Inflation and Innovation in a Schumpeterian Economy with North-South Technology Transfer

Chu, Angus C. and Cozzi, Guido and Furukawa, Yuichi and Liao, Chih-Hsing

Fudan University, University of St. Gallen, Chukyo University, Chinese Culture University

September 2013

Online at https://mpra.ub.uni-muenchen.de/85627/
MPRA Paper No. 85627, posted 01 Apr 2018 21:51 UTC
Inflation and Innovation in a Schumpeterian Economy with North-South Technology Transfer

Angus C. Chu Guido Cozzi Yuichi Furukawa Chih-Hsing Liao

March 2018

Abstract

This study analyzes how inflation affects innovation and international technology transfer via cash-in-advance constraints on R&D. We consider a North-South quality-ladder model that features innovative Northern R&D and adaptive Southern R&D. We find that higher Southern inflation causes a permanent decrease in technology transfer, a permanent increase in the North-South wage gap, and a temporary decrease in the Northern innovation rate. Higher Northern inflation causes a temporary decrease in the Northern innovation rate, a permanent decrease in the North-South wage gap, and ambiguous effects on technology transfer. Finally, we calibrate the model to China-US data to perform a quantitative analysis.

JEL classification: O30, O40, E41, F43

Keywords: inflation, economic growth, R&D, North-South product cycles, FDI

The authors would like to thank Sanjay K. Chugh (the Editor) and two anonymous Referees for their insightful comments and Xun Zhang for his helpful research assistance. Furukawa gratefully acknowledges a grant-in-aid from the Zengin Foundation for Studies on Economics and Finance.

Angus C. Chu is Professor of Economics at China Center for Economic Studies, School of Economics, Fudan University, Shanghai, China (E-mail: angusccc@gmail.com). Guido Cozzi is Professor of Macroeconomics at the Department of Economics, University of St. Gallen, St. Gallen, Switzerland (E-mail: guido.cozzi@unisg.ch). Yuichi Furukawa is Professor at the School of Economics, Chukyo University, Nagoya, Japan and Faculty Fellow at the Research Institute of Economy, Trade and Industry, Tokyo, Japan (E-mail: you.furukawa@gmail.com). Chih-Hsing Liao is Associate Professor at the Department of Economics, Chinese Culture University, Taipei, Taiwan (E-mail: chihhsingliao@gmail.com).
1 INTRODUCTION

The relationship between inflation and economic growth has been a fundamental question in macroeconomics ever since the seminal work of Tobin (1965). Subsequent studies in this literature tend to focus on how inflation affects economic growth via the accumulation of physical capital and/or human capital.\(^1\) However, the seminal study by Solow (1956) shows that economic growth is ultimately driven by technological progress, at least in the long run. Therefore, to fully capture the effects of inflation on economic growth, it is important to explore how inflation affects economic growth via endogenous technological progress. Studies in this more recent branch of the literature\(^2\) however have mostly focused on a closed-economy analysis. Given the importance of cross-country spillover effects of R&D as shown by Coe and Helpman (1995) and Coe et al. (2009) among others, this study analyzes how inflation affects innovation and international technology transfer.

Specifically, we explore the cross-country effects of inflation on innovation and international technology transfer via foreign direct investment (FDI) in a scale-invariant North-South quality-ladder growth model that features innovative R&D in the North and adaptive R&D in the South. Multinational firms invest in adaptive R&D in the South to transfer the production of the highest quality products from the North to the South in order to take advantage of the lower Southern wage rate. To model money demand, we impose cash-in-advance (CIA) constraints on R&D investment, which is costly and subject to cash requirements in reality; see for example Chu et al. (2015) for a discussion of empirical evidence.\(^3\) We capture these cash requirements on R&D by imposing CIA constraints on innovative R&D in the North and adaptive R&D in the South. Within this monetary growth-theoretic framework, we derive the following results.

Higher inflation in the South causes a permanent decrease in the rate of international technology transfer via the Southern CIA constraint on adaptive R&D. Higher inflation in the South also has the following general-equilibrium effects: a permanent increase in the North-South wage gap, and a temporary decrease in the rate of innovation in the North. Intuitively, higher inflation in the South raises the cost of adaptive R&D, which in turn reduces the incentives for international technology transfer. As a result, less products are manufactured by Southern firms and more products are produced by Northern firms. The higher demand for production labor in the North reduces R&D labor, which in turn decreases the rate of Northern innovation but only temporarily due to the semi-endogenous-growth property of the model. Finally, given that higher inflation in the South has a direct negative effect on the demand for Southern R&D labor, it depresses the wage rate in the South relative

\(^3\) Early empirical studies, such as Hall (1992) and Opler et al. (1999), show a positive and significant relationship between R&D expenditures and cash flows in US firms. From 1980 to 2006, the average cash-to-assets ratio in US firms increased substantially, and Bates et al. (2009) argue that this trend is partly driven by the firms’ increasing R&D expenditures. Brown and Petersen (2011) show that firms smooth their R&D expenditures by maintaining a buffer stock of liquidity in the form of cash reserves. Berentsen et al. (2012) argue that information frictions and limited collateral value of R&D capital require firms to finance R&D projects with cash. Falato and Sim (2014) use firm-level data in the US to show that firms’ cash holdings increase (decrease) significantly in response to a rise (cut) in R&D tax credits. These results suggest that due to financial frictions, firms need to use cash to finance their R&D investment.
to the North.

Higher inflation in the North causes a temporary decrease in the rate of Northern innovation via the CIA constraint on innovative R&D in the North. Higher inflation in the North also has the following general-equilibrium effects: a permanent decrease in the North-South wage gap, and an ambiguous effect on the rate of technology transfer from the North to the South depending on the relative size of the two economies. Specifically, we find that if the Southern population size is sufficiently large (small), then an increase in the inflation rate in the North would cause a permanent decrease (increase) in the rate of technology transfer from the North to the South. Intuitively, higher inflation in the North raises the cost of innovative R&D, which in turn reduces the incentives for innovation. As a result, the rate of innovation decreases temporarily. Given that higher inflation in the North has a direct negative effect on the demand for Northern R&D labor, it depresses the wage rate in the North relative to the South. As for the effects on the rate of international technology transfer, there are two opposing effects. On the one hand, it reduces the long-run level of aggregate quality, which reduces the difficulty of adaptive R&D due to the property of increasing R&D difficulty in the semi-endogenous growth model. This is a positive effect on international technology transfer. On the other hand, higher inflation in the North also reduces the incentives for adaptive R&D because there are less benefits from FDI due to the smaller North-South wage gap. This negative effect on international technology transfer via adaptive R&D labor in the South is relatively strong when the Southern labor force is large. Therefore, the overall effect of higher inflation in the North on technology transfer would be negative (positive) if the Southern population size is sufficiently large (small).

We calibrate the model to China-US data in order to conduct a quantitative investigation on the cross-country effects of inflation via the CIA constraints. We find that permanently decreasing inflation to achieve the Friedman rule (i.e., a zero nominal interest rate) in the US would raise the wage gap between the US and China by 0.18% (percent change) and surprisingly decrease the flow of technology transfer from the US to China by 1.06% (percent change). Decreasing inflation in the US also leads to welfare gains that are equivalent to a permanent increase in consumption of 4.93% in the US and 5.02% in China. These significant welfare gains are due to a large increase in the level of technology by 4.09%. Therefore, the cross-country welfare effect of inflation is quantitatively significant from the North to the South.

On the other hand, permanently decreasing inflation to achieve the Friedman rule in China would reduce the wage gap between the US and China by 0.20% and increase the flow of technology transfer from the US to China by 1.21%. Also, it leads to relatively small welfare gains of 0.41% in China and 0.43% in the US. These small welfare gains are partly due to the small increase in the level of technology by 0.39%. In other words, reducing inflation in China leads to a much smaller increase in the level of technology than reducing inflation in the US. This finding is due to innovation originating from the North.

In the literature on inflation and economic growth, Stockman (1981) and Abel (1985) analyze a CIA constraint on capital investment in a monetary version of the Neoclassical

\footnote{See Venturini (2012) for empirical evidence based on US manufacturing industry data that supports the semi-endogenous growth model with increasing R&D difficulty.}
\footnote{According to the OECD, at the beginning of this century OECD countries performed over 90% of global R&D. Although this share is gradually declining, it remains over 70% in 2014.}
growth model. Subsequent studies in this literature explore the effects of inflation on capital accumulation in variants of the capital-based growth model. For example, Dotsey and Ireland (1996) explore the growth and welfare effects of inflation in an AK-type growth model. Studies in this literature usually find a negative effect of inflation on economic growth; see for example Gillman and Kejak (2005) for a survey. The presence of a negative growth effect of inflation is supported by many empirical studies; see Barro (1996) for an early study and Baharumshah et al. (2016) for a recent survey.

This study associates more closely with the related literature on inflation and innovation-driven growth. In this literature, Marquis and Reffett (1994) provide the seminal study that analyzes the effects of inflation via a CIA constraint on consumption in a variant of the variety-expanding model in Romer (1990). In contrast, we explore the effects of inflation in a Schumpeterian quality-ladder model as in Chu and Lai (2013), Chu and Cozzi (2014), He and Zou (2016), Chu et al. (2017), Huang et al. (2017), Iwaisako and Ohki (2017) and Neto et al. (2017). However, the present study differs from all these closed-economy studies by considering an open-economy two-country model, which enables us to explore the cross-country effects of the CIA constraints on innovation and international technology transfer. In this open-economy model, we find that inflation in a country could lead to a sizable welfare effect in another country, which is an important finding that cannot be obtained in a closed-economy analysis. Chu et al. (2015) also analyze the effects of inflation in an open-economy Schumpeterian model, but they consider an environment with two Northern economies; in other words, the model in Chu et al. (2015) does not feature North-South product cycles and international technology transfer via FDI, which are important characteristics of the interaction between developed and developing economies. To our knowledge, this is the first study that explores the effects of inflation in the presence of North-South product cycles and international technology transfer via FDI. This novel monetary growth-theoretic framework enables us to discover some interesting effects of the CIA constraints on innovation and international technology transfer and to take the model to data for a quantitative analysis of the effects of inflation across developed and developing countries.

Our study also relates to a search-theoretic study of money and innovation by Berentsen et al. (2012), who consider a search-and-matching process in the innovation sector and introduce a channel through which inflation affects innovation activities. This paper complements the interesting work of Berentsen et al. (2012) in the following ways. First, Berentsen et al. (2012) assume a simple innovation process in the form of knowledge capital accumulation that neither features creative destruction nor business-stealing effects that are important elements of the Schumpeterian growth theory. Second, although the search-and-matching framework in Berentsen et al. (2012) provides a useful and elegant microfoundation for the CIA constraint on R&D in a closed economy, our reduced-form modelling of CIA constraints allows us to provide a tractable analysis of the interaction between the two CIA constraints on R&D and FDI across countries.

Finally, our study relates to the literature on the determinants of FDI. In this literature,

\footnote{See also Arawatari et al. (2016) and Hori (2017). Chu et al. (2012) and Wan and Zhang (2016) provide an analysis of inflation in hybrid growth models in which economic growth is driven by both variety expansion and capital accumulation even in the long run.}

\footnote{See also Chu and Ji (2016) and Huang et al. (2015), who analyze the effects of monetary policy in a Schumpeterian model with endogenous market structure.}
studies explore the potential determinants of FDI from a large number of variables; see for example Eaton and Tamura (1994), Carr et al. (2001), Bergstrand and Egger (2007), Head and Ries (2008) and Blonigen and Figer (2014). In this literature, some empirical studies, such as Ahn et al. (1998), Cevis and Camurdan (2007), Demirhan and Mascan (2008), Azam (2010) and Ebiringa and Emeh (2013), find that an increase in inflation in developing countries has a negative effect on their inflows of FDI. Our monetary North-South quality-ladder model provides a theoretical explanation for this empirical negative effect of inflation on FDI in developing countries.

