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Summary:  

Default risk is the forgotten factor when it comes to equity valuation. And yet, in this article, we show that default 
risk has a bigger impact on equity values than it does on bond values. 

Our work is based on a default intensity model that we extrapolate to equities. This model does not presuppose a 
particular method for estimating distance to default. As a result, unlike Merton structural models, which only apply 
to indebted companies, it can be used to assess default risk for any company. 

Highlighting a default risk premium in the cost of capital calculation makes it possible to reconcile the CAPM with 
evaluation methods based on forecasts in the event of survival. At the same time, the CAPM and default risk can 
explain the vast majority of bond spreads. 

The test consisting of estimating “physical” implied default probabilities and the share of systemic risk included in 
corporate euro bond spreads at end-2015 led us to detect the likely existence of excessive remuneration of 
investment grade bonds. This finding corroborates identical conclusions reached earlier by other researchers. This 
potential market anomaly could indicate a windfall for investors. Performing this test again at various points in the 
economic and financial cycle would help establish whether the bond market is serving a free lunch to investors not 
bound by regulatory reserve requirements. 
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Introduction  

The importance of default risk 

Default risk is the forgotten factor when it comes to routine equity valuation. Too often, once appraisers 
have chosen and calculated the parameters for cost of equity, they only consider default risk in terms of 
the cost of debt used to determine the weighted average cost of capital (WACC). Moreover, many 
calculations assume that the debt leverage on the calculation date will remain constant forever, and for the 
refinancing rate, they use the interest rate on the company’s most recent loan – or worse, the apparent 
average rate on all of the company’s debt, even though the loans were issued on different dates. So most 
appraisers believe that they are correctly allowing for debt-related risks, which include: 

- the default risk in the cost of debt used to calculate the WACC; and 

- the increase in systematic risk, generally taken from Hamada’s equation, needed to calculate 
levered beta. 

This practice is outdated.  

- There are now actuarial techniques that make it possible to factor in forecast changes in the level 
of debt used to calculate the cost of equity to ensure that the risk generated by leverage is 
consistent with the discount rate. A description of those techniques is outside the scope of this 
article, but those looking for more information on the topic should consult the work of Pablo 
Fernandez1.  

- Systematic risk is only one component of the increased remuneration shareholders demand. 
Leverage definitely increases the dispersion of free cash flow for the shareholder, thus raising the 
stock’s beta, but it also reduces the expected shareholder return owing to the probable loss 
resulting from the risk of failure. Default risk arises when the margin on variable costs doesn’t 
cover fixed costs, and because leverage only reduces the former or increases the latter, it is an 
aggravating factor. Default risk pre-exists debt leverage and must be taken into account by the 
appraiser, regardless of whether it is amplified by debt. 

In other words, the appraiser must demonstrate that he accounts for default risk, either i) by reducing the 
expected flows forecast in case of survival by subtracting the expected loss given default; or ii) by adding 
a default risk premium to the discount rate used to calculate the present value of flows in case of survival. 

On average, the recovery rate for unsecured financial debt is significantly lower than 100% in the event of 
default. For shareholders, the average is close to zero. If, like John Hull (see below), we suppose that 
default spread is proportional to the loss given default, then the default premium is greatest in the case of 
a stock. Even if a loan’s spread only includes a few dozen basis points to compensate for default risk, 
incorporating a multiple of that premium into the cost of equity calculation probably has a material 
influence on the stock value, given that it already materially affects bond values. Let us look at an 
example that illustrates the premium’s significance. 

 
                                                
1  For example: Fernandez, Pablo, “Equivalence of Ten Different Methods for Valuing Companies by Cash Flow Discounting”, 

EFMA 2004 Basel Meetings Paper, October 11, 2003, SSRN : https://ssrn.com/abstract=367161  
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Example: listed French SMEs and intermediate-sized companies 
 

In a report2 delivered to the Corporate Capital Market Observatory (Observatoire du financement des 
entreprises par le marché), the research firm IDMidCaps looked at corporate failures that occurred 
between 2005 and 2013 in a sample of listed companies on the C and B compartments of Euronext (for 
issuers with market caps of up to €150m and €1bn respectively) and on Alternext, which became 
Euronext Growth in 2017. 

Over those nine years, 71 companies failed and were placed in receivership. Of the 71: 

- 61 (or 86%) were wound up at a loss to their shareholders;  

- 3 (or 4%) were acquired under terms that amounted to a zero recovery rate for shareholders; 

- 7 (or 10%) were still operating as of end-2013 under a reorganization plan, typically at the cost of 
financing deals that were highly dilutive for the former shareholders. 

According to these data, an average of 1.7% of the companies operating on January 1 were placed in 
receivership each year3. 

 

According to the data on corporate failures compiled by ratings agency Standard & Poor’s that were 
available at the start of the research effort4, this rate corresponds to the default frequency for companies 
rated B+ to BB-, or those in the “speculative” category. 

If we split the sample into SMEs5 and intermediate-sized companies (ETIs) and then examine the default 
statistics over one year, or the cumulative statistics over four, five and nine years – as shown in the table 
below – listed SMEs’ default rates put them in the category B+ to BB-. The ETIs in the sample fare 
somewhat better, with rates that put them in the range of BB- to BB, corresponding to the upper part of 
the non-investment grade category6. 

                                                
2  “Etude sur les défaillances et sur les performances 2005-2013 dans les PME – ETI cotées”, 

http://www.pme-bourse.fr/publications/etudes-et-rapports.html  
3  In this statistic, companies are included until they are delisted, which tends to overestimate the annual percentage of 

companies placed in receivership. But this does not seem to alter the ex post classification of this sample in the speculative 
category, which has a rating of BB to BB+. 

