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type sticky prices and wages. In this model, monetary policy affects
long-run output growth. We characterize the optimal operational
monetary policy rule in this economy. We find that even though stabi-
lization of output growth increases long-run output growth, the opti-
mal monetary policy rule is the rule that makes interest rate respond
to price and wage actively and output growth mutely, similar as in
exogenous growth models. We also find that the optimal monetary
policy rule virtually maximizes mean growth. These results suggest
that although long-run growth is important for welfare, new Keyne-
sian’s claim that monetary policy should stabilize nominal variables
is highly robust.
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1 Introduction

Our aim in this paper is to give some answers to the following questions.
How much does monetary policy affect long-run growth? Does the long-run
growth effect change the features of the optimal monetary stabilization policy
rule? In order to highlight the growth and welfare effect of monetary policy,
we incorporate Calvo (1983)-type sticky prices and wages to the two-capital
convex model of endogenous growth. We here consider two types of growth
effects, that is, the growth effect caused by the changes of long-run target
rate of inflation under the deterministic environment and the effect arisen
from uncertainty and monetary stabilization policy rules such as the Taylor
rule. We shall call the former the deterministic growth effect and the latter
the stochastic growth effect. Our motivations and findings of this research
are as follows.

We first explain the deterministic growth effect. Empirical studies using
cross-country data claim that long-run growth and inflation have a negative
relationship. Calibrating the model, we find that in steady state, price sticki-
ness cause negative long-run relationship between growth and inflation under
positive inflation rate and that the magnitude of this relationship strongly
depends on the degree of price stickiness. In the existence of price stickiness,
non-zero inflation is a source of distortion which comes from price dispersion
This distortion reduces resources which can be used for investment and so
decreases output growth. This finding suggests that the various strength of
price stickiness account for the difference of the relationship across countries.

Second, for the stochastic growth effect, Jones et al. (2005b) show that
this type of model has the effect of uncertainty on long-run growth. Incor-
porating nominal rigidities into their model can cause changes of long-run
growth rate through changes of interest rate policy rules. Moreover, It is
also known that this class of model improves over simple (exogenous growth)
RBC models.1 Hence, the endogenous growth models with nominal rigidi-
ties has the potential abilities accounting the business cycle properties better
than existing New Keynesian models. The relationship between fluctuations
and growth is also important from normative perspective. In his seminal
work, Lucas (1987) shows that the cost of business cycles is much less than
that of growth. It is well known that his claim is strongly robust,2 but it
does not imply that fluctuations are negligible for the macroeconomics at all,
because even if fluctuations itself has the small welfare effect, fluctuations
can affect the long-run growth through the optimization of the economic

1See Jones et al. (2005a). Comin and Gertler (2006) also show that other endogenous
growth model accounts for the medium term properties of business cycles well.

2The excellent surbeys in the literature are Lucas (2003) and Barlevy (2004a).
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agents(Barlevy, 2004b).
For these reasons, endogenizing productivity growth can be thought to

be important for the analysis of business cycle and stabilization policy. Most
of studies about short-run monetary policy (New Keynesian approach), how-
ever, have been ignored the effect of monetary policy on long-run economic
growth. We conjecture that the reason is purely technical issue. In most
of New Keynesian studies, they approximate to the policy functions around
non-stochastic steady-state up to first-order. In linear models, unconditional
mean of endogenous variables are idendical to the non-stochastic steady-state
value. Hence, even if long-run growth rate is endogenous, higher-order ap-
proximation is needed for the model to show the growth effect. We apply the
numerical computation method which approximating to the policy function
up to second-order developed by Schmitt-Grohe and Uribe (2004). Their nu-
merical method enables us to address the relationship between stabilization
policy and long-run growth because endogenous growth models with nominal
rigidities approximated up to second-order do not hold certainty equivalence
so that long-run growth rate is no longer identical to non-stochastic steady-
state growth rate.

Solving our model by second-order approximation, we obtain some find-
ings about the stochastic growth effect and about the optimal operational
monetary policy as follows. First, in our model with stochastic disturbances,
the long-run rate of output growth is affected by the monetary stabiliza-
tion policy rules, especially policy rule responding to output though, under
simple Taylor rule, deviation of annual growth rate from deterministic bal-
anced growth path is very small, about −10−3 percent. Second, The effect
of volatility of inflation on long-run growth is not clear because of existence
of wage stickiness. We think it as a reason why empirical evidence about
the correlation between inflation volatility and growth is unclear. Third,
we characterize the optimal operational monetary policy rules and find that
the features of the optimal operational policy is not turned from exogenous
growth New Keynesian models. This result implies that the growth effect of
Barlevy (2004b) which is caused by investment adjustment costs and nominal
rigidities do not have a strong tradeoff. Finally, We find the optimal oper-
ational monetary policy rule is virtually identical to the growth-maximizing
operational monetary policy rule in the sense that the growth-maximizing
policy rule attains virtually the same levels of walfare and growth rate as
the optimal policy rule. This finding suggests that the monetary authorities
can virtually optimal allocation under price- and wage-stickiness only by re-
solving the tradeoff between price- and wage- stabilization even if monetary
policy affects long-run growth. This result is also consistent with Blackburn
and Pelloni (2005). As long as we know, it is the unique study about the
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relationship between the optimal monetary stabilization policy and long-run
growth. They show analytically that optimal monetary policy is identical
to the growth-maximizing policy in the endogenous growth model with neo-
classical-type nominal wage rigidity.

This paper is organized as follows. In the next section, we present the
model into which stochastic endogenous growth and nominal rigidities are
fused, and calibrate the model. Section 3 analyzes the steady state and shows
some results about the deterministic growth effect. Section 4 consider the
stochastic growth and welfare effect under versions of Taylor rule. Section
5 considers the optimal operational interest-rate feedback rule. Section 6
concludes this paper.

2 The model

The model is a two-capital convex model of endogenous growth by Jones
et al. (2005a) incorporating Calvo-type sticky prices and wages, physical and
human capital investment adjustment costs, and habit persistence.

2.1 Households

The representative families, across whose menbers consumption and hour
worked are identical, have preferences which are described by the following
utility function,

E0

∞
∑

t=0

βtU(Ct − bCt−1, 1 − nt),

with

U(Ct − bCt−1, 1 − nt) ≡

{

(Ct−bCt−1)1−σ(1−nt)ψ(1−σ)

1−σ
when σ 6= 1

log(Ct − bCt−1) + ψ log(1 − nt) when σ = 1,

where Et is the standard expectations operator conditional on information
at time t, Ct denotes per capita consumption, nt represents per capita labor
supply, β, b, and σ are a subjective discount factor, the habit formation
parameter, and the curvature parameter of utility, respectively. Households
can consume the single final good, and the final good also can be used for
human and physical capital investment. The final good is a composite good
made of a continuum of defferenciated goods Yit indexed by i ∈ [0, 1], by

3



Dixit-Stiglitz aggregator. Hence the demand for Yit is given by

Yit =

(

Pit

Pt

)

−θ

Yt,

Yt = Ct + IK
t + IH

t (1)

and price index Pt is

Pt =

(
∫ 1

0

P 1−θ
it di

)

1
1−θ

, (2)

where Yt is aggregate absorption, Pit denotes the price of good i, and IK
t and

IH
t represent physical and human capital investment per capita, respectively.