2 A NORTH-SOUTH MONETARY SCHUMPETERIAN MODEL

The North-South quality-ladder growth model is based on Dinopoulos and Segerstrom (2010). The North-South R&D-based growth model originates from the seminal study by Grossman and Helpman (1991). The model in Dinopoulos and Segerstrom (2010) is a recent vintage of this class of models and has the advantage of being free of scale effects by featuring semi-endogenous growth. In the Dinopoulos-Segerstrom model, multinational firms employ Northern R&D labor to invest in innovative R&D that improves the quality of products manufactured in the North. In order to take advantage of the lower production cost in the South, the multinational firms then employ Southern R&D labor to invest in adaptive R&D that transfers the production of the highest quality products from the North to the South. After the manufacturing process of a product is transferred to the South, the multinational firm faces the possibility of the product being imitated by domestic firms in the South.

To facilitate a realistic calibration to data, we generalize the Dinopoulos-Segerstrom model by introducing several parameters. For example, we introduce various R&D externalities that are commonly discussed in the literature. Furthermore, we allow for asymmetric labor productivity between the two countries. To introduce money demand, we incorporate CIA constraints on innovative R&D in the North and adaptive R&D in the South. Then, we analyze the effects of inflation in the two countries on innovation and international technology transfer. The Dinopoulos-Segerstrom model features exogenous imitation; therefore, inflation does not affect imitation.

8Dinopoulos and Segerstrom (2010) provide a review of the subsequent development in this literature that focuses on the effects of intellectual property rights. See also Iwaisako et al. (2011) and Tanaka and Iwaisako (2014) for recent contributions.

10This study focuses on exogenous imitation for the following reasons. First, to allow for endogenous imitation, the Dinopoulos-Segerstrom model would no longer be analytically tractable; see for example Jakobsson and Segerstrom (2017). Second, allowing for endogenous imitation, we would need to assume that imitated products generate monopolistic profits instead of featuring the more realistic competitive pricing for imitated products. Finally, there is empirical evidence supporting a negative relationship between inflation and innovation activities; see for example Chu et al. (2015). However, we are not aware of any empirical evidence for any relationship between inflation and imitation activities.
2.1 Household

In each country, there is a representative household. The lifetime utility function of the household in the North is given by

$$U^N = \int_0^\infty e^{-(\rho - g_L)t} \ln c^N_t \, dt,$$

where c^N_t denotes per capita consumption in the North at time t, and the parameter $\rho > 0$ determines subjective discounting. The population size, which is also the size of the representative household, in the North is L^N_t, which increases at an exogenous population growth rate $g_L > 0$. To ensure that lifetime utility is bounded, we impose the following parameter restriction: $\rho > g_L$. For simplicity, we make a common assumption that $\{\rho, g_L\}$ are the same in the two countries. Total population in the world is $L_t = L^N_t + L^S_t$. We use $s \equiv L^S_t / L_t$ to denote the share of world population in the South and $1 - s \equiv L^N_t / L_t$ to denote the share of world population in the North.

The household in the North maximizes (1) subject to the following asset-accumulation equation:

$$\dot{A}^N_t + \dot{M}^N_t = (i^N_t - g_L)A^N_t - g_LM^N_t + i^N_tB^N_t + W^N_t + D^N_t + T^N_t - P^N_t c^N_t.$$

P^N_t is the price of consumption goods denominated in units of domestic currency in the North. A^N_t is the nominal value of financial assets owned by each member of the household, and i^N_t is the nominal interest rate in the North. M^N_t is the nominal value of domestic currency held by each member of the household. B^N_t is the nominal value of domestic currency borrowed by R&D entrepreneurs to finance their R&D investment in the North, and the rate of return on B^N_t is the domestic nominal interest rate i^N_t. There is a constraint on how much money that each person can lend to R&D entrepreneurs, and the constraint is $B^N_t \leq M^N_t$. Each member of the household supplies one unit of labor to earn a nominal wage W^N_t. D^N_t is the nominal value of a profit from the R&D sector. T^N_t is the nominal value of a lump-sum transfer (or tax if $T^N_t < 0$) from the government to each person in the North.

For convenience, we reexpress the asset-accumulation equation in real terms (denominated in units of consumption goods).

$$\dot{a}^N_t + \dot{m}^N_t = (r^N_t - g_L)a^N_t - (\pi^N_t + g_L)m^N_t + i^N_t b^N_t + w^N_t + d^N_t + \tau^N_t - c^N_t.$$

a^N_t is the real value of financial assets per capita, and $r^N_t = i^N_t - \pi^N_t$ is the real interest rate in the North. π^N_t is the inflation rate of P^N_t in the North. m^N_t is the real value of domestic

11It can be easily shown as a no-arbitrage condition that the rate of return on B^N_t must be equal to i^N_t. The intuition can be explained as follows. The opportunity cost for the household to hold cash is the nominal interest rate. Therefore, in order for the household to be willing to lend cash to firms, it must be the case that firms pay the nominal interest rate in return. If firms pay less than the nominal interest rate, the household would not lend any cash to firms. If they pay more than the nominal interest rate, the household would want to lend an infinite amount of cash to firms.

12In the case of an additional CIA requirement on consumption, the CIA constraint in the North becomes $P^N_t c^N_t + B^N_t \leq M^N_t$. Given that we focus on inelastic labor supply for tractability, the CIA constraint on consumption would have no effect on the equilibrium allocations, except for the real money balance.

13See Section 2.4 for a discussion.
currency per capita. b_i^N is the real value of domestic currency borrowed by domestic R&D entrepreneurs, and the constraint becomes $b_i^N \leq m_i^N$. w_i^N is the real wage rate. d_i^N is the real value of R&D profit. τ_i^N is the real value of the lump-sum transfer from the government.

We follow Dinopoulos and Segerstrom (2010) to assume that there is a global financial market. In this case, the real interest rates in the two countries must be equal such that $r_i^N = r_i^S = r_t$.14 From standard dynamic optimization, the familiar Euler equation is15

$$\frac{\dot{c}_i^N}{c_i^N} = \frac{\dot{c}_i^S}{c_i^S} = r_t - \rho,$$

which implies that the growth rate of consumption is the same across countries.

\subsection*{2.2 Consumption goods}

Consumption goods are produced by perfectly competitive firms that aggregate a unit continuum of intermediate goods $Y_t(j)$ using the following CES aggregator:

$$C_t = \left\{ \int_0^1 [Y_t(j)]^{\frac{\sigma-1}{\sigma}} \, dj \right\}^{\frac{\sigma}{\sigma-1}},$$

where $\sigma > 1$ is the elasticity of substitution between intermediate goods. The resource constraint on C_t is

$$C_t = c_i^N L_i^N + c_i^S L_i^S = [c_i^N (1 - s) + c_i^S s] L_t,$$

where $c_i^N L_i^N$ is total consumption in the North and $c_i^S L_i^S$ is total consumption in the South. P_t^N is the price of consumption goods denominated in units of currency in the North and P_t^S is the price of consumption goods denominated in units of currency in the South. Given zero transportation cost, the law of one price holds such that $P_t^N = \epsilon_t P_t^S$, where ϵ_t is the nominal exchange rate. For convenience, we will express all variables in real terms denominated in units of consumption goods that have the same value in the two countries. From profit maximization, we derive the conditional demand function for $Y_t(j)$ as

$$Y_t(j) = p_t(j)^{-\sigma} C_t$$

for $j \in [0, 1]$. $p_t(j)$ is the price of $Y_t(j)$.

14The nominal interest rates in the two countries would be different if inflation rates differ across countries. However, even when the nominal interest rates differ across countries, there is no incentive for the household to hold foreign currency. The reason is that given the same real interest rate across countries as a result of the global financial market, differences in the nominal interest rates are due to differences in the inflation rates, which in turn equal percent changes in the nominal exchange rate because the law of one price holds in our model as we discuss below. Therefore, a small transaction cost on foreign exchange would discourage the household from holding foreign currency.

15The representative household in the South also performs an analogous dynamic optimization.
2.3 Intermediate goods

There is a unit continuum of differentiated intermediate goods $j \in [0, 1]$. Some of these intermediate goods are produced in the North, and each of these Northern industries is temporarily dominated by a quality leader until the arrival of the next innovation.\(^{16}\) The production function of intermediate goods manufactured by a quality leader in the North is

$$Y_t(j) = z^{n_t(j)}L^N_{y,t}(j) \equiv Y^N_t(j), \quad (7)$$

where the parameter $z > 1$ is the step size of a quality improvement, and $n_t(j)$ is the number of quality improvements that have occurred in industry j as of time t. The firm employs $L^N_{y,t}(j)$ units of labor in the North for production. Given $z^{n_t(j)}$, the marginal cost of production for the industry leader is $w^N_t / z^{n_t(j)}$. We follow Dinopoulos and Segerstrom (2010) to assume that new quality leaders are always able to charge the unconstrained monopolistic price because the closest competitors choose to immediately exit the market in equilibrium.\(^{17}\) In this case, the monopolistic price charged by industry leaders is

$$p_t(j) = \frac{\sigma}{\sigma - 1} \frac{w^N_t}{z^{n_t(j)}} \equiv p^N_t(j). \quad (8)$$

To take advantage of the lower labor cost in the South, industry leaders in the North invest in adaptive R&D in the South in order to shift the manufacturing process to the South. If the adaptive R&D project of a Northern leader is successful, then a Southern affiliate of the Northern leader would start producing the intermediate goods. The production function of intermediate goods manufactured by the foreign affiliate of a Northern quality leader is

$$Y_t(j) = z^{n_t(j)}\delta L^F_{y,t}(j) \equiv Y^F_t(j), \quad (9)$$

where we have introduced $\delta > 0$ as a labor-productivity parameter, which captures the productivity of Southern labor relative to Northern labor. The Southern affiliate employs $L^F_{y,t}(j)$ units of labor in the South for production, and the marginal cost of production is $w^S_t / [\delta z^{n_t(j)}]$, which is assumed to be less than $w^N_t / z^{n_t(j)}$. Given the marginal cost of production, the unconstrained monopolistic price is

$$p_t(j) = \frac{\sigma}{\sigma - 1} \frac{w^S_t}{\delta z^{n_t(j)}} \equiv p^F_t(j). \quad (10)$$

The Southern affiliate produces the intermediate goods until the arrival of the next innovation in the North or until the current innovation is imitated by other firms in the South. When the next innovation arrives, the manufacturing process shifts back to the North. To ensure that this return of production to the North occurs, we follow Dinopoulos and Segerstrom (2010) to assume $w^S_t / \delta > w^N_t / z$, so that new quality leaders are able to drive out Southern affiliates of previous quality leaders.

Technologies of Southern affiliates may be imitated by other Southern firms subject to an exogenous imitation rate ϕ. When this imitation occurs, the intermediate goods are...

\(^{16}\) This is known as the Arrow replacement effect in the literature; see Cozzi (2007a) for a discussion.

\(^{17}\) See Dinopoulos and Segerstrom (2010) for a detailed discussion.
produced by competitive firms in the South. The production function of intermediate goods produced by competitive firms in the South is

\[Y_t(j) = z^{n_t(j)} \delta L^S_{y,t}(j) \equiv Y^S_t(j), \]

and the perfectly competitive price is given by the marginal cost of production:

\[p_t(j) = \frac{w^S_t}{\delta z^{n_t(j)}} \equiv p^S_t(j). \]

Southern competitive firms produce the intermediate goods until the next innovation arrives at which point the manufacturing process shifts back to the North.