4  See Poncet, Patrice, and Portait, Roland, Finance de marché, 4th ed. Dalloz, page 928. 
5  The INSEE defines SMEs as companies with fewer than 250 employees and revenues of less than €50m, or total assets of 

less than €43m. The study’s authors have assigned the remaining companies in the sample to the ETI category, even though 
some of them technically meet the INSEE definition of a large company (at least 5,000 employees and over €1.5bn in 
revenues, or total assets of over €2bn). 

6  Remember that keeping companies in the sample and in the default category until they are delisted almost certainly tends to 
overestimate the default rate. 

SME & ETI sample (1) 2005 2006 2007 2008 2009 2010 2011 2012 2013 Average Implied 
ratingSample size 426 470 483 456 459 459 451 438 441 454Default rate 1.64% 0.85% 1.45% 1.75% 2.83% 1.53% 2.00% 2.05% 1.59% 1.74% B+ to BB-

(1)  Companies listed on compartments B, C and Alternext, excluding REITs, holding companies, shells companies, banks and insurance companies.
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Thus, the listed SMEs in the sample have a default rate double that of the ETIs, with respective 
cumulative rates over nine years of over 20% and 10%.  

These default rates mean significant impact for shareholders’ returns. According to research firm 
IDMidCaps, the sample’s cumulative performance over the period, equally weighted and with dividends 
reinvested, was 88.5%. If we exclude failing companies, the performance would have been 106%. Thus, 
defaults erased 16.5% of the equity investor’s capital gains. 

 

The first lesson we can learn from this analysis is that small cap investors must be prepared for a 
significant mortality rate. 

In this report, we will establish the link between probability of default and its remuneration using a 
default intensity model. In Chapter 1 we apply the model to debt securities, and in Chapter 2 we expand it 
to equities. 

We then demonstrate that the effective shareholder return, in this case 88.5% over nine years, or 7.3% per 
year on average, is net of the defaults that occurred during the calculation period. This is why average 
historical returns calculated over long periods, which are typically used to calculate risk premia, provide a 
good estimate of expected shareholder returns, since companies go bankrupt every year. As a result, if 
this estimate is used to discount forecast cash flows net of probable loss given default, then that makes 
sense. On the other hand, if the forecasts are – as is generally the case – calculated assuming that the 
company survives, then it should be discounted at gross rate, i.e. before factoring in the impact of 
corporate failures in the market return. In the above example, the gross rate would be 106% over nine 
years, or 8.36% per year on average. 

Because a forecast that assumes survival is biased in the sense that it is not a mathematical expectation, 
using historical returns to discount the value is fundamentally flawed. This is why it is necessary to 
distinguish between expected shareholder returns and cost of capital (discount rate). As a general rule, the 
former is lower than the latter. 

  

Default rate Average Implied 
rating Average Implied 

rating
1 year average 2.7% B+ 1.3% BB-
Cumulative average / 4 years* 11% B+ to BB- 6% BB- to BB
Cumulative average / 5 years* 14% B+ to BB- 7% BB- to BB
Cumulative  / 9 ans* 24% B+ to BB- 11% BB- to BB*Based on analysis of the data in the cited study.

SME ETI

Annual returns, 
(dividends reinvested) 2005 2006 2007 2008 2009 2010 2011 2012 2013 CumulativeTotal sample 4.6% 31.8% -1.2% -45.4% 48.5% 39.3% -6.4% 4.9% 24.9% 88.7%Excluding failing companies 4.9% 32.1% -0.3% -45.1% 50.5% 40.5% -6.0% 8.6% 25.8% 106.0%

Source : IDMidCaps
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1 Introduction to the default intensity model 
 

The default model known as the default “intensity” model is an actuarial approach that lets us establish a 
functional link between default risk over a certain time period, the recovery rate in the event of default, 
and the default risk premium or default spread. 

Unlike the so-called structural models that have sprung up in abundance and follow in the footsteps of 
Merton’s groundbreaking work, the intensity approach does not require any presuppositions regarding the 
model used to estimate default risk. The structural model links the probability of default with the 
probability that the value of the operating asset will be less than or equal to the amount of financial debt 
due on a given date, basing the probability on the volatility of the issuer’s stock price. Thus, under this 
approach, the default risk is merely a question of overindebtedness, which is unrealistically 
oversimplified7. Furthermore, these models posit a risk-neutral universe and a complete market for 
underlying assets, which is clearly not the case for operating assets (unlike listed securities). And using 
the risk-free rate as a central tendency parameter gives a risk-neutral probability that has no direct 
relationship with the real (or physical) probability of default. As a result, the appraiser is forced to 
recalibrate the parameters so that they reflect the real world8, and this does not appear to provide a 
decisive advantage compared to conventional financial analysis of credit risk. As we noted in the 
introduction, default risk measures whether the margin on variable costs is enough to cover fixed costs, 
and there is no obvious link between this question and a company’s equity value9, which is influenced by 
market risk premium volatility in addition to earnings estimate revisions. 

For these reasons, our research has focused on the default intensity model. We try to show how, under 
certain conditions, this approach makes it possible to factor in “real” probabilities of default, in the sense 
that the spread employed to remunerate risk is consistent with the expectation of default resulting from 
forecast cash flow models. And conversely, how knowing the required market spread makes it possible to 
deduce the implied probability of default the market expects. In the following section, we expand the 
model’s application to equity valuation (Chapter 2) and test the model using market data (Chapter 3). 

 

 

  

                                                
7  Apart from estimating NAV volatility for a real estate asset or a holding company with a view to winding it up, this approach 

does not give us information about a company’s ability to withstand temporary losses without compromising its ability to 
continue operating. 

