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Abstract: 

This paper presents one of the first studies on flood risk evaluation in the US 

Northeast - a region where we are likely going to see increasing precipitation 

variability and associated risk of flood in the coming decades. In the paper, a spatial 

difference-in-differences framework based on floodplain boundary discontinuities is 

proposed to control for unobserved heterogeneities. Using parcel level data from 

Juniata County and Perry County in Pennsylvania, the paper finds that on average 

there is a 5-6 percent housing value reduction due to exposure to 1 percent annual 

chance of flooding within the FEMA (Federal Emergency Management Agency) 100-

year flood zone. For Juniata County, it shows that on average there is a $3.28/sqft (in 

2015 USD) discount for a full-time SFR (single family residential) property located 

within the flood zone. For an average housing unit of 1430 sqft living space in the 

sample, the estimate translates to a $4690 housing value reduction. For Perry 

County, the corresponding estimates are $4.00/sqft (in 2015 USD) and $6320 for an 

average housing unit of 1580 sqft. The paper also shows that with similar 

specifications, a standard hedonic price model underestimates the flood risk impact 

on housing value by a substantial amount as a result of failing to control for 

unobserved heterogeneities. 
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1 Introduction 

The ongoing and expected climate change likely alters the precipitation pattern and 

runoff in many regions around the world (Labat et al., 2004; Trenberth, 2011). In the 

US Northeast, for example, the changing climate has been found correlated with less 

winter precipitation falling as snow and more as rain, as well as earlier spring 

snowmelt resulting in earlier peak river flows (Frumhoff et al., 2007). One of the 

consequences proceeds from the growing precipitation variability is the increasing 

risk of flood, which poses serious threat to economic development and human lives 

(McMichael et al., 2006; Jongman et al., 2012; Kousky, 2014). According to Jongman 

et al. (2012), the total global exposure to river and coastal flood risks is 46 trillion 

USD in 2010, which could rise to a projected 158 trillion USD by 2050. In many states 

throughout the US, flooding is the lead cause of death among all types of natural 

disasters. Both mitigation and adaptation strategies are developed towards such 

potential risk, and one common local strategy is floodplain management and land 

use planning. To ensure that policy tools play an effective role in managing flood risk, 

evaluating market response to flood risk becomes a key component in policymaking 

process for many local governments. Such valuation is of fundamental importance 

because policy tools often need to provide right incentives for desired behavioral 

changes as a way to enhance community resilience. 

In the literature, hedonic valuation is commonly used to estimate and derive the 

flood risk premium. By evaluating the relationship between flood zone status or 

inundation depth and its resulting capitalization in property values, household 

willingness to pay for avoiding flood risk can be derived (Niskanen and Hanke, 1977). 

Results from existing studies vary spatially given the nature of their study regions. 

The results can be simply grouped into two categories: coastal flood risk and inland 

(river) flood risk. Figure 1 shows estimates from some of the representative studies 

(by no means an exhaustive list) across eastern, northern, and southern US. These 

valuations are all based on residential housing market sales without intervention 

from major flood events (e.g. hurricanes). In other words, these estimates reflect a 

normal valuation of flood zone status. Flood risk valuations after a major flood event 
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tend to be substantially higher due to the unexpected catastrophic effect from the 

exogenous shock and rising flood risk perceptions (Hallstrom and Smith, 2005; 

Carbone et al., 2006; Morgan, 2007; McKenzie and Levendis, 2010; Bin and Landry, 

2013). As Bin and Landry (2013) find, however, this large effect is diminishing over 

time as affected communities recover from the natural disasters. 

 

Data source: compiled from Struyk (1971), Skantz and Strickland (1987), Speyrer and Ragas (1991), 

Bartosova et al. (2000), Harrison et al. (2001), Shultz and Fridgen (2001), Bin and Polasky (2004), Bin 

and Kruse (2006), Kousky (2010), McKenzie and Levendis (2010), Zhang et al. (2010), Bin and Landry 

(2013).  

Figure 1: Flood risk impacts on housing values found in the literature 

 

Another worth mentioning trend from the cross-section of estimates in Figure 1 is 

that, the flood risk valuations are relatively smaller in southern coastal areas (TX, LA, 

and FL) comparing to eastern central and northern states (NC, MO, MN, and WI). 

There are two potential explanations for the observation. First, households and 

housing markets along the Gulf coastal region may have developed higher tolerance 
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to flood risk over years, and more likely had protections and preparedness in place 

to prevent losses from regular flood events (e.g. Lindell and Prater, 2003). In this 

regard, institutional resilience may have also been forged over years, which is found 

to be important in shielding the population from natural-disaster losses (Kahn, 

2005). Another explanation is that, along the coastal line, amenity values are often 

confounded spatially with flood risk. Such a correlated spatial trend in amenities 

could cause identification issues in empirical estimation and lead to underestimation 

of flood risk premium (Bin and Kruse, 2006; Carbone et al., 2006). Bin and Kruse 

(2006) point out that, for example, the coastal flood risk tends to play small to 

insignificant role in property valuation due to the significant premium from 

capitalization of the proximity to coastal water and wave action.  

Efforts have been devoted in the literature to cope with the identification issue of 

flood risk impacts caused by unobserved heterogeneity. In many cases these spatial 

amenity effects cannot be well represented by distance to the shore, for instance 

due to topography, which complicates the empirical investigation. One solution is to 

use GIS-based view measures to disentangle the variation of amenities from the 

distance-based measure of risk exposure (Bin et al., 2008; Hamilton and Morgan, 

2010). This approach is subject to the availability of three-dimensional topographic 

image (e.g. Light Detection and Ranging (LIDAR) Data). Another solution to this 

problem is to utilize the spatial and temporary variations in market responses to 

natural events (Carbone et al., 2006). Difference-in-Differences framework is often 

employed to implement the empirical estimation, where much of the time-invariant 

spatial heterogeneity (in the sense of relatively short time windows) can be 

differenced out (Hallstrom and Smith, 2005; Bin and Landry, 2013). When a proxy 

variable can be interpreted as measuring two locational effects, amenity effect and 

flood risk in this case, an exogenous treatment or source of information is necessary 