Let’s define the aggregate quality index across industries \(j \in [0, 1] \) as

\[Q_t = \int_0^1 q_t(j) dj, \]

where \(q_t(j) = \left[z^{n_t(j)}\right]^{\sigma-1} \). Then, we can derive the labor demands for an average-quality product produced by a Northern leader as

\[\tilde{L}^N_{y,t} = Q_t \left(\frac{\sigma}{\sigma - 1} \right)^{-\sigma} w^N_t C_t, \]

by a Southern affiliate as

\[\tilde{L}^F_{y,t} = \delta^{\sigma-1} Q_t \left(\frac{\sigma}{\sigma - 1} \right)^{-\sigma} w^S_t C_t, \]

and by Southern competitive firms as

\[\tilde{L}^S_{y,t} = \delta^{\sigma-1} Q_t (w^S_t)^{-\sigma} C_t. \]

Using these expressions, we can then express the labor demand for product \(j \) as

\[L^o_{y,t}(j) = \frac{q_t(j)}{Q_t} \tilde{L}^o_{y,t}, \]

where \(o = \{N, F, S\} \). The amount of monopolistic profit earned by a Northern leader is

\[\Pi^N_t(j) = \frac{w^N_t}{\sigma - 1} \frac{q_t(j)}{Q_t} \tilde{L}^N_{y,t}, \]

and the amount of monopolistic profit earned by a Southern affiliate is

\[\Pi^F_t(j) = \frac{w^S_t}{\sigma - 1} \frac{q_t(j)}{Q_t} \tilde{L}^F_{y,t}. \]
2.4 Innovative and adaptive R&D

Innovative R&D is performed by entrepreneurs in the North. If an R&D entrepreneur employs Northern labor $L^N_{r,t}(j)$ to engage in innovative R&D in industry j, then she is successful in inventing the next higher-quality product in the industry with an instantaneous probability given by\(^\text{18}\)

$$
\varphi^N_t(j) = \frac{Q_t^j}{\gamma} \left(\frac{L^N_{r,t}(j)}{Q_t(j)} \right)^{b^N} \left(\frac{L^N_{r,t}(j)}{q_t(j)} \right)^{1-b^N},
$$

(19)

where the parameter $\gamma > 0$ inversely measures innovation productivity, $q_t(j)$ captures the effect of increasing innovation difficulty, which removes the scale effect in the innovation process of the quality-ladder model as in Segerstrom (1998).\(^\text{19}\) Here we introduce a positive R&D spillover effect,\(^\text{20}\) and the parameter $\beta^N \in [0,1)$ measures the degree of this intratemporal R&D externality.\(^\text{21}\) We also consider an intertemporal knowledge spillover, and the parameter $\zeta \in [0,1)$ measures the degree of this externality. The expected benefit from investing in innovative R&D is $v^N_t(j)\varphi^N_t(j)dt$, where $v^N_t(j)$ is the real value of the expected discounted profits generated by an innovation and $\varphi^N_t(j)dt$ is the entrepreneur’s probability of having a successful innovation during the infinitesimal time interval dt. To facilitate the wage payment to R&D labor in the North, the entrepreneurs borrow domestic currency\(^\text{22}\) from the domestic household.\(^\text{23}\) The cost of borrowing is determined by the nominal interest rate i^N_t in the North. To parameterize the strength of the CIA constraint, we assume that a fraction $\xi^N \in [0,1]$ of R&D investment requires the borrowing of money from households such that the amount of borrowing is $\xi^N w^N_t L^N_{r,t}(j)$ in the North. Therefore, the total cost of innovative R&D is $(1 + \xi^N i^N_t)w^N_t L^N_{r,t}(j)dt$. The profit-maximizing condition of R&D is

$$
(1 - \beta^N)\varphi^N_t(j)v^N_t(j) = (1 + \xi^N i^N_t)w^N_t L^N_{r,t}(j).
$$

(20)

Given (20), the amount of R&D profit in the North is\(^\text{24}\)

\(^{18}\)It is useful to note that although our R&D specification features decreasing returns to scale in individual R&D labor $L^N_{r,t}(j)$, it features constant returns to scale in aggregate R&D labor $L^N_{r,t}$ in equilibrium.

\(^{19}\)Section 6 explores the robustness of our results under an alternative R&D specification.

\(^{21}\)In (19), the scaling by Q_t in $(L^N_{r,t}/Q_t)^{\beta^N}$ is to ensure a steady-state value of $\varphi^N_t(j)$.

\(^{22}\)Given that this is wage payment to workers in the domestic economy, the wage payment is naturally paid in domestic currency. Furthermore, there is no incentive for the entrepreneurs to borrow foreign currency and convert it into domestic currency even when the nominal interest rates differ across countries because uncovered interest rate parity holds in our model.

\(^{23}\)Due to the static nature of the R&D sector in the model, we cannot consider the case in which R&D entrepreneurs accumulate cash holdings. However, even if we allow entrepreneurs to accumulate cash, inflation would have the same positive effect on the cost of R&D as in our current setting in which entrepreneurs borrow cash from the household because the opportunity cost of using cash to finance R&D is determined by the nominal interest rate in both cases.

\(^{24}\)Positive profit in the R&D sector can be justified by the presence of a fixed factor input $K^N(j)$, which is implicitly normalized to unity. For example, this fixed factor input may be the entrepreneurial talent of R&D entrepreneurs in the specific industry. Given that not everyone possesses this entrepreneurial talent, there is no free entry in this industry generating a monopolistic rent that is captured by the entrepreneurs.
\[d_t^N(j) = \beta^N \varphi_t^N(j)v_t^N(j). \]

Adaptive R&D in the South is performed by local entrepreneurs and the Southern affiliates of Northern industry leaders. If the Southern affiliate of a Northern leader in industry \(j \) employs Southern labor \(L_{r,t}^S(j) \) to engage in adaptive R&D, then the Northern firm is successful in shifting the production to the Southern affiliate with an instantaneous probability given by

\[\varphi_t^F(j) = \frac{Q_t^C}{\alpha} \left[\frac{L_{r,t}^F}{Q_t^N} \right]^{\beta^F} \left[\frac{L_{r,t}^F(j)}{q_t(j)} \right]^{1-\beta^F}, \tag{21} \]

where the parameter \(\alpha > 0 \) inversely measures adaptation productivity. \(q_t(j) \) captures the effect of increasing adaptation difficulty, and it removes the scale effect in the adaptation process as in Dinopoulos and Segerstrom (2010). Here we introduce a positive spillover effect of increasing adaptation difficulty, and it removes the scale effect in the adaptation process.

Given (22), the amount of R&D profit in the South is

\[d_t^F(j) = \beta^F \varphi_t^F(j) \left[v_t^F(j) - v_t^N(j) \right]. \tag{23} \]

Finally, Southern affiliates face the risk of imitation (with an exogenous probability \(\phi > 0 \)) by other firms in the South.

2.5 Stock market

The no-arbitrage condition that determines the value of \(v_t^N(j) \) is given by

\[r_t = \frac{\Pi_t^N(j) - (1 + \xi^S i_t^S)w_t^S L_{r,t}^F(j) - d_t^F(j) + \varphi_t^N(j)v_t^N(j) + \varphi_t^F(j) \left[v_t^F(j) - v_t^N(j) \right]}{v_t^N(j)}. \tag{27} \]

\[25 \text{In (21), the scaling by } Q_t^N \text{ (to be defined in Section 3.1) in } (L_{r,t}^F/Q_t^N)^{\beta^F} \text{ ensures a steady-state } \varphi_t^F(j). \]

\[26 \text{Once again, positive profit is the rent captured by local entrepreneurs who own a fixed factor input } K^S(j), \text{ which is normalized to unity.} \]

\[27 \text{It is useful to note that the following } \Pi_t^N(j) \text{ refers to the profit after the arrival of the next innovation.} \]
The no-arbitrage condition that determines the value of adaptive R&D is successful. Using (22) and (23), we simplify the no-arbitrage condition to:

\[
\frac{\Pi_t^N(j) + \dot{v}_t^N(j) - \varphi_t^N(j)v_t^N(j)}{v_t^N(j)}.
\]

This condition equates the real interest rate \(r_t \) to the asset return per unit of asset. The asset return is the sum of (a) monopolistic profits net of adaptive R&D expenditure and rent, \(\dot{v}_t^N(j) \), (b) any potential capital gain \(v_t^N(j) \), (c) the expected capital loss \(-\varphi_t^N(j)v_t^N(j) \) from creative destruction, and (d) the expected change in asset value \(\varphi_t^N(j) [v_t^N(j) - v_t^N(j)] \) when adaptive R&D is successful. Using (22) and (23), we simplify the no-arbitrage condition to a more familiar expression given by

\[
r_t = \frac{\Pi_t^N(j) + \dot{v}_t^N(j) - \varphi_t^N(j)v_t^N(j)}{v_t^N(j)}.
\]

The no-arbitrage condition that determines the value of \(v_t^F(j) \) is given by:

\[
r_t = \frac{\Pi_t^F(j) + \dot{v}_t^F(j) - [\varphi_t^N(j) + \phi]v_t^F(j)}{v_t^F(j)}.
\]

This condition equates the real interest rate \(r_t \) to the asset return per unit of asset. The asset return is the sum of (a) monopolistic profits net of adaptive R&D expenditure and rent, \(\dot{v}_t^F(j) \), (b) any potential capital gain \(v_t^F(j) \), (c) the expected capital loss \(-\varphi_t^N(j)v_t^F(j) \) from creative destruction, and (d) the expected capital loss \(-\varphi_t^F(j) \) from imitation.

The value of a successful innovation \(v_t^N(j) \) in industry \(j \) is linearly increasing in \(\Pi_t^N(j) \), which in turn is linearly increasing in \(q_t \) as shown in (17). Together with \(L_t^N(j) \) being linearly increasing in \(q_t \), the arrival rate of innovation \(\varphi_t^N(j) \) is independent of \(q_t \). Therefore, we follow the standard treatment in this class of models to focus on the symmetric equilibrium in which \(\varphi_t^N(j) = \varphi_t^N \). Similarly, the property that \(v_t^F(j) \) and \(L_t^F(j) \) are linearly increasing in \(q_t \) implies that \(\varphi_t^F(j) \) is independent of \(q_t \). Therefore, we focus on the symmetric equilibrium in which \(\varphi_t^F(j) = \varphi_t^F \).

2.6 Monetary authority

The monetary policy instrument in the North (South) is the domestic inflation rate \(\pi_t^N (\pi_t^S) \), which is exogenously chosen by the Northern (Southern) monetary authority. Given \(\pi_t^N (\pi_t^S) \), the nominal interest rate in the North (South) is endogenously determined according to the Fisher identity \(i_t^N = \pi_t^N + r_t \) \((i_t^S = \pi_t^S + r_t) \), where \(r_t \) is the global real interest rate. Then, the growth rate of the nominal money supply per capita in the North (South) is endogenously determined by \(\dot{M}_t^N/M_t^N = \pi_t^N + \dot{m}_t^N/m_t^N \) \((\dot{M}_t^S/M_t^S = \pi_t^S + \dot{m}_t^S/m_t^S) \). The Northern (Southern) monetary authority returns the seigniorage revenue as a lump-sum transfer that has a real value of \(\tau_t^N = (\dot{M}_t^N + g_L M_t^N)/P_t^N \) \((\tau_t^S = (\dot{M}_t^S + g_L M_t^S)/P_t^S) \) to each member of the domestic household in the North (South).

