{equation*}
$$

This can be viewed as a system of $R_{1}(=10)$ homogeneous equations with $G(=7)$ unknowns (the elements of $F_{1, \bullet}$). The matrix of coefficients is $[B ; \Gamma] \Phi_{1}$, and its dimensions are $\left(G \times R_{1}\right)(7 \times 10$ in the example). If the rank of this matrix of coefficients is $G(=7)$, then the system (5.20) has the unique solution $F_{1, \bullet}=0$. This is obviously impossible, because also $F_{1, \bullet}=I_{1, \bullet}$ (the first row of the unit matrix) is for sure a solution of the system.
If the rank of this matrix of coefficients is $G-1$ ($=6$ in the example), then the system (5.20) would have ∞^{1} solutions for $F_{1, \bullet}$, and all these solutions would be proportional to $I_{1, \bullet}$, the first row of the unit matrix (in other words, the first row of an arbitrary scalar matrix would be a solution, and there would be no other solutions). These ∞^{1} solutions are reduced to a single solution after imposing the normalization restriction $\beta_{1,1}=1$ (the coefficient of C_{t} in the first equation of the example is not a generic $\beta_{1,1}$, but is fixed to 1). Thus, the first equation is identified.
If the rank of this matrix of coefficients is $G-2$ or less (5 or less than 5 in the example), then the system (5.20) would have ∞^{2} or more solutions for $F_{1, \bullet}$, and not all would be proportional to $I_{1, \bullet}$, the first row of the unit matrix. These solutions would not be reduced to a single solution after imposing the normalization restriction $\beta_{1,1}=1$. Thus, there would be other observationally equivalent structural forms whose first equation satisfies all the a-priori restrictions on the original first equation, but coefficients would be different. Thus the first equation would not be identified.
The above discussion can be summarized in the following condition, which is necessary and sufficient.
Theorem (rank condition). The $i-t h$ structural form equation is identified if and only if $\operatorname{rank}\left[(B ; \Gamma) \Phi_{i}\right]=G-1$.
Considering that B is non-singular, so that necessarily $\operatorname{rank}[B ; \Gamma]=G$ ($=7$ in the example), and that the rank of a product of matrices is smaller than or equal to the smallest of the ranks, it is necessary that $\operatorname{rank}\left[\Phi_{1}\right] \geq G-1$, otherwise the rank condition cannot hold. This is a necessary but not sufficient condition, known as the order condition.
For the case of exclusion restrictions, the order condition can be stated in very simple terms. We first consider that the rank of Φ_{1} equals the number of columns of Φ_{1}, or number of exclusion restrictions R_{1} ($=10$ in the example). Thus the order
condition becomes $R_{1} \geq G-1$. We then consider that the whole structural form system includes $G+K$ variables, but R_{1} of these variables are excluded from the first equation, so the number of included variables in the first equation is $G-R_{1}+K$. Considering now that one of these variables is on the left hand side of the structural equation (the dependent variable, C_{t} in the example), there are $G-1-R_{1}+K$ variables on the right hand side of the first equation (the regressors, or explanatory variables in the structural equation of consumption). When $R_{1} \geq G-1$ (as stated above), then the number of regressors on the right hand side of the strucural equation $G-1-R_{1}+K$ will be $\leq K$. Summarizing
Theorem (order condition). A necessary (but not sufficient) condition for a structural form equation to be identified is that the number of regressors on the right hand side of the equation must not exceed K, the total number of exogenous and lagged endogenous variables of the system.

Stated as above, the order condition is quite intuitive. We cannot have in a single structural equation more regressors than independent inputs in the whole system, which are the exogenous and lagged endogenous variables of the system.
The same condition (order) is presented by some textbooks in the following (equivalent) way: the number of exogenous (and lagged endogenous) variables excluded from a structural equation must be at least as large as the number of endogenous variables included, less one.
Definitions. The first structural form equation is called just-identified (or exactly identified) if it is identified (i.e. the rank condition is satisfied), and $\operatorname{rank}\left[\Phi_{1}\right]=G-1$.
The first structural form equation is called over-identified if it is identified (i.e. the rank condition is satisfied), and $\operatorname{rank}\left[\Phi_{1}\right]>$ $G-1$.
If $\operatorname{rank}\left[\Phi_{1}\right]<G-1$, then the rank condition cannot be satisfied and the equation is not identified; it can also be called under-identified.

5.3 Remarks

Matrix Φ_{1} would be more complex if restrictions other than exclusion were introduced. For instance, the first structural equation of the Klein-I model (the private consumption equation) is more usually presented as

$$
C_{t}=\alpha_{1}+\alpha_{2} P_{t}+\alpha_{3} P_{t-1}+\alpha_{4}\left(W_{t}^{p}+W_{t}^{g}\right)+u_{1, t}
$$

This would avoid the need of the seventh equation, and the endogenous variables would be 6 rather than 7 . But at the same time it would make more complex the structure of the matrices. In fact, the same coefficient α_{4} would multiply the sum of two variables. This would be an additional restriction, and should be properly considered either in the matrices B and Γ (α_{4} should appear in both matrices) or in matrix Φ_{1} (where a column should contain a +1 and a -1 in the proper rows). Other types of restrictions can be found in econometric models. For example, the constant return to scale hypothesis in a Cobb-Douglas production function implies that two (or more) structural coefficients sum to one. This is a nonhomogeneous restriction on coefficients and would require some changes in the rank condition (5.20 would be replaced by a nonhomogenous equation system and the normalization restriction should be directly introduced into the system, rather than at the end as above).

5.4 Demand - supply model

If we consider the following model in structural form

$$
\left[\begin{array}{ll}
Q_{i}^{d}=\alpha_{1}+\alpha_{2} P_{i}+u_{1, i} & \text { Demand } \tag{5.21}\\
Q_{i}^{s}=\alpha_{3}+\alpha_{4} P_{i}+u_{2, i} & \text { Supply } \\
Q_{i}^{d}=Q_{i}^{s} & \text { Equilibrium }
\end{array}\right.
$$

neither demand nor supply equations are identified, since they both fail the order condition (necessary). The model, in fact, has 3 endogenous variables ($Q_{i}^{d}=$ demand, $Q_{i}^{s}=$ supply, $P_{i}=$ equilibrium price) and only one exogenous variable (the constant); so $K=1$, while each of the first two equations would have two explanatory variables (regressors).
Intuitively the lack of identification has a quite simple explanation. We expect that demand is a decreasing function of price, thus $\alpha_{2}<0$, while supply is expected to be an increasing function of price, thus $\alpha_{4}>0$. In the two-dimensional plane $(Q$, P) the two straight lines would cross in a unique point (the equilibrium value of Q and P). This point would remain fix for any i (the simultaneous solution of the equation system). If the model is correctly specified, observations at various times would be points scattered around this unique solution point (maybe very close to it, if the random error terms $u_{1, i}$ and $u_{2, i}$ are small). Such a scatter diagram makes it impossible to distinguish between a demand (decreasing) function and a supply (increasing) function of price.
We could introduce an additional explanatory variable (exogenous) into the supply equation, for instance $L_{i}=$ cost of labour and/or raw materials: $Q_{i}^{s}=\alpha_{3}+\alpha_{4} P_{i}+\alpha_{5} L_{i}+u_{2, i}$. The order condition would now be satisfied by the first structural equation (demand); there would be in fact $K=2$ exogenous variables in the system, the constant and L_{i}, and there would be two regressors in the equation. Some simple algebra could show that also the rank condition is satisfied by the first equation if $\alpha_{5} \neq 0$. The second equation (supply) would be still under-identified.
There is again an intuitive explanation of all this. We could still represent the demand and supply functions in the two dimensional plane. Values of the additional exogenous variable L_{i}, changing with i, would shift the supply line in the plane. There would be, therefore, several intersection points between demand and supply (equilibrium values of Q and P for
different values of L_{i}). All these points would be on the demand line (that does not shift). If the model is correctly specified, observations at various i-s would be points scattered around the solution points, therefore they would be scattered along the demand line, making it visible. There would be, however, no chance to identify the supply function.

5.5 Some remarks on variance-covariance restrictions

Restrictions on variances and covariances help identification (but they are quite unusual). For example, if the first equation is not identified by means of exclusion restrictions, it could be identified by imposing restrictions on the first row (and first column) of the Σ matrix. In particular, the variance could be known, or some covariances could be zero.
We still consider linear restrictions, but not necessarily homogeneous, so that the right hand side of equations (5.18) and (5.20) will be a constant vector r_{1}, not necessarily equal to zero. If we impose S_{1} restrictions on the first row of Σ (Θ_{1} is the matrix of restrictions)

$$
\begin{equation*}
\Sigma_{1, \bullet} \Theta_{1}=s_{1} \tag{5.22}
\end{equation*}
$$

an admissible transformation matrix F must have the first row satisfying the system of $R_{1}+S_{1}$ equations

$$
\left[\begin{array}{l}
F_{1, \bullet}[B ; \Gamma] \Phi_{1}=r_{1} \tag{5.23}\\
F_{1, \bullet} \Sigma F^{\prime} \Theta_{1}=s_{1}
\end{array}\right.
$$

The system is nonlinear in the unknown $F_{1, \bullet}$. We can nevertheless discuss the problem considering what could be its solution if F was treated as fixed, and the unknown $F_{1, \bullet}$ was considered as not belonging to F. In such a way we derive a condition which is necessary, but not sufficient.
The first equation of the model is identified if, and only if, for any admissible F, the unique solution of the system (5.23) is $F_{1, \bullet}=I_{1, \bullet}$ (unit row vector). The matrix $F=I$ is surely admissible, so we fix $F=I$; then, the solution $F_{1, \bullet}=I_{1, \bullet}$ must be unique, and this holds when $\operatorname{rank}\left[(B ; \Gamma) \Phi_{1} ; \Sigma \Theta_{1}\right]=G$. This is called generalized rank condition. It is a necessary condition. It ensures that there cannot be a solution different from $F_{1, \bullet}=I_{1, \bullet}$, but having treated $F_{1, \bullet}$ and F separately, the condition does not ensure the existence of a solution; thus, the condition is not sufficient.
To ensure a rank $=G$, the matrix, which has G rows, must have at least G columns. The number of columns is $R_{1}+S_{1}$. Therefore it must be $R_{1}+S_{1} \geq G$, which is the generalized order condition (also necessary, but not sufficient). When R_{1} is too small, and thus identification is not ensured by means of restrictions on coefficients, $R_{1}+S_{1}$ could be large enough, and the first equation of the model might be identified.

6 ASYMPTOTIC PROPERTIES OF ORDINARY LEAST SQUARES (OLS)

Let's consider the linear regression model

$$
\begin{equation*}
y=X \beta+u \tag{6.24}
\end{equation*}
$$

where

OLS estimator of coefficients is

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y \tag{6.26}
\end{equation*}
$$

Substituting $y=X \beta+u$ into the above expression, we get the estimation error

$$
\begin{equation*}
\hat{\beta}-\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} u=\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} u}{n} \tag{6.27}
\end{equation*}
$$

and the estimation error rescaled by \sqrt{n}

$$
\begin{equation*}
\sqrt{n}(\hat{\beta}-\beta)=\left(\frac{X^{\prime} X}{n}\right)^{-1} \frac{X^{\prime} u}{\sqrt{n}} \tag{6.28}
\end{equation*}
$$

We assume that the $k \times k$ matrix $X^{\prime} X / n$ is non-singular for any n (classical hypothesis), and converges to a non-singular and finite limit as $n \rightarrow \infty$. If no random variables are contained in the matrix X, then convergence for $X^{\prime} X / n$ is in mathematical sense (lim), otherwise we are dealing with convergence in probability (plim) to a constant matrix. Trends are therefore excluded (otherwise the limit would not be finite).
We roughly consider four different cases.

6.1 First case

The matrix of explanatory variables, X, does not contain random variables. In this case, from (6.27) we get

$$
E[\hat{\beta}-\beta]=\left(X^{\prime} X\right)^{-1} E\left[X^{\prime} u\right]=\left(X^{\prime} X\right)^{-1} X^{\prime} E(u)=0
$$

and

$$
\operatorname{plim}[\hat{\beta}-\beta]=\lim \left(\frac{X^{\prime} X}{n}\right)^{-1} p \lim \frac{X^{\prime} u}{n}=\lim \left(\frac{X^{\prime} X}{n}\right)^{-1} \operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} x_{t} u_{t}=0
$$

The last equality follows directly from the weak law of large numbers (WLLN) observing that the plim is the probability limit of the average of n vectors $(k \times 1)$, each of which has zero expected value: $E\left(x_{t} u_{t}\right)=x_{t} E\left(u_{t}\right)=0$.
So in this case the OLS estimator is unbiased and consistent.

6.2 Second case

The matrix of explanatory variables, X, contains some random variables, but these random variables are independent from the error terms u (strictly exogenous).
Also in this case the OLS estimator is unbiased and consistent. The only difference, with respect to the previous case, is that the limit of $\left(X^{\prime} X / n\right)$ must be a probability limit, rather than a limit in mathematical sense.

6.3 Third case

Contemporaneous explanatory variables and error terms are independent, but some explanatory variables at time t (elements of the vector x_{t}) may be not independent of u_{s} for some $s \neq t$. This is, for example, the case of a model where the lagged dependent variable y_{t-1} is one of the explanatory variables, or, more generally, when x_{t} contains some lagged endogenous variables.
In this case the OLS estimator is biased, but consistent.
Bias follows from $E[\hat{\beta}-\beta]=E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} u\right] \neq\left(X^{\prime} X\right)^{-1} X^{\prime} E(u)$, because the whole vector u is not independent of the whole matrix X, and so the result is generally $\neq 0$.
Consistency follows still from (6.27) observing that

$$
\begin{equation*}
\operatorname{plim} \frac{X^{\prime} u}{n}=\operatorname{plim} \frac{1}{n} \sum_{t=1}^{n} x_{t} u_{t}=\lim \frac{1}{n} \sum_{t=1}^{n} E\left[x_{t} u_{t}\right] \tag{6.29}
\end{equation*}
$$

which is $=0$, because each of the n vectors $(k \times 1)$ in the sum has zero expected value: $E\left(x_{t} u_{t}\right)=E\left(x_{t}\right) E\left(u_{t}\right)=0$, being the contemporaneous x_{t} and u_{t} independent.
Of course, the vectors in the sum are not independent of each other; for instance, x_{t} may contain a lagged endogenous variable, that is a function of u_{t-1}, so that $x_{t} u_{t}$ and $x_{t-1} u_{t-1}$ are not independent vectors. So it is necessary to resort to a suitable form of the weak law of large numbers (WLLN) for non-independent sequences.

6.4 Fourth case

Contemporaneous explanatory variables and error terms are not independent. In other words, some of the explanatory variables at time t (elements of the vector x_{t}) are not independent of u_{t}. This is, for example, the case of a model where a current endogenous variable is one of the explanatory variables of the equation (for example, a structural form equation of a simultaneous equation model).
In this case the OLS estimator is biased (as in the previous case) and inconsistent.
Inconsistency follows observing that (6.29) usually produces a result $\neq 0$, because the contemporaneous x_{t} and u_{t} are not independent, so that each of the n vectors $(k \times 1)$ has nonzero expected value: $E\left[x_{t} u_{t}\right] \neq 0$,
Therefore, in this last case it is necessary to resort to estimation methods different from OLS.

7 INSTRUMENTAL VARIABLES (I.V.)

Let W be a $n \times k$ matrix (same dimensions as X), such that the two $k \times k$ matrices $W^{\prime} X / n$ and $W^{\prime} W / n$ are both non-singular for any n, and both converge to finite, non-singular, constant limits as $n \rightarrow \infty$.
Temporarily we assume that the matrix W does not contain random variables. This assumption will help in simplifying the first proofs of the next section; then it will be relaxed, and random variables (with some limitations) will be admitted into W. Thus, convergence for $W^{\prime} W / n$ is in mathematical sense (lim), while for $W^{\prime} X / n$ is in probability (plim), if X contains random variables.
Define the instrumental variable estimator (that makes use of W as a matrix of instruments) as

$$
\begin{equation*}
\tilde{\beta}_{W}=\left(W^{\prime} X\right)^{-1} W^{\prime} y \tag{7.30}
\end{equation*}
$$

Substituting into the above expression $y=X \beta+u$ we get the estimation error

$$
\begin{equation*}
\tilde{\beta}_{W}-\beta=\left(W^{\prime} X\right)^{-1} W^{\prime} u=\left(\frac{W^{\prime} X}{n}\right)^{-1} \frac{W^{\prime} u}{n} \tag{7.31}
\end{equation*}
$$

and the estimation error rescaled by \sqrt{n}

$$
\begin{equation*}
\sqrt{n}\left(\tilde{\beta}_{W}-\beta\right)=\left(\frac{W^{\prime} X}{n}\right)^{-1} \frac{W^{\prime} u}{\sqrt{n}} \tag{7.32}
\end{equation*}
$$

8 ASYMPTOTIC PROPERTIES OF INSTRUMENTAL VARIABLE ESTIMATOR

We have the following preliminary results.

$$
\begin{equation*}
\operatorname{plim} \frac{W^{\prime} u}{n}=0 \tag{8.33}
\end{equation*}
$$

This follows from the weak law of large numbers (WLLN) observing that $W^{\prime} u / n=\sum_{t=1}^{n} w_{t} u_{t} / n$ is the ($k \times 1$) vector arithmetical average of the n vectors $w_{t} u_{t}$, each of which has zero expected value: $E\left(w_{t} u_{t}\right)=w_{t} E\left(u_{t}\right)=0$.

$$
\begin{equation*}
\frac{W^{\prime} u}{\sqrt{n}} \stackrel{\text { distr }}{n \rightarrow \infty} N\left(0, \sigma^{2} \lim \frac{W^{\prime} W}{n}\right) \tag{8.34}
\end{equation*}
$$

This can be easily proved considering that the $(k \times 1)$ vector $W^{\prime} u / \sqrt{n}$ has zero expected value and variance-covariance matrix $E\left(W^{\prime} u u^{\prime} W\right) / n=W^{\prime} E\left(u u^{\prime}\right) W / n=W^{\prime} \sigma^{2} I_{n} W / n=\sigma^{2} W^{\prime} W / n$. This expression of the variance-covariance matrix is valid for any n, therefore also in the limit. The normal distribution is obtained by a straightforward application of the central limit theorem.

8.1 Consistency and asymptotic normality of the Instrumental Variable estimator

If we consider the estimation error (7.31), then

$$
\begin{equation*}
\operatorname{plim}\left(\tilde{\beta}_{W}-\beta\right)=\operatorname{plim}\left[\left(\frac{W^{\prime} X}{n}\right)^{-1} \frac{W^{\prime} u}{n}\right]=\operatorname{plim}\left(\frac{W^{\prime} X}{n}\right)^{-1} \operatorname{plim} \frac{W^{\prime} u}{n}=0 \tag{8.35}
\end{equation*}
$$

as it follows from (8.33). If we consider the estimation error rescaled by \sqrt{n} (7.32), then

$$
\begin{equation*}
\sqrt{n}\left(\tilde{\beta}_{W}-\beta\right)=\left(\frac{W^{\prime} X}{n}\right)^{-1} \frac{W^{\prime} u}{\sqrt{n}} \quad \underset{n \rightarrow \infty}{\operatorname{distr}} N\left[0, \sigma^{2}\left(\operatorname{plim} \frac{W^{\prime} X}{n}\right)^{-1} \lim \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{X^{\prime} W}{n}\right)^{-1}\right] \tag{8.36}
\end{equation*}
$$

This follows from considering separately the limits of the two elements of the product: $\left(W^{\prime} X / n\right)^{-1}$, whose limit is the inverse of the constant plim $W^{\prime} X / n$, and $W^{\prime} u / \sqrt{n}$ whose limit is the multivariate normal distribution, with zero mean, given in (8.34).

