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Abstract

Autocorrelation robust tests are notorious for suffering from size distortions and power

problems. We investigate under which conditions the size of autocorrelation robust tests

can be controlled by an appropriate choice of critical value.

1 Introduction

Autocorrelation robust tests have gained prominence in econometrics in the late 1980s and early

1990s, mainly through the work by Newey and West (1987, 1994), Andrews (1991), and Andrews

and Monahan (1992). These tests are Wald-type tests that use a nonparametric variance esti-

mator which tries to take the autocorrelation in the data into account. For more on the history

of such tests, that can actually be traced back at least to Grenander and Rosenblatt (1957),

see Section 1 of Preinerstorfer and Pötscher (2016). Critical values are usually obtained from

the asymptotic null distribution, which is a chi-square distribution under the framework used

in the before mentioned papers. Considerable size distortions of the resulting tests have been

reported in several Monte Carlo studies. In an attempt to ameliorate this problem, Kiefer et al.

(2000), Kiefer and Vogelsang (2002a,b, 2005) have suggested an alternative asymptotic frame-

work (“fixed bandwidth asymptotics”), which resulted in another proposal for a critical value.

While this proposal often leads to some reduction in the size distortion (typically at the expense

of some loss in power), it does not eliminate the problem. A finite-sample theory explaining the

aforementioned size distortions and power deficiencies of autocorrelation robust tests (in either
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of their two variants) has been developed in Preinerstorfer and Pötscher (2016) in the framework

of testing affine restrictions on the regression parameters of a linear regression model, the errors

of which follow a Gaussian stationary process: Under the very mild assumption that the model

for the autocorrelations encompasses the stationary autoregressive model of order one, Section

3 of Preinerstorfer and Pötscher (2016) shows, in particular, that the following cases typically

arise for a given autocorrelation robust test statistic (which of the cases arises depending on

observable quantities only):

1. The test has size one for every choice of the critical value C. This case arises, for example,

when one wants to test a hypothesis concerning the intercept of a regression.

2. There exists an observable threshold c such that the size of the test is 1, if the critical value

C is less than c. If the critical value C is larger than the threshold c, the infimal power of

the test is zero.

We note that these results are to a large extent driven by a “concentration phenomenon”

that arises for strong correlations in the error process. For a more detailed discussion and some

intuition see Sections 3.1 and 5.2 as well as pp. 275-276 of Preinerstorfer and Pötscher (2016).

While the two cases just mentioned do not exhaust all possibilities, their union is shown to be

generic in Preinerstorfer and Pötscher (2016), entailing that general autocorrelation robust tests

are typically fraught with considerable size and/or power problems. Preinerstorfer and Pötscher

(2016) also show that there is a case not covered by Cases 1 and 2 (and which hence is non-

generic) for which the following holds, provided the model for the autocorrelation is precisely the

stationary autoregressive model of order one (which, of course, is a quite restrictive assumption):

3. For every prescription of a significance value α, the size of the test can be made less than or

equal to α by a proper choice of the critical value C. For this C, infimal power is positive

(and more can be said about power properties, but we do not discuss this here).

While this case is nongeneric, Preinerstorfer and Pötscher (2016) also show how one can –

under the restrictive assumption on the correlation structure just mentioned – often force the

original testing problem into the situation of Case 3 by augmenting the model with auxiliary

regressors and then using the autocorrelation robust test on the augmented model. We note

that the above mentioned results in Preinerstorfer and Pötscher (2016) are given for commonly

used autocorrelation robust test statistics where the bandwidth is nonrandom. Preinerstorfer

(2017) extends these results to the case of random bandwidths and when prewithening is used.

As shown in Section 3.3 of Preinerstorfer and Pötscher (2016), similar results also hold if a

parametrically-based long-run variance estimator or feasible generalized least squares are used.

A fundamental question that is not satisfactorily answered by the results in Preinerstorfer

and Pötscher (2016) is under which conditions one can control the size of the test (i.e., under

which conditions one can find a critical value C in such a way that the resulting test has size

less than or equal to the prescribed significance value α, α < 1): While in Case 1 we have a
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definite (negative) answer, the result in Case 2 as it stands tells us only that one can not choose

C smaller than the threshold c if one wants to control the size by α (thus allowing one to rule

out proposals for C if they fail this criterion), but it does not tell us anything about the behavior

of the size if C is chosen larger than the threshold c. And the result in Case 3, which guarantees

size control, is limited by a quite restrictive assumption on the correlation structure.

In the present paper we answer the question under which conditions the size of an auto-

correlation robust test can be controlled. In particular, we provide sufficient conditions that

guarantee that size control is possible even if we allow for arbitrary stationary autocorrelation

in the data. We then show that these conditions are broadly satisfied, namely that they are

satisfied generically (i.e., are – given the restriction to be tested – satisfied except for a Lebesgue

null set in an appropriate universe of relevant design matrices). We also discuss how the critical

value that leads to size control can be determined numerically and provide the R-package acrt

(Preinerstorfer (2016)) for its computation. The usefulness of the proposed algorithms and their

implementation in the R-package are illustrated on testing problems involving macroeconomic

data taken from the FRED-MD database of McCracken and Ng (2016). In particular, we show

that – even in situations where size control is possible – standard critical values in the litera-

ture based on asymptotic considerations are often substantially smaller than the size-controlling

critical values devised in the present paper, and hence fail to deliver size control. Furthermore,

in a subsequent paper Pötscher and Preinerstorfer (2017) we show that the sufficient conditions

for size control we provide here are in a sense also necessary (for a large class of test statistics).

While the main emphasis in the current paper is on stationary autocorrelation in the data, the

general theory for size control developed in Section 5 applies to arbitrary models for the covari-

ance structure of the data (including e.g., the case of heteroskedasticity or the case of spatial

correlation). The present paper is only concerned with the size of autocorrelation robust tests

and its control. Power properties of such tests and ways of improving power without loosing

the size control property is the topic of a companion paper. While a trivial remark, we would

like to note that the size control results given in this paper can obviously be translated into

results stating that the minimal coverage probability of the associated confidence set obtained

by “inverting” the test is not less than the nominal level.

The development in the present paper concentrates on controlling the size of autocorrelation

robust tests by an appropriate choice of a ‘fixed’ (i.e., nonrandom) critical value. Extensions to

size control by use of random critical values are the subject of ongoing research.

We also note that, on a broader scale, our results contribute to an important recent litera-

ture concerning size properties of tests and minimal coverage properties of confidence sets, see,

e.g., Andrews and Guggenberger (2009), Guggenberger et al. (2012), Mikusheva (2007), Moreira

(2009), or Romano and Shaikh (2012)).

The paper is organized as follows: Section 2 lays out the framework and introduces the basic

concepts. Section 3 contains the size control results for commonly used autocorrelation robust

tests: In Section 3.1 we present a theorem (Theorem 3.2) that lists easy to verify sufficient
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conditions for size control under a very broad model for the autocorrelation structure in the

data. Several examples illustrate this theorem. A similar result for a variant of the test statistic

considered in Theorem 3.2 is provided in Theorem 3.8. In Section 3.2 we make precise in which

sense the conditions for size control in Theorems 3.2 and 3.8 are generically satisfied. After a

short section (Section 3.3) commenting on power properties, we discuss extensions of the results

in Sections 3.1 and 3.2 to other classes of test statistics. Computational issues regarding the

determination of the critical values effecting size control are discussed in Section 4. This section

also contains a numerical illustration of the algorithms suggested. The results in Section 3 rest on

a general theory for size control of tests under general forms of nonsphericity, which is developed

in Section 5. In Section 6 we apply this general theory to the case where the nonsphericity

is a consequence of stationary autocorrelation in the data and we obtain size control results

more general (but also more complex) than the ones considered in Section 3. In Appendix E

we show that the Gaussianity assumption underlying the paper can be substantially relaxed,

whereas Appendices A-D contain the proofs and some auxiliary results for the main body of

the paper. Appendices F-H contain material relevant for the numerical results in Section 4

including a detailed description of the algorithms used. Appendix I investigates a proposal

for choosing critical values suggested by a referee, while Appendix J discusses what happens if

instead of stationary solutions starting value solutions of autoregressive models are used as the

error process in the linear model. Appendix K provides some comments on the case of stochastic

regressors. Finally, Appendix L contains some tables pertaining to Section 4.

2 Framework

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n×k and where β ∈ Rk

denotes the unknown regression parameter vector. We always assume rank(X) = k and 1 ≤

k < n. We furthermore assume that the n× 1 disturbance vector U = (u1, . . . ,un)
′ is normally

distributed with mean zero and unknown covariance matrix σ2Σ, where Σ varies in a prescribed

(nonempty) set C of symmetric and positive definite n×n matrices and where 0 < σ2 < ∞ holds

(σ always denoting the positive square root).1 The set C will be referred to as the covariance

model. We shall always assume that C allows σ2 and Σ to be uniquely determined from σ2Σ.2

[This entails virtually no loss of generality and can always be achieved, e.g., by imposing some

normalization assumption on the elements of C such as normalizing the first diagonal element of

1Since we are concerned with finite-sample results only, the elements of Y, X, and U (and even the probability
space supporting Y and U) may depend on sample size n, but this will not be expressed in the notation.
Furthermore, the obvious dependence of C on n will also not be shown in the notation.

2That is, C has the property that Σ ∈ C implies δΣ /∈ C for every δ 6= 1.
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Σ or the norm of Σ to one, etc.] The leading case discussed in Section 3 will concern the situation

where C results from the assumption that the elements u1, . . . ,un of the n×1 disturbance vector

U are distributed like consecutive elements of a zero mean weakly stationary Gaussian process

with an unknown spectral density.

The linear model described in (1) together with the Gaussianity assumption on U induces a

collection of distributions on the Borel-sets of Rn, the sample space of Y. Denoting a Gaussian

probability measure with mean µ ∈ Rn and (possibly singular) covariance matrix A by Pµ,A, the

induced collection of distributions is then given by

{

Pµ,σ2Σ : µ ∈ span(X), 0 < σ2 < ∞,Σ ∈ C
}

. (2)

Since every Σ ∈ C is positive definite by assumption, each element of the set in the previous

display is absolutely continuous with respect to (w.r.t.) Lebesgue measure on Rn.

We shall consider the problem of testing a linear (better: affine) hypothesis on the parameter

vector β ∈ Rk, i.e., the problem of testing the null Rβ = r against the alternative Rβ 6= r, where

R is a q × k matrix always of rank q ≥ 1 and r ∈ Rq. Set M = span(X). Define the affine space

M0 = {µ ∈ M : µ = Xβ and Rβ = r}

and let

M1 = {µ ∈ M : µ = Xβ and Rβ 6= r} .

Adopting these definitions, the above testing problem can then be written more precisely as

H0 : µ ∈ M0, 0 < σ2 < ∞, Σ ∈ C vs. H1 : µ ∈ M1, 0 < σ2 < ∞, Σ ∈ C. (3)

The previously introduced concepts and notation will be used throughout the paper.

The assumption of Gaussianity is made mainly in order not to obscure the structure of the

problem by technicalities. Substantial generalizations away from Gaussianity are possible and

will be discussed in Appendix E. The assumption of nonstochastic regressors can be relaxed

somewhat: If X is random and, e.g., independent of U, the results of the paper apply after one

conditions on X. For arguments supporting conditional inference see, e.g., Robinson (1979). In

case X is random with X and U being dependent, our theory (at least in its current state) is

not applicable. However, we show in Appendix K by means of numerical examples that in such

a case the critical values generated by the algorithm proposed in Section 4 can lead to tests

that perform at least as well as (and often better than) tests that are based on standard critical

values suggested in the literature.3 And this is so despite the fact that the asymptotic theory

used in the literature to justify the latter critical values is applicable to cases where X and U

are dependent (in particular to the examples considered in Appendix K).

We next collect some further terminology and notation used throughout the paper. A (non-

3That is, the algorithm is used acting as if X and U were independent.
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randomized) test is the indicator function of a Borel-set W in Rn, with W called the corre-

sponding rejection region. The size of such a test (rejection region) is the supremum over all

rejection probabilities under the null hypothesis H0, i.e., supµ∈M0
sup0<σ2<∞ supΣ∈C Pµ,σ2Σ(W ).

Throughout the paper we let β̂(y) = (X ′X)
−1

X ′y, where X is the design matrix appearing in

(1) and y ∈ Rn. The corresponding ordinary least squares (OLS) residual vector is denoted

by û(y) = y − Xβ̂(y). We use Pr as a generic symbol for a probability measure. Lebesgue

measure on the Borel-sets of Rn will be denoted by λRn , whereas Lebesgue measure on an affine

subspace A of Rn (but viewed as a measure on the Borel-sets of Rn) will be denoted by λA, with

zero-dimensional Lebesgue measure being interpreted as point mass. The set of real matrices of

dimension l×m is denoted by Rl×m (all matrices in the paper will be real matrices) and Lebesgue

measure on this set, equipped with its Borel σ-field, is denoted by λRl×m . The Euclidean norm

of a vector is denoted by ‖·‖, but the same symbol is also used to denote a norm of a matrix.

Let B′ denote the transpose of a matrix B ∈ Rl×m and let span(B) denote the subspace in

Rl spanned by its columns. For a symmetric and nonnegative definite matrix B we denote the

unique symmetric and nonnegative definite square root by B1/2. For a linear subspace L of Rn

we let L⊥ denote its orthogonal complement and we let ΠL denote the orthogonal projection

onto L. We use the convention that the adjoint of a 1 × 1 dimensional matrix D, i.e., adj(D),

equals one. Given an m-dimensional vector v we write diag(v) for the m × m diagonal matrix

with main diagonal given by v. The j-th standard basis vector in Rn is written as ej(n). With

e+ we denote the n × 1 vector of ones, i.e., e+ = (1, . . . , 1)′ and we define the n × 1 vector

e− = (−1, 1, . . . , (−1)n)′. Furthermore, we let N denote the set of all positive integers. A sum

(product, respectively) over an empty index set is to be interpreted as 0 (1, respectively). Finally,

for a subset A of a topological space we denote by cl(A), int(A), and bd(A) the closure, interior,

and boundary of A (w.r.t. the ambient space), respectively.

3 Size control of tests of affine restrictions in regression

models with stationary autocorrelated errors: First re-

sults

In this section we are concerned with size control of autocorrelation robust tests that have been

designed for use in case of stationary disturbances. We thus assume throughout this section that

the elements u1, . . . ,un of the n×1 disturbance vectorU are distributed like consecutive elements

of a zero mean weakly stationary Gaussian process that has an unknown spectral density, which

is not almost everywhere equal to zero. Consequently, the covariance matrix of the disturbance

vector is positive definite and can be written as σ2Σ(f) where

Σ(f) =

[∫ π

−π

e−ι(j−l)ωf(ω)dω

]n

j,l=1

,
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with f varying in F, a prescribed (nonempty) family of normalized (i.e.,
∫ π

−π
f(ω)dω = 1) spectral

densities, and where 0 < σ2 < ∞ holds. Here ι denotes the imaginary unit. The set F may,

for example, be Fall, the set of all normalized spectral densities, or a subset thereof (e.g., the

set of normalized spectral densities corresponding to stationary autoregressive or autoregressive

moving average models of a certain order, or to fractional autoregressive moving average models,

etc.). We define the associated covariance model C(F) = {Σ(f) : f ∈ F} and note that the test

problem (3) now becomes

H0 : µ ∈ M0, 0 < σ2 < ∞, f ∈ F vs. H1 : µ ∈ M1, 0 < σ2 < ∞, f ∈ F. (4)

Remark 3.1. (i) As is well-known, the covariance model C(Fall) is precisely the set of all n× n

symmetric and positive definite Toeplitz matrices with ones on the main diagonal, cf. Lemma

C.8 and Remark C.9 in Appendix C. It is thus maximal in the sense that it coincides with the set

of all positive definite n × n correlation matrices that can be generated from sections of length

n of stationary processes (possessing a spectral density or not).

(ii) Furthermore, as is well-known, C(Fall) coincides with C(FAR(p)) if p ≥ n−1, where FAR(p)

is the set of all normalized spectral densities corresponding to stationary autoregressive processes

of order not larger than p, cf. Remark C.9 in Appendix C. As the testing problem depends on F

only via C(F), the testing problems with F = Fall and F = FAR(p) (with p ≥ n− 1), respectively,

coincide. Thus we can use that “parameterization” of the covariance model (represented by

Fall and FAR(p), respectively), which is more convenient for our purpose. More generally, if

C(F1) = C(F2) holds for two sets of normalized spectral densities F1 and F2, the same argument

can be made.

Commonly used autocorrelation robust tests for the null hypothesis H0 given by (4) are based

on test statistics Tw : Rn → R of the form

Tw(y) =

{

(Rβ̂(y)− r)′Ω̂−1
w (y) (Rβ̂(y)− r) if det Ω̂w (y) 6= 0

0 if det Ω̂w (y) = 0
(5)

for y ∈ Rn, where R and r are as in Section 2, and where

Ω̂w (y) = nR(X ′X)−1Ψ̂w(y)(X
′X)−1R′, (6)

Ψ̂w(y) =

n−1
∑

j=−(n−1)

w(j, n)Γ̂j(y). (7)

Here Γ̂j(y) = n−1
∑n

t=j+1 v̂t(y)v̂t−j(y)
′ if j ≥ 0 and Γ̂j (y) = Γ̂−j(y)

′ else, where v̂t(y) = ût(y)x
′
t·,

with ût(y) denoting the t-th coordinate of the least squares residual vector û(y) = y − Xβ̂(y)

and with xt· denoting the t-th row vector of X. Rejection is for large values of Tw. We make the

following standard assumption on the weights.
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Assumption 1. The weights w(j, n) for j = −(n−1), . . . , n−1 are data-independent and satisfy

w(0, n) = 1 as well as w (−j, n) = w (j, n). Furthermore, the symmetric n × n Toeplitz matrix

Wn with elements w (i− j, n) is positive definite.

This assumption implies that Ψ̂w(y), and hence Ω̂w (y), is always nonnegative definite, see

Lemma 3.1 in Preinerstorfer and Pötscher (2016). In many applications the weights take the

form w(j, n) = w0 (|j|/Mn), where the lag-window w0 is an even function with w0(0) = 1 and

where Mn > 0 is a truncation lag (bandwidth) parameter. In this case the first part of the

above assumption means that we are considering deterministic bandwidths only. For extensions

of the results in this section to more general classes of tests statistics, including the case of data-

dependent bandwidth choices and prewhitening, see Subsection 3.4. Assumption 1 is known to

be satisfied, e.g., for the (modified) Bartlett, Parzen, or the Quadratic Spectral lag-window, but

is not satisfied, e.g., for the rectangular lag-window (with Mn > 1). It is also satisfied for many

exponentiated lag-windows as used in Phillips et al. (2006, 2007) and Sun et al. (2011). For more

discussion of Assumption 1 see Preinerstorfer and Pötscher (2016).

Assigning the test statistic Tw the value zero on the set where Ω̂w (y) is singular is, of course,

arbitrary. Given Assumption 1, the set where det Ω̂w (y) = 0 holds can be shown to be

B = {y ∈ Rn : rank(B(y)) < q} ,

where

B(y) = R(X ′X)−1X ′ diag (û1(y), . . . , ûn(y))

= R(X ′X)−1X ′ diag
(

e′1(n)Πspan(X)⊥y, . . . , e
′
n(n)Πspan(X)⊥y

)

, (8)

see Lemma 3.1 of Preinerstorfer and Pötscher (2016). Clearly, span(X) ⊆ B and B+span(X) = B

always hold. Furthermore, Lemma 3.1 in Preinerstorfer and Pötscher (2016) shows that the set

B is a λRn -null set if and only if Assumption 2 given below holds, and is the entire space

Rn otherwise. It thus transpires that under Assumptions 1 and 2 the chosen assignment is

irrelevant for size (and power) properties of the test (since all relevant distributions Pµ,σ2Σ(f)

are absolutely continuous w.r.t. λRn due to the fact that every Σ(f) is positive definite); the

case where Assumption 2 is violated is hopeless for autocorrelation robust tests based on Tw in

that these then break down in the sense that the quadratic form appearing in (5) is not defined

for any y ∈ Rn (as then B = Rn). [If one insists on using Tw as defined by (5) in this case, Tw

then reduces to the trivial test statistic that is identically zero, an uninteresting situation.4] We

stress that the subsequently given Assumption 2 can be readily checked in any given application

and is not very restrictive since – for given restriction matrix R – it holds generically in X.

Assumption 2. Let 1 ≤ i1 < . . . < is ≤ n denote all the indices for which eij (n) ∈ span(X)

holds where ej(n) denotes the j-th standard basis vector in Rn. If no such index exists, set

4Of course, size control is then trivially possible, but leads to a test that never rejects.
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s = 0. Let X ′ (¬(i1, . . . is)) denote the matrix which is obtained from X ′ by deleting all

columns with indices ij , 1 ≤ i1 < . . . < is ≤ n (if s = 0 no column is deleted). Then

rank
(

R(X ′X)−1X ′ (¬(i1, . . . is))
)

= q holds.

For later use we note that under Assumption 2 the set B not only is a λRn -null set, but is a

finite union of proper linear subspaces of Rn, see Lemma 5.18 in Section 5.3. Also note that if

B = span(X) holds, then Assumption 2 must hold (since span(X) is a λRn -null set due to k < n).

The test statistic Tw defined in (5) is based on a long-run covariance estimator for utx
′
t·.

5

For nonstochastic regressors (as considered here) an alternative is to use the weighted Eicker-test

statistic TE,W that is based on a long-run covariance estimator for ut. The test statistic TE,W is of

the same form as given in (5), but with the estimator Ψ̂E,W(y) = n−1X ′(K̂(y)•W)X being used

instead of Ψ̂w, where K̂(y) is the symmetric n×n Toeplitz matrix with (i, j)-th element given by

K̂ij(y) = n−1
∑n

l=|i−j|+1 ûl(y)ûl−|i−j|(y), whereW is an n×n symmetric and nonnegative definite

Toeplitz matrix of weights with ones on the main diagonal, and where • denotes the Hadamard

product. The (unweighted) Eicker-test statistic TE discussed on pp. 283-284 of Preinerstorfer

and Pötscher (2016) corresponds to the case where W is the matrix of all ones. As discussed in

that reference, the corresponding matrix Ω̂E(y) is always nonnegative definite and the set where

Ω̂E(y) is singular is given by span(X), which is a λRn -null set by our maintained assumption

that k < n holds. By a result of Schur (see Theorem 3.1 in Horn (1990)) it is easy to see that

all this is also true in the weighted case, i.e., for Ω̂E,W(y) = nR(X ′X)−1Ψ̂E,W(y)(X ′X)−1R′.

3.1 Results on size control

To state the main result of this section we need to introduce some further notation: Let ω ∈ [0, π]

and let s ≥ 0 be an integer. Define En,s(ω) as the n× 2-dimensional matrix with j-th row equal

to (js cos(jω), js sin(jω)).

Definition 3.1. Given a linear subspace L of Rn with dim(L) < n, define for every ω ∈ [0, π]

ρ(ω,L) = min{s ∈ N ∪ {0} : span(En,s(ω)) 6⊆ L}. (9)

We note that the set on the right-hand side of (9) is nonempty for every ω ∈ [0, π], and hence

ρ is well-defined and takes values in N ∪ {0}. Furthermore, ρ(ω,L) > 0 holds at most for finitely

many ω ∈ [0, π]. See Appendix A for a proof of these claims. We denote by Mlin
0 the linear space

parallel to the affine space M0, i.e., M
lin
0 = M0 − µ0 for µ0 ∈ M0 (clearly, this does not depend

on the choice of µ0 ∈ M0).

5This test statistic makes sense for stochastic as well as nonstochastic regressors under appropriate assumptions.
Note that the asymptotic theory for Tw in a bandwidth-to zero as well as in a fixed-bandwidth scenario relies
only on limit theorems for partial sums of utx′

t· and of x′
t·xt· which are satisfied for various classes of stochastic

as well as nonstochastic regressors.
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3.1.1 Result for Tw

Our first result concerning size control is given next and is an immediate consequence of Theorem

6.6 in Section 6.2. This result is given for the test statistic Tw. A similar result for the weighted

Eicker-test statistic TE,W is given in Subsection 3.1.2.

Theorem 3.2. 6 Suppose Assumptions 1 and 2 are satisfied and Tw is defined by (5). Then for

every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈Fall

Pµ0,σ
2Σ(f)(Tw ≥ C(α)) ≤ α (10)

holds, provided that

span
(

En,ρ(γ,Mlin
0 )(γ)

)

6⊆ B for every γ ∈ [0, π]. (11)

In case the set B coincides with span(X), condition (11) can equivalently be expressed as

rank
(

X,En,ρ(γ,Mlin
0 )(γ)

)

> k for every γ ∈ [0, π]. (12)

Furthermore, under the same condition (11) even equality can be achieved in (10) by a proper

choice of C(α), provided α ∈ (0, α∗]∩ (0, 1), where α∗ is defined in (28) (with T replaced by Tw)

further below.

It turns out, see Subsection 3.2 below, that for many combinations of design matrices X and

restriction matrices R the set B coincides with span(X), and hence (11) reduces to the simpler

rank condition (12). Furthermore, although a trivial observation, it should be kept in mind that

C(α) depends not only on α but also on the testing problem at hand (i.e., on X, R, r, and

the covariance model (here C(Fall)) as well as on the choice of test statistic (here on the choice

of weights w(j, n)); but see Remark 3.3 further below. We furthermore note that, under the

conditions of Theorem 3.2, a smallest critical value C♦(α) exists that satisfies (10) and that this

critical value achieves equality in (10) provided α ∈ (0, α∗] ∩ (0, 1). This follows from Remark

6.7 in Section 6.2.

The preceding theorem provides simple sufficient conditions under which size control of com-

monly used autocorrelation robust tests is possible over the class Fall, and hence a fortiori over

any F ⊆ Fall.
7 Of course, critical values achieving size control over a subset F (i.e., critical values

satisfying (10) with Fall replaced by F) may be smaller than critical values achieving size control

6Condition (11) clearly implies that the set B is a proper subset of Rn and thus implies Assumption 2. Hence,
we could have dropped this assumption from the formulation of the theorem. For clarity of presentation we have,
however, chosen to explicitly mention Assumption 2.

7In particular, F = FAR(p) or F = FARMA(p,q) is covered for arbitrary p ((p, q), respectively), where FARMA(p,q)

denotes the set of all normalized spectral densities corresponding to stationary autoregressive moving average
processes with autoregressive (moving average) order not larger than p (q, respectively). Note that the definition
of FAR(p) and FARMA(p,q) does not require the zeros of the autoregressive or moving average polynomial to be
bounded away from the unit circle.
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over Fall.

As mentioned before, the theorem is a special case of Theorem 6.6 in Section 6.2, which

provides more refined sufficient conditions for the possibility of size control at the expense of

more complicated conditions and notation. Theorem 6.6 is especially of importance if one is

interested in sufficient conditions for the possibility of size control over classes F that are much

smaller than Fall, since then the conditions in Theorem 3.2 may be unnecessarily restrictive; cf.

Remarks 3.4 and 3.7 given below, but see also Remark 3.6. We further note that Theorem 6.6

is in turn a corollary to Theorem 6.2 in Section 6.2, which applies to a much larger class of

test statistics than the one considered in the present section. Finally, we note that the sufficient

conditions in Theorem 3.2, as well as the sufficient conditions provided in the theorems in Section

6.2, are also necessary for size control in a sense made precise in Pötscher and Preinerstorfer

(2017), provided that F is rich enough to encompass FAR(2).

Remark 3.3. (Independence of value of r) (i) Since Mlin
0 does not depend on the value of r,

the sufficient conditions in Theorem 3.2 – while depending on X and R – do not depend on the

value of r.

(ii) For a large class of test statistics (including Tw considered here) the size of the corre-

sponding tests, and hence the size-controlling critical values C(α), do not depend on the value

of r, see Lemma 5.15 in Section 5.2. This observation is of some importance, as it allows one

easily to obtain confidence sets for Rβ by “inverting” the test without the need of recomputing

the critical value for every value of r. [Of course, it is here understood that the weights w are

not related to the value of r.]

In the subsequent examples we apply Theorem 3.2 and discuss simple sufficient conditions

under which size control over Fall (and hence a fortiori over any F ⊆ Fall) is possible. We also

discuss that these sufficient conditions are generically satisfied in the appropriate universe of

design matrices. For these examples we always assume that Tw is given by (5) with Assumption

1 being satisfied; also recall that the n× k-dimensional design matrix X always has rank k, that

1 ≤ k < n holds, and that the restriction matrix R is always q × k-dimensional and has rank

equal to q ≥ 1.

Example 3.1. Assume that the design matrix X satisfies rank(X,En,0(γ)) > k for every γ ∈

[0, π] (which is tantamount to span(En,0(γ)) 6⊆ span(X) for every γ ∈ [0, π] since rank(X) = k

by our assumptions). It is then easy to see that ρ(γ,Mlin
0 ) = 0 for every γ ∈ [0, π]. Hence,

the conditions enabling size control over Fall in Theorem 3.2 are then all satisfied if X and the

restriction matrix R are such that B coincides with span(X). In particular, it follows easily from

Theorem 3.9 further below that the just mentioned rank condition as well as the condition on B

is – for given restriction matrix R – generically satisfied in the set of all n× k matrices. [For the

last claim use Theorem 3.9 with F the empty matrix, and observe that the conditions of that

theorem are clearly satisfied. Also observe that ρF (γ) = 0 holds for every γ ∈ [0, π].]

The next example treats the case where an intercept is required to be in the model.
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Example 3.2. Assume that the design matrix X contains an intercept, in the sense that X has

e+ as its first column (e+ is defined in Section 2). We also assume k ≥ 2 and write X = (e+, X̃).

We are interested in testing restrictions that do not involve the intercept, i.e., R = (0, R̃), with

R̃ of dimension q× (k−1). [Recall that autocorrelation robust testing of restrictions that involve

the intercept by means of Tw is futile whenever F ⊇ FAR(1), see Preinerstorfer and Pötscher

(2016), Example 3.1.] It is now obvious that the rank condition on (X,En,0(γ)) in the preceding

example is violated for γ = 0, and hence the conclusions of the preceding example do not apply

in the situation considered here. However, assume now instead that rank(X,En,0(γ)) > k for

every γ ∈ (0, π] and that rank(X,En,1(γ)) > k for γ = 0 hold. It then follows that ρ(γ,Mlin
0 ) = 0

for every γ ∈ (0, π] and that ρ(γ,Mlin
0 ) = 1 for γ = 0. Then again the conditions for size control

over Fall in Theorem 3.2 are seen to be satisfied if X and the restriction matrix R are such

that B coincides with span(X). Similarly as in the preceding example, it follows from Theorem

3.9 further below that the new rank conditions as well as the condition on B are – for given

restriction matrix R = (0, R̃) – generically satisfied in the set of all n × k matrices of the form

X = (e+, X̃); for a proof of this claim see Appendix A.

A completely analogous discussion as in the preceding example can be given for the case

where X = (e−, X̃) and is omitted.

Example 3.3. Assume that the design matrix X contains e+ as its first and e− (defined in

Section 2) as its second column, i.e., X = (e+, e−, X̃), and assume k ≥ 3. Further assume that

R = (0, R̃), where now R̃ is of dimension q× (k−2). [Recall that testing restrictions that involve

the intercept by means of Tw is futile whenever F ⊇ FAR(1), see Preinerstorfer and Pötscher

(2016), Example 3.1, and a similar remark applies to restrictions involving the coefficient of

e−.] Similar as before, the rank condition on (X,En,0(γ)) in the preceding Example 3.1 is now

violated for γ ∈ {0, π}, and so is the rank condition in Example 3.2 for γ = π. However, if we

require instead that (i) rank(X,En,0(γ)) > k for every γ ∈ (0, π), (ii) rank(X,En,1(γ)) > k for

every γ ∈ {0, π}, and that (iii) X and R are such that B coincides with span(X), then it is not

difficult to see that ρ(γ,Mlin
0 ) = 0 for γ ∈ (0, π), ρ(γ,Mlin

0 ) = 1 for γ ∈ {0, π}, and that the

sufficient conditions in Theorem 3.2 are satisfied, implying that size control over Fall is possible.

Similarly as in the preceding examples, it follows from Theorem 3.9 further below that conditions

(i)-(iii) are – for given restriction matrix R = (0, R̃) – generically satisfied in the set of all n× k

matrices of the form X = (e+, e−, X̃), provided only that the mild condition q ≤ (n/2) − 1 is

satisfied; for a proof of this claim see Appendix A.

In the next remark we exemplarily discuss how the sufficient conditions in the preceding

examples obtained from Theorem 3.2 can be weakened, if one is concerned with size control only

over a set of spectral densities much smaller than Fall. But see also Remark 3.6 further below.

Remark 3.4. Suppose we are interested in size control of tests of the form (5) but now only

over the much smaller set FAR(1).
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(i) Assume that the design matrix X satisfies rank(X,En,0(γ)) > k for every γ ∈ {0, π}

(which is tantamount to e+ /∈ span(X) and e− /∈ span(X) as we always assume rank(X) = k).

Assume also that X and the restriction matrix R are such that B coincides with span(X). Then

Theorem 6.6 in Section 6.2 implies that size control over FAR(1) is possible. [This is so since the set

S(FAR(1),M
lin
0 ) appearing in that theorem is {{0} , {π}} as shown in Example 6.3. Furthermore,

it is easy to see that here ρ(γ,Mlin
0 ) = 0 for every γ ∈ {0, π} holds.]

(ii) Assume that X = (e+, X̃) with k ≥ 2, that R = (0, R̃), with R̃ of dimension q × (k − 1),

and that B coincides with span(X). If rank(X,En,0(π)) > k (i.e., if e− /∈ span(X)), then size

control over FAR(1) is possible. [This follows from Theorem 6.6 since S(FAR(1),M
lin
0 ) now equals

{{π}}, see Example 6.3, and since ρ(π,Mlin
0 ) = 0 holds.] The case where X = (e−, X) can be

treated analogously, and we do not provide the details.

(iii) Assume X = (e+, e−, X̃) with k ≥ 3, that R = (0, R̃), with R̃ of dimension q × (k − 2).

Then size control over FAR(1) is possible without any further conditions. [Again this follows from

Theorem 6.6 upon observing that now S(FAR(1),M
lin
0 ) is empty in view of Example 6.3.] We

note that this result is also in line with Theorem 3.7 of Preinerstorfer and Pötscher (2016).

We proceed to providing two more examples illustrating Theorem 3.2. The first one concerns

the case where a linear trend is present in the model.

Example 3.4. Assume k ≥ 3 and that the design matrix X contains e+ as its first column

and the vector v = (1, 2, . . . , n)′ as its second column, i.e., X = (e+, v, X̃). That is, the linear

model contains a linear trend. Suppose R = (0, R̃), where R̃ is of dimension q× (k− 2), i.e., the

restriction to be tested does not involve the coefficients appearing in the trend. This is, of course,

a special case of the model considered in Example 3.2. However, it is plain that the condition

rank(X,En,1(γ)) > k for γ = 0, used in that example, is not satisfied in the present context (as

En,1(0) = (v : 0)). A simple set of sufficient conditions for size control in the present example is

now as follows: (i) rank(X,En,0(γ)) > k for every γ ∈ (0, π], (ii) rank(X,En,2(γ)) > k for γ = 0,

and that (iii) X and R are such that B coincides with span(X). It is then not difficult to see

that ρ(γ,Mlin
0 ) = 0 for γ ∈ (0, π], ρ(γ,Mlin

0 ) = 2 for γ = 0, and that the sufficient conditions in

Theorem 3.2 are satisfied, implying that size control over Fall is possible. Again, it follows from

Theorem 3.9 further below that conditions (i)-(iii) are – for given restriction matrix R = (0, R̃)

– generically satisfied in the set of all n × k matrices of the form X = (e+, v, X̃); for a proof of

this claim see Appendix A.

The preceding example can easily be generalized to arbitrary polynomial trends, but we

abstain from providing the details. The last example considers a model with a cyclical component.

Example 3.5. Assume that the design matrix X has the form (e+, En,0(γ0), X̃) for some γ0 ∈

(0, π) and that k ≥ 4. That is, the model contains a cyclical component. Suppose R = (0, R̃),

where R̃ is of dimension q × (k − 3), i.e., the restriction to be tested does neither involve the

intercept nor the coefficients appearing in the cyclical component. While this is a special case of

the model considered in Example 3.2, it is also plain that the conditions provided in that example
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do not work here (since rank(X,En,0(γ)) > k is violated for γ = γ0). A simple set of sufficient

conditions enabling size control in the present example is now as follows: (i) rank(X,En,0(γ)) > k

for every γ ∈ (0, π]\ {γ0}, (ii) rank(X,En,1(γ)) > k for γ = 0 as well as γ = γ0, and that (iii) X

and R are such that B coincides with span(X). It is then not difficult to see that ρ(γ,Mlin
0 ) = 0

for γ ∈ (0, π]\ {γ0}, ρ(γ,M
lin
0 ) = 1 for γ = 0 as well as γ = γ0, and that the sufficient conditions

in Theorem 3.2 are satisfied, implying that size control over Fall is possible. Again, it follows from

Theorem 3.9 further below that conditions (i)-(iii) are – for given restriction matrix R = (0, R̃) –

generically satisfied in the set of all n× k matrices of the form X = (e+, En,0(γ0), X̃), provided

only that the mild condition q ≤ (n/3)− 1 is satisfied; for a proof of this claim see Appendix A.

Remark 3.5. (No size control) The size control result given above, as well as the more refined

Theorem 6.6 in Section 6.2, do – for example – not apply to the following testing problems: (i)

testing the intercept if F ⊇ FAR(1), (ii) testing the coefficient of the regressor e− if F ⊇ FAR(1), (iii)

testing a hypothesis regarding the coefficients of a linear trend appearing in the model provided

F ⊇ FAR(2), and (iv) testing a hypothesis regarding the coefficients of a cyclical component

appearing in the model provided F ⊇ FAR(2). In fact, it is known that the size of autocorrelation

robust tests based on Tw is one in any of these testing problems regardless of the choice of

critical value. For testing problems (i) and (ii) this follows from Theorem 3.3 of Preinerstorfer

and Pötscher (2016) (see also Example 3.1 in that reference). For testing problem (iv) this follows

from Theorem 3.12 of Preinerstorfer and Pötscher (2016). For testing problem (iii), see Section

5 in Pötscher and Preinerstorfer (2017). [These results are closely related to the fact that the

sufficient conditions for size control given in Theorem 3.2 and in Section 6.2 are in fact necessary

in a certain sense; see Pötscher and Preinerstorfer (2017).]