It can be shown that due to the semi-endogenous-growth property of the model, the long-run growth rate of total consumption \(C_t \) is given by \(g_L \left[1 + (\sigma - 1) (1 - \zeta) / ([1 - \zeta] (\sigma - 1)) \right] \). Therefore, from the Euler equation (3), the real interest rate in the steady state is given by

28. Recall that R&D rent is not captured by Northern leaders or their Southern affiliates.

29. See Cozzi (2007b) for a discussion on the possibility of multiple equilibria in the Schumpeterian growth model. Cozzi et al. (2007) provide theoretical justification for the symmetric equilibrium to be the unique rational-expectation equilibrium in the Schumpeterian growth model.
Consequently, there is an one-to-one relationship between the nominal interest rate and the inflation rate in the long run such that \(i^N = \pi^N + \rho + g_L/[(1 - \zeta)(\sigma - 1)] \) and \(i^S = \pi^S + \rho + g_L/[(1 - \zeta)(\sigma - 1)] \). Therefore, the relationship between the nominal interest rate \(i \) and the inflation rate \(\pi \) is given by the following equation:

\[
(1 - \zeta)(1 + \pi) = \frac{\rho + g_L}{\rho + g_L + \frac{\zeta}{1 - \zeta}}.
\]

2.7 Decentralized equilibrium

The equilibrium is a time path of allocations \(\{c_t^N, c_t^S, C_t, Y_t^N(j), Y_t^F(j), Y_t^S(j), L_{y,t}^N(j), L_{y,t}^S(j), L_{r,t}^N(j), L_{r,t}^F(j)\}_{t=0}^\infty \), a time path of prices \(\{w_t^N, w_t^S, p_t^N(j), p_t^F(j), p_t^S(j), v_t^N, v_t^F, \epsilon_t\}_{t=0}^\infty \) and a time path of monetary policies \(\{i_t^N, i_t^S\}_{t=0}^\infty \). Also, at each instance of time,

- the representative household in the North maximizes lifetime utility taking \(\{r_t, i_t^N, w_t^N\} \) as given;
- the representative household in the South maximizes lifetime utility taking \(\{r_t, i_t^S, w_t^S\} \) as given;
- competitive consumption-good firms produce \(C_t \) to maximize profit taking \(\{p_t^N(j), p_t^F(j), p_t^S(j)\} \) as given;
- quality leaders in the North choose \(p_t^N(j) \) and produce \(Y_t^N(j) \) to maximize profit taking \(w_t^N \) as given;
- affiliates in the South choose \(p_t^F(j) \) and produce \(Y_t^F(j) \) to maximize profit taking \(w_t^S \) as given;
- competitive intermediate goods firms produce \(Y_t^S(j) \) to maximize profit taking \(\{p_t^S(j), w_t^S\} \) as given;
- R&D entrepreneurs in the North employ \(L_{r,t}^N(j) \) to do innovative R&D taking \(\{i_t^N, w_t^N, v_t^N\} \) as given;
- quality leaders in the North and their affiliates in the South employ \(L_{r,t}^F(j) \) to do adaptive R&D taking \(\{i_t^S, w_t^S, v_t^F\} \) as given;
- the market-clearing condition for consumption goods holds;
- the market-clearing conditions for labor hold in both countries; and
- finally, the nominal exchange rate is determined by the law of one price such that \(\epsilon_t = P_t^N / P_t^S \).

\[30\] Empirical evidence supports a positive long-run relationship between inflation and the nominal interest rate; see for example Mishkin (1992) and Booth and Ciner (2001).
3 STEADY-STATE EQUILIBRIUM

In this section, we proceed to solve the steady-state equilibrium in the following steps. First, we derive the steady-state number of each type of industries and the steady-state expression of the quality index. Then, we derive the steady-state labor market conditions in the two countries. Finally, we put all these conditions together to derive the steady-state equilibrium rates of technology transfer and innovation.

3.1 Industry composition and quality dynamics

In the intermediate goods sector, there are three types of industries in which intermediate goods are produced respectively by Northern quality leaders, Southern affiliates, and Southern competitive firms. We use \(\{\theta^N, \theta^F, \theta^S\} \) to denote the steady-state measure of these three types of industries. To solve for these three endogenous variables, we use the following conditions. First, the measure of all industries adds up to one.

\[
\theta^N + \theta^F + \theta^S = 1. \tag{26}
\]

In the steady state, the flows in and out of each type of industry must be equal. The flow into industries \(\theta^S \) dominated by Southern competitive firms is \(\theta^F \phi \) given by the measure of industries in which Southern affiliates’ technologies are imitated. The flow out of industries \(\theta^S \) dominated by Southern competitive firms is \(\theta^S \varphi^N \) given by the measure of these competitive industries experiencing the arrival of new innovations in the North. Therefore, the second condition is

\[
\theta^F \phi = \theta^S \varphi^N. \tag{27}
\]

The flow into industries \(\theta^F \) dominated by Southern affiliates is \(\theta^N \varphi^F \) given by the measure of industries in the North experiencing successful R&D adaptation. The flow out of industries \(\theta^F \) dominated by Southern affiliates is the sum of (a) \(\theta^F \varphi^N \) given by the measure of these industries experiencing the arrival of new innovations in the North and (b) \(\theta^F \phi \) given by the measure of industries in which Southern affiliates’ technologies are imitated. Therefore, the third condition is

\[
\theta^N \varphi^F = \theta^F (\varphi^N + \phi). \tag{28}
\]

Solving (26), (27) and (28) yields

\[
\theta^N = \frac{\varphi^N}{\varphi^N + \varphi^F}, \tag{29}
\]

\[
\theta^F = \frac{\varphi^N}{\varphi^N + \phi \varphi^N + \varphi^F}, \tag{30}
\]

\[
\theta^S = \frac{\phi}{\varphi^N + \phi \varphi^N + \varphi^F}. \tag{31}
\]

The aggregate quality index across industries \(j \in [0, 1] \) is

\[
Q_t \equiv \int_0^1 q_t(j) dj = \int_0^1 \lambda^t(j) dj, \tag{32}
\]
where $\lambda \equiv z^{\sigma-1}$ is a composite parameter that is increasing in the quality step size z. This quality index can be decomposed into the following three components:

$$Q_t = Q_t^N + Q_t^F + Q_t^S = \int_{\theta^N} q_t(j) dj + \int_{\theta^F} q_t(j) dj + \int_{\theta^S} q_t(j) dj.$$ (33)

Lemma 1 provides the steady-state expression for the share of each of these three components of aggregate quality.

LEMMA 1 *In the steady state, the three components of aggregate quality can be expressed as*

$$\frac{Q_t^N}{Q_t} = \frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F},$$ (34)

$$\frac{Q_t^F}{Q_t} = \frac{\lambda \varphi^N}{\lambda \varphi^N + \phi \lambda \varphi^N + \varphi^F},$$ (35)

$$\frac{Q_t^S}{Q_t} = \frac{\phi}{\lambda \varphi^N + \phi \lambda \varphi^N + \varphi^F}.$$ (36)

PROOF. See Appendix. ■

3.2 Northern labor market

The market-clearing condition for labor in the North is given by

$$L_t^N = L_{y,t}^N + L_{r,t}^N = \int_{\theta^N} L_{y,t}^N(j) dj + \int_{0}^{1} L_{r,t}^N(j) dj.$$ (37)

The amount of labor employed for production by Northern quality leaders is

$$L_{y,t}^N = \int_{\theta^N} \frac{q_t(j)}{Q_t} \tilde{I}_{y,t}^N dj = \frac{Q_t^N}{Q_t} \tilde{I}_{y,t}^N,$$ (38)

where the first equality uses (16). The amount of labor employed for innovative R&D is

$$L_{r,t}^N = \gamma \varphi^N_t Q_t^{1-\zeta},$$ (39)

which uses (19) and the symmetry condition $\varphi^N_t(j) = \varphi^N_t$. We define x_t^N as the average quality per Northern worker such that

$$x_t^N = \frac{Q_t^{1-\zeta}}{L_t^N}.$$

Finally, substituting (34), (38) and (39) into (37) yields the steady-state Northern labor-market condition expressed in per-capita terms given by

$$1 = \frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} \tilde{I}_{y,t}^N \frac{1}{1 - s} + \gamma \varphi^N x_t,$$ (40)

where we also have used $L_t^N = (1 - s) L_t$.

3.3 Southern labor market

The market-clearing condition for labor in the South is given by

\[L_{S}^{t} = L_{S}^{y,t} + L_{F}^{y,t} + L_{F}^{r,t} = \int_{\theta_{S}^{y}}^{1} L_{S}^{y,t}(j) dj + \int_{\theta_{F}^{y}}^{1} L_{F}^{y,t}(j) dj + \int_{\theta_{N}^{y}}^{1} L_{F}^{r,t}(j) dj. \] \hspace{1cm} (41)

The amount of labor employed for production by Southern competitive firms is

\[L_{S}^{y,t} = \frac{q_{t}(j)}{Q_{t}} L_{S}^{y,t} = \frac{Q_{t}^{S}}{Q_{t}} L_{S}^{y,t}, \] \hspace{1cm} (42)

where the first equality uses (16). The amount of labor employed for production by Southern affiliates is

\[L_{F}^{y,t} = \frac{q_{t}(j)}{Q_{t}} L_{F}^{y,t} = \frac{Q_{t}^{F}}{Q_{t}} L_{F}^{y,t}, \] \hspace{1cm} (43)

where the first equality also uses (16). The amount of labor employed for adaptive R&D by Southern affiliates is

\[L_{F}^{r,t} = \alpha \varphi_{t}^{F} \frac{Q_{t}^{N}}{Q_{t}} = \alpha \varphi_{t}^{F} \frac{Q_{t}^{N} Q_{t}^{1-\zeta}}{Q_{t}}, \] \hspace{1cm} (44)

where the first equality uses (21) and the symmetry condition \(\varphi_{t}^{F}(j) = \varphi_{t}^{F} \). Substituting (34)-(36) and (42)-(44) into (41) yields the steady-state Southern labor market condition expressed in per-capita terms given by

\[1 = \frac{\varphi_{t}^{F}}{\lambda \varphi_{t}^{N} + \varphi_{t}^{F}} \left(\frac{\phi}{\lambda \varphi_{t}^{N} + \phi} \frac{L_{F}^{y,t} N}{L_{S}^{y,t}} + \frac{\lambda \varphi_{t}^{N}}{\lambda \varphi_{t}^{N} + \phi} \frac{L_{F}^{r,t}}{L_{S}^{y,t}} + \alpha \lambda \varphi_{t}^{N} \frac{Q_{t}^{1-\zeta}}{L_{S}^{y,t}} \right), \] \hspace{1cm} (45)

where \(Q_{t}^{1-\zeta}/L_{S}^{t} = x_{t} N L_{t}^{N}/L_{S}^{t} = x_{t} N (1 - s)/s \) and

\[\frac{\phi}{\lambda \varphi_{t}^{N} + \phi} \frac{L_{F}^{y,t}}{L_{S}^{y,t}} + \frac{\lambda \varphi_{t}^{N}}{\lambda \varphi_{t}^{N} + \phi} \frac{L_{F}^{r,t}}{L_{S}^{y,t}} = \frac{\phi}{\lambda \varphi_{t}^{N} + \phi} \left(\frac{\sigma}{\sigma - 1} \right)^{\sigma} + \frac{\lambda \varphi_{t}^{N}}{\lambda \varphi_{t}^{N} + \phi} \right \} \frac{L_{F}^{r,t} 1}{L_{t} s} \] \hspace{1cm} (46)

which uses (14), (15) and \(L_{i}^{S} = s L_{i} \). It is useful to note that \(\Phi(\phi) \) is increasing in \(\phi \).