to distinguish these two effects (Hallstrom and Smith, 2005). In coastal region flood 

risk studies, disastrous events like typhoons and hurricanes can be used as the 

exogenous treatment or source of information. Therefore, a temporal difference-in-

differences approach works.  
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For non-coastal regions especially areas near inland water bodies (rivers and lakes), 

however, natural events like typhoons and hurricanes are less frequently to be 

observed. In some of these regions, the increase of flood risk happens gradually. The 

water level of Devils Lake in North Dakota (US), for example, has risen about 10 

meters in last two decades (Zheng et al., 2014). Since the 10 meter water level rise 

did not happen in a very short time window, and two decades of time gives a span 

enough for many time-invariant locational factors to change, a temporal difference-

in-differences framework no longer works. In cases where temporal variation is not 

sufficient to eliminate unobserved heterogeneities, spatial variation can still be 

utilized. Based on the similar idea, spatial discontinuities have been used in other 

literature to deal with biases due to unobserved heterogeneities. Many of the school 

quality valuation studies, for example, have used boundary discontinuities along 

school district boundaries to difference out unobserved heterogeneities (e.g. Black, 

1999; Gibbons et al., 2013). 

In this paper, the researcher applies the rationale of boundary discontinuity to flood 

risk valuation for a non-coastal area along inland water body. The idea is to use 

floodplain boundary as cut-off to difference the data among close-neighboring 

properties to eliminate any location-specific unobserved heterogeneities which 

affect housing values. Presumably, along the sides of floodplain boundary, the only 

major price difference between two properties after controlling for land size and 

structural differences is due to the disparity in flood zone status. In some cases, the 

floodplain boundary could coincide with major roads or municipal boundaries. 

Nevertheless, this is less likely a concern due to the fact that floodplain is designed 

based mainly on topographical factors like soil saturation capacity and land 

elevation. Note that this empirical strategy only works for identifying the impact of 

flood risk if there is a sharp discontinuity in its price effects between close-locating 

properties along the two sides of floodplain boundary. The condition holds because 

the flood zone status implies different costs to homeowners regarding aspects like 

flood insurance requirement, local housing regulation, and flood preparedness.  
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Households living in high risk flood area are mandated by federal law to have flood 

insurance if the property and buildings have mortgages from federally regulated or 

insured lenders. The policy does protect both households and lenders from major 

financial losses in the case of extreme events. The mandate, however, also has 

significant consequences on insurance affordability and property values over the 

time (Kousky and Kunreuther, 2014). Especially in recent years, the flood insurance 

premium has been increasing, often as a response to recent extreme flood events, 

which leads to an even larger gap in property values. On the top of increasing 

premium, additional costs related to flood insurance may include getting flood 

elevation certificate and supplemental coverage for basement contents. 

Infrastructure is another cost that makes the difference. As part of planning process, 

projects like storm drains, pumps, runoff ponds, and levees are designed to make 

many flood-prone residential areas more flood resistant, though not necessarily 

flood proof. In general, it is unrealistic to expect people and businesses to move out 

of the flood zone. The additional costs of living in the flood zone, however, have to 

be accounted into the budget of housing consumption. Its impact on property values 

is often an empirical question, varying from region to region.  

Using parcel level data from Juniata County and Perry County in Pennsylvania, this 

paper finds that there is a 5-6 percent housing value reduction due to potential 

exposure to 1 percent annual chance of flooding in the study region. Specifically, for 

Juniata County, the proposed empirical approach shows that on average there is a 

$35.31 discount per square meter of living space (or $3.28/sqft, in 2015 USD) for a 

full-time SFR property located within the flood zone. For an average housing unit of 

133 m2 (1430 sqft) living space in the sample, the estimate translates to a $4690 

housing value reduction. For Perry County, the corresponding estimates are $40.06 

per square meter (or $4.00/sqft, in 2015 USD) and $6320 for an average housing unit 

of 147 m2 (1580 sqft). The paper also shows that with similar specifications, a 

standard hedonic price model underestimates the flood risk impact on housing value 

by a substantial amount. This confirms with the literature that correlated flood risk 

and amenities could lead to underestimation of flood risk premium (Bin and Kruse, 

2006; Carbone et al., 2006). It also suggests that the proposed difference-in-
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differences framework using boundary discontinuities of floodplain can effectively 

correct potential omitted variables bias due to unobserved heterogeneities. 

The paper is organized as follows. Section 2 introduces both an economic model of 

flood risk valuation and the empirical strategy in details. Section 3 describes study 

area and data. Section 4 discusses estimation results. Section 5 concludes the paper.  

 

2 Method 

2.1 Economic Model 

This section introduces an economic model of housing valuation, which includes N 

households. A housing unit is valued as a bundle of three types of attributes: physical 

attributes (structures), locational attributes, and components observable to the 

homeowner and local residents but not to the researcher. Flood risk is one of the 

locational attributes expected to reduce property value. First, following Gayer et al. 

(2000), the researcher establishes a household risk perception function which 

depends on two types of risk assessment: objective and subjective. Household 

objective risk assessment (𝑝) is derived based on public information and knowledge, 

and it is observable to the researcher. Household subjective risk assessment (𝑞) is 

formed based on local information and private knowledge, which is unobservable to 

the researcher but could be well-observed in the neighborhood (e.g. through social 

interactions). The researcher also introduces two information parameters, 𝛿0 > 0 

and 𝜆0 > 0, associated with objective assessment and subjective assessment, 

respectively. The information parameter measures information content associated 

with the particular risk assessment. 

The household risk perception function is defined as: 

 qp
qp

qp 


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where 𝛿 =  𝛿0/( 𝛿0 +  𝜆0) , and 𝜆 =  𝜆0/( 𝛿0 +  𝜆0). In this paper, 𝑝 represents risks 

that can be measured and well quantified by the 100-year floodplain map, which is 

public information. 𝑞 represents risks that are not measured by the floodplain map. 

The assessment of such risks totally depends on local information and private 

knowledge. This type of risks may include: landslide, groundwater damage, and 

other environmental hazards like brownfields. Note that these non-flood related 

risks may present threats to both households in the floodplain and those outside the 

floodplain. Failing to account for subjective risk assessment can lead to biased 

estimates in hedonic valuation of flood risk, in a way similar to the influence of 

unobserved spatial heterogeneity.  