8  See, for example: Cooper, Ian A., and Davydenko, Sergei A., “Using Yield Spreads to Estimate Expected Returns on Debt 
and Equity”, London Business School IFA Working Paper, EFA 2003 Annual Conference Paper No. 901, December 2003, 
SSRN: https://ssrn.com/abstract=387380  

9  For a more in-depth discussion of using a stochastic model to gauge default risk resulting from the margin on variable costs 
not covering fixed costs, please consult: Clère, Roland, “After Modigliani, Miller and Hamada; A New Way to Estimate Cost 
of Capital?” (Après Modigliani, Miller et Hamada : une nouvelle façon d’estimer le coût du capital ?), November 23, 2016, 
SSRN: https://ssrn.com/abstract=2868702 

. 



7 
 

1.1 A formal expression of default risk using the intensity (or reduced form) 
model 

 

This model is based on conventional functional analysis tools. Furthermore, we can establish the link 
between the formal expression of default risk and the Poisson distribution (Siméon Denis Poisson), which 
means this approach is similar to a jump diffusion model. 

1.1.1 Conditional default probability 

In the following analysis, we simplify matters by assuming that the company’s survival, 𝑆, is 
incompatible with the occurrence of a default event, 𝐷. This approach is valid even if default does not 
necessarily lead to failure, since the issue of recovering payment in the event of default is handled later. 
Let us assume for our purposes that survival means “survival with no prior default event or 
implementation of a reorganization plan”. In that case, according to the definition of two mutually 
incompatible or exclusive events:   𝑝(𝑆) = 1 − 𝑝(𝐷)                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #1 

If we know the company’s survival probability (with no default) at date 𝑡, written as 𝑝(𝑆௧), then the 
probability of survival until the time horizon 𝑡 + 1 is equal to the product of the survival probability at 
date 𝑡 and the probability of no default occurring in the intervening period ]𝑡 ; 𝑡 + 1]. We can deduce this 
probability from the probability that a default will occur during the period ]𝑡 ; 𝑡 + 1]. Written as 𝑝(𝐷௧ାଵ|𝑆௧), the probability of default during the period is considered conditional upon the prior survival 
of the company until date 𝑡:  𝑝(𝑆௧ାଵ) = 𝑝(𝑆௧) × ൫1 − 𝑝(𝐷௧ାଵ|𝑆௧)൯                                                      #2 

To simplify the expression, we write 𝑆௧ for the probability of survival to date 𝑡, and 𝑑௧ for the conditional 
probability of default in the subsequent intervening period, ∆௧ ; ]𝑡 ; 𝑡 + 1]. 𝑆௧ାଵ = 𝑆௧ × (1 − 𝑑௧)  =    𝑆௧ − 𝑑௧ ×  𝑆௧                                                 #3       
If the conditional default probability is a constant 𝑑 for every period with a duration equal to ∆௧, then the 
previous equation becomes: 𝑆௧ = 𝑆௧ି∆೟ × (1 − 𝑑)                                                                                       #4      

 𝑤ℎ𝑒𝑟𝑒    ቊ 𝑝൫𝐷௧ห𝑆௧ି∆೟൯ =  𝑑                     ∀ 𝑡 𝑤𝑖𝑡ℎ ∆௧ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      𝑝(𝑆௧) = 𝑆௧                                                                                                
As a result, when the conditional probability is constant regardless of the period ∆௧, the probability of 
survival until date 𝑇 = 𝑛 × ∆௧, written as 𝑆், is equal to:  𝑆் = 𝑆௧ୀ଴ × (1 − 𝑑)௡ = (1 − 𝑑)௡                                                               #5  
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1.1.2 The unconditional or cumulative probability of default 

The unconditional probability of default in a given period [0 ; 𝑡] results from the cumulative effect of 
conditional default probabilities in each of the smaller intervening periods that make up the larger period. 
Assuming that the period [0 ; 𝑇] is divided into 𝑛 time intervals Δ𝑡 for which the conditional survival 
probability 𝑑௜ is known, then according to equation #2, the probability of survival at date 𝑇 is equal to:  𝑆் = ൫1 − 𝑝(𝐷ଵ|𝑆଴)൯ × ൫1 − 𝑝(𝐷ଶ|𝑆ଵ)൯ × … × ൫1 − 𝑝(𝐷௡|𝑆௡ିଵ)൯                                #6 = (1 − 𝑑଴) × (1 − 𝑑ଵ) ×   …    × (1 − 𝑑௡ିଵ) 

⇒  𝑆் = ෑ൫1 − 𝑝(𝐷௜|𝑆௜ିଵ)൯௡
௜ୀଵ                                                                              #7 

From which we can deduce 𝐷் , the unconditional default probability at time horizon 𝑇:  

⇒ 𝐷் = 1 − 𝑆் = 1 − ෑ(1 − 𝑑௜ିଵ)௡
௜ୀଵ                                                             #8 

If the conditional probabilities are equal to a constant, 𝑑, then:  𝐷௧ = 1 − (1 − 𝑑)௡ = 1 − 𝑆்                                                              #9 

Where 𝑆் is definited by equation #5. 

1.1.3 Marginal probability of default 

The marginal probability of default Δ𝐷௡ is the increase in the unconditional probability of default during 
time interval Δ𝑡. Let us assign this interval a constant duration Δ𝑡 = ௠், where 𝑚 ∈ ℕ, and in positing 𝑛 ≤𝑚, we define the unconditional probability of default until date 𝑡 = 𝑛 × Δ𝑡, 𝑝(𝐷௡×୼௧), written as 𝐷௡:  Δ𝐷௡ = 𝐷௡ − 𝐷௡ିଵ = (1 − 𝑆௡) − (1 − 𝑆௡ିଵ) = 𝑆௡ିଵ − 𝑆௡                                #10 

 In the specific case where the conditional probabilities are equal to a constant, 𝑑, then:  Δ𝐷௡ =  (1 − 𝑑)௡ିଵ − (1 − 𝑑)௡                                                                           #11 

⇒ Δ𝐷௡ =  ෍ ∁௡ିଵ௜௡ିଵ
௜ୀଵ × (−1)௜  × 𝑑௜ାଵ                                                                        #12 

