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Abstract

Using a Markov-switching prediction pool method (Waggoner and Zha, 2012) in terms of

density forecasts, we assess the time-varying forecasting performance of a DSGE model incorpo-

rating a financial accelerator à la Bernanke et al. (1999) with the frictionless model by focusing

on periods of financial crisis including the so-called “Bubble period” and the “Lost decade” in

Japan. According to our empirical results, the accelerator improves the forecasting of investment

over the whole sample period, while forecasts of consumption and inflation depend on the fluc-

tuation of an extra financial premium between the policy interest rate and corporate loan rates.

In particular, several drastic monetary policy changes might disrupt the forecasting performance

of the model with the accelerator. A robust check with a dynamic pool method (Del Negro et

al., 2016) also supports these results.
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1 Introduction

Since the millennium, central banks and government policymakers have increasingly paid attention

to forecasting macroeconomic variables using the dynamic stochastic general equilibrium (DSGE)

model, as well as to conducting policy analyses with them. In fact, there is an expanding volume

of literature on evaluating the accuracy of point forecasts with DSGE models. Smets and Wouters

(2007) is the pioneering work to do this for US data. Adolfson et al. (2007), Edge et al. (2010), and

Kolasa et al. (2012) also pushed forward with research along the line of Smets and Wouters (2007).

Edge and Gurkaynak (2010) reported that forecasts with a medium-scale DSGE model perform

with similar accuracy to the competing statistical models and professional forecasts. However,

the forecasts show poor performance in the absolute sense. One of the features in estimation

with DSGE models is imposing contemporaneous correlations between macroeconomic variables

as model-based restrictions, in contrast with alternative statistical models such as vector auto-

regressions (VARs), as pointed out by Del Negro and Schorfheide (2003) and Herbst and Schorfheide

(2012). If the restrictions of comovements among the observed series are shown to be consistent

with data, forecasts of a DSGE model with the correct restrictions are likely to prevail over those

of a VAR without the restrictions.

On the other hand, there is extensive literature on empirical studies about financial crises with

respect to a DSGE model. In particular, the financial accelerator mechanism of Bernanke et al.

(1999), in which business cycles are amplified by the presence of asymmetric information under

banks and the corporate sector, are often incorporated into DSGE models, such as Christensen

and Dib (2008), De Graeve (2008), Christiano et al. (2014) and Kaihatsu and Kurozumi (2014a).

Gilchrist and Zakrajsek (2012) empirically supported the mechanism by showing corporate bond

credit spreads leads to significant declines in consumption, investment as well as to appreciate

disinflation in the US. In Japan, a collapse of the “Bubble boom” at the beginning of 1991 and

successively accruing a long stagnation called the “Lost decade” was generally believed to be due to a

financial crisis. However, there is still an academic controversy over its causes. Hayashi and Prescott

(2002) argue that a deep decline of total factor productivity (TFP) was the main source of the long

stagnation. Kaihatsu and Kurozumi (2014b) measure the extent to which TFP and financial effects

contributed to the stagnation from a historical decomposition for that period by incorporating

the financial accelerator into a DSGE model. Instead of the method of historical decompositions,

this paper tries to specify different comovements behind different models by comparing the density

forecasts of two competing DSGE models based on Kaihatsu and Kurozumi (2014b) and to figure

out the causality of the stagnation from our results.

Most studies on DSGE model forecasting have adopted point forecasts evaluated from root-

mean-square error (RMSE), while density forecasts of the DSGE model, a newer concept, have

recently been focused on by several papers such as Herbst and Schorfheide (2012) and Kolasa and

Rubaszek (2015)1. The former examined density forecasts of comovements of output, inflation

and interest rates of a medium-size DSGE model, while the latter reported that the DSGE model

incorporating the housing market outperforms both the frictionless and financial friction models for

1Another approach is conducted by Amisano and Giacomini (2007), who propose a model selection using a likeli-
hood ratio test in terms of density forecast.
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US data, especially, during a period of financial turmoil. On the other hand, Geweke and Amisano

(2011) propose a method to obtain the optimal combination of density forecasts generated by

multiple statistical models with constant model weights. And their idea, referred to as the optimal

prediction pool, is applied to a combination of macroeconomic models including DSGE models,

and extended to versions with time-varying model weights by Waggoner and Zha (2012) and Del

Negro et al. (2016): The former shifts the weights with a Markov switching (MS) model, while the

latter changes them from the probit transformation of a latent variable following an autoregression

process.

The purpose of this paper is to examine whether the financial accelerator mechanism improves

density forecasts of macroeconomic variables, focusing on the collapse of the “Bubble boom” in

1991 and the “Lost decade” in the 1990’s in Japan, using the optimal prediction pools. And

this examination indicates that the higher forecast performance of the model with, as opposed

to without, the financial friction reflects the presence of comovements predicted by the financial

friction in the data during the period, and also suggests that the financial accelerator theory can

explain the causality of macroeconomic dynamics rather than the frictionless model. In addition,

following Waggoner and Zha (2012), we estimate when and the extent to which the comovements

generated by the two DSGE models change through changes of the time-varying model weight,

realizing the optimal combination of density forecasts. Furthermore, we conduct a robust check to

examine whether a similar dynamic change of the weight is observed using the alternative method

by Del Negro et al. (2016).

This paper shows the following findings. For the overall periods from 1981:Q1 to 1998:Q4, the

model with the financial friction is predominant over the frictionless benchmark model in terms of

density forecasts. The difference between them is likely to come from fluctuation of spread between

corporate loan rates and the policy interest rate. In periods with a small change of the spread, the

financial accelerator mechanism contributes to improve the prediction. When a drastic monetary

policy was implemented, however, the loan rates that did not react to a big change of the policy

rates and shifted the spread with a large step reduced the forecasting performance of the model

with the friction. In particular, the frictionless model outperforms for the period from 1993 to 1995,

since the spread realized with a big range despite the boom seems to be contrary to the spread

predicted from the financial friction. These empirical results suggest that real spreads do not give

a timely reflection of the change of the extra financial premium generated between bankers and

the corporate sector and that there is a non-trivial time lag between them. The robust check also

supports these results.

The rest of this paper is organized as follows. Section 2 describes two competing DSGE models

with and without the financial friction. The impulse responses of both models show the difference

of the comovements generated by the models. In Section 3, we deal with theoretical aspects of both

the prediction score and the MS pooling method. We mention the empirical results in Section 4

and the robust check using another pool method in Section 5. Section 6 concludes. Finally, two

log-linearized DSGE models are explained in the Appendix.
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2 DSGE models

Our model follows Kaihatsu and Kurozumi (2014 a, b), who incorporate the financial accelerator

(hereafter, FA) mechanism of Bernanke et al. (1999) into a medium-size New Keynesian model with

prices and wage rigidities including consumption and investment goods as well as habit persistence

of consumption and an increasing adjustment cost of investment, along the line of Christensen and

Dib (2008), De Graeve (2008) and Christiano et al. (2014). And, a frictionless DSGE model is

adopted in order to be compared in density forecasts as the benchmark model, and to be combined

with the FA model in a prediction pool method explained later.

2.1 Frictionless DSGE model

First of all, a New Keynesian model excluding the FA mechanism is described as the benchmark

model (hereafter, NK model) of this paper. The remaining parts of the model are completely the

same framework as the model embedding the FA mechanism. In both model economies, there are

households, four types of firms and the central bank as common agents of both models.

A. Households

Households are composed of workers and entrepreneurs whose jobs are fixed for their lives. For

workers, there is a continuum of households indexed by m ∈ [0, 1]. However, they are assumed to

be a representative agent when they make their intertemporal decision between consumption and

leisure. The households maximize the utility function,

E0

∞
∑

t=0

βt exp(zbt )

[

(Ct − θCt−1)
1−σ

1− σ
− (Z∗

t )
1−σ exp(zht )

∫

(ht(m))1+χ

1 + χ
dm

]

,

subject to their budget constraint,

PtCt +Bt = rnt−1Bt−1 + Pt

∫

Wt(m)ht(m)dm+ Tt., (2.1)

where Et is the expectation operator in period t, β ∈ (0, 1) is the discount factor, σ and χ > 0 are

the degrees of the inverse of intertemporal elasticity of consumption and the inverse of elasticity of

the labor supply, respectively. θ ∈ [0, 1] denotes the habit persistence of consumption. zbt and zht

are shocks of preference and the labor supply. Z∗
t , the composite technological level, is set in the

disutility term to realize the balance growth path. And Pt is the price of consumption goods, Bt is

the government bond, rnt is the gross interest rate. Wt(m) is worker m ’s real wage, and Tt is the

total profit received from firms and lump-sum public transfer. Then, the first-order conditions for

the above optimization problem are given by

Λt = exp(zbt )(Ct − θCt−1)
−σ − βθEt exp(z

b
t+1)(Ct+1 − θCt)

−σ, (2.2)

1 = Etβ
Λt+1

Λt

rnt
πt+1

, (2.3)
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where Λt is the marginal utility of consumption and πt is the gross inflation rate of consumption

goods, i.e., Pt/Pt−1.

i) Workers

The workers indexed by m ∈ [0, 1] supply their differentiated labor service with the substitution

elasticity θWt > 1 under monopolistic competition. Based on a Calvo-style staggered wage-setting

rule, the wage reoptimized in period t is decided so as to maximize

E

∞
∑

t=0

(βξw)
t

[

Λt+jht+j|t(m)
PtWt(m)

Pt+j

j
∏

k=1

(z∗πγwt+k−1π
1−γw)−

exp(zbt+j)(Z
∗
t+j)

1−σ exp(zht+j)(ht+j|t(m))1+χ

1 + χ

]

,

subject to the labor demand in period t+ h,

ht+j|t(m) = ht+j

[

PtWt(m)

Pt+jWt+j

j
∏

k=1

(z∗πγwt+k−1π
1−γw)

]−θwt+j

,

where a fraction 1 − ξW ∈ (0, 1) of wages is reoptimized, whereas the remaining fraction ξW is

chosen by the indexation rule made from the steady state of the gross growth rate, z∗, and a

weighted average of past inflation and its steady state, πγwt−1π
1−γw , where γw ∈ [0, 1] is the weight

on the past inflation. The first-order condition for the reoptimized real wage is given by

1 =

Et
∑

(βξw)
j (1+λ

W
t+j) exp(zbt ) exp(zht+j)(Z

∗
t+j)