Remark 3.6. Suppose that in the context of Theorem 3.2 we are interested in size control over

a set F with F ⊇ FAR(2). It then follows from Remark 6.9 (with L = Mlin
0 ) and Remark 6.10

that the sufficient condition (11) given in Theorem 3.2 is in fact equivalent to the more refined

sufficient conditions given in Part 1 of Theorem 6.6.

Remark 3.7. (i) Suppose F ⊆ FARMA(p,q) consists only of normalized spectral densities corre-

sponding to stationary autoregressive moving average processes with the property that the zeros

of all the autoregressive polynomials are bounded away from the unit circle in the complex plane

by a fixed amount δ > 0, say. Then it is easy to see that F ⊆ FB
all for some B < ∞ holds,

where FB
all is defined in Example 6.2 in Section 6.1. Theorem 6.6 together with Example 6.2

now shows that size control over F is possible even if the condition (11) in Theorem 3.2 is not

satisfied. [In fact, this conclusion is true for any of the sets FB
all themselves.] Note, however, that

choosing δ small may nevertheless result in large critical values, especially, if X and R are such

that condition (11) is violated (and thus we are not in general guaranteed that size control is

possible over FARMA(p,q)).

(ii) More generally, size control in the setting of Theorem 3.2 is always possible (i.e., even

when (11) is violated) if, e.g., the covariance model C(F) employed does not have any singular
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limit points; cf. also Remarks 5.7 and 6.11 further below.

3.1.2 Result for TE,W

Here we give a result similar to Theorem 3.2 but for the weighted Eicker-test statistic TE,W. The

theorem follows immediately from Remark 6.8(ii).

Theorem 3.8. Let TE,W be the weighted Eicker-test statistic where W is an n × n symmetric

and nonnegative definite Toeplitz matrix of weights with ones on the main diagonal. Then for

every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈Fall

Pµ0,σ
2Σ(f)(TE,W ≥ C(α)) ≤ α (13)

holds, provided that

span
(

En,ρ(γ,Mlin
0 )(γ)

)

6⊆ span(X) for every γ ∈ [0, π]. (14)

This can equivalently be expressed as

rank
(

X,En,ρ(γ,Mlin
0 )(γ)

)

> k for every γ ∈ [0, π]. (15)

Furthermore, under the same condition (14) even equality can be achieved in (13) by a proper

choice of C(α), provided α ∈ (0, α∗] ∩ (0, 1), where α∗ is defined in (28) (with T replaced by

TE,W) further below.

Mutatis mutandis, the entire discussion in Subsection 3.1.1 following Theorem 3.2 also applies

to Theorem 3.8.

3.2 Generic size control

In Theorem 3.9 below we now show that – for given restriction matrix R – the set of design

matrices, for which the conditions in Theorem 3.2 (Theorem 3.8, respectively) are satisfied and

hence size control is possible, is generic. We provide this genericity result for a variety of universes

of design matrices. For example, if F in Theorem 3.9 is absent (more precisely, corresponds to

the empty matrix), the genericity holds in the class of all n × k design matrices. If one is only

interested in regression models containing an intercept, then one sets F = e+, and the theorem

delivers a genericity result in the subuniverse of all n × k design matrices that contain e+ as

its first column. In general, F stands for that subset of columns of the design matrix that are

a priori held fixed in the genericity analysis. The subsequent theorem follows immediately by

combining Theorem 3.2 (Theorem 3.8, respectively) with Lemmata A.2 and A.3 in Appendix A.

Recall that B as well as ρ(γ,Mlin
0 ) depend on X (and R), which, however, is not shown in the

notation; and that the relation B = span(X) implies that Assumption 2 holds. Also recall that

n > k is assumed throughout.
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Theorem 3.9. Let F be a given n×kF matrix of rank kF , where 0 ≤ kF < k (with the convention

that F is the empty matrix in case kF = 0, that the rank of the empty matrix is zero, and that its

span is {0}). Assume that the given q×k restriction matrix R of rank q has the form (0, R̃) with

R̃ a q×(k−kF ) matrix. Suppose the columns of F and ei1(n), . . . , eiq (n) are linearly independent

for every choice of 1 ≤ i1 < . . . < iq ≤ n. Furthermore, suppose that (i) n > k + 2 holds, or (ii)

rank(F,En,0(γ
∗)) = kF + 2 holds for some γ∗ ∈ (0, π). Then the following holds generically for

design matrices X of the form (F, X̃) (i.e., holds on the complement of a λ
Rn×(k−kF )-null set of

matrices X̃):

1. X = (F, X̃) has rank k.

2. B = span(X).

3. Assumption 2 is satisfied.

4. ρ(γ,Mlin
0 ) = ρF (γ) holds for every γ ∈ [0, π] where ρF (γ) = ρ(γ, span(F )).

5. Conditions (11), (12), (14), and (15) hold.

6. Suppose Tw is defined by (5) with Assumption 1 being satisfied. Then for every 0 < α < 1

there exists a real number C(α) such that (10) holds; and if α ∈ (0, α∗]∩(0, 1) even equality

can be achieved in (10), where α∗ is as in Theorem 3.2.

7. Let TE,W be the weighted Eicker-test statistic where W is an n× n symmetric and nonneg-

ative definite Toeplitz matrix of weights with ones on the main diagonal. Then for every

0 < α < 1 there exists a real number C(α) such that (13) holds; and if α ∈ (0, α∗] ∩ (0, 1)

even equality can be achieved in (13), where α∗ is as in Theorem 3.8.

Note that neither the assumptions nor the first five conclusions nor the λ
Rn×(k−kF ) -null set

depend on the value of r at all (this is obvious upon noting that ρ(γ,Mlin
0 ) depends on M0 only

via Mlin
0 , which is independent of the value of r). For the last two conclusions note that they

hold whatever the value of r is.

Remark 3.10. (i) Theorem 3.9 assumes that the restrictions to be tested do not involve the

coefficients of the regressors corresponding to the columns of F . This assumption can be traded-

off with an assumption ensuring that no singular limit point of the covariance model C(Fall)

concentrates on the space spanned by the columns of F . We abstain from providing such results.

(ii) In case kF < ⌊n/2⌋ the rank-condition in (ii) of the theorem is always satisfied: Suppose

not, then En,0(γ)v(γ) ∈ span(F ) for some nonzero vector v(γ) and for every γ ∈ (0, π). Choose

γi ∈ (0, π), i = 1, . . . , ⌊n/2⌋, all γi being different. By Lemma C.1 in Appendix C, it follows

that the corresponding collection of vectors En,0(γi)v(γi) is linearly independent, implying that

kF ≥ ⌊n/2⌋, a contradiction. [In case kF > n/2 examples can be given where this condition is

not satisfied.]
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3.3 Comments on power properties

Classical autocorrelation robust tests can have, in fact not infrequently will have, infimal power

equal to zero if the underlying set F is sufficiently rich; cf. Theorem 3.3 and Corollary 5.17

in Preinerstorfer and Pötscher (2016) as well as Lemma 5.11 in Section 5. In the special case

where F = FAR(1), it has been shown in Preinerstorfer and Pötscher (2016) and Preinerstorfer

(2017) how adjusted tests can be constructed that have correct size and at the same time do

not suffer from infimal power being zero. In a companion paper, which builds on the results of

the present paper, we investigate power properties in more detail and provide adjustments to

the test statistics Tw and TE,W that typically lead to improvements in power properties, at least

over certain important subsets of Fall, while retaining size control over Fall as in Theorems 3.2

and 3.8.

We also note here that despite what has just been said, one can show for autocorrelation

robust tests based on Tw or TE,W (size corrected or not) that power goes to one as one moves

away from the null hypothesis along sequences of the following form: Let (µl, σ
2
l , fl) be such

that µl moves further and further away from M0 (the affine space of means described by the

restrictions Rβ = r) in an orthogonal direction, where σ2
l converges to some finite and positive

σ2, and fl is such that Σ(fl) converges to a positive definite matrix. Note, however, that this

result rules out sequences fl for which Σ(fl) degenerates as l → ∞.

3.4 Extensions to other test statistics

A. (Adjusted tests) In Preinerstorfer and Pötscher (2016) we have discussed adjusted autocor-

relation robust tests, which are nothing else than standard autocorrelation robust tests but

computed from an augmented regression model that contains not only the regressors in X, but

also strategically chosen auxiliary regressors. The above results can easily accommodate adjusted

tests: Simply view the augmented model as the true model. Since the adjusted test then is just a

standard autocorrelation robust test in the augmented model, the above results can be applied.

Note that the null hypothesis in the augmented model encompasses the null hypothesis in the

original model, hence size control over the null hypothesis in the augmented model certainly im-

plies size control in the originally given model. For more discussion see Theorem 3.8, Proposition

5.23, and especially Remark 5.24(iii) in Preinerstorfer and Pötscher (2016).

B. (Tests based on general quadratic covariance estimators) The test statistics TGQ in this

class are of the form (5) but – instead of Ψ̂w – use the estimator

Ψ̂GQ(y) =

n
∑

t,s=1

w(t, s;n)v̂t(y)v̂s(y)
′ (16)

for y ∈ Rn, where the n × n weighting matrix W∗
n = (w(t, s;n))t,s is symmetric and data-

independent. For some background on this more general class of estimators see Section 3.2.1 of

Preinerstorfer and Pötscher (2016). Note that Ψ̂GQ(y), and thus the corresponding Ω̂GQ(y) =
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nR(X ′X)−1Ψ̂GQ(y)(X
′X)−1R′, is nonnegative definite for every y ∈ Rn provided W∗

n is nonneg-

ative definite. In the important case where W∗
n is additionally positive definite, inspection of the

proofs (together with Lemma 3.11 of Preinerstorfer and Pötscher (2016)) shows that all results

given above for the test statistic Tw based on Ψ̂w remain valid for TGQ (provided Assumption

1 is replaced by the assumption on W∗
n made here including positive definiteness of W∗

n); see

also Remark 6.8(i). In the case where W∗
n is nonnegative definite, but not positive definite,

conditions under which size control is possible can be derived from Theorem 6.5 in Section 6.2

(with the help of Lemma 3.11 of Preinerstorfer and Pötscher (2016)); we do not provide details.

In fact, even cases where W∗
n is not nonnegative definite can be accommodated by this result

under appropriate conditions.

C. A referee has suggested a test statistic Tref which is of the form (5), but where Ω̂w(y) is re-

placed by ω̂w(y)R(X ′X)−1R′. Here ω̂w(y) =
∑n−1

j=−(n−1) w(j, n)K̂j(y) where K̂j(y) = K̂−j(y) =

n−1
∑n

l=j+1 ûl(y)ûl−j(y) for j ≥ 0. It is easy to see that a size control result can be established

for Tref : If Assumption 1 holds, the conclusion of Theorem 3.8 with TE,W replaced by Tref still

holds. However, the form of the long-run covariance estimator ω̂w(y)R(X ′X)−1R′ used by this

test statistic takes its justification from a well-known result of Grenander (1954), which holds

under certain conditions on the regressors only. A leading case where these conditions are sat-

isfied is polynomial regression. Unfortunately, precisely for such regressors it turns out that the

conditions for size control are violated and, in fact, it can be shown that in this case the test

based on Tref has size 1 for every choice of critical value; see Pötscher and Preinerstorfer (2017).

D. (Random bandwidth, prewithening, flat-top kernels, GLS-based tests, general nonsphericity-

corrected F-type tests) Tests based on weighted autocovariance estimators Ψ̂w, but where the

weights are allowed to depend on the data (e.g., lag-window estimators with data-driven band-

width choice), or where prewithening is used, can be viewed as special cases of nonsphericity-

corrected F-type tests (under appropriate conditions, see Preinerstorfer (2017)). The same is

true for tests using long-run variance estimators based on flat-top kernels. Another example are

tests based on parametric long-run variance estimators or tests based on feasible generalized least

squares. A size control result for general nonsphericity-corrected F-type tests, i.e., Wald-type

tests that may use estimators for β other than ordinary least squares or may use estimators for

the long-run covariance matrix other than the ones mentioned so far, is given in Theorem 6.5 in

Section 6.2. However, we abstain in this paper from making the conditions in that theorem more

concrete for the subclasses of tests just mentioned. Theorem 6.2 in Section 6.2 furthermore even

applies to classes of tests more general than the class of nonsphericity-corrected F-type tests.

4 Computational issues and numerical results

In the previous section we have obtained conditions under which the size of autocorrelation robust

tests can be controlled by a proper choice of the critical value. In the present section we now turn

to the question of how critical values guaranteeing size control can be determined numerically
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(provided they exist). Additionally, we also address the related question of how to numerically

compute the size of an autocorrelation robust test for a given choice of the critical value (e.g.,

when choosing a critical value suggested by asymptotic theory). We illustrate our algorithms

by computing size-controlling critical values for regression models using US macroeconomic time

series from the FRED-MD database of McCracken and Ng (2016) as regressors and where the

correlation structure of the errors in the regression is governed by a variety of families of spectral

densities. In these models we also compute the actual size of standard autocorrelation robust

tests that employ critical values suggested in the literature.

We emphasize that, although the algorithms we shall discuss below are designed for regression

models with stationary autocorrelated errors and for the test statistics Tw defined in (5) or TE,W

defined in Section 3, the basic ideas extend to other test statistics (e.g., the ones discussed in

Section 3.4) and also to other covariance models with mostly obvious modifications.

4.1 Computation of critical values and size

Consider testing the hypothesis given in (4) at the significance level α ∈ (0, 1) by means of the test

statistic Tw as defined in (5), and suppose that Assumptions 1 and 2 are satisfied. Furthermore,

suppose that one knows, e.g., by having checked the sufficient conditions given in Theorem 3.2,

that existence of a critical value C(α) satisfying

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈F

Pµ0,σ
2Σ(f) (Tw ≥ C(α)) ≤ α (17)

is guaranteed, where F is a user-specified subset of Fall. Because such a critical value is certainly

not unique and because of power considerations, it is reasonable to try to find the “smallest”

critical value satisfying the inequality in the previous display. From the discussion following

Theorem 3.2 and from Remark 6.7 we conclude that such a smallest critical value C♦(α) indeed

exists; furthermore, if equality is achievable in the preceding display, C♦(α) then certainly also

achieves it. We note the obvious facts that C♦(α) depends on F, and that any critical value

smaller than C♦(α) will lead to a test that violates the size constraint (17).

Now, because of G(M0)-invariance of Tw (see Lemma 5.16 and Remark 5.17 in Section 5.3)

and because of Remark 5.5(iii) in Preinerstorfer and Pötscher (2016), the inequality (17) is

equivalent to

sup
f∈F

Pµ0,Σ(f) (Tw ≥ C(α)) ≤ α

where we have chosen µ0 as an arbitrary but fixed element of M0 and have set σ = 1. Exploiting

the fact that Pµ0,Σ(f) (Tw = C) = 0 for every C ∈ R (since λRn(Tw = C) = 0 for every C ∈ R,

see Lemma 5.16 and Remark 5.17 in Section 5.3), the preceding display implies that

C♦(α) = sup
f∈F

F−1
Σ(f)(1− α), (18)
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where FΣ(f) denotes the cumulative distribution function (cdf) of Pµ0,Σ(f) ◦ Tw (since µ0 ∈ M0

is fixed we do not need to show dependence on µ0 in the notation). As usual, for a cdf F we

denote by F−1 the corresponding quantile function F−1(x) = inf{z ∈ R : F (z) ≥ x}. In order

to obtain C♦(α), one must hence solve the optimization problem in (18).

We shall now provide an heuristic optimization algorithm to solve (18) in the case where

F = FAR(p) with 1 ≤ p ≤ n − 1. We write C♦(α, p) to emphasize the dependence of the critical

value on the autoregressive order; apart from p, the critical value only depends on X, R, and the

weights w, but not on the value of r (cf. Remark 3.3(ii)). [We do not show the dependence on

X, R, and w in the notation.] Note that by Remark 3.1 the families FAR(n−1) and Fall induce

the same testing problem, and hence the critical value C♦(α, n − 1) achieves size control also

over Fall. Consequently, the subsequent discussion covers testing problems where F = Fall as a

special case. We start by reparameterizing the optimization problem (18), exploiting the fact

that F = FAR(p) can be parameterized through the partial autocorrelation coefficients (reflection

coefficients), cf. Barndorff-Nielsen and Schou (1973): To each p-vector of partial autocorrelation

coefficients ρ ∈ (−1, 1)p there corresponds a unique normalized AR(p) spectral density fρ, say,

and vice versa. Hence, writing Fρ for FΣ(fρ), it follows that

C♦(α, p) = sup
f∈FAR(p)

F−1
Σ(f)(1− α) = sup

ρ∈(−1,1)p
F−1
ρ (1− α). (19)

That is, C♦(α, p) can be found by maximizing the objective function ρ 7→ F−1
ρ (1 − α) over

(−1, 1)p. Compared to other parameterizations of the set of all stationary AR(p) spectral densi-

ties, e.g., through the autoregression coefficients or the set of zeros of the AR polynomial, work-

ing with partial autocorrelation coefficients has the clear advantage that no cross-restrictions are

present. One aspect that complicates the optimization problem, in addition to being potentially

high-dimensional, is that the objective function ρ 7→ F−1
ρ (1 − α) needs to be approximated nu-

merically, e.g., by a Monte Carlo algorithm, since an analytical expression for F−1
ρ is unknown in

general. Therefore, an optimization algorithm for determining the supremum in the previous dis-

play needs to determine a quantile via a Monte Carlo algorithm each time a function evaluation

is required, which can be computationally intensive, but is amenable to parallelization.

The optimization algorithm we use for numerically determining C♦(α, p) is described in detail

in Algorithm 1 which can be found in Appendix F. Roughly speaking, the algorithm starts with

a preliminary step that selects candidate values ρ from (−1, 1)p, which are then used as initial

values in a (local) optimization step. This step returns improved candidate values of ρ, the best

of which are in turn used as initial values in a second (local) optimization step that now uses a

larger number of replications in the Monte-Carlo evaluation of the objective function F−1
ρ (1−α)

than was used in the previous steps.

A related problem is to numerically determine the size of the test that rejects if Tw exceeds
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a certain given critical value C, i.e., one wants to obtain

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈FAR(p)

Pµ0,σ
2Σ(f) (Tw ≥ C) .

Similarly as above this can be reduced to determining

sup
f∈FAR(p)

Pµ0,Σ(f) (Tw ≥ C) (20)

for a fixed value of µ0 ∈ M0. One can then use a variant of Algorithm 1, which is described in

Algorithm 2 in Appendix F, to solve that problem.

Finally we emphasize that, as is typical for numerical optimization problems, there is no

guarantee that the algorithms mentioned above do return the exact critical value C♦(α, p) or

the exact size of a test given a critical value C. The algorithms are heuristics that numerically

approximate the quantities of interest.

Remark 4.1. In case p = 0, i.e., when the errors are i.i.d., the algorithms simplify considerably

in an obvious way as no optimization over ρ is then necessary.

Remark 4.2. (Other test statistics) The above development has been given for the test statistic

Tw. It applies to any other test statistic T as long as (i) T is G(M0)-invariant and (ii) satisfies

λRn(T = C) = 0 for every C ∈ R, and (iii) one can ensure that a size-controlling critical value

exists. It thus, in particular, applies to the weighted Eicker-test statistic TE,W as defined in

Section 3 (cf. Lemma 5.16 and Remark 5.17 in Section 5.3). Note that for problem (20) the

just given condition (ii) on T is actually not needed. [If T does not belong to the class of

nonsphericity-corrected F -type test statistics (cf. Preinerstorfer and Pötscher (2016), Section

5.4), we can, however, no longer conclude that the corresponding critical values C♦(α, p) are

independent of the value of r.] Furthermore, for covariance models C not of the form C(F) the

general principles underlying the reduction of (17) to (18) still apply, provided T satisfies (i)-(iii)

given above. Algorithms that perform optimization of the so-obtained analogue of (18) can then

be developed in a similar way by exploiting the structure of the given covariance model C.

4.2 An illustration for regression models based on US macroeconomic

time series and autoregressive error processes

We now apply Algorithms 1 and 2 introduced above to regression models based on data from the

FRED-MD database, which consists of 128 macroeconomic time series that have been subjected

to stationarity-inducing transformations (see McCracken and Ng (2016) for detailed information

concerning the database). More specifically, we consider regression models of the form

yt = β1 + β2t+ β3xt + ut for t = 1, . . . , n,
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where u1, . . . ,un are distributed like consecutive observations from a mean zero stationary Gaus-

sian process with spectral density σ2f , f ∈ FAR(p). Here xt is one of the 128 macroeconomic

variables in the FRED-MD database, and where we use the most recent n = 100 observations

from each time series.8 For each of these 128 regressors and for every p ∈ {0, 1, 2, 5, 10, 25, 50, 99}

we consider the problem of testing a restriction on the coefficient β3 at the 5% level, i.e., we

consider testing problem (4) with F = FAR(p), R = (0, 0, 1), and with r arbitrary (the results

presented below do not depend on r, cf. Remark 3.3(ii)). Recall that the case p = 99 realizes the

testing problem for the case F = Fall, and that the case p = 0 corresponds to i.i.d. disturbances.

In each setting we consider the test statistic Tw as defined in (5) as well as TE,W as defined

in Section 3, with the design matrix X corresponding to the regression model in the previous

display. Bartlett weights w(j, n) = (1− |j| /Mn)1(−1,1)(j/Mn) with Mn = n/10 (i.e., bandwidth

equal to 1/10) are used for the test statistic Tw, and the same weights are used for the matrix

W appearing in TE,W. Since q = 1, rejecting for large values of Tw is equivalent to rejecting if

the t-type test statistic corresponding to Tw, i.e., if

tw(y) =











(β̂3(y)− r)/Ω̂
1/2
w (y) if Ω̂w (y) 6= 0

0 else ,

is large in absolute value. A similar observation applies to tests obtained from TE,W, the corre-

sponding t-type test statistic being denoted by tE,W. For the test statistic tw, critical values that

are based on fixed-bandwidth asymptotics are provided in Kiefer and Vogelsang (2005), p. 1146,

and this critical value (for the bandwidth and kernel chosen here) is given by 2.260568. For the

sake of comparability, and because critical values for t-statistics are usually easier to interpret,

we shall present critical values for the t-type version of the test statistics in what follows. Criti-

cal values for Tw and TE,W can easily be obtained by taking the square. We also note that the

critical values obtained below can be used for the construction of confidence intervals for β3. We

shall now apply Algorithm 1 to numerically compute the critical value that is needed to control

size in each scenario. Additionally, we also apply Algorithm 2 to numerically compute the size

of the test that rejects if |tw| exceeds the above mentioned critical value provided by Kiefer and

Vogelsang (2005).9 The particular settings used in Algorithms 1 and 2 for the computations in

this section are described in detail in Appendix H.

To ensure, for each of the 128 design matrices, existence of a critical value for Tw (and hence

for tw) that controls size for any (nonempty) family of (normalized) spectral densities, we now

check the sufficient conditions of Theorem 3.2: That Assumption 1 is satisfied follows from the

8The database was downloaded on October 25, 2016 from https://research.stlouisfed.org/econ/mccracken/fred-
databases/

9A referee has questioned if using this critical value here is appropriate given that the regressors are treated as
nonrandom and that a linear trend is included. However, note that the theory developed in Kiefer et al. (2000),
Kiefer and Vogelsang (2002a,b, 2005) is based on high-level assumptions that are compatible with nonrandom
regressors. Furthermore, linear trends (as long as their coefficients are not subject to tests as is the case here) can
be accomodated in this framework by an application of the Frisch-Waugh-Lovell theorem, see Kiefer et al. (2000).
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discussion after that assumption since we use the Bartlett kernel. Assumption 2 is satisfied

for all 128 cases as none of these design matrices contains an element of the canonical basis

in its span, which is easily verified numerically, and which then implies the assumption, since

rank(R(X ′X)−1X ′) = q always holds. It remains to check condition (11) for each of the 128

design matrices. This can successfully be done numerically and we describe the details of this

computation in Appendix G. Since span(X) ⊆ B always holds, this then also implies validity

of condition (14), and thus also implies existence of a corresponding critical value for tE,W (cf.

Theorem 3.8).

Figure 1(a) summarizes the numerical results for the size of the test that rejects if |tw| exceeds

the Kiefer-Vogelsang critical value 2.260568: For each autoregressive order p ∈ {1, 2, 5, 10, 25, 50, 99}

as well as for the i.i.d. case (i.e., p = 0) and for each of the 128 models considered we obtained

the size (i.e., the maximal rejection probability under the null) by means of Algorithm 2 and

summarize them in Figure 1(a) in the form of boxplots (each boxplot representing the 128 sizes

obtained for a given order p). For a complete list of results see Table 1 in Appendix L. As is

apparent from Figure 1(a), the Kiefer-Vogelsang critical value does not control size (not even

in the i.i.d. setting) at the desired 5% level for neither one of the 128 regression models. This

observation a fortiori extends to critical values smaller than the Kiefer-Vogelsang critical value

such as, e.g., the standard normal critical value 1.96, or the critical value obtained from third-

order asymptotic expansions (for the location model) in Sun et al. (2008) which equals 2.242583

(for the bandwidth and kernel chosen here). Figure 1(a) furthermore shows a large increase in

the size when passing from the i.i.d. to the AR(1) case, and another large increase in size when

passing from the AR(1) to the AR(2) case.10 In the AR(2) case severe size distortions are present

for all of the 128 regression models. Figure 1(a) also suggests that the sizes for the cases with

p > 2 are comparable to the sizes in the AR(2) case.

In Figure 1(b) we present the critical values which guarantee size control at the 5% level as

computed by an application of Algorithm 1 for the test statistics tw as well as tE,W. Again we

present boxplots, and refer the reader to Tables 2 and 3 in Appendix L for a complete list of

results. Figure 1(b) suggests that the critical values required to control size increase strongly

when passing from the i.i.d. case to the AR(1) model, and again when passing from the AR(1)

to the AR(2) model. For larger p, the critical values, while still increasing with p, seem to

stabilize. Figure 1(b) also illustrates the dependence of the critical value on the design matrix:

For some of the 128 regressors in the FRED-MD database, the critical values needed to control

size are very large, while for other regressors the critical values are about 2-3 times as large as

the Kiefer-Vogelsang critical value (which, however, does not provide size control). Figure 1(b)

further suggests that the critical values for tw needed to control size at the 5% level tend to be

larger than the corresponding critical values for tE,W.

10The increase in size when passing form the i.i.d. to the AR(1) case is connected to the fact that there are
no concentration spaces in the i.i.d. case, whereas in the AR(1) case two concentration spaces corresponding to
angular frequencies γ = 0 and γ = π exist. The further increase in size when passing form AR(1) to AR(2) is
related to the fact that AR(2) models allow additional concentration spaces corresponding to angular frequencies
γ ∈ (0, π).
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Figure 1: (a) Sizes of the test which rejects if |tw| ≥ 2.260568 (Kiefer-Vogelsang critical value).
The horizontal dashed red line corresponds to 0.05. (b) Critical values guaranteeing a 5 % level
for the t-type tests corresponding to Tw and TE,W. The horizontal dashed grey line corresponds
to the Kiefer-Vogelsang critical value 2.260568.
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While it is plain that the size-controlling critical values can never fall when passing from an

AR(p) model to an AR(p′) model with p < p′, this is not always guaranteed for the numerically

determined critical values due to numerical errors. We could have “monotonized” the results

in Figure 1(b), but have decided not to. A similar remark applies to Figure 1(a) as well as to

Figure 2 given further below.

A referee has suggested to examine also the critical value that is computed under the pre-

sumption that the errors would follow a random walk. We discuss this in Appendix I.

The final issue we shall investigate is how the size distortions of the test using the Kiefer-

Vogelsang critical values, documented in Figure 1(a) for (unrestricted) AR(p) models, are influ-

enced if we consider restricted AR(p) error processes where the restrictions amount to placing

a bound on the partial autocorrelations. More precisely, we consider AR(p) models where now

the partial autocorrelations are restricted to sets of the form (−1+ ε, 1− ε)p ⊆ (−1, 1)p for some

choice of ε, 0 < ε < 1. Figure 1(a) suggests that, in order to obtain some insight, we can focus

on the AR(2) case. We apply a variant of Algorithm 2 to numerically compute the size of the

test based on tw together with the Kiefer-Vogelsang critical value, where F is now the set of all

normalized AR(2) spectral densities with maximal absolute partial autocorrelation coefficient not

exceeding a certain threshold in absolute value. Furthermore, we apply a variant of Algorithm

1 to numerically determine the critical values needed to control the sizes of the tests based on

tw and tE,W at the 5% level over these sets of spectral densities. As discussed in Remark F.4 in

Appendix F, the algorithms now have to be modified in such a way that the feasible set of the

optimization problems in Stages 1 and 2 are restricted sets of partial autocorrelation coefficients

of the form (−1 + ε, 1 − ε)2, and so that the starting values in Stage 0 fall within this feasible

set. The starting values are randomly generated as described above, but in order to force them

into (−1 + ε, 1− ε)2, they are all multiplied by 1− ε.

The size of the test based on the Kiefer-Vogelsang critical value over the so restricted AR(2)

models are summarized in Figure 2(a) for a range of values for 1− ε. From these results we see

that even if one is willing to impose the (questionable) assumption that partial autocorrelation

coefficients are known not to exceed 0.55 in absolute value, the size of the test rejecting when-

ever |tw| exceeds the Kiefer-Vogelsang critical value is considerable larger than 0.05 for most

of the 128 regression models under consideration. Unsurprisingly, the degree of size distortion

increases steadily as the bound for the maximal absolute partial autocorrelation increases, where

we observe a steep increase from 0.95 to the unrestricted case. This shows that even if the

practitioner has good reasons to believe that each partial autocorrelation is bounded away from

one in modulus, critical values that are typically used in practice, such as the Kiefer-Vogelsang

critical value, still fail to provide size control by a considerable margin. Numerical computations

of critical values that do provide size control are given in Figure 2(b). Apart from the i.i.d.

case, the corresponding boxplots do not “cover” the Kiefer-Vogelsang critical value. In line with

Figure 2(a), the size-controlling critical values considerably exceed the Kiefer-Vogelsang critical

value.
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Figure 2: (a) Sizes of the test which rejects if |tw| ≥ 2.260568 (Kiefer-Vogelsang critical value).
The horizontal dashed red line corresponds to 0.05. (b) Critical values guaranteeing a 5 % level
for the t-type tests corresponding to Tw and TE,W. The horizontal dashed grey line corresponds
to the Kiefer-Vogelsang critical value 2.260568.
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5 Size control of tests of affine restrictions in regression

models with nonspherical disturbances: General theory

In this section we lay the foundation for all the size control results in the paper. Other than in the

preceding Sections 3 and 4, we here do not require that the disturbance vector in the regression

model (1) is induced by a stationary process, but we revert to the more general framework

specified in Section 2. In Subsection 5.1 we obtain conditions under which the size of a rejection

region W (satisfying certain invariance properties) is smaller than one when testing (3). This

result is then further specialized to the important case when W = {T ≥ C} for a test statistic

T satisfying weak regularity conditions. In Subsection 5.2 we consider a family of regions Wj

for j ∈ N (satisfying certain invariance properties), and we obtain conditions under which for

every α ∈ (0, 1) there exists an element of this family Wj(α), say, the size of which does not

exceed α. These results are then specialized to families of the form Wj = {T ≥ Cj} for Cj ր ∞,

and where the test statistic T satisfies certain weak regularity conditions. For such families we

also obtain a lower bound for the critical values that possibly can lead to size control, and we

study the problem under which conditions exact size control can be achieved, i.e., when for a

given α ∈ (0, 1) a critical value does exist so that the size of the corresponding test equals α. In

Subsection 5.3 we then show how some of the conditions arising in the results in Subsections 5.1

and 5.2 can be implied from lower-level conditions; see also Section B.1 of Appendix B.

We start by defining a certain collection of linear subspaces of Rn, where n is sample size,

that plays a central rôle in the size control results. Loosely speaking, the linear spaces belonging

to this collection are either (nontrivial) projections of concentration spaces of the covariance

model C (in the sense of Preinerstorfer and Pötscher (2016)) on L⊥, where L is an appropriately

chosen subspace related to invariance properties of the tests under consideration, or are what

one could call “higher-order” concentration spaces. For a more precise discussion see Section B.1

in Appendix B. Since the tests we are interested in are all at least G(M0)-invariant, a typical

choice for L is Mlin
0 , the linear space parallel to M0. However, it proves useful to allow for the

more general case where L is an arbitrary linear space (typically containing Mlin
0 ). Recall from

Section 5.1 of Preinerstorfer and Pötscher (2016) that G(M0) denotes the group of all maps of

the form y 7→ δ(y − µ0) + µ′
0, where δ ∈ R, δ 6= 0, and where µ0 as well as µ′

0 belong to M0.

Definition 5.1. Given a linear subspace L of Rn with dim(L) < n and a symmetric positive

definite n× n-dimensional matrix Σ, we let

L(Σ) =
ΠL⊥ΣΠL⊥

‖ΠL⊥ΣΠL⊥‖
. (21)

Given a covariance model C, we let L(C) = {L(Σ) : Σ ∈ C}. Furthermore, we define

J(L,C) =
{

span(Σ̄) : Σ̄ ∈ cl(L(C)), rank(Σ̄) < n− dim(L)
}

,
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where the closure is here understood w.r.t. Rn×n.

Note that the denominator in (21) is always nonzero, that J(L,C) can be empty, and that

J(L,C) neither contains L⊥ nor the trivial space {0}. Also note that J(L,C) is independent of

the particular choice of norm used in the above definition.

Remark 5.1. (i) Even in the special case where L = {0}, the set J(L,C) need not coincide with

the set of all concentration spaces in the sense of Preinerstorfer and Pötscher (2016) (i.e., with

the set, the union of which is J(C) defined in Section 5.3 of Preinerstorfer and Pötscher (2016)).

Both sets coincide in case L = {0} if and only if C is bounded away from zero, i.e., if there is

no sequence Σj ∈ C that converges to the zero matrix. Note that this latter condition on C is

satisfied for many covariance models, e.g., if C consists of correlation matrices or under similar

normalization assumptions.

(ii) In fact, as long as we are only concerned with G(M0)-invariant tests and their null-

rejection probabilities, we could without loss of generality always assume that the covariance

model is bounded and is bounded away from zero: note that, e.g., passing from C to the normal-

ized covariance model {Σ/ ‖Σ‖ : Σ ∈ C} does not affect the null-rejection probabilities of G(M0)-

invariant tests, see Proposition 5.4 in Preinerstorfer and Pötscher (2016).11 Furthermore, note

that J(L,C) does not change if C is being rescaled.

5.1 Size less than one

The subsequent proposition gives simple sufficient conditions under which the size of a test is

less than one.

Proposition 5.2. Let C be a covariance model, and let W be a G(M0)-invariant rejection

region that is also invariant w.r.t. addition of elements of a linear subspace V of Rn. Define

L = span(Mlin
0 ∪V), i.e., L is the linear space generated by Mlin

0 ∪V, and assume that dim(L) < n.

Suppose that

(a) W c is not a λRn-null set, and

(b) if S ∈ J(L,C) then (cl(W ))
c∩ (µ0+S) 6= ∅ for some µ0 ∈ M0 (and hence for all µ0 ∈ M0

in view of G(M0)-invariance of W ).

Then the size of the test given by the rejection region W satisfies

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(W ) < 1. (22)

The leading case in this proposition and in the results in the subsequent section is the case

where V = {0}, and hence L = Mlin
0 .

Remark 5.3. (i) In case W satisfies the invariance assumptions appearing in Proposition 5.2

and dim(L) = n holds, it follows that W is either empty or the entire space Rn, both being

11The effect of replacing Σ by Σ/ ‖Σ‖ on non-null-rejection probabilities is that σ2 is replaced by σ2 ‖Σ‖. As
a consequence, the nuisance-minimal power at any µ ∈ M1 remains unaffected.
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trivial cases. Similar remarks apply to the other results in this and the next subsection and will

not be stated.

(ii) If a rejection region W ∗ differs from a rejection region W that satisfies the assumptions of

Proposition 5.2 only by a λRn -null set, then the conclusions of Proposition 5.2 also hold for W ∗

(even if it does not satisfy the assumptions of that proposition), since W and W ∗ have the same

rejection probabilities. Similar remarks apply to the other results in this and the next subsection

and will not be stated.

(iii) It is not difficult to see that G(M0)-invariance together with invariance w.r.t. addition

of the elements of V is equivalent to G(µ0 + L)-invariance for some µ0 ∈ M0 (and hence every

µ0 ∈ M0).

Remark 5.4. (i) Proposition 5.2 applies, in particular, to rejection regions of the form W =

{y ∈ Rn : T (y) ≥ C} for some −∞ < C < ∞, where T : Rn → R is Borel-measurable, is

G(M0)-invariant and is also invariant w.r.t. addition of elements of a linear subspace V of Rn.

(ii) If, additionally to the conditions in (i), T is continuous on the complement of a closed set

N†, then a sufficient condition for condition (b) in Proposition 5.2 is as follows: if S ∈ J(L,C),

then W c∩ (N†)c∩ (µ0+S) 6= ∅ for some µ0 ∈ M0. This follows from Lemma B.1 in Appendix B.

[An equivalent formulation of this sufficient condition is that whenever S ∈ J(L,C) then there

exists an s ∈ S such that T (µ0 + s) < C and µ0 + s /∈ N† for some µ0 ∈ M0.]

(iii) Suppose the conditions on T in (ii) are satisfied. In case J(L,C) is finite, i.e., J(L,C) =

{S1, . . . ,Sr}, and provided that for every Si ∈ J(L,C) one can find an element si ∈ Si with

µ0,i + si /∈ N† for some µ0,i ∈ M0, any C satisfying C > max1≤i≤r T (µ0,i + si) gives rise to a

critical region W that has size less than 1. To see this, observe that condition (b) in Proposition

5.2 is satisfied in view of (ii) and the construction of C. Furthermore, observe that µ0,i+si ∈ W c.

Since T is continuous at µ0,i + si (as µ0,i + si /∈ N†), a sufficiently small open ball with center

at µ0,i + si also belongs to W c, showing that W c is not a λRn -null set.

5.2 Size less than α

The next proposition is the basis for the size control results we want to obtain.

Proposition 5.5. Let C be a covariance model, and let Wj be a sequence of G(M0)-invariant

rejection regions that are also invariant w.r.t. addition of elements of a linear subspace V of Rn.