Given household level risk perception, a household maximizes its expected utility 

over two states of the world: 𝑈1- utility in the risk state; 𝑈2- utility in the no risk 

state. Before moving forward, similar to Gayer et al. (2000), three assumptions are 

necessary to establish the household decision making problem: (1) For any given 

level of income, households prefer being safe, i.e. 𝑈2 > 𝑈1; (2) Within each state of 

the world, households are risk-neutral or risk-averse; (3) Marginal utility of income is 

higher when there is no risk. Household utility in each state of the world is defined 

as: 

 ),,(= SZXUU  (2) 

where 𝑋 denotes consumption of a composite good with price standardized to 1. 𝑍 

represents a set of housing characteristics, and 𝑆 a bundle of locational attributes 

(amenities and disamenities) which include flood zone status. Housing price (relative 

to the composite good) is a function of locational attributes, risk perception, and 

housing characteristics: 

 ),,(= SZhh   (3) 

Given household income level 𝑌, the household maximizes expected utility by 

solving the following optimization problem: 
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By construction from (1), it gives  𝜕𝜋/𝜕𝑝 > 0 and 𝜕𝜋/𝜕𝑞 > 0. Therefore, the 

researcher can determine the sign of the marginal effects of risk assessments on 

housing price: 
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Combining two equations from (5), the researcher can derive the marginal effect of 

household risk perception on housing price: 
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The result in equation (6) indicates that household risk perception has a negative 

effect on housing price, which presents an empirically testable hypothesis. A few 

things to note about this result. First, the magnitude of the effect depends on several 

factors: current levels of utility (or quality of life) in both the risk state of the world 

and no risk state of the world, marginal utilities of non-housing consumption 

(simplified to composite good 𝑋) in two states of the world, and current level of 

household risk perception. Second and conceptually, the marginal price derived here 

gives an expression of the marginal willingness-to-pay for an incremental reduction 

of household flood risk perception. This is a useful framework, with which one can 

then compute the welfare effect of a marginal change in measureable objective 

flood risk from the price gradient (Gayer et al., 2000). Since the objective risk 

assessment and the subjective risk assessment are additive and separable according 

to (1), this gives the hedonic valuation of flood risk.  
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2.2 Empirical Strategy 

The goal of this paper is to quantify the effect of flood risk on housing values based 

on the hedonic framework described above. The theoretical result established in (6) 

does not give any direct hint on handling unobserved heterogeneities in an empirical 

implementation. The empirical design relies on boundary discontinuity to eliminate 

unobserved heterogeneities. Let ℎ𝑖  be the price of an observed home sale on 

housing unit 𝑖, and housing characteristics denoted by matrix 𝑍𝑖, a hedonic housing 

price model can be given as: 

 iiiii gfZh  )ln(  (7) 

where 𝛼 is the intercept term, 𝑓𝑖  is a [0,1] dummy variable indicating flood zone 

status (flood zone = 1). Similar as in Gibbons et al. (2013), 𝑔𝑖 represents unobserved 

influences on housing prices that are correlated and distributed continuously across 

neighboring locations. 𝜀𝑖 is an idiosyncratic error to the household 𝑖, which is known 

to the household but unobservable to the researcher. 

The key task of estimating equation (7) is to identify coefficient 𝜃. The empirical 

strategy is to take the difference of two hedonic equations from two close-

neighboring locations, say 𝑖 and 𝑗, which gives: 

 jijijijiji ggffZZhh   )()()ln()ln(  (8) 

Without loss of generality, let 𝑖 denotes the property in the flood zone, and 𝑗 the 

property outside the flood zone. Therefore, 𝑓𝑖 −  𝑓𝑗 = 1 and  𝜃 reduces to the 

intercept term in the new equation. Consistent estimation of the implicit hedonic 

price 𝜃 requires the unobserved heterogeneity term  𝑔𝑖 − 𝑔𝑗 to be effectively 

random and uncorrelated with the difference in flood risks, 𝑓𝑖 −  𝑓𝑗. This condition 

naturally holds in this paper, because 𝑓𝑖 −  𝑓𝑗 is constant by design. To effectively 

eliminate unobserved heterogeneities the researcher makes the following 

assumption: 𝑉𝑎𝑟(𝑔𝑖 −  𝑔𝑗) → 0 as the Euclidian distance between two locations 𝑖 

and 𝑗 approaches zero (Gibbons et al., 2013). In practice, the condition likely holds 
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given that many of the factors and amenities influencing housing value are 

distributed continuously in the space unless their discontinuity points coincide with 

the floodplain boundary. As being discussed before, such coincidence is rare. The 

researcher will further explore these empirical concerns when discussing the results. 

Let 𝜔𝑖 = 𝑔𝑖 − 𝑔𝑗 + 𝜀𝑖 − 𝜀𝑗 be the new idiosyncratic error and be independently and 

identically distributed, the new estimation equation becomes: 

 iii Zh   )ln(  (9) 

Note that here for simplicity the researcher suppressed the subscript notations so 

that 𝑖 represents a pair of close-neighboring (as geographically close as possible) 

properties with one in the flood zone and another one outside. Conveniently, in the 

new estimation equation intercept term 𝜃 becomes the key coefficient of interest. 

The new empirical framework effectively helps to reduce the impacts from 

unobserved heterogeneities and potential correlations between socio-economic 

factors and flood risk in estimation. Fixed effects can still be included in model (9) to 

control for certain institutional or jurisdictional effects, the researcher will further 

explore this option in results section. 

Another aspect that one would argue is that, the empirical strategy and reliability of 

estimates of 𝜃 hinge on an implicit assumption that households do not sort into or 

outside the 100-year floodplain in a systematic way. In general, residents sort across 

the space based on school quality, racial identify, labor markets, and other socio-

economic factors. In the study region of this paper, this is less likely a concern. 