1−σ

λWt+j






ht+j

{

WO
t−j(z

∗)j

Wt

∏

[

(
πt+k−1

π )γw π
πt+k

]

}−
1+λWt+j

λW
t+j







1+χ

Et
∑

(βξw)j
Λt+jWt+j

λWt+j
ht+j

{

WO
t−j(z

∗)j

Wt

∏

[

(
πt+k−1

π )γw π
πt+k

]

}− 1

λW
t+j

,

(2.4)

where λWt = 1/(θWt − 1) > 0 stands for the wage markup. And, the aggregate wage, Wt, can be

rewritten as

1 = (1− ξw)





(

WO
t

Wt

)− 1

λW
t

+
∑

(ξW )j

{

WO
t−j(z

∗)j

Wt

∏

[

(
πt−k
π

)γw
π

πt−k+1

]

}− 1

λW
t+j



 , (2.5)

from the definition of the aggregate wage,

Wt =

[∫ 1

0
(Wt(m))1−θ

W
t dm

]

1

1−θW
t
,

where WO
t is a reoptimized wage.
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ii) Entrepreneurs

Entrepreneurs are owners of capital who decide the utilization rate ut on capital Kt−1 after purchas-

ing Kt−1 at the real price Qt−1 from capital goods firms explained later. And they provide capital

service utKt−1 at the real rental rate RKt for intermediate goods firms. The first-order condition

for the optimal decision on the capital utilization rate is given by

Rkt = Qtδ
′(ut), (2.6)

where δ(ut) is a depreciation rate function whose properties are δ′ > 0, δ′′ > 0, δ(1) ∈ (0, 1), and

δ′(1)/δ′′ = τ > 0. Since the real return from purchasing capital Kt is equal to that of holding the

bond, the equilibrium equation between them is given by

EtΛt+1χt+1 = EtΛt+1
rnt
πt+1

, (2.7)

where the marginal return on capital is χt given by

χt =
utR

k
t +Qt(1− δ(ut))

Qt−1
, (2.8)

since the resulting capital (1− δ(ut))Kt is evaluated at the price Qt.

B. Firms

There are four types of firms based on the categories of goods: intermediate goods, consumption

goods, investment goods and capital goods.

i) Intermediate goods firms

There is a continuum of intermediate goods firms indexed by f ∈ [0, 1]. They produce intermediate

goods by demanding labor and capital inputs and provide the goods to consumption goods firms.

The production function of an intermediate goods firm, f , is given by

Yt(f) dt = (Ztht(f) )
1−α(utKt−1(f) )

α − φyZ∗
t , (2.9)

where Zt stands for the level of neutral technology following the stochastic process, logZt = log z+

logZt−1 + zzt , where z and zzt denote the steady state of the level and a neutral technology shock,

respectively. After aggregating the function, the marginal rate of substitution between labor input

and capital input is obtained from

1− α

α
=

Wtht

Rkt utKt−1
, (2.10)

and the marginal cost of the production function is written as

mct =

(

Wt

(1− α)Zt

)1−α(Rkt
α

)α

. (2.11)
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The firms supply their differentiated goods with the substitution elasticity θPt > 1 under mo-

nopolistic competition. Based on a Calvo-style staggered price-setting rule, the price reoptimized

in period t is decided so as to maximize

Et

∞
∑

j=0

ξjp

(

βj
Λt+j
Λt

)

[

Pt(f)

Pt+j

j
∏

k=1

(

π
γp
t+k−1π

1−γp
)

−mct+j

]

Yt+j|t(f),

subject to the goods demand function in period t+ j,

Yt+j|t(f) = Yt+j

[

Pt(f)

Pt+j

J
∏

k=1

(π
γp
t+k−1π

1−γp)

]−θPt+j

,

where a fraction 1 − ξP ∈ (0, 1) of the price is reoptimized, whereas the remaining fraction ξP

is chosen by the indexation rule from a weighted average of past inflation and its steady state,

π
γp
t−1π

1−γp , where γp ∈ [0, 1] is the weight on the past inflation. The first-order condition for the

reoptimized price is given by

1 =
Et
∑∞

j=0(βξp)
j (1+λ

P
t )mct+j Λt+j Yt+j

λPt+j

{

POt
Pt

∏j
k=1

[

(
POt
pt

)γp π
πt+k

]}−
1+λPt+j

λP
t+j

Et
∑∞

j=0(βξp)
j Λt+jYt+j

λPt+j

{

POt
Pt

∏j
k=1

[

(
POt
pt

)γp π
πt+k

]}− 1

λP
t+j

, (2.12)

where λWt = 1/(θWt − 1) > 0 stands for the wage markup.

ii) Consumption goods firms

Consumption goods firms produce output Yt by using intermediate goods as input. Under perfect

competition, the firms maximize,

PtYt −

∫ 1

0
Pt(f)Yt(f) df,

subject to transformation technology,

Yt =

(∫ 1

0
Yt(f)

(θpt−1)/θPt df

)θPt /(θ
P
t −1)

,

with respect to Yt . And, using Eq.(2.12), the price of consumption goods, Pt, can be rewritten as

1 = (1− ξp)







(

POt
Pt

)− 1

λ
p
t
−
∑

(ξp)
j







POt−j
Pt−j

∞
∏

j=1

[

(πt−k
π

)γp π

πt−k+1

]







− 1

λ
p
t






, (2.13)

from the definition of the price,

Pt =

[∫ 1

0
(Pt(f))

1−θpt df

]

1

1−θ
p
t
,
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where POt is a reoptimized price.

iii) Investment goods firms

There is a continuum of investment goods firms indexed by k ∈ [0, 1]. They convert one unit of

consumption goods into Ψt units of differentiated investment goods by using production technology,

It = (
∫ 1
0 It(k)

(θit−1)/θit dk)θ
i/(θit−1) where the substitution elasticity θit > 1. Under monopolistic

competition, an investment-goods firm, g, maximizes its profit function,

(

P it (k)/Pt − 1/Ψt
)

It(k),

subject to the demand function,

It(k) = It

(

P it (k)

P it

)−θit

,

where P it is the investment goods price. The unit of investment goods follows a stochastic dynamics,

logΨt = logψ+logΨt−1+z
ψ
t , where z

ψ
t is an investment specific (IS) shock. The first-order condition

for profit maximization of investment goods firms is given by

P it = (1 + λit)
Pt
Ψt
, (2.14)

where λit = 1/(θit − 1) > 0 stands for the investment goods markup.

iv) Capital goods firms

Capital goods firms produce investment It by using differentiated investment goods It(k) as input.

Under perfect competition, the firms maximize,

Et

∞
∑

j=0

βj
Λt+j
Λt

{

Qt+j [Kt+1 − (1− δ(ut+j))Kt+j−1]−
P it+j
Pt+j

It+j

}

,

subject to the capital accumulation equation,

Kt = (1− δ(ut))Kt−1 + exp(zνt )

(

1− S

(

It/It−1

z∗ψ

))

It, (2.15)

where S((It/It−1)/(z
∗ψ)) = (ζ/2)[It/It−1/(z

∗ψ) − 1]2, ζ > 0, is an increasing adjustment cost

of investment and zνt is the marginal efficiency of investment (MEI) shock. And the first-order

condition for profit maximization of capital goods firms is given by

P it
Pt

= Qt exp(z
ν
t )

[

1− S

(

It/It−1

z∗t ψ

)

− S′

(

It/It−1

z∗ψ

)

It/It−1

z∗ψ

]

+Etβ
Λt+1

Λt
z∗t ψQt+1 exp(z

ν
t )S

′

(

It+1/It
z∗ψ

)

.

(2.16)
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2.2 Financial Accelerator Mechanism

As the DSGE model with the FA mechanism, we incorporate the bank sector (financial inter-

mediaries) as an additional agent in the benchmark model described above. In this framework,

entrepreneurs purchase capital by borrowing loans from financial intermediaries at the gross loan

rate, rEt , aside from financing by their net worth,

Bt = QtKt −Nt. (2.17)

where Bt and Nt denote their real borrowing and net worth, respectively. The presence of asym-

metric information between borrowers and lenders makes a loan rate greater than the deposit rate

(or the policy rate), rnt , i.e., r
E
t > rnt . The discrepancy between the two rates is referred to as the

external financial premium (EFP), expressed as

rEt
rnt

= F

(

QtKt

Nt

)

exp(zµt ).

where F (·) is a function of entrepreneurs’ leverage ratio which fulfills F ′ > 0 and zµt is an EFP

shock. By log-linearizing this equation, the EFP is obtained from

rEt − rnt = µE(qt + kt − nt) + zµt , (2.18)

where µE is set as µE = (QtKt/Nt)
F ′(QtKt/Nt)
F (QtKt/Nt)

> 0, and represents a degree of the EFP decided

from a leverage ratio, qt + kt − nt. Instead of Eq.(2.7), the marginal return on capital χt is decided

from the loan rate such as

EtΛt+1χt+1 = EtΛt+1
rEt
πt+1

. (2.19)

In each period, a fraction 1−ηt ∈ (0, 1) of entrepreneurs change to workers and the same amount

of workers become entrepreneurs. The remaining fraction ηt of them survive until the next period.

The dynamic of their net worth is

Nt = ηt

(

χtQt−1Kt−1 −
rEt−1

πt
Lt−1

)

+ (1− ηt)ωZ
∗
t , (2.20)

where ωZ∗
t is the net worth of new comers switching from workers. The survival rate, ηt, follows a

stochastic process, ηt = η exp(zηt )/(1− η + η exp(zηt )), where z
η
t is regarded as a net worth shock.

2.3 Miscellaneous

The central bank

The central bank decides the policy rate rnt based on a Taylor type monetary policy rule,

9



log rnt = φrlog r
n
t−1 + (1− φr)







log rn +





φπ
4

3
∑

j=0

log
πt−j
π



+ φylog
Yt
Yt−1







+ zrt , (2.21)

where φr ∈ (0, 1) is a degree of persistence of the policy rate, and φπ and φy stand for reaction

coefficients of inflation and output growth, respectively. rn denotes the steady state of the policy

rate and zrt is a monetary policy shock.

The market clearing condition

The market clearing condition with respect to consumption goods is written as

Yt = Ct +

∫ 1

0

It(k)

Ψt
dk + gZ∗

t exp(z
g
t ) = Ct +

It
Ψt

+ gZ∗
t exp(z

g
t ), (2.22)

where differentiated investment goods are aggregated as investment,
∫ 1
0
It(k)
Ψt

dk = It/Ψt, and gZ
∗
t exp(z

g
t )

represents the exogenous demand of output except for the consumption of households and invest-

ment of firms, where zgt is an exogenous demand shock.