1.1.4 Default probability and default intensity 

Over time interval ]𝑡 ; 𝑡 + ∆𝑡] the marginal probability of default ∆𝐷௧ for an additional unit of time ∆𝑡, 
according to equations #3 and #10, is:  ∆𝐷௧ = 𝑆௧ − 𝑆௧ା∆௧ = 𝑆௧ × 𝑝(𝐷௧ା∆௧|𝑆௧) ⇒     −∆𝐷௧ = 𝑆௧ା∆௧ − 𝑆௧ = −𝑑௧ × 𝑆௧                                                   #13 

Let us assume that there is a function of 𝑡, expressed as 𝜆(𝑡) and called the “default intensity function”, 
such that the conditional probability of default during a future time interval ∆𝑡 is equal to the product of 
the intensity at date 𝑡 and the duration of the time interval:   
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𝜆(𝑡) × ∆𝑡 = 𝑝(𝐷௧ା∆௧|𝑆௧) = 𝑑௧                                                       #14 
In this case, equation #13 becomes:  𝑆௧ା∆௧ − 𝑆௧ = −𝜆(𝑡) × ∆𝑡 × 𝑆௧                                                  #15 

Because the probability of survival 𝑆௧ is also a function of 𝑡, equation #15 becomes: ∆𝑆(𝑡) = −𝜆(𝑡) × ∆𝑡 × 𝑆௧                                                      #16 

Therefore, approaching the limit when ∆𝑡 tends towards zero, in the neighborhood of 𝑡:  𝑑𝑆 = −𝜆 × 𝑑𝑡 × 𝑆                                                                 #17 𝑑𝑆𝑆 = −𝜆 × 𝑑𝑡                                                                         #18 

In the first term of the equation, we can see the differential of 𝑙𝑛(𝑆), which gives: ⇔  𝑑𝑙𝑛(𝑆) = −𝜆 × 𝑑𝑡                                                                      #18 
⇔  න 𝑙𝑛ᇱ൫𝑆(𝑡)൯𝑑𝑡 = − න 𝜆(𝑡)𝑑𝑡                                                   #19 
⇔  𝑙𝑛൫𝑆(𝑡)൯ = − න 𝜆(𝑡)𝑑𝑡 + 𝐶         𝑤ℎ𝑒𝑟𝑒  𝐶 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      
⇔  𝑆(𝑡) = 𝑒ି ∫ ఒ(௧)ௗ௧ା஼                                                                    #20 

This integral of the function 𝜆(𝑡) is defined for the interval [0 ; 𝑡]. The probability of survival is equal to 
1 when 𝑡 is equal to zero. Conversely, it is reasonable to posit that the probability tends toward zero as 𝑡 
tends toward infinity. Furthermore, when it comes to a defined integral, we can ignore the constant 𝐶 in 
equation #20:  

⟹  𝑆(𝑡) = 𝑒ି ∫ ఒ(௫)ௗ௫೟బ                                                                        #21 
In cases where there is a primitive function 𝐹(𝑡) of 𝜆(𝑡), assuming – to simplify matters – that it cancels 
itself out when 𝑡 = 0, then the integral defined in equation #21 can be expressed as follows: 

𝐹(𝑡) = |𝐹(𝑥)|଴௧ = න 𝜆(𝑥)𝑑𝑥௧
଴                                                          #22 

According to mean value theorem, there is a mean value “𝜆̅” of 𝜆(𝑡) when 𝑥 varies between 0 and 𝑡, such 
that:  𝜆̅ =  1𝑡 න 𝜆(𝑥)𝑑𝑥௧

଴  =  𝐹(𝑡)𝑡                                                                  #23 

As a result, equation #21 becomes:  𝑆(𝑡) =  𝑒ିி(௧) = 𝑒ି ∫ ఒ(௫)ௗ௫೟బ = 𝑒ିఒഥ×௧                                                     #24 
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If the intensity function 𝜆(𝑡) is constant, equal to a positive real number 𝜆, then:  

∀ 𝑡       𝜆(𝑡) =  𝜆     ⇒     𝐹(𝑡) = න 𝜆 𝑑𝑥௧
଴ =  |𝜆𝑥 + 𝐶|଴௧ = 𝜆 × 𝑡 

In this case, the mean default intensity 𝜆̅, defined according to #23, is equal to this constant 𝜆: 𝜆̅ = 𝜆       𝑎𝑛𝑑     𝜆(𝑡) × 𝑡 =  𝜆 × 𝑡                                       
And equation #24 becomes:  𝑆(𝑡) =  𝑒ିఒ×௧  = ൬ 1 𝑒ఒ ൰௧                                                             #25 

1.2 Default and intensity functions deduced from transition matrices 

1.2.1 Formulae deduced from unconditional probabilities of default 

 In practice, if we know the unconditional probability of default 𝐷௧ at time horizon 𝑡, we can 
deduce the mean intensity 𝜆̅௧ between 0 and 𝑡: 𝐷௧ = 1 − 𝑆௧ = 1 − 𝑒ିఒഥ௧ = 1 − 𝑒ିி(௧) ⇒  𝑒ିி(௧) = 1 − 𝐷௧ ⇒  𝐹(𝑡) = − ln(1 − 𝐷௧)                                                             #26 

⇒  𝜆̅௧ = − ln(1 − 𝐷௧)𝑡                                                                  #27 

 The mean default intensity over a time interval ∆𝑡, [𝑡 − ∆𝑡 ; 𝑡], which we express as 𝜆̅௧ି∆௧;௧, is 
deduced from the mean intensity 𝜆̅௧ି∆௧ for the period [0; 𝑡 − ∆𝑡], and 𝜆̅௧ for the period [0; 𝑡]. 
According to equation #23: 𝜆̅௧ =  𝜆(𝑡)തതതതതത = 1𝑡 න 𝜆(𝑥)𝑑𝑥௧