Households’ expenditures on consumption goods are subject to a cash-in-
advance constraint

Mh
t ≥ νhCt, (3)

where Mh
t denotes real money balances holding by households in period t

and νh is a parameter.
Households own human capital Ht, and physical capital Kt. Capital

accmulation equations are assumed as follows.

Kt+1 = (1 − δK)Kt + IK
t −

aK

2

(

IK
t

IK
t−1

− ηF
K

)2

IK
t (4)

Ht+1 = (1 − δH)Ht + IH
t −

aH

2

(

IH
t

IH
t−1

− ηF
H

)2

IH
t (5)

where δK and δH denote the depreciation rates with respect to physical and
human capital, and aK and aH represent the investment adjustment cost
parameters for physical and human capital,3 respectively.

Following Schmitt-Grohe and Uribe (2005) (henceforth SGU), labor sup-
ply is decided by “a union”, which supplies labor monopolistically to a con-
tinuum of labor markets indexed by j ∈ [0, 1]. As we shall see below, the
demand for labor in the labor market j is

njt =

(

Wjt

Wt

)

−θ̃

nd
t . (6)

3This type of investment adjustment cost function is assumed in Christiano et al.
(2005) for physical capital investment. We applies this specification also to human capital
investment because we cannot find the emperical evidence about the form of human capital
invenstment technology. The study about it remains for future research.
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and nominal wage index is

Wt =

(
∫ 1

0

W 1−θ̃
jt dj

)

1
1−θ̃

(7)

where nd
t is the aggregate labor demand and Wjt denotes the nominal wage

rate in the labor market j. We define real wage index, wt ≡ Wt/Pt, and
real wage rate in labor market j, wjt ≡ Wjt/Pt, respectively. The resource
constraint of labor supply is

nt =

∫ 1

0

njtdj, (8)

From (7) and (8), a resource constraint which the union faces is obtained as

nt = nd
t

∫ 1

0

(

wjt

wt

)

−θ̃

dj. (9)

We assume that households can access to a complete set of nominal state-
contingent claims and that the effective labor is defined as product of hour
worked and human capital, so that households’ intertemporal budget con-
straint is

Etdt,t+1
Xt+1

Pt

+ Mh
t + Ct + IK

t + (1 + τh)IH
t

=
Xt

Pt

+
Pt−1

Pt

Mh
t−1 + (1 + τh)

∫ 1

0

(

wj
t

wt

)

−θ̃

nd
t Htw

j
tdj + rK

t Kt + Φt + Tt,

(10)

where dt,s is nominal stochastic discount factor, Xt is nominal payment in
period t, rK

t denotes real rental rate on physical capital, Φt is profits received
from firms, and Tt denotes the transfer from the government. τh represents
human capital investment tax rate and wage subsidy rate to eliminate dis-
tortion which comes from monopolistic competition in labor markets. We
assume τh = 1/(θ̃ − 1).

We assume wage stickiness following Calvo (1983) and SGU, that is, in
each period the union cannot reoptimize the nominal wage in a fraction
ξw ∈ [0, 1) of randomly chosen labor markets. Following SGU, in these non-
optimized markets, the nominal wages are (fully or partially) indexed to the
nominal good-price inflation in the previous period.4 Therefore, the nominal

4In some models where labor productivity grows exogenously such as SGU, the nominal
wage rates in the non-reoptimizing labor markets are also indexed to average real wage
growth. In our model, however, average real wage growth is zero because growth of wage
payment comes from human capital accumulation.
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wage setting rule is

Wjt =

{

W̃t if the wage can be re-optimized,

πχ̃
t−1Wj,t−1 otherwise,

where W̃t is the optimal nominal wage rate in period t, πt ≡ Pt/Pt−1 is
nominal good-price inflation rate. Defining the optimal real wage rate as
w̃t ≡ W̃t/Pt, We can rewrite the rule as

wjt =

{

w̃t if the wage can be re-optimized,
πχ̃

t−1

πt
wj,t−1 otherwise.

(11)

Households maximize (2.1) subject to (3), (4), (5), (9), (10), the sticky
wage assumption (11), and the no-Ponzi game condition, choosing processes
for Ct, nt, Xt+1, Mt, IK

t , IH
t , Kt+1, Ht+1, and wj

t . Let us define the Lagrange
multipliers associated with (3), (4), (5), (9), (10) as βtΛtζt, βtΛtq

K
t , βt(1 +

τh)Λtq
H
t , βtΛtwtHt

µ̃t
, and βtΛt respectively. Restricting our attention to the

strictly-positive nominal interest rate equilibria, we obtain the first-order
conditions with respect to Ct, nt, Xt+1, Mt, I

K
t , IH

t , Kt+1, Ht+1 as follows.

Ct : Λt(1 + νfζt) = (Ct − bCt−1)
−σ(1 − nt)

ψ(1−σ) − βbEt(Ct+1 − bCt)
−σ(1 − nt+1)

ψ(1−σ),

(12)

nt :
ΛtwtHt

µ̃t

= ψ(Ct − bCt−1)
1−σ(1 − nt)

ψ(1−σ)−1, (13)

Xt+1 : dt,t+1 =
βΛt+1

Λtπt+1

, (14)

Mt : Λt(1 − ζt) = βEt
Λt+1

πt+1

, (15)

IK
t : Λt = Λtq

K
t

[

1 −
aF

K

2

(

IK
t

IK
t−1

− ηF
K

)2

− aF
K

(

IK
t

IK
t−1

− ηF
K

)

IK
t

IK
t−1

]

+ βEtΛt+1q
K
t+1a

F
K

(

IK
t+1

IK
t

− ηF
K

)(

IK
t+1

IK
t

)2

, (16)

IH
t : Λt = Λtq

H
t

[

1 −
aF

H

2

(

IH
t

IH
t−1

− ηF
H

)2

− aF
H

(

IH
t

IH
t−1

− ηF
H

)

IH
t

IH
t−1

]

+ βEtΛt+1q
H
t+1a

F
H

(

IH
t+1

IH
t

− ηF
H

) (

IH
t+1

IH
t

)2

, (17)

Kt+1 : Λtq
K
t = βEtΛt+1[r

K
t+1 + qK

t+1(1 − δK)], (18)

Ht+1 : Λtq
H
t = βEtΛt+1[wt+1n

d
t+1 + qH

t+1(1 − δH)]. (19)
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From (14) and the definition of nominal interest rate, 1/Rt = Etdt,t+1, we
obtain the well-known fisher relationship,

1

Rt

= βEt
Λt+1

Λtπt+1

. (20)

and, from (15) and (20), the cost of holding money ζt is representing that

ζt = 1 − R−1
t . (21)

Next, we consider optimal wage setting behavior. The parts of Lagrangian
that are relevant for wage setting is

Lw
t = Et

∞
∑

s=0

(βξw)s
[

(1 + τh)Λt+sn
d
t+sHt+sw̃tX̃t,t+s

(w̃tX̃t,t+s

wt+s

)

−θ̃

−
Λt+swt+sHt+s

µ̃t+s

nd
t+s

(w̃tX̃t,t+s

wt+s

)

−θ̃]

,

where,

X̃t,t+s =

{

1 s = 0,
πχ̃

t

πt+1
· · · · ·

πχ̃
t+s−1

πt+s
s = 1, 2, · · · .