Equilibrium conditions and exogenous shocks

To solve an equilibrium of the NK model, the conditions consist of Eq.(2.2) through Eq.(2.16)

and Eq.(2.21) and Eq.(2.22). Meanwhile, aside from the above conditions, Eq. (2.17) through

Eq.(2.20) are additionally used as the conditions of the FA model, instead of Eq.(2.7). There are

nine structural shocks consisting of three technology shocks, zνt , z
z
t and z

ψ
t , three demand and policy

shocks, zbt ,z
g
t and zrt , and three markup shocks, zpt , z

i
t and z

w
t in the NK model. There are eleven

shocks including two additional shocks: zηt , z
µ
t , in the FA model.

To get the steady state of both models in which the economy grows at the composite technological

level Z∗
t given by Z∗

t = Zt(Ψt)
α/(1−α), we make endogenous variables detrend such as yt = Yt/Z

∗
t ,

ct = Ct/Z
∗
t , wt = Wt/Z

∗
t , λt = Λt(Z

∗
t )
σ, it = It/(Z

∗
tΨt), kt = Kt/(Z

∗
tΨt), r

k
t = Rkt /(Z

∗
tΨt),

qt = QtΨt, nt = Nt/Z
∗
t , and bt = Bt/Z

∗
t . The equilibrium conditions in terms of detrended

variables log-linearized around the steady state are described in the Appendix.

2.4 Impulse Response Functions

Here, we consider the properties of the FA by comparing the impulse response functions (IRFs) of

the two models in order to show differences of comovements among endogenous variables between

the two DSGE models. We calibrate IRFs of both models using the same parameters and setting

µE as 0.05. In Panels (a) to (d) of Figure 1, the IRFs of six endogenous variables in response to

four structural shocks: preference, monetary policy, IS and investment price markup shocks are

drawn, in which the blue solid and red dashed lines represent the FA model and the NK model,

respectively.

The EFP is a key factor to represent the effects of the financial friction as seen from the difference

between Eq. (2.7) and Eq.(2.19) in terms of the model description. Figure 1 (a) shows the IRF to
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the positive preference shock, which causes the EFP to shrink. The reduction of the EFP pushes

down the loan rate and reduces the size of the decline of investment in the FA model compared

with the NK model. In Panel (b), IRFs to a positive interest rate shock are depicted, in which the

EFP becomes larger. We see that five variables excluding consumption are amplified and prolonged

in the FA model. Panel (c) shows the IRF to the positive IS technology shock which makes the

EFP expand through an increase in the leverage ratio, since the ratio of capital to output increases.

A larger EFP weakens the effects to the IS shock of endogenous variables excluding consumption.

Panel (d) draws the IRFs to the positive investment price markup shock, which reduces the EFP

through a decrease in the demand of investment. Shrinkage of the EFP damps the amplification

effect of all the endogenous variables.

[ Insert Figure 1 about here ]

2.5 Measurement equations

The state space models of the DSGE models consist of state equations composed of log-linearized

equilibrium conditions described in the Appendix, and measurement equations. Here, we describe

the measurement equations of both models as below. The equations of the NK model adopt eight

observed series: output:Yt, consumption: Ct, investment: It, real wage: Wt, labor input: Lt,

inflation: πt, investment price: P it , and policy interest rate: rnt , while those of the FA model use

ten series including two additional observed variables, the loan rate:rEt and the real borrowing: Bt.
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where we set z̄∗ = 100(z∗ − 1), ψ̄ = 100(ψ − 1), r̄n = 100(rn − 1), and l̄ is normalized to be equal

to zero following Kaihatsu and Kurozumi (2010, 2014b). The hatted letters indicate log-deviations

from steady-state values after detrending with the level of composite technology Z∗
t . The third

term of the RHS is referred to as the measurement errors of the observable variables. And we set

r̄E = 100(rE − 1).

2.6 Data

The data to estimate the models are basically based on Kaihatsu and Kurozumi (2010, 2014 b). The

data on the relative price of investment P it /Pt, output, and consumption Ct are given by dividing the

investment deflator, nominal GDP and nominal consumption with the CPI. The data on investment

It, labor input, real wage and policy interest rate are the same as those in Sugo and Ueda (2008),

except that these series are not detrended. The data on the loan rate are the average interest rate

on contracted loans and discounts. The sample period is from 1981:Q1 to 1998:Q4.

3 Markov switching (MS) prediction pool

3.1 Predictive scores

From a Bayesian perspective, the marginal likelihood is commonly used as a criterion of model choice,

since it is interpreted as the predictive density of a model obtained by integrating with respect to

the prior density of the model parameters Θ. A model with the highest predictive density is thought

to be the best model explaining the behaviors of observations based on information on all of the

data. Let us denote a vector of future observations as yt+h, where h is an h-step-ahead forecast,

and its history is Y o
t = {yg, ..., yt}, where g ≤ 1 is the starting date and the superscript “o” denotes

the observed data. The predictive density of a model with respect to the prior of parameters Θ is

defined as

pPrior
(

yft+h − yot+h|Y
o
t , M

)

≡

∫

p
(

yft+h − yot+h|Y
o
t , Θ,Σ,M

)

p(Θ|M)p(Σ)dΘdΣ,
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where yft+h, and yot+h are the forecast and observed values in period t + h, respectively, and the

difference between them is their forecasting errors εt+h. Σ is a covariance matrix of the forecasting

errors, εt+h, and M is a prediction model. p (εt+h|Yt, Θ,Σ,M), and p(Θ|M) denote the likelihood

function and the prior density of Θ of a prediction model M, respectively. When we set h = 1,

then the density is regarded as the marginal likelihood. When replacing the prior density with the

posterior density of Θ according to Geweke (2010), the predictive density can be redefined as a

posterior predictive density,

pPost
(

yft+h − yot+h |Y
o
t ,M

)

≡

∫

p
(

yft+h − yot+h |Y
o
t , Θ,Σ,M

)

p(Θ |Y o
t , M)dΘdΣ,

where p(Θ|Yt,M) is the posterior density of Θ conditional on the history of observations until period

t, Y O
t , and a model, M. Following Geweke and Amisano (2011), we use the posterior predictive

density in order to construct a predictive score for evaluating the forecasting performance of a single

prediction model and of a convex combination of multiple prediction models with the optimal model

weights. We define the predictive score of a modelM, p(yft+h ; Y
o
t , M), for the h-step-ahead forecast

as

p(yft+h ; Y
o
t , M) ≡ pPost

(

yft+h − yot+h |Y
o
t , M

)

,

and regard it as the key element of the following prediction pooling methods.

Forecast combination of multiple models has been known as a useful tool for improving the

performance. Most of studies for the model combination have focused on point forecasts and

were reviewed by Timmermann (2006) and Elliott and Timmermann (2016). Meanwhile, studies

for model combination in terms of density forecasts had been much more limited, but have been

recently paid more attention by macro-econometricians. Geweke and Amisano (2011) propose the

optimal prediction pool with respect to density forecasts, referred to as the static prediction pool.

Let us redefine M as the collection of competing multiple models, e.g., M = (M1,M2) . Given two

prediction models M1 and M2, the predictive score for the h-step-ahead forecast can be constructed

as the convex combination of the predictive scores of competing models,

pSP
(

yft+h; Y
o
t ,M

)

≡ λ p
(

yft+h; Y
o
t ,M1

)

+ (1− λ) p
(

yft+h; Y
o
t ,M2

)

, (3.1)

where λ ∈ (0, 1) and 1 − λ are constant values indicating model weights in favor of M1 and M2,

respectively. The optimal prediction pooling is then obtained by maximizing the cumulative log

predictive score, LPSSP , for the whole of the prediction periods as

LPSSP (λ, h) ≡
T
∑

t=1

log
[

λp
(

yft+h; Y
o
t ,M1

)

+ (1− λ) p
(

yft+h; Y
o
t ,M2

)]

, (3.2)

by choosing λ∗ = argmax LPSSP (λ, h). An important assumption, as noted by Geweke and

Amisano (2011), is that the two candidate prediction models have to be substantially different in

terms of the functional form of their predictive densities (i.e., non-nested models). In our study,

we generate a predictive density of macroeconomic observations based on each of the two DSGE

models described in Section 2 from posterior estimations of their model parameters.
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3.2 MS prediction pool

Waggoner and Zha (2012) extended the static prediction pool of Geweke and Amisano (2011) as

Eq.(3.1) by allowing the weighting coefficient λt+h to be dependent on a regime variable, st, following

a Markov chain as

λt+h = λ (st+h) =

{

λ1, st = 1

λ2, st = 2
,

where λ1, λ2 ∈ (0, 1) are constant weights in favor of M1 in the period of regimes 1 and 2, re-

spectively. The transition probabilities matrix, Q , of the Markov chain with two regimes is given

by

Q =

[

q11 q12

q21 q22

]

,

where the element qij is a transition probability from state i in period t− 1 to state j in period t,

i.e., qij = Pr (st = j| st−1 = i) with q11 + q12 = 1 and q21 + q22 = 1. Again, we set M = (M1,M2).

Conditional on the state st, the predictive score for the h-step-ahead forecast based on the MS pool

can be expressed as

pMS
(

yft+h; Y
o
t , st, M

)

= λ (st+h|st) p
(

yft+h; Y
o
t ,M1

)

+ (1− λ (st+h|st)) p
(

yft+h; Y
o
t ,M2

)

=
[

p
(

yft+h; Y
o
t ,M1

)

p
(

yft+h; Y
o
t ,M2

) ]

[

λ (st+h|st)

1− λ (st+h|st)

]

,

where the conditional weight is calculated from λ (st+h|st) =
∑2

i=1 λi Pr(st+h = i|st), and the h-step-

ahead transition probability of state st+h conditional on st is obtained from Pr(st+h = i|st) = Qhi
where Qi is the sum of the i-th column of Q.