8.2 Efficient instrumental variables: expectations of regressors

Since w_{t} does not contain random variables, it is

$$
\begin{equation*}
E\left(w_{t} x_{t}^{\prime}\right)=w_{t} E\left(x_{t}^{\prime}\right) \tag{8.37}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{plim} \frac{W^{\prime} X}{n}=\lim \frac{W^{\prime} E(X)}{n} \tag{8.38}
\end{equation*}
$$

which follows from a straightforward application of some suitable version of the weak law of large numbers (WLLN), observing that $W^{\prime} X / n=\sum_{t=1}^{n} w_{t} x_{t}^{\prime} / n$ it the $(k \times k)$ matrix arithmetical average of the n matrices $w_{t} x_{t}^{\prime}$, each of which has expected value given by (8.37). Finally, $W^{\prime} E(X) / n=\sum_{t=1}^{n} w_{t} E\left(x_{t}^{\prime}\right) / n$ is the ($k \times k$) matrix arithmetical average of the n matrices containing the expected values $w_{t} E\left(x_{t}^{\prime}\right)$. By assumption, the limit exists and is a finite non-singular matrix. Moreover, it is clear from the right hand side of (8.38) that it does not contain random variables (so it can be treated as a constant). Applying (8.38), the asymptotic variance-covariance matrix in (8.36) can be written as

$$
\begin{equation*}
\sigma^{2}\left(p \lim \frac{W^{\prime} X}{n}\right)^{-1} \lim \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{X^{\prime} W}{n}\right)^{-1}=\sigma^{2}\left(\lim \frac{W^{\prime} E(X)}{n}\right)^{-1} \lim \frac{W^{\prime} W}{n}\left(\lim \frac{E\left(X^{\prime}\right) W}{n}\right)^{-1} \tag{8.39}
\end{equation*}
$$

If we choose $W=E(X)$, the above asymptotic variance-covariance matrix becomes

$$
\begin{equation*}
\sigma^{2}\left(\lim \frac{E\left(X^{\prime}\right) E(X)}{n}\right)^{-1} \tag{8.40}
\end{equation*}
$$

For any other choice of W, the asymptotic variance-covariance matrix (8.39) cannot be smaller than (8.40)

$$
\begin{equation*}
\sigma^{2}\left(\lim \frac{W^{\prime} E(X)}{n}\right)^{-1} \lim \frac{W^{\prime} W}{n}\left(\lim \frac{E\left(X^{\prime}\right) W}{n}\right)^{-1} \geq \sigma^{2}\left(\lim \frac{E\left(X^{\prime}\right) E(X)}{n}\right)^{-1} \tag{8.41}
\end{equation*}
$$

according to Schwarz inequality.
Thus $W=E(X)$ can be called the matrix of efficient instrumental variables.

8.3 Efficient instrumental variables: conditional expectations of regressors

Sections $8,8.1$ and 8.2 proved consistency, asymptotic normality and efficieny, confining to "non-random variables only" the choice of the instrumental variables (elements of the matrix W). Quite similar results hold, still under the assumptions (6.25), if we "enlarge" the choice of the instrumental variables. We admit also random variables among the elements of W, provided that, at time t, all the elements of w_{t} are independent from the random error terms $u_{t}, u_{t+1}, u_{t+2} \ldots$ Notice that the "independence" requirement is stronger than strictly necessary, and is here assumed to simplify the proofs. It is, however, important to notice that it would not be enough to assume that u_{t} and w_{t} are not correlated. The same consideration holds for the strong assumption on the u_{t} (i.i.d., eq. 6.25 , rather than simply not autocorrelated).
Exogenous variables can be random variables, but they satisfy the requirement, and so they can be used as elements of W. At time t, lagged endogenous variables (lagged one or more periods) also satisfy the requirement, so they can be used as elements of w_{t}. On the contrary, the value of current endogenous variables (or future endogenous variables) cannot be used as elements of w_{t}.
Since all the variables in the simplified world summarized by the model are included in the vectors y_{t} and z_{t}, for varying t, the vector of instrumental variables at time t, w_{t}, can include any element of z_{t}, z_{t-1}, z_{t-2}, etc., but no element of y_{t}, y_{t+1}, etc. In principle, it might also contain any exogenous element of z_{t+1}, z_{t+2}, etc., but no lagged endogenous element of z_{t+1}, z_{t+2}, etc. The set of variables that can be used as elements of w_{t} will be indicated as \Im_{t}. It contains, as a subset, all the non-random variables that were considered as the only possible elements of W in the previous sections.
With some simple changes, the main results of sections $8,8.1$ and 8.2 can now be proved under the new, less restrictive conditions on the instrumental variables choice. The differences will be $E\left(x_{t} \mid \Im_{t}\right)$ replacing $E\left(x_{t}\right)$ in all the formulas, and plim replacing lim when the sequences contain random variables.
Analogously to (8.33) we have

$$
\begin{equation*}
\operatorname{plim} \frac{W^{\prime} u}{n}=0 \tag{8.42}
\end{equation*}
$$

because $W^{\prime} u / n=\sum_{t=1}^{n} w_{t} u_{t} / n$ is the $(k \times 1)$ vector arithmetical average of the n vectors $w_{t} u_{t}$, each of which has zero expected value: $E\left(w_{t} u_{t}\right)=E\left(w_{t}\right) E\left(u_{t}\right)=0$.
Analogously to (8.34) we have

$$
\begin{equation*}
\frac{W^{\prime} u}{\sqrt{n}} \stackrel{\text { distr }}{\underset{n \rightarrow \infty}{\longrightarrow}} N\left(0, \sigma^{2} \operatorname{plim} \frac{W^{\prime} W}{n}\right) \tag{8.43}
\end{equation*}
$$

This follows from some suitable version of the central limit theorem (CLT, for non-independent sequences), considering that the $(k \times 1)$ vector $W^{\prime} u / \sqrt{n}=\sum_{t=1}^{n} w_{t} u_{t} / \sqrt{n}$, where each term has zero expected value. Computing its variance-covariance matrix, we get $E\left(W^{\prime} u u^{\prime} W\right) / n=E\left[\left(\sum_{t=1}^{n} w_{t} u_{t}\right)\left(\sum_{t=1}^{n} w_{t}^{\prime} u_{t}\right)\right] / n=E\left[\sum_{t=1}^{n} w_{t} w_{t}^{\prime} u_{t}^{2}\right] / n+E\left[\sum_{r \neq s} w_{r} w_{s}^{\prime} u_{r} u_{s}\right] / n$ (notice that each element in the the second sum is zero being always one of the u_{r} or u_{s} independent of all the other terms of the product) $=\sum_{t=1}^{n} E\left[u_{t}^{2} w_{t} w_{t}^{\prime}\right] / n$ (notice also that the independence of u_{t} from w_{t} implies independence of u_{t}^{2} as well; it would not happen if they were simply not correlated $)=\sum_{t=1}^{n}\left[E\left(u_{t}^{2}\right) E\left(w_{t} w_{t}^{\prime}\right)\right] / n=\sigma^{2} \sum_{t=1}^{n} E\left[w_{t} w_{t}^{\prime}\right] / n$, whose limit is σ^{2} plim $W^{\prime} W / n$ (having applied some suitable WLLN for non-independent sequences).
Analogously to (8.36) we have

$$
\begin{equation*}
\sqrt{n}\left(\tilde{\beta}_{W}-\beta\right)=\left(\frac{W^{\prime} X}{n}\right)^{-1} \frac{W^{\prime} u}{\sqrt{n}} \quad \stackrel{\text { distr }}{n \rightarrow \infty} N\left[0, \sigma^{2}\left(\operatorname{plim} \frac{W^{\prime} X}{n}\right)^{-1} \operatorname{plim} \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{X^{\prime} W}{n}\right)^{-1}\right] \tag{8.44}
\end{equation*}
$$

that follows from considering separately the limits of the two elements of the product and applying the previous results. Analogously to (8.37) we have

$$
\begin{equation*}
E\left(w_{t} x_{t}^{\prime} \mid \Im_{t}\right)=w_{t} E\left(x_{t}^{\prime} \mid \Im_{t}\right) \tag{8.45}
\end{equation*}
$$

because w_{t} is $\sigma\left(\Im_{t}\right)$ - measurable; roughly speaking, when \Im_{t} is known, also w_{t} is known, thus it can be moved outside conditional expectation. However it must be noticed that, unlike (8.37), here w_{t} and $E\left(x_{t} \mid \Im_{t}\right)$ are random variables.
A new simbol must be introduced to indicate the matrix whose $t-t h$ row is $E\left(x_{t}^{\prime} \mid \Im_{t}\right)$

$$
\begin{gather*}
E_{\Im}(X) \tag{8.46}\\
(n \times k)
\end{gather*}=\left[\begin{array}{cccc}
E\left(x_{1,1} \mid \Im_{1}\right) & E\left(x_{1,2} \mid \Im_{1}\right) & \ldots & E\left(x_{1, k} \mid \Im_{1}\right) \\
E\left(x_{2,1} \mid \Im_{2}\right) & E\left(x_{2,2} \mid \Im_{2}\right) & \ldots & E\left(x_{2, k} \mid \Im_{2}\right) \\
\ldots & \ldots & \ldots & \ldots \\
E\left(x_{t, 1} \mid \Im_{t}\right) & E\left(x_{t, 2} \mid \Im_{t}\right) & \ldots & E\left(x_{t, k} \mid \Im_{t}\right) \\
\ldots\left(x_{n, 1} \mid \Im_{n}\right) & E\left(x_{n, 2} \mid \Im_{n}\right) & \ldots & E\left(x_{n, k} \mid \Im_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
E\left(x_{1}^{\prime} \mid \Im_{1}\right) \\
E\left(x_{2}^{\prime} \mid \Im_{2}\right) \\
\ldots \\
E\left(x_{t}^{\prime} \mid \Im_{t}\right) \\
E\left(x_{n}^{\prime} \mid \Im_{n}\right)
\end{array}\right]
$$

Notice that in each row the expectation is conditional on a different, time varying information set.
Analogously to (8.38) we have

$$
\begin{equation*}
\operatorname{plim} \frac{W^{\prime} X}{n}=\operatorname{plim} \frac{W^{\prime} E_{\Im}(X)}{n} \tag{8.47}
\end{equation*}
$$

This can be proved observing that $\operatorname{plim} W^{\prime} X / n=\operatorname{plim} \sum_{t=1}^{n} w_{t} x_{t}^{\prime} / n$ (applying some suitable WLLN) $=\lim \sum_{t=1}^{n} E\left(w_{t} x_{t}^{\prime}\right) / n$ (thus it is not random; we assume that the limit exists, and is a finite non-singular matrix. Applying now iterated expectations $)=\lim \sum_{t=1}^{n} E\left[E\left(w_{t} x_{t}^{\prime} \mid \Im_{t}\right)\right] / n($ applying 8.45$)=\lim \sum_{t=1}^{n} E\left[w_{t} E\left(x_{t}^{\prime} \mid \Im_{t}\right)\right] / n(\mathrm{WLLN})=\operatorname{plim} \sum_{t=1}^{n} w_{t} E\left(x_{t}^{\prime} \mid \Im_{t}\right) / n$ $=p l i m W^{\prime} E_{\Im}(X) / n$.
Applying (8.47), the asymptotic variance-covariance matrix in (8.44) can be written as

$$
\begin{equation*}
\sigma^{2}\left(\operatorname{plim} \frac{W^{\prime} X}{n}\right)^{-1} \operatorname{plim} \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{X^{\prime} W}{n}\right)^{-1}=\sigma^{2}\left(\operatorname{plim} \frac{W^{\prime} E_{\Im}(X)}{n}\right)^{-1} \operatorname{plim} \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{E_{\Im}\left(X^{\prime}\right) W}{n}\right)^{-1} \tag{8.48}
\end{equation*}
$$

Choosing $W=E_{\Im}(X)$, that is, at time $t, w_{t}=E\left(x_{t} \mid \Im_{t}\right)$, the above asymptotic variance-covariance matrix becomes

$$
\begin{equation*}
\sigma^{2}\left(\operatorname{plim} \frac{E_{\Im}\left(X^{\prime}\right) E_{\Im}(X)}{n}\right)^{-1} \tag{8.49}
\end{equation*}
$$

which is the smallest possible, being for any other choice of W

$$
\begin{equation*}
\sigma^{2}\left(p \lim \frac{W^{\prime} E_{\Im}(X)}{n}\right)^{-1} \operatorname{plim} \frac{W^{\prime} W}{n}\left(\operatorname{plim} \frac{E_{\Im}\left(X^{\prime}\right) W}{n}\right)^{-1} \geq \sigma^{2}\left(p \lim \frac{E_{\Im}\left(X^{\prime}\right) E_{\Im}(X)}{n}\right)^{-1} \tag{8.50}
\end{equation*}
$$

according to Schwarz inequality; this is analogous to (8.41).
Thus $W=E_{\Im}(X)$ can be called the matrix of efficient instrumental variables.
Notice that, being this the most efficient choice in the new class of instrumental variables, that include the previous instrumental variables (non-random) as a subset, it must be more efficient than (or at least as efficient as) the previous choice. This follows also considering directly that

$$
\begin{equation*}
\left(p \lim \frac{E_{\Im}\left(X^{\prime}\right) E_{\Im}(X)}{n}\right)^{-1} \leq\left(\lim \frac{E\left(X^{\prime}\right) E(X)}{n}\right)^{-1} \tag{8.51}
\end{equation*}
$$

because $\operatorname{plim} E_{\Im}\left(X^{\prime}\right) E_{\Im}(X) / n=\operatorname{plim} \sum_{t=1}^{n}\left[E\left(x_{t} \mid \Im_{t}\right) E\left(x_{t}^{\prime} \mid \Im_{t}\right)\right] / n=\lim \sum_{t=1}^{n} E\left[E\left(x_{t} \mid \Im_{t}\right) E\left(x_{t}^{\prime} \mid \Im_{t}\right)\right] / n$ (each term of the sum is the "expectation of a square", that is always \geq the "square of the expectation" $) \geq \lim \sum_{t=1}^{n} E\left[E\left(x_{t} \mid \Im_{t}\right)\right] E\left[E\left(x_{t}^{\prime} \mid \Im_{t}\right)\right] / n$ $=\lim \sum_{t=1}^{n} E\left(x_{t}\right) E\left(x_{t}^{\prime}\right) / n=\lim E\left(X^{\prime}\right) E(X) / n$. The variance-covariance matrices are obtained inverting the expressions, so that the inequality would be inverted, as in (8.51).
To conclude, we observe that if a regressor at time t (an element of x_{t}) is exogenous or lagged endogenous (thus it is an element of z_{t}), it coincides with its conditional expectation, given \Im_{t}, because all elements of z_{t} belong to \Im_{t}. Thus it remains unchanged in the vector of efficient instrumental variables w_{t}. If a regressor at time t is a current endogenous, its conditional expectation, given \Im_{t}, follows immediately from the reduced form: $y_{t}=\Pi z_{t}+v_{t}$, thus $E\left[y_{t} \mid \Im_{t}\right]=\Pi z_{t}$.
In all cases we obtain as efficient instrumental variables the same values that would be obtained by treating exogenous variables and lagged endogenous variables as if they were non-random. In such a case, in fact, we could simply say that z_{t} $=E\left[z_{t}\right]$, with a notational simplification over $E\left[z_{t} \mid \Im_{t}\right]$; also, we can say that $\Pi z_{t}=E\left[y_{t}\right]$, with a notational simplification over $E\left[y_{t} \mid \Im_{t}\right]$. This suggest to adopt a trick (8.4) to simplify notations.

8.4 A simplification trick

What has been proved above is that, if we treat exogenous and lagged endogenous variables as if they were non-random variables, the main results remain valid, with a considerable simplification of notations.
Let's consider an equation where a current endogenous variable is among the regressors (an endogenous variable at time t is one of the elements of the vector x_{t}). For example, in the first structural equation of the Klein-I model (the private consumption equation)

$$
C_{t}=\alpha_{1}+\alpha_{2} P_{t}+\alpha_{3} P_{t-1}+\alpha_{4} W_{t}+u_{1, t}
$$

the vector of regressors (explanatory variables) at time t is $x_{t}=\left[1, P_{t}, P_{t-1}, W_{t}\right]^{\prime}$. Current profits $\left(P_{t}\right)$ is the second regressor of C_{t} in the structural form. In the reduced form system $y_{t}=\Pi z_{t}+v_{t}$, the equation of P_{t} is the $5 t h$, being P_{t} the 5th element of the 7×1 vector y_{t}. Therefore $P_{t}=\left[y_{t}\right]_{5}=\Pi_{5, \bullet} z_{t}+v_{5, t}$, being $\Pi_{5, \bullet}$ the 5 th row of the 7×8 matrix Π. Since \Im_{t} contains all the elements of z_{t}, it is, $E\left[P_{t} \mid \Im_{t}\right]=\Pi_{5, \bullet} z_{t}$. Exactly the same value would be obtained using the simplification trick:
$E\left[P_{t}\right]=\Pi_{5, \bullet} z_{t}$, because z_{t} contains only exogenous and lagged endogenous variables (thus non-random), and the error term $v_{5, t}$ has zero mean. Thus the vector of efficient instrumental variables at time $t, w_{t}=E\left(x_{t}\right)$, should contain, as a second element, $E\left[P_{t}\right]=\Pi_{5, \bullet} z_{t}$.
We do analogously for the fourth element of the vector w_{t}, that should be filled by $E\left[W_{t}\right]=\Pi_{7, \bullet} z_{t}$, being total wages and salaries the 7 th endogenous variable of the model.
The first (1) and the third $\left(P_{t-1}\right)$ element of the vector w_{t} are equal to the corresponding elements of x_{t}, because they are non-random (simplification trick).
Notice finally that being $\left[P_{t}\right]=\Pi_{5, \bullet} z_{t}+v_{5, t}$, the scalar $E\left[P_{t}\right]=\Pi_{5, \bullet} z_{t}$ can be viewed as a linear combination of the elements of z_{t}, but also as the observed value of the endogenous variable P_{t} purged of its reduced form error $E\left[P_{t}\right]=P_{t}-v_{5, t}$.
In all the formulas that follow, $E(X)$ implicitly means $E_{\Im}(X)$, and expectation implicitly means conditional expectation.