The first-order conditions with respect to w̃t is

Et

∞
∑

s=0

(βξw)sΛt+sn
d
t+sHt+s

(

w̃t

wt+s

)

−θ̃

X̃−θ̃
t,t+s

[

(1 + τh)
θ̃ − 1

θ̃
w̃tX̃t,t+s −

wt+s

µ̃t+s

]

= 0.

Define F 1
t and F 2

t as

F 1
t = (1 + τh)

θ̃ − 1

θ̃
w̃tEt

∞
∑

s=0

(βξw)sΛt+sn
d
t+sHt+s

(

w̃t

wt+s

)

−θ̃

X̃1−θ̃
t,t+s,

F 2
t = Et

∞
∑

s=0

(βξw)sΛt+sn
d
t+sHt+s

(

w̃t

wt+s

)

−θ̃

X̃−θ̃
t,t+s

wt+s

µ̃t+s

,

respectively, and we obtain the recursive formulation of optimal wage setting
behavior,

F 1
t = (1 + τh)

θ̃ − 1

θ̃
Λtn

d
t Ht

(

w̃t

wt

)

−θ̃

w̃t + βξwEt

(

w̃t

w̃t+1

)1−θ̃
(

πχ̃
t

πt+1

)1−θ̃

F 1
t+1,

(22)

F 2
t = Λtn

d
t Ht

(

w̃t

wt

)

−θ̃

wtµ̃
−1
t + βξwEt

(

w̃t

w̃t+1

)

−θ̃
(

πχ̃
t

πt+1

)

−θ̃

F 2
t+1, (23)

F 1
t = F 2

t . (24)
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2.2 Firms

Each good i is produced by a single firm indexed by i ∈ [0, 1] in monopo-
listically competitive good market. The production technology of Firm i is
represented by the following Cobb-Douglas production function,

Yit = AtK
α
itZ

1−α
it ,

where At represents exogenous aggregate productivity, Kit and Zit denotes
physical capital and the effective labor demanded by firm i, respectively.

We impose a cash-in-advance constraint for wage payments

M f
it = νfwtZit, (25)

where M f
it denotes the demand for real money balances by firm i and νf is

a parameter. The cost of holding money is (1−R−1
t )M f

it, hence the nominal
total production cost of firm i is represented as

rK
t Kit + wtZit + (1 − R−1

t )M f
it.

The first-order conditions of the cost minimization problem are given by

rK
t = αAtK

α−1
it Z1−α

it mct, (26)

wt[1 + νf (1 − R−1
t )] = (1 − α)AtK

α
itZ

−α
it mct, (27)

(

Pit

Pt

)

−θ

Yt = AtK
α
itZ

1−α
it , (28)

where mct represents real marginal cost. Note that the real marginal cost is
in common among the firms, hence the subscript representing the firm index
i is dropped.

We assume price stickiness following Calvo (1983) and Yun (1996), that is,
each period a fraction ξp ∈ [0, 1) of randomly chosen firms cannot reoptimize
the nominal price of their producted good. Formally, the firms set their
nominal prices according to the following rule,

Pit =

{

P̃t if the firm can set their price optimally,

πχ
t−1Pi,t−1 otherwise.

(29)

Hence, profit maximization problem are formulated as

max Et

∞
∑

s=0

dt,t+sPt+sξ
s
p



(1 + τY )

(

Xt,t+sP̃t

Pt+s

)1−θ

Yt+s −

(

Xt,t+sP̃t

Pt+s

)

−θ

Yt+smct+s



 .
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where,

Xt,t+s =

{

1 s = 0,

πχ
t · · · · · πχ

t+s−1 s = 1, 2, · · · ,

and where τY = 1/(θ − 1) represents production subsidy rate to eliminate
distortion which comes from monopolistic competition in good markets.

The first-order condition with respect to P̃t is

Et

∞
∑

s=0

dt,t+sξ
s
pYt+s



(1 + τY )(θ − 1)X1−θ
t,t+s

(

P̃t

Pt+s

)

−θ

− θX−θ
t,t+s

(

P̃t

Pt+s

)

−θ−1

mct+s



 = 0.

Define X1
t and X2

t as

X1
t ≡ Et

∞
∑

s=0

dt,t+sξ
s
pYt+sX

−θ
t,t+s

(

P̃t

Pt+s

)

−θ−1

mct+s,

X2
t ≡ Et

∞
∑

s=0

dt,t+sξ
s
pYt+sX

1−θ
t,t+s

(

P̃t

Pt+s

)

−θ

,

respectively, and we obtain the recursive formulation of optimal price setting
behavior,

X1
t = p̃−θ−1

t Ytmct + ξpEtdt,t+1(π
χ
t )−θ

(

p̃t

πt+1p̃t+1

)

−θ−1

X1
t+1, (30)

X2
t = p̃−θ

t Yt + ξpEtdt,t+1(π
χ
t )1−θ

(

p̃t

πt+1p̃t+1

)

−θ

X2
t+1, (31)

θX1
t = (1 + τY )(θ − 1)X2

t , (32)

where we define p̃t ≡ P̃t/Pt.
Finally, we show that labor demand in the market j and nominal wage

index are described as the form of (6) and (7), respectively. The effective
labor input of firm i, Zit, is assumed to be a composite effective labor made
by the following aggregator

Zit =

[
∫ 1

0

(Zj
it)

θ̃−1

θ̃ dj

]

θ̃

θ̃−1

,

where Zj
it denotes the effective labor demand by firm i in effective labor

market j. We also assume that the effective labor in the market j is defined
as the product of labor forces in the market j and human capital, which is

9



assumed to be identical across the family menbers. More formally, Zj
it ≡

nj
itHt, where nj

it represents the labor demand by firm i in labor market j.
Hence, the “composite labor” demand by firm i, nit, can be described as

nit =

[
∫ 1

0

(nj
it)

θ̃−1

θ̃ dj

]

θ̃

θ̃−1

,

and
Zit = nitHt, (33)

that is, the composite effective labor input can be written as the product of
the composit labor and human capital.

The cost minimization problem of firm i with respect to labor is

min

∫ 1

0

Wjtn
j
itdj

s.t. nit =

[
∫ 1

0

(nj
it)

θ̃−1

θ̃ dj

]

θ̃

θ̃−1

.

Define the Lagrange multiplier as Wt, which represents nominal wage index
because it is marginal cost of composite labor, and we obtain the following
equations

nj
it =

(

Wjt

Wt

)

−θ̃

nit (34)

Wt =

[
∫ 1

0

(Wjt)
1−θ̃dj

]

1
1−θ̃

(35)

The equation (35) is identical to the equation (7). By defining aggregate
labor demand in market j and aggregate composite labor demand as

njt ≡

∫ 1

0

nj
itdi

and

nd
t ≡

∫ 1

0

nitdi, (36)

respectively. From (34), we obtain the labor demand equation as the form
of (6),

njt =

∫ 1

0

nj
itdi =

∫ 1

0

(

Wjt

Wt

)

−θ̃

nitdi =

(

Wjt

Wt

)

−θ̃

nd
t . (37)
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2.3 Government

Our study focuses only on the monetary policy, hence, for simplicity we
assume that the government does not perchase the final good and that all
seigniorage is transfered to households. Therefore the intertemporal budget
constraint of the government is

(1 + τh)IH
t +

(

Mt −
Mt−1

πt

)

= Tt + (1 + τh)wtn
d
t Ht + (1 + τY )Yt,

where Mt denotes aggregate real money supply. In equilibrium, therefore, it
holds that

Mt = Mh
t + M f

t = νhCt + νfwtn
d
t Ht, (38)

where M f
t ≡

∫ 1

0
M f

itdi.
Following some rules described below, monetary authority sets the process

for the nominal interest rate, Rt.