Residents in Juniata County are served only by two school districts: Juniata County 

School District and Greenwood School District. Among these two, Juniata County 

School District covers a majority of residential area in the county. According to 

estimates from the US Census, 97.5% of the population in Juniata County is white in 

2015. Therefore, racial segregation is unlikely to be a factor of sorting.  

Perry County shares a similar demographics, with 97.1 % of its population being 

white in 2015 according to the US Census. Perry County has one major school district 

(West Perry School District), two small school districts (Newport School District and 
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Susquenita School District), and one school district (Greenwood School District) 

shared with Juniata County. It is also necessary to point out that the area of flood 

zone is considerably smaller than any school districts. In general, the researcher 

argues that in the study region flood zone status is unlikely to be a key determinant 

of overall neighborhood quality. Therefore, sorting is not a concern for identification 

when separating willingness-to-pay for flood risk reduction from willingness-to-pay 

for neighborhood quality. If, however, households do sort across flood zone 

boundary based on other socio-economic factors such as race and school quality, the 

consequence is that it becomes difficult to identify the willingness-to-pay for 

avoiding flood risk in a clean way. In this case, neighborhood or household 

demographic variables can be included to control for potential bias, which requires 

detail household demographic information.  

 

3 Study Area and Data 

This study assembles a unique housing transaction data set between 1980 and 2015 

from the assessor offices of two neighboring Pennsylvania counties: Juniata and 

Perry, both in close proximity of the state capitol Harrisburg and located in the 

Susquehanna River Basin (SRB). Juniata County contains the Tuscarora Creek 

watershed and part of the Juniata River watershed, mostly in the Juniata sub-basin 

of the SRB. Perry County contains the Buffalo Creek watershed, the Sherman Creek 

watershed, part of the Juniata River watershed, and part of the main Susquehanna 

River watershed, mostly in the Lower Susquehanna sub-basin of the SRB. Figure A1 

in the appendix shows the relative location of the study area in the basin. 

Based on the rural-urban continuum codes from the Economic Research Service of 

USDA and the Office of Management and Budget (OMB), Juniata County is 

categorized as a rural non-metro county. With a relatively low population density, 

the residential landscape is fairly fragmented across the county. Located in a 

traditionally agricultural region, farmland and forest make up a large portion of the 

county’s land cover. Perry County is categorized as a rural metro county but also 

with low population density, the land cover of Perry County is similar to that of 
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Juniata County. Flood events are observed in the region frequently. For instance, 

Juniata County had 6,374 acres flooded during Tropical Storm Agnes in 1972, and 57 

families were seriously affected by the disaster (Juniata County Planning 

Commission, 2009). For Perry County, 29 of its 30 municipalities are flood prone. 

Table A1 and A2 in the appendix report a list of major flood events occurred in both 

counties within recent decades, mainly the most dangerous kind of floods – flash 

flood. When excessive amount of rainfall water fills up dry creeks or river beds (often 

smaller tributaries) connected to currently flowing creeks and rivers, it leads to flash 

floods and can cause rapid rises of water in a short time. Flash floods often occur 

with no forewarning. Juniata County and Perry County make it an ideal region to 

study flood risk impact on rural housing markets. The housing markets in both 

counties belong to the greater Harrisburg metropolitan area housing market. As 

shown in Figure A2, the real unit housing price (converted to constant value using 

Housing Price Index (HPI) of Harrisburg metropolitan area) on average increases over 

the study period in both counties.  

Following the rationale of identification through boundary discontinuity, the 

researcher matched 597 pairs of SFR properties (1194 observations) which had at 

least one sale between 1980 and 2015 with both sale price and sale year recorded in 

Juniata County. For Perry County, similarly, 912 pairs of SFR properties are matched 

among properties which had at least one sale between 1980 and 2015. The matching 

of properties is based on the nearest distance. The algorithm is described in details 

in Appendix B with a sample computer code. Figure 2 shows the location of all the 

matched SFR properties located in the 100-year floodplain (area inundated by 1 

percent annual chance of flooding) created by FEMA. The shaded area within the 

county boundary is the flood prone area (including all land use types) drawn based 

on the 100-year floodplain. 
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Figure 2: Flood prone area and location of observations 

 

Note that this study only includes full-time SFR properties, since the valuation of 

other types of residential properties (e.g. condos, multi-families, apartments, 

vacation homes, and mobile homes) may be structurally different. Among all the SFR 

property transactions, the researcher also excluded all of the love and affection sales 

(usually with a transaction price of $1). In the estimation sample, the researcher 

dropped all the sales with transaction price less than $500. Due to data limitation, 

the researcher only has access to the most recent sale record if multiple sales were 

recorded on a property in the past. All the sale prices are converted to constant 

values in 2015 USD using the HPI of Harrisburg metropolitan area (both counties are 

in commuting distance to the city of Harrisburg) published by the Federal Housing 

Finance Agency. Table 1 summarizes all of the variables used to estimate the 

proposed empirical model in (9). Note that the assessed land value and the assessed 
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building value do not add up to the housing price. This is normal because the 

determination of property assessment value follows a system (e.g. negotiation 

between homeowners and assessor’s office) quite different from the market 

mechanism. However, the assessment value in general is highly correlated with 

structural attributes (e.g. number of bedrooms and bathrooms) of the property. The 

basic model is estimated using ordinary least squares (OLS) with heteroskedasticity 

robust standard errors. The main control variables in the model are housing 

characteristics which are supposed to capture any structural differences between 

paired properties, as well as the distances to county seat and the city center of 

Harrisburg. 

Table 1: Summary statistics of variables 

County Juniata Perry Juniata Perry 

Variable 
In 100 year flood zone Outside 100 year flood zone 

mean (s. d.) mean (s. d.) mean (s. d.) mean (s. d.) 

Housing price (in $1000) 86.92(54.33) 100.33(65.19) 88.71(54.67) 109.56(65.09) 

Unit housing price (in $/sqft) 64.95(38.44) 67.74(39.65) 68.83(41.13) 73.18(40.74) 

Lot size (in acres) 2.95(4.25) 1.84(2.13) 1.81(2.90) 1.62(1.92) 

Assessed Land value (in $1000) 2.42(1.81) 40.08(18.84) 2.20(1.01) 40.23(17.61) 

Assessed Building value (in $1000) 12.82(8.58) 88.95(56.16) 14.10(8.31) 98.35(54.82) 

Living space (in 1000 sqft) 1.44(0.63) 1.57(0.65) 1.41(0.62) 1.58(0.58) 

Distance to Harrisburg (in miles) 32.79(3.49) 18.99(7.47) 32.80(3.48) 18.99(7.45) 

Distance to county seat* (in miles) 7.57(5.98) 9.24(4.13) 7.58(5.98) 9.20(4.12) 

Number of observations 597 912 597 912 

* The seat of Juniata County is in Mifflintown, Pennsylvania. The seat of Perry County is in New 

Bloomfield, Pennsylvania. 