Define L = span(Mlin
0 ∪ V), and assume that dim(L) < n. Assume that the rejection regions

satisfy Wj ⊇ Wj+1 for all j ∈ N. Suppose that

(a)
⋂

j∈N
Wj is a λRn-null set, and

(b) if S ∈ J(L,C) then
⋂

j∈N
cl(Wj) is a λµ0+S-null set for some µ0 ∈ M0 (and hence every

µ0 ∈ M0).

Then the sizes of the tests given by the rejection regions Wj satisfy

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(Wj) → 0 as j → ∞; (23)
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in particular, for every α ∈ (0, 1) there exists a j(α) ∈ N so that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(Wj(α)) ≤ α.

In the important special case, where Wj = {y ∈ Rn : T (y) ≥ Cj} for some real-valued

test statistic T and where Cj ր ∞ as j → ∞, condition (a) in the preceding proposition is

clearly always satisfied since the intersection is empty in this case. The subsequent corollary

now provides sufficient conditions for condition (b) in case of such rejection regions Wj . The

conditions imposed on T in this corollary are widely satisfied (at least in the leading case where

V = {0}), see Subsection 5.3.

Corollary 5.6. Let C be a covariance model, and assume that the test statistic T : Rn → R is

Borel-measurable and is continuous on the complement of a closed set N†.12 Assume that T and

N† are G(M0)-invariant, and are also invariant w.r.t. addition of elements of a linear subspace

V of Rn.13 Define L = span(Mlin
0 ∪ V), and assume that dim(L) < n. Let Wj = {y ∈ Rn :

T (y) ≥ Cj} for −∞ < Cj < ∞ with Cj ր ∞ as j → ∞. Then:

1. The conclusion of Proposition 5.5 holds, provided condition (b) in that proposition is sat-

isfied.

2. A sufficient condition for condition (b) in Proposition 5.5 to hold is the following: if S ∈

J(L,C), then the set N† is a λµ0+S-null set for some µ0 ∈ M0 (and hence for all µ0 ∈ M0).

3. In case N† is a finite or countable union of affine subspaces, the sufficient condition given

in 2. is equivalent to: if S ∈ J(L,C), then µ0 + S 6⊆ N† for some µ0 ∈ M0 (and hence for

all µ0 ∈ M0).

Remark 5.7. The corollary implies, in particular, that size control is always possible in case

J(L,C) is empty.14 This is, e.g., the case if C has no singular limit points and is norm bounded,

or more generally if C is such that {Σ/ ‖Σ‖ : Σ ∈ C} has no singular limit points. Of course, this

is in line with Theorems 5.10 and 5.12 in Preinerstorfer and Pötscher (2016).

Remark 5.8. If M0 is a linear space (i.e., if r = 0), we can w.l.o.g. set µ0 = 0 in the sufficient

conditions in Part 2 and 3 of Corollary 5.6, leading to a simplification of the conditions. Even if

M0 is not a linear space (i.e., if r 6= 0), the same simplification can be made provided that N†

12While this condition is trivially satisfied for every Borel-measurable T upon choosingN† equal to Rn, satisfying
the other conditions in the corollary will rule out this case, except if J(L,C) is empty. Also note that for typical
test statistics the set N† will turn out to be a ‘small’ set, e.g., a λRn -null set.

13If T is Borel-measurable, is continuous on the complement of a closed set N†, and if T satisfies the invariance
requirements in the corollary, then it is easy to see that one can always find a closed subset N†† of N† such that
T is continuous on the complement of N†† and such that N†† satisfies the invariance properties asked for in the
corollary. Hence, requiring in the corollary that the set N† satisfies the invariance conditions imposes no loss of
generality.

14Observe that in this case setting N† equal to Rn does not restrict the applicability of the corollary and hence
voids the continuity requirement on T .
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is invariant under addition of elements of M0. This latter invariance property is, in particular,

satisfied whenever N† is G(M)-invariant, which is the case for a large class of test statistics in-

cluding nonsphericity-corrected F-type test statistics that satisfy Assumption 5 in Preinerstorfer

and Pötscher (2016) (cf. Lemma 5.16 further below).

Remark 5.9. (i) The argument that establishes Part 3 of the preceding corollary also shows that

in condition (b) in Proposition 5.5 we can replace “
⋂

j∈N
cl(Wj) is a λµ0+S -null set” equivalently

by “µ0 + S 6⊆
⋂

j∈N
cl(Wj)” provided that

⋂

j∈N
cl(Wj) is a finite or countable union of affine

spaces.

(ii) The condition that
⋂

j∈N
cl(Wj) (N

†, respectively) is a λµ0+S -null set in Proposition 5.5

(Corollary 5.6, respectively) is – for 1-dimensional S ∈ J(L,C) – equivalent to
⋂

j∈N
cl(Wj) ∩

(µ0 + S) ⊆ {µ0} (N† ∩ (µ0 + S) ⊆ {µ0}, respectively); i.e., except possibly for µ0, the entire set

µ0 + S lies outside of
⋂

j∈N
cl(Wj) (N

†, respectively). For a proof see Appendix B.

Corollary 5.6 implies that, under its conditions, for every α ∈ (0, 1) there exists a real number

C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C(α)) ≤ α (24)

holds. Under mild conditions a smallest such critical value exists as discussed in the next remark.

Remark 5.10. (Existence of a smallest critical value guaranteeing size control) (i) Let α ∈ (0, 1)

and suppose T is a test statistic such that (24) holds. Let CV≤(α) be the set of all real C(α)

such that (24) holds. Then the set CV≤(α) is clearly nonempty and is an interval either of

the form (C♦(α),∞) or of the form [C♦(α),∞) for some real number C♦(α). If the map C 7→

supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥ C) is continuous from the right at C = C♦(α), then

CV≤(α) = [C♦(α),∞) must hold, i.e., a smallest critical value guaranteeing (24) does exist and

is given by C♦(α). The just mentioned right-continuity property is easily seen to be satisfied,

whenever the test statistic T has the property that λRn(T = C♦(α)) = 0. This latter condition

is satisfied by a large class of test statistics (cf. Lemma 5.16 further below).

(ii) Let α ∈ (0, 1) and suppose T is a test statistic such that equality in (24) holds for at

least one real number C(α). Let CV=(α) denote the set of all such C(α), which then clearly is a

nonempty subinterval of CV≤(α) consisting of an initial (w.r.t. the order on the real line) segment

of CV≤(α).
15 If CV≤(α) = [C♦(α),∞), as is, e.g., the case under the condition discussed in (i),

then C♦(α) is also the smallest element of CV=(α), i.e., a smallest critical value guaranteeing

equality in (24) exists and is given by C♦(α).

The next lemma provides a lower bound C∗ for the critical values C that possibly can lead

to size control and is a building block for the next proposition.

Lemma 5.11. Let C, T , N†, V, and L be as in Corollary 5.6. Denote by H the set of all

S ∈J(L,C) such that T restricted to µ0 + S is equal to a constant C(S), say, λµ0+S-almost

15That is, if c ∈ CV=(α), then every c′ ∈ CV≤(α) with c′ ≤ c also belongs to CV=(α).
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everywhere for some µ0 ∈ M0 (and hence for all µ0 ∈ M0). Define C∗ = infS∈H C(S) and

C∗ = supS∈H C(S), with the convention that C∗ = ∞ and C∗ = −∞ if H is empty. Then the

following hold:

1. Any one-dimensional S ∈ J(L,C) belongs to H. [In particular, H is nonempty if a one-

dimensional S ∈ J(L,C) exists.]

2. Suppose that for every S ∈ H the set N† is a λµ0+S-null set for some µ0 ∈ M0 (and hence

for all µ0 ∈ M0). Then for C ∈ (−∞, C∗) the size of the test with critical region {T ≥ C}

satisfies

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 1. (25)

If, additionally, N† is a λµ0+S-null set for some µ0 ∈ M0 (and hence for all µ0 ∈ M0)

not only for S ∈ H but for every S ∈J(L,C), then the l.h.s. in (25) converges to zero for

C → ∞ (implying that then C∗ < ∞ holds).

3. Suppose that for every S ∈ H the set N† is a λµ0+S-null set for some µ0 ∈ M0 (and hence

for all µ0 ∈ M0). Then for C ∈ (C∗,∞)

inf
µ0∈M0

inf
0<σ2<∞

inf
Σ∈C

Pµ0,σ
2Σ(T ≥ C) = 0. (26)

Part 3 of the preceding lemma also provides some information on the infimal rejection prob-

ability under the null hypothesis (and thus on power properties “near” the null) of the test in

case H is nonempty: In this case, we clearly have C∗ ≤ C∗. It follows that, under the assump-

tions of the lemma, a test based on T which has size less than or equal to α < 1, must have

a critical value C larger than or equal to C∗(≥ C∗). Part 3 then implies severe biasedness of

the test (except possibly if C = C∗ = C∗ holds), which typically entails bad power properties

in certain regions of the alternative hypothesis (in view of Part 3 of Theorem 5.7 and Remark

5.5(iii) in Preinerstorfer and Pötscher (2016)). However, note that in case H is empty, we have

C∗ = ∞ and consequently Part 3 of the lemma does not convey any information about rejection

probabilities. Since we concentrate exclusively on size properties in this paper, we postpone a

detailed discussion of power properties to a companion paper. Furthermore, in view of Remark

5.5(iii) in Preinerstorfer and Pötscher (2016), relation (25) remains valid even after one removes

the suprema over µ0 and σ2 in (25). A similar remark applies to (26).

The size control result in Corollary 5.6 can be sharpened to an exact size control result under

some additional assumptions.

Proposition 5.12. Let C, T , N†, V, and L be as in Corollary 5.6. Suppose that for every

S ∈ J(L,C) the set N† is a λµ0+S-null set for some µ0 ∈ M0 (and hence for all µ0 ∈ M0).

Let H, C(S), and C∗ be as in Lemma 5.11 (note that C∗ < ∞ holds in view of Part 2 of that

lemma).
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A. Suppose that for every C ∈ (C∗,∞)

(a) λRn(T = C) = 0, and

(b) if S ∈ J(L,C)\H then λµ0+S(T = C) = 0 for some µ0 ∈ M0 (and hence for every

µ0 ∈ M0).

Then the following holds:

1. The function

C 7→ sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C) (27)

is nonincreasing, equals one for C ∈ (−∞, C∗), is continuous on (C∗,∞), and converges

to 0 as C → ∞.

2. Define

α∗ = sup
C∈(C∗,∞)

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C). (28)

Then, for every α ∈ (0, 1) there exists a C(α) ∈ (C∗,∞) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C(α)) ≤ min(α, α∗) ≤ α. (29)

[Note that the l.h.s. of (29) necessarily is less than or equal to α∗ for every choice of

C(α) ∈ (C∗,∞).] Furthermore, for every α ∈ (0, α∗) the constant C(α) ∈ (C∗,∞) can be

chosen such that (“exact size control”)

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(T ≥ C(α)) = α. (30)

B. Suppose C∗∗ ≥ C∗ is a real number and suppose that the conditions (a) and (b) given above

are only known to hold for every C ∈ (C∗∗,∞). Define α∗∗ in the same way as α∗, but

with C∗∗ replacing C∗. Then the claims in Part A.1 continue to hold as they stand except

for the fact that continuity is now only guaranteed on (C∗∗,∞). As a consequence, all the

conclusions of Part A.2 continue to hold provided C∗ in that part is everywhere replaced by

C∗∗ and α∗ by α∗∗. [Since C∗∗ ≥ C∗ and hence α∗∗ ≤ α∗, also the claim in (29) continues

to hold as it stands.]

Again by Remark 5.5(iii) in Preinerstorfer and Pötscher (2016), the suprema w.r.t. µ0 and

σ2 can be removed from (27)-(30), and the resulting expressions then do not depend on the

particular choice for µ0 ∈ M0 and σ2 ∈ (0,∞).

Remark 5.13. (Continuity properties and existence of smallest critical values) Suppose the

assumptions for Part A of Proposition 5.12 are satisfied.

(i) If C∗ = −∞ then the function given by (27) is continuous on R, whereas if C∗ > −∞ it is

only guaranteed to be continuous on R\ {C∗}. If C∗ > −∞ and if, additionally, λRn(T = C∗) = 0

33



holds, it is easy to see that (27) is then at least continuous from the right at C∗.

(ii) If C∗ = −∞ then clearly α∗ = 1 and hence exact size control (30) is possible for every

α ∈ (0, 1), whereas in case C∗ > −∞ we only can conclude that α∗ ≤ 1 and that (30) holds for

α ∈ (0, α∗). If C∗ > −∞ and if, additionally, the map (27) is continuous from the right at C∗, it

follows from (i) that (30) can also be achieved for α = α∗ (with a C(α) belonging to [C∗,∞)).

(iii) An upper bound for α∗ is obviously given by supµ0∈M0
sup0<σ2<∞ supΣ∈C Pµ0,σ

2Σ(T ≥

C∗). If C∗ = −∞ holds, or if C∗ > −∞ and the map (27) is continuous from the right at C∗,

then this upper bound coincides with α∗.

(iv) If C∗ = −∞ holds, or if C∗ > −∞ and the map (27) is continuous from the right at

C∗, then for every α ∈ (0, 1) a smallest critical value C♦(α) ∈ R satisfying (29) exists (i.e.,

CV≤(α) = [C♦(α),∞) holds) in view of (i) and Remark 5.10. [Note that for α ∈ (0, 1) here

C♦(α) > C∗ must hold if α < α∗, and that C♦(α) = C∗ must hold if α = α∗.] Under the same

conditions, for every α ∈ (0, α∗] ∩ (0, 1) there is a smallest critical value satisfying (30) which is

again given by C♦(α) (in fact, CV=(α) = [C♦(α), b] for some real b ≥ C♦(α) holds). This follows

from (i), (ii) above and Remark 5.10 (and the fact that (27) goes to zero for C → ∞).

(v) For every α ∈ (0, α∗) a smallest critical value C♦(α) ∈ R satisfying (29) and (30) always

exists, even without the right-continuity condition in case C∗ > −∞. Necessarily, C♦(α) > C∗

has to hold.

(vi) The case α∗ = 0 can occur, e.g., if T is identically equal to a constant. However, for

large classes of test statistics such as nonsphericity-corrected F -type test statistic as defined in

(28) in Section 5.4 of Preinerstorfer and Pötscher (2016) and satisfying Assumptions 5 and 6 in

that paper we always have α∗ > 0. This follows from Part 5 of Lemma 5.15 in that reference.

Remark 5.14. (i) Suppose dim(L) = n − 1. Then clearly J(L,C) is empty. Furthermore, any

T that satisfies the invariance properties mentioned in Corollary 5.6 is then constant λRn -almost

everywhere, hence size control is trivially possible. Similarly, W in Proposition 5.2 then is an

λRn -null set and the proposition holds trivially. Similarly, the sets Wj in Proposition 5.5 are

then λRn -null sets from a certain j onwards.

(ii) In case L = Mlin
0 , the case dim(L) = n − 1 can not arise, since k < n and q ≥ 1 are

always assumed.

The following observation applies to a large class of test statistics and is, e.g., useful when

constructing confidence sets by “inverting” the corresponding test.

Lemma 5.15. Suppose T is a nonsphericity-corrected F -type test statistic as defined in (28) in

Section 5.4 of Preinerstorfer and Pötscher (2016) and that Assumption 5 in that paper is satisfied.

Then the rejection probabilities under the null hypothesis described by (3) do not depend on the

value of r. As a consequence, the size-controlling critical values C(α) (if they exist) do not

depend on the value of r either. [It is understood here that the estimators β̌ and Ω̌ used to define

the test statistic T have been chosen independently of the value of r.]
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5.3 Some sufficient conditions

We collect here sufficient conditions for some of the assumptions on T in the preceding results.

For sufficient conditions relating to J(L,C) see Section B.1 in Appendix B.

Lemma 5.16. Suppose T is a nonsphericity-corrected F -type test statistic as defined in (28)

in Section 5.4 of Preinerstorfer and Pötscher (2016) and that Assumption 5 in that paper is

satisfied. Then:

1. T is Borel-measurable and is continuous on the complement of a closed λRn-null set N∗

(with N∗ given in (27) of Preinerstorfer and Pötscher (2016)). Furthermore, T and N∗

are G(M0)-invariant (in fact, N∗ is even G(M)-invariant).

2. λRn(T = C) = 0 holds for −∞ < C < ∞.

3. The complement of the rejection region {T ≥ C} is not a λRn-null set for every C > 0.

Remark 5.17. (Special cases) Lemma 5.16 applies, in particular, to the commonly used auto-

correlation robust test statistic Tw given in (5) provided Assumptions 1 and 2 are satisfied, since

such test statistics then are nonsphericity-corrected F -type test statistics and the above men-

tioned Assumption 5 is satisfied, cf. Lemma A.1 in Preinerstorfer and Pötscher (2016). The same

is true, more generally, for the test statistics TGQ defined in Section 3.4 whenever the weight-

ing matrix W∗
n (also defined in that section) is positive definite and Assumption 2 holds (this

is proved in the same way as Lemma A.1 in Preinerstorfer and Pötscher (2016) using Lemma

3.11 instead of Lemma 3.1 in that reference). Furthermore, the weighted Eicker-test statistic

TE,W defined in Section 3 (with W a symmetric and nonnegative definite n× n Toeplitz matrix

with ones on the main diagonal) is a nonsphericity-corrected F -type test statistic with the above

mentioned Assumption 5 being always satisfied; hence Lemma 5.16 also applies to the weighted

Eicker-test statistic. [In fact, also Assumptions 6 and 7 in Preinerstorfer and Pötscher (2016)

are satisfied for these three test statistics (under the respective assumptions mentioned above),

since any one of Ω̂w(y), Ω̂GQ(y), and Ω̂E,W(y) is then nonnegative definite for every y ∈ Rn.]

For the test statistics mentioned in the preceding remark more can be said about the set N∗.

For the weighted Eicker-test statistic (with W as in Remark 5.17) we always have N∗ = span(X),

thus it is a proper linear subspace of Rn. For autocorrelation robust test statistics of the form

(5) and under Assumptions 1 and 2 the set N∗ turns out to be the set B defined in Section 3, cf.

Lemmata 3.1, A.1, and 5.15 of Preinerstorfer and Pötscher (2016); and this is more generally true

for the test statistics TGQ provided the weighting matrix W∗
n is positive definite and Assumption

2 holds, cf. Lemma 3.11 of Preinerstorfer and Pötscher (2016). The following is now true for the

set B.

Lemma 5.18. Suppose Assumption 2 holds. Then B is a finite union of proper linear subspaces

of Rn; in case q = 1, B is a proper linear subspace. [Consequently, the same applies to the
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set N∗ associated with the autocorrelation robust test statistic Tw defined in (5) (or with TGQ,

respectively) if also Assumption 1 (or the condition W∗
n positive definite, respectively) applies.]

Simple examples show, that in case q > 1, the set B in Lemma 5.18 need not be a linear

space itself. However, generically B = span(X) holds under typical assumptions as is shown in

Lemma A.3 in Appendix A, cf. also Theorem 3.9. The next lemma verifies that the condition

(b) in Proposition 5.12 is often satisfied.

Lemma 5.19. (i) Let Assumptions 1 and 2 hold and let Tw be defined as in (5). Suppose

S is a linear subspace of Rn and µ is an element of Rn such that Tw restricted to µ + S is

not equal to a constant λµ+S-almost everywhere. Then, for every real number C it holds that

λµ+S(Tw = C) = 0.

(ii) Let Assumption 2 hold and let TGQ be the test statistic as defined in Section 3.4 with a

positive definite weighting matrix W∗
n. Then the same conclusion as in (i) holds with Tw replaced

by TGQ.

(iii) Let W be an n × n symmetric and nonnegative definite Toeplitz matrix of weights with

ones on the main diagonal. Then the same conclusion as in (i) holds with Tw replaced by TE,W.

Lemmata 5.16-5.19 can obviously be used to provide streamlined versions of Propositions

5.2, 5.5, 5.12, Lemma 5.11, as well as Corollary 5.6 in the case of nonsphericity-corrected F -type

tests, and, in particular, in the case of autocorrelation robust tests based on Tw, TGQ, or TE,W.

We abstain from presenting such results.

6 Size control of tests of affine restrictions in regression

models with stationary autocorrelated errors: General

results

It transpires from the results in Section 5 that characterizing the elements of the collection J(L,C)

is central to achieving explicit conditions for size control. In this section we undertake such a

characterization for the important case where C = C(F), i.e., when the errors in the regression

model come from a stationary process. In Subsection 6.1 we present the characterization result,

which in turn forms the basis for the size control results in Subsection 6.2.

6.1 The structure of J(L,C(F))

Before we can state the main results of this subsection we need to introduce some more notation.

Definition 6.1. For ω ∈ [0, π] and for d ∈ N we define κ(ω, d) = d if ω ∈ {0, π}, and κ(ω, d) = 2d

if ω ∈ (0, π). For a positive integer p, for ω = (ω1, . . . , ωp) ∈ [0, π]p, and for d = (d1, . . . , dp) ∈ Np

we define

κ(ω, d) =

p
∑

i=1

κ(ωi, di). (31)
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In case p = 1, we shall often simply write ω for ω and d for d.

It proves useful to introduce the convention that ω and d are the 0-tupels for p = 0 and to

set κ(ω, d) = 0 in this case. The following notation will be helpful.

Definition 6.2. Let L be a linear subspace of Rn with dim(L) < n. We write ω(L) for the

vector obtained by ordering the elements of

{ω ∈ [0, π] : ρ(ω,L) > 0} (32)

from smallest to largest, provided the set in (32) is nonempty, and we denote by p(L) the

dimension of this vector (clearly p(L) > 0 then holds); furthermore, we set di(L) = ρ(ωi(L),L)

for every i = 1, . . . , p(L) (where ωi(L) denotes the i-th coordinate of ω(L)), and we write d(L)

for the vector with i-th coordinate equal to di(L). If the set in (32) is empty, we take ω(L) as

well as d(L) as the 0-tupel (which we may identify with the empty set) and we set p(L) = 0.

Recall that the set (32) is always a finite set as discussed subsequent to Definition 3.1

and hence ω(L) is well-defined. Clearly, the set (32) coincides with the set {ω ∈ [0, π] :

span(En,0(ω)) ⊆ L}. Furthermore, κ(ω(L), d(L)) = 0 if p(L) = 0 in view of the above con-

ventions.

Definition 6.3. For ω ∈ [0, π] define polynomials in the variable z as ∆ω(z) = 1 − cos(ω)z

if ω ∈ {0, π} and as ∆ω(z) = 1 − 2 cos(ω)z + z2 if ω ∈ (0, π). For p a positive integer, for

ω = (ω1, . . . , ωp) ∈ [0, π]p, and for d = (d1, . . . , dp) ∈ Np let the polynomial ∆ω,d(z) be defined

as the product

∆ω,d(z) =

p
∏

i=1

∆di
ωi
(z).

In case p = 0 (and thus ω and d are the 0-tupels) we define ∆ω,d as the constant polynomial 1.

Note that the degree of ∆di
ωi
(z) is κ(ωi, di) and that of ∆ω,d(z) is κ(ω, d).

A finite Borel measure m on [−π, π] is said to be symmetric, if m(A) = m(−A) for every

Borel subset A of [−π, π]. Recall that the finite and symmetric Borel measures on [−π, π] are

precisely the spectral measures of real weakly stationary processes. For a spectral density g, we

denote by mg the Borel measure on [−π, π] with density g (w.r.t. Lebesgue measure λ[−π,π] on

[−π, π]).

Definition 6.4. Let F ⊆ Fall be nonempty, and let L be a linear subspace of Rn with dim(L) < n.

We define M(F,L) to be the set of all finite and symmetric Borel measures m on [−π, π] with

finite support, such that (i) m is the weak limit of a sequence mgj , j ∈ N, where

gj(ν) =
∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
fj(ν)/

∫ π

−π

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
fj(ν)dν (33)

for some sequence fj ∈ F, and (ii)
∑

γ∈supp(m)∩[0,π] κ(γ, 1) < n − κ(ω(L), d(L)) holds. We

furthermore define S(F,L) = {supp(m) ∩ [0, π] : m ∈ M(F,L)}.
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We note that by construction the elements of M(F,L) all have total mass equal to one, and

have a nonempty and finite support. Furthermore, M(F,L), and thus S(F,L), can be empty.

Also recall that κ(ω(L), d(L)) ≤ dim(L) < n holds by Lemma D.1 in Appendix D.

To illustrate the concepts introduced in the preceding definition we shall now determine the

set S(F,L) for a few choices of F. The proofs of the claims made in the next two examples can

be found in Appendix D. Recall that Fall denotes the set of all normalized spectral densities.

Example 6.1. Let L be a linear subspace of Rn with dim(L) < n. Then

S(Fall,L) =







Γ ⊆ [0, π] : card(Γ) ∈ N,
∑

γ∈Γ

κ(γ, 1) < n− κ(ω(L), d(L))







. (34)

Note that this set is empty if n = κ(ω(L), d(L)) + 1, and is equal to {{0} , {π}} if n =

κ(ω(L), d(L)) + 2. In case n > κ(ω(L), d(L)) + 2, it is an infinite set with the property that
⋃

S(Fall,L) is equal to [0, π]; in fact, even {γ} ∈ S(Fall,L) holds for every γ ∈ [0, π]. [Note that

any Γ ∈ S(Fall,L) in particular satisfies 2 card(Γ)− 2 < n− κ(ω(L), d(L)).]

Example 6.2. Let L be a linear subspace of Rn with dim(L) < n. For B such that 0 < B < ∞

let FB
all denote the subset of elements of Fall that are λ[−π,π]-essentially bounded by B. Then

S(FB
all,L) = ∅ for every 0 < B < ∞.

The result in the next example is easy to derive and we leave the proof to the reader.

Example 6.3. Let L be a linear subspace of Rn with dim(L) < n and consider FAR(1). Then we

have the following: If n = κ(ω(L), d(L))+1 then S(FAR(1),L) is empty. Otherwise, we have four

cases: (i) If neither e+ nor e− belong to L, then S(FAR(1),L) = {{0} , {π}}. (ii) If e+ belongs to

L, but e− does not, then S(FAR(1),L) = {{π}}. (iii) If e+ does not belong to L, but e− does,

then S(FAR(1),L) = {{0}}. (iv) If both e+ and e− belong to L, then S(FAR(1),L) is empty.

Proposition 6.1. Let F ⊆ Fall be nonempty. Let L be a linear subspace of Rn with dim(L) < n.

1. For every Σ̄ ∈ cl(L(C(F))) such that rank(Σ̄) < n − dim(L) there exists a set Γ ∈ S(F,L)

and positive real numbers c(γ) for γ ∈ Γ, such that

Σ̄ =
ΠL⊥

∑

γ∈Γ c(γ)En,ρ(γ,L)(γ)E
′
n,ρ(γ,L)(γ)ΠL⊥

‖ΠL⊥

∑

γ∈Γ c(γ)En,ρ(γ,L)(γ)E
′
n,ρ(γ,L)(γ)ΠL⊥‖

(35)

holds. Furthermore, for every Γ ∈ S(F,L) there exists Σ̄ ∈ cl(L(C(F))) and positive real

numbers c(γ) for γ ∈ Γ, such that (35) holds (and clearly rank(Σ̄) ≤ n− dim(L) holds).

2. The set J(L,C(F)) coincides with the set of all linear subspaces of Rn that (i) have dimen-

sion smaller than n− dim(L), and (ii) that can be expressed as

span
(

ΠL⊥

(

En,ρ(γ1,L)(γ1), . . . , En,ρ(γp,L)(γp)
))
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for some Γ ∈ S(F,L), where the γi’s denote the elements of Γ and p denotes card(Γ).

3. Every element of J(L,C(F)) contains a subspace of the form span(ΠL⊥En,ρ(γ,L)(γ)) for

some γ ∈
⋃

S(F,L).

We illustrate the proposition by two examples.

Example 6.4. (Example 6.3 continued) If n = dim(L) + 1 (which includes the case where

n = κ(ω(L), d(L))+1), the set J(L,C(FAR(1))) is empty. Otherwise, we have the following cases:

(i) If neither e+ nor e− belongs to L, then J(L,C(FAR(1))) = {span(ΠL⊥e+), span(ΠL⊥e−)}. (ii)

If e+ belongs to L, but e− does not, then J(L,C(FAR(1))) = {span(ΠL⊥e−)}. (iii) If e+ does not

belong to L, but e− does, then J(L,C(FAR(1))) = {span(ΠL⊥e+)}. (iv) If both e+ and e− belong

to L, then J(L,C(FAR(1))) is empty. [In this simple example these results can alternatively be

obtained from the fact that the concentration spaces of C(FAR(1)) in the sense of Preinerstorfer

and Pötscher (2016) are given by span(e+) and span(e−), combined with Lemma B.3 in Section

B.1 of Appendix B as well as with Lemma G.1 of Preinerstorfer and Pötscher (2016).]

Example 6.5. Let L be a linear subspace of Rn with dim(L) < n and consider F ⊆ Fall such

that F ⊇ FAR(2) (which, in particular, covers the cases F = Fall as well as F = FAR(p) for p ≥ 2).

The following is shown in Section 3 of Pötscher and Preinerstorfer (2017):

(i) Every γ ∈
⋃

S(F,L) satisfies {γ} ∈ S(F,L).

(ii) Suppose dim(L) + 2 < n. Then {γ} ∈ S(F,L) holds for every γ ∈ [0, π]. And it easily

follows that span(ΠL⊥En,ρ(γ,L)(γ)) belongs to J(L,C(F)) for every γ ∈ [0, π].

(iii) Suppose dim(L)+2 ≥ n. Then {γ} ∈ S(F,L) holds for γ ∈ [0, π] precisely when κ(γ, 1) <

n−κ(ω(L), d(L)). Furthermore, span(ΠL⊥En,ρ(γ,L)(γ)) belongs to J(L,C(F)) for every γ ∈ [0, π]

that satisfies (a) κ(γ, 1) < n− κ(ω(L), d(L)) and (b) dim span(ΠL⊥En,ρ(γ,L)(γ)) < n− dim(L).

6.2 Results on size control

Theorem 6.2. Let F ⊆ Fall be nonempty, and assume that the test statistic T : Rn → R is

Borel-measurable and is continuous on the complement of a closed set N†. Assume that T and

N† are G(M0)-invariant, and are also invariant w.r.t. addition of elements of a linear subspace

V of Rn. Define L = span(Mlin
0 ∪ V), and assume that dim(L) < n.

1. Then for every 0 < α < 1 there exists a real number C(α) such that

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈F

Pµ0,σ
2Σ(f)(T ≥ C(α)) ≤ α (36)

holds, provided every linear subspace S, say, of Rn that (i) has dimension smaller than

n− dim(L), and that (ii) can be written as

S = span
(

ΠL⊥

(

En,ρ(γ1,L)(γ1), . . . , En,ρ(γp,L)(γp)
))

for some Γ ∈ S(F,L), (37)
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satisfies λµ0+S(N
†) = 0 for some µ0 ∈ M0 (and hence all µ0 ∈ M0). Here the γi’s denote

the elements of Γ and p = card(Γ). [In case N† is a finite or countable union of affine

subspaces, we may replace λµ0+S(N
†) = 0 by µ0 + S 6⊆ N† in that condition.]

2. Suppose N† is a finite or countable union of affine subspaces. Then a sufficient condi-

tion for the condition given in Part 1 is that for all γ ∈
⋃

S(F,L) it holds that µ0 +

span(ΠL⊥En,ρ(γ,L)(γ)) 6⊆ N† for some µ0 ∈ M0 (and hence all µ0 ∈ M0). [A stricter suf-

ficient condition is obtained if γ is required to range over [0, π] rather than only
⋃

S(F,L).]

Remark 6.3. (Special cases) (i) The measurability and continuity assumption on T as well as

the G(M0)-invariance assumption on T and N† are automatically satisfied for nonsphericity-

corrected F-type test statistics as defined in (28) in Section 5.4 of Preinerstorfer and Pötscher

(2016) provided that Assumption 5 in that paper is satisfied, see Lemma 5.16 in Section 5.3

above.

(ii) Specializing further (cf. Remark 5.17) to the case where TGQ is the test statistic defined in

Section 3.4 (with Assumption 2 being satisfied and with a positive definite weighting matrix W∗
n),

which, in particular, includes the case of the test statistic Tw defined in (5) (with Assumptions 1

and 2 being satisfied), or to the case of the weighted Eicker-test statistic TE,W defined in Section

3 (with W a symmetric and nonnegative definite n × n Toeplitz matrix with ones on the main

diagonal), we then have that the set N†(= N∗) is additionally always guaranteed to be a proper

linear subspace or a finite union of proper linear subspaces, see Lemma 5.18 in Section 5.3 and

the discussion preceding this lemma; cf. also Theorem 6.6 below and the results in Section 3.

Remark 6.4. (Some simplifications) (i) The invariance assumptions on N† in Theorem 6.2

imply, in particular, that N† is invariant under addition of elements in L. Hence, the sufficient

condition in Part 1 of Theorem 6.2, namely that λµ0+S(N
†) = 0 holds for every linear space

S satisfying (i) and (ii) in that theorem, can equivalently be expressed as the condition that

λµ0+T (S)(N
†) = 0 holds for every linear space S satisfying (i) and (ii), where T (S) is shorthand

for span((En,ρ(γ1,L)(γ1), . . . , En,ρ(γp,L)(γp))). Similarly, the relation µ0 + S 6⊆ N† given in the

sentence in parenthesis in Part 1 of the theorem can equivalently be expressed as µ0+T (S) 6⊆ N†.

Finally, the sufficient conditions given in Part 2 of the theorem can equivalently be expressed as

µ0 + span(En,ρ(γ,L)(γ)) 6⊆ N† for every γ ∈
⋃

S(F,L) (for every γ ∈ [0, π], respectively).

(ii) If r = 0, or if r 6= 0 but N† is invariant under addition of elements of M0 (which is,

e.g., the case if N† is G(M)-invariant), we may set µ0 = 0 in any of the sufficient conditions

in Parts 1 and 2 of Theorem 6.2 that involve N†, cf. Remark 5.8 in Section 5.2; and the same

applies to the equivalent formulations of these conditions discussed in (i) above. [Recall that

N† is G(M)-invariant for a large class of test statistics including nonsphericity-corrected F-type

test statistics that satisfy Assumption 5 in Preinerstorfer and Pötscher (2016); in particular, this

applies to the test statistics mentioned in Remark 6.3(ii) above.]

(iii) Imposing that λµ0+S(N
†) = 0 holds for every linear space S satisfying (ii) in Part 1 of

Theorem 6.2 (but not necessarily (i)) leads to a potentially stricter sufficient condition. However,
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if N† is an λRn -null set, this potentially stricter condition is in fact equivalent to the condition

given in Part 1 of Theorem 6.2. For a proof see Appendix D.

(iv) In case dim(L) = n− 1, the test statistic T is λRn -almost everywhere constant and size

control is hence trivially possible. Note also that the sufficient condition in Part 1 of Theorem

6.2 is trivially satisfied since S(F,L) is then empty and hence no S satisfies (37); cf. Remark

5.14.

Specializing to nonsphericity-corrected F-type test statistics as defined in Section 5.4 of Prein-

erstorfer and Pötscher (2016) and to the important case L = Mlin
0 gives the following result.

Theorem 6.5. Let F ⊆ Fall be nonempty, and suppose that T is a nonsphericity-corrected F -type

test statistic as defined in (28) in Section 5.4 of Preinerstorfer and Pötscher (2016) and that

Assumption 5 in that paper is satisfied.

1. Then for every 0 < α < 1 there exists a real number C(α) such that (36) holds, provided

λspan((E
n,ρ(γ1,Mlin

0 )
(γ1),...,En,ρ(γp,Mlin

0 )
(γp)))

(N∗) = 0 (38)

holds for every Γ ∈ S(F,Mlin
0 ). Here the γi’s denote the elements of Γ and p = card(Γ).

2. Suppose that N∗ is a finite or countable union of affine subspaces. Then, for every Γ ∈

S(F,Mlin
0 ), we may rewrite (38) equivalently as

span
(

(En,ρ(γ1,M
lin
0 )(γ1), . . . , En,ρ(γp,M

lin
0 )(γp))

)

6⊆ N∗. (39)

Furthermore, a sufficient condition for this is given by span(En,ρ(γ,Mlin
0 )(γ)) 6⊆ N∗ for

every γ ∈
⋃

S(F,Mlin
0 ) (and an even stricter sufficient condition is obtained if γ is here

required to range over [0, π] instead of only over
⋃

S(F,Mlin
0 )).

Specializing Theorem 6.5 to commonly used autocorrelation robust tests based on Tw we

obtain the following result. Since for these tests statistics also all assumptions of Proposition

5.12 can be shown to be satisfied (cf. Section 5.3), the size control result can furthermore be

sharpened to an exact size control result.

Theorem 6.6. Let F ⊆ Fall be nonempty. Suppose Assumptions 1 and 2 are satisfied and Tw is

defined by (5).

1. Then for every 0 < α < 1 there exists a real number C(α) such that (36) holds (with T

replaced by Tw), provided

span
(

(En,ρ(γ1,M
lin
0 )(γ1), . . . , En,ρ(γp,M

lin
0 )(γp))

)

6⊆ B (40)

holds for every Γ ∈ S(F,Mlin
0 ). Here the γi’s denote the elements of Γ and p = card(Γ).

Furthermore, under the same condition even equality can be achieved in (36) (with T re-
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placed by Tw) by a proper choice of C(α), provided α ∈ (0, α∗] ∩ (0, 1), where α∗ is defined

as in (28) (with T replaced by Tw).

2. A sufficient condition for (40) to hold for every Γ ∈ S(F,Mlin
0 ) is given by

span
(

En,ρ(γ,Mlin
0 )(γ)

)

6⊆ B (41)

for every γ ∈
⋃

S(F,Mlin
0 ) (and an even stricter sufficient condition is obtained if we

require (41) to hold for every γ ∈ [0, π]).

3. In case the set B coincides with span(X), condition (40) ((41), respectively) can equivalently

be expressed as rank(X,En,ρ(γ1,M
lin
0 )(γ1), . . . , En,ρ(γp,M

lin
0 )(γp)) > k (rank(X,En,ρ(γ,Mlin

0 )(γ)) >

k, respectively).

For the following remark recall that CV≤(α) and CV=(α) have been defined in Remark 5.10.

Remark 6.7. (i) Under the assumptions of Theorem 6.5 or Theorem 6.6 we have that CV≤(α) =

[C♦(α),∞) holds, i.e., a smallest critical value guaranteeing size control exists and is given by

C♦(α). This follows from Remark 5.10, Lemma 5.16, and Remark 5.17.