3.4 Innovation and technology transfer

We first derive the growth rate of the quality index. Differentiating (32) with respect to time yields

\[\dot{Q}_{t} = \int_{0}^{1} \left[\lambda^{n_{t}(j)+1} - \lambda^{n_{t}(j)} \right] \varphi_{t}^{N} dj = (\lambda - 1) \varphi_{t}^{N} Q_{t}. \] \hspace{1cm} (46)

Then, taking the log of \(x_{t}^{N} = Q_{t}^{1-\zeta}/L_{i}^{N} \) and differentiating with respect to time yields

\[\frac{\dot{x}_{t}^{N}}{x_{t}^{N}} = (1 - \zeta) \frac{\dot{Q}_{t}}{Q_{t}} - \frac{\dot{L}_{t}^{N}}{L_{t}^{N}} = (1 - \zeta) (\lambda - 1) \varphi_{t}^{N} - g_{t}. \] \hspace{1cm} (47)
In the steady state, \(x_t^N \) is stationary implying that the steady-state arrival rate of innovation is

\[
\varphi^N = \frac{g_L}{(1 - \zeta)(\lambda - 1)}, \quad (48)
\]

which is determined by exogenous parameters in this semi-endogenous growth model. As discussed in Dinopoulos and Segerstrom (2010), the law of motion in (47) implies that any increase (decrease) in the steady-state level of \(x^N \) must be associated with a temporary increase (decrease) in \(\varphi_t^N \) during the transition path. Therefore, if a parameter increases (decreases) \(x^N \) in the long run, it must have increased (decreased) \(\varphi_t^N \) in the short run.

Using (24) and (25), one can show that the balanced-growth values of assets are

\[
v_t^N(j) = \frac{\Pi_t^N(j)}{\rho + \varphi^N}, \quad (49)
\]

\[
v_t^F(j) = \frac{\Pi_t^F(j)}{\rho + \varphi^N + \phi}. \quad (50)
\]

Substituting (17), (19) and (49) into (20) yields the following steady-state innovative R&D condition:

\[
\frac{(\sigma - 1)(\rho + \varphi^N)(1 + \xi^N i^N)\gamma}{1 - \beta^N} = \frac{\bar{L}_{y,t}^N}{Q_t^{1 - \xi}} = \frac{1}{(1 - s)x^N L_t}, \quad (51)
\]

where the second equality is obtained by multiplying \(\bar{L}_{y,t}^N / Q_t^{1 - \xi} \) by \(1 = (L_t / L_i)(L_i^N / L_i^F) \).

Similarly, substituting (18), (19), (20), (21) and (50) into (22) yields the following steady-state adaptive R&D condition:

\[
(\sigma - 1)(\rho + \varphi^N + \phi) \left[\frac{(1 + \xi^S i^S)\alpha}{1 - \beta^F} + \frac{(1 + \xi^N i^N)\gamma \omega}{1 - \beta^N} \right] = \frac{\bar{L}_{y,t}^F}{Q_t^{1 - \xi}} = \frac{1}{(1 - s)x^N L_t}, \quad (52)
\]

where \(\omega \equiv w_t^N / w_t^S \) is the relative wage between the two countries. Using (13) and (14), we derive

\[
\frac{\bar{L}_{y,t}^F}{L_t} = \delta^\sigma \omega^\sigma \frac{\bar{L}_{y,t}^N}{L_t}. \quad (53)
\]

Substituting (51) and (52) into (53) yields the following steady-state relative-wage condition:

\[
\frac{\rho + \varphi^N}{\rho + \varphi^N + \phi} (\delta \omega)^\sigma - \delta \omega = \delta \left(\frac{1 - \beta^N}{1 - \beta^F} \right) \left(\frac{1 + \xi^S i^S \alpha}{1 + \xi^N i^N \gamma} \right), \quad (54)
\]

which is an implicit function determining the steady-state equilibrium value of the relative wage \(\omega(i^N, i^S) \). It can be shown using (54) that \(\omega(i^N, i^S) \) is decreasing in \(i^N \) and increasing in \(i^S \). Given \(\sigma > 1 \), it is easy to show that \(\delta \omega > 1 \). Then, to ensure that \(z > \delta \omega \),\(^{31}\) we impose the following parameter restriction:

\[
\frac{\rho + \varphi^N}{\rho + \varphi^N + \phi} z^\sigma - z > \delta \left(\frac{1 - \beta^N}{1 - \beta^F} \right) \left(\frac{1 + \xi^N i^N \gamma}{1 + \xi^S i^S \alpha} \right). \quad (P1)
\]

\(^{31}\) \(z > \delta \omega \) is equivalent to \(w^S / \delta > w^N / z \).
Substituting (51) into (40) to eliminate \(\bar{L}^N_{y,t}/L_t \) yields the Northern steady-state condition given by

\[
1 = \gamma x^N \left(\frac{(\sigma - 1)\rho + \varphi^N}{1 - \beta^N} \right) \left(\frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} (1 + \xi^N N^) + \varphi^N \right).
\]

The Northern steady-state condition contains two endogenous variables \(\{x^N, \varphi^F\} \) and is positively sloped in the \((x^N, \varphi^F) \) space with a positive \(x^N \)-intercept. The intuition for the positive relationship between \(x^N \) and \(\varphi^F \) in the Northern steady-state condition can be explained as follows. A larger \(\varphi^F \) leads to more products being manufactured in the South and less products being manufactured in the North, which in turn leads to a reallocation of labor in the North from production to innovative R&D due to the resource constraint on Northern labor. Then, increasing northern R&D labor raises \(x^N \) in the steady state.

Substituting (52) into (45) to eliminate \(\bar{L}^F_{y,t}/L_t \) yields the Southern steady-state condition given by

\[
1 = \frac{x^N \varphi^F (1 - s)/s}{\lambda \varphi^N + \varphi^F} \left((\sigma - 1)(\rho + \varphi^N + \phi) \left(\frac{(1 + \xi^S i^S)\alpha}{1 - \beta^F} + \frac{(1 + \xi^N i^N)\gamma}{1 - \beta^N} \omega(i^N, i^S) \right) \Phi(\phi) + \alpha \lambda \varphi^N \right).
\]

The Southern steady-state condition also contains two endogenous variables \(\{x^N, \varphi^F\} \) and is negative sloped in the \((x^N, \varphi^F) \) space with no intercepts. The intuition for the negative relationship between \(x^N \) and \(\varphi^F \) in the Southern steady-state condition can be explained as follows. A larger \(\varphi^F \) leads to more products being manufactured in the South, which in turn leads to a reallocation of labor in the South from adaptive R&D to production due to the resource constraint on Southern labor. As (44) shows, a larger \(\varphi^F \) would be consistent with a lower amount of adaptive R&D labor if the difficulty level \(x^N = Q^{1-\zeta}/L^N \) decreases sufficiently (i.e., technologies become sufficiently easier to be transferred to the South).

Finally, (55) and (56) are the two conditions that implicitly solve for the steady-state equilibrium values of \(\{x^N, \varphi^F\} \). Graphically, \(x^N \) and \(\varphi^F \) are determined by the intersection of the North curve and the South curve in Figure 1.

[Insert Figure 1 here]

3.5 Social welfare

In this section, we derive the steady-state level of social welfare in each country, which we will use to simulate the welfare effects of the CIA constraints in the quantitative analysis. Imposing balanced growth on (1) yields the steady-state welfare of the Northern household given by

\[
U^N = \frac{1}{\rho - g_L} \left(\ln c_0^N + \frac{g_c}{\rho - g_L} \right),
\]

Note: 32 Recall that \(\varphi^N = g_L / [(1 - \zeta)(\lambda - 1)] \) and \(i^N = \pi^N + \rho + g_L / [(1 - \zeta)(\sigma - 1)] \) are determined by exogenous parameters in the steady state.

33 Recall that \(\omega(i^N, i^S) \) in (54) and \(i^S = \pi^S + \rho + g_L / [(1 - \zeta)(\sigma - 1)] \) are also determined by exogenous parameters in the steady state.

34 These conditions are the same as the ones in Dinopoulos and Segerstrom (2010) when \(\delta = 1 \) and \(\zeta = \beta^N = \beta^S = \xi^N = \xi^S = i^N = i^S = 0 \).
where \(g_c = g_L / [(1 - \zeta) (\sigma - 1)] \) is determined by exogenous parameters due to semi-endogenous growth. Therefore, the steady-state welfare is determined by the balanced-growth level of consumption. Substituting the lump-sum transfer \(\tau_i^N \) from the government into (2) yields

\[
c_i^N = (r_i - a_i^N / a_i^N - g_L) a_i^N + i_i^N b_i^N + w_i^N + d_i^N.
\]

Therefore, the balanced-growth level of consumption \(c_0^N \) is given by the sum of (a) asset income \((\rho - g_L) a_0^N\), (b) interest income \(i_0^N b_0^N\), (c) wage income \(w_0^N\), and (d) R&D profit income \(d_0^N\). An analogous derivation applies to the steady-state welfare of the Southern household. To determine \(a_0^N \) and \(a_0^S \), we need to impose an assumption on the distribution of assets. Following Dinopoulo and Segerstrom (2010), we assume that the asset from innovative R&D in the North is owned by the Northern household whereas the asset from adaptive R&D in the South is owned by the Southern household. Under this assumption, we show in Lemma 2 that the balanced-growth levels of consumption can be expressed as

\[
c_0^N = w_0^NI^N \quad \text{and} \quad c_0^S = w_0^SI^S,
\]

where \(I^N \) and \(I^S \) denote income as a ratio of real wages because the different types of income are proportional to \(w_0^N \).

LEMMA 2 The balanced-growth level of consumption can be expressed as

\[
c_0^N = w_0^NI^N = (\Psi Q_0) \frac{1}{\sigma} I^N = \left[\frac{\Psi(L_0^N x^N)^{\frac{1}{\sigma}}}{\sigma} \right] I^N, \tag{58}
\]

\[
c_0^S = w_0^SI^S = \frac{(\Psi Q_0)}{\omega} I^S = \left[\frac{\Psi(L_0^N x^N)^{\frac{1}{\sigma}}}{\sigma} \right] I^S, \tag{59}
\]

where \(L_0^N \) is exogenous and \(\{\Psi, I^N, I^S\} \) are given by

\[
\Psi = \frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} \left(\frac{\sigma - 1}{\sigma} \right)^{\sigma-1} + \frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} \left(\frac{\sigma - 1}{\sigma} \right)^{\sigma-1} (\delta \omega)^{-\sigma-1} + \frac{\phi^N}{\lambda \varphi^N + \varphi^F} (\delta \omega)^{-\sigma-1},
\]

\[
I^N = \frac{(\rho - g_L) (1 + \xi i_N) \gamma x^N}{1 - \beta^N} \left(\frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} + \frac{\lambda \varphi^F}{\lambda \varphi^N + \varphi^F + \varphi^F} \right) + \frac{i_0^N \xi \varphi^N \gamma x^N}{1 - \beta^N},
\]

\[
I^S = \frac{(\rho - g_L) (1 + \xi s i_S) \gamma x^N}{1 - \beta^F} \left(\frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} + \frac{\varphi^F}{\lambda \varphi^N + \varphi^F} \right) + \frac{i_0^S \xi \varphi^F \gamma x^N}{1 - \beta^F} \left(\frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F + \varphi^F} - \frac{s}{s} \right).
\]

\[\text{Interest income} \quad i_0^N b_0^N \quad \text{appears in the budget of the household because together with R&D labor income (captured by wage income} \quad w_0^N), \text{it represents the factor income from R&D that is paid to the household.}\]
The intuition of the above expressions can be explained as follows. Recall that real wages are given by
\[w^N_0 = \left[\Psi \left(L^N_0 x^N \right)^{\frac{1}{1-\gamma}} \right]^{1-\gamma} \] and
\[w^S_0 = \left[\Psi \left(L^S_0 x^S \right)^{\frac{1}{1-\gamma}} \right]^{1-\gamma} \]; therefore, the term \(\Psi \) captures the quality contributions of Northern leaders, Southern affiliates, and Southern competitive firms to consumption through the real wage. As for the terms \(I^N \) and \(I^S \), they represent the contributions of the different sources of income to consumption.