 

From the summary statistics, one can see that properties in the 100-year flood zone 

on average is cheaper than their counterparts outside the 100-year flood zone, in 

terms of both overall price and unit price. One should also note that housing price in 

Juniata County is relatively lower than housing price in Perry County, which likely 

reflects the fact that Perry County locates closer to the city of Harrisburg. This 

suggests that distance to the central business district should be controlled in the 

empirical model. To control for structural differences between matched properties 

as much as possible, the researcher uses housing price per sqft living space as 
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dependent variable. Figure 3 plots the distribution of unit housing prices (note that 

actual dependent variable in the empirical model takes logarithm transformation) 

inside and outside the flood zone, obtained through nonparametric kernel density 

estimation. As shown in the graph, the distribution of unit housing prices outside  

the 100-year flood zone (red/dash line) shifts to the right of its counterpart, which is 

consistent with the summary statistics. 

 

Figure 3: Distribution of unit housing price 

 

In the assessment data, the structure of each housing unit is described by one of 

more than 100 structure codes, which makes them difficult to quantify. Instead, the 

researcher used the assessed building value as a within-county proxy for the richness 

of housing structure (e.g. number of bedrooms and number of bathrooms). The 

empirical model also controls for property lot size, assessed land value, housing 

living space, and distances to county seat and the nearest metropolitan city - 

Harrisburg. Due to a large portion of missing values, the number bedrooms and 

bathrooms, though available in Perry County dataset, cannot be included in the 

empirical model. As shown in Figure A3, however, the size of living space is highly 

correlated with the number of bedrooms and bathrooms. Therefore, living space can 

help to control for major structural differences of properties in the empirical model. 

Note that, as shown in Table 1, the level of assessment values are significantly 

different in two counties. This implies that two counties have essentially different 
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assessment processes, which suggests that the regression analysis for two counties 

has to be implemented separately. However, the estimation results on flood risk 

premium should still be comparable. Because, arguably, two counties belong to one 

large housing market and locate within a similar environment.  

 

4 Results and Discussion 

Table 2 reports main estimation results from the difference-in-differences model. 

The OLS columns report standard linear regression results with heteroskedasticity 

robust standard errors. Feasible GLS (generalized least squares) estimation is used to 

gain potential efficiency improvement over OLS estimates, which is reported under 

the GLS columns. The OLS estimates and GLS estimates are very close to each other 

in terms of magnitude. Several consistent observations can be made across the 

estimation results for two neighboring counties. First, being located in the 100-year 

flood zone has a significant negative impact on unit housing price. The magnitude of 

such an impact will be discussed later in the section after addressing other potential 

estimation bias in the estimation. Second, assessed land values and building 

structure values have a significant positive relationship with unit housing price. This 

is in tune with the fact that assessment values tend to consider most of the 

structural attributes and amenities associated with the property, not just the sizes of 

the property and the structure. Third, as one would expect, the negative significant 

estimates on living space indicate a diminishing effect of living space on the whole 

property value given that the dependent variable is measured by per sqft living 

space. 

Property size (lot size) has a positive impact in Juniata County, but a small to none 

negative impact in Perry County. Such a variation may be explained by the very 

different average plot size in two counties, as indicated in the summary statistics in 

Table 1. Distance to the central business district (Harrisburg) has a strong negative 

impact in Perry County as the urban economic theory suggests, but is found 

insignificant in Juniata County. This may be explained by the relative location of two 

counties. Perry County is right next to the city of Harrisburg in the west. Juniata 
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County is much further away from the city. It is natural to expect the effect of 

monocentricity becomes less pronounced as we move away from the central 

business district. The distance to county seat has a slight positive impact in both 

counties. The county seats in both cases are very small town or borough. Therefore, 

its impact on the housing market may not be explained by the theory of 

monocentricity. One possible interpretation is that, the variable captures more of 

the relatively high level of natural amenities in the area further away from county 

seat, which is positively correlated with the distance to county seat. Another 

possible interpretation is that, in most of these Northeast counties, county seat is 

usually not the only major town in the county. In these cases, a polycentric structure 

describes the pattern of land development better than the monocentric structure. 

For example, in Perry County, Duncannon and Newport are also major towns with 

even better access to major highways. 

Table 2: Estimation results of difference-in-differences models 

Log(price/living space) 

Model 

Juniata County Perry County 

OLS GLS OLS GLS 

Intercept (flood risk impact) 
-0.0727* 

(0.0447) 

-0.0703*** 

(0.0028) 

-0.0644* 

(0.0369) 

-0.0654*** 

(0.0009) 

Lot size 
0.0251** 

(0.0104) 

0.0242*** 

(0.0007) 

-0.0106 

(0.0281) 

-0.0094*** 

(0.0009) 

Assessed Land value 
0.0852*** 

(0.0326) 

0.0896*** 

(0.0025) 

0.0083*** 

(0.0034) 

0.0082*** 

(0.0001) 

Assessed Building value 
0.0066 

(0.0054) 

0.0068*** 

(0.0004) 

0.0027*** 

(0.0008) 

0.0027*** 

(0.0001) 

Living space 
-0.5138*** 

(0.0652) 

-0.5208*** 

(0.0062) 

-0.4936*** 

(0.0560) 

-0.4941*** 

(0.0033) 

Distance to Harrisburg 
-0.0371 

(0.1748) 

0.0316 

(0.0197) 

-0.3833** 

(0.1645) 

-0.3792*** 

(0.0076) 

Distance to county seat 
0.1526 

(0.2488) 

0.1172*** 

(0.0145) 

0.1294 

(0.1479) 

0.1271*** 

(0.0073) 

R2 0.1445 - 0.0929 - 

Sample size 597 597 912 912 

Note: throughout the paper, asterisks (*,**,***) indicate statistical significance at 10%, 5%, and 1% level, 

respectively, unless otherwise noted. 