(ii) Under the assumptions of Theorem 6.6 and if α ∈ (0, α∗] ∩ (0, 1), we have that CV=(α)

has C♦(α) as its smallest element, i.e., a smallest critical value guaranteeing exact size control

exists and is given by C♦(α).

(iii) Under the assumptions of Theorems 6.5 or 6.6 the size of the test, and hence the size-

controlling critical values C(α), do not depend on the value of r; cf. Lemma 5.15. Also the

sufficient conditions in both theorems do not depend on the value of r. [It is understood here

that the estimator for β as well as the covariance matrix estimator used to define the test statistic

have been chosen independently of the value of r.]

Remark 6.8. (i) Theorem 6.6 carries over to the test statistics TGQ (see Section 3.4) if As-

sumption 1 is replaced by the assumption that the weighting matrix W∗
n is positive definite.

This follows from an inspection of the proof of Theorem 6.6 and the fact that TGQ is a special

case of a nonsphericity-corrected F -type test statistic with N∗ = B, see Section 5.3. A statement

analogous to Remark 6.7 also applies here.

(ii) A result for the weighted Eicker-test similar to Theorem 6.6 is obtained by replacing

Assumptions 1 and 2 in that theorem by the assumption that W is a symmetric and nonnegative

definite n × n Toeplitz matrix with ones on the main diagonal and by replacing the set B by

span(X). This follows again from an inspection of the proof of Theorem 6.6 and the fact that

TE,W is a special case of a nonsphericity-corrected F -type test statistic with N∗ = span(X), see

Section 5.3. A statement analogous to Remark 6.7 also applies here.

Remark 6.9. Let L be a linear subspace of Rn with dim(L) < n and suppose F ⊆ Fall has

the property that γ ∈
⋃

S(F,L) implies {γ} ∈ S(F,L). [Note that this is always the case if F

contains FAR(2) as discussed in Example 6.5.]
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(i) Suppose L = Mlin
0 . Then in the context of Theorem 6.6 it is obvious that the first sufficient

condition in Part 2 of that theorem (i.e., the condition that (41) holds for every γ ∈
⋃

S(F,Mlin
0 ))

is actually equivalent to the sufficient condition in Part 1 (i.e., to the condition that (40) holds

for every Γ ∈ S(F,Mlin
0 )). A similar remark applies to the versions of Theorem 6.6 for TGQ and

TE,W outlined in Remark 6.8.

(ii) Suppose L = Mlin
0 . Then similarly in the context of Part 2 of Theorem 6.5 the condition

that (39) holds for every Γ ∈ S(F,Mlin
0 ) is equivalent to span(En,ρ(γ,Mlin

0 )(γ)) 6⊆ N∗ for every

γ ∈
⋃

S(F,Mlin
0 ).

(iii) Under the assumptions of Part 2 of Theorem 6.2, the first sufficient condition given in

Part 2 is in fact equivalent to the sufficient condition given in Part 1 of that theorem provided

N† & Rn. This follows from Remark 6.4(iii), noting that N†, as a finite or countable union of

affine subspaces, is then a λRn -null set. [In case N† = Rn, the claim is clearly also true provided

rank(ΠL⊥En,ρ(γ,L)(γ)) < n − dim(L) holds for some γ ∈
⋃

S(F,L) or if
⋃

S(F,L) is empty. A

sufficient condition for the rank condition just mentioned is that κ(γ, 1) < n− dim(L) holds for

such a γ; and this latter condition certainly holds if dim(L) < n− 2.]16

Remark 6.10. Suppose F ⊆ Fall, but F ⊇ FAR(2). Under the assumptions of Part 2 of Theorem

6.2, the sufficient condition given in Part 2 as well as the stricter sufficient condition given in

the final sentence in brackets are in fact equivalent provided N† & Rn.17 Furthermore, in the

context of Part 2 of Theorem 6.5, the sufficient condition span(En,ρ(γ,Mlin
0 )(γ)) 6⊆ N∗ for every

γ ∈
⋃

S(F,Mlin
0 ) is in fact equivalent to the stricter condition span(En,ρ(γ,Mlin

0 )(γ)) 6⊆ N∗ for

every γ ∈ [0, π]. Similarly, in the context of Part 2 of Theorem 6.6, the sufficient condition that

(41) holds for every γ ∈
⋃

S(F,Mlin
0 ) is in fact equivalent to the stricter condition that (41)

holds for every γ ∈ [0, π]. A similar remark applies to the versions of Theorem 6.6 for TGQ and

TE,W outlined in Remark 6.8. A proof of these claims can be found in Appendix D.18

Remark 6.11. If J(L,C(F)) is empty (which is, e.g., the case if C(F) has no singular limit

points), then size control in the contexts of the theorems in this subsection is always possible;

cf. Remark 5.7.

A Appendix: Proofs for Section 3

The quantities V
(0)
n (ω, d) and κ(ω, d) used in the subsequent proofs are defined in Appendix C

and Section 6.1, respectively.

16Suppose that rank(ΠL⊥En,ρ(γ,L)(γ)) < n − dim(L) holds whenever γ ∈
⋃

S(F,L). Then actually a much

simpler argument shows that the claimed equivalence is true, regardless of whether N† & Rn or N† = Rn.
A sufficient condition for the just mentioned rank condition is that κ(γ, 1) < n − dim(L) holds whenever γ ∈⋃

S(F,L), which is in turn implied by dim(L) < n− 2.
17If S(F,L) is nonempty, then the claimed equivalence is also true if N† = Rn as is easily seen. Note that

S(F,L) is nonempty if and only if κ(ω(L), d(L)) < n − 1 in view of Example 6.5. A sufficient condition for the
latter inequality is that dim(L) < n− 1, cf. Lemma D.1.

18In case dim(L) + 2 < n, these claims as well as the claim in Footnote 17 are actually a simple consequence of
Example 6.5(ii) as then

⋃
S(F,L) coincides with [0, π].
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Proof of claims regarding Definition 3.1: Suppose p ≥ 1 and suppose ω is a p×1 vector

with distinct coordinates ωi ∈ [0, π], such that span(En,j(ωi)) ⊆ L for j = 0, . . . , di − 1, holds

where di ∈ N. Set d = (d1, . . . , dp). Since L is a linear space, it follows that the span of the

matrix V
(0)
n (ω, d) is contained in L, and thus rank(V

(0)
n (ω, d)) ≤ dim(L) < n must hold. But as

shown in Lemma C.1 in Appendix C, the rank of V
(0)
n (ω, d) equals min(n, κ(ω, d)). Consequently,

κ(ω, d) < n follows. Inspection of the definition of κ(ω, d) now shows that this inequality implies

an upper bound on p and the coordinates of d. This obviously then implies that the set on the

right-hand side of (9) contains 0 for every ω ∈ [0, π] except possibly for at most finitely many

ω’s; it also implies that the set on the right-hand side of (9) is nonempty for every ω ∈ [0, π].

But this establishes the claims. �

Proof of claim in Example 3.2: To prove this claim we use Theorem 3.9 with F = (e+).

First, observe that F is clearly linearly independent of every set of q standard basis vectors, since

q ≤ k− 1 < n. Second, condition (ii) in that theorem is satisfied since the rank of (F,En,0(γ
∗)),

γ∗ ∈ (0, π), coincides with the rank of the matrix V
(0)
n (ω, d), where ω = (0, γ∗) and d = (1, 1),

and since V
(0)
n (ω, d) has rank min(n, 3) = 3 by Lemma C.1. Recall that n ≥ 3 holds since

n > k ≥ 2. Also note that ρF (γ) = 1 for γ = 0 and ρF (γ) = 0 for γ ∈ (0, π], again by Lemma

C.1. �

Proof of claim in Example 3.3: To prove this claim we use Theorem 3.9 with F = (e+, e−).

First, observe that F is linearly independent of every set of q standard basis vectors provided

q ≤ (n/2)− 1 in view of of Part 2 of Lemma A.1 given below. Second, condition (ii) in Theorem

3.9 is satisfied since the rank of (F,En,0(γ
∗)), γ∗ ∈ (0, π), coincides with the rank of the matrix

V
(0)
n (ω, d), where ω = (0, π, γ∗) and d = (1, 1, 1), and since V

(0)
n (ω, d) has rank min(n, 4) = 4 by

Lemma C.1. Recall that n ≥ 4 holds since n > k ≥ 3. Also note that ρF (γ) = 1 for γ = 0, π and

ρF (γ) = 0 for γ ∈ (0, π), again by Lemma C.1. �

Proof of claim in Example 3.4: To prove this claim we use Theorem 3.9 with F = (e+, v).

First, observe that F is linearly independent of every set of q standard basis vectors in view of

Part 1 of Lemma A.1 below, since q ≤ k− 2 < n− 2 and since every nonzero element of span(F )

can have at most one zero coordinate. Second, condition (ii) in Theorem 3.9 is satisfied since

the rank of (F,En,0(γ
∗)), γ∗ ∈ (0, π), coincides with the rank of the matrix V

(0)
n (ω, d), where

ω = (0, γ∗) and d = (2, 1), and since V
(0)
n (ω, d) has rank min(n, 4) = 4 by Lemma C.1. Recall

that n ≥ 4 holds since n > k ≥ 3. Also note that ρF (γ) = 2 for γ = 0 and ρF (γ) = 0 for

γ ∈ (0, π], again by Lemma C.1. �

Proof of claim in Example 3.5: To prove this claim we use Theorem 3.9 with F =

(e+, En,0(γ0)). First, observe that F is linearly independent of every set of q standard basis

vectors provided q ≤ (n/3) − 1 in view of Part 2 of Lemma A.1 below. Second, condition

(ii) in Theorem 3.9 is satisfied since the rank of (F,En,0(γ
∗)), for γ∗ ∈ (0, π) with γ∗ 6= γ0,

coincides with the rank of the matrix V
(0)
n (ω, d) defined in Appendix C, where ω = (0, γ0, γ

∗)

and d = (1, 1, 1), and since V
(0)
n (ω, d) has rank min(n, 5) = 5 by Lemma C.1. Recall that n ≥ 5

holds since n > k ≥ 4. Also note that ρF (γ) = 1 for γ = 0, γ0 and ρF (γ) = 0 for γ ∈ (0, π]\{γ0},
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again by Lemma C.1. �

Lemma A.1. Let F be an n × kF -dimensional matrix with rank(F ) = kF ≥ 1. Let s ∈ N and

s < n.

1. If the maximum of the number of zero-coordinates of nonzero elements of span(F ) is

smaller than n − s, then the columns of F and ei1(n), . . . , eis(n) are linearly independent for

every choice of 1 ≤ i1 < . . . < is ≤ n.

2. Suppose F is such that span(F ) = span(V
(0)
n (ω, d)) holds for some ω ∈ [0, π]p with distinct

coordinates, for some d ∈ Np, and for some positive integer p. If kF ≤ n/(s+1), then the columns

of F and ei1(n), . . . , eis(n) are linearly independent for every choice of 1 ≤ i1 < . . . < is ≤ n.

Proof: The first claim is trivial. For the second claim we argue by contradiction: Suppose

there exist indices 1 ≤ i1 < . . . < is ≤ n such that F and ei1(n), . . . , eis(n) are linearly dependent.

Then we can find an s-dimensional vector b 6= 0 so that v :=
∑s

j=1 bjeij (n) ∈ span(V
(0)
n (ω, d))

holds. The finite sequence v1, . . . , vn of components of v must then contain a string of consecutive

zeros of length at least ⌊n/(s + 1)⌋. Now, v is obviously nonzero and thus v must have a

nonzero coordinate vi∗ , say, that is preceded or succeeded by at least ⌊n/(s + 1)⌋ consecutive

zeros (note that ⌊n/(s + 1)⌋ ≥ 1 since s < n). Observe that κ(ω, d) = kF must hold, since

kF = rank(F ) = rank(V
(0)
n (ω, d)) = min(n, κ(ω, d)) (by Lemma C.1 in Appendix C) and since

kF ≤ n/(s + 1) < n. It then follows from Lemma C.3 in Appendix C that Dn(∆ω,d)v = 0,

where Dn(∆ω,d) is a (n− kF )×n matrix as defined in Appendix C and where ∆ω,d is defined in

Section 6.1. Note that the coefficient of the highest power occurring in ∆ω,d is always ±1, that

the constant term is 1, and that the degree of ∆ω,d is κ(ω, d) = kF . Inspection of the equation

system Dn(∆ω,d)v = 0 and noting that kF ≤ n/(s + 1) is equivalent to kF ≤ ⌊n/(s + 1)⌋, now

reveals that one of the equations is of the form

±vi∗ + c1vi∗−1 + . . .+ ckF−1vi∗−(kF−1) + vi∗−kF
= 0

where vi∗−1 = . . . = vi∗−kF
= 0, or of the form

±vi∗+kF
+ c1vi∗+kF−1 + . . .+ ckF−1vi∗+1 + vi∗ = 0

where vi∗+1 = . . . = vi∗+kF
= 0. But this implies vi∗ = 0, a contradiction. �

Lemma A.2. Let F be an n × kF matrix with rank(F ) = kF where 0 ≤ kF < k (with the

convention that F is the empty matrix in case kF = 0, that the rank of the empty matrix is zero,

and that its span is {0}). Define ρF (γ) = ρ(γ, span(F )). Let

X̃1 =
{

X̃ ∈ Rn×(k−kF ) : rank(F, X̃) = k, rank(F, X̃, En,ρF (γ)(γ)) > k for all γ ∈ [0, π]
}

. (42)

1. If the q × k restriction matrix R of rank q is of the form (0, R̃) where R̃ is q × (k − kF ),

then for every X = (F, X̃) with X̃ ∈ X̃1 we have ρ(γ,Mlin
0 ) = ρF (γ) for every γ ∈ [0, π].
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[Note that ρ(γ,Mlin
0 ) depends on X and R, but this is not expressed in the notation.]

2. The set Rn×(k−kF )\X̃1 is contained in a λ
Rn×(k−kF )-null set if n > k + 2 holds.

3. The set Rn×(k−kF )\X̃1 is contained in a λ
Rn×(k−kF )-null set if rank(F,En,0(γ

∗)) = kF + 2

holds for some γ∗ ∈ (0, π).

Proof: 1. For every X = (F, X̃) with X̃ ∈ Rn×(k−kF ) and for R of the form assumed in

the lemma we immediately see that the associated space Mlin
0 (depending on X and R, but

the dependence not being shown in the notation) contains span(F ). Consequently, ρ(γ,Mlin
0 ) ≥

ρF (γ) must hold for every γ ∈ [0, π]. To prove the converse, note that for X̃ ∈ X̃1 the second

rank condition in (42) implies that En,ρF (γ)(γ) is not contained in span(X) = span((F, X̃)), and

hence a fortiori not in Mlin
0 . This immediately implies ρ(γ,Mlin

0 ) ≤ ρF (γ) for every γ ∈ [0, π].

2. Since the set of all X̃ such that rank(F, X̃) < k is obviously a λ
Rn×(k−kF ) -null set, it suffices

to show that the set A =
⋃

γ∈[0,π] Aγ where

Aγ =
{

X̃ ∈ Rn×(k−kF ) : rank(F, X̃) = k, rank(F, X̃, En,ρF (γ)(γ)) = k
}

is contained in a λ
Rn×(k−kF ) -null set. We first show that Aγ is a λ

Rn×(k−kF ) -null set for each fixed

γ: By definition of ρF (γ) at least one of the columns of En,ρF (γ)(γ) does not belong to span(F ).

Choose one such column and denote it by h. Then Aγ is contained in the set

Bγ =
{

X̃ ∈ Rn×(k−kF ) : rank(F, X̃, h) ≤ k
}

.

Since (F, X̃, h) has dimension n × (k + 1) the set Bγ is given by the zero-set of the polynomial

det((F, X̃, h)′(F, X̃, h)). We next construct a matrix X̃ ∈ Rn×(k−kF ) which does not belong

to this set. Observe that F and h together span a linear space of dimension kF + 1 and that

kF +1 ≤ k < n holds since we have assumed kF < k and since we always maintain k < n. Hence

we can find k− kF linearly independent vectors in (span((F, h)))⊥, which we use as the columns

of X̃. Clearly, this X̃ does not belong to Bγ . Consequently, Bγ is a λ
Rn×(k−kF ) -null set, and a

fortiori the same is true for Aγ (Borel-measurability of Aγ being trivial). Let now U be the finite

set {γ ∈ [0, π] : ρF (γ) > 0} ∪ {0, π} (cf. the discussion following Definition 3.1). Then
⋃

γ∈U Aγ

is a λ
Rn×(k−kF ) -null set. It remains to show that

⋃

γ∈[0,π]\U Aγ is contained in a λ
Rn×(k−kF ) -null

set. Note that [0, π]\U ⊆ (0, π) is an open set and that ρF (γ) = 0 holds for every γ ∈ [0, π]\U .

Hence, span(En,0(γ)) is not contained in span(F ) for every γ ∈ [0, π]\U . Thus, if X̃ ∈ Aγ with

γ ∈ [0, π]\U we can then find an index i(γ), 1 ≤ i(γ) ≤ k − kF and a (k + 1) × 1 vector v(γ),

such that

X̃.i(γ) = (F, X̃(¬i(γ)), En,0(γ))v(γ)

holds, where X̃.i(γ) denotes the i(γ)-th column of X̃, and X̃(¬i(γ)) denotes the matrix X̃ after
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the i(γ)-th column has been deleted. In other words, X̃ coincides with

((F, X̃(¬i(γ)), En,0(γ))v(γ), X̃(¬i(γ))),

up to a permutation of columns. [Note that Aγ may be empty, namely if rank(F,En,0(γ)) = kF+2

and k − kF = 1.] Now, for every (k − kF ) × (k − kF ) permutation matrix Per define the map

ΞPer : Rn×(k−kF−1) × Rk+1 × [0, π]\U → Rn×(k−kF ) via (X̄, v̄, γ) 7→ ((F, X̄, En,0(γ))v̄, X̄)Per.

[In case k− kF = 1 the symbol Rn×(k−kF−1) is to be interpreted as {0} and hence the map ΞPer

is effectively defined on Rk+1 × [0, π]\U .] Because of what has been said before, we now see that
⋃

γ∈[0,π]\U Aγ is contained in the union of the images of all the maps ΞPer when Per varies in

the indicated set of permutation matrices. Note that this union is a finite union. It hence suffices

to show that the image of each ΞPer is contained in a λ
Rn×(k−kF ) -null set. Clearly, the domain of

definition of each ΞPer is an open set in Euclidean space of dimension n(k− kF − 1)+ k+2 and

each ΞPer is a smooth map. Sard’s Theorem (see, e.g., Milnor (1997)) now implies the desired

conclusion provided n(k − kF − 1) + k + 2 is smaller than the dimension n(k − kF ) of the range

space. But this is guaranteed by the assumption that n > k + 2.

3. We proceed as in 2. up to the point where the set U has been defined. Now define U∗

as the union of U and the set {γ ∈ (0, π) : rank(F,En,0(γ)) < kF + 2}. The latter set is clearly

contained in the zero-set of the function γ 7→ det((F,En,0(γ))
′(F,En,0(γ))). Obviously this

function can be expressed as a rational function in exp(ιγ) and thus only has finitely many zeros,

except if it is identically zero. But the latter cannot happen because of the assumption made for

Part 3. We have now established that U∗ is a finite set. It follows that
⋃

γ∈U∗ Aγ is a λ
Rn×(k−kF ) -

null set. It remains to show that
⋃

γ∈[0,π]\U∗ Aγ is contained in a λ
Rn×(k−kF ) -null set. Note that

[0, π]\U∗ ⊆ (0, π) is an open set and that ρF (γ) = 0 holds for every γ ∈ [0, π]\U∗. In case

k − kF = 1, it follows that
⋃

γ∈[0,π]\U∗ Aγ is the empty set (since rank(F,En,0(γ)) = kF + 2 for

γ ∈ [0, π]\U∗) and we are done. Hence assume k − kF ≥ 2. Then, if X̃ ∈ Aγ with γ ∈ [0, π]\U∗

we can find indices i1(γ), i2(γ) with 1 ≤ i1(γ) < i2(γ) ≤ k−kF , and two k× 1 vectors v1(γ) and

v2(γ) such that

(X̃.i1(γ), X̃.i2(γ)) = (F, X̃(¬i1(γ),¬i1(γ)), En,0(γ))(v1(γ), v2(γ))

holds, where X̃(¬i1(γ),¬i2(γ)) denotes the matrix X̃ after the columns i1(γ) and i2(γ) have

been deleted. In other words, X̃ coincides with

((F, X̃(¬i1(γ),¬i1(γ)), En,0(γ))(v1(γ), v2(γ)), X̃(¬i1(γ),¬i1(γ))),

up to a permutation of columns. Now, for every (k − kF ) × (k − kF ) permutation matrix Per

define the map ΞPer : Rn×(k−kF−2) × Rk × Rk × [0, π]\U∗ → Rn×(k−kF ) via (X̄, v̄1, v̄2, γ) 7→

((F, X̄, En,0(γ))(v̄1, v̄2), X̄)Per. [In case k−kF = 2 the symbol Rn×(k−kF−2) is to be interpreted

as {0} and hence the map ΞPer is effectively defined on Rk × Rk × [0, π]\U .] Because of what
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has been said before, we now see that
⋃

γ∈[0,π]\U∗ Aγ is contained in the union of the images

of all the maps ΞPer when Per varies in the indicated set of permutation matrices. This union

is again a finite union. It hence suffices to show that the image of each ΞPer is contained in a

λ
Rn×(k−kF ) -null set. Clearly, the domain of definition of each ΞPer is an open set in Euclidean

space of dimension n(k−kF −2)+2k+1 and each ΞPer is a smooth map. Sard’s Theorem again

now implies the desired conclusion provided n(k−kF −2)+2k+1 is smaller than the dimension

n(k − kF ) of the range space. But this is guaranteed by our general assumption that n > k. �

Lemma A.3. Let F be an n × kF matrix with rank(F ) = kF where 0 ≤ kF < k (with the

same convention as before if kF = 0). Assume that the q × k restriction matrix R of rank q is

of the form (0, R̃) where R̃ is q × (k − kF ). Furthermore, assume that the columns of F and

ei1(n), . . . , eiq (n) are linearly independent for every choice of 1 ≤ i1 < . . . < iq ≤ n. Then the

complement of the set

X̃2 =
{

X̃ ∈ Rn×(k−kF ) : rank(X) = k, B = span(X)
}

in Rn×(k−kF ) is contained in a λ
Rn×(k−kF )-null set, where X = (F, X̃). [Recall that B depends

on X, which, however, is not shown in the notation.]

Proof: Step 1: Let 1 ≤ i1 < . . . < iq ≤ n be given and define the set

X̃(i1, . . . , iq) =
{

X̃ ∈ Rn×(k−kF ) : rank(X) = k, rank(R(X ′X)−1X ′
(

ei1(n), . . . , eiq (n)
)

) = q
}

,

whereX = (F, X̃). First, we show that X̃(i1, . . . , iq) is nonempty: Since span((F, ei1(n), . . . , eiq (n)))

has dimension kF + q by the assumptions on F and since kF + q ≤ k < n in view of the as-

sumptions on R, we can find orthonormal n × 1 vectors a1, . . . , ak−(kF+q) in the orthogonal

complement of span((F, ei1(n), . . . , eiq (n))). Define X̃∗ = (a1, . . . , ak−(kF+q), ei1(n), . . . , eiq (n)),

with the convention that X̃∗ = (ei1(n), . . . , eiq (n)) in case kF + q = k, and set X∗ = (F, X̃∗).

Obviously X∗ has rank equal to k. Let Ṽ be a nonsingular (k − kF ) × (k − kF ) matrix such

that R̃Ṽ −1 = (0, Iq) and define V as the k × k block-diagonal matrix with first diagonal block

IkF
and second diagonal block Ṽ . Clearly, RV −1 = (0, Iq) holds. Set X = X∗V and note that

X = (F, X̃) with X̃ = X̃∗Ṽ and that rank(X) = k. Furthermore, we have

R(X ′X)−1X ′
(

ei1(n), . . . , eiq (n)
)

= (0, Iq)(X
∗′X∗)−1X∗′

(

ei1(n), . . . , eiq (n)
)

= Iq,

showing that the so-constructed X̃ belongs to X̃(i1, . . . , iq). Second, observe that X̃ /∈ X̃(i1, . . . , iq)

is equivalent to

det(X ′X) = 0 or (det(X ′X) 6= 0 and det(R(X ′X)−1X ′(ei1(n), . . . , eiq (n))) = 0),
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which in turn is equivalent to

det(X ′X) det(R adj(X ′X)X ′(ei1(n), . . . , eiq (n))) = 0.

This is a polynomial in the entries of X̃ and does not vanish identically, because we have shown

that X̃(i1, . . . , iq) is nonempty. Consequently, the complement of X̃(i1, . . . , iq) is a λ
Rn×(k−kF ) -null

set.

Step 2: It follows that the set X̃20 defined as the intersection of all sets of the form

X̃(i1, . . . , iq), where we vary over all possible combinations of indices satisfying 1 ≤ i1 < . . . <

iq ≤ n, is the complement of a λ
Rn×(k−kF ) -null set, since this is an intersection of finitely many

sets.

Step 3: Let 1 ≤ j1 < . . . < jn−q+1 ≤ n be given and define the set

X̃∗(j1, . . . , jn−q+1) =
{

X̃ ∈ Rn×(k−kF ) : zj1 = . . . = zjn−q+1
= 0 for some z ∈ (span(X))⊥\{0}

}

.

We show that this set is a λ
Rn×(k−kF ) -null set: If q = 1, then X̃∗(j1, . . . , jn−q+1) is obviously

empty. Hence consider the case q > 1. Observe that X̃ ∈ X̃∗(j1, . . . , jn−q+1) is equivalent to the

equation system A(X̃)z = 0 having a nonzero solution, where

A(X̃) =
(

ej1(n), . . . , ejn−q+1
(n), X

)′
.

Observe that A(X̃) is of dimension (n− q+1+ k)×n and that the row-dimension is larger than

n, since q ≤ k. Consequently, X̃ ∈ X̃∗(j1, . . . , jn−q+1) is equivalent to

det(A(X̃)′A(X̃)) = 0,

a polynomial equation in the elements of X̃. The solution set is thus a λ
Rn×(k−kF ) -null set if we can

exhibit an element X̃ /∈ X̃∗(j1, . . . , jn−q+1). We now construct such an element as follows: Let

i1, . . . , iq−1 be the elements of {1, . . . , n} not appearing in the list j1, . . . , jn−q+1. Choose linearly

independent elements a1, . . . , ak−(kF+q−1) of the orthogonal complement of span((F, ei1(n), . . . , eiq−1(n)));

note that such a choice is possible since the dimension of this span is kF + q− 1 < k < n in view

of our assumptions. Now define

X̃ = (ei1(n), . . . , eiq−1
(n), a1, . . . , ak−(kF+q−1))

and observe that clearly X̃ /∈ X̃∗(j1, . . . , jn−q+1) is satisfied.

Step 4: Define X̃21 as the complement (in Rn×(k−kF )) of the set

(

⋃

X̃∗(j1, . . . , jn−q+1)
)

∪
{

X̃ ∈ Rn×(k−kF ) : rank(X) < k
}

,

where the union extends over all tuples (j1, . . . , jn−q+1) satisfying 1 ≤ j1 < . . . < jn−q+1 ≤ n.
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Then X̃21 is the complement of a λ
Rn×(k−kF ) -null set: This is obvious because of Step 3, the fact

that the union is a union of finitely many sets, and because the set
{

X̃ ∈ Rn×(k−kF ) : rank(X) < k
}

is clearly a λ
Rn×(k−kF ) -null set.

Step 5: It follows from the preceding steps that X̃20∩ X̃21 is the complement of a λ
Rn×(k−kF ) -

null set. We now show that X̃20∩X̃21 is contained in X̃2: First, if X̃ ∈ X̃20∩X̃21, then X = (F, X̃)

clearly has rank equal to k. Second, we need to show that X̃ ∈ X̃20∩X̃21 implies B ⊆ span(X), the

other inclusion being trivial: Now, suppose that X̃ ∈ X̃20∩ X̃21, and that y ∈ B but y /∈ span(X)

would be possible. Then z = Π(span(X))⊥y 6= 0 would follow. Hence, there would have to exist

indices 1 ≤ i1 < . . . < iq ≤ n such that

e′i1(n)z 6= 0, . . . , e′iq (n)z 6= 0, (43)

because of X̃ ∈ X̃21. But then we could conclude that

q ≥ rank(B(y)) ≥ rank
(

R(X ′X)−1X ′
(

ei1(n)e
′
i1(n)z, . . . , eiq (n)e

′
iq (n)z

))

= rank
(

R(X ′X)−1X ′
(

ei1(n), . . . , eiq (n)
))

= q,

the last but one equality holding because of (43), and the last one holding in view of X̃ ∈ X̃20.

This would entail y /∈ B, a contradiction. This now completes the proof. �

B Appendix: Proofs for Section 5 and some sufficient con-

ditions relating to J(L,C)

Proof of Proposition 5.2: Fix an arbitrary µ0 ∈ M0. Due to G(M0)-invariance of W the

l.h.s. of (22) coincides with supΣ∈C Pµ0,Σ(W ), cf. Remark 5.5(iii) in Preinerstorfer and Pötscher

(2016). Now, let Σj be a sequence in C such that Pµ0,Σj
(W ) → supΣ∈C Pµ0,Σ(W ) as j → ∞.

By relative compactness of L(C), we may assume that L(Σj) → Σ̄ (possibly after passing to a

subsequence). For notational convenience, define the sequence Lj = L(Σj) + ΠL and denote its

limit by L = Σ̄ + ΠL. We first claim that

Pµ0,Σj
(W ) = Pµ0,L(Σj)(W ) = Pµ0,Lj

(W ). (44)

To see this, let Z be a standard Gaussian n× 1 vector. Then

Pµ0,Σj
(W ) = Pr

(

µ0 +Σ
1/2
j Z ∈ W

)

= Pr
(

µ0 +ΠL⊥Σ
1/2
j Z ∈ W

)

50



because W is easily seen to be invariant w.r.t. addition of elements of L and since ΠLΣ
1/2
m Z

clearly belongs to L. The latter probability equals

Pr
(

µ0 +ΠL⊥Σ
1/2
j Z/ ‖ΠL⊥ΣjΠL⊥‖1/2 ∈ µ0 + (W − µ0) / ‖ΠL⊥ΣjΠL⊥‖1/2

)

= Pr
(

µ0 +ΠL⊥Σ
1/2
j Z/ ‖ΠL⊥ΣjΠL⊥‖1/2 ∈ W

)

= Pµ0,L(Σj)(W )

where the first equality follows from G(M0)-invariance of W . Furthermore, using the invariance

of W w.r.t. to addition of elements of L again we obtain

Pµ0,L(Σj)(W ) = Pr
(

µ0 + L(Σj)
1/2Z ∈ W

)

= Pr
(

µ0 +
(

L(Σj)
1/2 +ΠL

)

Z ∈ W
)

= Pµ0,Lj
(W ),

the last equality holding because L(Σj)
1/2 +ΠL is a square-root of Lj . This establishes (44).

We now distinguish two cases.

Case 1: Suppose L is positive definite. Then Pµ0,Σj
(W ) → Pµ0,L(W ) follows from (44) in

view of total variation convergence of Pµ0,Lj
to Pµ0,L. But note that Pµ0,L(W ) < 1, since W c is

not a λRn -null set by assumption and since λRn is equivalent to Pµ0,L.

Case 2: Suppose L is singular. We note that

lim sup
j→∞

Pµ0,Σj
(W ) ≤ lim sup

j→∞
Pµ0,L(Σj)(cl(W )) ≤ Pµ0,Σ̄

(cl(W )),

where we have used Equation (44), the inclusion W ⊆ cl(W ), weak convergence of Pµ0,L(Σj) to

Pµ0,Σ̄
(cf. Lemma E.1 in Preinerstorfer and Pötscher (2016)), and the Portmanteau theorem.

Define S = span(Σ̄) and observe that

Pµ0,Σ̄
(cl(W )) = 1− Pµ0,Σ̄

((cl(W ))
c ∩ (µ0 + S)) ,

since Pµ0,Σ̄
is concentrated on µ0+S. Furthermore, singularity of L implies rank(Σ̄) < n−dim(L),

and thus S ∈ J(L,C). Hence, by assumption, (cl(W ))
c ∩ (µ0 + S) 6= ∅, and thus there exists

a nonempty open subset U ⊆ µ0 + S (w.r.t. the topology induced from Rn) such that U ⊆

(cl(W ))
c ∩ (µ0 + S). Equivalence of the measures Pµ0,Σ̄

and λµ0+S then implies Pµ0,Σ̄
(U) > 0.

Together with the preceding display this then gives Pµ0,Σ̄
(cl(W )) ≤ 1− Pµ0,Σ̄

(U) < 1. �

Proof of Proposition 5.5: Fix an arbitrary µ0 ∈ M0. Due to G(M0)-invariance of Wj the

l.h.s. of (23) coincides with supΣ∈C Pµ0,Σ(Wj), cf. Remark 5.5(iii) in Preinerstorfer and Pötscher

(2016). Let Σj be a sequence in C such that

∣

∣

∣

∣

Pµ0,Σj
(Wj)− sup

Σ∈C

Pµ0,Σ(Wj)

∣

∣

∣

∣

→ 0 as j → ∞. (45)

By relative compactness of L(C), we may assume that L(Σj) → Σ̄ (possibly after passing to a

subsequence). Again we define the sequence Lj = L(Σj)+ΠL and denote its limit by L = Σ̄+ΠL.
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Using the assumed invariance properties of Wj we obtain as before that

Pµ0,Σj
(Wj) = Pµ0,L(Σj)(Wj) = Pµ0,Lj

(Wj). (46)

Case 1: Suppose L is positive definite. Let ε > 0 and note that Pµ0,L is equivalent to λRn .

Since Wj ⊇ Wj+1, and since
⋂

j∈N
Wj is a λRn -null set by assumption, we can find j0 ∈ N such

that Pµ0,L(Wj0) < ε. Since Pµ0,Lj
converges to Pµ0,L in total variation, we arrive at

lim
j→∞

Pµ0,Lj
(Wj0) < ε.

From Wj ⊇ Wj+1 we obtain

lim sup
j→∞

Pµ0,Lj
(Wj) ≤ lim sup

j→∞
Pµ0,Lj

(Wj0) < ε,

which proves the claim in view of (46) and (45).

Case 2: Suppose L is singular. Let ε > 0. Singularity of L implies rank(Σ̄) < n−dim(L), and

therefore S = span(Σ̄) ∈ J(L,C) must hold. By assumption,
⋂

j∈N
cl(Wj) is hence a λµ0+S -null

set. Since furthermore cl(Wj) ⊇ cl(Wj+1) holds, and since Pµ0,Σ̄
is equivalent to λµ0+S , we can

hence find a j0 ∈ N such that

Pµ0,Σ̄
(cl(Wj0)) < ε.

But cl(Wj) ⊇ cl(Wj+1) implies

lim sup
j→∞

Pµ0,L(Σj)(Wj) ≤ lim sup
j→∞

Pµ0,L(Σj)(cl(Wj))

≤ lim sup
j→∞

Pµ0,L(Σj)(cl(Wj0)).

Since Pµ0,L(Σj) converges to Pµ0,Σ̄
weakly (cf. Lemma E.1 in Preinerstorfer and Pötscher (2016)),

the Portmanteau theorem gives

lim sup
j→∞

Pµ0,L(Σj)(cl(Wj0)) ≤ Pµ0,Σ̄
(cl(Wj0)) < ε,

which then proves the claim via (46) and (45). �

Lemma B.1. Suppose T : Rn → R is continuous on the complement of a closed set N† ⊆ Rn.

Then for every −∞ < C < ∞ the set {y ∈ Rn : T (y) ≥ C} ∪N† is closed, and hence contains

cl({y ∈ Rn : T (y) ≥ C}). Furthermore, bd({y ∈ Rn : T (y) ≥ C}) is contained in the closed set

{y ∈ Rn : T (y) = C} ∪N†. [Analogous statements hold for the set {y ∈ Rn : T (y) ≤ C}.]

Proof: Suppose y0 is an accumulation point of A := {y ∈ Rn : T (y) ≥ C} ∪ N†. If

y0 ∈ N† ⊆ A we are done. Suppose next that y0 /∈ N†. Let yj ∈ A be such that yj → y0.

Then yj /∈ N† eventually, since N† is closed. By assumption T is continuous on Rn\N†. Hence
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T (yj) → T (y0). Now, since yj ∈ A and since yj /∈ N† eventually, we have T (yj) ≥ C eventually.

But then T (y0) ≥ C follows, implying that y0 ∈ A. We turn to the second claim. That

B := {y ∈ Rn : T (y) = C} ∪ N† is closed, is proved in a completely analogous way. Next we

establish the claimed inclusion: If y∗ is an element of bd({y ∈ Rn : T (y) ≥ C}) and y∗ belongs

to N† we are done. Assume y∗ does not belong to N†. Since y∗ must also be an element of

cl({y ∈ Rn : T (y) ≥ C}), and hence of A by what has already been shown, it follows that

T (y∗) ≥ C must hold. If T (y∗) > C would be true, then T would have to be larger than C on an

open neighborhood of y∗, since y∗ /∈ N†. This would lead to the contradiction that y∗ belongs to

the interior of {y ∈ Rn : T (y) ≥ C}. The claim in parenthesis is proved completely analogously.

�

Proof of Corollary 5.6: For the first statement we check the conditions of Proposition 5.5.

The invariance properties of Wj follow from invariance of T . That Wj ⊇ Wj+1 holds is obvious.

Condition (a) of Proposition 5.5 is satisfied because
⋂

j∈N
Wj is empty as T is real-valued and

Cj ր ∞ as j → ∞. Hence, Part 1 follows. Next observe that

⋂

j∈N

cl(Wj) ⊆
⋂

j∈N

(Wj ∪N†) =
⋂

j∈N

Wj ∪N† = ∅ ∪N† = N†,

where we have used Lemma B.1 to obtain the first inclusion. Part 2 then follows immediately.