4 INFLATION AND THE CIA CONSTRAINTS

In this section, we explore the effects of inflation via the CIA constraints. A higher inflation rate \(\pi^S \) in the South increases the Southern nominal interest rate \(i^S \) and affects only the Southern steady-state condition in (56). Specifically, it shifts the South curve to the left in Figure 1. As a result, both \(\varphi^F \) and \(x^N \) decrease along with an increase in \(\omega \) as implied by (54). Intuitively, a higher nominal interest rate \(i^S \) in the South raises the cost of adaptive R&D and reduces the rate of international technology transfer \(\varphi^F \). The decrease in the number of products manufactured by Southern affiliates implies more products being produced by Northern firms. The higher demand for production labor causes a reallocation of labor in the North from R&D to production. The decrease in innovative R&D in the North decreases the rate of innovation in the short run and leads to a lower average quality per worker \(x^N \) in the long run. Finally, given that the increase in \(\pi^S \) and \(i^S \) has a direct negative effect on the demand for Southern R&D labor, it depletes the wage rate in the South relative to the North. We summarize these results in Proposition 1.

PROPOSITION 1 A higher inflation rate in the South leads to (a) a permanent decrease in the rate of technology transfer from the North to the South, (b) a permanent increase in the North-South wage gap, and (c) a temporary decrease in the rate of innovation in the North.

PROOF. See Appendix. ■

A higher inflation rate \(\pi^N \) in the North increases the Northern nominal interest rate \(i^N \) and affects both the Northern and Southern steady-state conditions in (55) and (56). Specifically, it shifts both the South curve and the North curve to the left in Figure 1. As a result, the effect on \(\varphi^F \) is ambiguous, and \(x^N \) decreases along with a decrease in \(\omega \) as implied by (54). Intuitively, an increase in the nominal interest rate \(i^N \) in the North raises the cost of innovative R&D. As a result, the rate of innovation decreases in the short run, and the average quality per worker \(x^N \) decreases in the long run. Given that the increase in \(\pi^N \) and \(i^N \) has a direct negative effect on the demand for Northern R&D labor, it depletes the wage rate in the North relative to the South.

As for the effect of \(\pi^N \) and \(i^N \) on the rate of international technology transfer \(\varphi^F \), there are two opposing effects. To see this, we use \(\varphi^F_t(j) = \varphi^F_t \) and (44) to derive

\[\varphi^F_t = \frac{Q^F_t}{\alpha Q^N_t L^F_t} = \frac{1}{\alpha x^N_t (1-s) L_t Q^N_t} \]
where the second equality uses $x_i^N = Q_i^{1-\xi}/L_i^N$ and $L_i^N = (1-s)L_t$. In the steady state, Q_t^N/Q_t is given by (34), and hence, (60) can be reexpressed as

$$\frac{\lambda \phi^N \varphi^F}{\lambda \phi^N + \varphi^F} = \frac{1}{\alpha x_N (1-s)L_t},$$

(61)

where the left-hand side is monotonically increasing in φ^F. From (61), we see that the Northern nominal interest rate i^N affects φ^F via the quality level per worker x^N and the number of adaptive R&D workers $L^F_{r,t}$. On the one hand, an increase in i^N reduces x^N and has a positive effect on φ^F by decreasing the difficulty of adaptive R&D. On the other hand, the increase in i^N also reduces the incentives for adaptive R&D by changing the asset values. To see this, we combine (49) and (50) to derive

$$v_t^F(j) = v_t^N(j) = \frac{\rho + \varphi^N}{\rho + \varphi^N + \phi \Pi_t^N(j)} = \frac{\rho + \varphi^N}{\rho + \varphi^N + \phi} \left(\frac{w_t^S}{w_t^N} \right)^{\sigma-1},$$

(62)

where the second equality uses (17)-(18) and then (13)-(14). Recall that the increase in i^N reduces the relative wage $\omega = w_t^N/w_t^S$; therefore, it also reduces $v_t^F(j)/v_t^N(j)$. In other words, the decrease in the North-South wage gap makes adaptive R&D less attractive relative to innovative R&D. This leads to a decrease in adaptive R&D in the South, which in turn has a negative effect on the rate of international technology transfer φ^F. This negative effect of i^N via the number of adaptive R&D workers in the South is relatively strong when the Southern population size s is large. Therefore, the overall effect of π^N and i^N on φ^F would be negative if s is sufficiently large, and vice versa. We summarize these results in Proposition 2.

PROPOSITION 2 A higher inflation rate in the North leads to (a) a temporary decrease in the rate of innovation in the North, (b) a permanent decrease in the North-South wage gap, and (c) a permanent decrease (increase) in the rate of technology transfer to the South if Southern population size is sufficiently large (small).

PROOF. See Appendix. ■

5 QUANTITATIVE ANALYSIS FOR CHINA AND THE US

In this section, we provide a quantitative analysis on the effects of inflation via the CIA constraints. Specifically, we explore their welfare implications. Therefore, the purpose of this section is to provide an illustrative numerical experiment to quantify the welfare effects of inflation via the CIA constraints. For the parameter values, we set them to conventional values in the literature or calibrate them using empirical moments. For parameters that are difficult to pin down, we will consider robustness checks. We consider China as the South and the US as the North.

In the qualitative analysis in the previous section, we obtain the pattern of production shifting back to the North upon the arrival of new innovations by imposing $z > \delta \omega$ using the
parameter restriction in (P1). The condition \(z > \delta \omega \) allows the model to deliver a realistic pattern of offshoring and reshoring between the US and China.\(^\text{36}\) For the quality step size \(z \), we consider a conventional value of 1.2. For \(\omega \), we consider recent data from the Federal Reserve Economic Data on relative income between the US and China, and this value is 5.493 between 2010 and 2015. Then, we choose a value of \(\delta = 0.2 \) such that the condition \(z > \delta \omega \) holds.

For the discount rate \(\rho \), we follow Acemoglu and Akcigit (2012) to set it to 0.05. As in Jones and Williams (2000), we set the population growth rate \(g_L \) to 1.44%, which corresponds to the long-run growth rate of the US labor force. In the model, it is \(\alpha/\gamma \) (rather than the individual values of \(\alpha \) and \(\gamma \)) that determines the values of variables in equilibrium.\(^\text{37}\) We calibrate \(\alpha/\gamma \) by matching the relative wage \(\omega \) from the model to the data discussed above. For other parameters, we calibrate them to US data from 1995 to 2015. For the substitution elasticity \(\sigma \), we calibrate it by using the US per capita consumption growth rate \(g_c \) of 1.82% according to the Federal Reserve Economic Data. For the relative Southern population size \(s \), we set it to 0.833 based on data from the World Development Indicators on the labor force size of China and the US. We calibrate the values of the intratemporal R&D externality parameters \(\{\beta^S, \beta^N\} \) by using the R&D shares of GDP in China and in the US. According to the OECD Research and Development Statistics, the average R&D shares of GDP are respectively 0.013 in China and 0.026 in the US. We calibrate \(i^S \) and \(i^N \) using average inflation rates in China and the US, and \(\pi^S \) is 2.94% and \(\pi^N \) is 2.27% according to the Federal Reserve Economic Data. For the CIA parameters, we set \(\xi^S = 0.5 \) and \(\xi^N = 0.5 \) in the benchmark and explore other values in Section 5.3. For the imitation rate \(\phi \), we set it to a value of 0.03 and explore other values in Section 5.2. For the intertemporal R&D externality parameter \(\zeta \), we calibrate it by using a benchmark innovation arrival rate \(\varphi^N \) of 0.06 and exploring other values in Section 5.1.

For external validity, the calibrated value of \(\sigma = 6.195 \) is roughly in line with the mean estimate of substitution elasticity at the three-digit level in Broda and Weinstein (2006). Furthermore, under the calibrated parameter values, the equilibrium value of \(r \) is 0.068, which is roughly in line with the real rate of return in the US stock market. Finally, the equilibrium values of \(\{x^N, \varphi^F\} \) are respectively 0.514 and 0.066, and a summary of the calibrated parameter values is provided in Table 1.

[Insert Table 1 here]

Given these calibrated parameter values, we consider the following experiments: (a) decreasing inflation in the US to achieve a zero nominal interest rate (i.e., \(i^N = 0 \)), and (b) decreasing inflation in China to achieve a zero nominal interest rate (i.e., \(i^S = 0 \)). The results are reported in Table 2. We find that a permanent decrease in inflation in the US would raise the wage gap \(\omega \) by 0.18% (percent change) and decrease international technology transfer \(\varphi^F \) by 1.06% (percent change). Here \(\varphi^F \) decreases despite an increase in adaptive

\(^{36}\)For example, in a survey, the Boston Consulting Group (2011) document that "[t]ransportation goods such as vehicles and auto parts, electrical equipment including household appliances, and furniture are among seven sectors that could create 2 to 3 million jobs as a result of manufacturing returning to the U.S."

\(^{37}\)\(x^N \) is the only variable affected by \(\gamma \), but the equilibrium value of \(\gamma x^N \) is independent of \(\gamma \). Given that it is the value of \(\gamma x^N \) that matters, we simply normalize \(\gamma \) to one when reporting the value of \(x^N \).
R&D because of the increase in the quality index x^N, which makes technology transfer more difficult. The effect of x^N on φ^F dominates because s is not sufficiently large despite the rather large population in China. The decrease in i^N leads to a welfare gain of 4.93% in the US and a welfare gain of 5.02% in China. From Section 3.5, we see that the percent change in c_0^N is equal to the percent change in w_0^N plus the percent change in I^N. Table 2 shows that when i^N decreases, w_0^N increases by 5.12% whereas c_0^N increases by 4.93%, implying that I^N decreases slightly by 0.19%. Therefore, the quantitatively significant welfare gain as a result of the decrease in i^N is mostly due to the large increase in wage, which in turn is due to the large increase in the level of technology x^N by 4.09% (percent change).

A permanent decrease in inflation in China would reduce the wage gap ω by 0.20% and increase technology transfer φ^F by 1.21%. Also, it leads to a welfare gain of 0.41% in China and a welfare gain of 0.43% in the US. In this case, the welfare gains in the two countries are relatively small because the increase in wage is small, which in turn is due to the small increase in the level of technology x^N by 0.39%. In other words, although decreasing inflation in either China or the US leads to an increase in innovation and the technology level, inflation in the US has much larger effects on innovation and global welfare.

5.1 Robustness check on the innovation-arrival rate

Starting from this subsection, we perform a number of robustness checks. In our benchmark calibration, we assume $\varphi^N = 0.06$. In this subsection, we consider two alternative values of $\varphi^N \in \{0.04, 0.08\}$ and recalibrate the intertemporal externality parameter ζ while holding other parameter values constant. Table 3 reports the new simulation results. In Table 3, we see that the welfare effects of inflation depend on the value of the intertemporal externality, which reflects the specified value of the innovation-arrival rate. We find that a higher intertemporal externality tends to magnify the welfare effects of inflation. For example, in the case of $\varphi^N = 0.08$, the welfare gains of decreasing US inflation become 6.53% in the US and 6.66% in China. However, the overall pattern of the cross-country effects of inflation remains the same as before. In other words, inflation in the US has much larger effects on global welfare than inflation in China.

5.2 Robustness check on the imitation rate

In this subsection, we perform another robustness check by considering other values for the imitation rate $\phi \in \{0.07, 0.11\}$, while holding other parameter values constant. Table 4 reports the new simulation results. In Table 4, we see that a higher imitation rate tends to slightly enlarge the welfare effects of US inflation. For example, in the case of $\phi = 0.11$, welfare changes are all expressed in the usual equivalent variation in consumption.
the welfare gains of decreasing US inflation become 5.18% in the US and 5.18% in China. Interestingly, a higher imitation rate slightly reduces the welfare effects of China’s inflation. For example, in the case of $\phi = 0.11$, the welfare gains of decreasing China’s inflation become 0.21% in the US and 0.30% in China. Nevertheless, the pattern that inflation in the US has much larger effects on global welfare than inflation in China still holds.