Hence, by integrating out the unobservable regime, st, for p
MS
(

yft+h; Y
O
t ,M, st

)

, we have the

predictive score of the MS pooling method conditional on Yt and M, given as

pMS
(

yft+h; Y
o
t ,M

)

=

2
∑

st=1

pMS
(

yft+h; Y
o
t , st+h, M

)

Pr (st+h| st) Pr (st|Y
o
t , M) (3.3)

=
[

p
(

yft+h; Y
o
t ,M1

)

p
(

yft+h; Y
o
t ,M2

) ]

[

λ1 λ2

1− λ1 1− λ2

][

q11 1− q11

1− q22 q22

]h [

Pr(s1,t)

1− Pr(s1,t)

]

,

where Pr (st|Y
o
t , M)is the posterior probability of st conditional on Yt and M derived from the

Hamilton (1989) filter described in the footnote2. The last term,[Pr(s1,t) 1−Pr(s1,t)]
′, is p (st|Y

o
t , M)

so that the expected values of them are adopted in the term.

Using Eq.(3.3), the MS prediction pool with two regimes of the log predictive score of the

2Using the Bayes theorem, we obtain a relation such as that Pr
(

st|Y
O
t , M

)

is proportional to p(yt|st,Y
O
t−1,M)

×Pr(st|st−1) ×Pr
(

st−1|Y
O
t−1,M

)

, where p(yt|st,Y
O
t−1,M) is a likelihood function of yt given st and Y

O
t−1. Since we

know that Pr(st|st−1) = Q as well as the values of Pr
(

st−1|Y
O
t−1,M

)

and the likelihood function of yOt , we easily

calculate value of p
(

st|Y
O
t , M

)

. In this way, we obtain p
(

st|Y
O
t , M

)

for t = 1 · · ·T by iterating the calculation from
period 1.
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h-step-ahead forecast for periods, t = 1, · · · , T , is given as

LPSMS(λ1, λ2, h) ≡
T
∑

t=1

log pMS
(

yft+h ; Y
o
t ,M

)

. (3.4)

An advantage of using the MS modeling for the weighting coefficient is that we can identify the

relative importance of the models during different sample periods. Waggoner and Zha (2012) show

that the DSGE model plays an important role relative to a Bayesian VAR model only in the late

1970’s and the early 1980’s. It is important to note that we do not incorporate an assumption of

regime-switching into the economic dynamics with forward-looking agents. The regime of the MS

prediction pool only reflects the particular period in history in which one model prevails over the

others in terms of its density forecasts.

3.3 Estimation methodology of prediction pool

In order to estimate and compare the predictive scores of individual prediction models, say two

DSGE models, and the pooling methods, we adopt a Bayesian approach with the Markov Chain

Monte Carlo (MCMC) method for the MS prediction pooling as well as static and dynamic predic-

tion poolings, which are examined in Section 5 as a robust check.

Although Waggoner and Zha (2012) simultaneously estimated two macroeconomic models and

the pooling method, the simultaneous estimation of the model parameters, Θ, under a regime

sustained only for a short period is thought to have only a low level of accuracy. This is because a

regime generated in each MCMC iteration of a pooling method is different from that of the previous

iteration, and a different regime period expands the variations of drawing Θ in the step of MCMC

iteration in the DSGE model. By adopting a two-step procedure following Geweke and Amisano

(2011) and Del Negro et al. (2016), we can avoid generating instability in the model parameters,

Θ, estimated based on different regime periods.

The two-step procedure is described below.

Step 1. Make density forecasts of the DSGE models.

1. The posterior estimates of parameters, p(Θ|Y o
t−1,Mi), under the DSGE models, Mi, for

i = 1, · · · , n, are obtained for the full sample period, using the MCMC method.

2. We compute the predictive densities and predictive scores of observations, p(yft+h|Y
o
t ,Θ,M),

from sampling of p(Θ|Y o
t−1,Mi) of each DSGE model, Mi, by the Monte Carlo simulation

technique.

Step 2. Make the optimal combination of density forecasts.

1. We calculate the optimal combination of the log scores of the DSGE models obtained in

the previous step, using parameters of pooling methods drawn from the Gibbs sampling

method with the Hamilton filter following Albert and Chib (1993).
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4 Empirical results

4.1 Model estimation

The frictionless DSGE model (NK model) and the model with financial friction (FA model) men-

tioned in Sections 2.1, 2.2 and 2.3 are estimated with the Japanese data as in Section 2.6 using

Bayesian estimation via the MCMC method. The prior distributions of the parameters shown in

Table A1 are decided based on Kaihatsu and Kurozumi (2010), who dealt only with the model with

financial friction. The characteristic values of the prior in the NK model are the same as those of

its counterpart. Notice that the NK model has just eight fewer structural parameters than the FA

model.3 To form posterior distributions of the parameters, 300,000 iterations are implemented in

the MCMC. After the first 150,000 draws are discarded, the remaining draws are sampled as the

posterior estimates, as shown in Tables A2 and A3. It is noteworthy that parameter µE , which

generates the difference between the loan rate and the nominal rate, is 0.031 as the posterior mean

and from 0.026 to 0.040 as the 95% credible interval, excluding 0 as in Table A3, and that this

estimation indicates that financial friction exists in Japan.4

4.2 Density forecasts of the DSGE models

We calculate the posterior predictive distributions of the six individual observations for 1982:Q3 –

1998:Q4 from a Monte Carlo (MC) method using model parameters sampled as posterior estimates

in Section 4.1. In the procedure, by generating random variables of structural shocks based on the

posterior estimates, we calculate the h-step-ahead forecast of observations from a state space model

with the shocks, and accumulate them as the predictive distributions. Figure 2, for instance, shows

the predictive distributions of the two models for a decade as of the period 1990:Q4. This figure

represents the discrepancy of the predictive means (red line) and distributions (shaded area) of the

six observations between the two models based on the presence or absence of the EFP. Generally,

their predictive means must correspond to a path to a steady state, and the width of the distribution

could depend on the variance of the shocks in the case of a DSGE model. As seen in Panel (b), the

means of inflation, investment, output, and consumption in the FA model might be amplified by

the FA mechanism, compared with the NK model (Panel (a)). And two additional shocks of the FA

model are likely to expand the distributions. In particular, that of inflation is significant. For the

rest of the section, we focus on the predictive means and distribution for the whole of the sample

periods.

[ Insert Figure 2 about here ]

In Table 1, the means of forecasting errors of the six observations are described in terms of

booms and recessions after being classified into three periods; (1) pre-Bubble period, (2) Bub-

3The 8 fewer structural parameters in the NK model are represented as “NA” in Table A1 and Table A2.
4The posterior estimates of our estimation differ from Kaihatsu and Kurozumi (2010, 2014b) even using the same

priors, since we introduce a measurement error to each of the observable variables in the above measurement equations
(2.23) and (2.24).
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ble period, and (3) post-Bubble period. The error-means is calculated from Et(y
i
t+h) − yot+h =

1
NH

∑N
i=1

∑H
h=1(y

i
t+h − yot+h), where superscripts “i ” and “o ” denote the i-th sample of the MC

forecasted and realized observations, respectively, and subscript “h ” is the h-step-ahead forecast.

And H and N are the maximum number of horizons and total number of MC sampling, respectively.

Here, we set H = 4 and N = 20, 000. There are some remarks. First, the means of the nominal

interest rate in both models are positive, or overestimated (Etyt+1 > yt+1 ) overall, except for the

“Bubble” boom period. Next, the means of inflation are negative or underestimated (Etyt+1 > yt+1

) in booms, whereas those of wages are basically overestimated. Finally, the means of real series such

as output, consumption and investment are negative for booms and positive for recessions, except

for the pre-Bubble period. These indicate that it is difficult to forecast the magnitude of fluctuation

of a business cycle in terms of the DSGE model, even when incorporating the FA mechanism in the

model. Recently, Comin and Gertler (2007) proposed a DSGE model with an endogenous growth

model to analyze the middle term of business cycles. We might apply their model to cope with this

wrinkle.

[ Insert Table 1 about here ]

Next, let us assess the predictive distributions in terms of the realized values of the six series.

The third and fourth rows of each panel in Table 2 show the log predictive scores of the total

and individual variables classified from the three periods in the NK model and the FA model,

respectively. The log predictive scores are calculated from the log likelihood function of forecasting

error LS(yt+h) ≡
1
NH

∑N
i

∑H
h=1 log p(y

i
t+h; Y

o
t , Mj), where y {t} is a single observation in period t

and p(·) is the density function of normal distribution. Again, we set H = 4 and N = 20, 000. Panel

(a) represents the log predictive scores for the full sample period, and those of the three periods

described in Panels (b), (c) and (d). In the table, bold numbers indicate the better performance

between the two models. As concerns the four tables, the FA model is superior to the NK model

in the distribution of consumption, investment, and wage for the three periods overall except for

pre-Bubble investment (with a tiny difference). On the other hand, the NK model outdoes the

FA model in output, inflation and nominal interest rate. Figure 3 shows the time series of the log

predictive scores of the six variables. For the whole sample period, the FA model dominates in terms

of wage, whereas the NK model dominates on inflation and interest rate. In the remaining three

real variables, the dominance between the two models changes at a bewildering pace and depends

on the period.

[ Insert Figure 3 about here ]

[ Insert Table 2 about here ]
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Figure 4 shows the time series of the log predictive score of all six observations in both models

with a multi-variate nominal distribution. That is LS(yt+h) =
1
NH

∑N
i

∑H
h=1 log p(y

i
t+h; Y

o
t , Mj),

where yt is a 6 × 1 vector of the whole six observations. We observe that the log predictive score

fluctuates with a large amplitude during the “Bubble” boom period; 1988 to1990, in particular

for the NK model. As can be seen from Figure 3, since variations of the predictive scores in the

three real variables become large for the Bubble period, the total score also reflects this. In the

next subsection, we turn to analyze the MS pooling method using the log predictive score of all six

variables.

[ Insert Figure 4 about here ]

4.3 MS prediction pool

The MS prediction pool, Eq.(3.3), is estimated with the MCMC simulation and obtained from

100,000 draws after discarding the first 40,000 burn-in draws. Table 3 shows the estimation result

of the MS prediction pool explained in Section 3.2. In the pooling model, regime 1 (st = 1) indicates

a regime in which the NK model beats the FA model in terms of log predictive score, whereas regime

2 (st = 2) is a regime where the FA model prevails. The model weights of the FA model in the

regimes 1 and 2 are around 5 % (λ1 = 0.05) and 88 % (λ2 = 0.88), respectively. Using the posterior

means of the parameters of the MS pooling model as shown in Table 3, the log predictive score of

the MS model with the h-step-ahead forecast described in Eq.(3.4) is represented as below.

pMS
(

yft+h; Y
O
t ,M

)

=

2
∑

st=1

pMS
(

yft+h; Y
O
t , st+h,M

)

p (st+h| st) p
(

st|Y
O
t , M

)

(4.1)

=
[

p
(

yft+h;Y
O
t ,M1

)

p
(

yft+h;Y
O
t ,M2

) ]

[

λ1 λ2

1− λ1 1− λ2

][

q11 1− q11

1− q22 q22

]h [

Pr(s1,t)

1− Pr(s1,t)

]

=
[

p
(

yft+h;Y
O
t ,M1

)

p
(

yft+h;Y
O
t ,M2

) ]

[

0.05 0.88

0.95 0.12

][

0.87 0.13

0.09 0.91

]h [

Pr(s1,t)

Pr(s2,t)

]

,

where regime variable s1,t is one when period t belongs to regime 1, and otherwise, zero. And

p(yft+h|Y
o
t ,mFA) and p(yft+h|Y

o
t ,mNK) are the log predictive scores of the FA model and the NK

model, respectively.