 

One of the major concerns on using boundary discontinuities to identity policy 

parameter is the potential selection effect around the boundary (Black, 1999; 

Gibbons et al., 2013). In this study, such a selection effect could happen if the flood 
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zone boundary coincides with or is very close to municipal boundary or school 

district boundary. The associated estimation bias comes from the fact that there may 

be omitted variables that vary at the municipality or school district level, in particular 

property tax rates and public goods provision. In the study region of this paper, the 

municipal boundary and the school district boundary overlaps each other. In general, 

one school district covers several municipalities. Therefore, we only consider the 

impact from municipal boundaries.  

To capture the change of municipalities between two matched properties, a single 

dummy variable indicating if a matched pair of properties come from different 

municipalities (yes=1, otherwise 0) is included. This different municipality dummy 

variable is similar to including fixed effects for all municipalities in the standard 

hedonic price model from equation (7) without an intercept term. If, for all pairs, 

two properties in each pair happen to locate in the same municipality, then the 

difference-in-differences model effectively cancels out all of the municipality fixed 

effects. In this case, the dummy variable (always equals to 0) is dropped out of the 

regression due to no variation. 

In the estimation sample, there are some matched properties which do not belong 

to the same municipality. Therefore, the differencing procedure cannot cancel out all 

of the fixed effects. The different municipality dummy variable plays a role of 

absorbing the municipality fixed effects that are not netted out by the differencing 

procedure. Still and practically, in the proposed difference-in-differences model, a 

new set of municipality fixed effects can be included. However, their interpretation 

is not straightforward. In Gibbons et al. (2013), boundary fixed effects are accounted 

for. In this paper, the irregular shape of floodplain boundaries makes them difficult 

to quantify, and their implications are relatively homogeneous across the space. The 

preferred GLS estimation results with the same municipality dummy variable are 

reported in Table 3. 
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Table 3: GLS estimation results with control for municipal fixed effects 

Log(price/living space) 
Model 

Juniata County Perry County 

Intercept (flood risk impact) 
-0.0622*** 

(0.0029) 

-0.0720*** 

(0.0017) 

Lot size 
0.0232*** 

(0.0008) 

-0.0113*** 

(0.0013) 

Assessed Land value 
0.0868*** 

(0.0025) 

0.0084*** 

(0.0002) 

Assessed Building value 
0.0067*** 

(0.0004) 

0.0027*** 

(0.0001) 

Living space 
-0.5154*** 

(0.0040) 

-0.4950*** 

(0.0025) 

Distance to Harrisburg 
0.0249 

(0.0193) 

-0.3703*** 

(0.0118) 

Distance to county seat 
0.1281*** 

(0.0162) 

0.1315*** 

(0.0108) 

Different municipalities (yes=1) -0.0605*** 

(0.0051) 

0.1780*** 

(0.0068) 

Sample size 597 912 

 

 

The municipal boundary selection effect can bias estimates in either directions. As 

one can see from Table 3, the different municipality dummy has a significant 

negative estimate of -0.0605 for Juniata County, while it has a significant positive 

estimation of 0.1780 for Perry County. As a result of these significant municipal 

boundary selection effects, our key flood risk impact estimates (intercepts) are 

corrected correspondingly. For Juniata County, the estimate changes from -0.0703 to 

-0.0622 (a change of 13%). For Perry County, the change is 10% (from -0.0654 to -

0.0720). With the corrected estimates, we can now derive the economic implications 

of the estimated flood risk impact on unit housing price.  

From the results in Table 3 one can see that, as indicated by the intercept estimates, 

flood risk has a significant negative effect on unit housing price which the theoretical 

model suggests. Given the mean of log(price/living space) being 3.9639 in the sample 

for Juniata County and a flood risk impact estimate of -0.0622, a back-of-the-

envelope calculation gives a corresponding flood risk premium of $3.28/sqft:  
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)/($28.3)9639.3exp()0622.09639.3exp(5.0

)9639.3exp()0622.09639.3exp(5.0

sqft


 (10) 

 

Considering that an average SFR housing unit has about 1430 sqft (133 m2) living 

space in the estimation sample of Juniata County, the estimated flood risk premium 

translates to a $4690 (or 5.34% given the average housing price around $87,800) 

price difference in 2015 housing market. 

Similarly, given the mean of log(price/living space) being 4.0168 in the sample for 

Perry County and a flood risk impact estimate of -0.0720, a back-of-the-envelope 

calculation gives a corresponding flood risk premium of $4.00/sqft:  

 
)/($00.4)0168.4exp()0720.00168.4exp(5.0

)0168.4exp()0720.00168.4exp(5.0

sqft


 (11) 

 

Again, considering that an average SFR housing unit has about 1580 sqft (147 m2) 

living space in the estimation sample of Perry County, the estimated flood risk 

premium translates to a $6320 (or 6.02% given the average housing price around 

$105,000) price difference in 2015 housing market. 

These estimates are consistent with other findings in the literature (see Figure 1). 

The estimates are also the first set of empirical flood risk evaluation for the US 

Northeast - a region likely with increasing precipitation variability and flood risk in 

the coming decades (Collins, 2009). The significance of the estimated flood risk 

premium suggests that households in the study region do value potential flood risk 

in a consequential way, which gets reflected through price variations in the housing 

market. In some regions across the US, the Mississippi River valley for example, the 

price differential along floodplain boundaries can also be due to artificial structures 

(e.g. berms and dykes) providing enhanced protection against flood risk. In that case, 

the price differential reflects both a willingness-to-pay for the flood prevention 

infrastructures and a flood risk premium. In the study region of this paper, however, 

there are no such flood prevention infrastructures, given its relatively low frequency 
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of flood events comparing to coastal areas. Therefore, the estimated price 

differential reveals mainly a premium for potential flood risk.  