2.4 Aggregation, Market Clearing, and Exogenous pro-
cess

2.4.1 Price and wage indexes

By equations (2) and (29), we obtain

1 = (1 − ξp)p̃
1−θ
t + ξp

(

πχ
t−1

πt

)1−θ

. (39)

By equations (7) and (11), it holds that

w1−θ̃
t = (1 − ξw)w̃1−θ̃

t + ξw

(

πχ̃
t−1

πt

)1−θ̃

w1−θ̃
t−1 . (40)

2.4.2 Final-good markets

Market clearing condition in good market i is written as

AtK
α
itZ

1−α
it =

(

Pit

Pt

)

−θ

Yt. (41)

By equations (33), (36), the resouce constraint with respect to capital

∫ 1

0

Kitdi = Kt,

11



and the fact that, in equilibrium, capital to effective labor ratios are identical
across the firms because the firm’s production function is homogeneous of
degree one, we can integrate the equation (41) over all good markets. As the
result we obtain aggregate resouce constraint

AtK
α
t (nd

t Ht)
1−α = Ytst, (42)

where we define

st ≡

∫ 1

0

(

Pit

Pt

)

−θ

di,

or as recursive representation,

st = (1 − ξp)p̃
−θ
t + ξp

(

πχ
t−1

πt

)

−θ

st−1. (43)

st denotes the inefficiency by the price dispersion.
By equations (26), (27), and the fact that, the equilibrium capital to

effective labor ratios are identical across the firms, we obtain

rK
t = αAtK

α−1
t (nd

t )
1−αH1−α

t mct, (44)

wt[1 + νf (1 − R−1
t )] = (1 − α)AtK

α
t (nd

t )
−αH−α

t mct. (45)

2.4.3 labor markets

By aggregating (37) over all labor markets, we obtain aggregate resouce
constraint with respect to labor,

nt = nd
t s̃t, (46)

where s̃t ≡
∫ 1

0

(

wjt

wt

)

−θ̃

dj denotes the inefficiency by the wage dispersion. We

can write the difinition as recursive representation,

s̃t = (1 − ξw)

(

w̃t

wt

)

−θ̃

+ ξw

(

wt−1

wt

)

−θ̃
(

πχ̃
t−1

πt

)

−θ̃

s̃t−1. (47)

2.4.4 Exogenous process

The law of the motion of aggregate productivity At is assumed to be given
by the following exogenous stochastic process

log

(

At

Ā

)

= ρ log

(

At−1

Ā

)

+ σǫǫt, (48)

0 ≤ ρ < 1, ǫt ∼ N(0, 1),

where σǫ is standard deviation of the stochastic shock.
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2.5 Stationary Competitive Equilibrium

In the environment described above, some of endogenous variables are not
stationary along the balanced-growth path because the economy shows en-
dogenous growth by the same mechanism as Jones et al. (2005b).5 We there-
fore rewrite these variables to be stationary. For this purpose, we categorize
the nonstationary variables into three groups and divide these variables in
each group by the appropriate factors. The first group are composed of Ct,
Yt, IK

t , IH
t , X1

t , X2
t , Kt, and Mt, divided by Ht. The second group consists

in F 1
t and F 2

t , divided by H1−σ
t . A variable in the third group is Λt, divided

by Hσ
t . We denote the corresponding stationary variables with lower letters.

Finally, we define the growth rate of human capital as γH
t ≡ Ht/Ht−1.

We define a stationary competitive equilibrium as the set of stationary
processes γH

t , ct, λt, ζt, nt, µ̃t, πt, yt, iKt , iHt , x1
t , x2

t , mct, p̃t, kt, nd
t , st,

rK
t , wt, f 1

t , f 2
t , w̃t, s̃t, qK

t , qH
t , and mt satisfying the equilibrium conditions

(1), (4), (5), (12), (13), (16)-(21), (22)-(24), (30)-(32), (38)-(40), (42)-(47)
written in terms of the stationary variables, given the nominal interest rate
policy process Rt, exogenous aggregate productivity stochastic process At,
and initial conditions γH

0 , c−1, π−1, iK
−1, iH

−1, k0, s−1, w−1, and s̃−1.

2.6 Calibration

The parameter values are summarized in Table 1. The deep parameters are
calibrated by the following way. The time unit is assumed to be one quarter.
We assume cashless economy so that νh and νf is zero. σ is set to be 1, that
is, we assume that log utility. Given that, we divide the parameters to be
calibrated into three groups. For parameters in the first group, b, δK , δH , α,
θ, θ̃, ξp, ξw, χ, χ̃, and ρ, we draw on related studies. ρ are set to be 0.95,
which are in the range of the value used in RBC literature. We set b to be
0.69, δK to be 0.025, α to be 0.36, θ̃ to be 21, ξp to be 0.8, and ξw to be 0.69,
following Altig et al. (2005). δH is assumed to be 1− (1−0.025)1/4, following
Jones et al. (2005a). θ is assumed to be 6, such that the steady-state markup
in product good markets is 20 percent. Following SGU and the empirical fact
found by Levin et al. (2005), we set χ and χ̃ to be 0 and 1, respectively.

Second, given the values set above, parameters in the second group,
which is composed of ψ, η, Ā, are calibrated by using steady-state conditions
and some restrictions. We think zero-inflation steady-state and assume that
steady-state output growth rate is 0.45 percent per quarter, following SGU.
In the deterministic steady state, we assume labor supply, n, to be one half,6

5See Jones and Manuelli (1990), for more general formulation.
6Given log utility, n = 0.5 implies unit Frisch elasticity of labor supply.
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Table 1: Deep Structural Parameters
Parameter Value Description

Endogenous Exogenous
growth growth

σ 1 1 Preference parameter
β 0.99455 0.99455 Subjective discount rate
ψ 2.3776 0.92976 Preference parameter
b 0.69 0.69 Degree of habit persistence
δK 0.025 0.025 Depreciation rate of physical capital

δH 1 − (1 − 0.025)
1

4 —– Depreciation rate of human capital
aK 0.036527 2.79 Physical capital IAC parameter
aH 0.025380 —– Human capital IAC parameter
η 1.0045 1.0045 IAC Parameter
α 0.36 0.36 Cost Share of physical capital
Ā 0.064307 1 Production function parameter
θ 6 6 Price elasticity of good demand

θ̃ 21 21 Wage elasticity of labor demand
ξp 0.8 0.8 Degree of nominal good price rigidities
ξw 0.69 0.69 Degree of nominal wage rigidities
χ 0 0 Degree of price indexation
χ̃ 1 1 Degree of nominal wage indexation
νh 0 0 Parameter of firm’s CIA constraint
νf 0 0 Parameter of households’ CIA constraint
ρ 0.95 0.95 Serial correlation of productivity shock
σǫ 0.0053317 0.007 Scaling parameter of uncertainty
γH (endogenous) 1.0045 Growth rate of Human capital

quarterly real interest rate, rK , to be one percent, each price of physical and
human capital, qK and qH , to be 1, respectively. Under these assumptions,
we obtain the values of ψ, η, and Ā by using steady-state conditions.