Like the empirical results of Waggoner and Zha (2012), each regime has an extremely high model

weight with which one model overwhelms the other, such as 95% for the NK model in regime 1 and

88% for the FA model in regime 2. Figure 5 shows the time series of regime 2 (the FA model beats

the NK model) for the sample period calculated from the estimation. In Panel (a), the black solid

line and red dashed line are the posterior means and median of regime variable (1− s1,t) of regime

2, respectively. In Panel (b), these lines are the posterior mean and median model weight (λt) of

the FA model. More precisely, we set the horizon as h=1 and the posterior probabilities of regime 2

in Panel (a) are calculated from the number of the MCMC draws of Pr(sit = s2|Y
o
t ), where i denotes

the i-th sample, by the Hamilton filter of the MS pooling method as explained in Section 3.2. And

similarly, the posterior model weight at each period in Panel (b) is derived from the number of the
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MCMC draws of E(λit|Y
o
t ) = λi1 × Pr(sit = s1|Y

o
t ) + λi2 × Pr(sit = s2|Y

o
t ).

[ Insert Table 3 about here ]

Since the fluctuations of posterior regime probabilities are similar to those of the posterior

model weight as shown in Figure 5, we focus on the model weight of the FA model in Panel (b).

The posterior medians of the model weight are over 80% between 1982:Q1 and 1985:Q4. After

that, the weight gradually decreases until 1988 and reaches 50%. From 1988:Q2, the beginning of

the “Bubble” boom to 1994:Q2, the weight of the FA model bounces back to 80%. But the values

decline deeply again and hover at a level as low as 20% between 1995:Q1 and 1997:Q2, before the

FA model makes a recovery in 1997:Q3. In this way, the FA model outdoes the NK model for

the booms and recessions of the pre-Bubble period and the Bubble period, but the boom of the

post-Bubble period.

[ Insert Figure 5 about here ]

Next, let us consider what factors decide the size of the model weights of the FA model in

terms of the financial accelerator mechanism. As described in Section 2.3, the loan rate and the

real borrowing are additionally appended into the data and the loan rate directly connects with

investment of the corporate sector in the FA model. On the other hand, since the NK model does

not include the banking sector, the investment connects with the policy rate (or the interbank rate)

instead of the loan rate. These aspects might have an influence on the forecasting of the six series.

We focus on discrepancies between the loan rate and the policy rate.

In Figure 6 (a), the two representative series of corporate loan rates, say the long-term prime

lending rate of long-term credit banks and the average contractual interest rate on bank loans for

large-scale firms, and the policy rate, say the Bank of Japan (BOJ)’s secured overnight call rate,

are depicted with a shadowed area indicating recessions. Panel (b) shows the two spreads between

the loan rate and the policy rate. As the two figures show, there are three periods during which

drastic monetary policies were implemented in Japan.

• The first period was 1985:Q4 when the monetary authorities implemented a policy to guide

the yen higher following the Plaza Accord in the G-5 finance ministerial meeting5 and hiked

the policy rate rapidly. However, the rate reverted to the lower level once the policy had

succeeded.

• The second period was between 1989:Q1 and 1991:Q1 when the BOJ had adopted a tight

monetary policy to remedy the fever in the Bubble boom and raised the rate from around

5The Plaza Accord was an agreement between the governments of France, West Germany, Japan, the United States,
and the United Kingdom, to depreciate the U.S. dollar in relation to the yen and Deutsche Mark by intervening in
currency markets. The five governments signed the accord on September 22, 1985 at the Plaza Hotel in New York
City.
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4% to 8%. However, thanks to the Bubble boom, asset prices including securities and lands

peaked and they resulted in a slow rise of the loan rate by shrinking the premium risk of

corporate loans.

• The third period was between 1993:Q1 and 1995:Q4 when the Japanese economy was suffering

from a long stagnation after the burst of the Bubble period and the BOJ had switched to an

easy monetary policy such as driving down the policy rate gradually, reaching as low as 0.5%

in 1995. However, the loan rate did not decline as much as the policy rate since leverage had

not reduced in the corporate sector due to a serious bad loan problem in the banking sector.

In these three periods, the two loan rates failed to catch up with rapid fluctuations of the policy

rate. As a result, the spread between them varied with big magnitude of fluctuations for those

periods as shown in Panel (b). Furthermore, the three periods seem to be coincident with the

timings of variations of the model weights as shown in Figure 5 (b). In the first period, the model

weight of the FA model falls to nearly 50%, then it rises to about 80% in the second period, and

again declines to around 20% in the third period. It might be thought that the changes of spread

are closely related with the difference of forecasting performance between the two models. In the

rest of this section, we analyze how the forecasting performance of the two DSGE models can be

differentiated by specifying the three periods.

[ Insert Figure 6 about here ]

For the first period of drastic monetary policies, the spread became negative since the Plaza

Accord had made the policy rate jump. As shown in Figure 4, the log predictive scores of all six

series are likely to coincide between the two DSGE models after 1986:Q1 until 1988:Q1, before the

beginning of the Bubble boom. This can also be seen from Figure 3, in which the log predictive

scores of the individual series become close to each other in the four series: consumption, investment,

interest rate and inflation, for this period. And the forecasting performance improves in the former

two series of the NK model compared with the previous period, whereas it decays in the latter two

series.

Next, for the Bubble period in the second period, the size of the under-estimation of the interest

rate in the FA model is expanded compared with the NK model, and the predicted low interest

rate also makes the estimation of inflation lower. On the other hand, the FA model has better

performance in the three real series such as output, consumption and investment. As shown in

the predictive distributions of Figure 2, the FA model might successfully grasp the big fluctuations

of the Bubble period as the area of the distributions. In terms of wages, the NK model brings

overestimation.

Finally, for the third period, forecasting of the interest rate changes from underestimation to

overestimation by changing the attitude to monetary policy after the collapse of the Bubble boom.

In particular, since the size of the overestimation of the rate in the FA model is much bigger than

that of the NK model, the FA model makes predictions of output, consumption and inflation that
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are more seriously underestimated. In addition, the low interest rate policy makes the fluctuations of

output, inflation and interest rate much narrower after 1995. These aspects become a disadvantage

of the FA model, since the wider predictive densities of the FA model cover their smaller realized

movements with too much surplus.

To sum up, although it appears paradoxical, the NK model without the financial friction per-

forms better for the period with a bigger spread, which is thought to be compatible with the financial

accelerator, such as in 1987:Q1–1988:Q1 and 1994:Q1–1997:Q1. In contrast, the FA model is pre-

dominant over its counterpart for the period generating negative spreads, in which the frictionless

model seems to work well, since there is no EFP between the loan rates and the policy rate. In

the light of the above consideration, we conclude that the observed spreads are not likely to be

reflected in a timely way as the EFP of the corporate sector if the financial accelerator mechanism

is regarded as working correctly. In particular, we observe a non-trivial time lag of the reduction

of loan rates due to the rapid cutting of the policy rate. Accordingly, the FA model decays for the

above two periods with big spreads despite importing the two additional categories of data.

5 Robust check by dynamic prediction pool

5.1 Robust check of model weights

Dynamic prediction pool method

IIn this section, we conduct a robust check of the previous section using another pooling method

with a time-varying model weight, namely the dynamic prediction pooling method. This method

was proposed by Del Negro et al. (2016). The MS model estimated in the previous section makes

multiple constant model weights switch corresponding to multiple regimes, whereas the dynamic

prediction pooling method has continuous values between zero and one as time-varying weights by

incorporating the probit model. The model consists of the following two equations:

λt = Φ(xt) , (5.1)

xt = (1− ρ)µ− ρxt−1 +
√

1− ρ2 σ εt, x0 ∼ N(µ, σ2),

where λt ∈ [0, 1] is a model weight at period t , and xt is a latent variable which is an input of

a probit transformation and follows an AR(1) process. ρ is the autocorrelation coefficient. Φ(·)

is the cumulative density function of standard normal distribution, the disturbance term follows

εt ∼ N (0, 1), and x0 is the initial value of xt. The autocorrelation coefficient ρ captures how

smoothly the weighting coefficient can change over time. The closer ρ is to one, the more slowly

the model weights, λt , change. When ρ = 1, the model reduces to the case of static prediction

pooling in Geweke and Amisano (2011) by taking λt = λ. When ρ = 0, it indicates that λt is

serially independent and follows a random walk. µ is the mean of the unconditional distribution of

the model weights, and σ is the variance of xt, the large value of which makes the model weights

fluctuate drastically. From these equations, we obtain conditional expectations and variances of the

latent variables for the h-step-ahead forecast, xt+h,
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E(xt+h|xt) = ρhxt + (1− ρ)µ

h−1
∑

i=0

ρi, (5.2)

V ar(xt+h|xt) = (1− ρ2)σ2
h−1
∑

i=0

ρ2i,

where both conditional values converge to unconditional values, E(xt+h) = µ, and V ar(xt+h) = σ2,

when h → ∞. And coefficient µ and variance σ2 of the initial value of the latent variable are also

equivalent to the unconditional values.

This study examines two versions of the above model following Del Negro et al. (2014). One is

set as µ = 0 and σ2 = 1. µ = 0 indicates that the unconditional expectation of the model weight

is 0.5, Φ(0) = 0.5, since the unconditional expectation of the weight is assumed to be equivalent

between both models. And setting σ2 = 1 comes from the assumption of the latent variable in the

probit model. Accordingly, we only estimate a coefficient ρ in this version. The second sets three

parameters freely and estimates them.