8.5 Instrumental variables for Klein-I model

The model has 3 stochastic behavioural equations. We call X_{1} the $\left(n \times k_{1}\right)$ matrix of the explanatory variables in the structural form equation of consumption. $X_{2}\left(n \times k_{2}\right)$ and $X_{3}\left(n \times k_{3}\right)$ are the matrices of explanatory variables in the structural form equations of investment and private wages, respectively. For this particular model the three matrices have the same dimensions (21×4). The $t-t h$ row of these matrices are as follows

$$
\begin{gathered}
x_{1 t}^{\prime}=\left[\begin{array}{llll}
1 & P_{t} & P_{t-1} & W_{t}
\end{array}\right] \quad \begin{array}{c}
x_{2 t}^{\prime}=\left[\begin{array}{llll}
1 & P_{t} & P_{t-1} & K_{t-1}
\end{array}\right] \quad \begin{array}{c}
x_{3 t}^{\prime}= \\
\left(1 \times k_{1}\right)
\end{array} \\
\\
\left(1 \times k_{2}\right)
\end{array} \\
\\
\left(1 \times k_{3}\right)
\end{gathered}
$$

The matrices W_{1}, W_{2} and W_{3} have the same dimensions as the corresponding matrices X_{1}, X_{2} and X_{3}. Their $t-t h$ rows are as follows

$$
\left.\begin{array}{c}
\underset{1 t}{\prime}=\left[\begin{array}{llll}
1 & \Pi_{5, \bullet} z_{t} & P_{t-1} & \Pi_{7, \bullet} z_{t}
\end{array}\right] \quad \begin{array}{c}
w_{2 t}^{\prime}= \\
\left(1 \times k_{1}\right)
\end{array} \\
\left(1 \times k_{2}\right)
\end{array}\left[\begin{array}{lllll}
1 & \Pi_{5, \bullet} z_{t} & P_{t-1} & K_{t-1}
\end{array}\right] \quad \begin{array}{c}
w_{3 t}^{\prime}= \\
\left(1 \times k_{3}\right)
\end{array} \begin{array}{lllll}
1 & \Pi_{4, \bullet} z_{t} & X_{t-1} & A_{t}
\end{array}\right]
$$

8.6 Feasible instrumental variable estimator

Unfortunately, the method discussed above is asymptotically efficient just in principle; in practice the method is not feasible. To make the method feasible, we shall replace the $(n \times k)$ matrix $E(X)$ with a matrix that contains good estimates of the expected values of the elements of X. So, in practice, we shall use as a matrix of instrumental variables

$$
\begin{equation*}
W=\widehat{E(X)} \tag{8.52}
\end{equation*}
$$

More or less all the estimation methods proposed in the literature use instrumental variables of this type (8.52). The differences from one another are due to different ways of computing the estimated expected values $\widehat{E(X)}$.
Concerning the consumption equation, being Π (and therefore $\Pi_{5, \bullet}$) unknown, to make the estimation method feasible in practice we first estimate Π (or at least $\Pi_{5, \bullet}$), obtaining $\widehat{\Pi}$, and then plug into w_{t}, as its second element, the scalar $\widehat{E\left[P_{t}\right]}=\widehat{\Pi}_{5, \bullet} z_{t}$.
If a consistent estimator of Π is used to build the matrix of instrumental variables, then the resulting feasible instrumental variable estimator has the same asymptotic variance-covariance matrix as the not feasible efficient estimator (the one that would use the true matrix Π).
To prove it, we can consider how the estimation error (eq. 8.36) changes if we use $W=E(X)$ (the not feasible estimator that uses the true Π) or if we use $W=\widehat{E(X)}$ (the feasible estimator that uses a consistent estimator $\widehat{\Pi})$. Let's first consider the $(k \times k)$ matrix $W^{\prime} X / n$ of equation (8.36). It has exactly the same plim whether we use $W=E(X)$, or we use $W=\widehat{E(X)}$

$$
\operatorname{plim}\left(\frac{E\left(X^{\prime}\right) X}{n}\right)=\operatorname{plim}\left(\frac{\widehat{E\left(X^{\prime}\right) X}}{n}\right)
$$

The above equality can be easily proved element by element. For example, still with reference to the consumption equation of the Klein-I model, the element $(1,2)$ of such a matrix is $\sum_{t=1}^{n} E\left(P_{t}\right) / n=\sum_{t=1}^{n} \Pi_{5, \bullet} z_{t} / n=\Pi_{5, \bullet}\left(\sum_{t=1}^{n} z_{t} / n\right)$ in the not feasible case, while in the feasible case it is $\left.\sum_{t=1}^{n} \widehat{E(P}_{t}\right) / n=\sum_{t=1}^{n} \widehat{\Pi}_{5, \bullet} z_{t} / n=\widehat{\Pi}_{5, \bullet}\left(\sum_{t=1}^{n} z_{t} / n\right)$. The two expressions have obviously the same limit if $\operatorname{plim} \widehat{\Pi}_{5, \bullet}=\Pi_{5, \bullet}$.
Analogously, the equality can be proved for all the other elements of the ($k \times k$) matrix (4×4, in the example).
Considering now the $(k \times 1)$ vector $W^{\prime} u / \sqrt{n}$ in equation (8.36), again it is straightforward to verify that each element converges to the same distribution whether we use $W=E(X)$, or we use $W=\widehat{E(X)}$.
We conclude, therefore, that also the feasible estimator is asymptotically efficient.

9 LIMITED INFORMATION ESTIMATION METHODS (or Single Equation Estimation Methods)

Most of the different traditional estimation methods of the literature are based on equation (7.30), with different ways of computing the feasible $W=\widehat{E(X)}$ (more precisely, $\left.W=\widehat{E_{\Im}(X)}\right)$. Its computation always uses a previously computed estimator $(\widehat{\Pi})$ of the matrix of reduced form coefficients, such that plim $\widehat{\Pi}=\Pi$ (consistent estimator of Π). All estimation
methods are performed in several stages (or steps, two or more than two): the final stage is always equation (7.30), while the previous stages aim at providing a consistent estimator of Π.
Limited information methods do not exploit information contained in the correlation between error terms of different equations.

9.1 2SLS - Two Stage Least Squares: Basmann (1957), Theil (1958)

We first select all the current endogenous variables appearing somewhere on the right hand side of the structural form equations. Then we regress, with OLS, each of these current endogenous variables against all the exogenous and lagged endogenous variables of the system (first stage). The fitted values of these variables are used in the matrices of instrumental variables, where exogenous and lagged endogenous variables are left at their observed value. Then we apply the instrumental variables formula (7.30) to each structural form equation (second stage).
The first stage is an OLS estimation of each reduced form equations, unrestricted. Each OLS provides a consistent estimate of a row of Π, since the variables on the right hand side of each equation are only exogenous and lagged endogenous variables. The fitted values of the dependent variables can therefore be used in the matrices of instrumental variables, to replace the current endogenous regressors of the structural form equations.
Having built the matrices of instrumental variables in this particular way, the results remain algebraically equal if, instead of the I.V. formula, in the second stage we again apply the OLS formula. For instance, in the first equation, $W_{1}^{\prime} X_{1}=W_{1}^{\prime} W_{1}$, thus $\left(W_{1}^{\prime} X_{1}\right)^{-1} W_{1}^{\prime} y_{1}=\left(W_{1}^{\prime} W_{1}\right)^{-1} W_{1}^{\prime} y_{1}$. For this reason the method is called two stage least squares.
2SLS is perhaps the most popular among limited information methods. It cannot be applied to large scale systems. In fact, when the number of exogenous and lagged endogenous variables in the system is too large ($>n$), the first stage OLS estimation is not feasible.

9.2 LIVE - Limited information Instrumental Variables Efficient: Brundy and Jorgenson (1971), Dhrymes (1971)

In the first stage of this method some arbitrary matrices of instrumental variables are used, and equation (7.30) is applied to each structural form equation. In the example, we use three matrices W_{1}, W_{2} and W_{3} that only need to satisfy the quite general requirements for the matrices of instrumental variables given in section 7 .
This first stage provides, for each structural form equation, coefficient estimates which are consistent, but not asymptotically efficient. Estimated coefficients are then plugged into the matrices of structural form coefficients, producing a consistent (but inefficient) estimate of B and Γ.
Inverting the estimated B and multiplying by the estimated Γ (with minus sign) provides a consistent estimate of the matrix of reduced form coefficients Π. This estimate of Π is now used to build, for each equation, the matrix of the estimated expected values of the regressors, to be used as new matrices of instrumental variables (as in section 8.5 for the example model).
Then the second stage applies equation (7.30) to each structural form equation, producing coefficient estimates which are consistent and asymptotically efficient.
Unlike 2SLS, this method estimates Π from the restricted reduced form. The estimation formula is only applied to the structural form equations, (usually with a small number of regressors), thus the method can be applied also to large scale models. It is, however, less robust than 2SLS. A specification error in a structural form equation may have consequences in the estimation of the other equations as well, even if correctly specified. This does not happen for 2SLS, where a specification error in one equation has consequences only for such equation.
Notice finally that the estimated expected values of the endogenous regressors, to be used in the i.v. matrices of the second stage, are the values of the endogenous variables computed from the simultaneous solution of the structural form model, using the terminology of section 4 . Solution is, of course, static (or one-step-ahead), since lagged endogenous are considered fixed (section 8.4).
The instrumental variables used in the first stage can be completely arbitrary, as already observed. A simple technique is customarily (even if not necessarily) adopted to build them. A preliminary estimation is done, using OLS on the structural form equations. Estimates would therefore be inconsistent, but presumably better than if we invent them from scratch. From these estimates, filling the matrices B and Γ we compute an estimate of Π (still inconsistent, of course), and use it to fill the matrices of instrumental variables to be used in the first stage. Then, first and second stage are as above.

9.3 IIV - Iterative Instrumental Variables: Dutta and Lyttkens (1974), Lyttkens (1974)

The final stage of LIVE can be applied iteratively, till convergence is achieved. At the end of each iteration, estimated coefficients are plugged into the matrices B and Γ; a new estimate of Π is then computed; new matrices of instrumental variables are then computed and used in the next iteration.
Each new iteration (or stage) may change the numerical values of the estimates, but not their asymptotic distribution: efficiency has been already achieved at the second stage.

9.4 k-class Estimator: Theil (1958), Nagar (1959)

It is convenient here to interpret the instrumental variables as at the end of section 8.4 , that is the observed value of each regressor purged of its reduced form error.

With reference to the first structural form equation of the example model, we may replace P_{t}, in the matrix of instrumental variables, with $P_{t}-k \hat{v}_{5, t}$, where k is a scalar random variable, function of the data. Analogously, we replace W_{t} with $W_{t}-k \hat{v}_{7, t}$. If $\hat{v}_{5, t}$ and $\hat{v}_{7, t}$ are residuals of OLS applied to the unrestricted reduced form (as in the first stage of 2SLS), the instrumental variable estimator is called k-class estimator. It is straightforward to prove that the estimator is consistent if $\operatorname{plim}(k-1)=0$, and also asymptotically efficient if $\operatorname{plim} \sqrt{n}(k-1)=0$. Roughly speaking, k must converge to 1 fast enough.
2SLS is the particular case when $k=1$; as well known, it is consistent and asymptotically efficient. OLS is the particular case when $k=0$, and it is inconsistent.

9.5 GIVE - Generalized Instrumental Variable Estimator: Sargan (1958)

9.6 LIML - Limited Information Maximum Likelihood: Anderson and Rubin (1949, 1950)

10 SEEMINGLY UNRELATED REGRESSION EQUATIONS (SURE)

A system of G linear regression models, without endogenous regressors,

$$
\begin{align*}
& {\left[\begin{array}{ll}
y_{1} & =X_{1} \beta_{1}+u_{1} \\
& \ldots \\
y_{i} & =X_{i} \beta_{i}+u_{i} \\
& \ldots \\
y_{G} & =X_{G} \beta_{G}+u_{G}
\end{array} \quad \text { where } \quad \underset{(n \times 1)}{y_{i}=}\left[\begin{array}{c}
y_{i, 1} \\
y_{i, 2} \\
\ldots \\
y_{i, t} \\
\ldots \\
y_{i, n}
\end{array}\right] \quad \underset{\left(n \times k_{i}\right)}{X_{i}=\left[\begin{array}{cccc}
x_{i, 1,1} & x_{i, 1,2} & \ldots & x_{i, 1, k_{i}} \\
x_{i, 2,1} & x_{i, 2,2} & \ldots & x_{i, 2, k_{i}} \\
\ldots & \ldots & \ldots & \ldots \\
x_{i, t, 1} & x_{i, t, 2} & \ldots & x_{i, t, k_{i}} \\
\ldots & \ldots & \ldots & \ldots \\
x_{i, n, 1} & x_{i, n, 2} & \ldots & x_{i, n, k_{i}}
\end{array}\right] \quad \underset{\left(k_{i} \times 1\right)}{\beta_{i}=} \quad\left[\begin{array}{c}
\beta_{i, 1} \\
\beta_{i, 2} \\
\ldots \\
\beta_{i, k_{i}}
\end{array}\right]}\right.} \\
& \underset{(n \times 1)}{u_{i}}=\left[\begin{array}{c}
u_{i, 1} \\
u_{i, 2} \\
\cdots \\
u_{i, t} \\
\cdots \\
u_{i, n}
\end{array}\right] \quad\left[\begin{array}{l}
E\left[u_{i, t}\right]=0 \quad \forall i, t \\
\operatorname{Var}\left[u_{i, t}\right]=\sigma_{i}^{2}=\sigma_{i, i} \forall t \\
\operatorname{Cov}\left[u_{i, t}, u_{j, t}\right]=\sigma_{i, j} \forall t \\
\operatorname{Cov}\left[u_{i, t_{1}}, u_{j, t_{2}}\right]=0 \quad \forall i, j, t_{1} \neq t_{2}
\end{array}\right. \tag{10.53}
\end{align*}
$$

can be represented as a single linear regression model, $y=X \beta+u$ with $G n$ observations, defining the vectors and matrices

$$
y=X \beta+u \underset{(G n \times 1)}{y=}\left[\begin{array}{c}
y_{1} \tag{10.54}\\
y_{2} \\
\ldots \\
y_{i} \\
\ldots \\
y_{G}
\end{array}\right] \quad X={ }_{\left[G n \times\left(k_{1}+\ldots+k_{G}\right)\right]}^{\left.\left[\begin{array}{cccc}
X_{1} & 0 & \ldots & 0 \\
0 & X_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & X_{i} & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & X_{G}
\end{array}\right] \quad \underset{\left[\left(k_{1}+\ldots+k_{G}\right) \times 1\right]}{\beta=}\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\ldots \\
\beta_{i} \\
\ldots \\
\beta_{G}
\end{array}\right] \quad \underset{(G n \times 1)}{u=}\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{i} \\
\ldots \\
u_{G}
\end{array}\right] .\right] . ~}
$$

where the vector of error terms, with $G n$ elements, has expected value zero and variance-covariance matrix

$$
\underset{(G n \times G n)}{\operatorname{Var}(u)}=\underset{(G \times G)}{\sum} \otimes \underset{(n \times n)}{ } I_{n}=\left[\begin{array}{ccccccccccccc}
\sigma_{1,1} & 0 & . . & 0 & \sigma_{1,2} & 0 & . . & 0 & . . & \sigma_{1, G} & 0 & . . & 0 \tag{10.55}\\
0 & \sigma_{1,1} & . . & 0 & 0 & \sigma_{1,2} & . . & 0 & . . & 0 & \sigma_{1, G} & . . & 0 \\
\ldots & \ldots & . . & \ldots & \ldots & \ldots & . & \ldots & . . & \ldots & \ldots & . . & \ldots \\
0 & 0 & . . & \sigma_{1,1} & 0 & 0 & . . & \sigma_{1,2} & . . & 0 & 0 & . . & \sigma_{1, G} \\
\sigma_{2,1} & 0 & . . & 0 & \sigma_{2,2} & 0 & . . & 0 & . . & \sigma_{2, G} & 0 & . . & 0 \\
0 & \sigma_{2,1} & . . & 0 & 0 & \sigma_{2,2} & . . & 0 & . . & 0 & \sigma_{2, G} & . . & 0 \\
\ldots & \ldots & . . & \ldots & \ldots & \ldots & . . & \ldots & . . & \ldots & \ldots & . . & \ldots \\
0 & 0 & . . & \sigma_{2,1} & 0 & 0 & . . & \sigma_{2,2} & . . & 0 & 0 & . . & \sigma_{2, G} \\
\ldots & \ldots & . . & \ldots & \ldots & \ldots & . . & \ldots & . . & \ldots & \ldots & . . & \ldots \\
\ldots & \ldots & . . & \ldots & \ldots & \ldots & . . & \ldots & . . & \ldots & \ldots & . . & \ldots \\
\sigma_{G, 1} & 0 & . . & 0 & \sigma_{G, 2} & 0 & . . & 0 & . . & \sigma_{G, G} & 0 & . . & 0 \\
0 & \sigma_{G, 1} & . . & 0 & 0 & \sigma_{G, 2} & . . & 0 & . . & 0 & \sigma_{G, G} & . . & 0 \\
\ldots & \ldots & . . & \ldots & \ldots & \ldots & . . & \ldots & . . & \ldots & \ldots & . . & \ldots \\
0 & 0 & . . & \sigma_{G, 1} & 0 & 0 & . . & \sigma_{G, 2} & . . & 0 & 0 & . . & \sigma_{G, G}
\end{array}\right]
$$

whose inverse is $\Sigma^{-1} \otimes I_{n}$.
There is no explicit relationship among equations, since there are no current endogenous variables on the right hand side of the equations (no simultaneity). There is, however, a relationship due to the correlations among contemporaneous error terms (or cross-equations correlations).

10.1 An example of SURE model: Zellner (1962)

The model is a system of 2 equations, each with 3 explanatory variables (regressors). Dependent variables are annual gross investments of two corporations, during the period 1935-1954.

$$
\left[\begin{array}{lll}
I_{t}^{G E} & =\beta_{1,1}+\beta_{1,2} F_{t-1}^{G E}+\beta_{1,3} C_{t-1}^{G E}+u_{1, t} & \tag{10.56}\\
\text { General Electric } \\
I_{t}^{W} & =\beta_{2,1}+\beta_{2,2} F_{t-1}^{W}+\beta_{2,3} C_{t-1}^{W}+u_{2, t} & \text { Westinghouse }
\end{array}\right.
$$

F_{t-1} is the market value of the firm, defined as the total value of the outstanding stock at end-of-year market quotations. C_{t-1} is the existing capital stock.

10.2 GLS and Feasible GLS estimation of SURE models

If X does not contain random variables and Σ is known, the GLS estimator

$$
\begin{equation*}
\dot{\beta}_{G L S}=\left[X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X\right]^{-1} X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) y \tag{10.57}
\end{equation*}
$$

is BLUE (Aitken's theorem), as well as consistent and asymptotically efficient. The variance-covariance matrix of the GLS estimator is

$$
\begin{equation*}
\operatorname{Var}\left(\dot{\beta}_{G L S}\right)=E\left[\left(\dot{\beta}_{G L S}-\beta\right)\left(\dot{\beta}_{G L S}-\beta\right)^{\prime}\right]=\left[X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X\right]^{-1} \tag{10.58}
\end{equation*}
$$

If Σ is not known, a feasible GLS estimator can be obtained from the same equation, having previoulsy computed a consistent estimate $\widehat{\Sigma}$. $\widehat{\Sigma}$ is usually computed from residuals of a preliminary OLS estimation; it is consistent, being OLS consistent for a model without endogenous regressors. It is common practice to compute $\widehat{\Sigma}$ without degrees of freedom correction, that is dividing by n the sums of squared residuals (variances) or the sums of cross products of contemporaneous residuals (covariances).

$$
\begin{equation*}
\dot{\beta}_{F G L S}=\left[X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) X\right]^{-1} X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) y \tag{10.59}
\end{equation*}
$$

If $\operatorname{plim} \widehat{\Sigma}=\Sigma$, both estimation errors (rescaled by \sqrt{n}) have the same asymptotic distribution (multivariate normal)

$$
\left.\begin{array}{l}
\sqrt{n}\left[\dot{\beta}_{G L S}-\beta\right]=\left[\frac{X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X}{n}\right]^{-1} \tag{10.60}\\
\frac{X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) u}{\sqrt{n}} \\
\sqrt{n}\left[\dot{\beta}_{F G L S}-\beta\right]=\left[\frac{X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) X}{n}\right]^{-1} \\
\frac{X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) u}{\sqrt{n}}
\end{array}\right\} \begin{gathered}
\operatorname{distr} \\
n \rightarrow \infty
\end{gathered} N\left\{0,\left[\frac{X^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X}{n}\right]^{-1}\right\}
$$

Each estimation error, in fact, is the product of two terms: the first term of the product has the same limit, in the two cases; the second term of the product has, in the two cases, the same asymptotic normal distribution.