Finally, parameters in the third group, aK , aH , and σǫ, are calibrated such
that the second moment of key variables in the model match the U.S. business
cycle fact. We set these values such that standard deviation of output growth
rate is 0.84, that standard deviation of physical capital investment growth is
three times larger than that of output growth, and that standard deviation of
broad consumption7 growth is as half as that of output growth under simple
Taylor rule with zero inflation target, log(Rt/R̄) = 1.5 log πt.

For comparative purpose, we also consider the counterpart exogenous
growth model. In the exogenous growth model, the growth rate of human
capital, γH

t , is exogenously 1.0045 in all t and human capital investment is
zero. aH no longer affects the equilibrium. aK is set to be 2.79, following

7Following Jones et al. (2005a), we refer the sum of consumption and human capital
investment as ‘broad consumption’.
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SGU. σǫ is set to be 0.007, which is standard RBC literature. Given that,
We calibrate the parameters of the exogenous growth model by the same
steady-state restrictions as the endogeous growth model.8

3 Steady State Analysis

3.1 Optimal Long-run Inflation Rate

Given our assumptions of cashless economy, tax on human capital investment,
subsidies on employment and production, no price indexation, and full wage
indexation, we ensure that real allocation of the deterministic steady state
at zero inflation is the same as steady-state real allocation of social planner
solution. Therefore, the deterministic steady state at zero inflation is Pareto
optimal.

3.2 Growth and Welfare effect of Long-run Inflation

Despite some empirical studies claim the importance of the negative corre-
lation between long-run growth and inflation, it is underestimated in theo-
ritical literature using nominal frictions such as cash-in-advance constraints.
For example, Kormendi and Meguire (1985) estimated their correlations us-
ing cross-country data and found that a decreasing of inflation by 2% would
rise the growth rate by 1% per annum, but in theorictical analysis, com-
puted growth effect caused by 10% increasing of annual inflation rate lowers
the annual growth rate by only 0.06% in Gomme (1993) and 0.3% in Jones
and Manuelli (1995). In contrast, the sticky price model has the more sig-
nificantly negative growth and welfare effect of inflation than their flexible
price models. Figure 1 represents the relationship between growth and in-
flation in the deterministic steady steady state. In our baseline calibration,
a increasing of inflation from 0% to 10% lowers growth by about 1% per
annum. Moreover, we find that in our model, welfare cost of inflation is also
large. a increasing of inflation by 10% per annum decreases economic welfare
by more than 30% consumption measured at zero-inflation (Pareto-optimal)
steady state.

Our result obtained above shows that price stickiness brings the signif-
icant growth and welfare effect.9 The degree of price stickiness, however,

8The scaling parameter of production function, Ā, is arbitary in the exogenous model.
Without loss of generality, we set Ā = 1.

9Wage stickiness does not cause growth and welfare effects in steady state of our model
because we assume full nominal wage indexation so that all labor markets is not distorted
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Fig. 1: The effects of long-run inflation
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Table 2: The growth and welfare effect of 10% annual inflation
ξp 0.2 0.4 0.6 0.8 (baseline)

Growth effect -0.007 -0.0257 -0.102 -1.03
Welfare cost 0.255 0.983 3.92 35.5

Note: i) Growth rate is described in net growth per year. ii) Welfare cost is measured by
percentage of consumption in zero-inflation steady state.

would be highly difference across countries. We then do a sensitivity analy-
sis for the degree of price stickiness, ξp. Table 2 represents growth and welfare
effect of 10% annual inflation when ξp = 0.2, 0.4, 0.6, 0.8. The result shows
that the low degree of price stickiness lower the growth effect of inflation.

Note that growth and welfare effect is nonlinear in our model. The higher
inflation is, the more marginal growth decreasing is. This nonlinearity is not
consistent with recent empirical evidence. We conjecture that our nonlinear-
ity result is caused by the time-dependent sticky price assumption. In the
assumption, high inflation bring severe distortion of price stickiness. If the
assumption of sticky price was state-dependent pricing such as Dotsey et al.
(1999), high inflation would lower the degree of price stickiness and might be
consistent with empirical studies.

4 Equilibrium Dynamics

4.1 Solution Method

Because of the complexity of the model, an exact numerical solution does
not exist. The log-linearization method, however, eliminates the growth
effects which comes from uncertainty because unconditional means of en-
dogenous variables are identical to the values at deterministic steady state
in log-linearized model. We then approximate the equilibrium conditions
and the conditional welfare measure to second-order accuracy by using the
computation method developed by Schmitt-Grohe and Uribe (2004).

4.2 Monetary Policy Rules

We consider the equilibrium dynamics and welfares under simple Taylor rule
and optimal operational monetary policy rules below. In this subsection, we
present the definitions of Taylor rules.

in steady state with any inflation rate.
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The Simple Taylor Rule First, as a benchmark, we apply the simple
Taylor rule responding only to inflation,

log

(

Rt

R∗

)

= 1.5 log
( πt

π∗

)

, (49)

where variables with asterisks denote their values at the zero-inflation deter-
ministic steady state.

The Taylor Rule In order to investigate the effect of growth by respond-
ing to output, we use the standard Taylor rule also responding to cyclical
components of output,

log

(

Rt

R∗

)

= 1.5 log
( πt

π∗

)

+ 0.5 log

(

yt

y∗

)

. (50)

4.3 Results

4.3.1 Growth effects of Monetary Policy

Our numerical result under the simple and standard Taylor rules are repre-
sented in Table 3. According to this, under baseline parameters the simple
Taylor rule lowers the long-run growth rate by 3 × 10−3 percent per year.
Furthermore, the rule responding to output has more significantly negative
growth effect. the rule lowers the long-run growth rate by 7 × 10−2 percent
per year. It is seen to be small for policy implication but we think it as
not to be negligible for the literature of the relationship between growth and
fluctuations. For example, Jones et al. (2005b) show that the convex mod-
els of endogenous growth without nominal rigidities has positive or negative
growth effect of uncertainty. Under reasonable parameter values, the growth
effects of uncertainty in their model increase long-run growth rate by at most
7 × 10−2 percent per year. Hence, the growth effects of monetary policy at
least offset their growth effect when the economies have nominal rigidities.
Jones et al. (2005b) claim that the differences of long-run growth across
countries may be able to contribute to sharper estimations of deep param-
eters such as intertemporal elasticity of substitution. Our result, however,
suggests that given the existence of nominal rigidities and the differences
of policy rules across countries, we can not ignore the growth effect of the
differences of monetary policy rules to estimate those ones.