[Insert Table 4 here]

5.3 Robustness check on the CIA parameters

In this subsection, we consider alternative values for the CIA parameters while holding other parameter values constant. Table 5 reports the new simulation results. We find that a larger ξ^N magnifies the welfare effects of US inflation. For example, in the case of $\xi^N = 1$, the welfare gains of decreasing US inflation become 9.67% in the US and 9.84% in China. Interestingly, a larger ξ^N slightly reduces the welfare effects of China’s inflation. For example, in the case of $\xi^N = 1$, the welfare gains of decreasing China’s inflation become 0.42% in the US and 0.40% in China. Similarly, we find that a larger ξ^S magnifies the welfare effects of China’s inflation and slightly reduces the welfare effects of US inflation. Nevertheless, the pattern that inflation in the US has much larger effects on global welfare than inflation in China still holds.

[Insert Table 5 here]

6 ALTERNATIVE R&D SPECIFICATION

In this section, we explore the robustness of our results under an alternative R&D specification that yields fully endogenous growth in the long run.39 The main difference in this version of the model is in the instantaneous probability of innovative and adaptive R&D. Specifically, if an R&D entrepreneur employs Northern labor $L_{r,t}^N (j)$ to engage in innovative R&D in industry j, then she is successful in inventing the next higher-quality product in the industry with an instantaneous probability given by

$$
\varphi_t^N (j) = \frac{[L_{r,t}^N]^\beta^N [L_{r,t}^N (j)]^{1-\beta^N}}{\gamma L_{t}^N}. \tag{63}
$$

If the Southern affiliate of a Northern leader in industry j employs Southern labor $L_{r,t}^F (j)$ to engage in adaptive R&D, then the Northern firm is successful in shifting the production to the Southern affiliate with an instantaneous probability given by

39See Cozzi (2017a,b) for a hybrid approach that combines semi-endogenous growth and fully endogenous growth in a unified framework.
By analogous derivations (available upon request) as in Section 3, the steady-state relative-wage condition can be expressed as follows:

\[
\rho + \varphi^N - g_L \left(\delta \omega \right)^{\sigma} - \delta \omega = \frac{1}{1 - \beta^F} \left(\frac{1 - \beta^N}{1 - \beta^F} \right) \left(\frac{s}{1 - s} \right) \frac{(1 + \xi^S i^S) \alpha}{(1 + \xi^N i^N) \gamma},
\]

which is an implicit function that determines the steady-state equilibrium value of the relative wage \(\omega(\varphi^N, i^N, i^S)\). It can be shown using (65) that \(\omega(\varphi^N, i^N, i^S)\) is decreasing in \(\varphi^N\) and \(i^N\) whereas it is increasing in \(i^S\). Similarly, we also derive the steady-state Northern labor-market condition given by

\[
1 = \gamma \left[\frac{(\sigma - 1) (\rho + \varphi^N - g_L)}{1 - \beta^N} \right] \frac{\lambda \varphi^N}{\lambda \varphi^N + \varphi^F} (1 + \xi^N i^N) + \varphi^N
\]

and the steady-state Southern labor-market condition given by

\[
1 = \frac{\sigma - 1}{\lambda \varphi^N + \varphi^F} \left[\frac{\lambda \varphi^N + (\sigma / (\sigma - 1)) \varphi^F}{\lambda \varphi^N + \varphi^F} \right] (\rho + \varphi^N + \phi - g_L) \times \left[\frac{(1 + \xi^S i^S) \alpha}{1 - \beta^F} + \frac{1 + \xi^N i^N \gamma}{1 - \beta^N} \right] \omega(\varphi^N, i^N, i^S) + \alpha \varphi^F.
\]

Equations (66) and (67) are the two conditions that implicitly solve for the steady-state equilibrium values of \(\{\varphi^N, \varphi^F\}\).

Next, we derive the growth rate of consumption. Equation (13) shows that labor demand for an average-quality product produced by a Northern leader is \(\bar{L}^N_{t+1} = Q_t C_t \left[\left(\frac{\sigma w^N_t}{(\sigma - 1) \varphi^F} \right) \right] \).

Equation (46) implies that the growth rate of the quality index is \(\dot{Q}_t/Q_t = (\lambda - 1) \varphi^N_t\). It can be shown that \(\dot{C}_t/C_t = c^N_t/c^N_t + g_L\) by using (5) and \(\dot{w}^N_t/w^N_t = g_c\) by using (2). Combining these conditions yields

\[
g_c = \left(\frac{\lambda - 1}{\sigma - 1} \right) \varphi^N,
\]

where the Northern innovation-arrival rate \(\varphi^N\) is implicitly determined by (65)-(67). As for social welfare, the steady-state welfare function of the Northern household is the same as (57). The balanced-growth level of consumption can be revised as follows:

\[
c^N_0 = w^N_0 H^N = \left(\Psi Q_0 \right)^{1/\gamma} H^N,
\]

\[
c^S_0 = w^S_0 H^S = \frac{\left(\Psi Q_0 \right)^{1/\gamma}}{\omega} H^S,
\]

where initial \(Q_0\) is normalized to unity and \(\{H^N, H^S\}\) are given by
\[H^N = \frac{(\rho - g_L) \left(1 + \xi^N i^N\right) \gamma}{1 - \beta^N} + i^N \xi^N \varphi^N \gamma + 1 + \frac{\beta^N \varphi^N \left(1 + \xi^N i^N\right) \gamma}{1 - \beta^N},\]

\[H^S = \frac{(\rho - g_L) \left(1 + \xi^S i^S\right) \alpha}{1 - \beta^F} + i^S \xi^S \varphi^F \alpha + 1 + \frac{\beta^F \varphi^F \left(1 + \xi^S i^S\right) \alpha}{1 - \beta^F}.

Given the complexity of this alternative model, we resort to numerical analysis in the rest of this section. We begin by considering the same benchmark parameter values as before; i.e., \(\{\rho, z, g_L, s, \beta^F, \beta^N, \delta, \xi^S, \xi^N\} = \{0.05, 1.2, 0.014, 0.83, 0.56, 0.78, 0.2, 0.5, 0.5\}\). Then, for the remaining parameters \(\{\phi, \gamma, \alpha, \sigma, i^S, i^N\}\), we calibrate them to data from 1995 to 2015 as before using the same set of moments; i.e., the growth rate of per capita consumption in the US, the relative wage between China and the US, the R&D shares of GDP and the inflation rates in the two countries.\(^{40}\) We report the parameter values in Table 6. Given these parameter values, the equilibrium values of \(\{\varphi^N, \varphi^F\}\) are respectively 0.058 and 0.065.

[Insert Table 6 here]

Given these calibrated parameter values, we consider the same experiments as before: (a) decreasing inflation in the US to achieve a zero nominal interest rate (i.e., \(i^N = 0\)), and (b) decreasing inflation in China to achieve a zero nominal interest rate (i.e., \(i^S = 0\)). The results are reported in Table 7. We find that a permanent decrease in inflation in the US decreases the wage gap \(\omega\) by 0.07\% (percent change) and raises the innovation arrival rate \(\varphi^N\) by 7.94\% (percent change), international technology transfer \(\varphi^F\) by 9.23\% (percent change) and the growth rate of consumption \(g_c\) by 0.14\% (percentage point). The decrease in \(i^N\) leads to a welfare gain (in terms of equivalent variation in consumption) of 3.90\% in the US and a welfare gain of 4.38\% in China. Therefore, when \(i^N\) decreases, the fully endogenous growth model exhibits slightly smaller welfare gains than the semi-endogenous growth model.

A permanent decrease in inflation in China reduces the wage gap \(\omega\) by 0.18\% and increases the innovation arrival rate \(\varphi^N\) by 0.52\%, technology transfer \(\varphi^F\) by 1.54\% and the consumption growth rate \(g_c\) by 0.01\%. Also it leads to a welfare gain of 0.14\% in China and a welfare gain of 0.29\% in the US. In this case, the welfare gains are also slightly smaller in the fully endogenous growth model than in the semi-endogenous growth model. However, the pattern that inflation in the US has much larger effects on global welfare than inflation in China continues to hold in the fully endogenous growth model.

[Insert Table 7 here]

7 CONCLUSION

In this study, we have analyzed the effects of inflation via CIA constraints on R&D in a Schumpeterian economy with North-South product cycles. We show that inflation affects

\(^{40}\)It is useful to note that in the fully endogenous growth model, we need the separate values of \(\gamma\) and \(\alpha\).
innovation, technology transfer and the allocation of manufacturing activities across countries. Calibrating the model to China-US data, we find that the cross-country welfare effect of inflation is quantitatively significant from the North to the South, but less so from the South to the North. The reason is that innovation originates from the North in the model, which until recently is a reasonable approximation to reality as OECD countries perform the majority of global R&D. However, as China and other developing countries become more innovative, the effect of Southern inflation on global welfare is likely to become more significant.

References

APPENDIX: PROOFS

PROOF OF LEMMA 1. As in Dinopoulos and Segerstrom (2010), the dynamics of the quality indices is given by

$$
\dot{Q}_t^N = \int_{\theta_t^N} \left[\lambda_{t+1} - \lambda_{t} \right] \phi_t^N dj + \int_{\theta_t^N + \theta_t^S} \left[\lambda_{t+1} - \lambda_t \right] \phi_t^N dj - \int_{\theta_t^N} \lambda_t \phi_t^F dj,
$$

$$
= (\lambda - 1) \varphi_t^N Q_t^N + \lambda \varphi_t^N (Q_t^F + Q_t^S) - \varphi_t^F Q_t^N,
$$

$$
\dot{Q}_t^F = \int_{\theta_t^N} \left[\lambda_{t+1} - \lambda_t \right] \phi_t^F dj - \int_{\theta_t^F} \lambda_t \phi_t^N dj - \int_{\theta_t^F} \lambda_t \phi_t dj = \varphi_t^F Q_t^N - \varphi_t^N Q_t^F - \varphi_t^F,
$$

$$
\dot{Q}_t^S = \int_{\theta_t^S} \left[\lambda_{t+1} - \lambda_t \right] \phi_t^S dj - \int_{\theta_t^S} \lambda_t \phi_t^N dj = \phi_t^F - \varphi_t^N Q_t^S.
$$

Let’s define $Q_t^{FS} \equiv Q_t^F + Q_t^S$, which implies $\dot{Q}_t^{FS} = \varphi_t^F Q_t^N - \varphi_t^N Q_t^{FS}$. Setting $\dot{Q}_t^N/Q_t^N = Q_t^{FS}/Q_t^{FS}$ yields (34), using $Q_t^{FS} = Q_t - Q_t^N$. Setting $\dot{Q}_t^F/Q_t^F = Q_t^S/Q_t^S$ yields $Q_t^S/Q_t = (Q_t^F/Q_t) [\lambda (\lambda \varphi_t^N)]$, noting $Q_t^{FS}/Q_t^N = (1 - Q_t^N/Q_t) / (Q_t^S/Q_t) = \varphi_t^F / (\lambda \varphi_t^N)$. Applying this to $Q_t^F/Q_t + Q_t^S/Q_t = 1 - Q_t^N/Q_t$ and using (34), equations (35) and (36) follow. ■

PROOF OF LEMMA 2. Time arguments are omitted for convenience. Using $\tau^N = (M^N + g_L M^N)/P^N$ and $M^N/M^N = \pi^N + \hat{m}^N/m^N$, we derive $\tau^N = (\pi^N + g_L) m^N + \hat{m}^N$. Substituting this condition into the balanced-growth version of (2) yields

$$
c^N = (\rho - g_L) a^N + i^N \xi^N w^N \varphi^N \gamma x^N + w^N + \frac{\beta^N w^N \varphi^N (1 + \xi^N i^N) \gamma x^N}{1 - \beta^N},
$$