଴  =  𝐹(𝑡)𝑡   
⇒ 𝜆̅௧ି୼௧;௧ =  1Δ𝑡 න 𝜆(𝑥)𝑑𝑥௧

௧ି୼௧  =  |𝐹(𝑡)|௧ି୼௧௧Δ𝑡   
According to equation #26:  ⇒ 𝜆̅௧ି୼௧;௧ = 1Δ𝑡 ൫𝑙𝑛(1 − 𝐷௧ି୼௧) − 𝑙𝑛(1 − 𝐷௧)൯                                         #28 

⇒ 𝜆̅௧ି୼௧;௧ = 1Δ𝑡 ൫𝑙𝑛(𝑆௧ି୼௧) − 𝑙𝑛(𝑆௧)൯                                                          #29 

Whereas: ቊ  𝑆௧ = 𝑒ିఒഥ೟×௧                        𝑆௧ି୼௧ = 𝑒ିఒഥ೟ష౴೟×(௧ି୼௧)  ⇒ ቊ 𝜆̅௧ × 𝑡 = −𝑙𝑛(𝑆௧)                            𝜆̅௧ି୼௧ × (𝑡 − Δ𝑡) = −𝑙𝑛(  𝑆௧ି୼௧)  
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In equation #29, if we replace 𝑙𝑛(𝑆௧ି୼௧) and 𝑙𝑛(  𝑆௧ି୼௧) with their values in each of the preceding 
equations:  ⇒ 𝜆̅௧ି୼௧;௧ × Δ𝑡 = 𝜆̅௧ × 𝑡 −   𝜆̅௧ି୼௧ × (𝑡 − Δ𝑡)                                            #30 

 In addition, we can deduce the intensity function 𝜆(𝑡) from the unconditional probability of 
default function 𝐷(𝑡): 𝐹(𝑡) = −ln (1 − 𝐷௧) 

Where 𝐹(𝑡) is the compound function of 𝐹(𝑢) = − ln(𝑢஽), with 𝑢஽ = 1 − 𝐷௧ 

⇒  𝐹ᇱ(𝑡) = 𝜆(𝑡) =  𝐷ᇱ(𝑡)1 − 𝐷(𝑡)                                                  #31 

To clarify the importance of equation #31, we share the following quote by Gilbert Saporta10: 
“The intensity function 𝜆(𝑡), depending upon which field it is applied in, may be referred to as 
the ‘spot default rate’, the ‘hazard function’, or even the ‘mortality quotient’. For a life span T, 
where T is a continuous variable representing a duration, 𝜆(𝑡) is understood as the probability of 
death immediately after 𝑡, assuming survival until 𝑇 = 𝑡.”   

Indeed, equation #31 may be rewritten as follows in its differential expression: 𝜆(𝑡) =  𝑑𝐷௧𝑑𝑡1 − 𝐷(𝑡)   ⇒   𝜆(𝑡). 𝑑𝑡 = 𝑑𝐷௧1 − 𝐷(𝑡) 

𝜆(𝑡). 𝑑𝑡 represents the conditional probability of default in the vicinity of 𝑡 when Δ𝑡 becomes 
infinitely small, 𝑑𝐷௧ is the marginal increase in the unconditional default function relative to the 
time it takes to reach the neighborhood of 𝑡, and 1 − 𝐷(𝑡) is the survival function relative to time, 
until 𝑡.  

Lastly, equation #31 can be written in its probabilistic form based on the distribution function 𝐷(𝑡) = 𝑝(𝑇 ≤ 𝑡) and the mortality density function 𝐷ᇱ(𝑡) = 𝑝(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡), or even the 
survival function 𝑝(𝑇 ≥ 𝑡) = 1 − 𝑝(𝑇 ≤ 𝑡): 

𝜆(𝑡) =  𝑝(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡)1 − 𝑝(𝑇 ≤ 𝑡) = 𝑝(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡)𝑝(𝑇 ≥ 𝑡) = 𝑝(𝑡 < 𝑇 < 𝑡 + 𝑑𝑡 | 𝑇 > 𝑡) 

 The conditional probability of default 𝑑୼௧  over time period Δ𝑡 equal to [𝑡 − Δ𝑡; 𝑡] may be 
deduced from the survival probability 𝑆(𝑡) = 1 − 𝐷(𝑡):  𝑆௧ = 𝑆௧ି୼௧ × (1 − 𝑑୼௧) 

𝑑୼௧ = 1 − 𝑆௧𝑆௧ି୼௧ = 1 − 𝑒ିி(௧)𝑒ିி(௧ି୼௧) = 1 − 𝑒ିఒഥ೟×௧𝑒ିఒഥ೟ష∆೟×(௧ି୼௧)                            #32 

                                                
10  Saporta, Gilbert, Probabilités, analyse des données et statistique, Éd. Technip, 3rd edition, pp. 19-20. 
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1.2.2 Example using an S&P transition matrix 

The expectation of default as a function of time (expressed in years) for a given credit rating can be 
deduced from the one-year transition matrices published by rating agencies. For this example, we look at 
the category of BBB-rated companies11. 

 By interpolation, we can approximate the default probability function 𝐷(𝑡) with the following 
polynomial:  
 𝐷(𝑡) ≅  − 1.910ହ 𝑡ଷ + 5.410ସ 𝑡ଶ + 2.410ଷ 𝑡 − 2.710ହ 

⇒  𝐷ᇱ(௧) ≅ − 5.810ହ 𝑡ଶ + 10.810ସ 𝑡 + 2.410ଷ 

 

 

 

We can easily deduce the survival function 𝑆(𝑡) from the default function 𝐷(𝑡): 

 𝑆(𝑡) = 1 − 𝐷(𝑡)  

⇒ 𝑆(𝑡) ≅  1 + 2.710ହ + 1.910ହ 𝑡ଷ − 5.410ସ 𝑡ଶ − 2.410ଷ 𝑡 

 

 

 

 

 From equation #31, 𝜆(𝑡) =  ஽ᇲ(௧)ଵି஽(௧), we can deduce the values of the intensity function 𝜆(𝑡). By 

polynomial interpolation, the equation is as follows:  
 𝜆(𝑡) ≅ − 3.110଻ 𝑡ଷ − 5.010ହ 𝑡ଶ + 1.110ଷ 𝑡 + 2.410ଷ 

A rising / (falling) default intensity indicates 
ageing or deterioration / (rejuvenation or 
recovery). In the absence of ageing or, 
conversely, rejuvenation, a constant intensity 
reflects a situation in which death results from 
random external causes with a constant intensity. 