We obtain the dynamic prediction pooling of the log predictive score as

LPSDP (λt+h, h) ≡
T
∑

t=1

log
[

λt+h p
(

yft+h; Y
o
t , M1

)

+ (1− λt+h) p
(

yft+h; Y
o
t , M2

)]

. (5.3)

We adopt a particle filter for coping with a nonlinear model such as a probit model, and incorporate

the nonlinear filtering method into a Bayesian estimation with the MCMC procedure, following Del

Negro et al. (2016). We set the number of particles of the filter as 5,000 and calculate approximate

values of the log predictive scores defined as Eq. (5.3). And we conduct 20,000 iterations as the

MCMC procedure and discard the first 5,000 draws as burn-in 6.

Empirical Results

The estimation result in the version with only one flexible parameter is described in Panel (a) of

Table 4 and that of the version with three flexible parameters is in Panel (b). The former has

around 0.7 for the posterior mean of coefficient ρ, whereas the latter reduces to 0.6 by increasing

the means of the other parameters to 1.66 and 0.5 for standard deviation σ and µ, respectively.

Since ρ means persistence from the weight of the previous period, we can consider that the current

weights are not so strongly influenced by the previous weight. From the posterior mean of σ, the

uncertainty of the weight might be 1.66 times the second version. And the unconditional model

weight of the FA model is nearly 70% since Φ(0.5) = 0.691.

[ Insert Table 4 about here ]

6We code the algorithm of a particle filter following Johannes and Polson (2009). And the joint use of the MCMC
procedure and the particle filter in our study also follows Andrieu et al. (2010).
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[ Insert Figure 7 about here ]

The estimated time-varying model weights of the FA model are depicted in Figure 7. Panel

(a) shows the weights of one flexible parameter, whereas Panel (b) shows those of three flexible

parameters. The black solid lines represent the posterior means and the black dotted lines indicate

68% credible intervals. As shown in both graphs, like the MS model in Figure 5, for the boom and

the recession of the Bubble period, the posterior means of the weights reach nearly 70% and 90%

for the one parameter version and the three parameter version, respectively.

In contrast with the MS model, both versions of the dynamic model significantly make the

weight of the FA model go down in the period of 1997:Q2 when the consumption tax was jacked

up from 3% to 5%. In the version with one parameter, the weight dropped from nearly 50% to less

than 30%, while the other version rapidly reduced the weight to 10%. And it is noteworthy that

the posterior means of the model weights of the MS model drawn in Figure 5 are located between

those of the two versions of the dynamic model. However, in terms of credible intervals, these two

versions are in contrast with the MS model. The areas of the latter model are much narrower as

a result of taking advantage of the characteristics of the discrete Markov process. Although we

observe discrepancies between the two pooling methods, we successfully conduct a robust check to

grasp the correlation between the three drastic monetary policy changes and the fluctuation of the

model weights for the FA model.

5.2 Evaluation and validity of forecasting by pooling methods

Finally, we evaluate the forecasting performance of all the pool methods and the DSGE models. The

cumulative log predictive scores of the methods are calculated from 1
H

∑H
h=1 LPS(λt, h) described

as Eq.(3.2), Eq. (3.4) and Eq. (5.3), where we set H = 4 and posterior means of the time-varying

model weights are adopted as the weight λt. Table 5 represents the cumulative log predictive scores

of the four methods including the pooling method with the constant weight originally proposed

by Geweke and Amisano (2011). As this table shows, all four pooling methods dominate the log

predictive scores of both of the single DSGE models. In particular, the results for the three methods

with time-varying model weights are notable, and the dynamic pooling model with three flexible

parameters records the best performance.

[ Insert Table 5 about here ]

Using the model weight of the two pooling methods calculated from the log predictive score for

all six variables, we calculate the log predictive scores for the six individual series and describe those

values in the third and fourth rows of Table 2 (a) through (d). The bold numbers show the best

performance out of the four models: NK model, FA model, MS model, dynamic model with three

flexible parameters. As mentioned before, NK beats the FA model in terms of GDP, inflation, and

interest rate for all sample periods and FA dominates for wage. For these series, the pooling methods
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combining both single DSGE models cannot improve the log predictive scores. On the other hand,

for consumption and investment, we obtain an improvement of the forecasting performance for all

three periods using the model weight of the pooling method calculated from the whole series of six.

In this way, we manage to improve the predictions for several series by combining multiple DSGE

models although some conditions are required. We need to further develop pooling methods with

time-varying weights for predicting more accurately and for expanding to more multiple series.

6 Conclusion

Using the Markov switching prediction pool method by Waggoner and Zha (2012) in terms of density

forecasts, we consider the time-varying forecasting performance of a DSGE model incorporating a

financial accelerator à la Bernanke et al. (1999) with the frictionless model, by focusing on periods

of financial crisis including the so-called “Bubble period” and the “Lost decade” in Japan.

One of the features in estimation with DSGE models is imposing restrictions on the comovements

between macroeconomic variables from the point of view of the DSGE model. The higher forecast

performance of the model with the financial friction compared to the model without friction reflects

the presence of comovements generated by the friction in the data during the period. It is suggested

that the causality of the financial accelerator exists with a higher probability than that of the

frictionless model. And we estimated when and the extent to which the comovements generated

by both DSGE models change in terms of time series through changes of the time-varying model

weights, realizing the optimal combination of density forecasts. These gave us the clues to which

conditions in economic situations contribute to changes of the comovements. Furthermore, we

conducted a robust check to examine whether a similar dynamic change of the weight is observed

when using the dynamic prediction pooling method by Del Negro et al. (2016) in this paper.

This paper showed the following findings. For the overall periods from 1981:Q1 to 1998:Q4, the

model with the financial friction is predominant over the frictionless benchmark model in terms

of density forecasts. The difference between them is likely to come from fluctuation of the spread

between the loan rate and policy interest rate. In a period with a small change of the spread, the

financial accelerator mechanism contributes to improve the prediction. However, when a drastic

monetary policy was implemented, the loan rates, which did not react to the big change of the

policy rates and shifted the spread with a large step, weakened the forecasting performance of the

model with the friction. In particular, the frictionless model shows superior performance for the

period from 1993 to 1995, since the spread realized with a big range despite the boom seems to

be contrary to the spread generated from the financial friction. These empirical results suggested

that real spreads do not provide a timely reflection of the change of the external financial premium

generated between bankers and the corporate sector, and that there is a non-trivial time lag between

them. The robust check also supported these results.
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A Online Appendix

A.1 NK model

There are fourteen log-linearized equilibrium condtions in the benchmark DSGE model: Eq.(A.1)

through Eq.(A.14). The hatted letters indicate log-deviations from steady-state values after de-

trending with the level of composite technology Z∗
t .

a. Households

λ̂t = −
1

1− θπ/rn

{

σ

1− θ/z∗

(

ct −
θ

z∗
(ĉt− − z∗t )

)

− zbt

}

+
θπ/rn

1− θπ/rn

{

σ

1− θ/z∗
(

Etĉt+1 + Etz
∗
t+1 − θ/z∗ĉt

)

− Etz
b
t+1

}

, (A.1)

λ̂t = Etλ̂t+1 − σEt z
∗
t+1 + r̂nt − Etπ̂t+1, (A.2)

i) Workers:

ŵt = ŵt−1 − π̂t + γwπ̂t−1 − z∗t +
z∗π

rn

(

Etŵt+1 − ŵt + Etπ̂t+1 − γwπ̂t + Etz
∗
t+1

)

+
(1− ξw)(1− ξwz

∗π/rn)

ξw(1 + χ(1 + λw)/λw)

(

χl̂t − λ̂t − ŵt + zbt

)

+ zwt , (A.3)

ii) Entrepreneurs:

ût = τ(r̂kt − q̂t), (A.4)

χ̂t =

(

1−
1− δ

rnψ

)

r̂kt +
1− δ

rnψ
q̂t − q̂t−1 − zψt , (A.5)

Etχ̂t+1 = r̂nt − Etπ̂t+1, (A.6)

b. Firms

ŷt = (1 + φ)
{

(1− α) l̂t + α(ût + k̂t−1 − z∗t − zψt )
}

, (A.7)

0 = ŵt + l̂t − (r̂kt + ût + k̂t−1 − z∗t − zψt ), (A.8)

m̂ct = (1− α)ŵt + αr̂kt . (A.9)
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π̂t = γpπ̂t−1 +
z∗π

rn
(Etπ̂t+1 − γpπ̂t) +

(1− ξp)(1− ξp
z∗π
rn

)

ξp
m̂ct + zpt , (A.10)

k̂t =
(1− δ − rnψ/π)

z∗ψ
ût +

1− δ

z∗ψ
(k̂t−1 − z∗t − zψt ) +

(

1−
1− δ

z∗ψ

)

ît, (A.11)

q̂t =
1

ζ
(̂it − ît−1 + z∗t + zψt )−

z∗π

ζrn
(Etît+1 − ît + Etz

∗
t+1 + Etz

ψ
t+1)− zνt + zit, (A.12)

C. Miscellaneous

r̂nt = φrr̂
n
t−1 + (1− φr)

{

φπ
4
Σ3
j=0π̂t−j + φyŷt

}

+ zrt , (A.13)

ŷt =
c

y
ĉt +

i

y
ît +

g

y
zgt , (A.14)

A.2 FA model

There are seventeen log-linearized equilibrium condtions in the DSGE model with financial accel-

erator, consisting of both Eq.(A.1) through Eq.(A.5) and Eq.(A.7) through Eq.(A.14), which are a

common part of both models, and an additional part formd from Eq.(A.15) through Eq.(A.18) .

r̂Et = r̂nt + µE(q̂t + k̂t − n̂t) + zµt , (A.15)

z∗

η rE
n̂t =

1 + λi
n/k

[

(1−
1− δ

rEψ
)r̂kt +

1− δ

rEψ
q̂t − q̂t−1 − zψt

]

−

(

1 + λi
n/k

− 1

)

Et−1r̂
E
t + n̂t−1 − z∗t + zηt , (A.16)

b̂t =
1 + λi

1 + λi − n/k
(q̂t + k̂t) +

(

1−
1 + λi

1 + λi − n/k

)

n̂t, (A.17)

Etχ̂t+1 = r̂Et − Etπ̂t+1, (A.18)
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B Tables