For Part 3 note that λµ0+S(N
†) = 0 obviously implies µ0+S 6⊆ N†, since λµ0+S is supported by

µ0 + S. The converse is seen as follows: Clearly, (µ0 + S) ∩N† is a finite or countable union of

sets of the form (µ0 + S)∩Aj , where the Aj ’s are affine spaces, the union of which is N†. Since

µ0+S 6⊆ N†, the sets (µ0+S)∩Aj must be proper affine subspaces of µ0+S or must be empty,

entailing λµ0+S((µ0 + S) ∩ Aj) = 0 for every j. Since λµ0+S(N
†) = λµ0+S((µ0 + S) ∩ N†), we

conclude that λµ0+S(N
†) = 0. �

Proof of claim in Remark 5.9(ii): First note that
⋂

j∈N
cl(Wj) and N† are G(M0)-

invariant. The reverse implication is trivial since λµ0+S is supported on µ0+S and has a density

there, and thus assigns zero mass to {µ0} as dimS > 0. To prove the other implication suppose

that x ∈
⋂

j∈N
cl(Wj)∩ (µ0+S) but is different from µ0. Then δ(x−µ0)+µ0 also belongs to this

set for every δ 6= 0 in view of G(M0)-invariance of
⋂

j∈N
cl(Wj) and because of the particular

form of µ0 + S. Note that s = x − µ0 is nonzero and belongs to S, and hence spans S. We

conclude that (µ0 + S) \ {µ0} is a subset of
⋂

j∈N
cl(Wj). But this contradicts the assumption

that
⋂

j∈N
cl(Wj) is a λµ0+S -null set. The proof for N† is completely analogous. �

Proof of Lemma 5.11: Since T is G(M0)-invariant and since for a one-dimensional S every

element of µ0 + S has the form µ0 + γs0 for a fixed s0 ∈ S, we conclude that

T (µ0 + γs0) = T
(

γ−1 ((µ0 + γs0)− µ0) + µ0

)

= T (µ0 + s0)

for every γ 6= 0. Hence, any one-dimensional S ∈ J(L,C) satisfies S ∈ H. This proves Part 1.

In view of the assumed G(M0)-invariance of T we may for the rest of the proof fix an arbitrary
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µ0 ∈ M0, set σ2 = 1, and drop the suprema (infima) w.r.t. µ0 and σ2 from (25) and (26), cf.

Remark 5.5(iii) in Preinerstorfer and Pötscher (2016). We turn to Part 2: Concerning (25), note

that in case H is empty there is nothing to prove, hence assume that H is nonempty and choose

a C ∈ (−∞, C∗). Since C < C∗, there exists an S ∈ H such that the corresponding constant

C(S) satisfies C < C(S) ≤ C∗. By assumption, T is continuous on the complement of N†, a

closed λµ0+S -null set. By definition of C(S) we have that λµ0+S(T 6= C(S)) = 0 which together

with C(S) > C and Lemma B.1 implies that

λµ0+S([int({y ∈ Rn : T (y) ≥ C})]c) = λµ0+S(cl({y ∈ Rn : T (y) < C}))

≤ λµ0+S(cl({y ∈ Rn : T (y) ≤ C})) ≤ λµ0+S({y ∈ Rn : T (y) ≤ C}) + λµ0+S(N
†)

≤ λµ0+S(T 6= C(S)) + λµ0+S(N
†) = 0.

Now, let Σj be a sequence in C such that L(Σj) → Σ̄ with span(Σ̄) = S. Then by G(M0)-

invariance of T and its invariance w.r.t. addition of elements of V we have (cf. the proof of

(44))

sup
Σ∈C

Pµ0,Σ(T ≥ C) ≥ lim inf
j→∞

Pµ0,Σj
(T ≥ C) = lim inf

j→∞
Pµ0,L(Σj)(T ≥ C)

≥ lim inf
j→∞

Pµ0,L(Σj) (int ({y ∈ Rn : T (y) ≥ C}))

≥ Pµ0,Σ̄
(int ({y ∈ Rn : T (y) ≥ C})) ,

where the last inequality follows from weak convergence of Pµ0,L(Σj) to Pµ0,Σ̄
(cf. Lemma E.1 in

Preinerstorfer and Pötscher (2016)) and the Portmanteau theorem. But absolute continuity of

Pµ0,Σ̄
w.r.t. λµ0+S then implies

Pµ0,Σ̄
(int ({y ∈ Rn : T (y) ≥ C})) = 1− Pµ0,Σ̄

([int ({y ∈ Rn : T (y) ≥ C})]c) = 1.

This proves (25). The statement concerning the convergence behavior of the size as C → ∞ is a

consequence of Corollary 5.6.

Finally consider Part 3. Again, if H is empty there is nothing to prove. Hence assume H 6= ∅.

Let C ∈ (C∗,∞). Then we can find S ∈ H with C(S) < C. Furthermore, by definition we can

find a sequence Σj ∈ C such that Σ̄j = L (Σj) converges to Σ̄ with span(Σ̄) = S. It follows

that T = C(S) < C holds λµ0+span(Σ̄)-a.e., since S ∈ H. Hence, λµ0+span(Σ̄)(T ≥ C) = 0, which

entails Pµ0,Σ̄
(T ≥ C) = 0 by equivalence of the measures involved. Using (44), the Portmanteau
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theorem, and Lemma B.1, we obtain

inf
Σ∈C

Pµ0,Σ(T ≥ C) ≤ lim sup
j→∞

Pµ0,Σj
(T ≥ C) = lim sup

j→∞
Pµ0,Σ̄j

(T ≥ C)

≤ lim sup
j→∞

Pµ0,Σ̄j
(cl ({y ∈ Rn : T (y) ≥ C}))

≤ Pµ0,Σ̄
(cl ({y ∈ Rn : T (y) ≥ C}))

≤ Pµ0,Σ̄
(T ≥ C) + Pµ0,Σ̄

(N†) = Pµ0,Σ̄
(N†) = 0,

the last equality following from equivalence of Pµ0,Σ̄
with λµ0+span(Σ̄), from span(Σ̄) ∈ H, and

the assumptions made on N†. �

Proof of Proposition 5.12: We start with the observation that the statements “and hence

for all µ0 ∈ M0” in parentheses follow from the corresponding statements involving “and hence

for some µ0 ∈ M0” in view of the assumed G(M0)-invariance of T and N†. In view of the

assumed G(M0)-invariance of T we may for the rest of the proof fix an arbitrary µ0 ∈ M0, set

σ2 = 1, and drop the suprema w.r.t. µ0 and σ2 from the displayed expressions shown in the

lemma, cf. Remark 5.5(iii) in Preinerstorfer and Pötscher (2016).

We now establish Part A.1 of the lemma: The statement concerning nonincreasingness is

obvious. The constancy property of the size as well as its convergence to zero for C → ∞

has already been established in Lemma 5.11. Therefore, it remains to verify that the function

C 7→ supΣ∈C Pµ0,Σ(T ≥ C) is continuous on (C∗,∞), where we note that C∗ < ∞ holds. In

order to achieve this we proceed in two steps:

Step 1: We show that the map (C, Σ̄) 7→ Pµ0,Σ̄
(T ≥ C) is continuous on (C∗,∞)× cl(L (C))

and that cl(L (C)) is compact. Compactness is obvious, since L (C) is norm bounded by construc-

tion. In order to establish continuity, let Cj ∈ (C∗,∞) be a sequence such that Cj → C ∈ (C∗,∞)

and let Σ̄j ∈ cl(L (C)) converge to Σ̄ ∈ cl(L (C)). In view of the assumed invariance properties of

T we have Pµ0,Σ̄j
(T ≥ ·) = Pµ0,Ωj

(T ≥ ·) and Pµ0,Σ̄
(T ≥ ·) = Pµ0,Ω(T ≥ ·) where Ωj = Σ̄j +ΠL

and Ω = Σ̄+ΠL (cf. the proof of (44)). Note that Ωj converges to Ω, and thus Pµ0,Ωj
converges

to Pµ0,Ω weakly (cf. Lemma E.1 in Preinerstorfer and Pötscher (2016)), and in fact in total

variation distance if Ω is nonsingular.

Case 1: Assume that Ω is nonsingular. Then convergence of Pµ0,Ωj
to Pµ0,Ω in total variation

distance implies

Pµ0,Σ̄j
(T ≥ Cj)− Pµ0,Σ̄

(T ≥ Cj) = Pµ0,Ωj
(T ≥ Cj)− Pµ0,Ω(T ≥ Cj) → 0 for j → ∞.

Furthermore,

Pµ0,Σ̄
(T ≥ Cj) = Pµ0,Ω(T ≥ Cj) → Pµ0,Ω(T ≥ C) = Pµ0,Σ̄

(T ≥ C) for j → ∞,

since Pµ0,Ω(T = C) = 0 holds in view of the assumption λRn(T = C) = 0 for C > C∗ and

equivalence of Pµ0,Ω and λRn . Together this implies the desired convergence.
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Case 2: Assume that Ω is singular. Then span(Σ̄) ∈ J(L,C) follows. We distinguish two

subcases:

Case 2a: Assume that span(Σ̄) ∈ H. Choose ε > 0 small enough such that C − ε >

C∗ holds. Then T ≤ C∗ < C − ε holds λµ0+span(Σ̄)-a.e., since span(Σ̄) ∈ H. Consequently,

λµ0+span(Σ̄)(T ≥ C − ε) = 0, which entails Pµ0,Σ̄
(T ≥ C − ε) = 0 by equivalence of the measures

involved. Consequently, also Pµ0,Σ̄
(T ≥ C) = 0 holds. Using the just established identities, the

Portmanteau theorem, and Lemma B.1, we obtain

lim sup
j→∞

Pµ0,Σ̄j
(T ≥ Cj) ≤ lim sup

j→∞
Pµ0,Σ̄j

(cl ({y ∈ Rn : T (y) ≥ C − ε}))

≤ Pµ0,Σ̄
(cl ({y ∈ Rn : T (y) ≥ C − ε}))

≤ Pµ0,Σ̄
(T ≥ C − ε) + Pµ0,Σ̄

(N†) = Pµ0,Σ̄
(N†) = 0,

the last equality following from equivalence of Pµ0,Σ̄
with λµ0+span(Σ̄), from span(Σ̄) ∈ J(L,C),

and the assumptions made on N†. This establishes the desired convergence.

Case 2b: Assume that span(Σ̄) ∈ J(L,C)\H. Choose ε > 0 as before. By Lemma B.1 and

our assumptions on N†, and since λµ0+span(Σ̄)(T = C − ε) = 0 in view of span(Σ̄) ∈ J(L,C)\H

and of C − ε > C∗, it follows that

λµ0+span(Σ̄) (bd ({y ∈ Rn : T (y) ≥ C − ε})) = 0.

Using equivalence of Pµ0,Σ̄
with λµ0+span(Σ̄) we also have

Pµ0,Σ̄
(bd ({y ∈ Rn : T (y) ≥ C − ε})) = 0,

and the same is true if C − ε is replaced by C + ε. From weak convergence we thus obtain

Pµ0,Σ̄j
(T ≥ C ± ε) → Pµ0,Σ̄

(T ≥ C ± ε) for j → ∞.

This implies

Pµ0,Σ̄
(T ≥ C − ε) ≥ lim sup

j→∞
Pµ0,Σ̄j

(T ≥ Cj) ≥ lim inf
j→∞

Pµ0,Σ̄j
(T ≥ Cj) ≥ Pµ0,Σ̄

(T ≥ C + ε).

Observe that Pµ0,Σ̄
(T = C) = 0 holds, since λµ0+span(Σ̄)(T = C) = 0 by our assumptions (note

that C > C∗ and that span(Σ̄) ∈ J(L,C)\H). Letting ε go to zero in the above display then

gives the desired convergence of Pµ0,Σ̄j
(T ≥ Cj) to Pµ0,Σ̄

(T ≥ C).

Step 2: Note that by the assumed invariance properties and by the definition of L (C) we

have for every C > C∗ that

sup
Σ∈C

Pµ0,Σ(T ≥ C) = sup
Σ∈C

Pµ0,L(Σ)(T ≥ C) = sup
Σ̄∈L(C)

Pµ0,Σ̄
(T ≥ C) = sup

Σ̄∈cl(L(C))

Pµ0,Σ̄
(T ≥ C),
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the last equality following from the continuity established in Step 1. But the right-most supre-

mum is continuous on (C∗,∞) as a consequence of the claim established in Step 1 and Lemma

B.2 given below. [Note that (C∗,∞) as well as cl(L (C)) are not empty, since C∗ < ∞ has been

established before and since C 6= ∅ by assumption.] This completes the proof of Part A.1.

The claims in Part A.2 are now immediate consequences of the already established Part A.1.

Inspection of the proof of Part A.1 shows that under the assumptions of Part B continuity of the

size on (C∗∗,∞) follows. Everything else in Part B is then proved similarly as the corresponding

claims in Part A. �

The following lemma is a special case of Berge’s maximum theorem, see Berge (1963), Chapter

VI, Section 3.

Lemma B.2. Let f : A × B → R be a continuous map, where A is a (nonempty) topological

space and B is a (nonempty) compact topological space. Then g(a) = supb∈B f(a, b) for a ∈ A

defines a continuous map g : A → R.

Proof of Lemma 5.15: Since T is G(M0)-invariant (see Lemma 5.15 and Proposition 5.4

in Preinerstorfer and Pötscher (2016)) it follows that Pµ0,σ
2Σ(T ≥ C) for µ0 ∈ M0 does neither

depend on the choice of µ0 ∈ M0 nor on σ2. We hence we may fix µ0 ∈ M0 and set σ2 = 1.

Furthermore, T (y) = T0(y − µ0) with

T0(y) =

{

(Rβ̌(y))′Ω̌−1(y)(Rβ̌(y)) y ∈ Rn\N∗

0 y ∈ N∗

follows, because N∗ is G(M)-invariant by Lemma 5.15 in Preinerstorfer and Pötscher (2016) and

because of the equivariance (invariance) requirements on β̌ (Ω̌, respectively) made in Assumption

5 of Preinerstorfer and Pötscher (2016). Consequently,

Pµ0,Σ(T (y) ≥ C) = Pµ0,Σ(T0(y − µ0) ≥ C) = P0,Σ(T0(y) ≥ C)

holds, where the most right-hand expression does not depend on the value of r. �

Proof of Lemma 5.16: Parts 1 and 3 have been established in Lemma 5.15 of Preinerstorfer

and Pötscher (2016), Borel-measurability being trivial. Consider next Part 2: Lemma 5.15 of

Preinerstorfer and Pötscher (2016) shows that λRn(T = C) = 0 holds for C > 0. It follows

immediately, that this also holds for C < 0 (by passing from T to −T , absorbing the sign

into Ω̌, and by applying Lemma 5.15 in that reference to −T ). That λRn(T = C) = 0 also

holds for C = 0 is seen as follows: Write the set O = {y ∈ Rn : T (y) = 0} as O∗ ∪ N∗ where

O∗ = {y ∈ Rn\N∗ : T (y) = 0}. Certainly O∗ ⊆ Rn\N∗ by construction. It suffices to show

that O∗ is a λRn -null set: But this follows from repeating the arguments given in the proof of

Part 4 of Lemma 5.15 in Preinerstorfer and Pötscher (2016) for the set O∗ (instead of for O),

with the only change that the argument that the set O(y2) constructed in the proof is empty if

y2 ∈ N∗ ∩ M⊥ now has to be deduced from the observation that y = y1 + y2 ∈ Rn\N∗ is not

possible if y2 ∈ N∗ ∩M⊥, since y1 ∈ M and since N∗ is G(M)-invariant. �
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Proof of Lemma 5.18: By definition B is the set where

B(y) = R(X ′X)−1X ′ diag
(

e′1(n)Πspan(X)⊥y, . . . , e
′
n(n)Πspan(X)⊥y

)

= R(X ′X)−1X ′
[

e1(n)e
′
1(n)Πspan(X)⊥y, . . . , en(n)e

′
n(n)Πspan(X)⊥y

]

has rank less than q. Define the set

D =
{

(j1, . . . , js) : 1 ≤ s ≤ n, 1 ≤ j1 < . . . < js ≤ n, rank
(

R(X ′X)−1X ′ [ej1(n), . . . , ejs(n)]
)

< q
}

,

which may be empty in case q = 1. Consider first the case where D is nonempty: Since

R(X ′X)−1X ′ has rank q, it is then easy to see that we have y ∈ B if and only if there ex-

ists (j1, . . . , js) ∈ D such that e′j(n)Πspan(X)⊥y = 0 for j 6= ji for i = 1, . . . , s. This shows,

that B is a finite union of (not necessarily distinct) linear subspaces. In case D is empty,

rank(R(X ′X)−1X ′) = q implies that y ∈ B if and only if e′j(n)Πspan(X)⊥y = 0 for all 1 ≤ j ≤ n,

i.e., if and only if y ∈ span(X). That the linear subspaces making up B are proper, follows since

otherwise B would be all of Rn, which is impossible under Assumptions 2 as transpires from an

inspection of Lemma 3.1 (and its proof) in Preinerstorfer and Pötscher (2016). To prove the

second claim, observe that in case q = 1 the condition that rank(B(y)) is less than q is equivalent

to B(y) = 0. Since the expressions R(X ′X)−1X ′ej(n) are now scalar, we may thus write the

condition B(y) = 0 equivalently as

[

R(X ′X)−1X ′e1(n)e1(n), . . . , R(X ′X)−1X ′en(n)en(n)
]

Πspan(X)⊥y = 0.

But this shows that B is a linear space, namely the kernel of the matrix appearing on the l.h.s.

of the preceding display. �

Proof of Lemma 5.19: We first prove (ii): Note that the set N∗ on which Ω̂GQ(y) is singular

coincides with B, and hence is a finite union of proper linear subspaces of Rn by Lemma 5.18.

Since TGQ is constant on N∗ by definition, it follows that µ+ S 6⊆ N∗ must hold. An argument

like the one discussed in Remark 5.9(i) then shows that N∗ is a λµ+S null set. Consequently,

TGQ restricted to (µ+ S)\N∗ is not constant. Suppose now there exists a C so that λµ+S({y ∈

Rn : T (y) = C}) > 0. Then, since N∗ is a λµ+S -null set, it follows that even λµ+S({y ∈

Rn\N∗ : T (y) = C}) > 0, which can be written as λµ+S({y ∈ Rn\N∗ : p(y) = 0}) > 0, with

p(y) = (Rβ̂(y) − r)′ adj(Ω̂GQ(y))(Rβ̂(y) − r) − det(Ω̂GQ(y))C, a polynomial in y. This implies

that p restricted to µ + S vanishes on a set of positive λµ+S -measure. Since p can clearly be

expressed as a polynomial in coordinates parameterizing the affine space µ + S, it follows that

p vanishes identically on µ+ S. But this implies that TGQ restricted to (µ+ S)\N∗ is constant

equal to C, a contradiction. Part (i) follows as a special case of Part (ii). The proof of Part (iii)

is completely analogous, noting that for the weighted Eicker-test statistic the set N∗ is always

span(X). �
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B.1 Sufficient conditions relating to J(L,C)

The subsequent lemma sheds light on the relation between the collection J(L,C) and the set of

concentration spaces of C in an important case and leads to sufficient conditions discussed in

the remark given below. Recall from Definition 2.1 in Preinerstorfer and Pötscher (2016) that

a linear subspace Z of Rn is said to be a concentration space of C, if dim(Z) < n and if there

exists a sequence Σm ∈ C such that Σm → Σ∗ with span(Σ∗) = Z.

Lemma B.3. Let C be a covariance model and let L be a linear subspace of Rn with dim(L) < n.

Then the following hold:

1. If Z is a concentration space of C, then either ΠL⊥Z is an element of J(L,C) or ΠL⊥Z =

L⊥ or ΠL⊥Z = {0}.

2. Suppose that C is bounded. If S ∈ J(L,C) then either (i) there is a concentration space

Z of C with the property that S = ΠL⊥Z or (ii) there exists a concentration space Z of

C satisfying ΠL⊥Z = {0} (i.e., Z ⊆ L) and a sequence Σj ∈ C such that Σj converges

to Σ∗ satisfying Z = span(Σ∗) and such that ΠL⊥ΣjΠL⊥/ ‖ΠL⊥ΣjΠL⊥‖ converges to Σ̄

satisfying S = span(Σ̄).

Proof: 1. If Z is a concentration space, we can find a sequence Σj ∈ C such that Σj converges

to a singular matrix Σ̃ with Z = span(Σ̃). If ΠL⊥Z = L⊥ or ΠL⊥Z = {0} holds, we are done,

since neither L⊥ nor {0} can belong to J(L,C).19 Hence assume that {0} ( ΠL⊥Z ( L⊥. Then

it is easy to see that ΠL⊥Σ̃ΠL⊥ 6= 0 must hold. But then ΠL⊥ΣjΠL⊥/ ‖ΠL⊥ΣjΠL⊥‖ converges

to Σ̄ := ΠL⊥Σ̃ΠL⊥/
∥

∥

∥ΠL⊥Σ̃ΠL⊥

∥

∥

∥. Because of ΠL⊥Z ( L⊥, it follows that rank(Σ̄) < n−dim(L)

must hold, showing that span(Σ̄) ∈ J(L,C). It remains to show that span(Σ̄) = ΠL⊥Z, i.e., that

span(ΠL⊥Σ̃ΠL⊥) = ΠL⊥ span(Σ̃). But this follows since span(ΠL⊥Σ̃ΠL⊥) = span(ΠL⊥Σ̃1/2) =

ΠL⊥ span(Σ̃1/2) = ΠL⊥ span(Σ̃).

2. Suppose S is as in Part 2 of the lemma. Since S ∈ J(L,C) there exists a sequence Σj ∈ C

such that ΠL⊥ΣjΠL⊥/ ‖ΠL⊥ΣjΠL⊥‖ converges to a singular matrix Σ̄ with rank(Σ̄) < n−dim(L)

and such that S = span(Σ̄) holds. By the assumption on C, we can find a subsequence ji

along which Σji converges to a matrix Σ∗. Note that Σ∗ must be singular, since otherwise

ΠL⊥ΣjiΠL⊥/ ‖ΠL⊥ΣjiΠL⊥‖ would converge to the matrix ΠL⊥Σ∗ΠL⊥/ ‖ΠL⊥Σ∗ΠL⊥‖ which

would have rank equal to n − dim(L), but at the same time would have to be equal to Σ̄,

which has smaller rank. Hence, Z := span(Σ∗) is a concentration space of C. Consider first

the case where ‖ΠL⊥Σ∗ΠL⊥‖ 6= 0. Then we can conclude that Σ̄ and ΠL⊥Σ∗ΠL⊥ coincide

up to a positive proportionality factor. By construction of Σ̄ we have span(Σ̄) = S. Hence,

span(ΠL⊥Σ∗ΠL⊥) = S holds. But the same argument as in the proof of Part 1 shows that

span(ΠL⊥Σ∗ΠL⊥) = ΠL⊥ span(Σ∗), which leads to ΠL⊥Z = ΠL⊥ span(Σ∗) = S. Next consider

the case where ‖ΠL⊥Σ∗ΠL⊥‖ = 0.20 In this case we can clearly conclude that Z = span(Σ∗) is

19If L = {0}, (i) the case ΠL⊥Z = L⊥ is impossible, and (ii) the case ΠL⊥Z = {0} cannot arise if C is bounded
away from the zero matrix.

20Note that this case cannot arise in case L = {0} and C is bounded away from the zero matrix.
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a concentration space satisfying ΠL⊥Z = {0}. The remaining claims follow for the sequence Σji

just constructed. �

The assumption that C is bounded used in Part 2 of the lemma can be made without much

loss of generality if the tests one is interested in are invariant under G(M0), see Remark 5.1(ii).

The preceding lemma allows one in certain circumstances to reduce checking the conditions on

S ∈ J(L,C) postulated in Proposition 5.2 or in Proposition 5.5 (or the corresponding sufficient

conditions appearing in Remark 5.4(ii) or Corollary 5.6) to checking similar conditions that

are expressed in terms of the concentration spaces Z. This can be advantageous since the

concentration spaces are sometimes easier to obtain than the spaces S ∈ J(L,C). We illustrate

this in the following remark. However, it is important to note that for many covariance models of

interest this “reduction” trick does not work and J(L,C) has to be determined. For example, this

is the case for C(Fall) and related covariance models, necessitating the developments in Section

6.1.

Remark B.4. Let C be a covariance model that is bounded and is bounded away from the

zero matrix. Assume that T , N†, and W are as in Corollary 5.6 and assume furthermore that

L ⊆ span(X) (which is, in particular, the case if V = {0}).

(i) Assume that N† is a finite or countable union of affine subspaces. Suppose furthermore

that we are in a scenario where we can show that no concentration space Z is entirely contained

in span(X), and thus no Z is entirely contained in L. Then the sufficient condition given at

the end of Corollary 5.6, namely that if S ∈ J(L,C) then µ0 + S 6⊆ N† for some µ0 ∈ M0 (and

hence for all µ0 ∈ M0) must hold, is satisfied whenever µ0 + Z 6⊆ N† for some µ0 ∈ M0 (and

hence for all µ0 ∈ M0) holds for every concentration space Z (this is so since N† is invariant

under addition of elements from L and since every S ∈ J(L,C) must be of the form ΠL⊥Z in

view of the preceding lemma and our assumption on Z). Hence, we can check the sufficient

condition in Corollary 5.6 without explicitly computing the spaces S ∈ J(L,C). Furthermore,

in many cases of interest we have N† = span(X) (cf. the discussion surrounding Lemma 5.18),

in which case the condition µ0 + Z 6⊆ N† is then an automatic consequence of the assumption

that no concentration space Z is entirely contained in span(X) (since span(X) is a linear space

containing M0).

(ii) The example in (i) can be generalized a bit: Suppose now that for every concentration

space Z we either have that (a) it is not contained in span(X), or (b) that Z is contained in L

but for every sequence Σj converging to some Σ∗ satisfying Z = span(Σ∗) the limit points of

ΠL⊥ΣjΠL⊥/ ‖ΠL⊥ΣjΠL⊥‖ are regular on L⊥. Then it suffices to check that µ0 + Z 6⊆ N† for

some µ0 ∈ M0 (and hence for all µ0 ∈ M0) for every concentration space Z that is not contained

in span(X) [this follows from the discussion in (i), since by property (b) and the preceding lemma

any S ∈ J(L,C) must be of the form ΠL⊥Z]. Again if N† = span(X), then this latter condition

is automatically satisfied. Of course, a sufficient condition for the aforementioned limit points to

be regular on L⊥ is the following condition: for each relevant Z, Σ, and sequence Σj the limit

points of the sequence ΠL⊥ΣjΠL⊥/ ‖ΠL⊥ΣjΠL⊥‖ are regular on span(Σ∗)⊥.
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(iii) Suppose now that we are in the situation of (ii) except that now N† is not a finite or

countable union of affine subspaces. Then the relevant sufficient condition in Corollary 5.6 can

be shown to be implied by the condition that if Z is a concentration space of the covariance

model C that is not contained in span(X), then the set N† is a λµ0+Z -null set for some µ0 ∈ M0

(and hence for all µ0 ∈ M0). This follows since any Z with ΠL⊥Z = S can be shown to be

of the form of a direct sum A ⊕ B, where A is a linear space that is linearly isomorphic to S

and B is a linear subspace of L, and since N† − µ0 is of the form N†† ⊕ L for an appropriate

Borel-set N†† ⊆ L⊥ and where the direct sum is in fact an orthogonal sum. We omit the details.

Similar arguments can be applied if condition (b) in Proposition 5.5 is to be verified instead of

the sufficient condition just considered.

(iv) Similar arguments apply to the sufficient condition given in Remark 5.4(ii) or to condition

(b) of Proposition 5.2.

C Appendix: Auxiliary results for Section 6

In this appendix we provide results that will be used in the proofs of the results of Section 6 that

are provided in Appendix D.

Definition C.1. Let ω ∈ [0, π], l ∈ Z, m ∈ N, and let s ≥ 0 be an integer. Define E
(l)
m,s(ω) as

the m× 2-dimensional matrix with j-th row equal to

((j + l)s cos((j + l)ω), (j + l)s sin((j + l)ω)) ,

where we shall often drop the superscript l in case l = 0. For a positive integer p, for ω =

(ω1, . . . , ωp) ∈ [0, π]p, and for d = (d1, . . . , dp) ∈ Np we define the m × 2
∑p

i=1 di-dimensional

matrix

V (l)
m (ω, d) =

(

E
(l)
m,0(ω1), . . . , E

(l)
m,d1−1(ω1), . . . , E

(l)
m,0(ωp), . . . , E

(l)
m,dp−1(ωp)

)

.

In case p = 1, we shall often simply write ω for ω and d for d.

For the following recall that κ(ω, d) has been defined in Section 6.1, and that we use the

convention that ω and d are the 0-tupels for p = 0.

Lemma C.1. Let p be a positive integer, let ω ∈ [0, π]p have distinct coordinates, and let d ∈ Np.

Then for every positive integer m and for every integer l it holds that

rank(V (l)
m (ω, d)) = min(m,κ(ω, d)).

Proof of Lemma C.1: Standard results concerning linear difference equations (e.g., Kelley

and Peterson (2001), Chp. 3) can be used to verify that the collection made up of the functions

j 7→ js cos(jωi) and j 7→ js sin(jωi) (defined for j ∈ Z) for ωi ∈ (0, π) and s = 0, . . . , di − 1
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as well as of j 7→ js cos(jωi) for ωi ∈ {0, π} and s = 0, . . . , di − 1 forms a fundamental set of

solutions of the difference equation ∆ω,d(z)wt = 0 with t ∈ Z, where we abuse the symbol z also

to denote the backshift-operator. Hence any Casorati-matrix associated with this fundamental

set is non-singular. Observe that striking the columns corresponding to (j+ l)s sin((j+ l)ωi) for

ωi ∈ {0, π} from the matrix V
(l)
κ(ω,d)(ω, d), results in a κ(ω, d)×κ(ω, d) matrix which is precisely a

Casorati-matrix. This shows that rank(V
(l)
κ(ω,d)(ω, d)) = κ(ω, d). The claim is then an immediate

consequence. �

Definition C.2. For a polynomial Θ(z) = 1 + θ1z + . . .+ θaz
a of degree a we define for m > a

the (m− a)×m matrix Dm(Θ) via













θa . . . θ1 1 0 . . . 0

0 θa . . . θ1 1 . . . 0
...

...

0 . . . 0 θa . . . θ1 1













with the convention that Dm(Θ) = Im in case a = 0.

Remark C.2. (i) Obviously, Dm(Θ) has full row-rank, i.e., rank(Dm(Θ)) = m− a.

(ii) Let Θ1(z) and Θ2(z) be polynomials of degree a1 and a2, respectively, satisfying Θ1(0) =

Θ2(0) = 1. Then form > a1+a2 we haveDm(Θ1Θ2) = Dm−a1(Θ2)Dm(Θ1) = Dm−a2(Θ1)Dm(Θ2)

where Dm(Θ1Θ2) denotes the matrix associated with the polynomial Θ1(z)Θ2(z).

Lemma C.3. Let p be a positive integer, let ω ∈ [0, π]p have distinct coordinates, and let d ∈ Np.

Then for every positive integer m satisfying m > κ(ω, d), and for every integer l we have that the

transposes of the row vectors of Dm(∆ω,d) constitute a basis of span(V
(l)
m (ω, d))⊥. In particular,

span(V
(l)
m (ω, d)) does not depend on l.

Proof of Lemma C.3: Since the columns of V
(l)
m (ω, d) are either zero or segments of

length m (with m > κ(ω, d)) from the fundamental set of solutions to the difference equation

∆ω,d(z)wt = 0, we obviously have Dm(∆ω,d)V
(l)
m (ω, d) = 0. This implies span(D′

m(∆ω,d)) ⊆

span(V
(l)
m (ω, d))⊥. Since the m−κ(ω, d) rows of Dm(∆ω,d) are linearly independent, cf. Remark

C.2, and since rank(V
(l)
m (ω, d)) = κ(ω, d) by Lemma C.1, the result follows. �

Remark C.4. In case p = 1, and hence ω = ω ∈ [0, π], and d = d ∈ N, the result in Lemma

C.3 reduces to the fact that the transposes of the row vectors of Dm(∆d
ω) constitute a basis of

span((E
(l)
m,0(ω), . . . , E

(l)
m,d−1(ω)))

⊥. In particular, Dm(∆d
ω)(E

(l)
m,0(ω), . . . , E

(l)
m,d−1(ω)) = 0 holds.

Lemma C.5. Let ω ∈ [0, π], d ∈ N, and l ∈ Z. If m ∈ N satisfies m > κ(ω, 1) then we have

Dm(∆ω)E
(l)
m,d(ω) =

{

2
∑d−1

i=0

(

d
i

)

cos(d−i)(ω)E
(l+1)
m−κ(ω,1),i(ω)P

i−d for ω ∈ (0, π)

cos(ω)
∑d−1

i=0

(

d
i

)

E
(l)
m−κ(ω,1),i(ω) for ω ∈ {0, π}

, (47)
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where cos(i)(ω) denotes the i-th order derivative of the cosine function and where P is the 2× 2-

dimensional orthogonal matrix with first row (0, 1) and second row (−1, 0). If m ∈ N satisfies

m > κ(ω, d) then we have

Dm(∆d
ω)E

(l)
m,d(ω) =

{

2dd!(− sin(ω))dE
(l+d)
m−κ(ω,d),0(ω)P

−d for ω ∈ (0, π)

d!(cos(ω))dE
(l)
m−κ(ω,d),0(ω) for ω ∈ {0, π}

. (48)

Proof of Lemma C.5: From Lemma C.3 and Remark C.4 we obtain that the identity

Dm(∆ω)E
(l)
m,0(ω) = 0 for every ω ∈ [0, π] holds. Consider first the case where ω ∈ (0, π): Since

the left-hand side of this identity is a smooth function of ω in this range, we may differentiate

the identity d times leading to

d
∑

i=0

(

d

i

)(

dd−i

dωd−i
Dm(∆ω)

)(

di

dωi
E

(l)
m,0(ω)

)

= 0.

Rearranging terms and computing the derivatives gives

Dm(∆ω)E
(l)
m,d(ω)P

d = 2

d−1
∑

i=0

(

d

i

)

cos(d−i)(ω)[0, Im−κ(ω,1), 0]E
(l)
m,i(ω)P

i.

But clearly [0, Im−κ(ω,1), 0]E
(l)
m,i(ω) = E

(l+1)
m−κ(ω,1),i(ω) holds, from which we obtain (47) in case

ω ∈ (0, π). Next, consider the case where ω ∈ {0, π} holds: Using the Binomial formula, together

with ω ∈ {0, π}, we have

(r + 1)d cos((r + 1)ω)− cos(ω)rd cos(rω) = cos(ω)

d−1
∑

i=0

(

d

i

)

ri cos(rω).

Since the second column of E
(l)
m,i(ω) is 0 for any i and m, the claim (47) then also follows in case

ω ∈ {0, π}. We next prove (48) by induction over d. In case d = 1, the claim holds as it reduces

to (47). Suppose that the induction hypothesis now holds for some d ≥ 1 (and any m > κ(ω, d)).

Then for any m ∈ N satisfying m > κ(ω, d + 1) we have, using Remark C.2(ii) and (47) with d

replaced by d+ 1,

Dm(∆d+1
ω )E

(l)
m,d+1(ω) = Dm−κ(ω,1)(∆

d
ω)Dm(∆ω)E

(l)
m,d+1(ω)

=

{

2
∑d

i=0

(

d+1
i

)

cos(d+1−i)(ω)Dm−κ(ω,1)(∆
d
ω)E

(l+1)
m−κ(ω,1),i(ω)P

i−d−1 for ω ∈ (0, π)

cos(ω)
∑d

i=0

(

d+1
i

)

Dm−κ(ω,1)(∆
d
ω)E

(l)
m−κ(ω,1),i(ω) for ω ∈ {0, π}

.

Observe that m−κ(ω, 1) > κ(ω, d) holds, since m > κ(ω, d+1) and κ(ω, d+1) = κ(ω, 1)+κ(ω, d).

Hence we may apply Lemma C.3 and Remark C.4 to obtain Dm−κ(ω,1)(∆
d
ω)E

(l′)
m−κ(ω,1),i(ω) = 0
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for i < d and for l′ = l or l′ = l + 1. We thus obtain from the preceding display that

Dm(∆d+1
ω )E

(l)
m,d+1(ω) =

{

2(d+ 1) cos(1)(ω)Dm−κ(ω,1)(∆
d
ω)E

(l+1)
m−κ(ω,1),d(ω)P

−1 for ω ∈ (0, π)

(d+ 1) cos(ω)Dm−κ(ω,1)(∆
d
ω)E

(l)
m−κ(ω,1),d(ω) for ω ∈ {0, π}

.

Together with the induction hypothesis (applied with m replaced by m−κ(ω, 1)) this establishes

(48) for d+ 1. �

Lemma C.6. Let (ω1, ω2) ∈ [0, π]2, l ∈ Z, m ∈ N, and d ∈ N. Assume m > κ(ω1, d) holds.

Then

Dm(∆d
ω1
)E

(l)
m,0(ω2) = E

(l)
m−κ(ω1,d),0

(ω2)(A(ω1, ω2))
d,

where A(ω1, ω2) = 2(cos(ω2) − cos(ω1))P (ω2) when ω1 ∈ (0, π), and A(ω1, ω2) = P (ω2) −

cos(ω1)I2 when ω1 ∈ {0, π}. The matrices A(ω1, ω2) are multiples of orthogonal matrices; they

are nonsingular if ω1 6= ω2 and equal the zero matrix otherwise. [Here P (ω) denotes the 2 × 2-

dimensional orthogonal matrix with first row (cos(ω), sin(ω)) and second row (− sin(ω), cos(ω)).]

Proof of Lemma C.6: Consider first the case where d = 1. We start with the following

standard trigonometric identities for j ∈ Z, which easily follow from the angle addition formulas,

cos((j + 2)ω2)− 2 cos(ω2) cos((j + 1)ω2) + cos(jω2) = 0 (49)

sin((j + 2)ω2)− 2 cos(ω2) sin((j + 1)ω2) + sin(jω2) = 0. (50)

Consider first the case where ω1 ∈ (0, π) holds. From (49) and (50) it follows that

cos((j + 2)ω2)− 2 cos(ω1) cos((j + 1)ω2) + cos(jω2) = 2 cos((j + 1)ω2)(cos(ω2)− cos(ω1))

(51)

sin((j + 2)ω2)− 2 cos(ω1) sin((j + 1)ω2) + sin(jω2) = 2 sin((j + 1)ω2)(cos(ω2)− cos(ω1)),

(52)

and thus (by the angle addition formulas)

Dm(∆ω1
)E

(l)
m,0(ω2) = 2(cos(ω2)− cos(ω1))E

(l)
m−κ(ω1,1),0

(ω2)P (ω2) = E
(l)
m−κ(ω1,1),0

(ω2)A(ω1, ω2).