4.3.2 Relationship between Inflation Volatility and Growth

Dotsey and Sarte (2000) show that financial imperfection cause the positive
relationship between inflation volatility and growth. Empirical evidences,
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Fig. 2: The inflation volatility effects on long-run growth
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Table 3: The Taylor Rules
Simple Taylor Rule: log(Rt/R∗) = 1.5 log(πt/π∗)

Taylor Rule - Output: log(Rt/R∗) = 1.5 log(πt/π∗) + 0.5 log(yt/y∗)

Welfare Cost σπ σ
πW ob σR E(γ̂Y )

A: Endogenous Growth New Keynesian Model
Baseline
Simple Taylor Rule 0.073 0.38 1.12 0.57 −2.61 × 10−3

Taylor Rule - Output 4.005 5.56 5.52 5.32 −7.74 × 10−2

High IACs (aK = aH = 10)
Simple Taylor Rule 0.058 0.86 0.58 1.29 −2.81 × 10−3

Taylor Rule - Output 4.300 5.77 5.77 6.12 −8.41 × 10−2

B: Standard New Keynesian Model
Baseline
Simple Taylor Rule 0.011 0.79 0.64 1.19 —
Taylor Rule - Output 3.189 7.99 8.01 8.30 —
High IAC (aK = 10)
Simple Taylor Rule 0.029 1.09 0.73 1.63 —
Taylor Rule - Output 3.042 7.83 7.87 8.29 —

Note: i) For definition of welfare cost, see appendix. ii) σx represents the standard
deviation of x. σπ, σR denote on annual rates. iii) E(ĉ) represents unconditional mean of
percentage deviation of c from deterministic steady state. E(γ̂Y ) denotes unconditional
mean of percentage deviation of γY from deterministic steady state on annual rate.

however, implies unclear correlations across countries. In our model, their
relationship depends on the monetary policy rules. We here consider the
following rule,

log

(

Rt

R∗

)

= απ log
( πt

π∗

)

+ απWob

log

(

πW ob

t

πW ob∗

)

, (51)

where we define the observable nominal wage inflation, πW ob

t , as

πW ob

t ≡
WtHt

Wt−1Ht−1

= πtγ
H
t

wt

wt−1

.

Figure 2 shows that the relationship between policy coefficients which
govern response to price- and wage-inflation and the moments of relavant

endogenous variables. When απWob

is high, long-run growth has negative

relationship to inflation volatility. However, When απWob

is relatively low,
the two has positive relationship because then the higher απ is, the smaller
σ(π) is but the greater volatility of wage inflation σ(πW ob

) is. Therefore,
the existence of wage stickiness cause either positive or negative relationship
between inflation volatility and growth.
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Table 4: Optimal Operational Monetary Policy Rules
Policy Coefficients σπ σ

πW ob σR E(γ̂Y )

απ αγY

απW
ob

αR

A: Endogenous Growth New Keynesian Model
Baseline 1.70 0.00 0.89 0.00 0.28 0.42 0.27 1.7 × 10−4

High IACs
aK = aH = 10 6.52 0.00 6.28 0.00 0.41 0.34 1.30 −1.1 × 10−3

B: Standard New Keynesian Model
Baseline 2.70 0.00 0.15 0.04 0.52 0.57 1.39 —
High IACs
aK = 10 3.68 0.00 2.31 0.00 0.59 0.52 1.41 —

Note: i) For definition of policy rule, see equation (52). ii) σx represents the standard
deviation of x. σπ, σR denote on annual rates. iii) E(ĉ) represents unconditional mean of
percentage deviation of c from deterministic steady state. E(γ̂Y ) denotes unconditional
mean of percentage deviation of γY from deterministic steady state on annual rate.

5 Optimal Operational Monetary Policy Rules

5.1 Definition

The operational monetary policy rules are defined as the rules satisfying
the following four operational conditions similar to SGU. First, monetary
orthority must set nominal interest rate according to the following interest
rate feedback rules,

log

(

Rt

R∗

)

= απ log
( πt

π∗

)

+αγY

log

(

γY
t

γY ∗

)

+απWob

log

(

πW ob

t

πW ob∗

)

+αR log

(

Rt−1

R∗

)

,

(52)

Second, coefficients of the interest rate rules, απ, αγY

, απWob

, and αR,
must be in the ranges of [0, 10]. Third, The equilibrium must be uniquely
determined, that is, equilibrium under operational policy must not have fluc-
tuation driven by agents’ expectations. Fourth, The standard deviation of
nominal rate of interest must be less than a half of steady state value of
nominal interest rate, that is, 2σR < log R∗, that is, the possibilities that
nominal interest rate hits its zero-lower bound must be kept to be low.

In this section, we consider optimal operational monetary policy rules of
our model. Assume that the economy is in the deterministic steady state at

the beginning of period 0. The optimal policy (απ αγY

απWob

αR) maximizes
the welfare measure conditional on the deterministic steady state, vt, defined
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as

vt =
β

1 − β
log γH

t+1 + log(ct − bct−1/γ
H
t ) + ψ log(1 − nt) + βEtvt+1, (53)

subject to the operational conditions defined above. This conditional wel-
fare measure is derived from the utility function of representative household.
The details are in appendix. We analyze the optimal policy under baseline
structural parameter values.

Moreover, we compute the optimal policy under the high investment ad-
justment cost case, aK = aH = 10. The reasons is as follows. First, we
calibrate the parameters which govern the degrees of investment adjustment
cost to match the ratio of volatility of physical capital investment and the
ratio of volatility of broad consumption to the volatility of output. However,
we have not empirical evidence enough to estimate the degrees of investment
adjustment cost sharply, especially human capital investment adjustment
cost. Hence, we would have to do sensitivity analysis about their parame-
ter. Second, more importantly, investment adjustment costs theirselves have
the growth effect of investment volatility. Barlevy (2004b) shows that in
the endogenous growth models with concave capital production technolo-
gies, equivalently convex investment adjustment costs, investment volatili-
ties lower long-run growth even if unconditional means of investment levels
unchange. Therefore, if the model has a negative relationship between price-
or wage-stabilization and investment stabilization, Optimal policy rules may
respond to output when Barlevy’s effect is strong. The socond reason is that
we would like to investigate whether optimal monetary policy is changed by
Barlevy’s effect.

5.2 Results

Our numerical results are shown in Table 4. Under the baseline calibration,
the response of optimal monetary policy rules to price and wage inflation
are positive, and the one to output growth is mute. This result is simi-
lar to the exogenous growth model with sticky price and wage. SGU and
Schmitt-Grohe and Uribe (2007) show that optimal operational monetary
policy should respond to inflation and should not respond to output or out-
put growth. The reason is that the larger policy coeffcient with respect to
output growth, αγY

, is, the greater volatility of inflation is so that the distor-
tion of price dispersion becomes higher. We see the fact that this intuition
is right by the analogy to Table 3.

Our second finding is that optimal monetary policy virtually does not

depends on the degree of investment adjustment cost. Even if the degree of
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Table 5: Growth-Maximizing Monetary Policy Rules

Policy Coefficients Welfare σπ σ
πW ob σR E(γ̂Y )

απ αγY

απW
ob

αR Cost
(100 × Λc)

Baseline 1.37 0.00 0.83 0.00 4.4 × 10−4 0.25 0.46 0.26 1.9 × 10−4

High IACs
aK = aH = 10 5.27 0.00 4.88 0.00 8.4 × 10−5 0.43 0.33 1.27 −1.1 × 10−3

Note: i) For definition of policy rule, see equation (52). ii) σx represents the standard
deviation of x. σπ, σR denote on annual rates. iii) E(ĉ) represents unconditional mean of
percentage deviation of c from deterministic steady state. E(γ̂Y ) denotes unconditional
mean of percentage deviation of γY from deterministic steady state on annual rate.

adjustment costs are extremely high, aK = aH = 10, the features of optimal
policy regime that monetary authority should respond to price- and wage-
inflation and not to real activity does not change.