Table 1: Means of Forecasting Errors of Observations

Output Consumption Investment Real Wage Inflation Nominal Rate

Booms

Full Sample
NK -0.276 -0.265 -0.979 0.172 -0.047 0.033

FA -0.326 -0.151 -1.278 -0.010 -0.057 0.040

Pre Bubble
NK -0.248 -0.566 -0.156 -0.125 -0.038 0.041

FA 0.198 -0.093 0.263 -0.013 -0.051 0.034

Bubble
NK -0.236 -0.087 -1.785 0.481 -0.064 -0.090

FA -0.568 -0.133 -2.591 0.073 -0.064 -0.107

Post Bubble
NK -0.386 -0.262 -0.862 0.082 -0.062 0.153

FA -0.581 -0.298 -1.262 -0.112 -0.085 0.202

Recessions

Full Sample
NK 0.135 0.237 0.708 0.280 0.018 0.187

FA 0.041 0.182 0.577 0.032 -0.003 0.184

Pre Bubble
NK -0.019 -0.309 0.419 0.011 0.245 0.124

FA 0.185 -0.093 0.552 -0.107 0.231 0.080

Bubble
NK 0.062 0.386 0.106 0.414 -0.064 0.195

FA -0.191 0.173 -0.077 0.055 -0.128 0.135

Post Bubble
NK 0.382 0.472 1.901 0.299 -0.048 0.228

FA 0.283 0.433 1.628 0.113 -0.006 0.351

Notes: Full Smaple: 1981:Q1-1998:Q4. Boom and recession in the pre-Bubble: 1981:Q1-1985:Q2
and 1985:Q3-1986:Q2. Boom and recession in the Bubble period: 1986:Q3-1991:Q1 and 1991:Q2-
1993:Q2. And boom and recession of the post-Bubble: 1993:Q3-1997:Q2 and 1997:Q3-1998:Q4.
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Table 2: Log Scores of Single and the Whole of Observations

(a) Full Smaple: 1981:Q1-1998:Q4
Log Score

Models Whole Output Cons Inv Real Wage Inflation Nominal Rate

NK -522.45 -95.49 -114.16 -185.58 -65.36 -20.43 -21.43
FA -492.66 -102.16 -106.57 -175.42 -51.66 -28.56 -28.10

MS -482.08 -98.51 -106.34 -174.90 -52.88 -25.19 -25.73
D3 -477.16 -97.84 -104.32 -172.30 -53.16 -25.16 -25.16

(b) Pre Bubble Cycle: 1981:Q1-1986:Q2
Log Score

Models Whole Output Cons Inv Real Wage Inflation Nominal Rate

NK -135.89 -20.79 -30.35 -42.45 -15.15 -6.97 -5.14
FA -126.42 -23.81 -26.15 -43.70 -13.85 -8.73 -6.76

MS -125.95 -23.14 -25.79 -43.22 -13.92 -8.46 -6.52
D3 -124.33 -22.14 -24.49 -42.77 -13.99 -8.10 -6.22

(c) Bubble Boom and Recession: 1986:Q3-1993:Q2
Log Score

Models Whole Output Cons Inv Real Wage Inflation Nominal Rate

NK -231.29 -46.81 -51.51 -82.21 -33.89 -7.57 -9.08
FA -207.87 -47.49 -48.56 -75.35 -23.33 -11.40 -11.17

MS -205.33 -47.12 -48.62 -75.34 -23.97 -10.76 -10.78
D3 -202.18 -46.84 -48.06 -74.90 -24.07 -10.24 -10.35

(d) Post Bubble Cycle: 1993:Q3-1998:Q4
Log Score

Models Whole Output Cons Inv Real Wage Inflation Nominal Rate

NK -149.92 -27.03 -31.00 -59.42 -15.69 -5.38 -6.84
FA -152.33 -29.80 -30.49 -54.51 -14.07 -7.83 -9.74

MS -144.95 -27.24 -30.59 -54.57 -14.55 -5.93 -7.78
D3 -145.11 -27.94 -30.45 -53.00 -14.55 -6.27 -8.00

Notes:

1. FA model and NK model stand for the DSGE models with financial friction and without financial

friction, respectively.

2. MS and D3 stand for Markov-swiching pool and dynamic pool with three flexible parameters,
respectively.

3. A boldface type of the the third and forth rows represents the best value out of two DSGE
models, while that of the fifth and sixth rows represent the best value out of all four methods
in terms of each observation of the colums.
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Table 3: Markov Switching Prediction Pool

Parameter Prior Mean Std. Dev. 90 % Band Inefficiency

λ1 G(0.05, 0.1) 0.049 0.080 [ 0.000 0.126 ] 261.73
λ2 G(0.95, 0.1) I(λ2 > λ1) 0.884 0.089 [ 0.773 0.984 ] 572.56

q11 Beta(1, 9) 0.865 0.094 [0.736 0.968 ] 580.43
q22 Beta(1, 9) 0.909 0.073 [ 0.810 0.983 ] 593.56

Notes:

1. For estimation of MS prediction pool method, we conduct 100,000 MCMC iterations, the first
40,000 iterations are discarded.

2. In prior, G, Beta stand for gamma and beta distributions, respectively. I(·) represent an
indicator function which returns one if a condition of inside are hold, otherwise zero.
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Table 4: Dynamic Prediction Pool

(i) One flexible parameter version
Parameter Prior Mean Std. Dev. 90 % band Inefficiency

ρ U(0, 1) 0.700 0.227 [ 0.288 0.984 ] 102.085

(ii) Three flexible parameters version
Parameter Prior Mean Std. Dev. 90 % band Inefficiency

ρ Beta(5, 5) 0.590 0.094 [ 0.433 0.703] 4.875

µ N(0.5,1) 0.500 0.011 [ 0.480 0.514] 9.295

σ IG(1,10) 1.657 0.137 [ 1.380 1.845] 13.336

Notes:

1. For estimation of Dynamic prediction pool method, we conduct 20,000 MCMC iterations with
5,000 particles, the first 5,000 iterations are discarded.

2. In prior, U , Beta, N and IG stand for uniform, beta, normal and inverse gamma distributions,
respectively.
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Table 5: Cumulative Log Scores

Component Models Model Pooling

Model Log Score Methods Log Score

NK -522.45 Static Pool -489.18
FA -492.66 MS Pool -482.08

Dynamic Pool (1) -484.68
Dynamic Pool (3) -477.16

Notes:

1. The prediction scores p(yt+h;Yt,Mi) for the NK model: M1, and FA model: M2, are obtained by
simulation using the MCMC draws of the posterior model parameters.

2. Dynamic pool (1) and (3) stand for those with one and three flexible parameters, respectively.

3. Log scores of Static Pool, MS Pool and Dynamic Pool are calculated from Eq.(3.2), Eq.(3.4), and
Eq.(5.3), respectively.
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Table A1. Priors of the Parameters in both the Models

Dist. Benchmark Model Financial Friction

Parameter Type Mean S.D. Mean S.D.

σ Risk aversion G 1.5 0.375 1.5 0.375

θ Habit persistence B 0.7 0.1 0.7 0.1

χ Inverse of elesiticity of labor supply G 2.0 0.75 2.0 0.75

1/ζ Elasticity of investment adjustment cost G 4.0 1.5 4.0 1.5

τ Inverse of elasticity of utilization rate adjustment cost G 1.0 0.2 1.0 0.2

φ/y Fixed production cost-output ratio G 0.25 0.125 0.25 0.125

γw Wage indexation B 0.5 0.15 0.5 0.15

ξw Wage stickiness B 0.5 0.1 0.5 0.1

γp Intermediate-goods price indexation B 0.5 0.15 0.5 0.15

ξp Inermediate-goods price stickiness B 0.5 0.1 0.5 0.1

φr Monetary policy rate smoothing B 0.75 0.1 0.75 0.1

φπ Monetary policy response to inflation G 1.5 0.25 1.5 0.25

φy Monetary policy response to output G 0.125 0.05 0.125 0.05

z∗ Steady-state rate of balanced growth G 0.36 0.1 0.36 0.1

ψ Steady-state rate of IS technological change G 0.32 0.1 0.32 0.1

η Entrepreneur survival probability B NA NA 0.973 0.02

n/k Steady-state net worth-capital ratio B NA NA 0.5 0.07

µE Elasticity of EF premium G NA NA 0.07 0.02

rE Steady-state loan rate G NA NA 1.19 0.05

ρb Persistence of preference shock B 0.5 0.2 0.5 0.2

ρg Persistence of exogenous demand shock B 0.5 0.2 0.5 0.2

ρw Persistence of wage shock B 0.5 0.2 0.5 0.2

ρp Persistence of intermediate-goods price markup shock B 0.5 0.2 0.5 0.2

ρi Persistence of investment-goods price markup shock B 0.5 0.2 0.5 0.2

ρr Persistence of monetary policy shock B 0.5 0.2 0.5 0.2

ρz Persistence of neutral technology shock B 0.5 0.2 0.5 0.2

ρψ Persistence of IS technology shock B 0.5 0.2 0.5 0.2

ρν Persistence of MEI shock B 0.5 0.2 0.5 0.2

ρµ Persistence of EFP shock B NA NA 0.5 0.2

ρη Persistence of net worth shock B NA NA 0.5 0.2

σb S.D. of preference shock innovation IG 0.5 Inf. 0.5 Inf.

σg S.D. of exogenous demand shock innovation IG 0.5 Inf. 0.5 Inf.

σw S.D. of wage shock innovation IG 0.5 Inf. 0.5 Inf.

σp S.D. of intermediate-goods price markup shock innovation IG 0.5 Inf. 0.5 Inf.

σi S.D. of investment-goods price markup shock innovation IG 0.5 Inf. 0.5 Inf.

σr S.D. of monetary policy shock innovation IG 0.5 Inf. 0.5 Inf.

σz S.D. of neutral technology shock innovation IG 0.5 Inf. 0.5 Inf.

σψ S.D. of IS technology shock innovation IG 0.5 Inf. 0.5 Inf.

σν S.D. of MEI shock innovation IG 0.5 Inf. 0.5 Inf.

σµ S.D. of EFP shock innovation IG NA NA 0.5 Inf.

ση S.D. of net worth shock innovation IG NA NA 0.5 Inf.

Notes: Regarding the type of prior distributions, B,G and IG stand for Beta, Gamma, and Inverse Gamma distribu-
tions, respectively.
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Table A2. Posterior Estimates of the Parameters in the Benchmark model

Parameter Mean Stdev [ 95% Band ] Geweke Inef.