Next consider the case where ω1 ∈ {0, π}. It is then easy to see, using the angle addition

formulas, that

Dm(∆ω1)E
(l)
m,0(ω2) = E

(l)
m−κ(ω1,1),0

(ω2)(P (ω2)− cos(ω1)I2) = E
(l)
m−κ(ω1,1),0

(ω2)A(ω1, ω2).

The case d > 1 now follows from (cf. Remark C.2)

Dm(∆d
ω1
) = Dm−κ(ω1,d−1)(∆ω1

) · · ·Dm−κ(ω1,2)(∆ω1
)Dm−κ(ω1,1)(∆ω1

)Dm(∆ω1
),
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together with a repeated application of the already established result for d = 1. �

Recall that the finite and symmetric Borel measures on [−π, π] are precisely the spectral

measures of real weakly stationary processes.

Definition C.3. Form a finite and symmetric Borel measure on [−π, π] (symmetry here meaning

m(A) = m(−A) for every Borel subset A of [−π, π]) and for m ∈ N we define the m×m matrix

Σ(m,m) =

[∫ π

−π

e−ιν(j−j′)dm(ν)

]m

j,j′=1

.

For a spectral density f , i.e., an even λ[−π,π]-integrable function from [−π, π] to [0,∞), we denote

by mf the (finite and symmetric) Borel measure on [−π, π] with density f (w.r.t. Lebesgue

measure λ[−π,π] on [−π, π]) and we abbreviate Σ(mf ,m) to Σ(f,m). Finally, for m a finite and

symmetric Borel measure on [−π, π] and Θ a polynomial, we denote by Θ ⊙ m the (finite and

symmetric) Borel measure given by (Θ⊙m)(A) =
∫

A
|Θ(eιν)|2 dm(ν) for Borel sets A ⊆ [−π, π].

Given a nonempty set of spectral densities F and m ∈ N, we shall write C(F,m) = {Σ(f,m) :

f ∈ F}. In case m = n, where n is the sample size, we shall – in line with the notation introduced

in Section 3 – often simply write Σ(f) for Σ(f, n) and C(F) for C(F, n). The next lemma is an

immediate consequence of a standard result concerning linear filters (e.g., Rozanov (1967), Chp

I.8) applied to the linear filter ∆ω,d(z) operating on a stationary process with spectral measure

m.

Lemma C.7. Let p be a positive integer, let ω ∈ [0, π]p, let d ∈ Np, and let m ∈ N satisfy

m > κ(ω, d). Let m be a finite and symmetric Borel measure on [−π, π]. Then

Dm(∆ω,d)Σ(m,m)D′
m(∆ω,d) = Σ(∆ω,d ⊙m,m− κ(ω, d)).

The following result is well-known, but difficult to pinpoint in the literature in this form. The

first claim of the lemma can, e.g., be found in Theorem 2.6 of Krĕın and Nudel′man (1977). This

is closely related to a theorem of Carathéodory (Section 4.1 of Grenander and Szegö (1958)), on

which we have chosen to base the proof of the lemma.

Lemma C.8. Let Φ be a real nonnegative definite symmetric Toeplitz matrix of dimension m×m

with m ∈ N. Then there exists a finite and symmetric Borel measure m on [−π, π] such that

Φ = Σ(m,m). If Φ is singular, the measure m is unique. Furthermore, if Φ is singular and

Φ 6= 0, m is of the form
∑p

i=1 ci(δ−ωi
+ δωi

) for some p ∈ N, for some positive ci, 1 ≤ i ≤ p,

and for some ω = (ω1, . . . , ωp) ∈ [0, π]p with ω1 < . . . < ωp such that 1 ≤
∑p

i=1 κ(ωi, 1) < m; if

Φ = 0, the measure m is the zero measure.

Proof of Lemma C.8: We start with a preparatory remark: Recall that for any finite and

symmetric Borel measure m the matrix Σ(m,m) is nonnegative definite, since x′Σ(m,m)x =
∫ π

−π
|x(eιν)|2 dm(ν) ≥ 0 for every x ∈ Rm, where x(eιν) =

∑m
j=1 xje

ιjν . If Σ(m,m) is singular
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for some m, then 0 = x′
∗Σ(m,m)x∗ =

∫ π

−π
|x∗(e

ιν)|2 dm(ν) for some nonzero x∗ ∈ Rm must

hold. Consequently, the support of any such measure m must be contained in the zero-set of the

trigonometric polynomial |x∗(e
ιν)|2 (which has degree at most m−1). Hence, m must be the zero

measure or must be of the form
∑p

i=1 ci(δ−ωi
+ δωi

) for some p ∈ N, for positive ci’s, 1 ≤ i ≤ p,

and for some ω = (ω1, . . . , ωp) ∈ [0, π]p with ω1 < . . . < ωp; obviously,
∑p

i=1 κ(ωi, 1) < m must

also hold.

Now, if Φ = 0, the zero measure satisfies Φ = Σ(m,m) and obviously this is the only possible

choice. Next consider the case where Φ is singular, but Φ 6= 0. Then m ≥ 2 must hold. In the

following let Φ(|i− j|) denote the (i, j)-th element of Φ. Consider first the case m = 2: Then

|Φ(1)| = Φ(0) has to hold. Consequently, Φ = Σ(m,m) holds for m = (Φ(0)/2)(δ−ω1
+δω1

) where

ω1 = 0 or π, depending on whether Φ(1) is positive or negative (here p = 1 and κ(ω1, 1) = 1 <

m = 2 is satisfied). If m′ is another finite and symmetric Borel measure satisfying Φ = Σ(m′,m),

then the preparatory remark shows that m′ must be a discrete measure of the form as in the

preparatory remark with
∑p

i=1 κ(ωi, 1) < m = 2. But this shows that p = 1 and that ω1 = 0 or

π. Uniqueness then follows immediately. We next turn to the case m > 2. Observe that not all

Φ(r) for r = 1, . . . ,m− 1 can be zero, since Φ 6= 0, Φ is singular, and is Toeplitz. It now follows

from a theorem of Carathéodory (Section 4.1 of Grenander and Szegö (1958)) that

Φ(r) =

π
∫

−π

e−ινrdm(ν) for every r = 1, . . . ,m− 1 (53)

holds for some measure m of the form
∑p

i=1 ci(δ−ωi
+δωi

) with p ≥ 1, ci > 0, ω = (ω1, . . . , ωp) ∈

[0, π]p with ω1 < . . . < ωp, and with
∑p

i=1 κ(ωi, 1) < m; it furthermore follows from that theorem

that p and the constants ci, ωi are uniquely determined. [The theorem in Section 4.1 of Grenander

and Szegö (1958) is given for complex Φ(r) and shows that (53) holds for a Borel measure of the

form
∑q

j=1 ajδ̟j
, where 1 ≤ q < m, aj > 0, and where ̟j are distinct elements in the half-open

interval (−π, π]. Furthermore, q and the constants aj , ̟j are uniquely determined. Exploiting

that Φ(r) = Φ(r) in our context, the just mentioned uniqueness immediately shows that those

̟j ’s, which are different from 0 or π, must appear in pairs symmetrically located around zero, and

that aj = aj′ must hold if ̟j = −̟j′ . It is now not difficult to see that one can replace the Borel

measure
∑q

j=1 ajδ̟j
by an appropriate m of the form as given above (note that e−ινr = eινr for

ν = 0, π) and that uniqueness of q, the aj ’s and the ̟j ’s translates into uniqueness of p, the ci’s,

and ω ∈ [0, π]p. Also note that q < m translates into
∑p

i=1 κ(ωi, 1) < m.] It thus suffices to show

that Φ(0) =
∫ π

−π
dm(ν), uniqueness of m then already following from the preparatory remark,

together with the uniqueness part of the cited theorem. Now, because of
∑p

i=1 κ(ωi, 1) < m,

we can find a vector x0 ∈ Rm such that x0(e
ιν) vanishes at ν = ωi and at ν = −ωi for every

coordinate ωi of ω. [Just set x0(e
ιν) equal to

∏

i:ωi∈(0,π)(1−e−ιωieιν)(1−eιωieιν)
∏

i:ωi∈{0,π}(1−

e−ιωieιν) and observe that the coefficients are real.] This implies x′
0Σ(m,m)x0 = 0, and hence
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that Σ(m,m) is singular. Obviously, Σ(m,m) = Φ+(
∫ π

−π
dm(ν)−Φ(0))Im holds. We thus obtain

0 = inf
x′x=1

x′Σ(m,m)x = inf
x′x=1

x′Φx+

π
∫

−π

dm(ν)− Φ(0) =

π
∫

−π

dm(ν)− Φ(0),

since infx′x=1 x
′Φx = 0 in view of singularity of Φ. This completes the proof for singular Φ.

Finally, if Φ is positive definite, write Φ as Φ∗ + cIm where c > 0 and Φ∗ is nonnegative definite

and singular. Obviously, Φ∗ is symmetric and Toeplitz. Hence Φ∗ = Σ(m∗,m) for some measure

m∗ satisfying the conditions in the theorem. Setting m = m∗+(c/2π)λ[−π,π] completes the proof.

�

Remark C.9. (i) While the measure m in Lemma C.8 is unique in case Φ is singular, it is

never unique if Φ is positive definite. As shown in the proof, if Φ is positive definite, one such

measure is given by the sum of a discrete measure and the spectral measure of white noise. As is

well-known (see, e.g., Section 3.9.2 of Stoica and Moses (2005)), for positive definite Φ, another

representation Φ = Σ(m,m) can be found where m is the spectral measure of an appropriate

stationary autoregressive process of order at most m−1 (and thus is absolutely continuous w.r.t.

Lebesgue measure).

(ii) An alternative proof of Lemma C.8 can be based on the just mentioned autoregressive

representation result by applying a limiting argument to cover also the case of singular Φ.

(iii) As a converse to the last claim in Lemma C.8 we have: If m = 0 or if m is of the

form
∑p

i=1 ci(δ−ωi
+ δωi

) for some p ∈ N, for some positive ci, 1 ≤ i ≤ p, and for some

ω = (ω1, . . . , ωp) ∈ [0, π]p with ω1 < . . . < ωp such that 1 ≤
∑p

i=1 κ(ωi, 1) < m holds, then

Σ(m,m) is singular. This follows since x′
0Σ(m,m)x0 = 0 for x0 as defined in the proof.

(iv) The lemma is somewhat more general than what is needed later in the paper, but its

extra generality is useful in other contexts.

D Appendix: Proofs for Sections 6.1 and 6.2

Recall that by our conventions κ(ω(L), d(L)) = 0 if p(L) = 0.

Lemma D.1. Let L be a linear subspace of Rn with dim(L) < n. Then κ(ω(L), d(L)) ≤ dim(L)

holds.

Proof of Lemma D.1: If p(L) = 0, there is nothing to prove in view of the above convention.

Suppose now that p(L) > 0. By construction, span(V
(0)
n (ω(L), d(L))) ⊆ L. From Lemma C.1

we have rank(V
(0)
n (ω(L), d(L))) = min(n, κ(ω(L), d(L))). Consequently, min(n, κ(ω(L), d(L))) ≤

dim(L) < n must hold, which obviously proves the desired result. �

Definition D.1. For a positive integer p, ω ∈ [0, π]p, d ∈ Np, and for n satisfying n > κ(ω, d)
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we define the n× (n− κ(ω, d))-dimensional matrix

Hn(ω, d) := D′
n(∆ω,d)

(

Dn(∆ω,d)D
′
n(∆ω,d)

)−1
.

Observe that the inverse in the preceding display exists in view of Remark C.2.

Lemma D.2. Let L be a linear subspace of Rn with dim(L) < n. Furthermore, let m be a finite

symmetric Borel measure on [−π, π]. Then

ΠL⊥Σ(m, n)ΠL⊥ = ΠL⊥Hn(ω(L), d(L))Σ(∆ω(L),d(L)⊙m, n−κ(ω(L), d(L)))H ′
n(ω(L), d(L))ΠL⊥ .

(54)

Proof of Lemma D.2: If p(L) = 0, we have ∆ω(L),d(L) = 1 and κ(ω(L), d(L)) = 0 by

our conventions. Since then clearly Hn(ω(L), d(L)) = In holds in view of the definition of

Dn(∆ω,d), there is nothing to prove in this case. Assume that p(L) > 0. By Lemma D.1

we have that n > κ(ω(L), d(L)) holds. Lemma C.3 shows that the columns of D′
n(∆ω(L),d(L))

constitute a basis of span(V
(0)
n (ω(L), d(L)))⊥, which contains L⊥ in view of Definition 6.2. Hence,

ΠL⊥ = ΠL⊥Hn(ω(L), d(L))Dn(∆ω(L),d(L)) holds. Inserting this into the l.h.s. of (54) and

applying Lemma C.7 completes the proof. �

Lemma D.3. Let L be a linear subspace of Rn with dim(L) < n. Let ω ∈ [0, π]. Then there

exists a 2 × 2-dimensional regular matrix B(L, ω) that is proportional to an orthogonal matrix

such that

ΠL⊥Hn(ω(L), d(L))En−κ(ω(L),d(L)),0(ω) =







ΠL⊥En,di(L)(ω)B(L, ω) if ω = ωi(L) for some i

ΠL⊥En,0(ω)B(L, ω) else.

(55)

Furthermore, ΠL⊥En,di(L)(ωi(L))B(L, ωi(L)) 6= 0 for every i = 1, . . . , p(L), and ΠL⊥En,0(ω)B(L, ω) 6=

0 for every ω not equal to some coordinate ωi(L) of ω(L).

Proof of Lemma D.3: If p(L) = 0, the result is trivial with B(L, ω) the identity matrix.

Hence, suppose p(L) > 0 holds. We start with the case where ω does not coincide with a

coordinate of ω(L). Because of Remark C.2 we may write

Dn(∆ω(L),d(L)) =

p(L)
∏

i=1

Dn−gi(∆
di(L)
ωi(L))

where gi =
∑p(L)

j=i+1 κj and κj is shorthand for κ(ωj(L), dj(L)). Now we may repeatedly apply

Lemma C.6 (with l = 0) to obtain

Dn(∆ω(L),d(L))En,0(ω) = En−κ(ω(L),d(L)),0(ω)A(L, ω), (56)

where A(L, ω) is proportional to an orthogonal matrix and is nonsingular. Next assume that ω
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coincides with a coordinate of ω(L), say ωi∗(L). We may write

Dn(∆ω(L),d(L)) =





p(L)
∏

i=1,i 6=i∗

Dn−g∗

i
(∆

di(L)
ωi(L))



Dn(∆
di∗ (L)
ωi∗ (L))

where g∗i = κi∗ +
∑p(L)

j=i+1,j 6=i∗ κj . Applying first Lemma C.5 (with l = 0) and using the elemen-

tary fact that E
(s)
·,0 (ω) = E·,0(ω)P (ω)s, where P (ω) has been defined in Lemma C.6, and then

repeatedly applying Lemma C.6 gives

Dn(∆ω(L),d(L))En,di∗ (L)(ω) = En−κ(ω(L),d(L)),0(ω)A(L, ω), (57)

for some A(L, ω) that is proportional to an orthogonal matrix and is nonsingular. Multiplying

(56) and (57) by ΠL⊥Hn(ω(L), d(L)) from the left as well as by the inverse of A(L, ω) from the

right and using that ΠL⊥ = ΠL⊥Hn(ω(L), d(L))Dn(∆ω(L),d(L)) holds, as noted in the proof of

Lemma D.2, now completes the proof of (55). The final claim in the lemma follows immediately

from the definition of di(L) and ωi(L), respectively, see Definition 6.2. �

Proof of (34) in Example 6.1: By its definition, S(Fall,L) is certainly contained in the

set on the r.h.s. of (34). To prove the reverse inclusion, it suffices to show that any Γ ⊆ [0, π]

with card(Γ) ∈ N is the intersection of [0, π] with the support of a finite and symmetric Borel

measure m on [−π, π] that arises as the weak limit of a sequence mgj with gj as in (i) of Definition

6.4 (and with F = Fall). Let now Γ ⊆ [0, π] with card(Γ) ∈ N be given. For every γ ∈ Γ let

Uj(γ) be the intersection of the open interval (γ − 1/j, γ + 1/j) with [0, π]. Define Vj(γ) as

Uj(γ)∪ (−Uj(γ)). For j large enough the elements of the collection {Vj(γ) : γ ∈ Γ} are pairwise

disjoint. For each γ ∈ Γ one can then easily find functions hγ,j on [−π, π] such that (i) hγ,j

vanishes outside of Vj(γ), (ii) hγ,j is positive on Vj(γ), (iii) hγ,j is symmetric, and (iv) hγ,j is

Borel-measurable and satisfies
∫ π

−π
hγ,j(ν)dν = 1. [E.g., let hγ,j be the indicator function of

Vj(γ), suitably normalized.] Define

h∗
γ,j(ν) =

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
hγ,j(ν)

/∫ π

−π

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
hγ,j(ν)dν ,

where we note that the integral in the denominator is certainly positive. It is now obvious that

for each γ ∈ Γ the measure with density h∗
γ,j(ν) converges weakly (as j → ∞) to the convex

combination of pointmass at γ and −γ, each with weight 1/2, if γ 6= 0, and to unit pointmass at

zero if γ = 0. Next define

h∗∗
j =

∑

γ∈Γ

h∗
γ,j .

It follows that the measure on [−π, π] with density h∗∗
j converges weakly to the discrete measure

m∗∗ that assigns mass 1/2 to the points γ and −γ with γ ∈ Γ, γ 6= 0, and assigns mass 1 to
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γ = 0 in case 0 ∈ Γ. Define

fj = c−1
j

∑

γ∈Γ

[

hγ,j(ν)

/∫ π

−π

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
hγ,j(ν)dν

]

,

where the normalization constant cj is given by

cj =
∑

γ∈Γ

(∫ π

−π

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
hγ,j(ν)dν

)−1

.

Obviously, fj belongs to Fall. Using this sequence fj , construct the sequence gj as in (33).

Clearly, gj coincides with h∗∗
j / card(Γ), and hence mgj converges to the finite and symmetric

Borel measure m = m∗∗/ card(Γ) which obviously is exactly supported on Γ ∪ (−Γ). This

completes the proof. �

Proof of the claims in Example 6.2: Suppose S(FB
all,L) were nonempty. Then there has

to exist a m ∈ M(F,L). Let Γ = supp(m) ∩ [0, π]. Then card(Γ) ∈ N must hold. Let gj and

fj be as in (33) with mgj converging weakly to m. Choose δ > 0 such that Bδ < 1. Let U be

the union of the finitely many intervals (η − ε, η + ε) ∩ [−π, π] where η runs through the union

of Γ ∪ (−Γ) with the set of zeros of the trigonometric polynomial
∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
. Here ε > 0

is chosen so small such that the intervals are disjoint and such that the Lebesgue measure of U

is smaller than δ. Since the boundary of V = [−π, π]\U w.r.t. [−π, π] has measure zero under

m we have that
∫

V
gj(ν)dν converges to m(V ) = 0. Furthermore,

∣

∣∆ω(L),d(L)(e
ιν)

∣

∣

2
is bounded

from below on V by a positive constant, c say; and it is bounded from above by a finite constant,

C say, on [−π, π]. We conclude that

∫

V

gj(ν)dν ≥ (2πCB)
−1

c

∫

V

fj(ν)dν ≥ (2πCB)
−1

c(1−Bδ) > 0,

a contradiction. �

Proof of Proposition 6.1: 1. If Σ̄ ∈ cl(L(C(F))), then there must exist a sequence fj ∈ F

so that L(Σ(fj)) → Σ̄ holds as j → ∞. Lemma D.2 (together with homogeneity of Σ(·, ·) in its

first argument) now shows that

L(Σ(fj)) =
ΠL⊥Hn(ω(L), d(L))Σ(gj , n− κ(ω(L), d(L)))H ′

n(ω(L), d(L))ΠL⊥

‖ΠL⊥Hn(ω(L), d(L))Σ(gj , n− κ(ω(L), d(L)))H ′
n(ω(L), d(L))ΠL⊥‖

, (58)

where gj is as in Definition 6.4, observing that the denominator in the preceding display,

i.e., ΠL⊥Σ(fj)ΠL⊥ , is nonzero because of positive definiteness of Σ(fj) and the assumption

dim(L) < n. Since the sequence mgj is tight (as each mgj is a probability measure on the

compact set [−π, π]), it converges weakly, at least along a subsequence, to a finite and (neces-

sarily) symmetric Borel probability measure m, say. We now show that Σ(m, n− κ(ω(L), d(L)))

must be singular if rank(Σ̄) < n − dim(L) holds: assume not, then Hn(ω(L), d(L))Σ(m, n −
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κ(ω(L), d(L)))H ′
n(ω(L), d(L)) defines a bijection from span(V

(0)
n (ω(L), d(L)))⊥ onto itself (with

the convention that this latter space is Rn if p(L) = 0), and by Definition 6.2 hence also from

L⊥ to L⊥. Consequently,

A := ΠL⊥Hn(ω(L), d(L))Σ(m, n− κ(ω(L), d(L)))H ′
n(ω(L), d(L))ΠL⊥

would have rank n − dim(L) > 0. But passing to the limit in (58) along the above mentioned

subsequence would then entail Σ̄ = A/ ‖A‖, contradicting rank(Σ̄) < n − dim(L). Having

established singularity of Σ(m, n−κ(ω(L), d(L))) and noting that m can not be the zero measure

(as it must have total mass 1), we can conclude from Lemma C.8 that m =
∑p

i=1 c̄i(δ−γi
+ δγi

)

for some p ∈ N and positive real numbers c̄i, i = 1, . . . , p, and for 0 ≤ γ1 < γ2 < . . . < γp ≤ π,

such that
∑p

i=1 κ(γi, 1) < n − κ(ω(L), d(L)) holds. In particular, Γ :=
{

γ1, . . . , γp

}

∈ S(F,L)

holds. We may now conclude that

Σ(m, n− κ(ω(L), d(L))) =

p
∑

i=1

2c̄iEn−κ(ω(L),d(L)),0(γi)E
′
n−κ(ω(L),d(L)),0(γi). (59)

As a consequence of Lemma D.3 the matrix A is nonzero and coincides with the numerator in (35)

for some positive c(γi)’s. Passing to the limit in (58) along the above mentioned subsequence

then establishes (35). We turn to the second claim in Part 1 next: If Γ ∈ S(F,L), we can

find a measure m and a sequence fj ∈ F satisfying all the requirements in Definition 6.4. In

particular, (59) again holds for some positive constants ci and with γi enumerating the elements

of Γ. Consider the sequence Σ(fj). Again Lemma D.2 shows that (58) holds. It follows that the

numerator of (58) converges to A defined above. Now, A 6= 0 follows again from Lemma D.3. But

then we can conclude that L(Σ(fj)) converges to Σ̄ := A/ ‖A‖, implying Σ̄ ∈ cl(L(C(F))). But

Lemma D.3 now implies that (35) holds. The claim in parentheses is obvious since Σ̄ vanishes

on L in view of (35).

2.&3. Part 2 is a simple consequence of Part 1 since span(
∑l

i=1 AiA
′
i) = span((A1, . . . , Al))

holds for matrices Ai of the same row-dimension. Part 3 follows immediately from Part 2. �

Proof of Theorem 6.2: Follows from Corollary 5.6 (with C = C(F)) together with Propo-

sition 6.1. �

Proof of the claim in Remark 6.4(iii): Note that any S satisfying (ii), but not (i),

coincides with L⊥. Since N† is invariant under addition of elements from L, we can write N† as

the direct sum M ⊕ L, where M = N† ∩ L⊥. But then we have

0 = λRn(N†) = λL⊥⊕L(M ⊕ L),

from which we can conclude that λL⊥(M) = 0, i.e., λS(N
†) = 0 holds (note that λS(N

†) =

λS(N
† ∩ S)). Let µ0 ∈ M0 be arbitrary, and write µ0 = l + l⊥, where l ∈ L and l⊥ ∈ L⊥. Since
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l⊥ + S = S and since N† is invariant under addition of elements from L we arrive at

λµ0+S(N
†) = λl+l⊥+S(N

†) = λl+S(N
†) = λS(N

† − l) = λS(N
†) = 0.

But this shows that any S satisfying (ii), but not (i), automatically satisfies the condition

λµ0+S(N
†) = 0 for every µ0 ∈ M0. �

Proof of Theorem 6.5: Observe that here L = Mlin
0 and that dim(L) = k − q < n holds,

since we always assume k < n and q ≥ 1. The claims in Part 1 then follow immediately from

Part 1 of Theorem 6.2 and Remarks 6.3(i) and 6.4(i)-(iii) (recalling that N† = N∗ is an G(M)-

invariant λRn -null set, cf. Lemma 5.16). Part 2 follows from Part 1, noting that λT (N
∗) = 0 is

equivalent to T * N∗ if T is an affine space (cf. the proof of Corollary 5.6). �

Proof of Theorem 6.6: Recall from Section 5.3 that, under Assumptions 1 and 2, autocor-

relation robust tests based on Tw are a special case of nonsphericity-corrected F-type tests and

that Assumption 5 (as well as Assumptions 6 and 7) of Preinerstorfer and Pötscher (2016) are

then satisfied. Furthermore, recall from Section 5.3 that the set N∗ here is given by B, which

is a finite union of proper linear subspaces as a result of Lemma 5.18. Then, except for the

last claim, Part 1 follows immediately from Theorem 6.5. To prove the last claim in Part 1,

note that the assumptions for Proposition 5.12 (with C = C(F) and L = Mlin
0 ) are satisfied in

view of Lemmata 5.16 and 5.19, keeping in mind the characterization of J(L,C(F)) provided in

Proposition 6.1 and Remark 6.4. The result then follows from Proposition 5.12 in case α < α∗.

In case α = α∗ < 1 it follows from Remark 5.13(i),(ii) together with Lemma 5.16. Part 2 is now

a trivial consequence of Part 1. Part 3 is obvious. �

Proof of the claims in Remark 6.10: Suppose the claimed equivalence does not hold.

Then we can find a γ ∈ [0, π] such that γ /∈
⋃

S(F,L) and µ0 + span(ΠL⊥En,ρ(γ,L)(γ)) ⊆ N†

holds for some µ0 ∈ M0. Observe that N†+L ⊆ N† holds by the assumed invariance properties.

Consequently,

A : = span(En,ρ(γ,L)(γ)) + L = span(ΠL⊥En,ρ(γ,L)(γ) + ΠLEn,ρ(γ,L)(γ)) + L

⊆ span(ΠL⊥En,ρ(γ,L)(γ)) + L ⊆ N† − µ0 6= Rn

since N† 6= Rn. It follows that dim(A) < n. Trivially, span(En,ρ(γ,L)(γ)) ⊆ A holds, and

span(En,ρ(γ,L)(γ)) " L in view of the definition of ρ(γ,L). Consequently,

κ(ω(L), d(L)) + κ(γ, 1) ≤ κ(ω(A), d(A)) ≤ dim(A) < n,

where we have made use of Lemma D.1. But in view of Example 6.5(ii),(iii) this shows that

{γ} ∈ S(F,L) and thus γ ∈
⋃

S(F,L), a contradiction. This establishes the first claim. The

remaining claims are proved analogously, observing that the relevant sets N∗, B, etc are λRn -null

sets and thus are proper subsets of Rn. �
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E Appendix: Extensions to non-Gaussian models

As mentioned in the Introduction and in Section 2, Gaussianity is not essential to the results in

the paper. Here we discuss various ways of substantially weakening the Gaussianity assumption.

E.1 Elliptically symmetric and related distributions

Consider again the linear model (1) with all the assumptions made in Section 2, except that the

disturbance vectorU now follows an elliptically symmetric distribution. More precisely, let Zspher

denote the set of spherically symmetric distributions ζ on Rn that have no atom at the origin.

The vector U is assumed to be distributed as σΣ1/2z, where z has a distribution ζ ∈ Zspher and

Σ ∈ C. For background information on elliptically symmetric distributions see Cambanis et al.

(1981). Three remarks are in order: First, we do not assume that ζ is absolutely continuous.

Second, if ζ has a finite first moment (which we, however, do not assume), then U has mean

zero; otherwise, we can only say that the origin is the (uniquely determined) center of elliptical

symmetry of U. Third, if ζ has finite second moments, then U has covariance matrix cζσ
2Σ,

where cζ is the variance of the first component of z; otherwise, σ2Σ is a parameter describing

the ellipticity of the distribution of U (which is unique if we consider ζ as fixed and which is

only unique up to a scale factor if ζ can freely vary in Zspher). Nevertheless, we shall – in abuse

of terminology – continue to address the set C as the covariance model. Let Qµ,σ2Σ,ζ denote the

distribution of Y resulting from model (1) under the preceding assumptions and where µ = Xβ.

Then, for every distribution ζ ∈ Zspher, for any G(M0)-invariant rejection region W , and for

any µ0 ∈ M0 we have that

Qµ0,σ
2Σ,ζ(W ) = Pr

(

µ0 + σΣ1/2z ∈ W
)

= Pr
(

σΣ1/2z/ ‖z‖ ∈ (W − µ0)/ ‖z‖+ µ0 − µ0

)

= Pr
(

σΣ1/2z/ ‖z‖ ∈ W − µ0

)

= Pr
(

µ0 + σΣ1/2z/ ‖z‖ ∈ W
)

,

where we have used G(M0)-invariance and the fact that ‖z‖ 6= 0 almost surely in the last but

one step. Note that the distribution of z/ ‖z‖ is the uniform distribution on the unit sphere in

Rn and hence does not depend on ζ at all. Since the Gaussian case is a special case with ζ the

n-dimensional standard normal distribution, we have

Pµ0,σ
2Σ(W ) = Qµ0,σ

2Σ,ζ(W ) (60)

for every distribution ζ ∈ Zspher (and for every µ0 ∈ M0, 0 < σ2 < ∞, Σ ∈ C). That is,

the rejection probabilities of any G(M0)-invariant rejection region W under the null hypothesis

are the same whether we assume a Gaussian linear model or a linear model with elliptically

symmetric errors (satisfying the above made assumptions). In particular, for the size we have

sup
ζ∈Zspher

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Qµ0,σ
2Σ,ζ(W ) = sup

µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(W ). (61)
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This shows that all results in the paper carry over to the case of elliptically distributed errors

as they stand. In particular, note that the critical values C(α) computed under the assumption

of Gaussianity automatically also deliver size control under the more general assumption of

elliptical symmetry and thus are robust under this sort of deviations from Gaussianity. Note

that the model discussed here allows for heavy-tailed disturbances.

The above discussion in fact shows that all results in the paper hold for a class of distributions

even wider than the class of elliptically symmetric distributions: Let Zua denote the class of

distributions ζ on Rn that (i) do not have any mass at the origin and (ii) have the property that

the distribution of z/ ‖z‖ under ζ is the uniform distribution on the unit sphere in Rn. [Clearly,

Zua contains Zspher, but also other distributions under which the radial component ‖z‖ may be

dependent on the uniformly distributed angular component z/ ‖z‖.] Then it is plain that (60)

and hence (61) continue to hold with Zspher replaced by Zua. In particular, the critical values

computed under Gaussianity are valid in this much wider context. Note, however, that now in

general Xβ and σ2Σ no longer have the same interpretation as in the Gaussian or elliptically

symmetric case.

Remark E.1. The above discussion obviously also applies in case that (i) ζ is restricted to a

subset of Zspher (or Zua, respectively) or (ii) there are cross-restrictions between (β, σ2,Σ) and ζ

in the sense that depending on (β, σ2,Σ) the distribution ζ is restricted to a subset Z(β, σ2,Σ)

of Zspher (or Zua, respectively).

E.2 Other distributions

Again we consider the linear model (1) with all the assumptions as in Section 2, except that U is

now assumed to be distributed as σΣ1/2Uz where Σ ∈ C, where U is an orthogonal matrix and

where z has a density h. It is assumed that the pair (h, U) belongs to a given subset D of H ×U

where H is a given set of density functions and U denotes the set of orthogonal n× n matrices.

[Important special cases are (i) the case where U = In holds for every (h, U) ∈ D, or (ii) when H

is a singleton.] We assume that z has mean zero and unit covariance matrix under each h ∈ H.21

Let Qµ,σ2Σ,h,U denote the distribution of Y resulting from the preceding assumptions. Then we

have the following result which will allow us to easily extend the size control results from the

Gaussian case to the present setting. Observe that the condition on H in the subsequent lemma

is trivially satisfied if H = {h} and thus imposes no further condition on h in this case (and the

same is true if H is a finite set).

Lemma E.2. Suppose the maintained assumptions of this subsection hold and that there is

a λRn-integrable envelope h∗ for H (i.e., h(z) ≤ h∗(z) holds λRn-a.e. for every h ∈ H and

21We make this assumption only in order for Xβ and σ2Σ to have the same interpretation as in the Gaussian
case. Lemma E.2 also holds without this assumption. However, note that then the interpretation of Xβ and σ2Σ
becomes somewhat obscure and there is no guarantee that the parameters are identified.
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∫

h∗(z)dλRn(z) < ∞). Let Wm be a sequence of rejection regions such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(Wm) → 0 for m → ∞. (62)

Then

sup
(h,U)∈D

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Qµ0,σ
2Σ,h,U (Wm) → 0 for m → ∞. (63)

Proof: Let Qµ0,m,σ2
mΣm,hm,Um

with µ0,m ∈ M0, 0 < σ2
m < ∞, Σm ∈ C, and (hm, Um) ∈ D be

a sequence such that Qµ0,m,σ2
mΣm,hm,Um

(Wm) differs from the multiple supremum in (63) only

by a null sequence. Then we have Pµ0,m,σ2
mΣm

(Wm) → 0 as m → ∞ as a consequence of (62).

Furthermore,

Pµ0,m,σ2
mΣm

(Wm) = Pr(µ0,m+σmΣ1/2
m G ∈ Wm) = Pr(G ∈ UmBm) = Pr(G ∈ Bm) = P0,In(Bm)

and

Qµ0,m,σ2
mΣm,hm,Um

(Wm) = Pr(µ0,m + σmΣ1/2
m Umzm ∈ Wm) = Pr(zm ∈ Bm),

where G is a standard Gaussian n × 1 random vector, zm is a random vector with density hm,

and Bm = U ′
mσ−1

m Σ
−1/2
m (Wm − µ0,m). It suffices to show that Pr(zm ∈ Bm) converges to zero

as m → ∞. Let m′ be an arbitrary subsequence of m. Since P0,In(Bm′) → 0, there exists a

subsequence m′′ of m′ and a λRn -null set A1 such that 1Bm′′ (z) → 0 for every z /∈ A1 (e.g.,

Theorem 3.12 in Rudin (1987)). Since the envelope h∗ is λRn -integrable, it is finite everywhere,

except possibly on a λRn -null set A2. By assumption, 0 ≤ hm′′(z) ≤ h∗(z) holds for all m′′

outside of a λRn -null set A3. Set A = A1 ∪ A2 ∪ A3. But then 1Bm′′ (z)hm′′(z) → 0 holds for

every z outside the λRn -null set A. Furthermore,
∣

∣1Bm′′ (z)hm′′(z)
∣

∣ ≤ h∗(z) holds for every m′′

and for every z /∈ A. But then the Dominated Convergence Theorem gives

Pr(zm′′ ∈ Bm′′) =

∫

Rn

1Bm′′ (z)hm′′(z)dλRn(z) → 0.

Since the subsequence m′ was arbitrary, we conclude that Pr(zm ∈ Bm) converges to zero. �

As a consequence of this lemma, versions of all the size control results in the paper (except for

the exact size control results) can be given under the maintained assumptions of this subsection

if H satisfies the assumption in Lemma E.2. We illustrate this exemplarily with the following

version of Theorem 3.2, which is an immediate consequence of the just mentioned theorem

combined with Lemma E.2. Observe that – other than with the extensions discussed in the

preceding subsection – the critical values C ′(α) in the subsequent theorem may now differ from

the critical values one obtains in the Gaussian case.

Theorem E.3. Suppose the maintained assumptions of this subsection are satisfied with H

having a λRn-integrable envelope h∗. Suppose Assumptions 1 and 2 are satisfied and Tw is
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defined by (5). Then for every 0 < α < 1 there exists a real number C ′(α) such that

sup
(h,U)∈D

sup
µ0∈M0

sup
0<σ2<∞

sup
f∈Fall

Qµ0,σ
2Σ(f),h(Tw ≥ C ′(α)) ≤ α (64)

holds, provided that

span(En,ρ(γ,Mlin
0 )(γ)) 6⊆ B for every γ ∈ [0, π]. (65)

In case the set B coincides with span(X), condition (65) can equivalently be expressed as

rank(X,En,ρ(γ,Mlin
0 )(γ)) > k for every γ ∈ [0, π].

Extensions of the other size control results in the paper to the present setting follow a similar

pattern and will not be given.

Remark E.4. For the computation of critical values the cumbersome optimization over h in

(64) can in principle be avoided by determining C ′(α) from

sup
U∈U

sup
f∈Fall

∫

1(Tw(z) ≥ C ′(α))h∗(U ′Σ−1/2(f)(z − µ0)) det(Σ
−1/2(f))dλRn(z) ≤ α

for some µ0 ∈ M0, since the l.h.s. in the preceding display is easily seen to be an upper bound

for the l.h.s. of (64) in view of G(M0)-invariance of Tw (cf. Remark 5.17). However, this will

often lead to a quite conservative choice for C ′(α). A similar remark applies to the more general

result indicated by the lemma given below.

We next show that the above reasoning based on Lemma E.2 can actually be extended to even

larger classes of distributions, including cases where z need not have a density. Consider again

the linear model (1) with all the assumptions as in Section 2, except that U is now assumed to

be distributed as σΣ1/2Uz where U is an orthogonal matrix and z has a distribution ζ with the

following properties: the pair (ζ, U) belongs to a set E ⊆ Z×U , where Z is a set of distributions

with the property that (i) no ζ ∈ Z has an atom at the origin and (ii) that the distribution of

the random vector z/ ‖z‖ under each ζ ∈ Z has a density h̄ζ w.r.t. the uniform distribution

υSn−1 on the Borel-sets of the unit sphere Sn−1.22 Let Qµ,σ2Σ,ζ,U denote the distribution of Y

resulting from the preceding assumptions. Then we have the following lemma.