10.3 Remarks and special cases

1. Kronecker product is a convenient algebraic operator that permits a closed form representation of the variancecovariance matrix. Its use, however, is not recommended in the computational practice. Software algorithms should avoid its use, because of its computational inefficiency.
Indicating with $\hat{\sigma}^{i, j}$ the generic element of $\widehat{\Sigma}^{-1}$, it is easier and faster to compute the matrix $\left[X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) X\right]$ block by block, the $i, j-t h$ block being $\hat{\sigma}^{i, j} X_{i}^{\prime} X_{j}$ (of dimensions $k_{i} \times k_{j}$).
The vector $X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) y$ would be analogously partitioned, the $i-t h$ sub-vector being $X_{i}^{\prime} \sum_{j=1}^{G} \hat{\sigma}^{i, j} y_{j}$.
2. GLS (or Feasible GLS) obviously gives the same results as OLS (algebraically and numerically) when Σ (or $\widehat{\Sigma}$) is diagonal (all cross equation covariances are zero).
3. Even if $\Sigma($ or $\widehat{\Sigma})$ is not diagonal (cross equation covariances are not zero), GLS (or Feasible GLS) gives the same results as OLS (algebraically and numerically) if the explanatory variables (regressors) are the same in each equation. In such a case, if we call Z the $(n \times k)$ matrix of explanatory variables common to all equations, then the block-diagonal matrix X could be represented as $X=I_{G} \otimes Z$ (with dimensions $G n \times G k$), and some straightforward algebra would give

$$
\begin{align*}
\dot{\beta}_{F G L S} & =\left[X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) X\right]^{-1} X^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) y=\left[\left(I_{G} \otimes Z\right)^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right)\left(I_{G} \otimes Z\right)\right]^{-1}\left(I_{G} \otimes Z\right)^{\prime}\left(\widehat{\Sigma}^{-1} \otimes I_{n}\right) y \\
& =\left\{I_{G} \otimes\left[\left(Z^{\prime} Z\right)^{-1} Z^{\prime}\right]\right\} y=\left[\begin{array}{l}
\widehat{\beta}_{O L S_{1}} \\
\dddot{\beta}_{O L S_{i}} \\
\cdots \\
\widehat{\beta}_{O L S_{G}}
\end{array}\right] \tag{10.61}
\end{align*}
$$

4. As a final remark, it can be shown that, with a simple transformation, current endogenous regressors appear explicitly, while they seem to be absent from (10.53), thus explaining why the equations are unrelated only seemingly and not really. If the contemporaneous error terms u_{t}, in a 2 equations model, have a bivariate normal distribution

$$
\left[\begin{array} { l l }
{ y _ { 1 , t } = x _ { 1 , t } ^ { \prime } \beta _ { 1 } + u _ { 1 , t } } \\
{ y _ { 2 , t } } & { = x _ { 2 , t } ^ { \prime } \beta _ { 2 } + u _ { 2 , t } }
\end{array} \quad \text { where } \quad [\begin{array} { l }
{ u _ { 1 , t } } \\
{ u _ { 2 , t } }
\end{array}] \sim N [0 , \Sigma] \quad \text { therefore } \quad \left[\begin{array}{l}
u_{1, t} \sim N\left[0, \sigma_{1,1}\right] \\
u_{2, t} \left\lvert\, u_{1, t} \sim N\left[\frac{\sigma_{1,2}}{\sigma_{1,1}} u_{1, t}, \sigma_{2,2}-\frac{\sigma_{1,2}^{2}}{\sigma_{1,1}}\right]\right.
\end{array}\right.\right.
$$

we can write

Replacing $u_{1, t}=y_{1, t}-x_{1, t}^{\prime} \beta_{1}$ into the expression of $u_{2, t}$, then the two equations become

$$
\left[\begin{array}{rl}
y_{1, t} & =x_{1, t}^{\prime} \beta_{1}+\sqrt{\sigma_{1,1}} e_{1, t} \\
y_{2, t} & =x_{2, t}^{\prime} \beta_{2}+\frac{\sigma_{1,2}}{\sigma_{1,1}}\left(y_{1, t}-x_{1, t}^{\prime} \beta_{1}\right)+\sqrt{\sigma_{2,2}-\frac{\sigma_{1,2}^{2}}{\sigma_{1,1}}} e_{2, t}
\end{array}\right.
$$

where an endogenous regressor explicitly appears in the second equation. Notice that, after transformation, the error terms are no more correlated; a system of this type is called "recursive".

10.4 Iterative Feasible GLS and Maximum Likelihood

Feasible GLS (10.59) can be applied iteratively, each time re-computing an estimate of Σ from residuals of the last iteration. Let $\dot{\beta}_{F G L S(m)}$ be the coefficient estimates at the end of iteration $m, \dot{u}_{F G L S(m)}$ the corresponding residuals and $\dot{\Sigma}_{F G L S(m)}$ the variance-covariance matrix computed from residuals. It is therefore $y=X \dot{\beta}_{F G L S(m)}+\dot{u}_{F G L S(m)}$, that can be introduced into equation (10.59) to replace y, obtaining

$$
\begin{align*}
\dot{\beta}_{F G L S(m+1)} & =\left[X^{\prime}\left(\dot{\Sigma}_{F G L S(m)}^{-1} \otimes I_{n}\right) X\right]^{-1} X^{\prime}\left(\dot{\Sigma}_{F G L S(m)}^{-1} \otimes I_{n}\right)\left(X \dot{\beta}_{F G L S(m)}+\dot{u}_{F G L S(m)}\right) \tag{10.62}\\
& =\dot{\beta}_{F G L S(m)}+\left[X^{\prime}\left(\dot{\Sigma}_{F G L S(m)}^{-1} \otimes I_{n}\right) X\right]^{-1} X^{\prime}\left(\dot{\Sigma}_{F G L S(m)}^{-1} \otimes I_{n}\right) \dot{u}_{F G L S(m)}
\end{align*}
$$

Convergence is achieved when $\dot{\beta}_{F G L S(m+1)}=\dot{\beta}_{F G L S(m)}$, therefore when $X^{\prime}\left(\dot{\Sigma}_{F G L S(m)}^{-1} \otimes I_{n}\right) \dot{u}_{F G L S(m)}=0$. This expression is the gradient of the concentrated log-likelihood, under the additional assumption that the error terms have a multivariate normal distribution. Thus, iterative feasible GLS converges to maximum likelihood (ML). Proof is in Appendix (??).
Notice that (10.60) holds for each iteration, therefore the asymptotic efficiency is the same at each iteration, as well as when convergence is achieved.

11 FULL INFORMATION ESTIMATION METHODS (or System Estimation Methods)

Matrix Σ is completely ignored by limited information methods, but it may contain useful information, that may improve the estimator's efficiency. Full information methods take into account also this information.

11.1 Remark

It must be noticed that estimation concerns only the behavioural stochastic equations of the model (the first three equations, in the example). What is called Σ in this section is therefore the variance-covariance matrix of the error terms, at time t, of the stochastic equations only, excluding the identities. In the example, it is the 3×3 positive definite matrix previously called Σ_{3} (equation 3.5), and not the full 7×7 matrix that, being singular, could not be inverted. The whole system of 7 equations must be considered when computing expected values of endogenous regressors (or reduced form coefficients, or simultaneous solution of the system). For calculations involving residuals, like estimation of the Σ matrix, only the 3 stochastic equations must be considered.

11.2 Efficient instrumental variables in the full information context

We first decompose the positive definite variance-covariance matrix as the product of a non-singular square matrix P with its transpose: $\Sigma \otimes I_{n}=P^{\prime} P$, so that $\Sigma^{-1} \otimes I_{n}=P^{-1} P^{\prime-1}$. Equations, coefficients, variables and error terms are represented as in section 10 , but in some or all G equations the matrices of regressors, $X_{1}, X_{2}, \ldots, X_{G}$, may contain current endogenous variables. We build, therefore, the corresponding matrices of instrumental variables $W_{1}, W_{2}, \ldots, W_{G}$, containing the same variables, but with current endogenous variables replaced by their expected values (conditional expectations, to be more precise).
The matrices of instrumental variables $W_{1}, W_{2}, \ldots, W_{G}$ are used as blocks of the matrix W, while the matrices of explanatory variables (regressors) $X_{1}, X_{2}, \ldots, X_{G}$ are used as blocks of the matrix X

$$
\left[G n \times\left(k_{1}+\ldots+k_{G}\right)\right]\left[\begin{array}{cccc}
W_{1} & 0 & \ldots & 0 \tag{11.63}\\
0 & W_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & W_{G}
\end{array}\right]=\left[\begin{array}{cccc}
E\left(X_{1}\right) & 0 & \ldots & 0 \\
0 & E\left(X_{2}\right) & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & E\left(X_{G}\right)
\end{array}\right]=E\left[\begin{array}{cccc}
X_{1} & 0 & \ldots & 0 \\
0 & X_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & X_{G}
\end{array}\right]=E(X)
$$

Analogously to section 10, we represent the whole system as a single equation $y=X \beta+u$ and pre-multiply each term by $P^{\prime-1}$, obtaining $P^{\prime-1} y=P^{\prime-1} X \beta+P^{\prime-1} u$. Defining $q=P^{\prime-1} y, Q=P^{\prime-1} X$ and $\varepsilon=P^{\prime-1} u$, the equation becomes $q=Q \beta+\varepsilon$, where variables and errors terms have been transformed, but coefficients are still the same as in the model of interest. Of course there will be correlation between explanatory variables Q and error terms ε.
Some simple algebra shows that the transformed error terms have zero mean and variance-covariance matrix $I_{G n}$, therefore homoskedastic and not correlated. Thus, instrumental variable estimator of the transformed equation would be consistent and asymptotically efficient, if instrumental variables are the expected values of regressors

$$
\begin{equation*}
H=E(Q)=E\left(P^{\prime-1} X\right)=P^{\prime-1} E(X)=P^{\prime-1} W \tag{11.64}
\end{equation*}
$$

and applying the instrumental variable formula we get

$$
\begin{equation*}
\breve{\beta}=\left[H^{\prime} Q\right]^{-1} H^{\prime} q=\left[W^{\prime} P^{-1} P^{\prime-1} X\right]^{-1} W^{\prime} P^{-1} P^{\prime-1} y=\left[W^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X\right]^{-1} W^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) y \tag{11.65}
\end{equation*}
$$

Analogously to equation (10.60), considering that $W=E(X)$, the estimation error (rescaled by \sqrt{n}) is

$$
\begin{equation*}
\sqrt{n}[\breve{\beta}-\beta]=\left[\frac{W^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) X}{n}\right]^{-1} \frac{W^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) u}{\sqrt{n}} \quad \underset{n \rightarrow \infty}{\operatorname{distr}} N\left\{0,\left[\frac{W^{\prime}\left(\Sigma^{-1} \otimes I_{n}\right) W}{n}\right]^{-1}\right\} \tag{11.66}
\end{equation*}
$$

To make the estimator feasible we replace Σ with an estimate, and fill matrix W with estimates of the expected values of regressors. If the estimate of Σ is computed from residuals of a preliminary consistent (even if inefficient) estimation, and estimates of expected values of regressors are computed using a preliminary consistent (even if inefficient) estimate of Π, then the feasible estimator would have the same asymptotic distribution as the theoretical estimator (11.66), and would be therefore asymptotically efficient.

11.3 3SLS - Three Stage Least Squares: Zellner and Theil (1962)

The structural form equations of the model are first estimated by two stage least squares (2SLS), obtaining a consistent estimate of all the structural form coefficients ($\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{12}$ in the example), and the corresponding residuals. Sums of squares and sums of cross products of structural residuals are used to produce $\tilde{\Sigma}$, a consistent estimate of Σ, while second stage coefficients are no more used.
Third stage is simply the application of the feasible full information estimator

$$
\begin{equation*}
\breve{\beta}=\left[W^{\prime}\left(\tilde{\Sigma}^{-1} \otimes I_{n}\right) X\right]^{-1} W^{\prime}\left(\tilde{\Sigma}^{-1} \otimes I_{n}\right) y \tag{11.67}
\end{equation*}
$$

where the blocks of matrix W are the same computed at the end of the first stage, and already used in the second stage.

11.4 Iterative Three Stage Least Squares

The final formula of 3SLS (11.67) can be applied iteratively, each time re-computing an estimate of Σ from residuals of the last iteration. Matrix W is not updated during the iterations, but remains fixed. Iterations continue till convergence is achieved.

11.5 FIVE - Full information Instrumental Variables Efficient: Brundy and Jorgenson (1971), Dhrymes (1971)

The first stage is the same as in the corresponding limited information method (LIVE, section 9.2). First of all it produces, for each equation, the new matrix of instrumental variables (the blocks of W). Also residuals of the structural form equations are used to produce a consistent estimate of Σ.
The next (final) stage is simply the application of the feasible full information estimator (analogous to 11.67).

11.6 FIML - Full Information Maximum Likelihood: Koopmans, Rubin and Leipnik (1950), Chernoff and Divinsky (1953)

11.7 FIML from iterative instrumental variables: Durbin (1963, 1988), Hausman (1974, 1975)

The last stage of FIVE can be applied iteratively, each time re-computing estimates of B and Γ, from which a new estimate of Π and new matrices of instrumental variables are derived, and re-estimating Σ from structural form residuals. Let $\breve{\beta}_{(m)}$ be the coefficient estimates at the end of iteration $m, W_{(m)}$ the matrix of instrumental variables built by means of such coefficients, $\breve{u}_{(m)}$ the corresponding residuals and $\breve{\Sigma}_{(m)}$ the variance-covariance matrix computed from residuals. It is therefore $y=X \breve{\beta}_{(m)}+\breve{u}_{(m)}$, that can be introduced into equation (11.67) to replace y, obtaining

$$
\begin{align*}
\breve{\beta}_{(m+1)} & =\left[W_{(m)}^{\prime}\left(\breve{\Sigma}_{(m)}^{-1} \otimes I_{n}\right) X\right]^{-1} W_{(m)}^{\prime}\left(\breve{\Sigma}_{(m)}^{-1} \otimes I_{n}\right)\left(X \breve{\beta}_{(m)}+\breve{u}_{(m)}\right) \\
& =\breve{\beta}_{(m)}+\left[W_{(m)}^{\prime}\left(\breve{\Sigma}_{(m)}^{-1} \otimes I_{n}\right) X\right]^{-1} W_{(m)}^{\prime}\left(\breve{\Sigma}_{(m)}^{-1} \otimes I_{n}\right) \breve{u}_{(m)} \tag{11.68}
\end{align*}
$$

Convergence is achieved when $\breve{\beta}_{(m+1)}=\breve{\beta}_{(m)}$, therefore when $W_{(m)}^{\prime}\left(\breve{\Sigma}_{(m)}^{-1} \otimes I_{n}\right) \breve{u}_{(m)}=0$. This expression is the gradient of the concentrated log-likelihood, under the additional assumption that the error terms have a multivariate normal distribution. Proof is in Appendix (12). Thus, iterative FIVE converges to full information maximum likelihood (FIML).
Notice that (10.60) holds for each iteration, therefore the asymptotic efficiency is the same at each iteration, as well as when convergence is achieved.
This method for computing FIML estimates was proposed by Durbin in 1963 (published in 1988), discussed in Hausman (1974, 1975), Hendry (1976), Calzolari and Sampoli (1993), and extended to nonlinear models in Amemiya (1977).

12 APPENDIX

APPENDIX. Data set and numerical results for Klein-I model

	C	I	Wp	X	P	K	W	1	$W g$	T	A	G
1920	39.8	2.7	28.8	44.9	12.7	182.8	31.0	1.0	2.2	3.40	-11.	2.40
1921	41.9	-.20	25.5	45.6	12.4	182.6	28.2	1.0	2.7	7.70	-10.	3.90
1922	45.0	1.9	29.3	50.1	16.9	184.5	32.2	1.0	2.9	3.90	-9.0	3.20
1923	49.2	5.2	34.1	57.2	18.4	189.7	37.0	1.0	2.9	4.70	-8.0	2.80
1924	50.6	3.0	33.9	57.1	19.4	192.7	37.0	1.0	3.1	3.80	-7.0	3.50
1925	52.6	5.1	35.4	61.0	20.1	197.8	38.6	1.0	3.2	5.50	-6.0	3.30
1926	55.1	5.6	37.4	64.0	19.6	203.4	40.7	1.0	3.3	7.00	-5.0	3.30
1927	56.2	4.2	37.9	64.4	19.8	207.6	41.5	1.0	3.6	6.70	-4.0	4.00
1928	57.3	3.0	39.2	64.5	21.1	210.6	42.9	1.0	3.7	4.20	-3.0	4.20
1929	57.8	5.1	41.3	67.0	21.7	215.7	45.3	1.0	4.0	4.00	-2.0	4.10
1930	55.0	1.0	37.9	61.2	15.6	216.7	42.1	1.0	4.2	7.70	-1.0	5.20
1931	50.9	-3.4	34.5	53.4	11.4	213.3	39.3	1.0	4.8	7.50	.00	5.90
1932	45.6	-6.2	29.0	44.3	7.00	207.1	34.3	1.0	5.3	8.30	1.0	4.90
1933	46.5	-5.1	28.5	45.1	11.2	202.0	34.1	1.0	5.6	5.40	2.0	3.70
1934	48.7	-3.0	30.6	49.7	12.3	199.0	36.6	1.0	6.0	6.80	3.0	4.00
1935	51.3	-1.3	33.2	54.4	14.0	197.7	39.3	1.0	6.1	7.20	4.0	4.40
1936	57.7	2.1	36.8	62.7	17.6	199.8	44.2	1.0	7.4	8.30	5.0	2.90
1937	58.7	2.0	41.0	65.0	17.3	201.8	47.7	1.0	6.7	6.70	6.0	4.30
1938	57.5	-1.9	38.2	60.9	15.3	199.9	45.9	1.0	7.7	7.40	7.0	5.30
1939	61.6	1.3	41.6	69.5	19.0	201.2	49.4	1.0	7.8	8.90	8.0	6.60
1940	65.0	3.3	45.0	75.7	21.1	204.5	53.0	1.0	8.0	9.60	9.0	7.40
1941	69.7	4.9	53.3	88.4	23.5	209.4	61.8	1.0	8.5	11.6	10.	13.8

OLS estimation of stochastic structural equations. Estimation (sample) period: 1921 - 1941. Annual data

7 Endogenous variables - 3 Stochastic equations - 5 Exogenous variables
12 Estimated coefficients - 19201941 Time range - 19211941 Sample period