σ 1.3384 0.2254 [ 0.994 1.741 ] 0.169 175.166

θ 0.3662 0.0576 [ 0.277 0.469 ] 0.636 162.026

χ 3.5377 0.724 [ 2.326 4.716 ] 0.028 191.738

1/ζ 0.5825 0.1492 [ 0.365 0.87 ] 0.24 217.022

τ 1.0423 0.1823 [ 0.758 1.366 ] 0.539 141.557

φ/y 0.3642 0.1114 [ 0.195 0.558 ] 0 277.987

γw 0.4511 0.134 [ 0.21 0.673 ] 0.124 261.432

ξw 0.3101 0.0809 [ 0.195 0.466 ] 0 269.981

γp 0.6807 0.1217 [ 0.462 0.856 ] 0.022 140.977

ξp 0.4811 0.0281 [ 0.435 0.527 ] 0.815 94.937

φr 0.5264 0.0803 [ 0.385 0.643 ] 0.002 175.321

φπ 2.1025 0.22 [ 1.762 2.46 ] 0.671 98.36

φy 0.1048 0.0461 [ 0.043 0.192 ] 0.418 323.954

z∗ 0.3939 0.0929 [ 0.25 0.557 ] 0.014 251.441

ψ 0.4277 0.0766 [ 0.306 0.564 ] 0.04 161.517

η NA NA [ NA NA ] NA NA

n/k NA NA [ NA NA ] NA NA

µE NA NA [ NA NA ] NA NA

rE NA NA [ NA NA ] NA NA

ρb 0.8256 0.067 [ 0.688 0.895 ] 0.003 98.55

ρg 0.9159 0.0246 [ 0.872 0.952 ] 0.001 27.284

ρw 0.5906 0.1609 [ 0.326 0.842 ] 0 343.84

ρp 0.9495 0.0275 [ 0.899 0.983 ] 0 52.996

ρi 0.9112 0.0424 [ [ 0.833 0.967 ] 0 80.725

ρr 0.3991 0.1234 [ 0.203 0.589 ] 0.255 279.234

ρz 0.0633 0.0304 [ 0.024 0.131 ] 0.23 304.232

ρψ 0.1456 0.0635 [ 0.041 0.252 ] 0 301.843

ρν 0.8252 0.1005 [ 0.621 0.95 ] 0.874 89.026

ρµ NA NA [ NA NA ] NA NA

ρη NA NA [ NA NA ] NA NA

σb 1.9911 0.3553 [ 1.496 2.61 ] 0.109 195.043

σg 0.9987 0.0817 [ 0.874 1.143 ] 0.058 43.062

σw 0.754 0.1027 [ 0.606 0.945 ] 0.006 141.629

σp 0.5865 0.0783 [ 0.475 0.734 ] 0.58 121.738

σi 1.8523 0.2901 [ 1.422 2.373 ] 0.418 180.29

σr 0.535 0.0543 [ 0.455 0.633 ] 0.64 52.711

σz 1.6481 0.1646 [ 1.406 1.924 ] 0.283 91.421

σψ 0.5684 0.0486 [ 0.506 0.66 ] 0.109 62.768

σν 0.5148 0.0142 [ 0.501 0.543 ] 0.099 5.916

σµ NA NA [ NA NA ] NA NA

ση NA NA [ NA NA ] NA NA
Notes: To form posterior distributions of the parameters, 300,000 iterations are implemented in MCMC. After the first 150,000
draws are discarded, the remaining draws are sampled as the posterior estimates. Mean and Stdev stand for the posterior
mean and standard deviation, respectively. Geweke and Inef. refer to the p-value associated with the convergence diagnostic of
Geweke (1992) and the simulation inefficient statistics of Kim, Shephard and Chib (1998).
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Table A3. Posterior Estimates of the Parameters in the Financial Friction model

Parameter Mean Stdev [ 95% Band ] Geweke Inef.

σ 0.9114 0.1005 [ 0.744 1.085 ] 0.007 336.418

θ 0.4907 0.0604 [ 0.393 0.582 ] 0 340.524

χ 1.8996 0.3357 [ 1.128 2.315 ] 0.77 344.756

1/ζ 0.4113 0.0617 [ 0.31 0.518 ] 0.724 342.076

τ 1.797 0.1373 [ 1.532 1.974 ] 0.003 287.338

φ/y 0.9585 0.035 [ 0.886 0.997 ] 0.746 163.002

γw 0.4309 0.0593 [ 0.294 0.512 ] 0.024 323.808

ξw 0.5149 0.0415 [ 0.452 0.592 ] 0.202 280.793

γp 0.6908 0.1116 [ 0.507 0.872 ] 0 337.899

ξp 0.3749 0.0484 [ 0.309 0.471 ] 0.378 335.937

φr 0.4527 0.0478 [ 0.359 0.528 ] 0.604 309.306

φπ 1.7541 0.1114 [ 1.57 1.933 ] 0.432 254.574

φy 0.1026 0.0155 [ 0.079 0.127 ] 0 339.599

z∗ 0.2892 0.0306 [ 0.245 0.345 ] 0.03 314.2

ψ 0.407 0.0664 [ 0.291 0.519 ] 0 347.066

η 0.984 0.0094 [ 0.966 0.997 ] 0.191 54.085

n/k 0.5827 0.0411 [ 0.513 0.654 ] 0.02 297.98

µE 0.0331 0.0044 [ 0.026 0.04 ] 0 318.722

rE 1.1845 0.0482 [ 1.107 1.264 ] 0.965 161.831

ρb 0.3442 0.0955 [ 0.178 0.48 ] 0.049 322.948

ρg 0.9245 0.0229 [ 0.883 0.958 ] 0.931 84.04

ρw 0.1625 0.0328 [ 0.108 0.217 ] 0 352.195

ρp 0.377 0.0803 [ 0.254 0.514 ] 0.002 337.322

ρi 0.9765 0.0031 [ 0.97 0.98 ] 0 31.383

ρr 0.2005 0.1144 [ 0.056 0.421 ] 0.081 361.944

ρz 0.2231 0.0194 [ 0.187 0.251 ] 0.498 311.019

ρψ 0.096 0.0323 [ 0.037 0.141 ] 0 361.778

ρν 0.8219 0.0475 [ 0.732 0.888 ] 0.176 215.383

ρµ 0.9066 0.0217 [ 0.871 0.941 ] 0.956 87.187

ρη 0.7047 0.0599 [ 0.598 0.799 ] 0.057 292.095

σb 1.4693 0.153 [ 1.245 1.763 ] 0 327.772

σg 1.0141 0.0969 [ 0.872 1.196 ] 0.697 308.772

σw 0.6174 0.0546 [ 0.531 0.722 ] 0.272 277.323

σp 0.5845 0.0656 [ 0.479 0.71 ] 0.876 326.688

σi 2.1229 0.1952 [ 1.793 2.442 ] 0.265 313.628

σr 0.6136 0.0462 [ 0.539 0.692 ] 0.005 278.955

σz 0.6318 0.0619 [ 0.537 0.741 ] 0.037 304.696

σψ 0.5921 0.0479 [ 0.519 0.673 ] 0 298.752

σν 0.5174 0.0152 [ 0.501 0.548 ] 0.209 110.049

σµ 0.4135 0.0336 [ 0.359 0.473 ] 0.001 282.062

ση 1.011 0.1471 [ 0.781 1.276 ] 0 342.149
Notes: To form posterior distributions of the parameters, 300,000 iterations are implemented in MCMC. After the first 150,000
draws are discarded, the remaining draws are sampled as the posterior estimates. Mean and Stdev stand for the posterior
mean and standard deviation, respectively. Geweke and Inef. refer to the p-value associated with the convergence diagnostic of
Geweke (1992) and the simulation inefficient statistics of Kim, Shephard and Chib (1998).
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C Figures

Figure 1: Impulse Response Functions

(a) Preference Shock
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(b) Monetary Policy Shock
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(c) Investment-Specific Shock
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(d) Investment-goods Markup Shock
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Notes: FA model and NK model stand for the DSGE models with financial friction and without financial
friction, respectively. The IRFs of both the DSGE models are calculated from the structural parameters
whose values are prior mean shown in Table A1, except the parameter µE whose value is 5 times bigger than
that of the prior.
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Figure 2: Posterior Predictive Disributions in the Bubble Period

(a) NK model: Forecast as of 90:Q4
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(b) FA model: Forecast as of 90:Q4
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Note:
The posterior prediction distributions of the DSGE models are calculated based on the Monte Calro
procedure as described in Section 4.2, using 10,000 draws of posterior estimates over the full sample. FA
model and NK model stand for the DSGE models with financial friction and without financial friction,
respectively.
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Figure 3: Predictive Log Scores of Individual Observations
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Note: The log score at each period is calculated from log p(yOt ;Y O
t−1,Mi) for i = 1,2, of the individual

model out of the NK model and the FA model as explained in Sec 2.
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Figure 4: Predictive Log Scores of the Whole Six Observations
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Note: The log score at each period is calculated from log p(yft+h;Y
O
t ,Mi) for i = 1,2, of the individual

model out of the NK model and the FA model as explained in Sec 2.
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Figure 5: Markov-switching Prediction Pool of Whole Six Observations
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Notes:

1. Markov-switching pooling model is calculated from Eq.(3.3). The weighting coefficients on the FA
model, λi, are estimated with MCMC simulation and obtained from 100,000 draws after discarding
the first 40,000 burn-in draws.

2. The solid black and red lines denote their posterior means and medians, respectively, and the blue
shaded area represents recessions reported by the Cabinet Office, government of Japan.
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Figure 6: Levels and Speads of Corporate Loan Rates

(a) Levels of Loan Rates and Policy Rate
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(b) Spreads between Loan Rates and Policy Rate
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Notes: Policy rate stand for the Bank of Japan’s secured overnight call rate. Loan rate 1 and
loan rate 2 represent the long-term prime lending rate of Long-term credit banks and the average
contractural interest rate on bank loan for large scale firms, respectively.
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Figure 7: Dynamic Prediction Pool of the Whole Six Observations

(a) One flexible parameter
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(b) Three flexible parameters
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Notes:

1. Dynamic pooling model is calculated from Eq.(3). The time-varying coefficient is estimated from 20,000
draws by the particle MCMC simulation with 5,000 particles, after the first 5,000 draws are discarded.

2. In one flexible parameters model of panel (a), the constant coefficients µ and σ are fixed as µ = 0 and
σ = 1, following Del Negro et al. (2014).

3. In three felexible parameters model of panel (b), the coefficients µ and σ are estimated as well as ρ,
following Del Negro et al. (2014).

4. The solid black line denotes their posterior means and the blue shaded area represents their 68%
confidence interval.
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