Lemma E.5. Suppose the assumptions in the preceding paragraph are satisfied. Furthermore,

assume that there is a υSn−1-integrable envelope h̄∗ for
{

h̄ζ : ζ ∈ Z
}

(i.e., h̄ζ(s) ≤ h̄∗(s) holds

υSn−1-a.e. for every ζ ∈ Z and
∫

Sn−1 h̄
∗(s)dυSn−1(s) < ∞). Let Wm be a sequence of G(M0)-

22Without a further assumption such as that z has mean zero and unit covariance matrix under each ζ ∈ Z the
interpretation of the parameters in the model is somewhat obscure and they are not guaranteed to be identified.
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invariant rejection regions such that

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Pµ0,σ
2Σ(Wm) → 0 for m → ∞. (66)

Then

sup
(ζ,U)∈E

sup
µ0∈M0

sup
0<σ2<∞

sup
Σ∈C

Qµ0,σ
2Σ,ζ,U (Wm) → 0 for m → ∞. (67)

Proof: Let Qµ0,m,σ2
mΣm,ζm,Um

with µ0,m ∈ M0, 0 < σ2
m < ∞, Σm ∈ C, and (ζm, Um) ∈ E be

a sequence such that Qµ0,m,σ2
mΣm,ζm,Um

(Wm) differs from the multiple supremum in (67) only

by a null sequence. Then we have Pµ0,m,σ2
mΣm

(Wm) → 0 as m → ∞ as a consequence of (66).

Furthermore,

Pµ0,m,σ2
mΣm

(Wm) = Pr(µ0,m + σmΣ1/2
m G ∈ Wm) = Pr(µ0,m + σmΣ1/2

m G/ ‖G‖ ∈ Wm) (68)

= Pr(U ′
mG/ ‖G‖ ∈ Bm) = Pr(G/ ‖G‖ ∈ Bm) =

∫

Sn−1

1Bm
(s)dυSn−1(s)

where Bm = U ′
mσ−1

m Σ
−1/2
m (Wm − µ0,m), where we have used G(M0)-invariance in the second

step, and where G is a standard Gaussian n× 1 random vector. Similarly,

Qµ0,m,σ2
mΣm,ζm,Um

(Wm) = Pr(µ0,m + σmΣ1/2
m Umzm ∈ Wm)

= Pr(µ0,m + σmΣ1/2
m Umzm/ ‖zm‖ ∈ Wm)

= Pr(zm/ ‖zm‖ ∈ Bm) =

∫

Sn−1

1Bm
(s)h̄ζm

(s)dυSn−1(s),

where zm is a random vector with distribution ζm. Let m′ be an arbitrary subsequence of m.

Since a fortiori the integral in (68) converges to zero along the subsequence m′, there exists

a subsequence m′′ of m′ and a υSn−1 -null set A1 ⊆ Sn−1 such that 1Bm′′ (s) → 0 for every

s ∈ Sn−1\A1 (e.g., Theorem 3.12 in Rudin (1987)). Since the envelope h̄∗ is υSn−1 -integrable,

it is finite everywhere, except possibly on a υSn−1 -null set A2 ⊆ Sn−1. By assumption, 0 ≤

h̄ζm′′
(s) ≤ h̄∗(s) holds for all m′′ outside of a υSn−1 -null set A3 ⊆ Sn−1. Set A = A1 ∪A2 ∪A3.

But then 1Bm′′ (s)h̄ζm′′
(s) → 0 holds for every s outside the υSn−1 -null set A. Furthermore,

∣

∣1Bm′′ (s)h̄ζm′′
(s)

∣

∣ ≤ h̄∗(s) holds for every m′′ and for every s /∈ A. But then the Dominated

Convergence Theorem gives

Pr(zm′′/ ‖zm′′‖ ∈ Bm′′) =

∫

Sn−1

1Bm′′ (s)h̄ζm′′
(s)dυSn−1(s) → 0.

Since the subsequence m′ was arbitrary, we conclude that Qµ0,m,σ2
mΣm,ζm,Um

(Wm), and hence

(67), converges to zero. �

Since all rejection regions in the size control results in this paper are G(M0)-invariant, it is

now obvious how this lemma can be used to transfer the size control results for the Gaussian

case to the setup considered here. We abstain from spelling out the details.

77



Remark E.6. (i) Restricted to G(M0)-invariant rejection regions, Lemma E.2 is indeed a special

case of Lemma E.5. This follows since Lemma D.1 in Preinerstorfer and Pötscher (2017) applied

to h ∈ H shows that z/ ‖z‖ has a density h̄; furthermore, applying that lemma once again, but

now to h∗ (which is – up to a normalization – a probability density), produces an υSn−1 -integrable

envelope h̄∗ for the collection of densities h̄.

(ii) Similar to Remark E.1 one can also allow for cross-restrictions between (β, σ2,Σ) and

(h, U) ((ζ, U), respectively) here.

(iii) The exact size control results can also be generalized beyond Gaussianity and elliptical

symmetry under appropriate assumptions, but we do not discuss this here.

F Appendix: Description of the algorithms

Subsequently, for a symmetric and positive definite matrix Σ we denote by chol(Σ) the (unique)

lower triangular matrix that satisfies Σ = chol(Σ)chol(Σ)′.
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Algorithm 1 Numerical approximation of C♦(α, p) = supρ∈(−1,1)p F
−1
ρ (1− α).

1: Input Positive integers M0 ≥ M1 ≥ M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
4: for j = 1 to j = M0 do
5: Obtain a candidate ρj ∈ (−1, 1)p.

6: Compute F̃−1
j (1 − α) where F̃j(x) = N−1

0

∑N0

i=1 1(−∞,x](Tw(µ0 + chol(Σ(fρj
))Zi)) for

x ∈ R.
7: end for
8: Rank the candidates ρj according to the value (from largest to smallest) of the corresponding

quantities F̃−1
j (1− α) to obtain ρ1:M0

, . . . , ρM1:M0
, the initial values for the next stage.

9: Stage 1: Coarse localized optimizations
10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1

from P0,In .

12: Let F̄j,ρ(x) = N−1
1

∑N1

i=1 1(−∞,x](Tw(µ0 + chol(Σ(fρ))Zi)) for x ∈ R and ρ ∈ (−1, 1)p.
13: Obtain ρ∗j by running a numerical optimization algorithm for the problem

supρ∈(−1,1)p F̄
−1
j,ρ (1− α) initialized at ρj:M0

.
14: end for
15: Rank the obtained numbers ρ∗j according to the value (from largest to smallest) of the

corresponding F̄−1
j,ρ∗

j
(1− α) to obtain ρ∗1:M1

, . . . , ρ∗M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2

from P0,In .

19: Let ¯̄Fj,ρ(x) = N−1
2

∑N2

i=1 1(−∞,x](Tw(µ0 + chol(Σ(fρ))Zi)) for x ∈ R and ρ ∈ (−1, 1)p.
20: Obtain ρ∗∗j by running a numerical optimization algorithm for the problem

supρ∈(−1,1)p
¯̄F−1
j,ρ (1− α) initialized at ρ∗j:M1

.
21: end for
22: Return maxj=1,...,M2

¯̄F−1
j,ρ∗∗

j
(1− α).
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Remark F.1. (Other test statistics) Algorithm 1 has been formulated for the test statistic Tw,

but clearly works as it stands also for any other test statistic T (upon replacing Tw by T ) provided

T satisfies the conditions given in Remark 4.2 in Section 4.

Remark F.2. (Generation of candidates in Stage 0 of Algorithm 1) In Stage 0 of Algorithm 1

candidates ρj ∈ (−1, 1)p need to be obtained, from which the best ones (in the sense of giving

the highest values of the (numerically approximated) objective function) are then used in Stage

1 as starting values for a numerical optimization procedure. The main purpose of Stage 0 is to

decrease the risk of running into a local, but not global, optimum. Different approaches can be

used to generate these candidates: If the autoregressive order p is relatively small, one could

use an equally spaced grid of starting values. Since the dimension of the feasible set is growing

linearly in p, this is not feasible for moderate to large autoregressive orders, and in particular

not feasible for the case where F = FAR(n−1) (which is equivalent to using F = Fall) for typical

sample sizes n. In such cases, one can generate the candidates by drawing partial autocorrelation

coefficients from a distribution that induces a uniform distribution on the stationarity region of

AR(p) coefficients as described in Jones (1987). One could also think of many variants of this

approach that are designed to more thoroughly exhaust subsets of the feasible set corresponding

to lower-dimensional autoregressive coefficient vectors. One variant is as follows: One generates

starting values on (−1, 1)p1 , . . . , (−1, 1)pl , respectively, for 1 ≤ p1 < p2 < . . . < pl = p following

the method described in Jones (1987), and then converts the vector of partial autocorrelation

coefficients in (−1, 1)pi for i = 1, . . . , l − 1 into a vector of partial autocorrelation coefficients in

(−1, 1)p by setting the remaining p− pi coefficients to 0.

Remark F.3. (Numerical optimization in Stages 1 and 2 of Algorithm 1) Since numerical com-

putation of derivatives would be computationally intensive, we use derivative-free optimization

methods as, e.g., variants of the Nelder and Mead (1965) algorithm in Stages 1 and 2.

Remark F.4. (Critical values if F is a subset of FAR(p) described by restrictions on the partial

autocorrelation coefficients) Suppose it is desired to solve the problem (18) with F a subset of

FAR(p) described by restrictions on the partial autocorrelation coefficients such as ρ ∈ (−1+ε, 1−

ε)p for some 0 < ε < 1. Algorithm 1 can easily be modified to accommodate such a situation, by

choosing candidates in Stage 0 from the set (−1 + ε, 1− ε)p (e.g., by suitably modified versions

of the procedures discussed in Remark F.2), and by solving the optimization problems in Stages

1 and 2 over the set (−1 + ε, 1− ε)p instead of (−1, 1)p. The so-obtained critical value then, of

course, additionally also depends on ε.

Remark F.5. (Computation of Cholesky factorization) As is well known, chol(Σ(fρ)) can be

efficiently obtained from the partial autocorrelation coefficients through a variant of the Durbin-

Levinson recursion (e.g., by combining Porat (1994) Table 6.2 on p. 159 and Theorem 2.13 in

the same reference).
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Algorithm 2 Numerical approximation of supµ0∈M0
sup0<σ2<∞ supf∈FAR(p)

Pµ0,σ
2Σ(f) (Tw ≥ C).

1: Input A real number C and positive integers M0 ≥ M1 ≥ M2, N0 ≤ N1 ≤ N2.
2: Stage 0: Initial value search
3: Generate a pseudorandom sample Z1, . . . , ZN0

from P0,In .
4: for j = 1 to j = M0 do
5: Obtain a candidate ρj ∈ (−1, 1)p.

6: Compute p̃j = N−1
0

∑N0

i=1 1[C,∞)(Tw(µ0 + chol(Σ(fρj
))Zi)).

7: end for
8: Rank the candidates ρj according to the value (from largest to smallest) of the corresponding

quantities p̃j to obtain ρ1:M0
, . . . , ρM1:M0

, the initial values for the next stage.
9: Stage 1: Coarse localized optimizations

10: for j = 1 to j = M1 do
11: Generate a pseudorandom sample Z1, . . . , ZN1

from P0,In .

12: Let p̄j,ρ = N−1
1

∑N1

i=1 1[C,∞)(Tw(µ0 + chol(Σ(fρ))Zi)) for ρ ∈ (−1, 1)p.
13: Obtain ρ∗j by running a numerical optimization algorithm for the problem supρ∈(−1,1)p p̄j,ρ

initialized at ρj:M0
.

14: end for
15: Rank the obtained numbers ρ∗j according to the value (from largest to smallest) of the

corresponding p̄j,ρ∗

j
to obtain ρ∗1:M1

, . . . , ρ∗M2:M1
, the initial values for the next stage.

16: Stage 2: Refined localized optimization
17: for j = 1 to j = M2 do
18: Generate a pseudorandom sample Z1, . . . , ZN2 from P0,In .

19: Let ¯̄pj,ρ = N−1
2

∑N2

i=1 1[C,∞)(Tw(µ0 + chol(Σ(fρ))Zi)) for ρ ∈ (−1, 1)p.
20: Obtain ρ∗∗j by running a numerical optimization algorithm for the problem

supρ∈(−1,1)p
¯̄pj,ρ initialized at ρ∗j:M1

.
21: end for
22: Return maxj=1,...,M2

¯̄pj,ρ∗∗

j
.

Remark F.6. Remarks analogous to the ones given after Algorithm 1 also apply to Algorithm

2.

G Appendix: Numerically checking Condition (11) for the

test problems in Section 4.2

First observe that for the hypothesis considered we have that Mlin
0 is the span of e+ and

(1, 2, 3, . . . , 100)′, and hence coincides with the span of (E100,0(0), E100,1(0)). It follows that

ρ(0,Mlin
0 ) = 2, since span(E100,2(0)) = span((1, 22, 32, . . . , 1002)′) is not contained in Mlin

0 . We

now show that ρ(γ,Mlin
0 ) = 0 for every γ ∈ (0, π]: Note that rank(E100,0(0), E100,1(0), E100,0(γ)) =

min(100, 4) = 4 if 0 < γ < π and equals min(100, 3) = 3 if γ = π, because of Lemma C.1 in

Appendix C. But this implies that the span of E100,0(γ) is not contained in Mlin
0 whenever

γ ∈ (0, π], establishing the claim.

Second, we now verify that condition (11) holds for each of the 128 design matrices considered.

That, is we show that span(E100,ρ(γ,Mlin
0 )(γ)) 6⊆ B for every γ ∈ [0, π] where ρ(γ,Mlin

0 ) = 2 for
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Figure 3: (a) The point-wise minimum over all 128 regression models of the function defined in
(69) on the interval [0, π]. (b) The point-wise minimum over all 128 regression models of the
function defined in (69) on the interval [0, 10−6].

γ = 0 and ρ(γ,Mlin
0 ) = 0 for γ 6= 0. Consider first the case where γ = 0: Since span(E100,2(0)) =

span((1, 22, 32, . . . , 1002)′) it suffices to show that B((1, 22, 32, . . . , 1002)′) is nonzero where B is

given in (8). Since rank(R(X ′X)−1X ′) = q = 1 holds, it is in turn sufficient to show that each

coordinate of the residual vector obtained from regressing (1, 22, 32, . . . , 1002)′ onto the design

matrix X is nonzero. For each of the 128 design matrices considered this has been numerically

confirmed. Next, to check condition (11) for γ ∈ (0, π] it suffices to verify that for each of the

128 cases c(γ) /∈ B for every γ ∈ (0, π] where c(γ) = (cos(γ), cos(2γ), . . . , cos(100γ))′ is the first

column of E100,0(γ). Since c(γ) ∈ B is equivalent to B(c(γ)) = 0 (as q = 1 holds), we compute

for each of the 128 cases the function

γ 7→ ‖B(c(γ))‖∞ where c(γ) = (cos(γ), cos(2γ), . . . , cos(100γ))′ (69)

(a) on a grid of 100 000 equally spaced points in [0, π] and (b) also on a grid of 100 000 equally

spaced points in [0, 10−6] to get a more refined resolution in this region (note that the function

in the preceding display has a root at 0 in each of the 128 cases since ρ(0,Mlin
0 ) > 0). Then we

plot for each value γ in these grids the smallest of the 128 norms in (69) corresponding to the

128 cases considered. These plots are shown in Figures 3(a) and 3(b), respectively. The figures

suggest that ‖B(c(γ))‖ 6= 0 holds for γ ∈ (0, π] for each of the 128 cases, implying that for each

of these cases we have span(E100,0(γ)) /∈ B for γ ∈ (0, π].
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H Appendix: Settings for Algorithms 1 and 2 used in Sec-

tion 4.2

Here we describe the settings for Algorithms 1 and 2 used in the computations for Section

4.2. The actual computations were performed using the implementations of Algorithms 1 and 2

provided in the R-package acrt (Preinerstorfer (2016)) through the functions critical.value and

size, respectively. Initial values in Stage 0 are generated as follows, cf. Remark F.2 in Appendix

F:

1. For p ∈ {1, 2} the initial values are a pseudorandom sample of size 5000 in (−1, 1)p drawn

according to the distribution generating a uniform distribution on the stationarity region

of AR(p) coefficients following Jones (1987).

2. For p ∈ {5, 10, 25, 50, 99} we proceed as follows: For every pi ∈ {2, 5, 10, 25, 50, 99} that

does not exceed p, we generate pseudorandom samples in (−1, 1)pi of size 5000, each ac-

cording to the distribution that generates a uniform distribution on the stationarity region

of AR(pi) parameters. Then AR(p) partial autocorrelation coefficients are obtained from

these pseudorandom samples in (−1, 1)pi by appending p− pi zeros.

Furthermore we use M1 = 10, M2 = 2 and N0 = 1000, N1 = 10 000, N2 = 50 000. Note that

the number of replications in the Monte-Carlo algorithms of 10 000 in the first stage, and of 50 000

in the second stage are (at least) of the same order of magnitude as the number of replications used

in contemporary simulation studies concerning rejection probabilities of autocorrelation robust

tests (e.g., Sun et al. (2011) use 10 000 replications). [Of course, in a particular application,

where one needs to determine the critical value for one model and for one parameter p only,

one could choose parameters Mi and Ni that provide an even higher level of accuracy.] The

optimization algorithm we employ in Stages 1 and 2 is a Nelder-Mead algorithm with default

settings concerning the reflection, contraction, and expansion coefficients as implemented in the

optim function in R. The relative convergence tolerance was set equal to N
−1/2
1 and to N

−1/2
2

in Stages 1 and 2, respectively. Furthermore, the maximal number of iterations in Stages 1

and 2 were set equal to 20n and 30n, respectively (recall n = 100 here). Since the optim

function supplies an implementation of the Nelder-Mead algorithm that optimizes functions from

a Euclidean space to the real numbers, we rephrased our optimization problems as unrestricted

optimization problems over Rp using the function (2/π) arctan. For the i.i.d. case (i.e., p = 0) the

problem considerably simplifies as noted earlier, since the distribution of the test statistic under

the null does then not depend on any nuisance parameter; in this case the maximal rejection

probabilities and the 1− α quantiles were in each scenario obtained from a Monte Carlo sample

of size 50 000.
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I Appendix: A random-walk-based critical value

As suggested by a referee, we compute – in the context of the null hypotheses and the 128 models

considered in Section 4.2 – the critical values for |tw| that result from the presumption that the

errors follow a Gaussian random walk and where we use the same weights as in Section 4.2. Since

we may set β1 = β2 = β3 = 0 and the innovation variance σ2 = 1 by invariance, the computation

of such a critical value reduces to determining the (1−α)-quantile of the distribution of |tw| under

a fixed Gaussian distribution, which can easily be achieved by Monte-Carlo. For α = 0.05 and

for each of the 128 models considered in Section 4.2 we have computed these critical values from

10 000 Monte-Carlo samples. We show a scatter-plot of these random-walked-based critical values

versus the critical values that control size over FAR(1) (which have been obtained in Section 4.2)

in Figure 4, whereas in Figure 5 we plot these versus the critical values that control size over

FAR(2) (which also have been obtained in Section 4.2). We can draw the following conclusions:

1. The random-walk-based critical values are – for the majority of the 128 models considered

– roughly of the same magnitude as the critical values that guarantee size control over FAR(1),

although for some models they are too small.

2. Compared to the critical values guaranteeing size control over FAR(2) the random-walk-

based critical values are way too small, and hence will not control size over FAR(2); and a fortiori

not over FAR(p) with p ≥ 2 or Fall.

As a consequence, the random-walk-based critical values are certainly no substitute for the

size-controlling critical values whenever one wants to allow for correlation structures richer than

stationary AR(1). If one is willing to only maintain stationary AR(1) correlations, the first

conclusion above may lead one to believe that the random-walk-based critical values roughly

deliver size control over FAR(1). However, this is not true either in general. Note that Conclusion

1 above is based only on computations involving the 128 models (regressors) considered. It does

not generalize to other models (regressors) as is easily seen by the following example where size

control over FAR(1) is possible, but where the random-walk-based critical value is much too small.

To this end consider a model with only one regressor given by

X = (1 + ε, 1 + ε, 1− ε, 1− ε, 1 + ε, 1 + ε, . . . , 1 + ε, 1 + ε)′, (70)

where n = 100 and where we vary ε from 0.01 to 0.20 in steps of size 0.01. The null hypothesis is

that the coefficient of the regressor is equal to zero and again the corresponding test statistic |tw|

with the same weights as before is used. In Figure 6 we present the random-walk-based critical

values (computed from 10 000 Monte-Carlo samples) as well as the critical values that control

size over FAR(1) (computed via Algorithm 1) as a function of ε.23 It is apparent from that figure

that the random-walk-based critical values are way to small. As an additional observation we

note that for the location model (i.e., ε = 0 in (70)) the random-walk-based critical value can be

23The settings used here for Algorithm 1 are similar as in Appendix H with p = 1, but with M0 = 100,
M1 = M2 = 1, and N0 = N1 = 1 000, N2 = 10 000.
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Figure 4: Scatterplot of random-walk-based critical values versus critical values controlling size
over FAR(1), i.e., over the class of stationary AR(1) processes. The line represents the graph of
the identity function.

computed to be 9.6. However, as discussed earlier, for the location model with stationary AR(1)

errors no critical value exists that leads to size control for |tw| (since size is equal to 1 for every

choice of critical value). Hence the random-walk-based critical value is completely misleading in

this model.

J Appendix: Covariance models corresponding to starting-

value solutions of autoregressive models

A referee has asked what happens if instead of the covariance model C(FAR(1)) derived from sta-

tionary autoregressive processes of order 1 one considers the covariance model C0
AR(1) generated

by (u1, . . . ,un) where ut = ρut−1+εt for t = 1, . . . , n with starting-value u0 = 0, the innovations

εt are distributed independently as N(0, σ2
ε), 0 < σ2

ε < ∞, and ρ ∈ (−1, 1).24 More precisely,

C0
AR(1) consists of the n× n matrices with (i, j)-th entry given by

ρmax(i,j)−min(i,j)(1− ρ2min(i,j))/(1− ρ2).

It is easy to see that the covariance model C0
AR(1) is norm bounded and has no singular limit

points (and the same is true for higher-order analoga) and hence one would, given the results in

Preinerstorfer and Pötscher (2016), intuitively expect that size control for test statistics like Tw

24This model has a problematic aspect to it in that it assigns a special meaning to the time point t = 0 which
is hardly justifiable; cf. the discussion in Section 3.2.2 of Preinerstorfer and Pötscher (2016).
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Figure 5: Scatterplot of random-walk-based critical values versus critical values controlling size
over FAR(2), i.e., over the class of stationary AR(2) processes. The line represents the graph of
the identity function.
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as a function of ε.
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Figure 7: The boxplots labeled “Size-controlling”, “Section 4”, “RW-based”, and “KV”, respec-
tively, are each the boxplots of the 128 sizes corresponding to the critical values c1i, c2i, ci3, and
2.260568, respectively.

(or equivalently |tw|) is always possible. This is indeed the case and follows from Remark 3.7(ii),

cf. also Remark 5.7. However, this does not mean that standard critical values suggested in the

literature based on asymptotic considerations will come close to providing size control over the

model C0
AR(1) (or over higher-order analoga). In fact, as we shall show below such critical values

will often be much too small and will lead to considerable size distortions.

We first consider again the 128 models from Section 4.2 with the only difference that we now

assume that the errors follow the starting-value solution ut described in the preceding paragraph.

For the test statistic |tw| (with the same weights as in Section 4.2) and for each of the 128 models

we then numerical computed the critical value c1i, i = 1, . . . , 128, that guarantees size control

(at α = 0.05) over the covariance model C0
AR(1) by a suitable variant of Algorithm 1. We then

consider the following four tests for each of the 128 models: (i) Reject if |tw| ≥ c1i, (ii) reject

if |tw| ≥ c2i, where c2i is the critical value computed in Section 4.2 (i.e., the critical value that

would control size if the errors were stationary AR(1)-processes), (iii) |tw| ≥ c3i where c3i is the

random-walk-based critical value computed in Appendix I, (iv) |tw| ≥ 2.260568 (Kiefer-Vogelsang

critical value). For each of the four tests we then computed the size of the test (using C0
AR(1) as

the underlying covariance model of course). Note that by construction of c1i the size of the test

in (i) should be 0.05. Since c1i has been determined only numerically, we recomputed the size

also in this case. Also observe that, by construction, the random-walk-based critical value c3i

– ignoring numerical error – can not be larger than the size-controlling critical value c1i. The

results are shown in Figure 7 in the form of boxplots, each boxplot representing the size of one

of the tests over the 128 models.
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Figure 8: Null-rejection probabilities in location model and for C0
AR(1). The horizontal line

corresponds to α = 0.05.

It transpires that c1i indeed controls size (as it should by construction) and that the critical

values c2i (computed to deliver size control over the related covariance model C(FAR(1))) pretty

much work also under the covariance model considered here. The random-walk-based critical

values do a reasonable job in most, but not all of the 128 cases. Finally, the Kiefer-Vogelsang

critical value is seen to be way too small and leads to quite dramatic size distortions.

We also considered the location model with the errors following the process as described in

the first paragraph. The null hypothesis is that the location parameter is zero and the test

statistic considered is the corresponding test statistic |tw| (with the same weights as before).

While no size-controlling critical value exist for this problem if the underlying covariance model

is C(FAR(1)) as already noted earlier, this is different if the covariance model C0
AR(1) is maintained

as is done here. We computed this size-controlling value c1,loc (corresponding to α = 0.05) by a

suitable variant of Algorithm 1. We then computed the null-rejection probabilities of the tests (i)

|tw| ≥ c1,loc and (ii) |tw| ≥ 2.260568 (Kiefer-Vogelsang critical value) as a function of ρ (note that

these probabilities do not depend on σ2
ε). The graphs of these two functions are given in Figure

8. By construction of c1,loc, the corresponding null-rejection probabilities never exceed α = 0.05,

and reach that value at the right endpoint of the parameter interval for ρ. The Kiefer-Vogelsang

critical values again lead to substantial size distortions.

Finally, critical values such as c1i, c2i, or c3i (and a fortiori the Kiefer-Vogelsang critical

value) will typically be too small to guarantee size control once we pass from AR(1)-models to

higher order models.
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K Appendix: Comments on stochastic regressors

The assumption of nonstochastic regressors made in the present paper may be considered re-

strictive for some applications and has been criticized by referees. It should be noted, however,

that the results obtained under this assumption are quite strong, in that we are able to obtain

exact finite-sample size results and, in particular, size guarantee results, which is in contrast to

merely (pointwise) asymptotic results in the literature that carry no size guarantee (in fact, are

often plagued by considerable size distortions). Furthermore, as already mentioned in Section

2, the case where X is random and independent of U can easily be accommodated by our the-

ory through conditioning on X. Of course, the resulting conditional size control results then a

fortiori imply unconditional size control.25 Conditioning on X in such a scenario makes perfect

sense, as one can argue that values of X other than the observed ones should be irrelevant.

For a more detailed discussion of arguments supporting conditional inference see, e.g., Robinson

(1979). Again, this form of strict exogeneity (i.e., independence of X and U) may be considered

restrictive for some applications.

We now turn to the case where X is random, with X and U being dependent. While our

current theory is then not applicable as it stands, we show by means of numerical examples

that the critical values obtained from a naive application of the algorithm proposed in Section

4 (acting as if X and U were independent) – while not guaranteed to deliver size control – lead

to tests that have better size properties than tests that are based on standard critical values

suggested in the literature. And this is so despite the fact that the asymptotic theory used in the

literature to justify the latter critical values is applicable to cases where X and U are dependent.

Of course, the subsequent discussion is based only on a limited Monte-Carlo study and the case

of stochastic regressors needs further study which is in progress.

In a first step we shall now formulate a suitable framework for investigating size properties

of OLS-based tests allowing for dependence between X and U. To this end consider the linear

regression model yt = a+bxt+ut where xt follows a stationary Gaussian process and ut is given by

the stationary solution of the model ut = ρut−1+εt with ρ varying in (−1, 1) and Gaussian white

noise εt with positive variance σ2
ε. We furthermore assume that xt and εt (and thus xt and ut)

are jointly Gaussian, ergodic, and stationary and that xt has positive variance. The probability

law of the process (xt, εt/σε) may also depend on some (possibly infinite dimensional) parameter

η, say, where we assume that η and ρ are variation-free. [We work with (xt, εt/σε) instead of

(xt, εt) here, because this conveniently eliminates the dependence on σ2
ε.] Autocorrelation robust

test statistics such as Tw are based on the ordinary least squares estimator (â, b̂). In order for

such inference to be meaningful, we need to ensure at a minimum that this estimator is consistent

for (a, b). By the very notion of consistency this means that (â, b̂) has to converge to (a, b) in

probability regardless of what the true values of a, b, and of the nuisance parameters ρ, σ2
ε, and

η are. But as is easy to see, this means that xt and ut have to be uncorrelated whatever the

25The implied critical values will – by construction – typically depend on the observed values of X, and thus
will be “random” critical values when viewed from an unconditional viewpoint.
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value of ρ ∈ (−1, 1) (and of the other nuisance parameters) is. This uncorrelatedness condition

on xt and ut imposes a restriction on the structure of xt as we show in the following proposition.

Recall that ut =
∑∞

j=0 ρ
jεt−j holds, and that the uncorrelatedness condition just mentioned

can equivalently be expressed as uncorrelatedness of xt and
∑∞

j=0 ρ
j(εt−j/σε) (which has the

advantage of making the problem free of σ2
ε). Let Pη denote the probability law of the process

(xt, εt/σε) and let Eη denote the corresponding expectation operator.

Proposition K.1. Suppose Eη(xt

∑∞
j=0 ρ

j(εt−j/σε)) = 0 holds for every ρ ∈ (−1, 1) and some

(every, respectively) η. Then xt is independent of (εt/σε,εt−1/σε, εt−2/σε, . . .) under Pη for this

(every, respectively) η.

Proof: By the Gaussianity assumption it suffices to show that Eη(xt(εt−j/σε)) = 0 for every

j ≥ 0 and some (every, respectively) η. The assumption can be written as
∑∞

j=0 ρ
jEη(xtεt−j/σε) =

0 for some (every, respectively) η, the sum being guaranteed to converge absolutely for ρ ∈

(−1, 1), since the coefficients Eη(xtεt−j/σε) are a bounded sequence for given η in view of

Cauchy-Schwartz. Also note that the coefficients do not depend on ρ by the variation-freeness

assumption. Hence by the identity theorem for analytic functions the claim follows. �

Before we proceed with the numerical examples we note the following upshot of the preceding

result: In the context of the model considered here, we either must be willing to assume that xt

is dependent on some future innovations εt+i, i > 0 (in which case X and U will typically be

dependent), or otherwise arrive at independence of X and U (in which case our theory can be

applied via conditioning).

The numerical examples are now constructed in such a way that the processes (xt) and

(ut) (and in particular X and U) are indeed dependent in order to generate a scenario that is

unfavorable to our procedure in the sense that applying our theory via conditioning is not feasible.

In light of the proposition this means that we need to let xt depend on future innovations (since xt

must be independent of current and past innovations to justify ordinary least squares estimation

in light of the preceding proposition). It should be noted, however, that the so-constructed

examples are favorable to the Kiefer-Vogelsang approach in the sense that the asymptotic theory

developed in those papers applies.

Let now xt be given as xt = γ(εt+1/σε) + (1 − γ)zt with 0 ≤ γ ≤ 1 and with zt the

stationary solution of zt = δzt−1 + ε̃t, where (ε̃t) is Gaussian white noise that is independent of

the process (εt) and where δ ∈ (−1, 1). The variance of ε̃t is denoted by σ2
ε̃ and is assumed to

be positive. Note that we have η = (γ, δ, σ2
ε̃). We are interested in testing the null hypothesis

b = 0 versus the alternative b 6= 0 in the above model at the 0.05 significance level. [In fact, by

invariance considerations it follows that the results are the same as for testing the null hypothesis

b = b∗.] We use the test-statistic Tw (or equivalently the corresponding root tw). As in Section

4, we use sample size n = 100 and the Bartlett weights w(j, n) = (1 − |j| /Mn)1(−1,1)(j/Mn)

with Mn = n/10 (i.e., bandwidth parameter Mn equal to 10). For a range of choices for the

parameters γ, δ, and ρ (and setting σ2
ε̃ = 1−δ2, σ2

ε = 1−ρ2) we obtain a Monte-Carlo sample for

(x1, . . . , xn)
′ and U =(u1, . . . , un)

′ from which we then build X in an obvious way. We proceed
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to computing the dependent variable Y as X(0, 0)′ +U (observe that also setting a = 0 has no

effect on the null-rejection probabilities in view of invariance considerations). We then do two

things: First, we compute the test statistic tw from the data Y and X and compare its absolute

value to the Kiefer and Vogelsang (2005) critical value 2.260568 (corresponding to a nominal

significance level of 0.05). By repeating this for 1 000 Monte-Carlo samples we obtain a Monte-

Carlo estimate for the null-rejection probability when using this Kiefer-Vogelsang critical value.

We report these in the right panel of the tables given below. Second, for a given Monte-Carlo

sample, we use the matrix X and employ our Algorithm 1 (with p = 1 and tuning parameters

M0 = 20, M1 = M2 = 1, N0 = N1 = 1 000, N2 = 10 000, cf. Appendix F) to compute

critical values for |tw| that would result in size control over FAR(1) if the regressors matrix were

nonrandom and equal to the given X. This results in a critical value c(X). We then compare the

test statistic |tw| computed from the given Monte-Carlo sample with c(X) and record whether

we reject or not. Repeating over the Monte-Carlo samples this gives us a Monte-Carlo estimate

of the null-rejection probability of the so defined procedure. We report these in the left panel of

the tables given below.

γ = 0

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.04 0.04 0.02 0.01 0.00 0.00 0.06 0.07 0.07 0.07 0.07 0.07

0.5 0.04 0.04 0.02 0.01 0.01 0.00 0.05 0.08 0.07 0.09 0.11 0.11

0.75 0.04 0.04 0.03 0.02 0.01 0.01 0.05 0.09 0.11 0.15 0.16 0.17

0.9 0.03 0.04 0.05 0.03 0.03 0.02 0.05 0.10 0.15 0.20 0.26 0.24

0.95 0.03 0.04 0.04 0.03 0.03 0.03 0.05 0.09 0.15 0.24 0.28 0.33

0.99 0.02 0.03 0.03 0.04 0.05 0.04 0.03 0.09 0.15 0.28 0.37 0.41

γ = 1
6

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.04 0.03 0.02 0.01 0.00 0.00 0.06 0.04 0.07 0.08 0.09 0.07

0.5 0.04 0.03 0.03 0.01 0.01 0.01 0.06 0.06 0.09 0.10 0.11 0.10

0.75 0.04 0.04 0.04 0.02 0.01 0.01 0.06 0.07 0.11 0.15 0.16 0.17

0.9 0.04 0.05 0.06 0.03 0.03 0.02 0.06 0.09 0.15 0.18 0.25 0.27

0.95 0.04 0.03 0.04 0.04 0.04 0.03 0.06 0.09 0.14 0.25 0.31 0.34

0.99 0.03 0.04 0.04 0.04 0.06 0.06 0.05 0.08 0.14 0.26 0.35 0.44
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γ = 1
3

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.05 0.04 0.02 0.01 0.01 0.01 0.06 0.07 0.06 0.06 0.07 0.06

0.5 0.05 0.06 0.02 0.01 0.02 0.02 0.08 0.07 0.08 0.09 0.10 0.11

0.75 0.06 0.05 0.04 0.02 0.01 0.02 0.07 0.09 0.12 0.14 0.12 0.14

0.9 0.06 0.06 0.06 0.05 0.04 0.05 0.08 0.11 0.13 0.22 0.23 0.24

0.95 0.06 0.04 0.06 0.05 0.05 0.08 0.09 0.08 0.15 0.26 0.28 0.30

0.99 0.07 0.05 0.05 0.06 0.07 0.09 0.10 0.10 0.17 0.25 0.37 0.39

γ = 1
2

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.04 0.04 0.03 0.02 0.02 0.02 0.06 0.07 0.07 0.06 0.07 0.06

0.5 0.06 0.05 0.05 0.04 0.03 0.04 0.07 0.08 0.09 0.11 0.10 0.10

0.75 0.07 0.08 0.07 0.06 0.06 0.08 0.09 0.12 0.11 0.12 0.15 0.16

0.9 0.09 0.07 0.08 0.07 0.07 0.11 0.11 0.09 0.14 0.21 0.21 0.22

0.95 0.11 0.11 0.08 0.09 0.07 0.13 0.14 0.14 0.15 0.22 0.23 0.26

0.99 0.15 0.12 0.11 0.10 0.11 0.18 0.18 0.16 0.19 0.28 0.32 0.38

γ = 2
3

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.04 0.04 0.04 0.02 0.04 0.03 0.05 0.06 0.05 0.06 0.07 0.06

0.5 0.07 0.06 0.06 0.05 0.05 0.06 0.08 0.08 0.08 0.08 0.09 0.10

0.75 0.09 0.09 0.10 0.10 0.09 0.11 0.11 0.12 0.12 0.14 0.15 0.14

0.9 0.14 0.13 0.14 0.15 0.14 0.17 0.17 0.15 0.17 0.20 0.20 0.23

0.95 0.19 0.15 0.14 0.16 0.17 0.22 0.21 0.17 0.19 0.24 0.26 0.28

0.99 0.26 0.19 0.18 0.18 0.21 0.27 0.29 0.22 0.25 0.27 0.33 0.37

γ = 5
6

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.04 0.04 0.05 0.04 0.04 0.04 0.06 0.06 0.07 0.06 0.05 0.06

0.5 0.07 0.07 0.08 0.06 0.07 0.07 0.09 0.09 0.09 0.08 0.10 0.08

0.75 0.12 0.12 0.12 0.12 0.11 0.11 0.14 0.13 0.13 0.14 0.13 0.13

0.9 0.17 0.18 0.18 0.20 0.17 0.18 0.19 0.20 0.19 0.23 0.19 0.20

0.95 0.22 0.21 0.18 0.21 0.23 0.21 0.23 0.23 0.19 0.24 0.26 0.23

0.99 0.29 0.29 0.29 0.32 0.30 0.30 0.32 0.33 0.34 0.36 0.35 0.35
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γ = 1

Method Alg KV

ρ
∖

δ 0 0.5 0.75 0.9 0.95 0.99 0 0.5 0.75 0.9 0.95 0.99

0 0.07 0.05 0.06 0.05 0.05 0.05 0.09 0.07 0.07 0.06 0.07 0.06

0.5 0.07 0.07 0.08 0.07 0.09 0.07 0.09 0.08 0.10 0.08 0.11 0.08

0.75 0.12 0.11 0.12 0.12 0.10 0.11 0.14 0.13 0.14 0.13 0.12 0.13

0.9 0.20 0.19 0.17 0.17 0.17 0.19 0.21 0.21 0.18 0.19 0.19 0.21

0.95 0.25 0.21 0.24 0.24 0.23 0.22 0.27 0.23 0.26 0.25 0.25 0.23

0.99 0.33 0.32 0.32 0.31 0.30 0.32 0.36 0.35 0.35 0.34 0.35 0.36

The results in the preceding tables clearly show that our method based on Algorithm 1,

which presently has no theoretical justification in the example considered (except in the case

where γ = 0), typically performs better in terms of size than the competitor method based on

the asymptotic theory developed in Kiefer and Vogelsang (2005), often by a considerable margin.