	** * One-Step-Ahead (Static) Solution - OLS structural coefficients * $* *$ Year 1921 Year 1922						
Variable	Observed	Computed	\% Error	Variable	Observed	Computed	\% Error
$Y(1)=C$	41.9000	43.9284	4.84101	$Y(1)=C$	45.0000	48.1869	7.08189
$Y(2)=I$	-. 200000	-. 211785	5.89235	$Y(2)=I$	1.90000	3.33087	75.3092
$Y(3)=W p$	25.5000	27.6804	8.55070	$Y(3)=W p$	29.3000	31.0337	5.91713
$Y(4)=X$	45.6000	47.6166	4.42236	$Y(4)=X$	50.1000	54.7177	9.21702
$Y(5)=P$	12.4000	12.2362	-1.32121	$Y(5)=P$	16.9000	19.7840	17.0651
$Y(6)=K$	182.600	182.588	-. $645383 \mathrm{e}-2$	$Y(6)=\mathrm{K}$	184.500	185.931	. 775542
$Y(7)=W$	28.2000	30.3804	7.73202	$\mathrm{Y}(7)=W$	32.2000	33.9337	5.38422

\qquad

Output for Variable $Y(1)=C$ for Years 1921-1941

Year	Observed	Comput.	\%	d	
	41.9000	43.9284			
1922	45.0000	48.1869	7.08189	7.39857	9.69411
3	49.2000	50.3380	2.31309	. 33333	4.46427
1924	50.6000	54.2978	7.3078	2.84553	7.86627
25	52.6000	52.2601	-. 646148	3.95257	-3.75271
1926	55.1000	50.6623	-8.05385	4.75285	-3.05739
227	56.2000	51.8835	-7.68067	1.99637	2.41034
28	57.3000	55.2600	-3.56019	1.95730	6.50794
929	57.8000	56.5899	-2.09352	. 872600	2.40669
O	55.0000	53.8983	-2.00304	-4.84429	-4.75636
1931	50.9000	50.9713	. 140127	-7.45455	-5.43060
1932	45.6000	45.7654	. 362793	-10.4126	-10.2134
1933	46.5000	44.8969	-3.44754	1.97368	-1.89781
1934	48.7000	48.9169	. 445435	4.73118	8.95392
1935	51.3000	51.3647	. 126210	5.33881	5.00403
1936	57.7000	52.4316	-9.13068	12.4756	2.07701
937	58.7000	58.9735	. 465976	1.73310	12.4771
1938	57.5000	61.6210	7.16703	-2.04429	4.48932
1939	61.6000	60.4109	-1.93033	7.13043	-1.96382
1940	65.0000	65.0920	. 141601	5.51948	7.74881
1941	69.7000	76.1503	9.25439	7.	87

Output for Variable $Y(5)=P$ for Years 1921-1941

	12	12	-1.32121		
1922	16.9000	19.7840	1		
	19.4000	23.0849	18.9945	5.43478	
	20.1000		-6.04758	3.60825	
	19	14	-26.5704	-2.	
	19.8000	14	-24	1.02041	
	21		-2	566	
1929	21.7000	21.577	4732	. 8436	39
	15	14.3352	-8.10762	-28.1106	
	11.4000	12.2391	7.36033	-26.	-14.6223
	7.00	6.98673	-. 189582	-38	-42.9146
	11.2000	10.	-7.0057	0.000	
	12.	12.9839	5.55996	9.82143	9
	14.	14.0607	,	13.8211	
1936	17.6000	11.6524	-33.7931	25.7143	-17.1280
1937	17.3000	8319	474	-1.70455	
	15.	19.7851		-11	
	19.0000	18.0957	-4.75950	24.1830	8.53863
	21.1000	20.2771	-3.90017		
1941	23.	29.7	26.6	11.	46.7770

	RMSE (dimensionless)	RMSE	MAPE	H.Theil: Inequality Coefficients Applied Economic Forecasting (1966), p. 59	
				Eq. (4.5)	Eq. (4.6)

* Dynamic Solution - OLS structural coefficients * ***							
Year 1921				Year 1922			
Variable	Observed	Computed	\% Error	Variable	Observed	Computed	\% Error
$Y(1)=C$	41.9000	43.9284	4.84101	$Y(1)=C$	45.0000	48.2969	7.32655
$Y(2)=I$	-. 200000	-. 211785	5.89235	$Y(2)=I$	1.90000	3.10527	63.4355
$Y(3)=W p$	25.5000	27.6804	8.55070	$Y(3)=W p$	29.3000	31.2776	6.74936
$Y(4)=X$	45.6000	47.6166	4.42236	$Y(4)=X$	50.1000	54.6022	8.98647
$Y(5)=P$	12.4000	12.2362	-1.32121	$Y(5)=P$	16.9000	19.4247	14.9388
$Y(6)=K$	182.600	182.588	-.645383e-2	$Y(6)=K$	184.500	185.693	. 646878
$\mathrm{Y}(7)=W$	28.2000	30.3804	7.73202	$\mathrm{Y}(7)=\mathrm{W}$	32.2000	34.1776	6.14150

Output for Variable $Y(1)=C$ for Years 1921-1941
Output for Variable $Y(5)=P$ for Years 1921-1941

	Obser Value	Compu Value		ed	Comput. \%Change
	41.9000	43.9284			
1922	45.0000	48.296	7.32655	3985	
23	49.2000	52.6653	7.04338	. 33333	87
1924	50.6000	56.7956	12.2442	553	43
1925	52.6000	56.5272	7.46618	257	1
26	55.1000	50.3343	-8.64922	4.75285	557
1927	56.2000	44.7342	-20.4017	9637	-11.1257
928	57.3000	45.8225	-20.0305	1.95730	2.43285
1929	57.8000	51.9065	-10.1963	8	
1930	55.0000	54.6348	-. 663984	-4.84429	5.25615
1931	50.9000	54.7874	7.63742	-7	77
1932	45.6000	52.0730	14.1951	-10.4126	-4.95458
1933	46.5000	50.8066	9.26144	1.97368	-2.43195
1934	48.7000	52.2007	7.18824	3118	394
5	51.3000	53.4870	4.26324	. 33881	2.46428
19	57.7000	52.8380	-8.42628	12.4756	-1.21340
19	58.7000	52.9224	-9.84254	1.73310	159720
1938	57.5000	58.9481	2.51836	-2.04429	11.3858
1939	61.6000	64.1598	4.15560	7.13043	8.84133
1940	65.0000	66.7163	2.64050	5.51948	3.98454
941	69.7000	75.412	8.19646	7.23077	

	12.4000	12.2362	-1		
1922	16.9000	19.4247	14.9388		
	18.4000	21	16		
1924	19.4000	24.7105	27.373	5.43478	15.6419
192	00	20.7666	3.31666	3.60825	
	19.6000	12.6865	-35.2730	-2.	-38.9093
1927	19.8000	9.49425	-52.0493	2041	-2
	21	0	-28	. 56566	
1929	21.7000	20.6943	-4.63478	2.84360	37.1933
			11.7655	-28.1106	
	11	16.3514	,	-26.9231	6.21752
	7.00	12	72.7697	-38.596	-26.0375
	11.2000	4.286	27.5607	0.0000	
1934	12.3000	14.7384	19	143	3.16130
		14.9109	6.506	13.8211	
1936	17.6	11.257	-36.0355	25.7143	-24
37	17.3000	14.4063	-16.7265	-1.70455	
1938	15.3000	19.1891	25.4189	-11.5607	33.1992
39	19.0000	20.8954	9.97560	24.1830	8.89185
	21.1000	20.6711	-2.0326	11.0526	1.
94	23.5000	28.246	20.19	11.	

.........other variables

	RMSE (dimensionless)	RMSE	MAPE	H.Theil: Inequality Coefficients Eq.	
Eq.					
$\mathrm{Y}(1)=\mathrm{C}$	$.978663 \mathrm{e}-1$	5.32480	8.43754	1.30720	1.46318
$\mathrm{Y}(2)=\mathrm{I}$.974583	3.59673			
$\mathrm{Y}(3)=\mathrm{Wp}$.130368	4.80780	11.3273	1.12286	1.24064
$\mathrm{Y}(4)=\mathrm{X}$.143506	8.74590	12.7101	1.27135	1.37625
$\mathrm{Y}(5)=\mathrm{P}$.249534	4.33823	22.6569	1.26513	1.30607
$\mathrm{Y}(6)=\mathrm{K}$	$.295700 \mathrm{e}-1$	5.97202	2.22084	.963788	1.03927
$\mathrm{Y}(7)=\mathrm{W}$.114115	4.80780	9.99802	1.12412	1.29282

Year 1938 from Year 1938 to 1939 from Year 1938 to 1940 from Year 1938 to 1941

Variable	Multiplier	Elasticity	Multiplier	Elasticity	Multiplier	Elasticity	Multiplier	Elasticity
Exogenous	$Z(2)=W g$		Dynamic solution					
$Y(1)=C$	2.13175	. 266378	1.50454	. 180569	. 705218	. $833886 \mathrm{e}-1$	-. 124064	-. $130379 \mathrm{e}-1$
$Y(2)=I$. 783850	2.14272	. 898356	2.03129	. 191302	. 558909	-. 349000	-. 473862
$Y(3)=W p$	1.28134	. 231860	1.48196	. 251788	. 745038	. 123286	-. $769281 \mathrm{e}-1$	-. $108615 \mathrm{e}-1$
$Y(4)=X$	2.91560	. 321922	2.40289	. 249480	. 896520	. $918535 \mathrm{e}-1$	-. 473064	-. $392769 \mathrm{e}-1$
$Y(5)=P$	1.63426	. 636025	. 920937	. 355570	. 151481	. 613186e-1	-. 396136	-. 114650
$Y(6)=K$. 783850	. 294973 e-1	1.68221	. $622673 \mathrm{e}-1$	1.87351	. $684808 e^{-1}$	1.52451	. $542633 \mathrm{e}-1$
$Y(7)=W$	2.28134	. 349559	1.48196	. 214816	. 745038	. 105200	-. $769281 \mathrm{e}-1$	-. $939688 \mathrm{e}-2$
Exogenous	$Z(3)=T$		Dynamic solution					
$Y(1)=C$	-1.32106	-. 158645	-1.98022	-. 228400	-1.15120	-. 130820	. $644746 \mathrm{e}-1$. $651168 \mathrm{e}-2$
$Y(2)=I$	-1.14176	-2.99949	-1.40183	-3.04620	-. 409872	-1.15083	. 451388	. 589003
$Y(3)=W p$	-1.08235	-. 188223	-1.84613	-. 301441	-1.18014	-. 187676	-. $134738 \mathrm{e}-2$	-. 182825 e-3
$Y(4)=X$	-2.46282	-. 261334	-3.38205	-. 337460	-1.56107	-. 153709	. 515862	. $411616 \mathrm{e}-1$
$Y(5)=P$	-2.38047	-. 890341	-1.53592	-. 569909	-. 380933	-. 148191	. 517210	. 143860
$Y(6)=K$	-1.14176	-. $412918 \mathrm{e}-1$	-2.54359	-. $904833 \mathrm{e}-1$	-2.95346	-. 103749	-2.50207	-. $855888 \mathrm{e}-1$
$Y(7)=W$	-1.08235	-. 159383	-1.84613	-. 257179	-1.18014	-. 160144	-. $134738 \mathrm{e}-2$	-. $158172 e^{-3}$

Exogenous Z(5)=G

$Y(1)=C$	1.67734	. 144267	1.88960	. 156098	. 885708	. $720874 \mathrm{e}-1$	-. 155816	-. $112710 \mathrm{e}-1$
$Y(2)=I$. 984465	1.85233	1.12828	1.75600	. 240263	. 483163	-. 438321	-. 409642
$Y(3)=W p$	1.60928	. 200438	1.86124	. 217665	. 935720	. 106578	-. $966167 \mathrm{e}-1$	-. $938948 \mathrm{e}-2$
$Y(4)=X$	3.66181	. 278293	3.01788	. 215670	1.12597	. $794051 \mathrm{e}-1$	-. 594138	-. $339539 \mathrm{e}-1$
$Y(5)=P$	2.05253	. 549829	1.15664	. 307381	. 190251	. $530085 \mathrm{e}-1$	-. 497521	-. $991123 \mathrm{e}-1$
$Y(6)=K$. 984465	. $254997 \mathrm{e}-1$	2.11274	. $538286 \mathrm{e}-1$	2.35301	. $592000 \mathrm{e}-1$	1.91468	. $469093 \mathrm{e}-1$
$Y(7)=W$	1.60928	. 169726	1.86124	. 185703	. 935720	. $909426 \mathrm{e}-1$	-. $966167 \mathrm{e}-1$	-. 812338e-2

Dynamic reduced form matrix. Modulus of Eigenvalue Period

$\operatorname{Eig}(1)=$	0.788362	11.7601
$\operatorname{Eig}(2)=$	0.788362	-11.7601
$\operatorname{Eig}(3)=$	0.355372	

Alternative Estimates of structural form coefficients

OLS				2SLS				LIVE (2 iter. from OLS)			
1	P	P-1	W	1	P	P-1	W	1	P	P-1	W
16.2366	. 192934	. 089885	. 796219	16.5548	. 017302	. 216234	. 810183	16.8014	-. 115631	. 312132	. 820507
1	P	P-1	K-1	1	P	P-1	K-1	1	P	P-1	K-1
10.1258	. 479636	. 333039	-. 111795	20.2782	. 150222	. 615944	-. 157788	21.6005	. 107318	. 652790	-. 163778
1	X	X-1	A	1	X	X-1	A	1	X	X-1	A
1.49704	. 439477	. 146090	. 130245	1.50030	. 438859	. 146674	. 130396	1.60111	. 419711	. 164768	. 135058
I.I	V. (10 i	er. from	OLS)	3SLS				Iterative 3SLS			
1	P	P-1	W	1	P	P-1	W	1	P	P-1	W
16.7858	-. 117503	. 312609	. 821456	16.4408	. 124890	. 163144	. 790081	16.5590	. 164510	. 176564	. 765801
1	P	P-1	K-1	1	P	P-1	K-1	1	P	P-1	K-1
21.6064	. 107126	. 652955	-. 163805	28.1778	-. 013079	. 755724	-. 194848	42.8963	-. 356532	1.01130	-. 260200
1	X	X-1	A	1	X	X-1	A	1	X	X-1	A
1.59635	. 420614	. 163914	. 134838	1.79722	. 400492	. 181291	. 149674	2.62477	. 374779	. 193651	. 167926
FIVE (2 iter. from OLS)				FIML							
1	P	P-1	W	1	P	P-1	W				
16.4570	. 091267	. 198055	. 789598	18.3433	-. 232389	. 385673	. 801844				
1	P	P-1	K-1	1	P	P-1	K-1				
24.7860	. 029683	. 717039	-. 178374	27.2639	-. 801006	1.05185	-. 148099				
1	X	X-1	A	1	X	X-1	A				
1.93827	. 383522	. 196435	. 157667	5.79429	. 234118	. 284677	. 234835				

Variance-covariance matrices estimated from structural form residuals (without degrees of freedom correction)

	OLS		2SLS			LIVE (2 iter. from OLS)			I.I.V. (10 iter. from OLS)		
. 851402			1.04406			1.44650			1.45233		
. 049497	. 824891		. 437848	1.38318		. 726600	1.53808		. 729292	1.53882	
-. 380815	. 121170	. 476417	-. 385228	. 192606	. 476427	-. 339635	. 273549	. 486842	-. 341982	. 270234	. 485911
	3SLS		Iterative 3SLS			$\begin{aligned} & \text { FIVE (2 } \\ & 937914 \end{aligned}$	iter. from OLS)		2.10415	FIML	
. 891760			. 914909								
. 411319	2.09305		. 641739	4.55536		. 442160	1.86804		3.87902	12.7715	
-. 393615	. 403046	. 520027	-. 434985	. 734498	. 605649	-. 379888	. 452247	. 565780	. 481696	3.85748	1.80112

Identification: Matrices of ''Exclusion Restrictions', for the three stochastic equations

Phi1 $(15,10)$								Phi2 $(15,10)$									Phi3 $(15,10)$								
0	0	0	00	00	0	00	0	1	0	0	0	0	00				1	0	0	0		0		0	
1	0	0	00	00	0	00	0	0	0	0	0	0	00	0	0		0	1	0	00		0		0	0
0	1	0	00	00	0	00	0	0	1	0	0	0	00	0	0	0	0	0	0	0	0	0		0	0
0	0	1	0	00	0	00	0	0	0	1	0	0	0	0	0	0	0	0	0	00		0		0	
0	0	0	00	00	0	00	0	0	0	0	0	0	00	0	0		0	0	1			0	0	0	
0	0	0	0	00	0	00	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	00	00	0	00	0	0	0	0	0	1	00	0	0		0	0	0	01		0	0	0	
	0			0	0	00	0	0	0	0		0	0	0	0		0	0	0	00		0		0	
0	0	0	0	10	0	00	0	0	0	0	0	0	0	0	0		0	0	0	00		10		0	
0	0	0	00	0	0	00		0	0	0	0	0	01	10	0		0	0	0	00					
0	0	0	00	00	1	00		0	0	0	0	0	0	1	0		0	0	0	00		0		0	
0	0	0	00	0	0	10		0	0	0	0	0	0	0	1		0	0	0	00					
0	0	0	00	00	0	01		0	0	0	00	0	0	0	0		0	0	0	00		0		0	
0		0		00	0	00		0			00						0		0						
					0	00																			

A non-linear version of the Klein-I model (Belsley, 1980): the first structural equation (consumption) is replaced by

$$
\begin{equation*}
\ln C_{t}=\alpha_{1}+\alpha_{2} \ln P_{t}+\alpha_{3} \ln P_{t-1}+\alpha_{4} \ln W_{t}+u_{1, t} \quad \text { Consumption } \tag{13.69}
\end{equation*}
$$

while all the other equations are the same as (2.1).