                                                
11  For our initial approach, here we assume that the transition matrices are Markov chains, i.e. that the default probability in 

period t depends solely on the probability in the previous period, t-1. The one-year transition matrix underlying the default 
probabilities used here for subsequent years, created in 2005 by S&P, was taken from: Patrice Poncet and Roland Portait, 
Finance de marché, 4th ed. Dalloz, page 928. 
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 From equation #27 we can deduce the values of the mean intensity function 𝜆̅௧:  

 

𝜆̅௧ = − ln(1 − 𝐷௧)𝑡    
By polynomial interpolation, the equation  
is as follows: 
 𝜆̅௧ ≅ − 1.6610଻ 𝑥ଷ − 1.5310ହ 𝑥ଶ + 5.3410ସ 𝑥 + 2.4110ଷ  

 

 

 From equation #32 we can deduce the conditional probability function 𝑑୼௧:  

𝑑୼௧ = 1 − 𝑒ିఒഥ೟×௧𝑒ିఒഥ೟ష∆೟×(௧ି୼௧)   
 

By interpolation, the equation for 𝑑୼௧ , with Δ𝑡  

standing for one year, can be approached as  

follows:  

𝑑୼௧ ≅  − 6.410଼ 𝑡ଷ − 5.410ହ 𝑡ଶ + 1.010ଷ 𝑡 + 2.910ଷ 
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1.3 The constant default intensity can be compared to a Poisson distribution 

The probability distribution of a Poisson (Siméon Denis) random variable is characterized by a coefficient 
of intensity 𝜆 per unit of time, which makes such a process similar to the specific case noted above in 
which the default intensity function is constant. 

Remember that according to the definition of a Poisson distribution, the number of occurrences in the 
discrete time intervals is independent and their average per unit of time is equal to 𝜆, i.e. the coefficient of 
intensity12. 

It may seem absurd to assume independence and multiple occurrences with respect to the default risk of a 
single company, but in this case, these assumptions are purely secondary. Our real goal is to determine 
the probability that the first default will occur. In practice, the first default will be analyzed in a way that 
excludes the following occurrences. 

Subsequently, if we use 𝑌ఏ to designate the Poisson random variable in the parameter 𝜆 ; 𝑌ఏ → 𝒫(𝜆), 
corresponding to the number of default occurrences per unit of time 𝜃 given ; 𝜃 = 1, then the variable 𝑌௧ = ௧ఏ 𝑌ఏ, which refers to the number of potential occurrences in the time interval ; ]𝑡 − 1 ; 𝑡], such that 𝑡 𝜃 = 𝑡⁄  ; follows a Poisson distribution with intensity 𝜆 × 𝑡: 𝑌௧ → 𝒫(𝜆 × 𝑡) 

The probability of 𝑘 defaults occurring during a time interval [0 ; 𝑡] would thus be equal to: 

𝑝(𝑌௧ = 𝑘) = 𝑒ିఒ௧ × (𝜆𝑡)௞𝑘!                                                          #33 

As a result, the probability of no default occurring, i.e. the probability of survival during the time interval ]0 ;t] is equal to:  

𝑆௧ = 𝑝(𝑌௧ = 0) = 𝑒ିఒ௧ × (𝜆𝑡)଴0! =   𝑒ିఒ                                #34 

In equation #34, we find the expression for the probability of survival from equation #25, i.e. in cases 
where the default intensity function is a constant. This reflects a situation in which “death” is the result of 
random external causes with a constant intensity. 

In other words, we could just as easily say that the default intensity function is a constant λ, or that the 
number of potential defaults per unit of time is a Poisson random variable with a parameter λ. 

 

 

                                                
12  For more detail, see Gilbert Saporta, Probabilités, analyse des données et statistique, 3rd edition, 2011, Éd. Technip, pp. 48-52 
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1.4 Bond default spread and real-world probability of default according to 
the intensity model 

1.4.1 Breaking down the credit spread with real-world probabilities of default 

The default risk gives rise to a foreseeable loss, whose expected value can be used as an investment target 
provided the asset is held in a portfolio of debt securities with the same risk profile. In this sense, the 
expected loss given default converges towards the expected value of the loss via a system of 
diversification resulting from the law of large numbers. The contractual return expected for a bond if the 
issuing company survives is thus not equal to its expected return. The spread between the contractual 
return if the company survives and the expected return is the default risk premium. This premium may be 
viewed as an adjustment to be made to the discount rate (or cost of capital) to reflect the fact that cash 
flows are slanted relative to their expected value. 

The models typically used to estimate default risk assume a “risk-neutral” universe. That means that apart 
from the default premium, they do not take into account any remuneration for the return dispersion risk 
relative to the expected value. In other words, once adjusted for default risk, the cash flows are assumed 
to be certain and are discounted at the risk-free rate. 𝑟̂ = Πௗ + 𝑟௙                                                               #35 

Where 𝑟̂ refers to the internal rate of return at which the bond price is equal to the present value of the 
theoretical contractual cash flows, i.e. coupon payments plus principal; Πௗ refers to the default risk 
premium (or default spread); and 𝑟௙ refers to the risk-free rate for an identical time to maturity. 