Given the methodological advantage of the proposed difference-in-differences 

framework in controlling for unobserved heterogeneities, it is still interesting to 

compare results from a standard hedonic price model to the proposed model. Table 

4 reports the results from the standard hedonic price model (with municipality fixed 

effects) with all matched SFR properties pooled together. The estimates are 

comparable to those of Table 3. Note that the flood zone status dummy variable in 

the standard hedonic model corresponds to the intercept in the difference-in-

differences model. The flood zone status in the standard hedonic model is 

statistically insignificant at 10% level in OLS estimation. By comparing the GLS 

estimation results between Table 3 and Table 4, it is clear that the standard hedonic 

price model underestimates the flood risk impact for both counties.  

Table 4: Estimation results of hedonic price model with municipal fixed effects 

Log(price/living space) 

Model 

Juniata County Perry County 

OLS GLS OLS GLS 

Flood zone (yes=1) 
-0.0481 

(0.0431) 

-0.0538*** 

(0.0052) 

-0.0494 

(0.0360) 

-0.0516*** 

(0.0034) 

Lot size 
0.0179** 

(0.0072) 

0.0173*** 

(0.0009) 

-0.0256 

(0.0182) 

-0.0270*** 

(0.0011) 

Assessed Land value 
0.0147*** 

(0.0038) 

0.0148*** 

(0.0004) 

0.0030*** 

(0.0005) 

0.0030*** 

(0.0001) 

Assessed Building value 
0.0748*** 

(0.0265) 

0.0790*** 

(0.0033) 

0.0100*** 

(0.0022) 

0.0101*** 

(0.0002) 

Living space 
-0.5740*** 

(0.0524) 

-0.5745*** 

(0.0039) 

-0.5055*** 

(0.0420) 

-0.5010*** 

(0.0043) 

Distance to Harrisburg 
0.0211 

(0.0205) 

0.0179*** 

(0.0020) 

0.0010 

(0.0139) 

0.0026 

(0.0017) 

Distance to county seat 
-0.0033 

(0.0135) 

-0.0044*** 

(0.0016) 

-0.0401*** 

(0.0140) 

-0.0382*** 

(0.0022) 

R2 0.2094 - 0.1647 - 

Fixed Effects Municipality 

Sample size 1194 1194 1824 1824 

 

 

This suggests that the proposed difference-in-differences framework using boundary 

discontinuities of floodplain can potentially eliminate the bias due to omitted 
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variables in the hedonic price model. If the researcher does the same back-of-the-

envelope calculation, for Juniata County, an estimate of -0.0538 in the standard 

hedonic price model gives a flood risk premium estimate of $2.83, which is 13.7% 

less than the estimate of $3.28.  Similarly and for Perry County, an estimate of -

0.0516 in the standard hedonic price model gives a flood risk premium estimate of 

$2.87, which is 28.3% less than the estimate of $4.00. The differences imply that the 

flood zone status is not orthogonal to other unobserved spatial heterogeneities, such 

as amenity value of access to the river bank, and the proposed empirical strategy 

helps to correct potential biases in the estimates to a large extent. Note that the 

overall model fit (measured by R2 in OLS cases) between two models here are not 

directly comparable, given that their dependent variables are not defined in the 

same way. Also note that, when estimating the model with GLS, the total sum of 

squares cannot be broken down in the same way as in OLS, making the R2 statistic 

less useful as a diagnostic tool for model fit. In fact, an R2 statistic computed from 

GLS needs not be bounded between zero and one. 

An important question regarding the implications of the results in this paper is how 

generalizable the results are to other rural regions and the entire Northeast region. 

Studies have shown that flood risk awareness has been rising in rural America (e.g. 

Knocke and Kolivras, 2007). Existing quantitative studies have rarely concerned 

about the flood risk impacts in rural regions. Among a few existing studies, Bin and 

Polasky (2005) find insignificant impacts of flood risk on housing values in a rural 

region (Carteret County, NC). Using data from rural Connecticut (part of Hartford 

County), Paterson and Boyle (2002) find that close proximity to rivers and streams 

has a significant negative impact on housing values. In general, the empirical findings 

in this paper is in line with the existing studies. However, few of the existing studies 

explicitly control for unobserved heterogeneities. The associated omitted variables 

bias could lead to either underestimation or overestimation of the key coefficient on 

flood risk impact. Such a bias can be substantial, especially considering the fact that 

certain omitted amenity measures may be correlated with the flood risk exposure 

measure. In this study, the researcher strives to control and minimize the impact of 

unobserved heterogeneities on the estimate of flood risk impact. The paper provides 
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the first quantitative evaluation on the flood risk impact associated with the SRB 

region. It is also one of the first studies focusing on flood risk impact in the US 

Northeast region. 

 

5 Concluding Remarks 

The literature on flood risk capitalization has been focusing on coastal housing 

market and effects of major natural disasters along the coastal area. Much less 

attention has been attached to flood risk in non-coastal areas where river flood risk 

also poses serious threat to economic development and human lives. This paper 

presents one of the first studies on flood risk evaluation in the US Northeast - a 

region where we are likely going to see increasing precipitation variability and 

associated flood risk in the coming decades, which also contributes to the literature 

with one of the first studies of flood risk impacts on rural housing market.  

In this paper, a spatial difference-in-differences framework based on floodplain 

boundary discontinuities is proposed to control for unobserved heterogeneities. 

Using parcel level data from Juniata County and Perry County in Pennsylvania, the 

paper finds that there is a 5-6 percent housing value reduction due to exposure to 1 

percent annual chance of flooding in the study region. Specifically, for Juniata 

County, the proposed empirical approach shows that on average there is a $35.31 

discount per square meter of living space (or $3.28/sqft, in 2015 USD) for a full-time 

SFR property located within the flood zone. For an average housing unit of 133 m2 

(1430 sqft) living space in the sample, the estimate translates to a $4690 housing 

value reduction. For Perry County, the corresponding estimates are $40.06 per 

square meter (or $4.00/sqft, in 2015 USD) and $6320 for an average housing unit of 

147 m2 (1580 sqft).  