1. Transformation of univariate random variables: if the random variable x, with probability density function $f(x)$, is transformed into the random variable $y=y(x)$, if the transformation is continuously differentiable and invertible $[x=x(y)]$, then the p.d.f. of y is $g(y)=f[x(y)]|d x(y) / d y|$.
2. Transformation of multivariate random variables: if the $(k \times 1)$ random vector x, with joint p.d.f. $f(x)$, is transformed into the $(k \times 1)$ random vector $y=y(x)$, if the transformation is continuously differentiable and invertible $[x=x(y)]$ with non-singular square Jacobian matrix $\partial x(y) / \partial y^{\prime}$, then the joint p.d.f. of y is $g(y)=f[x(y)]\left\|\partial x(y) / \partial y^{\prime}\right\|$ (where $\|\cdots\|$ means absolute value of determinant).
3. Let μ be a $(k \times 1)$ constant vector and Σ a symmetric $(k \times k)$ positive definite constant matrix, that can be decomposed as $\Sigma=P^{\prime} P$, with P a non-singular $(k \times k)$ constant matrix. The determinant of P is the square root of the determinant of $\Sigma:|P|=|\Sigma|^{1 / 2}$. Let z be a $(k \times 1)$ random vector whose expectation is zero and the variance-covariance matrix is the identity matrix: $E(z)=0, \operatorname{Var}(z)=I_{k}$. Whatever the probability distribution of z, the $(k \times 1)$ random vector $x=P^{\prime} z+\mu$ has expectation μ and variance-covariance matrix $\Sigma=P^{\prime} P$. Being P non-singular, the transformation from z to x is continuously differentiable and invertible $\left[z=P^{\prime-1}(x-\mu)\right]$ with non-singular square Jacobian matrix $\partial z(x) / \partial x^{\prime}=P^{\prime-1}$.
4. If the elements of the $(k \times 1)$ random vector z are independent standard normal variables $\left[z_{i}\right.$ are $\left.i . i . d . N(0,1)\right]$, we say that the vector z has a multivariate normal distribution: $z \sim N\left(0, I_{k}\right)$. The joint p.d.f. of the elements of z is the product of the univariate density functions: $f(z)=\prod_{i=1}^{k} \frac{1}{(2 \pi)^{1 / 2}} \exp \left[-\frac{z_{i}^{2}}{2}\right]=\frac{1}{(2 \pi)^{k / 2}} \exp \left[-\frac{1}{2} \sum_{i=1}^{k} z_{i}^{2}\right]$. It is positive everywhere, and its integral is 1 , being the product of k integrals, each $=1$. With vector notation, the same p.d.f. can be written $f(z)=\frac{1}{(2 \pi)^{k / 2}} \exp \left[-\frac{1}{2} z^{\prime} z\right]$.
5. Using the result on the transformation of random vectors (2), the ($k \times 1$) random vector $x=P^{\prime} z+\mu$ has p.d.f. $f(x)=\frac{1}{(2 \pi)^{k / 2}\|P\|} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} P^{-1} P^{\prime-1}(x-\mu)\right]=\frac{1}{(2 \pi)^{k / 2}\|\Sigma\|^{1 / 2}} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right]$. We say that the $(k \times 1)$ random vector x has a multivariate normal distribution $N(\mu, \Sigma)$. Using the result in (3), μ is the expectation and Σ is the variance-covariance matrix of x.
Warning. This definition requires Σ to be positive definite. It is possible to define multivariate normal distributions also when Σ is positive semi definite and singular, but these distributions do not admit an explicit p.d.f.
6. If $x \sim N(\mu, \Sigma)$ and Σ is block-diagonal, the corresponding sub-vectors of x are independent multivariate normal vectors. Thus, uncorrelated sub-vectors are independent; moreover, each sub-vector has a marginal distribution multivariate normal. The proof follows considering that Σ^{-1} is also block-diagonal, and $|\Sigma|$ is obtained multiplying the determinants of the diagonal blocks. Thus, the joint p.d.f. $f(x)$ is the product of functions that are exactly the marginal densities of the sub-vectors. In particular, if Σ is diagonal, all the elements of x are independent normal variables.
Warning. The above properties depend on the joint density of the elements of x being normal. If it is only known that the marginal densities of the elements are normal, then the joint density needs not be normal and may even not exist. Thus, uncorrelated normal variables need not be independent if they are not jointly multivariate normal.
7. If the $(k \times 1)$ random vector $x \sim N(\mu, \Sigma)$ and A is a $(k \times k)$ non-singular constant matrix, the $(k \times 1)$ random vector $y=A x$ has a multivariate normal distribution $y \sim N\left(A \mu, A \Sigma A^{\prime}\right)$. The proof is simply based on the explicit p.d.f. expression of the transformed vector y, considering that A is the Jacobian matrix of the linear transformation.
8. Particular case: decomposing the positive definite matrix $\Sigma=P^{\prime} P$, with P square and non-singular, the linear transformation $z=P^{\prime-1}(x-\mu) \sim N\left(0, I_{k}\right)$ (vector of independent standard normal variables).
9. If the $(k \times 1)$ random vector $x \sim N(\mu, \Sigma)$, any sub-vector of x has a marginal distribution multivariate normal, with means, variances and covariances obtained by taking the corresponding elements of μ and Σ. To prove it, let x be arbitrarily decomposed into two sub-vectors x_{1} and x_{2}; let μ be correspondingly decomposed into μ_{1} and μ_{2}; let Σ be correspondingly decomposed into $\Sigma_{1,1}, \Sigma_{1,2}, \Sigma_{2,1}=\Sigma_{1,2}^{\prime}, \Sigma_{2,2}$ (where $\Sigma_{1,1}$ and $\Sigma_{2,2}$ are square blocks), and A a $(k \times k)$ matrix, correspondingly decomposed into blocks $A_{1,1}=I, A_{1,2}=-\Sigma_{1,2} \Sigma_{2,2}^{-1}, A_{2,1}=0, A_{2,2}=I$. Thus, $A \mu$ has two sub-vectors $\mu_{1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \mu_{2}$ and μ_{2}, while $A \Sigma A^{\prime}$ is block-diagonal, the two square diagonal blocks being $\Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}$ and $\Sigma_{2,2}$. The linear transformation $y=A x$ produces the multivariate normal vector $y \sim N\left(A \mu, A \Sigma A^{\prime}\right)$ whose variance-covariance matrix is block-diagonal. Thus the two sub-vectors: y_{1} and y_{2} are independent multivariate normal vectors: $y_{1} \sim N\left[\mu_{1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \mu_{2}, \Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}\right]$ and $y_{2} \sim N\left[\mu_{2}, \Sigma_{2,2}\right]$. But $x_{2}=y_{2}$; thus the arbitrary sub-vector x_{2} has the multivariate normal distribution $N\left(\mu_{2}, \Sigma_{2,2}\right)$.
10. Particular case: any element of a multivariate normal vector has univariate normal distribution, whose mean and variance are, respectively, the corresponding element of μ and the corresponding diagonal element of Σ.
11. If the $(k \times 1)$ random vector $x \sim N(\mu, \Sigma)$ and D is a $(p \times k)$ constant matrix of rank $p \leq k$, then the $(p \times 1)$ vector $y=D x \sim N\left(D \mu, D \Sigma D^{\prime}\right)$. To prove it, one should add $k-p$ rows to the matrix D, producing a full-rank $(k \times k)$ matrix. Multiplying such a matrix by x produces a multivariate normal vector, whose first sub-vector is $D x$.

Warning. The result (11) is a particular case of a more general result, that holds also when $p>k$ or when the rank of D is $<p$, and that we state without proof. Any linear transformation of a multivariate normal is a multivariate normal. This property, however, requires to deal also with multivariate normal distributions that do not admit an explicit p.d.f., due to singularity of the variance-covariance matrix (e.g. Rao, 1973, 8a).
12. The conditional distribution of $x_{1} \mid x_{2}$ is multivariate normal $x_{1} \mid x_{2} \sim N\left[\mu_{1}+\Sigma_{1,2} \Sigma_{2,2}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}\right]$. From (9) it follows that, being the Jacobian of the linear transformation $|A|=1$, the expression of the p.d.f. of x is equal to the expression of the p.d.f. of y, when y in the expression is replaced with $A x$. Thus $f(x)=g(y)$, thus $f\left(x_{2}\right) f\left(x_{1} \mid x_{2}\right)=g\left(y_{2}\right) g\left(y_{1} \mid y_{2}\right)=g\left(y_{2}\right) g\left(y_{1}\right)=f\left(x_{2}\right) g\left(y_{1}\right)$, being $x_{2}=y_{2}$ and being y_{1} and y_{2} independent. Thus $f\left(x_{1} \mid x_{2}\right)=g\left(y_{1}\right)$, when y_{1} in the expression of g is replaced with the first sub-vector of $A x$. Writing explicitly the expression of the p.d.f. of $y_{1} \sim N\left[\mu_{1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \mu_{2}, \Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}\right]$, and replacing in the expression of the p.d.f. y_{1} with $x_{1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} x_{2}$ (first sub-vector of $A x$), produces the explicit expression of the p.d.f. of a multivariate normal with mean $\mu_{1}+\Sigma_{1,2} \Sigma_{2,2}^{-1}\left(x_{2}-\mu_{2}\right)$ and variance-covariance matrix $\Sigma_{1,1}-\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}$.
Remark. The conditional mean of $x_{1} \mid x_{2}$ is a linear function of x_{2}; the conditional variance is independent of x_{2}.

15 APPENDIX. Some useful asymptotic results

1. If plim $\hat{\theta}_{n}=\theta_{0}$ and g is a continuous function, then $\operatorname{plim} g\left(\hat{\theta}_{n}\right)=g\left(\theta_{0}\right)$. This result extends to continuous functions a result proved by Slutsky (1925) for rational functions (e.g. Rao, 1973, 2c.4.xiii). It holds either in univariate or in multivariate cases.
2. δ-method (univariate case e.g. Rao, 1973, 6a.2.i): if $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ is asymptotically $\sim N\left[0, \sigma^{2}\right]$, and g is a continuously differentiable function with nonzero first derivative in θ_{0}, then $\sqrt{n}\left[g\left(\hat{\theta}_{n}\right)-g\left(\theta_{0}\right)\right]$ is asymptotically $\sim N\left[0, g^{\prime 2}\left(\theta_{0}\right) \sigma^{2}\right]$. The proof follows from a first order Taylor expansion of $g\left(\hat{\theta}_{n}\right)$ with origin θ_{0}, recalling that the residual is $o_{p}\left(\hat{\theta}_{n}-\theta_{0}\right)$.
3. δ-method (multivariate case e.g. Rao, 1973, 6a.2.iii): if the vector $\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right)$ is asymptotically multivariate normal $\sim N[0, \Sigma]$, and g is a vector of continuously differentiable functions whose first derivatives are not all $=0$ in θ_{0}, then $\sqrt{n}\left[g\left(\hat{\theta}_{n}\right)-g\left(\theta_{0}\right)\right]$ has an asymptotic multivariate normal distribution $\sim N\left[0, G \Sigma G^{\prime}\right]$, where G is the Jacobian matrix $\partial g / \partial \theta^{\prime}$ computed in θ_{0}.

Let x_{i} be a random variable or vector (r.v.), whose probability density function (continuous) is characterized by a parameter (vector) $\theta: f\left(x_{i}, \theta\right)$. For any θ, f is a function whose integral is $\equiv 1$.

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f\left(x_{i}, \theta\right) d x_{i} \equiv 1 \quad \forall \theta \tag{16.70}
\end{equation*}
$$

Thus, differentiating (16.70) w.r.t. θ we get

$$
\begin{equation*}
\frac{\partial}{\partial \theta}\left[\int_{-\infty}^{+\infty} f\left(x_{i}, \theta\right) d x_{i}\right] \equiv 0 \quad \forall \theta \tag{16.71}
\end{equation*}
$$

We assume that f satisfies some regularity conditions that permit differentiation under integral (for instance, it is twice differentiable w.r.t. θ and the limits of integration are not functions of θ). So, (16.71) can be written

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{\partial f\left(x_{i}, \theta\right)}{\partial \theta} d x_{i} \equiv 0 \quad \forall \theta \tag{16.72}
\end{equation*}
$$

Integration will be confined to the region where f assumes nonzero (positive) values. Thus (16.72) can be written

$$
\begin{equation*}
\int \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} f\left(x_{i}, \theta\right) d x_{i} \equiv 0 \quad \forall \theta \tag{16.73}
\end{equation*}
$$

Remark. The proofs of this chapter are based on a double interpretation of the function $f\left(x_{i}, \theta\right)$. It must be considered a probability density function, but at the same time, being a transformation of the r.v. x_{i}, it is a random variable itself, with expectation and variance. The same double interpretation holds for the logarithm of $f\left(x_{i}, \theta\right)$, as well as its derivatives.
The derivative (vector of derivatives) $\partial \ln f\left(x_{i}, \theta\right) / \partial \theta$ (gradient of the log-density) is usually called the score. If derivative (vector) is computed at the true parameter value, so that $f\left(x_{i}, \theta\right)$ is the probability density of the r.v. x_{i}, equation (16.73) is the expectation of the r.v. score

$$
\begin{equation*}
E\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]=\int \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} f\left(x_{i}, \theta\right) d x_{i}=0 \tag{16.74}
\end{equation*}
$$

Thus the expectation of the score is zero. The variance-covariance matrix of the score, $\Im(\theta)$, is called information matrix (more precisely, Fisher's information measure on θ contained in the r.v. x_{i})

$$
\begin{equation*}
\Im(\theta)=\operatorname{Var}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]=E\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}}\right] \tag{16.75}
\end{equation*}
$$

Further differentiation of (16.73) gives

$$
\int\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}} f\left(x_{i}, \theta\right)+\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}}\right] d x_{i} \equiv 0 \quad \forall \theta
$$

that is

$$
\begin{equation*}
\int \frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}} f\left(x_{i}, \theta\right) d x_{i}+\int \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}} f\left(x_{i}, \theta\right) d x_{i} \equiv 0 \quad \forall \theta \tag{16.76}
\end{equation*}
$$

Again, if derivatives are computed at the true parameter value, so that $f\left(x_{i}, \theta\right)$ is the probability density of the r.v. x_{i}, the two terms in equation (16.76) are expectations, so

$$
\begin{equation*}
E\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right]+E\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}}\right] \equiv 0 \quad \forall \theta \tag{16.77}
\end{equation*}
$$

The second term of the sum is the information matrix (16.75). Thus, from (16.77) we get an alternative expression for the information matrix

$$
\begin{equation*}
\Im(\theta)=E\left[-\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right] \tag{16.78}
\end{equation*}
$$

that is the expected Hessian of the log-density, with the opposite sign.
If $x_{1}, x_{2}, \ldots, x_{n}$ are independent draws from the same distribution (random sample), the joint density of the sample is $f\left(x_{1}, x_{2}, \ldots, x_{n}, \theta\right)=f\left(x_{1}, \theta\right) f\left(x_{2}, \theta\right) \ldots f\left(x_{n}, \theta\right)$; to simplify notations, it will simply be indicated as $f(x, \theta)$. The log-density of the sample will be therefore the sum of the log-densities, while its first and second derivatives as well as their expectations will be sums of the corresponding derivatives or expectations. As a straightforward consequence, the expectation of the score of the sample will be zero, while the information in the whole sample will be $n \Im(\theta)$

$$
E\left[\frac{\partial \ln f(x, \theta)}{\partial \theta}\right]=0
$$

$$
\begin{equation*}
n \Im(\theta)=\operatorname{Var}\left[\frac{\partial \ln f(x, \theta)}{\partial \theta}\right]=E\left[\frac{\partial \ln f(x, \theta)}{\partial \theta} \frac{\partial \ln f(x, \theta)}{\partial \theta^{\prime}}\right]=E\left[-\frac{\partial^{2} \ln f(x, \theta)}{\partial \theta \partial \theta^{\prime}}\right] \tag{16.79}
\end{equation*}
$$

Remark. If $f\left(x_{i}, \theta\right)$ (and therefore $f(x, \theta)$) is a family of strictly positive functions whose integral is identically $=1$ for any θ, but for no value of θ it is the probability density function of the r.v. x_{i}, all the above identities involving integrals (eqs. 16.70-16.73 and 16.77) are still valid, but they cannot be interpreted as expected values. This remark will be important when dealing with quasi-likelihood (or pseudo-likelihood).

16.1 Cramér-Rao inequality

Let θ be a single parameter, $x_{1}, x_{2}, \ldots, x_{n}$ independent draws (random sample; each x_{i} can be a single variable or a vector), and let $f(x, \theta)$ indicate the joint probability density of the whole sample. Let $t(x)$ be an estimator of the parameter θ (of course, t will be a function of the sample, and not of the parameter itself). Its expectation

$$
\begin{equation*}
E[t(x)]=\int t(x) f(x, \theta) d x \tag{16.80}
\end{equation*}
$$

of course, will be a function of the parameter θ and not of the sample.
Under the usual regularity conditions, differentiating (16.80) we get

$$
\begin{equation*}
\frac{\partial E[t(x)]}{\partial \theta}=\int t(x) \frac{\partial f(x, \theta)}{\partial \theta} d x=\int t(x) \frac{\partial \ln f(x, \theta)}{\partial \theta} f(x, \theta) d x=E\left[t(x) \frac{\partial \ln f(x, \theta)}{\partial \theta}\right]=\operatorname{Cov}\left[t(x), \frac{\partial \ln f(x, \theta)}{\partial \theta}\right] \tag{16.81}
\end{equation*}
$$

Since the squared covariance cannot exceed the product of the two variances, we have

$$
\begin{equation*}
\left[\frac{\partial E[t(x)]}{\partial \theta}\right]^{2} \leq \operatorname{Var}[t(x)] \operatorname{Var}\left[\frac{\partial \ln f(x, \theta)}{\partial \theta}\right]=\operatorname{Var}[t(x)][n \Im(\theta)] \tag{16.82}
\end{equation*}
$$

If the expected value of the estimator is a regular function of θ

$$
E[t(x)]=h(\theta) \quad \text { so that } \quad \frac{\partial E[t(x)]}{\partial \theta}=\frac{\partial h(\theta)}{\partial \theta}
$$

the Cramér-Rao inequality follows from (16.82)

$$
\begin{equation*}
\operatorname{Var}[t(x)] \geq\left[\frac{\partial h(\theta)}{\partial \theta}\right]^{2}[n \Im(\theta)]^{-1} \tag{16.83}
\end{equation*}
$$

In the particular case of an unbiased estimator, $E[t(x)]=h(\theta)=\theta$; thus $\partial h(\theta) / \partial \theta=1$, thus the Cramér-Rao inequality becomes

$$
\begin{equation*}
\operatorname{Var}[t(x)] \geq[n \Im(\theta)]^{-1} \tag{16.84}
\end{equation*}
$$

An unbiased estimator is efficient if its variance is the lower bound of the inequality: $[n \Im(\theta)]^{-1}$.