[Note that in case γ = 1 the results do not depend on the value of δ, the variation in the rows of

these subtables hence only reflecting Monte-Carlo uncertainty.] A fortiori the same conclusion

applies if the Kiefer-Vogelsang critical value is replaced by a smaller critical value (as, e.g., the

standard normal critical value 1.96 suggested by standard bandwidth-to-zero asymptotics).

L Appendix: Tables

In the following we present tables for the numerical results underlying Figure 1 in Section 4.2.

For a detailed description of the FRED-MD database, including description of the variables and

the transformations applied to each time series to achieve stationarity, we refer the reader to

McCracken and Ng (2016).

Table 1: Sizes of the t-type tests corresponding to Tw using the Kiefer-Vogelsang critical value
and obtained by an application of Algorithm 2.

Regressor i.i.d. AR(1) AR(2) AR(5) AR(10) AR(25) AR(50) AR(99)

RPI 0.11 0.40 0.97 0.97 0.96 0.94 0.94 0.92

W875RX1 0.11 0.41 0.96 0.99 0.97 0.95 0.92 0.91

DPCERA3M086SBEA 0.11 0.45 0.97 0.94 0.95 0.93 0.94 0.94

CMRMTSPLx 0.19 0.46 0.95 0.99 0.98 0.88 0.89 0.90

RETAILx 0.15 0.24 0.52 0.53 0.53 0.53 0.53 0.53

INDPRO 0.15 0.25 0.63 0.64 0.64 0.64 0.64 0.64

IPFPNSS 0.18 0.32 0.58 0.59 0.60 0.59 0.60 0.60

IPFINAL 0.16 0.28 0.60 0.60 0.60 0.60 0.60 0.60

IPCONGD 0.13 0.37 0.96 0.90 0.90 0.95 0.96 0.94

IPDCONGD 0.17 0.32 0.68 0.69 0.69 0.80 0.83 0.87

IPNCONGD 0.08 0.38 0.97 0.99 0.94 0.92 0.92 0.98

IPBUSEQ 0.12 0.23 0.57 0.57 0.57 0.57 0.58 0.57
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IPMAT 0.12 0.22 0.68 0.68 0.68 0.68 0.68 0.68

IPDMAT 0.13 0.23 0.61 0.63 0.63 0.62 0.63 0.63

IPNMAT 0.16 0.22 0.68 0.69 0.69 0.69 0.69 0.69

IPMANSICS 0.18 0.29 0.61 0.62 0.62 0.62 0.62 0.62

IPB51222S 0.07 0.14 0.65 0.69 0.69 0.69 0.69 0.69

IPFUELS 0.07 0.11 0.78 0.78 0.78 0.78 0.78 0.78

CUMFNS 0.13 0.23 0.59 0.60 0.60 0.60 0.60 0.60

HWI 0.12 0.42 0.95 0.99 0.77 0.83 0.82 0.90

HWIURATIO 0.12 0.50 0.98 0.98 0.97 0.95 0.96 0.95

CLF16OV 0.09 0.49 0.97 0.93 0.94 0.94 0.96 0.94

CE16OV 0.12 0.52 0.97 0.94 0.94 0.95 0.96 0.96

UNRATE 0.14 0.52 0.97 0.95 0.96 0.96 0.95 0.97

UEMPMEAN 0.09 0.53 0.98 0.95 0.96 0.97 0.97 0.96

UEMPLT5 0.08 0.37 0.96 0.98 0.86 0.91 0.90 0.93

UEMP5TO14 0.14 0.26 0.75 0.76 0.76 0.76 0.76 0.77

UEMP15OV 0.12 0.52 0.97 0.96 0.95 0.95 0.96 0.96

UEMP15T26 0.16 0.32 0.64 0.65 0.65 0.65 0.65 0.65

UEMP27OV 0.11 0.53 0.98 0.95 0.97 0.95 0.95 0.98

CLAIMSx 0.17 0.28 0.71 0.71 0.71 0.71 0.71 0.71

PAYEMS 0.13 0.52 0.97 0.95 0.95 0.95 0.95 0.98

USGOOD 0.14 0.53 0.97 0.94 0.99 0.97 0.96 0.96

CES1021000001 0.09 0.43 0.94 0.87 0.88 0.91 0.87 0.91

USCONS 0.11 0.52 0.97 0.95 0.96 0.95 0.98 0.96

MANEMP 0.15 0.53 0.97 0.94 0.95 0.93 0.95 0.96

DMANEMP 0.15 0.51 0.97 0.99 0.99 0.93 0.93 0.95

NDMANEMP 0.13 0.50 0.97 0.95 0.97 0.97 0.96 0.98

SRVPRD 0.12 0.51 0.97 0.94 0.98 0.94 0.95 0.96

USTPU 0.13 0.52 0.97 0.96 0.92 0.94 0.95 0.96

USWTRADE 0.14 0.53 0.97 0.95 0.95 0.96 0.95 0.95

USTRADE 0.13 0.50 0.97 0.95 0.94 0.93 0.96 0.95

USFIRE 0.11 0.52 0.98 0.95 0.95 0.96 0.95 0.96

USGOVT 0.08 0.47 0.97 0.93 0.94 0.93 0.93 0.96

CES0600000007 0.09 0.41 0.96 0.89 0.89 0.89 0.89 0.88

AWOTMAN 0.10 0.38 0.95 0.99 0.89 0.87 0.91 0.88

AWHMAN 0.10 0.40 0.95 0.89 0.90 0.90 0.93 0.94

HOUST 0.11 0.51 0.97 0.94 1.00 0.97 0.96 0.95

HOUSTNE 0.11 0.44 0.97 0.96 0.97 0.96 0.95 0.96

HOUSTMW 0.07 0.16 0.52 0.62 0.63 0.63 0.63 0.62

HOUSTS 0.09 0.47 0.97 0.91 0.98 0.93 0.92 0.95

HOUSTW 0.08 0.47 0.97 0.94 0.92 0.95 0.94 0.93

PERMIT 0.13 0.46 0.96 0.99 0.93 0.92 0.94 0.93

PERMITNE 0.15 0.29 0.68 0.80 0.81 0.79 0.81 0.80

PERMITMW 0.08 0.36 0.94 0.85 0.88 0.86 0.89 0.87

PERMITS 0.11 0.45 0.95 0.99 0.82 0.90 0.92 0.88

PERMITW 0.10 0.47 0.96 0.91 0.90 0.92 0.92 0.94

ACOGNO 0.08 0.33 0.61 0.62 0.62 0.62 0.62 0.64

AMDMNOx 0.10 0.21 0.61 0.62 0.61 0.62 0.62 0.62

ANDENOx 0.08 0.99 1.00 1.00 1.00 1.00 1.00 1.00

AMDMUOx 0.11 0.46 0.93 0.86 0.92 0.83 0.91 0.95
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BUSINVx 0.14 0.39 0.63 0.64 0.64 0.63 0.64 0.64

ISRATIOx 0.12 0.46 0.97 0.99 0.94 0.93 0.96 0.96

M1SL 0.10 0.41 0.70 0.71 0.71 0.71 0.71 0.71

M2SL 0.11 0.50 0.97 0.94 1.00 0.93 0.95 0.96

M2REAL 0.11 0.48 0.97 0.93 0.93 0.94 0.95 0.97

AMBSL 0.08 0.19 0.67 0.67 0.67 0.67 0.67 0.67

TOTRESNS 0.08 0.21 0.66 0.68 0.68 0.68 0.68 0.68

NONBORRES 0.09 0.36 0.96 0.98 0.91 0.95 0.95 0.96

BUSLOANS 0.10 0.52 0.98 0.96 0.96 0.96 0.96 0.96

REALLN 0.09 0.51 0.97 0.96 0.96 0.96 0.96 0.96

NONREVSL 0.11 0.49 0.97 0.99 0.94 0.97 0.95 0.95

CONSPI 0.09 0.43 0.96 0.91 0.90 0.92 0.93 0.93

S.P.500 0.11 0.32 0.94 0.99 0.71 0.84 0.83 0.68

S.P..indust 0.10 0.31 0.61 0.62 0.62 0.62 0.65 0.63

S.P.div.yield 0.14 0.39 0.96 0.99 0.91 0.87 0.88 0.93

S.P.PE.ratio 0.21 0.38 0.71 0.71 0.71 0.72 0.72 0.72

FEDFUNDS 0.22 0.46 0.96 0.91 0.92 0.88 0.93 0.96

CP3Mx 0.17 0.47 0.97 0.93 0.94 0.92 0.93 0.95

TB3MS 0.22 0.45 0.97 0.94 0.92 0.92 0.94 0.94

TB6MS 0.18 0.47 0.97 0.99 0.92 0.94 0.95 0.94

GS1 0.16 0.46 0.97 0.93 0.93 0.94 0.97 0.96

GS5 0.08 0.47 0.98 0.95 0.95 0.94 0.96 0.95

GS10 0.07 0.23 0.52 0.53 0.53 0.53 0.53 0.52

AAA 0.08 0.41 0.95 0.91 0.97 0.91 0.93 0.95

BAA 0.10 0.50 0.98 0.95 0.96 0.97 0.96 0.96

COMPAPFFx 0.19 0.42 0.96 0.91 0.91 0.89 0.92 0.96

TB3SMFFM 0.22 0.39 0.95 0.86 0.86 0.87 0.89 0.90

TB6SMFFM 0.12 0.17 0.69 0.76 0.76 0.76 0.76 0.76

T1YFFM 0.09 0.50 0.98 0.95 0.95 0.95 0.95 0.96

T5YFFM 0.08 0.30 0.69 0.71 0.71 0.71 0.71 0.70

T10YFFM 0.07 0.17 0.68 0.69 0.69 0.69 0.69 0.69

AAAFFM 0.08 0.14 0.60 0.61 0.62 0.61 0.61 0.61

BAAFFM 0.12 0.18 0.66 0.66 0.66 0.66 0.66 0.66

TWEXMMTH 0.08 0.51 0.98 0.95 0.95 0.96 0.95 0.97

EXSZUSx 0.09 0.47 0.96 0.93 0.94 0.95 0.95 0.96

EXJPUSx 0.09 0.53 0.98 0.96 0.97 0.95 0.97 0.97

EXUSUKx 0.11 0.16 0.72 0.71 0.72 0.72 0.72 0.72

EXCAUSx 0.09 0.52 0.98 0.99 0.97 0.96 0.96 0.96

WPSFD49207 0.08 0.46 0.97 0.95 0.99 0.95 0.93 0.95

WPSFD49502 0.08 0.47 0.97 0.94 0.97 0.94 0.96 0.96

WPSID61 0.08 0.44 0.96 0.91 0.95 1.00 0.93 0.96

WPSID62 0.08 0.34 0.85 0.62 0.63 0.63 0.63 0.64

OILPRICEx 0.08 0.37 0.96 0.99 0.88 0.88 0.90 0.90

PPICMM 0.11 0.22 0.57 0.58 0.58 0.58 0.58 0.58

CPIAUCSL 0.08 0.25 0.57 0.58 0.58 0.58 0.58 0.58

CPIAPPSL 0.08 0.41 0.95 0.99 0.80 0.83 0.83 0.88

CPITRNSL 0.08 0.47 0.98 0.94 0.94 0.97 0.96 0.95

CPIMEDSL 0.10 0.26 0.68 0.69 0.69 0.69 0.69 0.69

CUSR0000SAC 0.08 0.47 0.97 0.94 0.96 0.96 0.94 0.95
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CUUR0000SAD 0.08 0.54 0.98 0.96 0.96 0.97 0.96 0.96

CUSR0000SAS 0.09 0.52 0.98 0.95 0.96 0.95 0.96 0.96

CPIULFSL 0.08 0.24 0.55 0.57 0.57 0.57 0.56 0.56

CUUR0000SA0L2 0.07 0.42 0.96 0.91 0.93 0.91 0.92 0.92

CUSR0000SA0L5 0.08 0.25 0.58 0.58 0.59 0.58 0.58 0.59

PCEPI 0.08 0.26 0.58 0.59 0.59 0.59 0.59 0.59

DDURRG3M086SBEA 0.08 0.52 0.97 0.95 0.96 0.96 0.96 0.96

DNDGRG3M086SBEA 0.08 0.47 0.96 0.95 0.96 0.94 0.96 0.95

DSERRG3M086SBEA 0.11 0.52 0.97 0.96 0.96 0.96 0.97 0.96

CES0600000008 0.09 0.28 0.68 0.70 0.70 0.70 0.70 0.70

CES2000000008 0.08 0.29 0.74 0.74 0.74 0.74 0.74 0.74

CES3000000008 0.08 0.31 0.72 0.72 0.72 0.72 0.72 0.72

UMCSENTx 0.07 0.24 0.61 0.63 0.63 0.63 0.63 0.62

MZMSL 0.10 0.48 0.97 0.95 0.95 0.97 0.95 0.95

DTCOLNVHFNM 0.13 0.33 0.66 0.66 0.66 0.66 0.66 0.66

DTCTHFNM 0.15 0.49 0.93 0.88 0.85 0.87 0.90 0.95

INVEST 0.08 0.29 0.90 0.72 0.69 0.69 0.78 0.74

VXOCLSx 0.12 0.27 0.94 0.99 0.87 0.85 0.91 0.89

Table 2: Critical Values guaranteeing size≤ 0.05 for the t-type tests corresponding to Tw obtained
by an application of Algorithm 1.

Regressor i.i.d. AR(1) AR(2) AR(5) AR(10) AR(25) AR(50) AR(99)

RPI 2.81 5.26 6.29 6.68 8.13 8.27 8.29 8.37

W875RX1 2.83 5.37 6.60 6.95 6.97 7.69 7.91 7.94

DPCERA3M086SBEA 2.84 6.34 11.27 11.21 11.17 12.56 12.53 12.59

CMRMTSPLx 3.65 6.61 7.06 8.61 8.44 8.58 8.65 8.67

RETAILx 3.21 4.32 4.46 4.89 4.90 5.97 5.95 6.02

INDPRO 3.24 4.44 5.18 5.34 5.90 6.07 6.29 6.13

IPFPNSS 3.61 5.33 5.88 6.18 6.51 8.03 7.92 8.02

IPFINAL 3.34 4.79 5.79 5.83 6.63 7.09 7.29 7.26

IPCONGD 3.04 4.81 4.91 6.09 6.61 6.56 6.69 6.71

IPDCONGD 3.36 4.65 5.63 6.40 7.10 7.11 7.15 6.94

IPNCONGD 2.60 4.87 5.94 7.08 7.21 7.38 7.49 7.48

IPBUSEQ 2.96 4.23 4.79 4.81 4.95 5.43 5.92 5.82

IPMAT 2.96 4.06 5.42 5.44 5.48 6.22 6.24 6.21

IPDMAT 3.08 4.15 5.13 5.43 6.00 6.13 6.14 6.06

IPNMAT 3.37 4.07 5.31 5.35 6.45 6.55 6.44 6.46

IPMANSICS 3.56 5.04 5.95 6.27 6.78 7.79 7.61 7.76

IPB51222S 2.46 3.17 6.97 7.11 7.84 7.73 7.87 8.34

IPFUELS 2.53 2.78 5.29 7.18 8.50 7.52 8.23 8.31

CUMFNS 3.02 4.10 5.16 5.13 6.61 6.80 6.69 6.68

HWI 3.01 5.74 6.09 6.24 6.65 7.08 7.09 7.06

HWIURATIO 2.92 7.01 12.20 12.47 12.55 12.58 12.51 12.55

CLF16OV 2.66 7.33 12.40 12.45 12.56 17.39 18.71 16.62

CE16OV 2.96 7.17 14.87 15.46 15.26 15.52 15.42 15.34

UNRATE 3.10 6.96 11.63 11.84 11.71 11.77 12.10 11.94

UEMPMEAN 2.65 8.56 32.03 33.13 32.98 32.75 33.15 33.13
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UEMPLT5 2.50 3.75 3.75 5.62 6.27 6.26 5.87 6.08

UEMP5TO14 3.15 4.55 7.47 7.46 7.49 9.73 9.64 9.64

UEMP15OV 3.00 7.25 13.36 13.84 13.90 14.01 13.82 14.11

UEMP15T26 3.33 5.20 6.68 6.75 8.25 8.60 8.34 8.61

UEMP27OV 2.85 7.64 15.25 15.86 15.82 15.88 15.87 15.86

CLAIMSx 3.51 4.74 7.09 7.15 7.16 8.48 8.53 8.56

PAYEMS 2.99 7.03 13.41 13.85 13.92 14.84 14.04 13.87

USGOOD 3.07 7.19 11.79 11.98 12.11 12.03 12.19 12.24

CES1021000001 2.67 6.05 11.38 11.65 11.63 11.65 12.50 12.50

USCONS 2.90 7.26 17.51 18.48 18.39 18.37 18.36 18.47

MANEMP 3.25 7.19 9.91 10.11 10.05 10.00 10.29 10.25

DMANEMP 3.28 7.24 9.40 9.40 9.46 9.98 9.95 10.01

NDMANEMP 3.03 6.88 12.05 12.38 12.35 12.32 12.58 12.58

SRVPRD 2.92 7.02 14.70 15.24 15.09 15.21 15.40 15.75

USTPU 3.03 6.94 12.04 12.50 12.48 12.41 12.52 12.53

USWTRADE 3.13 7.69 12.89 13.30 13.33 13.15 13.36 13.45

USTRADE 3.05 6.79 11.69 11.68 12.06 12.08 12.03 12.33

USFIRE 2.88 7.29 18.45 19.43 18.99 19.46 19.61 19.80

USGOVT 2.61 5.54 7.10 7.15 7.19 7.84 7.91 7.94

CES0600000007 2.65 4.87 5.17 5.28 5.84 6.88 6.85 6.81

AWOTMAN 2.78 4.38 4.52 4.86 4.92 4.93 5.47 5.46

AWHMAN 2.76 4.55 4.65 4.89 5.03 5.48 5.48 5.53

HOUST 2.88 6.64 10.96 11.27 11.20 12.11 13.56 12.27

HOUSTNE 2.92 4.75 4.91 7.34 7.32 7.99 8.06 7.76

HOUSTMW 2.44 2.87 4.30 4.79 6.29 6.08 6.30 6.29

HOUSTS 2.64 4.94 5.68 8.66 8.90 8.94 8.73 8.92

HOUSTW 2.57 4.89 6.13 8.22 8.94 8.93 9.22 9.38

PERMIT 3.07 6.20 12.46 12.68 12.56 12.50 12.58 12.76

PERMITNE 3.44 4.03 7.32 7.35 8.21 7.76 8.01 8.07

PERMITMW 2.61 4.32 4.77 5.91 6.69 6.51 6.13 6.58

PERMITS 2.90 6.23 14.62 14.86 14.86 14.87 14.78 14.84

PERMITW 2.78 6.19 12.32 12.40 12.46 14.85 14.42 14.82

ACOGNO 2.56 4.30 5.00 5.00 4.99 5.88 5.79 5.80

AMDMNOx 2.79 3.79 5.18 5.21 6.12 6.42 6.22 6.44

ANDENOx 2.62 3.40 4.36 5.61 6.15 6.10 5.94 6.06

AMDMUOx 2.87 6.68 12.57 12.98 12.90 12.98 13.02 13.47

BUSINVx 3.07 6.05 7.24 7.31 7.39 7.40 7.75 7.65

ISRATIOx 2.89 4.85 4.89 4.97 4.92 5.71 5.86 5.69

M1SL 2.75 6.10 11.48 11.55 11.60 11.55 11.61 11.72

M2SL 2.89 7.04 7.78 8.84 8.83 10.32 10.28 10.56

M2REAL 2.84 5.97 6.36 6.31 7.23 7.05 7.05 7.08

AMBSL 2.58 3.66 6.68 6.73 6.73 7.15 7.47 7.49

TOTRESNS 2.60 3.88 7.72 7.75 7.75 8.40 8.34 8.07

NONBORRES 2.66 5.12 10.81 10.99 11.03 11.02 12.67 11.42

BUSLOANS 2.72 7.83 13.15 13.16 13.43 13.75 13.64 13.65

REALLN 2.65 7.49 14.10 14.13 14.13 16.08 15.86 16.02

NONREVSL 2.86 7.07 10.15 10.18 10.18 10.10 10.73 10.79

CONSPI 2.72 5.42 6.12 6.67 7.94 8.25 8.17 8.10

S.P.500 2.85 4.48 6.81 6.83 6.84 7.22 7.11 7.03
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S.P..indust 2.79 4.35 6.62 6.80 6.84 6.84 6.93 6.95

S.P.div.yield 3.17 4.88 5.12 5.23 6.63 6.70 6.62 6.63

S.P.PE.ratio 3.75 5.22 6.37 6.39 6.70 7.24 7.18 7.20

FEDFUNDS 3.84 5.73 6.29 6.95 7.04 7.06 7.02 7.14

CP3Mx 3.41 5.99 7.06 7.09 7.06 7.48 7.55 7.53

TB3MS 3.83 5.77 7.25 7.28 8.00 8.12 8.42 7.84

TB6MS 3.52 6.07 7.82 7.76 7.94 8.08 7.97 8.13

GS1 3.37 5.92 8.22 8.36 8.18 8.28 8.34 8.35

GS5 2.57 5.90 8.42 9.12 8.87 10.15 10.24 10.18

GS10 2.48 3.49 4.26 4.32 5.54 5.59 5.57 5.54

AAA 2.57 4.73 5.19 5.27 5.56 6.10 6.08 6.05

BAA 2.80 6.43 8.21 8.29 9.22 9.36 9.44 9.69

COMPAPFFx 3.56 4.47 4.56 5.32 5.67 5.68 5.86 5.49

TB3SMFFM 3.82 4.49 5.44 6.80 7.27 7.11 6.81 6.86

TB6SMFFM 2.97 3.10 6.33 6.71 7.41 7.39 7.27 8.07

T1YFFM 2.65 5.60 7.27 10.46 11.02 11.24 11.96 10.96

T5YFFM 2.52 4.20 9.29 9.36 9.38 10.03 9.55 9.68

T10YFFM 2.49 3.40 10.35 10.46 10.34 10.46 10.45 10.35

AAAFFM 2.55 3.14 5.24 5.35 5.28 5.61 6.01 6.16

BAAFFM 2.94 3.45 5.25 5.24 5.33 5.90 5.87 5.93

TWEXMMTH 2.62 6.81 9.40 9.37 10.61 11.56 11.52 11.56

EXSZUSx 2.69 6.20 7.42 7.48 7.47 8.03 7.99 8.05

EXJPUSx 2.66 8.02 17.44 17.67 17.65 17.70 18.56 17.69

EXUSUKx 2.84 3.33 7.50 7.59 8.03 8.26 8.19 8.20

EXCAUSx 2.67 7.07 9.85 9.83 11.44 11.86 11.36 11.11

WPSFD49207 2.58 5.79 7.54 7.55 7.57 8.62 8.62 8.57

WPSFD49502 2.57 5.86 7.63 8.50 8.41 8.74 8.66 8.66

WPSID61 2.58 5.25 6.28 6.28 6.34 6.61 7.34 7.36

WPSID62 2.60 4.19 4.63 4.61 5.25 5.42 5.67 5.68

OILPRICEx 2.57 4.16 4.41 5.49 5.89 6.16 6.12 5.89

PPICMM 2.89 3.84 4.55 4.65 5.25 5.81 5.77 5.73

CPIAUCSL 2.58 3.72 4.52 4.81 5.10 5.57 5.48 5.58

CPIAPPSL 2.59 5.85 11.49 11.61 11.63 11.61 11.64 11.62

CPITRNSL 2.57 5.40 6.23 6.23 6.93 7.09 7.11 7.11

CPIMEDSL 2.72 4.11 6.09 6.13 6.12 6.49 6.89 7.09

CUSR0000SAC 2.52 5.75 7.48 8.10 8.03 8.38 8.25 8.24

CUUR0000SAD 2.62 8.11 19.35 19.41 19.48 19.43 19.48 20.10

CUSR0000SAS 2.68 7.91 24.72 25.02 24.85 25.76 25.95 26.74

CPIULFSL 2.57 3.54 3.99 4.03 5.11 5.24 5.16 5.03

CUUR0000SA0L2 2.52 4.71 5.61 6.73 7.07 7.12 7.16 7.30

CUSR0000SA0L5 2.56 3.75 4.54 5.40 4.59 5.47 5.42 5.42

PCEPI 2.56 3.83 4.67 5.26 5.33 5.52 5.37 5.42

DDURRG3M086SBEA 2.52 6.92 11.22 11.39 11.37 11.30 11.39 11.54

DNDGRG3M086SBEA 2.54 5.59 7.22 7.83 7.85 8.23 8.23 8.17

DSERRG3M086SBEA 2.83 7.37 24.25 24.92 24.89 24.36 24.94 26.66

CES0600000008 2.64 4.65 10.56 11.00 11.08 11.10 11.07 11.38

CES2000000008 2.52 4.63 9.76 9.91 9.90 9.97 12.22 10.34

CES3000000008 2.56 5.15 14.04 14.28 14.22 14.19 14.16 14.75

UMCSENTx 2.53 3.67 5.44 5.46 5.69 6.21 6.11 6.28
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MZMSL 2.81 6.36 6.77 6.96 8.63 8.81 8.62 8.57

DTCOLNVHFNM 3.04 5.47 7.27 7.26 7.43 8.93 9.00 8.98

DTCTHFNM 3.26 7.24 9.96 10.07 10.14 10.66 10.83 10.82

INVEST 2.53 3.91 4.49 4.61 4.98 5.40 5.45 5.46

VXOCLSx 2.90 3.45 4.83 4.86 4.87 5.34 5.30 5.38

Table 3: Critical Values guaranteeing size ≤ 0.05 for the t-type tests corresponding to TE,W

obtained by an application of Algorithm 1.

Regressor i.i.d. AR(1) AR(2) AR(5) AR(10) AR(25) AR(50) AR(99)

RPI 2.24 4.23 5.20 5.27 7.18 7.36 7.29 7.14

W875RX1 2.28 4.08 4.95 5.26 6.07 6.10 6.09 6.04

DPCERA3M086SBEA 2.28 5.21 7.61 7.54 7.53 10.61 10.51 10.71

CMRMTSPLx 2.22 3.58 4.43 4.48 4.49 4.48 4.57 4.50

RETAILx 2.19 3.23 3.81 3.87 3.85 3.88 3.93 3.99

INDPRO 2.23 3.16 3.81 3.89 3.88 3.97 3.99 3.98

IPFPNSS 2.24 3.19 3.60 3.64 3.61 3.63 3.66 3.67

IPFINAL 2.20 3.08 3.42 3.45 3.49 3.73 3.79 3.77

IPCONGD 2.20 3.74 4.58 4.58 5.08 5.12 5.21 5.21

IPDCONGD 2.16 3.15 3.77 3.77 3.84 3.95 3.99 3.97

IPNCONGD 2.21 4.27 5.36 5.30 6.49 6.80 6.77 6.62

IPBUSEQ 2.24 3.46 4.18 4.20 4.21 4.62 4.59 4.60

IPMAT 2.24 3.27 4.22 4.33 4.33 4.60 4.67 4.62

IPDMAT 2.27 3.17 3.55 3.66 3.67 4.15 4.19 4.16

IPNMAT 2.15 2.54 4.07 4.06 4.25 4.29 4.32 4.34

IPMANSICS 2.23 2.94 3.27 3.28 3.32 3.33 3.38 3.40

IPB51222S 2.08 2.44 3.59 3.61 4.64 4.66 4.67 4.69

IPFUELS 2.10 2.50 5.55 5.57 5.58 5.61 5.73 5.64

CUMFNS 2.25 3.06 3.70 3.78 3.80 4.22 4.25 4.26

HWI 2.29 4.28 5.72 5.83 5.70 5.82 5.84 5.98

HWIURATIO 2.34 5.60 10.47 10.66 10.66 10.64 10.81 10.78

CLF16OV 2.29 5.69 9.47 9.26 9.28 11.80 12.00 12.29

CE16OV 2.33 5.77 11.70 11.69 11.78 11.85 11.84 12.23

UNRATE 2.30 5.18 9.48 9.78 9.75 9.77 9.64 9.78

UEMPMEAN 2.41 7.79 29.75 31.05 31.16 31.12 31.09 31.05

UEMPLT5 2.08 2.83 3.00 3.66 3.66 3.70 3.77 3.75

UEMP5TO14 2.15 2.56 3.24 3.28 3.37 3.59 3.66 3.66

UEMP15OV 2.35 5.53 11.44 11.97 11.89 11.67 11.82 11.88

UEMP15T26 2.25 3.23 3.53 3.54 3.62 3.79 3.81 3.83

UEMP27OV 2.38 6.11 14.43 15.28 15.24 15.17 14.98 15.24

CLAIMSx 2.18 2.61 3.06 3.04 3.04 3.33 3.36 3.35

PAYEMS 2.34 5.71 11.68 12.07 11.88 11.84 11.97 12.11

USGOOD 2.32 5.29 9.52 9.88 9.78 9.93 9.99 9.92

CES1021000001 2.38 5.22 10.61 10.69 10.84 10.83 10.82 10.92

USCONS 2.36 6.20 16.16 17.26 17.25 17.27 16.92 17.07

MANEMP 2.31 4.75 7.32 7.54 7.55 7.50 7.53 7.59

DMANEMP 2.31 4.54 6.66 6.86 6.84 6.86 6.88 6.94

NDMANEMP 2.32 5.55 10.60 10.78 10.65 10.71 10.65 11.03
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SRVPRD 2.34 5.97 13.18 13.26 13.50 13.50 13.69 13.69

USTPU 2.32 5.43 9.96 10.21 10.04 10.22 10.24 10.38

USWTRADE 2.33 5.21 8.66 8.92 8.88 8.92 9.12 9.14

USTRADE 2.32 5.46 9.90 10.04 9.97 10.01 10.20 10.28

USFIRE 2.34 6.43 16.43 16.32 16.61 16.85 17.20 17.68

USGOVT 2.33 6.25 11.95 12.00 12.01 11.99 11.98 12.48

CES0600000007 2.27 4.20 4.56 4.56 5.15 5.33 5.39 5.37

AWOTMAN 2.31 3.94 4.12 4.21 4.62 5.02 5.06 5.05

AWHMAN 2.29 3.87 4.01 4.00 4.00 4.64 4.64 4.62

HOUST 2.17 4.38 6.78 6.91 6.94 6.96 6.94 6.91

HOUSTNE 2.07 3.38 4.44 4.42 4.50 4.51 5.16 4.75

HOUSTMW 2.06 3.03 3.48 3.54 3.92 3.88 3.98 4.01

HOUSTS 2.14 4.09 5.72 5.83 5.72 5.82 7.04 5.96

HOUSTW 2.14 4.25 6.41 6.53 6.41 6.94 7.78 6.86

PERMIT 2.19 4.29 7.17 7.21 7.20 7.18 7.31 7.22

PERMITNE 2.06 3.04 3.97 4.01 4.01 4.08 4.06 5.00

PERMITMW 2.16 3.75 4.61 4.60 4.67 5.89 4.82 4.92

PERMITS 2.20 4.29 6.61 6.69 6.80 6.78 6.89 6.81

PERMITW 2.16 4.32 6.78 6.96 7.00 7.20 7.45 7.47

ACOGNO 2.32 4.50 6.15 6.14 6.15 6.47 6.66 6.61

AMDMNOx 2.18 3.14 3.40 3.48 3.51 4.09 4.09 4.09

ANDENOx 2.15 3.75 4.57 4.65 4.60 4.87 4.89 4.86

AMDMUOx 2.36 4.93 9.68 9.83 9.83 9.81 9.84 9.84

BUSINVx 2.34 4.19 5.45 5.49 5.62 5.60 5.65 5.62

ISRATIOx 2.32 4.34 4.74 4.74 5.10 5.16 5.28 5.23

M1SL 2.31 4.13 5.12 5.10 5.12 5.62 5.71 5.69

M2SL 2.34 5.03 5.89 5.98 6.75 7.15 7.22 7.16

M2REAL 2.30 4.49 4.83 4.85 4.87 5.65 5.69 5.69

AMBSL 2.25 3.30 4.39 4.40 5.20 5.28 5.30 5.31

TOTRESNS 2.25 3.40 4.51 4.57 5.16 5.29 5.26 5.29

NONBORRES 2.31 4.19 5.07 5.38 5.42 6.81 6.87 7.00

BUSLOANS 2.42 6.73 14.66 14.81 14.85 14.86 14.77 15.11

REALLN 2.40 6.50 11.81 11.89 11.86 12.55 12.63 12.73

NONREVSL 2.33 5.75 10.07 9.95 10.23 10.26 10.26 10.34

CONSPI 2.25 4.48 5.27 5.98 5.28 6.42 6.40 6.32

S.P.500 2.18 3.53 4.36 4.42 4.42 4.48 4.91 4.88

S.P..indust 2.22 3.46 4.30 4.30 4.34 4.78 4.84 4.77

S.P.div.yield 2.30 3.11 3.81 3.87 3.87 3.88 3.98 4.00

S.P.PE.ratio 2.28 3.06 3.59 3.63 3.65 4.16 4.19 4.16

FEDFUNDS 2.20 3.77 5.06 5.04 5.08 5.33 5.33 5.38

CP3Mx 2.27 4.32 6.17 6.66 6.19 6.59 6.62 6.63

TB3MS 2.18 3.73 5.08 5.13 5.13 5.38 5.44 5.44

TB6MS 2.23 4.22 6.25 6.18 6.11 6.53 6.62 6.59

GS1 2.24 4.64 7.32 7.29 7.31 7.56 7.46 7.66

GS5 2.25 4.64 5.41 5.47 5.62 5.70 5.72 5.86

GS10 2.21 3.33 3.82 3.83 4.25 4.34 4.43 4.36

AAA 2.25 3.71 3.86 3.84 3.97 5.11 5.17 5.12

BAA 2.28 4.44 5.08 5.85 6.66 6.61 6.64 6.72

COMPAPFFx 2.18 3.95 5.19 5.21 5.16 5.25 5.35 5.36
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TB3SMFFM 2.12 3.09 3.72 3.72 3.73 3.80 3.77 3.79

TB6SMFFM 2.09 2.98 3.02 3.13 3.64 3.75 3.81 3.78

T1YFFM 2.22 5.43 7.25 7.52 7.53 7.65 7.63 7.60

T5YFFM 2.27 3.74 8.02 8.04 8.05 8.05 8.04 8.09

T10YFFM 2.24 3.23 6.37 6.42 6.41 7.18 7.09 7.07

AAAFFM 2.21 2.90 4.16 4.17 4.18 5.99 5.96 5.94

BAAFFM 2.18 2.75 3.54 3.66 4.37 4.42 4.42 4.35

TWEXMMTH 2.36 5.72 7.62 7.67 7.68 8.27 8.30 8.17

EXSZUSx 2.31 4.82 5.41 5.99 6.06 6.18 6.16 6.18

EXJPUSx 2.39 6.16 11.80 11.88 11.91 11.88 11.89 13.36

EXUSUKx 2.14 2.85 3.81 3.85 3.92 4.55 4.46 4.55

EXCAUSx 2.38 6.25 9.42 9.50 9.50 9.93 9.93 9.91

WPSFD49207 2.35 5.43 8.39 8.43 8.44 8.75 8.63 8.75

WPSFD49502 2.34 5.52 8.33 8.43 8.42 8.83 8.89 8.87

WPSID61 2.35 5.17 6.96 6.98 6.98 7.77 7.77 7.83

WPSID62 2.31 4.37 5.40 5.40 6.28 6.39 6.30 6.29

OILPRICEx 2.28 4.31 5.38 5.44 5.44 5.91 6.08 6.09

PPICMM 2.23 3.02 3.44 3.53 3.90 4.04 4.03 4.03

CPIAUCSL 2.27 4.12 5.96 6.01 6.01 6.39 6.15 6.13

CPIAPPSL 2.35 5.35 8.58 8.66 8.67 8.66 8.85 8.78

CPITRNSL 2.34 5.48 8.04 8.21 8.21 8.35 8.38 8.32

CPIMEDSL 2.21 3.51 4.68 4.67 4.70 5.09 5.14 5.13

CUSR0000SAC 2.36 5.69 9.44 9.55 9.49 9.57 9.54 9.55

CUUR0000SAD 2.35 6.43 10.58 10.73 10.72 10.90 10.93 11.38

CUSR0000SAS 2.38 7.33 24.37 24.85 24.62 25.00 25.95 27.12

CPIULFSL 2.24 3.98 5.62 5.68 5.68 6.08 6.06 5.86

CUUR0000SA0L2 2.31 4.93 7.21 7.30 7.29 7.57 7.29 7.53

CUSR0000SA0L5 2.27 4.16 5.96 6.00 6.00 6.34 6.36 6.11

PCEPI 2.29 4.26 6.19 6.26 6.27 6.44 6.45 6.42

DDURRG3M086SBEA 2.31 6.11 9.59 9.66 9.66 9.66 10.04 9.66

DNDGRG3M086SBEA 2.35 5.66 9.13 9.26 9.27 9.26 9.28 9.30

DSERRG3M086SBEA 2.35 6.46 18.82 19.26 19.12 19.04 19.66 20.80

CES0600000008 2.23 4.24 8.65 8.78 8.65 8.77 8.71 9.32

CES2000000008 2.19 4.31 8.97 9.23 9.19 9.20 10.28 10.31

CES3000000008 2.29 4.78 12.70 12.96 13.03 13.01 13.02 13.63

UMCSENTx 2.10 2.65 3.43 3.58 4.09 4.14 4.11 4.13

MZMSL 2.39 5.28 6.18 6.27 7.22 6.95 7.11 7.19

DTCOLNVHFNM 2.23 3.47 3.95 3.98 4.02 3.99 4.08 4.12

DTCTHFNM 2.29 4.32 5.17 5.27 5.38 5.52 5.48 5.54

INVEST 2.22 3.34 3.90 4.00 4.43 4.43 4.43 4.39

VXOCLSx 2.16 2.82 2.91 3.59 3.07 3.76 3.80 3.91
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