There is no need to look for an economic justification for the risk-neutral approach. Rather, it is a 
generally accepted calculation practice that makes sense when valuing bond options, for which there is no 
need to estimate a risk premium13.  

Unlike the risk-neutral approach, we start from a real-world risk aversion context, which means that 
investors would require a risk premium when calculating their return, as in the CAPM. Bonds are risk 
assets and their prices and returns thus fluctuate constantly, both for reasons specific to the issuer’s credit 
quality (in the form of rating changes) and for exogenous reasons – chiefly risk aversion as measured by 
movements in the overall market risk premium and variation in the risk-free rate. On top of the return 
dispersion risk premium, there may also be a liquidity premium and an incompressible residual 
premium14 empirically observed as the difference between the yield to maturity of an AAA-rated 
corporate bond and that of a government bond with the same rating, denominated in the same currency: 𝑟̂ = Πௗ + 𝛽ௗΠோ + Π஺ + Π௅ + 𝑟௙ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥா(௥)                                               #36 

In which 𝛽ௗ and Πோ refer respectively to the bond’s beta and the financial market risk premium in the 
CAPM sense, Π஺ refers to the residual risk premium required of AAA-rated corporate bonds, and Π௅  to 
the liquidity premium.   

To keep matters simple at this point, before we develop these ideas more thoroughly, we will merely say 
that the default premium Πௗ is an adjustment made to the expected return 𝐸(𝑟) of the risk asset made to 
account for the fact that forecast cash flows are not expected values, but rather conditional cash flows if 
                                                
13  Cf. John Hull, Options futures, and other derivatives, Pearson, 8th edition, § 23.5  
14  See section § 3.4, page 40. 
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the issuer survives. Thus, we make a distinction between i) the cost of capital 𝑟̂, which is a discount rate 
used to calculate the present value of cash flows in case of survival, i.e. the contractual payments on a 
bond (coupons and principal), and ii) the bond’s expected return 𝐸(𝑟), which is the discount rate 
applied to the expected value of cash flows, in keeping with the CAPM. 𝐸(𝑟) = 𝑟̂ − Πௗ                                                                        #37 ⇔    𝐸(𝑟) =  𝛽ௗΠோ + Π஺ + Π௅ + 𝑟௙                                          #38 

This being laid, there are two possible approaches to calculating the present value of the bond 𝑉଴ at the 
date 𝑡଴:  

 The first consists in discounting the contractual payment flows, 𝐶𝐹, i.e. those expected if the 
issuer survives, at the cost of capital 𝑟̂: 𝑉଴ = ෍ 𝐶𝐹௜(1 + 𝑟̂)௜ 

 The second consists in discounting the expected value of the cash flows, 𝐸(𝐶𝐹), i.e. taking into 
account the probability of survival, the probability of default, and the recovery rate in the event of 
default (we explain these calculations below). The cash flows are discounted at a rate equal to the 
expected value of the bond’s rate of return, 𝐸(𝑟): 

𝑉଴ = ෍ 𝐸(𝐶𝐹௜)൫1 + 𝐸(𝑟)൯௜ 
⇒    𝑉଴ = ෍ 𝐶𝐹௜(1 + 𝑟̂)௜ = ෍ 𝐸(𝐶𝐹௜)൫1 + 𝐸(𝑟)൯௜                                               #39 

Where:  ൜ 𝐸(𝑟) ≤ 𝑟̂          𝐸(𝐶𝐹) ≤ 𝐶𝐹    
1.4.2 Bond value as a function of default probability and recovery rate 

1.4.2.1 Cash flow over one period 

If we first consider the value 𝑉଴ of a bond with cash flow over only one period, with payment received at 
date 𝑇, with a probability of (1 − 𝑑) and – in the event of a default with probability 𝑑 – a recovery rate 
equal to 𝑅 expressed as a percentage of the amount due, then:  

𝑉଴ = (1 − 𝑑). 𝐶𝐹் + 𝑑. 𝑅. 𝐶𝐹்൫1 + 𝐸(𝑟)൯்                                                             #40 

If we use 𝑉௙ to refer to the bond’s expected future value, i.e. 𝑉଴ capitalized at a rate equal to the expected 
return 𝐸(𝑟), which corresponds to the rate of return expected in case of survival 𝑟̂ (the contractual rate of 
return), minus the default premium Πௗ, then simplifying the expression by positing 𝐸(𝑟) = 𝑟 gives us: ⇒   𝑉଴ × (1 + 𝑟)் = 𝑉௙ = (1 − 𝑑). 𝐶𝐹் + 𝑑. 𝑅. 𝐶𝐹்                                    #41 
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⇒ 𝑉௙ = 𝐶𝐹் − 𝑑. 𝐶𝐹் . (1 − 𝑅)                                                      #42 
In the second part of the equation above, we can see the difference between the cash flow in case of 
survival 𝐶𝐹் and the loss given default; 𝑃௧ = 𝐶𝐹் . (1 − 𝑅), weighted by the probability of default 𝑑.  ⇒ 𝑉௙ = 𝐶𝐹் − 𝑑. 𝑃்                                                              #43 
In other words, the expected future value 𝑉௙ can be seen as: 

- The average of the forecast cash flows given by the individual outcome scenarios weighted by the 
probability of each scenario, i.e. equation #41, which is the definition of the mathematical 
expectation of the future value; 

- The conditional cash flows in case of survival 𝐶𝐹், minus the probable loss given default, i.e. 
equation #43. 

 
Comments:  

In general, we consider that; 𝑅 ∈ [0; 1], i.e. that the recovery rate cannot be below zero. This means 
ignoring cases where a lender is liable for improper financial support. Furthermore, we generally exclude 
cases where the recovery rate exceeds 1, which can happen when a lender becomes a shareholder in a 
capital increase paid for by writing off debt and then manages to right the company’s situation and realize 
an enterprise value higher than the amount of the initial debt. These kinds of situations do indeed occur – 
how often depends on the bankruptcy and contract laws that apply. 