16.1.1 Multidimensional Cramér-Rao inequality

When θ is a ($k \times 1$) vector of parameters, analogously to (16.81) we have

$$
\frac{\partial E[t(x)]}{\partial \theta^{\prime}}=E\left[t(x) \frac{\partial \ln f(x, \theta)}{\partial \theta^{\prime}}\right]=\operatorname{Cov}\left[t(x), \frac{\partial \ln f(x, \theta)}{\partial \theta^{\prime}}\right]
$$

thus we can write as follows the variance-covariance matrix of the $(2 k \times 1)$ vector

$$
\operatorname{Var}\left[\begin{array}{c}
t(x) \tag{16.85}\\
\frac{\partial \ln f(x, \theta)}{\partial \theta}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Var}[t(x)] & \operatorname{Cov}\left[t(x), \frac{\partial \ln f(x, \theta)}{\partial \theta^{\prime}}\right] \\
\operatorname{Cov}\left[t(x)^{\prime}, \frac{\operatorname{lnff(x,\theta)}}{\partial \theta}\right] & n \Im(\theta)
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Var}[t(x)] & \frac{\partial E[t(x)]}{\partial \theta^{\prime}} \\
\frac{\partial E\left[t(x)^{\prime}\right]}{\partial \theta} & n \Im(\theta)
\end{array}\right]
$$

which is positive semi definite, being a variance-covariance matrix $(2 k \times 2 k)$. Thus, pre- and post-multiplication by a matrix and its transpose still provides a positive semi definite matrix. In particular, if the information matrix is non-singular (i.e. the derivatives of the log-density are not linearly dependent), pre-multiplication by the ($k \times 2 k$) matrix $\left[I_{k} ;-\frac{\partial E[t(x)]}{\partial \theta^{\prime}}[n \Im(\theta)]^{-1}\right]$ and post-multiplication by its transpose produces

$$
\left[I_{k} ;-\frac{\partial E[t(x)]}{\partial \theta^{\prime}}[n \Im(\theta)]^{-1}\right]\left[\begin{array}{cc}
\operatorname{Var}[t(x)] & \frac{\partial E[t(x)]}{\partial \theta^{\prime}} \\
\frac{\partial E\left[t(x)^{\prime}\right]}{\partial \theta} & n \Im(\theta)
\end{array}\right]\left[\begin{array}{c}
I_{k} \\
-[n \Im(\theta)]^{-1} \frac{\partial E\left[t(x)^{\prime}\right]}{\partial \theta}
\end{array}\right]=\operatorname{Var}[t(x)]-\left[\frac{\partial E[t(x)]}{\partial \theta^{\prime}}\right][n \Im(\theta)]^{-1}\left[\frac{\partial E\left[t(x)^{\prime}\right]}{\partial \theta}\right]
$$

which is a positive semi definite matrix, implying the Cramér-Rao inequality

$$
\begin{equation*}
\operatorname{Var}[t(x)] \geq\left[\frac{\partial E[t(x)]}{\partial \theta^{\prime}}\right][n \Im(\theta)]^{-1}\left[\frac{\partial E\left[t(x)^{\prime}\right]}{\partial \theta}\right] \tag{16.86}
\end{equation*}
$$

where Var must be interpreted as the variance-covariance matrix of the estimator $t(x)$. The inequality is valid if the estimator is biased, but its expected value is a regular function of θ (analogously to eq.16.83).
For unbiased estimators, where $E[t(x)]=\theta$, the inequality still has the form of equation (16.84),

16.2 Maximum Likelihood estimator: consistency (simplified proof)

When the sample $x_{1}, x_{2}, \ldots, x_{n}$ is observed, the function of θ defined by $L(x, \theta)=f(x, \theta)$ is called the likelihood of θ given the observations.
Remark. Textbooks in probability and statistics often adopt two different notations: $f(x \mid \theta)=f\left(x_{1}, \theta\right) f\left(x_{2}, \theta\right) \ldots f\left(x_{n}, \theta\right)$ when considering the probability density function, to put into evidence that the r.v. is x, while θ is a given parameter (vector); $L(\theta \mid x)$ when considering the likelihood, thus evidencing a function of θ, while x is a realized value of a set of observations. Of course they clearly specify that $L(\theta \mid x)=f(x \mid \theta)$. These different notations are unnecessary for the purposes of this chapter, which thus adopts standard mathematical notations $(f(x, \theta)$ or $L(x, \theta))$ to indicate functions of x and θ.
Under suitable regularity conditions, maximum likelihood yields an estimator which is consistent, asymptitically normal with mean equal to the true parameter value and variance-covariance matrix equal to the inverse of the information matrix.
To simplify the proof, we consider θ a single parameter. The sample $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ is made of independent draws from the same population; the density of each x_{i} belongs to the family of density functions $f\left(x_{i}, \theta\right)$ for a particular value $\theta=\theta_{0}$; θ_{0} can be called the true parameter value.
Regularity conditions are requested to ensure that

1. differentiation can be done under integral for any θ belonging to an interval (or a compact set) that contains the true θ_{0} as an interior point;
2. the score, evaluated at θ_{0}, has positive finite variance $\Im\left(\theta_{0}\right)$;
3. the residual of a first order Taylor expansion of the score is bounded by a function of x_{i} with finite expectation (for instance, this condition could be satisfied assuming boundedness of the third derivative of the log-likelihood).
Applying first order Taylor expansion to the score, with initial point θ_{0} we get

$$
\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}=\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}}+\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta^{2}}\right]_{\theta_{0}}\left(\theta-\theta_{0}\right)+\operatorname{Res}\left(x_{i}, \theta, \theta_{0}\right)
$$

Summing for $i=1,2, \ldots, n$ and dividing by n (averaging) we get

$$
\begin{equation*}
\frac{1}{n} \frac{\partial \ln L(x, \theta)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}}+\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta^{2}}\right]_{\theta_{0}}\left(\theta-\theta_{0}\right)+\frac{1}{n} \sum_{i=1}^{n} \operatorname{Res}\left(x_{i}, \theta, \theta_{0}\right) \tag{16.87}
\end{equation*}
$$

Some suitable form of the weak law of large numbers (WLLN) ensures that

$$
\begin{equation*}
\operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}}=0 \quad \text { and } \quad \operatorname{plim} \frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta^{2}}\right]_{\theta_{0}}=-\Im\left(\theta_{0}\right) \tag{16.88}
\end{equation*}
$$

thus, for a conveniently large n, the first term on the right hand side of (16.87) will be negligible, while the second term will be negative if $\left(\theta-\theta_{0}\right)$ is positive, and will be positive if $\left(\theta-\theta_{0}\right)$ is negative. Concerning the residual term, for large n and $\operatorname{small}\left(\theta-\theta_{0}\right)$, regularity conditions and Taylor expansion properties ensure that its contribution is negligible with respect to the other terms. The consequence is that, when n is large enough, analysing an arbitrarily small interval around θ_{0}, the left hand side of (16.87) is positive on the left of θ_{0}, negative on the right: thus, arbitrarily close to θ_{0} there is a point where the log-likelihood has a local maximum (and the score is zero). This value will be indicated with $\hat{\theta}$. It is called the maximum likelihood estimator of θ.
Remark. The (simplified) proof given above ensures the existence of a consistent root of the likelihood equation; it does not enable us to identify it (for instance, in case of multiple roots). It can be shown that the consistent root corresponds to the supremum of the likelihood with probability 1 (see Rao, 1973, 5f.2, who refers to papers by Wald, 1949, Le Cam, 1953, 1956, and Bahadur, 1958).

16.3 Maximum Likelihood estimator: asymptotic normality

Considering again θ a vector of parameters, if (16.87) is computed at $\hat{\theta}$, the left hand side is zero. Multiplying by \sqrt{n} we get

$$
\begin{equation*}
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)=\left[-\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right]_{\theta_{0}}^{-1}\left\{\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \operatorname{Res}\left(x_{i}, \hat{\theta}, \theta_{0}\right)\right\} \tag{16.89}
\end{equation*}
$$

When $n \rightarrow \infty$ (and therefore $\hat{\theta} \rightarrow \theta_{0}$) still the contribution of the residual term becomes negligible. Concerning the term with second order derivatives, it converges in probability to the information matrix $\Im\left(\theta_{0}\right)(16.88)$, while some suitable form of the Central Limit Theorem (CLT) ensures that

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}} \stackrel{\operatorname{distr}}{\overline{n \rightarrow \infty}} N\left[0, \Im\left(\theta_{0}\right)\right] \tag{16.90}
\end{equation*}
$$

thus, from (16.89) and (16.90) we get

$$
\begin{equation*}
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\text { distr }}{\underset{n \rightarrow \infty}{\longrightarrow}} N\left[0, \Im\left(\theta_{0}\right)^{-1}\right] \tag{16.91}
\end{equation*}
$$

16.4 Maximum Likelihood: estimation of the (asymptotic) variance-covariance matrix

The practical consequence of (16.91) is that, when n is large enough, $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)$ has approximately a normal distribution with zero mean and $\Im\left(\theta_{0}\right)^{-1}$ variance-covariance matrix. Thus $\left(\hat{\theta}-\theta_{0}\right)$ has approximately a normal distribution with zero mean and $\Im\left(\theta_{0}\right)^{-1} / n$ variance-covariance matrix, that is

$$
\hat{\theta} \text { approx. } \sim N\left[\theta_{0}, \Im\left(\theta_{0}\right)^{-1} / n\right]
$$

Practical estimation of the information matrix can be done in two different ways, using the sample analogues of the expectations on the right hand sides of (16.75) or (16.78): each expectation is replaced by the sample average, and derivatives are computed at $\hat{\theta}$

1. Hessian estimator of $\Im=\frac{1}{n} \sum_{i=1}^{n}\left[-\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right]_{\hat{\theta}}=\frac{1}{n}\left[-\frac{\partial^{2} \ln L(x, \theta)}{\partial \theta \partial \theta^{\prime}}\right]_{\hat{\theta}}$
2. Outer Product estimator of $\Im=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}}\right]_{\hat{\theta}}$

As a consequence, also the practical estimation of the variance-covariance matrix of $\hat{\theta}$ can be done in two different ways: using the Hessian or using the Outer Product matrix

$$
\begin{aligned}
& \text { 1. } \widehat{\operatorname{Var}}(\hat{\theta})=(H)^{-1}=\left[-\frac{\partial^{2} \ln L(x, \theta)}{\partial \theta \partial \theta^{\prime}}\right]_{\hat{\theta}}^{-1} \\
& \text { 2. } \widehat{\operatorname{Var}}(\hat{\theta})=(O P)^{-1}=\left\{\sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta^{\prime}}\right]_{\hat{\theta}}\right\}^{-1}
\end{aligned}
$$

16.5 Misspecification, Pseudo-Likelihood and "sandwich matrix" (simplified proof)

The sample $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ is made of independent draws from the same population. We believe that the density of each x_{i} belongs to the family of density functions $f\left(x_{i}, \theta\right)$, so we build the presumed likelihood and maximize it, obtaining $\hat{\theta}$. However, it may happen that the density of the r.v. does not belong to to the family of density functions $f\left(x_{i}, \theta\right)$, so our presumed likelihood is in fact misspecified: it will be called pseudo-likelihood or quasi-likelihood, and the derivative of the logartithm will be called pseudo-score. The integral (16.73) is still zero, but for no value of θ such an integral can be considered the expectation of the pseudo-score, as $f\left(x_{i}, \theta\right)$ is not the density of x_{i}.
We assume that the true density of x_{i} belongs to a regular (but unknown) family of density functions $g\left(x_{i}, \theta\right)$, and we still call θ_{0} the true parameter value. Unlike (16.74), the expectation of the pseudo-score in θ_{0} can be nonzero

$$
\begin{equation*}
E\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta_{0}}=\left.\int \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right|_{\theta_{0}} g\left(x_{i}, \theta_{0}\right) d x \neq 0 \tag{16.92}
\end{equation*}
$$

It may happen that the expectation is zero if evaluated at a different value of the parameter (vector): such a value, θ^{\star}, is called pseudo-true-value

$$
\begin{equation*}
E\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta^{\star}}=0 \tag{16.93}
\end{equation*}
$$

Performing analogously to (16.87) the Taylor expansion with initial value θ^{\star} rather than θ_{0}

$$
\begin{equation*}
\frac{1}{n} \frac{\partial \ln L(x, \theta)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta^{\star}}+\frac{1}{n} \sum_{i=1}^{n}\left[\frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right]_{\theta^{\star}}\left(\theta-\theta^{\star}\right)+\frac{1}{n} \sum_{i=1}^{n} \operatorname{Res}\left(x_{i}, \theta, \theta^{\star}\right) \tag{16.94}
\end{equation*}
$$

and then computing it at $\hat{\theta}$, the left hand side is zero. Multiplying by \sqrt{n} we get

$$
\begin{equation*}
\sqrt{n}\left(\hat{\theta}-\theta^{\star}\right)=\left[-\frac{1}{n} \sum_{i=1}^{n} \frac{\partial^{2} \ln f\left(x_{i}, \theta\right)}{\partial \theta \partial \theta^{\prime}}\right]_{\theta^{\star}}^{-1}\left\{\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta^{\star}}+\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \operatorname{Res}\left(x_{i}, \hat{\theta}, \theta^{\star}\right)\right\} \tag{16.95}
\end{equation*}
$$

We still assume (without proof) that, under suitable regularity conditions, when $n \rightarrow \infty$ the contribution of the residual term becomes negligible. As in section (16.3), we first apply (some suitable form of) the Law of Large Numbers to the term with second order derivatives, whose probability limit will be a constant matrix (let's call A). Then we apply (some suitable form of) the Central Limit Theorem to the term with first order derivatives, each of which has expected value zero (according to 16.93), and call B the variance-covariance matrix of the asymptotic normal distribution

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[\frac{\partial \ln f\left(x_{i}, \theta\right)}{\partial \theta}\right]_{\theta^{\star}} \stackrel{\text { distr }}{\bar{n} \rightarrow \infty} N[0, B] \tag{16.96}
\end{equation*}
$$

thus

$$
\sqrt{n}\left(\hat{\theta}-\theta^{\star}\right) \underset{n \rightarrow \infty}{\underset{n \rightarrow \infty}{ }} N\left[0, A^{-1} B A^{-1}\right]
$$

While in section (16.3) A and B were both equal to the information matrix, here they can be different. The asymptotic variance-covariance matrix $A^{-1} B A^{-1}$ can be called sandwich matrix. An obvious way of estimating A and B is to use the Hessian and the matrix of outer products, respectively. Thus, practical estimation of the variance-covariance matrix of $\hat{\theta}$ can be done as

$$
\begin{equation*}
\widehat{\operatorname{Var}}(\hat{\theta})=H^{-1} O P H^{-1} \tag{16.97}
\end{equation*}
$$

with the same expressions for H and $O P$ as in section (16.4). This expression provides a robust estimator of the variancecovariance matrix of the pseudo-maximum-likelihood parameters $\hat{\theta}$.

16.6 Linear regression model with normal error terms: maximum likelihood and ordinary least squares

With the usual symbols, let the model and the vector of parameters be

$$
y=X \beta+u \quad u \sim N\left(0, \sigma^{2} I_{n}\right) \quad \theta=\left[\begin{array}{l}
\beta \\
\sigma^{2}
\end{array}\right]
$$

Being the Jacobian of the transformation $\partial u_{i} / \partial y_{i}=1$ (so that the density $f\left(y_{i}, \theta\right)=f\left(u_{i}, \theta\right)$) the log-likelihood is

$$
\ln L(y, \theta)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(y-X \beta)^{\prime}(y-X \beta)
$$

the score is

$$
\frac{\partial \ln L(y, \theta)}{\partial \theta}=\left[\begin{array}{c}
\frac{\partial \ln L}{\partial \beta} \\
\frac{\partial \ln L}{\partial \sigma^{2}}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{\sigma^{2}}\left(X^{\prime} X \beta-X^{\prime} y\right) \\
-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}(y-X \beta)^{\prime}(y-X \beta)
\end{array}\right]
$$

the Hessian matrix is

$$
H(\theta)=\frac{\partial^{2} \ln L(y, \theta)}{\partial \theta \partial \theta^{\prime}}=\left[\begin{array}{cc}
-\frac{1}{\sigma^{2}} X^{\prime} X & \frac{1}{\sigma^{4}}\left(X^{\prime} X \beta-X^{\prime} y\right) \tag{16.98}\\
\frac{1}{\sigma^{4}}\left(\beta^{\prime} X^{\prime} X-y^{\prime} X\right) & \frac{n}{2 \sigma^{4}}-\frac{1}{\sigma^{6}}(y-X \beta)^{\prime}(y-X \beta)
\end{array}\right]
$$

The expectation of the off-diagonal blocks of the Hessian matrix is zero, and the expectation of the last block is $n /\left(2 \sigma^{4}\right)-$ $\left(1 / \sigma^{6}\right) n \sigma^{2}=-n /\left(2 \sigma^{4}\right)$ So, the information matrix is

$$
n \Im(\theta)=E[-H(\theta)]=\left[\begin{array}{cc}
\frac{1}{\sigma^{2}} X^{\prime} X & 0 \\
0 & \frac{n}{2 \sigma^{4}}
\end{array}\right]
$$

and its inverse (the Cramér-Rao bound for the covariance matrix of any unbiased estimator) is

$$
[n \Im(\theta)]^{-1}=\left[\begin{array}{cc}
\sigma^{2}\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right]
$$

The covariance matrix of coefficients estimated by OLS is $\left(X^{\prime} X\right)^{-1} \sigma^{2}$, so OLS coefficients attain the Cramér-Rao bound. But the OLS estimator of σ^{2} does not attain the bound. In fact, remembering that $\hat{\sigma}^{2} / \sigma^{2}$ is a random variable χ_{n-k}^{2} divided by $n-k$, and that the variance of the χ_{n-k}^{2} is $2(n-k)$, we get:

$$
\operatorname{Var}\left(\hat{\sigma}^{2}\right)=\left[\frac{\sigma^{2}}{n-k}\right]^{2} \operatorname{Var}\left(\chi_{n-k}^{2}\right)=\frac{2 \sigma^{4}}{n-k}
$$

which is larger than the Cramér-Rao bound (however, it is not possible to find an unbiased estimator of σ^{2} with a smaller variance; see Rao, 1973, 5a.2).
Remark. If the Hessian (16.98) is estimated, that is it is computed at the OLS estimated parameters $\hat{\beta}$ and $\hat{\sigma}^{2}$, the off diagonal blocks are zero ($X^{\prime} X \hat{\beta}-X^{\prime} y=-X^{\prime} \hat{u}=0$).
Remark. Obviously, the good properties of the OLS estimator just described are no more valid if some elements of x_{i} are correlated with u_{i}. In principle, the likelihood should be re-specified, to take explicitly into account the correlation, and maximum likelihood would be different from the simple OLS estimator.

16.7 Nonlinear regression model: maximum likelihood and nonlinear least squares

Let the model and the vector of parameters be

$$
y_{i}=q\left(x_{i}, \beta\right)+u_{i} \quad u_{i} \text { i.i.d. } N\left(0, \sigma^{2}\right) \quad i=1,2, \ldots, n \quad \theta=\left[\begin{array}{l}
\beta \tag{16.99}\\
\sigma^{2}
\end{array}\right]
$$

where q is a nonlinear function of the explanatory variables x_{i} and of the coefficients β, satisfying some regularity conditions (continuity and differentiability). Almost all properties of the linear regression with normal errors apply to the nonlinear regression as well. The only difference is that, unlike the linear case, estimation of coefficients usually requires the application of a numerical technique (e.g. Newton-Raphson or similar), as it cannot be done in closed form.

Being the Jacobian of the transformation $\partial u_{i} / \partial y_{i}=1$ (so that the density $f\left(y_{i}, \theta\right)=f\left(u_{i}, \theta\right)$) the log-likelihood is

$$
\begin{equation*}
\ln L(y, \theta)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2} \tag{16.100}
\end{equation*}
$$

the score is

$$
\frac{\partial \ln L(y, \theta)}{\partial \theta}=\left[\begin{array}{c}
\frac{\partial \ln L}{\partial \beta} \tag{16.101}\\
\frac{\partial \ln L}{\partial \sigma^{2}}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right] \frac{\partial q\left(x_{i}, \beta\right)}{\beta} \\
-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2}
\end{array}\right]
$$

thus the system of first order conditions is

$$
\left[\begin{array}{l}
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right] \frac{\partial q\left(x_{i}, \beta\right)}{\beta}=0 \tag{16.102}\\
-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2}=0
\end{array}\right.
$$

Solution of the last equation gives

$$
\begin{equation*}
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2} \tag{16.103}
\end{equation*}
$$

that can be substituted into (16.100) producing the concentrated log-likelihood

$$
\begin{equation*}
\ln L(y, \beta)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2}-\frac{n}{2} \ln \left\{\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2}\right\} \tag{16.104}
\end{equation*}
$$

There is no more the parameter σ^{2}, so the concentrated log-likelihood has to be maximized only with respect to the coefficients β. From equation (16.104) it is clear that the maximum of the concentrated log-likelihood is the minimum of the sum of squared errors $\left[y_{i}-q\left(x_{i}, \beta\right)\right]^{2}$; thus maximum likelihood is nonlinear least squares.
After β has been estimated minimizing (with some numerical technique) the sum of squared errors, the estimate of σ^{2} is obtained from (16.103); it is the average of the squared residuals, analogously to the linear regression case.
Remark. Rather than minimizing the sum of squared residuals, one could minimize " $n / 2 \ln$ of the average of the squared residuals" (as in equation 16.104), using the Newton-Raphson procedure (at least in the last iterations). The coefficient estimates would obviously be the same, but there would be no need of any further calculation to estimate the variancecovariance matrix of the coefficients: it would simply be the inverse of the last iteration's Hessian matrix.
However, from a computational viewpoint, convergence of the Newton-Raphson procedure is usually faster when the method is applied to the sum of squared residuals. Thus, it might be more convenient to split the procedure in two parts: first compute coefficients minimizing the sum of squared residuals; then, when convergence has been achieved, compute (and invert) the Hessian of " $n / 2 \ln$ of the average of the squared residuals" as an estimate of the coefficients variance-covariance matrix.