These two findings suggest that growth effect itself have only weak trade-
off between price- and wage- inflation stabilization descrived in the previ-
ous subsection because optimal policy rules feature only price- and wage-
stabilization. In order to ensure that growth effect of investment adjustment
costs, we do an exercise seeking operational monetary policy rules maximize
the unconditional mean of output growth. The result represents in Table.
5. We find that the growth-maximizing policy rule responds only to price-
and wage-inflation and not to output growth and this rule atteins virtually
identical long-run output growth rate to that of optimal policy rule. This re-
sult suggests that our conclusion that Barlevy’s effect has not strong tradeoff
between nominal and investment stabilization would be right.

6 Conclusion

This paper analyses the effects of monetary policy in an endogenous growth
model. In this paper, we obtain some positive and normative implications
about inflation and growth. First, in steady state, sticky price distortion have
the negative growth and welfare effect and this effect is highly sensitive to the
degree of price stickiness. This sensitivity may account for the difference of
growth rate across countries. Of cource, price stickiness would change along
the economic environment and time so that we need further theoretical and
empirical studies about price stickiness.

Second, in stochastic environment, the long-run rate of output growth is
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affected by the monetary stabilization policy rules. Especially, policy rule
responds to output lower the long-run growth rate strongly. The empirical
study by Orphanides (2003) suggests the possiblities that output response
of monetary policy in the Great Inflation period brings stagflation. Our
numerical result is consistent with his findings. The simulation analysis using
our model about the periods would be useful to understand the mechanism
of stagflation.

Third, The effect of volatility of inflation on long-run growth is not clear.
This result is consistent with empirical evidence. The source of unclearness in
our model is the existence of wage stickiness. Our conclusion should be tested
by an empirical exercise about the relationship between inflation volatility
and growth, in addition to wage volatility.

Fourth, in spite of above various results that growth and nominal vari-
ables, the features of the optimal operational policy is not turned from exoge-
nous growth New Keynesian models. Our numerical exercises demonstrate
that resolution of price- and wage- tradeoff virtually maximize the long-
run growth. This result implies that the tradeoff between stabilization and
growth does not exist or is weak. This conclusion is also very similar to Black-
burn and Pelloni (2005). They show that in an endogenous growth model
with sticky wage, growth-maximizing policy is optimal. Our result implies
that growth is important from positive perspective but monetary authorities
do not need to consider growth in practice.

Finally, note that because of complexity of the model, we do not find
accurate mechanism of growth effect. Even in the two-capital convex model
of endogenous growth without nominal rigidities developed by Jones et al.
(2005b), they does not find exact mechanism about growth effect of un-
certainty. We should analyze the mechanism of growth effect of nominal
rigidities more analytically, even in simpler model such as AK model with
single nominal rigidity.

24



Appendix A: Equilibrium Conditions

Equilibrium conditions

Λt[1 + νh(1 − R−1
t )] = (Ct − bCt−1)

−σ(1 − nt)
ψ(1−σ) − βbEt(Ct+1 − bCt)

−σ(1 − nt+1)
ψ(1−σ)

1

Rt

= βEt

Λt+1

Λtπt+1

Yt = Ct + IK
t + IH

t

θX1
t = (θ − 1)X2

t

X1
t = p̃−θ−1

t Ytmct + ξpβEt

Λt+1

Λt

(

πχ
t

πt+1

)−θ (

p̃t

p̃t+1

)−θ−1

X1
t+1

X2
t = p̃−θ

t Yt + ξpβEt

Λt+1

Λt

(

πχ
t

πt+1

)1−θ (

p̃t

p̃t+1

)−θ

X2
t+1

1 = (1 − ξp)p̃
1−θ
t + ξp

(

πχ
t−1

πt

)1−θ

AtK
α
t (nd

t )
1−αH1−α

t = Ytst

st = (1 − ξp)p̃
−θ
t + ξp

(

πχ
t−1

πt

)−θ

st−1

rK
t = αAtK

α−1
t (nd

t )
1−αH1−α

t mct

wt[1 + νf (1 − R−1
t )] = (1 − α)AtK

α
t (nd

t )
−αH−α

t mct

F 1
t =

θ̃ − 1

θ̃
Λtn

d
t Ht

(

w̃t

wt

)−θ̃

w̃t + βξwEt

(

w̃t
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)1−θ̃
(

πχ̃
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)1−θ̃

F 1
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w̃t
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1−σ(1 − nt)

ψ(1−σ)−1 + βξwEt

(

w̃t

w̃t+1

)−θ̃
(

πχ̃
t

πt+1

)−θ̃

F 2
t+1

F 1
t = F 2

t

nt = nd
t s̃t

s̃t = (1 − ξw)

(

w̃t

wt

)−θ̃

+ ξw

(

wt−1

wt

)−θ̃
(

πχ̃
t−1

πt

)−θ̃

s̃t−1

w1−θ̃
t = (1 − ξw)w̃1−θ̃

t + ξw

(

πχ̃
t−1

πt

)1−θ̃

w1−θ̃
t−1

Mt = νhCt + νfwtn
d
t Ht

Kt+1 = (1 − δK)Kt + IK
t −

aF
K

2

(

IK
t

IK
t−1

− ηF
K

)2

IK
t

Ht+1 = (1 − δH)Ht + IH
t −

aF
H

2

(

IH
t

IH
t−1

− ηF
H

)2

IH
t

Λt = Λtq
K
t

[

1 −
aF

K

2

(

IK
t

IK
t−1

− ηF
K

)2

− aF
K

(

IK
t

IK
t−1

− ηF
K

)

IK
t

IK
t−1

]

+ βEtΛt+1q
K
t+1a

F
K

(

IK
t+1

IK
t

− ηF
K

)(

IK
t+1

IK
t

)2
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Λt = Λtq
H
t

[

1 −
aF

H

2

(

IH
t

IH
t−1

− ηF
H

)2

− aF
H

(

IH
t

IH
t−1

− ηF
H

)

IH
t

IH
t−1

]

+ βEtΛt+1q
H
t+1a

F
H

(

IH
t+1

IH
t

− ηF
H

) (

IH
t+1

IH
t

)2

Λtq
K
t = βEtΛt+1[r

K
t+1 + qK

t+1(1 − δK)]

Λtq
H
t = βEtΛt+1[wt+1n

d
t+1 + qH

t+1(1 − δH)]

Equilibrium conditions written by stationary variables

γH
t+1kt+1 = (1 − δK)kt + iKt −

aF
K

2

(

γH
t iKt
iKt−1

− ηF
K

)2

iKt

γH
t+1 = 1 − δH + iHt −

aF
H

2

(

γH
t iHt
iHt−1

− ηF
H

)2

iHt

λt = λtq
K
t

[

1 −
aF

K

2

(

γH
t iKt
iKt−1

− ηF
K

)2

− aF
K

(

γH
t iKt
iKt−1

− ηF
K

)