The paper also finds that with similar specifications, a standard hedonic price model 

underestimates the flood risk impact on housing value by a substantial amount. This 

further confirms with the literature that correlated flood risk and amenity could lead 

to underestimation of flood risk premium (Bin and Kruse, 2006; Carbone et al., 
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2006). The bias is a type of omitted variables bias likely caused by the unobserved 

heterogeneities that drive housing value. Since such a bias is not negligible, its 

implications for policy (e.g. planning policy and flood insurance policy) can be 

important. The empirical strategy proposed in this paper provides an effective 

alternative to correct such potential biases in flood risk evaluation.  

The current empirical framework does not explicitly control for any subjective 

component of the overall household risk perception due to data limitation. It is 

arguable that for two close enough households (as they are matched by the nearest 

distance) their subjective risk perceptions should not differ from each other 

substantially given the strong likelihood of social interactions. The question then 

becomes to what extent neighborhood spillovers and social interactions can affect 

household risk perception regarding natural hazards. Data collection (e.g. survey 

data) on household subjective flood risk assessment can be valuable in pursuing this 

aspect of the research question, which points to a fruitful direction for future 

research. Among few existing studies with survey data, Petrolia et al. (2013) find a 

significant positive relationship between risk aversion and decision to purchase flood 

insurance. 

Another interesting aspect to improve the current research is to further explore the 

role of flood insurance. The decisions to purchase flood insurance (sometime it is 

required by mortgage lenders pursuant to federal law) and choose insurance 

deductible and coverage can reveal important information regarding household 

subjective risk assessment. Kousky and Walls (2014) argue that spatial targeting can 

substantially increase the net benefit from floodplain management. A similar idea of 

spatial targeting has been proposed by Baade et al. (2007). A deep understanding of 

household level risk perception is certainly an important part of spatial targeting, on 

which the framework proposed in this paper can shed light. In terms of building and 

enhancing local resilience to flood risk, many opportunities can be identified ranging 

from strengthening social institutions (Baade et al., 2007) to smart growth 

development patterns (Brody et al., 2013). 
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Appendix A: Supplementary Figures and Tables 

 

Data Source: Susquehanna River Basin Commission 

Figure A1: Susquehanna River Basin and county boundary in the watershed 
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Figure A2: HPI adjusted unit housing prices in Juniata County and Perry County 

 

 

Note: The graph is drawn based on a limited set of observations (561 out of 1824 matched properties) 

Figure A3: Relationship between the size of living space and number of 

bedrooms/bathrooms 
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Table A1: Juniata County Flooding Event History 

Flood Date Flood Type 

10/21/1995 Flash Flood 

01/19/1996 Flood 

01/19/1996 Flash Flood 

09/06/1996 Flash Flood 

09/13/1996 Flash Flood 

12/13/1996 Flash Flood 

09/11/1997 Flash Flood 

01/08/1998 Flash Flood 

04/19/1998 Flash Flood 

01/23/1999 Flash Flood 

08/20/1999 Flash Flood 

06/20/2001 Flash Flood 

09/17/2004 Flood 

03/28/2005 Flood 

06/27/2006 Flash Flood 

Data source: National Climatic Data Center and Juniata County Multi-Jurisdictional Hazard Mitigation Plan 

 

Table A2: Perry County Flooding Event History 

Flood Date Flood Type Flood Date Flood Type 

11/28/1993 Flood/Flash Flood 12/11/2003 Flood 

01/20/1995 Flood 07/12/2004 Flash Flood 

10/21/1995 Flood/Flash Flood 09/17/2004 Flood 

01/19/1996 Flood/Flash Flood 09/18/2004 Flood 

09/06/1996 Flash Flood 09/28/2004 Flood 

09/13/1996 Flash Flood 03/28/2005 Flood 

12/13/1996 Flash Flood 03/29/2005 Flood 

09/11/1997 Flash Flood 04/02/2005 Flood 

11/08/1997 Flash Flood 11/30/2005 Flood 

01/08/1998 Flash Flood 06/27/2006 Flash Flood 

03/21/1998 Flash Flood 03/05/2008 Flood 

09/06/1999 Flash Flood 05/28/2009 Flash Flood 

09/16/1999 Flash Flood 05/29/2009 Flood 

09/01/2000 Flash Flood 03/10/2011 Flood 

08/14/2001 Flash Flood 04/16/2011 Flood 

08/09/2003 Flash Flood 09/07/2011 Flood 
 Data source: National Climatic Data Center and Perry County Multi-Jurisdictional Hazard Mitigation Plan 
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Appendix B: Matching Algorithm 

Matching between properties within the flood zone and outside the flood zone is 

implemented using the following procedure: 

1. Select all the SFR properties which have market transactions during the study 

period, and categorize them into two subsamples: flood free and flood prone; 

2. For each SFR property within the flood prone sample, compute its distance to all 

other properties in the flood free sample within a given radius (e.g. 10 miles, to 

reduce computational burden). This process creates a large matrix with three 

columns: flood prone property ID (INPUT_FID), flood free property ID (NEAR_FID), 

and distance. 

3. Rank all of the rows in the matrix by the computed distance, extract and save the 

pair of IDs corresponding to the row with the smallest distance. Next, delete all the 

rows with either the saved flood prone property ID or the saved flood free property 

ID. This makes sure that the paired IDs are always unique, and each ID is only used 

once in each subsample. 

4. Repeat step 3 with the rest of rows, until all the rows have been extracted or 

deleted. 

Sample code for matching SFR properties in R: 

data <- read.csv("data.csv",header=TRUE) # three columns: INPUT_FID, NEAR_FID, DISTANCE 

matched <- matrix(NA,length(unique(data$INPUT_FID)),3) 

i <- 1 

reduced_data <- data 

while(i <= length(unique(data$INPUT_FID))){ 

   tempdata <- reduced_data[reduced_data$DISTANCE==min(reduced_data$DISTANCE),] 

   tempdata <- tempdata[1,] # keep the first row in case of duplicates 

   matched[i,] <- as.numeric(tempdata) 

   reduced_data <- reduced_data[reduced_data$INPUT_FID!=tempdata$INPUT_FID & 

reduced_data$NEAR_FID!=tempdata$NEAR_FID,] 

   i <- i+1 

   print(i) 

} 

newdata <- as.data.frame(matched) 

names(newdata) <- names(data) 

write.csv(newdata,file="output.csv", row.names=F) 

 