(A1)

where we have used $r^N = \rho + g_c$, $a^N/a^N = g_c$, $m^N = b^N = \int_0^1 \xi^N w^N L_r^N(j) dj/L^N = \xi^N w^N \varphi^N \gamma x^N$, and $d^N = \int_0^1 \beta^N \varphi^N v^N(j) dj/L^N = \beta^N w^N \varphi^N (1 + \xi^N i^N) \gamma x^N / (1 - \beta^N)$. Following Dinopoulos and Segerstrom (2010), we assume that the Northern household finances innovative R&D in equilibrium. That is, $L_r a^N = \int_{\theta_r^N} \psi^N(j) dj$. Given that $v^N(j) = \psi^N(j) L_r^N(j) / \left[(1 - \beta^N) \varphi^N \right]$ from (20), we have

$$
a^N = \frac{1 + \xi^N i^N \gamma x^N w^N}{1 - \beta^N} \left(\frac{\lambda^N \varphi^F}{\lambda^N \varphi^F + \varphi^F} + \frac{\lambda^N \varphi^F}{\lambda^N \varphi^F + \phi^N \varphi^F} \right),
$$

(A2)

which uses (19), (39) and Lemma 1. Using (A1) and (A2), we can show that $c^N = w^N I_N$, where I_N is defined in Lemma 2. By incorporating (8), (10) and (12) into the aggregate price index $\{ \int [p_t(j)]^{1-\sigma} dj \}^{1/(1-\sigma)} = 1$, we can use Lemma 1 to derive (58) by showing that the real wage in the North is $w^N = \Psi Q_t^{1/(1-\sigma)}$, where $Q_t = (L_r x^N)^{1/(1-\psi)}$ and Ψ is defined in Lemma 2. Applying analogous derivations to the Southern asset condition, one can also derive (59) by noting that $m_s = b_s = \int_{\theta_s^N} \xi^S w^S L_r^F(j) dj/L_s$, $d^F = \int_{\theta_s^F} \beta^F \varphi^F [v^F(j) - v^N(j)] dj/L_s$, and $L^S a_s = \int_{\theta_s^F} [v^F(j) - v^N(j)] dj$, which comes from the assumption that the Southern household finances adaptive R&D and that $v^F(j) - v^N(j) = (1 + \xi^S i^S) w^S L_r^F(j) / \left[(1 - \beta^F) \varphi^F \right]$ from (22). ■
PROOF OF PROPOSITION 1. It is easy to graphically show from (54) that \(\omega \) increases with \(i^S \), proving (b). Given this, an increase in \(i^S \) leads to a downward shift in the South curve (56), whereas it has no effect on the North curve (55). Applying a simple graphical analysis to Figure 1, we find that an increase in \(i^S \) leads to permanent decreases in \(\varphi^F \) and \(x^N \). This proves (a) and also (c) because a permanent decrease in \(x^N \) must be associated with a temporary decrease in the innovation rate \(\varphi^N_t \) below its steady-state level \(\varphi^N = g_L/[(1 - \zeta)(\lambda - 1)] \) given the dynamics in (47).

PROOF OF PROPOSITION 2. Graphical analysis with (54) implies that \(\omega \) decreases with \(i^N \), proving (b). An increase in \(i^N \) leads to a downward shift in both the North and South curves, (55) and (56), given that we can easily show from (54) that \((1 + \xi^N i^N) \omega \) increases with \(i^N \). Thus, an increase in \(i^N \) leads to a decrease in \(x^N \), implying a temporary decrease in the innovation rate \(\varphi^N_t \) given the dynamics in (47) and proving (a). As for (c), we solve (55) and (56) for \(\varphi^F \) to obtain

\[
\varphi^F = \lambda \varphi^N \frac{s}{1 - s} \frac{(1 + \xi^N i^N)}{1 - \beta^N} + \frac{1}{\sigma - 1} \frac{\varphi^N}{\rho + \varphi^N} \left(1 - \frac{s}{1 - s} - \frac{\alpha \lambda}{\gamma}\right).
\]

(A3)

Differentiating (A3) with respect to \(i^N \), we find that \(d\varphi^F/di^N > (<) 0 \) holds if the following inequality holds:

\[
\delta^{-1} \omega^\sigma \Phi(\phi) \left(\frac{\sigma (1 + \xi^N i^S)^\alpha}{\rho + \varphi^N \gamma} - \frac{\varphi^N}{\rho + \varphi^N} \omega\right) \left(\frac{1}{\sigma - 1} \frac{1}{1 - \beta^N} \left(1 + \xi^N i^N\right) \gamma + \omega\right) > (<) \frac{\varphi^N}{\rho + \varphi^N} \left(\frac{s}{1 - s} - \frac{\alpha \lambda}{\gamma}\right).
\]

(A4)

Given that the right-hand side of (A4) is monotonically increasing in \(s \), \(d\varphi^F/di^N > (<) 0 \) becomes more likely to hold as \(s \) decreases (increases). Given that \(s \) has an upper bound \(\tilde{s} \), which ensures \(\varphi^F > 0 \), we can show that the inequality \(< \) in (A4) must hold as \(s \to \tilde{s} \).

41 Here we have used the following condition derived from (54):

\[
\delta \left[\frac{(1 + \xi^N i^S)}{1 - \beta^F} + \frac{(1 + \xi^N i^N)}{1 - \beta^N} \right] = \frac{\rho + \varphi^N}{\rho + \varphi^N + \phi} \frac{(1 + \xi^N i^N)}{1 - \beta^N} \gamma (\delta \omega)^\sigma.
\]

42 Here we have used the following condition derived from (54):

\[
\frac{d \left(1 + \xi^N i^N\right)}{di^N} \omega^\sigma = \xi^N \omega^\sigma \left(\frac{\sigma^{-1} \omega}{\sigma^{-1} \omega + \phi} \right).
\]

43 This is defined by

\[
\frac{(1 + \xi^N i^N) \delta^{-1} \omega^\sigma \Phi(\phi)}{1 - \beta^N} = \frac{1}{\sigma - 1} \frac{\varphi^N}{\rho + \varphi^N} \left(\frac{\tilde{s}}{1 - \tilde{s}} - \frac{\alpha \lambda}{\gamma}\right).
\]
implying that $d\varphi^F/d\varphi^N < 0$ for a sufficiently large s. As $s \to 0$, the right-hand side of (A4) becomes negative. Therefore, $d\varphi^F/d\varphi^N > 0$ holds if the left-hand side of (A4) is positive, which is guaranteed by $\sigma\alpha\delta/\gamma > z\varphi^N/(\rho + \varphi^N)$ given that $z > \delta\omega$. ■
FIGURE AND TABLES

Figure 1: The steady-state equilibrium

| ρ | z | ϕ | α/γ | σ | i^S | i^N | g_L | s | ζ | β^F | β^N | δ | ξ^S | ξ^N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.05 | 1.2 | 0.03 | 3.041 | 6.195 | 0.098 | 0.091 | 0.014 | 0.833 | 0.848 | 0.560 | 0.778 | 0.2 | 0.5 | 0.5 |

Table 2: Simulation

<table>
<thead>
<tr>
<th>i^N</th>
<th>ω</th>
<th>x^N</th>
<th>ϕ^F</th>
<th>$\Delta \ln w_0^N$</th>
<th>$\Delta \ln w_0^S$</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091</td>
<td>5.493</td>
<td>0.514</td>
<td>0.0663</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>5.503</td>
<td>0.535</td>
<td>0.0656</td>
<td>5.116%</td>
<td>4.933%</td>
<td>4.929%</td>
<td>5.020%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i^S</th>
<th>ω</th>
<th>x^N</th>
<th>ϕ^F</th>
<th>$\Delta \ln w_0^N$</th>
<th>$\Delta \ln w_0^S$</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.098</td>
<td>5.493</td>
<td>0.514</td>
<td>0.0663</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>5.482</td>
<td>0.516</td>
<td>0.0671</td>
<td>0.380%</td>
<td>0.569%</td>
<td>0.433%</td>
<td>0.409%</td>
</tr>
</tbody>
</table>

Table 3: Simulation under $\phi^N \in \{0.04, 0.08\}$

<table>
<thead>
<tr>
<th>$\phi^N = 0.04 \ (\zeta = 0.77)$</th>
<th>$\Delta \ln w_0^N$</th>
<th>$\Delta \ln w_0^S$</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δi^N</td>
<td>3.469%</td>
<td>3.287%</td>
<td>3.319%</td>
<td>3.356%</td>
</tr>
<tr>
<td>Δi^S</td>
<td>0.215%</td>
<td>0.403%</td>
<td>0.259%</td>
<td>0.283%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\phi^N = 0.08 \ (\zeta = 0.89)$</th>
<th>$\Delta \ln w_0^N$</th>
<th>$\Delta \ln w_0^S$</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δi^N</td>
<td>6.741%</td>
<td>6.558%</td>
<td>6.527%</td>
<td>6.658%</td>
</tr>
<tr>
<td>Δi^S</td>
<td>0.556%</td>
<td>0.746%</td>
<td>0.616%</td>
<td>0.557%</td>
</tr>
<tr>
<td>ϕ</td>
<td>Δi^N</td>
<td>Δi^S</td>
<td>$\Delta \ln w_0^N$</td>
<td>$\Delta \ln w_0^S$</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>0.07</td>
<td>5.245%</td>
<td>0.261%</td>
<td>5.069%</td>
<td>0.443%</td>
</tr>
<tr>
<td>0.11</td>
<td>5.314%</td>
<td>0.194%</td>
<td>5.143%</td>
<td>0.372%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>${\xi^N, \xi^S}$</th>
<th>$\Delta \ln w_0^N$</th>
<th>$\Delta \ln w_0^S$</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${1, 0.5}$</td>
<td>10.027%</td>
<td>9.675%</td>
<td>9.666%</td>
<td>9.843%</td>
</tr>
<tr>
<td>${0.5, 1}$</td>
<td>5.107%</td>
<td>4.919%</td>
<td>4.919%</td>
<td>5.009%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ</th>
<th>z</th>
<th>ϕ</th>
<th>γ</th>
<th>α</th>
<th>σ</th>
<th>i^S</th>
<th>i^N</th>
<th>g_L</th>
<th>s</th>
<th>β^F</th>
<th>β^N</th>
<th>δ</th>
<th>ξ^S</th>
<th>ξ^N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.2</td>
<td>0.033</td>
<td>0.559</td>
<td>0.292</td>
<td>6.527</td>
<td>0.098</td>
<td>0.091</td>
<td>0.014</td>
<td>0.833</td>
<td>0.560</td>
<td>0.778</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i^N</th>
<th>ω</th>
<th>φ^N</th>
<th>φ^F</th>
<th>Δg_c</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
<th>ΔU^N</th>
<th>ΔU^S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.091</td>
<td>5.493</td>
<td>0.0579</td>
<td>0.065</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>5.489</td>
<td>0.0625</td>
<td>0.071</td>
<td>0.144%</td>
<td>-0.216%</td>
<td>0.242%</td>
<td>3.902%</td>
<td>4.379%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i^S</th>
<th>ω</th>
<th>φ^N</th>
<th>φ^F</th>
<th>Δg_c</th>
<th>$\Delta \ln c_0^N$</th>
<th>$\Delta \ln c_0^S$</th>
<th>ΔU^N</th>
<th>ΔU^S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.098</td>
<td>5.493</td>
<td>0.0579</td>
<td>0.065</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>5.483</td>
<td>0.0582</td>
<td>0.066</td>
<td>0.010%</td>
<td>0.005%</td>
<td>-0.145%</td>
<td>0.287%</td>
<td>0.137%</td>
</tr>
</tbody>
</table>