γH
t iKt
iKt−1

]

+ βEt(γ
H
t+1)

−σλt+1q
K
t+1a

F
K

(

γH
t+1i

K
t+1

iKt
− ηF

K

)(

γH
t+1i

K
t+1

iKt

)2

λt = λtq
H
t

[

1 −
aF

H

2

(

γH
t iHt
iHt−1

− ηF
H

)2

− aF
H

(

γH
t iHt
iHt−1

− ηF
H

)

γH
t iHt
iHt−1

]

+ βEt(γ
H
t+1)

−σλt+1q
H
t+1a

F
H

(

γH
t+1i

H
t+1

iHt
− ηF

H

)(

γH
t+1i

H
t+1

iHt

)2

λt[1 + νh(1 − R−1
t )] = (ct − bct−1/γH

t )−σ(1 − nt)
ψ(1−σ) − βbEt(γ

H
t+1ct+1 − bct)

−σ(1 − nt+1)
ψ(1−σ)

λtq
K
t = βEt(γ

H
t+1)

−σλt+1[r
K
t+1 + qK

t+1(1 − δK)]

λtq
H
t = βEt(γ

H
t+1)

−σλt+1[wt+1n
d
t+1 + qH

t+1(1 − δH)]

1

Rt

= βEt

(γH
t+1)

−σλt+1

λtπt+1

yt = ct + iKt + iHt

θx1
t = (θ − 1)x2

t

x1
t = p̃−θ−1

t ytmct + ξpβEt

λt+1

λt

(γH
t+1)

1−σ

(

πχ
t

πt+1

)−θ (

p̃t

p̃t+1

)−θ−1

x1
t+1

x2
t = p̃−θ

t yt + ξpβEt

λt+1

λt

(γH
t+1)

1−σ

(

πχ
t

πt+1

)1−θ (

p̃t

p̃t+1

)−θ

x2
t+1

1 = (1 − ξp)p̃
1−θ
t + ξp

(

πχ
t−1

πt

)1−θ

Atk
α
t (nd

t )
1−α = ytst

st = (1 − ξp)p̃
−θ
t + ξp

(

πχ
t−1

πt

)−θ

st−1

rK
t = αAtk

α−1
t (nd

t )
1−αmct

wt[1 + νf (1 − R−1
t )] = (1 − α)Atk

α
t (nd

t )
−αmct

26



f1
t =

θ̃ − 1

θ̃
λtn

d
t

(

w̃t

wt

)−θ̃

w̃t + βξwEt

(

w̃t

w̃t+1

)1−θ̃
(

πχ̃
t

πt+1

)1−θ̃

(γH
t+1)

1−σf1
t+1

f2
t = nd

t

(

w̃t

wt

)−θ̃

ψ(ct − bct−1/γH
t )1−σ(1 − nt)

ψ(1−σ)−1 + βξwEt

(

w̃t

w̃t+1

)−θ̃
(

πχ̃
t

πt+1

)−θ̃

(γH
t+1)

1−σf2
t+1

f1
t = f2

t

nt = nd
t s̃t

s̃t = (1 − ξw)

(

w̃t

wt

)−θ̃

+ ξw

(

wt−1

wt

)−θ̃
(

πχ̃
t−1

πt

)−θ̃

s̃t−1

w1−θ̃
t = (1 − ξw)w̃1−θ̃

t + ξw

(

πχ̃
t−1

πt

)1−θ̃

w1−θ̃
t−1

mt = νhct + νfwtn
d
t

log

(

Rt

R̄

)

= απ log
(πt

π̄

)

+ αγY
log

(

γY
t

γ̄Y

)

+ αR log

(

Rt−1

R̄

)

γY
t = γH

t

yt

yt−1

Deterministic steady state

(γH − 1 + δK)k = iK
[

1 −
aF

K

2
(γH − ηF

K)2
]

γH = 1 − δH + iH
[

1 −
aF

H

2
(γH − ηF

H)2
]

1 = qK

[

1 −
aF

K

2
(γH − ηF

K)2 − aF
K(γH − ηF

K)γH

]

+ β(γH)2−σqKaF
K(γH − ηF

K)

1 = qH

[

1 −
aF

H

2
(γH − ηF

H)2 − aF
H(γH − ηF

H)γH

]

+ β(γH)2−σqHaF
H(γH − ηF

H)

λ[1 + νh(1 − R−1)] = c−σ(1 − n)ψ(1−σ)(γH − b)−σ[(γH)σ − βb]

qK = β(γH)−σ[rK + qK(1 − δK)]

qH = β(γH)−σ[wnd + qH(1 − δH)]

R =
(γH)σπ

β

y = c + iK + iH

x1 = p̃−θ−1ymc + ξpβ(γH)1−σπ−θ(χ−1)x1

x2 = p̃−θy + ξpβ(γH)1−σπ(1−θ)(χ−1)x2

θx1 = (θ − 1)x2

1 = (1 − ξp)p̃
1−θ + ξpπ

(1−θ)(χ−1)

Ākα(nd)1−α = ys
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s = (1 − ξp)p̃
−θ + ξpπ

−θ(χ−1)s

rK =
αysmc

k

w[1 + νf (1 − R−1)] =
(1 − α)ysmc

nd

f1 =
θ̃ − 1

θ̃
λnd

(

w̃

w

)−θ̃

w̃ + βξwπ(θ̃−1)(1−χ̃)(γH)1−σf1

f2 = nd

(

w̃

w

)−θ̃

ψc1−σ(γH)σ−1(γH − b)1−σ(1 − n)ψ(1−σ)−1 + βξwπθ̃(1−χ̃)(γH)1−σf2

f1 = f2

n = nds̃

s̃ = (1 − ξw)

(

w̃

w

)−θ̃

+ ξwπθ̃(1−χ̃)s̃

w1−θ̃ = (1 − ξw)w̃1−θ̃ + ξwπ(θ̃−1)(1−χ̃)w1−θ̃

γY = γH

m = νhc + νfwnd

Appendix B: Welfare Cost Measure

CRRA case

Vt ≡ Et

∞
∑

s=0

βs (Ct+s − bCt+s−1)
1−σ(1 − nt+s)

ψ(1−σ)

1 − σ

=
(Ct − bCt−1)

1−σ(1 − nt)
ψ(1−σ)

1 − σ
+ βEtVt+1

Dividing it by H1−σ
t and defining vt = Vt

H1−σ
t

, we rewrite the welfare function

as the recursive formulation by the stationary variables:

vt =
(ct − bct−1/γ

H
t )1−σ(1 − nt)

ψ(1−σ)

1 − σ
+ β(γH

t+1)
1−σEtvt+1.

log case (σ = 1)

Vt ≡ Et

∞
∑

s=0

βs[log(Ct+s − bCt+s−1) + ψ log(1 − nt+s)]

=
1

1 − β
log Ht + Et

∞
∑

s=0

[

β

1 − β
log γH

t+1+s + log(ct+s − bct+s−1/γ
H
t+s) + ψ log(1 − nt+s)

]
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Defining vt as:

vt ≡ Vt −
1

1 − β
log Ht,

we obtain the recursive formulation:

vt =
β

1 − β
log γH

t+1 + log(ct − bct−1/γ
H
t ) + ψ log(1 − nt) + βEtvt+1.
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