16.8 Nonlinear regression model with autocorrelated errors

We consider the same case as (16.99) when the error terms have a stationary $\operatorname{AR}(1)$ structure

$$
\begin{equation*}
y_{t}=q\left(x_{t}, \beta\right)+u_{t} \quad u_{t}=\rho u_{t-1}+\varepsilon_{t} \quad \varepsilon_{t} \text { i.i.d. } N\left(0, \sigma^{2}\right) \quad t=2, \ldots, n \tag{16.105}
\end{equation*}
$$

where the vector of parameters is

$$
\theta=\left[\begin{array}{l}
\beta \tag{16.106}\\
\rho \\
\sigma^{2}
\end{array}\right] \quad|\rho|<1 \quad \operatorname{Var}\left(u_{t}\right)=\frac{\sigma^{2}}{1-\rho^{2}}
$$

Subtracting from (16.105) its lagged value, we get

$$
\begin{equation*}
y_{t}-\rho y_{t-1}=q\left(x_{t}, \beta\right)-\rho q\left(x_{t-1}, \beta\right)+\varepsilon_{t} \quad \varepsilon_{t} \text { i.i.d. } N\left(0, \sigma^{2}\right) \quad t=2, \ldots, n \tag{16.107}
\end{equation*}
$$

that can be treated as a nonlinear regression model with i.i.d. normal errors. Thus, to maximize the concentrated loglikelihood with respect to the coefficients $(\beta$ and ρ), one has to minimize the sum of squared errors of the transformed model (16.107)

$$
\begin{equation*}
\sum_{t=1}^{n}\left\{\left[y_{t}-\rho y_{t-1}\right]-\left[q\left(x_{t}, \beta\right)-\rho q\left(x_{t-1}, \beta\right)\right]\right\}^{2} \tag{16.108}
\end{equation*}
$$

After $\hat{\beta}$ and $\hat{\rho}$ have been computed from minimization of (16.108), the estimate $\hat{\sigma}^{2}$ is obtained, as usual, as the average of the squared residuals of (16.107).
Remark. The same argument of the previous section can be applied here as well. Rather than minimizing the sum of squared residuals (16.108), one could minimize " $n / 2 l n$ of the average of the squared residuals" using the Newton-Raphson procedure. This would produce the same estimates of β and ρ, and the estimate of their variance-covariance matrix would be the inverse of the last iteration's Hessian matrix. From a computational viewpoint, however, it is usually more convenient to first compute the estimates of β and ρ; then, after convergence of the iterative maximization procedure has been achieved, compute (and invert) the Hessian of " $n / 2 l n$ of the average of the squared residuals" as an estimate of the coefficients variance-covariance matrix.

Let A be an $m \times n$ matrix and B a $p \times q$ matrix; the Kronecker product of the two matrices is a matrix with dimensions $m p \times n q$; using a block-representation, this product can be defined as follows

$$
A \otimes B=\left[\begin{array}{c:c:c:c:c:c}
a_{1,1} B & a_{1,2} B & a_{1,3} B & \ldots & a_{1, n} B & \tag{17.109}\\
a_{2,1} B & a_{2,2} B & a_{2,3} B & \ldots & a_{2, n} B & : \\
a_{3,1} B & a_{3,2} B & a_{3,3} B & \ldots & a_{3, n} B & \\
\ldots & \ldots & \ldots & \ldots & \ldots & \\
a_{m, 1} B & a_{m, 2} B & a_{m, 3} B & \ldots & a_{m, n} B & :
\end{array}\right]
$$

The Kronecker product is distributive with respect to the sum; that is $(A+C) \otimes B=A \otimes B+C \otimes B$, if A and C have the same dimensions;
$A \otimes(B+D)=A \otimes B+A \otimes D$, if B and D have the same dimensions (the proof is straightforward).
The transpose of the Kronecker product is the Kronecker product of the two transposed matrices:
$(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}$
(the proof is straightforward, looking at the block-representation 17.109).
If A and C are conformable for the ordinary multiplication of matrices (rows by columns), and B and D are also conformable for the multiplication, then

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=(A C) \otimes(B D) \tag{17.110}
\end{equation*}
$$

To prove it, first of all it must be verified the equality of the dimensions of the matrices on both sides. Then, the equality is proved by writing the explicit expression of a generic element of the matrix on the left hand side and of the corresponding element of the matrix on the right hand side (for simplicity, one can write explicitly the element $(1,1)$ which is $(A \otimes B)_{1 .}(C \otimes D)_{.1}$ for the matrix on the left hand side, and $(A C)_{1,1}(B D)_{1,1}=\left(A_{1 .} C_{11}\right)\left(B_{1 .} D_{.1}\right)$ for the matrix on the right hand side, easily verifying their equality; equality for all the other corresponding elements could be proved in the same way). If A and B are two non-singular square matrices, the inverse of the Kronecker product is the Kronecker product of the two inverted matrices:
$(A \otimes B)^{-1}=A^{-1} \otimes B^{-1}$
The proof follows straightforwardly from the above theorem, observing that if A has dimensions $m \times m$ and B has dimensions $n \times n$,
$\left(A^{-1} \otimes B^{-1}\right)(A \otimes B)=\left(A^{-1} A\right) \otimes\left(B^{-1} B\right)=I_{m} \otimes I_{n}=I_{m n}$.
In particular, if Σ is a $(k \times k)$ nonsingular matrix, then
$\left(\Sigma \otimes I_{n}\right)^{-1}=\Sigma^{-1} \otimes I_{n}$.

18 APPENDIX. Two useful derivatives

18.1 Derivatives of a determinant

Let A be a non-singular square matrix $(n \times n),|A|$ its determinant and $\|A\|$ the absolute value of the determinant. Then

$$
\frac{\partial \ln \|A\|}{\partial A}=\left(A^{\prime}\right)^{-1}
$$

To prove it, first consider the derivative of the determinant with respect to $a_{i, j}$ (the i, j-th element of the matrix), having expanded the determinant according to the cofactors of the $i-t h$ row

$$
|A|=a_{i, 1} A_{i, 1}+a_{i, 2} A_{i, 2}+\ldots+a_{i, n} A_{i, n}
$$

No cofactor depends on $a_{i, j}$. Thus $\partial|A| / \partial a_{i, j}=A_{i, j}$. Then, applying the chain rule for derivatives

$$
\frac{\partial \ln \|A\|}{\partial a_{i, j}}=\frac{\partial \ln | | A| |}{\partial|A|} \frac{\partial|A|}{\partial a_{i, j}}=\frac{1}{|A|} A_{i, j}
$$

which is the $j, i-t h$ element of A^{-1}.

18.2 Derivatives of the elements of an inverse

Let A be a non-singular square matrix $(n \times n), a_{i, j}$ its $i, j-t h$ element and $a^{h, k}$ the $h, k-t h$ element of A^{-1}. Then

$$
\frac{\partial a^{h, k}}{\partial a_{i, j}}=-a^{h, i} a^{j, k}
$$

(Theil, 1971, p. 33 suggests as a simple mnemonic rule the familiar traffic sign "no U turn anytime", where the "no" is represented by the minus sign and the "U" indicates the order in which the indices on the left hand side appear on the right: down from h to i, then up from j to k).

The proof follows in a straightforward way from the more general case, where all the elements of the matrix are functions of a scalar variable (say x). Now, considering the matrix $A(x)$ and its inverse $A^{-1}(x)$, the product $A(x) A^{-1}(x)=I_{n}$ (constant) thus all derivatives are zero

$$
\frac{\partial A(x) A^{-1}(x)}{\partial x}=\frac{\partial A(x)}{\partial x} A^{-1}(x)+A(x) \frac{\partial A^{-1}(x)}{\partial x}=0 \quad \text { Thus } \quad \frac{\partial A^{-1}(x)}{\partial x}=-A^{-1}(x) \frac{\partial A(x)}{\partial x} A^{-1}(x)
$$

In the particular case where $x=a_{i, j}(i, j-t h$ element of $A)$, then all derivatives of the elements of A are zero, except for the $i, j-t h$ element, whose derivative is $=1$. So the matrix $\partial A(x) / \partial x$ has all elements $=0$, with the exception of the $i, j-t h$ element which is 1 . The $h, k-t h$ element of product is thus the product of the $h, i-t h$ and $j, k-t h$ elements of A^{-1}.

19.1 Identification, estimation and simulation of simultaneous equation models - Surveys

1. Amemiya, T. (1983): "Non-linear Regression Models", in Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator. Amsterdam: North-Holland Publishing Company, Vol. I, 333-389.
2. Fair, R. C. (1986): "Evaluating the Predictive Accuracy of Models", in Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator. Amsterdam: North-Holland Publishing Company, Vol. III, 1979-1995.
3. Hausman, J. A. (1983): "Specification and Estimation of Simultaneous Equation Models", in Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator. Amsterdam: North-Holland Publishing Company, Vol. I, 391-448.
4. Hsiao, C. (1983): "Identification", in Handbook of Econometrics, ed. by Z. Griliches and M. D. Intriligator. Amsterdam: North-Holland Publishing Company, Vol. I, 223-283.

19.2 Textbooks

1. Greene, W. H. (2012): Econometric Analysis (7th edition). Boston: Person Education Limited.
2. Hadley, G. (1961): Linear Algebra. Reading, MA: Addison-Wesley Publishing Company, Inc.
3. Johnston, J. (1984): Econometric Methods (3rd edition). New York: McGraw-Hill, Inc.
4. Rao, C. R. (1973): Linear Statistical Inference and its Applications (2nd edition). New York: John Wiley \& Sons, Inc.
5. Schmidt, P. (1976): Econometrics. New York: Marcel Dekker, Inc.
6. Stock, J. H., and M. W. Watson (2015): Introduction to Econometrics (Updated 3rd edition). Boston: Person Education Limited.
7. Theil, H. (1971): Principles of Econometrics. New York: John Wiley \& Sons, Inc.

19.3 Specific references

19.3.1 Klein-I model

1. Klein, L. R. (1950): Economic Fluctuations in the United States, 1921-1941. New York: John Wiley \& Sons, Inc., Cowles Commission Monograph No. 11.

19.3.2 Identification

1. Fisher, F. M. (1959): "Generalization of the Rank and Order Conditions for Identifiability", Econometrica 27, 431-447.
2. Fisher, F. M. (1966): The Identification Problem in Econometrics. New York: McGraw-Hill.
3. Koopmans, T. C. (1949): "Identification Problems in Economic Model Construction", Econometrica 17, 125-144.
19.3.3 Simulation, forecasting, multipliers, dynamic properties, control
4. Bianchi, C., G. Calzolari, and P. Corsi (1981): "Estimating Asymptotic Standard Errors and Inconsistencies of Impact Multipliers in Nonlinear Econometric Models", Journal of Econometrics 16, 277-294.
5. Bianchi, C., and G. Calzolari (1980): "The One-Period Forecast Errors in Nonlinear Econometric Models", International Economic Review 21, 201-208. Reprinted in Macroeconometric Modelling, ed. by K. F. Wallis (1994). Cheltenham: Edward Elgar Publishing Ltd., The International Library of Critical Writings in Econometrics, Vol. 2, 183-190.
6. Chow, G. C. (1975): Analysis and Control of Dynamic Economic Systems. New York: John Wiley \& Sons, Inc.
7. Duesenberry, J. S., G. Fromm, L. R. Klein, and E. Kuh, eds. (1969): The Brookings Model: Some Further Results. Amsterdam: North-Holland Publishing Company.
8. Evans, M. K., L. R. Klein, and G. R. Schink (1968): The Wharton Econometric Forecasting Model. Philadelphia: University of Pennsylvania, Economics Research Unit, Studies in Quantitative Economics No. 2.
9. Goldberger, A. S. (1959): Impact Multipliers and Dynamic Properties of the Klein-Goldberger Model. Amsterdam: North-Holland Publishing Company,
10. Goldberger, A. S., A. L. Nagar, and H. S. Odeh (1961): "The Covariance Matrices of Reduced-Form Coefficients and of Forecasts for a Structural Econometric Model", Econometrica 29, 556-573.
11. Howrey, E. P., and H. H. Kelejian (1971): "Simulation versus Analytical Solutions: the Case of Econometric Models", in Computer Simulation Experiments with Models of Economic Systems, ed. by T. H. Naylor. New York: John Wiley \& Sons, Inc., 299-319.
12. Howrey, E. P., and L. R. Klein (1972): "Dynamic Properties of Nonlinear Econometric Models", International Economic Review 13, 599-618.
13. Kendrick, D. (1981): Stochastic Control for Economic Models. New York: McGraw-Hill.
14. Theil, H. (1966): Applied Economic Forecasting. Amsterdam: North-Holland Publishing Company.
15. Tinbergen, J. (1952): On the Theory of Economic Policy. Amsterdam: North-Holland Publishing Company,

19.3.4 Instrumental variables

1. Bowden, R. J., and D. A. Turkington (1984): Instrumental Variables. Cambridge University Press, Econometric Society Monographs in Quantitative Economics.
2. Brundy, J. M., and D. W. Jorgenson (1971): "Efficient Estimation of Simultaneous Equations by Instrumental Variables", The Review of Economics and Statistics 53, 207-224.
3. Brundy, J. M., and D. W. Jorgenson (1974): "The Relative Efficiency of Instrumental Variables Estimators of Systems of Simultaneous Equations", Annals of Economic and Social Measurement 3, 679-700.
4. Dhrymes, P. J. (1971): "A Simplified Structural Estimator for Large-Scale Econometric Models", Australian Journal of Statistics 13, 168-175.
5. Dutta, M., and E. Lyttkens (1974): "Iterative Instrumental Variables Method and Estimation of a Large Simultaneous System", Journal of the American Statistical Association 69, 977-986.
6. Geary, R. C. (1949): "Determination of Linear Relations between Systematic Parts of Variables with Errors of Observation, the Variances of which are Unknown", Econometrica 17, 30-59.
7. Lyttkens, E. (1974): "The Iterative Instrumental Variables Method and the Full Information Maximum Likelihood Method for Estimating Interdependent Systems", Journal of Multivariate Analysis 4, 283-307.
8. Reiersøl, O. (1945): "Confluence Analysis by Means of Instrumental Sets of Variables", Arkiv for Matematik, Astronomi och Fysik 32, 1-119.
9. Sargan, J. D. (1958): "The Estimation of Economic Relationships Using Instrumental Variables", Econometrica 26, 393-415.
19.3.5 SURE, 2SLS, 3SLS, k-class (linear systems)
10. Basmann, R. L. (1957): "A Generalized Classical Method of Linear Estimation of Coefficients in a Structural Equation", Econometrica 25, 77-83.
11. Nagar, A. L. (1959): "The Bias and Moment Matrix of the General k-class Estimators of the Parameters in Simultaneous Equations", Econometrica 27, 575-595.
12. Theil, H. (1958): Economic Forecasts and Policy. Amsterdam: North-Holland Publishing Company.
13. Zellner, A. (1962): "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias", Journal of the American Statistical Association 57, 348-368.
14. Zellner, A., and H. Theil (1962): "Three-Stage Least Squares: Simultaneous Estimation of Simultaneous Equations", Econometrica 30, 54-78.
15. Anderson, T. W. (2005): "Origins of the Limited Information Maximum Likelihood and Two-Stage Least Squares Eastimators", Journal of Econometrics 127, 1-16.
16. Anderson, T. W., and H. Rubin (1949): "Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations", Annals of Mathematical Statistics 20, 46-63.
17. Anderson, T. W., and H. Rubin (1950): "The Asymptotic Properties of Estimates of the Parameters of a Single Equation in a Complete System of Stochastic Equations", Annals of Mathematical Statistics 21, 570-582.
18. Berndt, E. K., B. H. Hall, R. E. Hall, and J. A. Hausman (1974): "Estimation and Inference in Nonlinear Structural Models", Annals of Economic and Social Measurement 3, 653-665.
19. Chernoff, H., and N. Divinsky (1953): "The Computation of Maximum-Likelihood Estimates of Linear Structural Equations", in Studies in Econometric Method, ed. by W. C. Hood and T. C. Koopmans. New York: John Wiley \& Sons, Inc., Cowles Commission Monograph No. 14, 236-302.
20. Koopmans, T. C., H. Rubin, and R. B. Leipnik (1950): "Measuring the Equation Systems of Dynamic Economics", in Statistical Inference in Dynamic Economic Models, ed. by T. C. Koopmans. New York: John Wiley \& Sons, Inc., Cowles Commission Monograph No. 10, 53-237.
21. Mann, H. B., and A. Wald (1943): "On the Statistical Treatment of Linear Stochastic Difference Equations", Econometrica 11, 173-220.

19.3.7 Maximum Likelihood with covariance restrictions

1. Rothenberg, T. J. (1973): Efficient Estimation with A Priori Information. New Haven: Yale University Press, Cowles Foundation Monograph No. 23.

19.3.8 Estimation of nonlinear simultaneous equations

1. Amemiya, T. (1977): "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model", Econometrica 45, 955-968.
2. Belsley, D. A. (1980): "On the Efficient Computation of the Nonlinear Full-Information Maximum-Likelihood Estimator", Journal of Econometrics 14, 203-225.
3. Calzolari, G., L. Panattoni, and C. Weihs (1987): "Computational Efficiency of FIML Estimation", Journal of Econometrics 36, 299-310.
4. Calzolari, G., and L. Panattoni (1988): "Alternative Estimators of FIML Covariance Matrix: A Monte Carlo Study", Econometrica 56, 701-714.
5. Gallant, A. R. (1977): "Three-Stage Least-Squares Estimation for a System of Simultaneous, Nonlinear, Implicit Equations", Journal of Econometrics 5, 71-88.
6. Hatanaka, M. (1978): "On the Efficient Estimation Methods for the Macro-Economic Models Nonlinear in Variables", Journal of Econometrics 8, 323-356.
7. Phillips, P. C. B. (1982): "On the Consistency of Nonlinear FIML", Econometrica 50, 1307-1324.
19.3.9 Instrumental variables \Longrightarrow Full Information Maximum Likelihood
8. Calzolari, G., and L. Sampoli (1993): "A Curious Result on Exact FIML and Instrumental Variables", Econometric Theory 9, 296-309.
9. Dagenais, M. G. (1978): "The Computation of FIML Estimates as Iterative Generalized Least Squares Estimates in Linear and Nonlinear Simultaneous Equations Models", Econometrica 46, 1351-1362.
10. Durbin, J. (1963, 1988): "Maximum Likelihood Estimation of the Parameters of a System of Simultaneous Regression Equations". London School of Economics: discussion paper presented at The European Meeting of the Econometric Society, Copenhagen, 1963. Published in Econometric Theory 4 (1988), 159-170.
11. Hausman, J. A. (1974): "Full Information Instrumental Variables Estimation of Simultaneous Equations Systems", Annals of Economic and Social Measurement 3, 641-652.
12. Hausman, J. A. (1975): "An Instrumental Variable Approach to Full Information Estimators for Linear and Certain Nonlinear Econometric Models", Econometrica 43: 727-738.
13. Hendry, D. F. (1976): "The Structure of Simultaneous Equations Estimators", Journal of Econometrics 4, 51-88.