 

In the standard scenario where 𝑅 ∈ [0; 1], equation #42 can be rewritten as:  ⇒ 𝑉௙ = 𝐶𝐹் ൫1 − 𝑑. (1 − 𝑅)൯                                                       #44 ⇒ 𝑉௙ = 𝐶𝐹் 𝑆€                                                                      #45 
Where 𝑆€ refers to the probability of survival adjusted for the rate of loss given default. When 𝑅 ∈ [0; 1] 
(see above), the rate of loss given default is also between zero and one inclusive, which implies that the 
probability of survival for the flows expressed in the currency unit 𝑆€ is generally greater than or equal to 
the survival probability 𝑆௧ of the companies included in the loan portfolio. 𝑅 ∈ [0; 1]  ⇒ 𝑆€ ≥ 𝑆் 

 If we assume that the bond value is equal to 100%, which implies that the nominal yield is equal 
to the yield to maturity, then by definition:  

ቐ 𝐶𝐹 = (1 + 𝑟̂)்                           𝑉଴ = 𝐶𝐹(1 + 𝑟̂)்  =   1                                                                        #46 

Replacing the 𝐶𝐹 in equation #44 with its value in the first part of equation #46, gives us: 

𝑉଴ = 1 = (1 + 𝑟̂)் . ൫1 − 𝑑. (1 − 𝑅)൯(1 + 𝑟)்  
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⇔   1 + 𝑟̂1 + 𝑟 = ൫1 − 𝑑. (1 − 𝑅)൯ିభ೅ 

From which we derive the expression for the default premium, Πௗ, for a discrete, single period 
cash flow: 

𝑟̂ − 𝑟 = ൬൫1 − 𝑑. (1 − 𝑅)൯ିభ೅ − 1൰ (1 + 𝑟) = Πௗ                                       #47 

Furthermore, replacing 1 − 𝑑. (1 − 𝑅) with 𝑆€ gives us: 

Πௗ = (1 + 𝑟) ቆ 1ඥ𝑆€೅ − 1ቇ                                                                              #48 

 We can also express the default premium using log returns, i.e. in a continuous time framework, 
positing 𝑟ᇱ = ln (1 + 𝑟) and 𝑟̂ᇱ = ln (1 + 𝑟̂):  

ቊ 𝐶𝐹 = 𝑒௥ᇱෝ ்                                                                  𝑉଴ =  𝑒௥̂ᇱ்൫1 − 𝑑(1 − 𝑅)൯𝑒ି௥ᇱ் =   1                                          #49 

Πௗᇱ = 𝑟̂ᇱ − 𝑟ᇱ = − 𝑙𝑛൫1 − 𝑑(1 − 𝑅)൯𝑇    =     − 𝑙𝑛(𝑆€)𝑇                                #50 

With:    𝑟̂ = 𝑒൫ஈ೏ᇲ ା௥ᇱ൯ − 1 

1.4.2.2 Case study: straight bond with maturity of over 1 year 

When there are multiple forecast cash flows, the default risk of a straight bond cannot be treated like a 
basket of mutually independent zero-coupon bonds. A default prior to maturity jeopardizes all subsequent 
cash flows, which are therefore dependent upon the company surviving until the date preceding their 
payment. As a result, we cannot simply take the single period cash flow approach used in equation #41 
and apply it to each forecast cash flow. On the other hand, equation #43 does work. In other words, we 
can value a bond by discounting at the “default risk-free” rate 𝑟 the contractual future cash flows minus 
the potential losses given default calculated for each coupon payment date. 

For example, the equation for a straight bond paying annual coupons and valued at 𝑉଴ on date 𝑡 = 0 is as 
follows:  𝑉଴ = 𝐶𝐹ଵ1 + 𝑟̂ + 𝐶𝐹ଶ(1 + 𝑟̂)ଶ                                                                #51 

Where 𝑟̂ refers to the bond’s yield to maturity`. 

In this case, 𝑉଴ is also equal to the value of the cash flows in case of survival minus the probability-
weighted estimate of losses:  𝑉଴ =  𝐶𝐹ଵ − 𝑑ଵ𝑃ଵ1 + 𝑟 +  𝐶𝐹ଶ − 𝑑ଶ𝑃ଶ(1 + 𝑟)ଶ                                                      #52 

Where 𝑟 refers to the bond’s expected return, i.e. the yield to maturity minus the default premium: 𝑟 = 𝑟̂ − Πௗ, in keeping with equation #37. And where, furthermore, 𝑑ଵ refers to the unconditional default 
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probability over the period ]0 ; 𝑡ଵ] and 𝑑ଶ, to the conditional default probability over the period ]𝑡ଵ ; 𝑡ଶ]. 
This gives us: 

൞ 𝑃ଶ = 𝐶𝐹ଶ(1 − 𝑅)                        
   𝑃ଵ = 𝐹ଵ(1 − 𝑅) = 𝐶𝐹ଶ(1 − 𝑅)1 + 𝑟                                                                              #53 

Where 𝐹ଵ(1 − 𝑅) refers to the value at date 𝑡ଵ in the event of default during the period ]0 ; 𝑡ଵ]. This loss 
corresponds to the product of the expected value at that date, 𝐹ଵ = ஼ிమଵା௥ , and the rate of loss in the event of 
default (1 − 𝑅).   

More generally, if the recovery rate in the event of default is constant and equal to 𝑅:  

𝑉଴ = ෍ 𝐶𝐹௜(1 + 𝑟)௜்
ଵ − (1 − 𝑅) × ෍ 𝑑௜𝐹௜(1 + 𝑟)௜்

ଵ                                                          #54 

Which gives us:  

⎩⎪⎨
⎪⎧  𝐹௜ = ෍ 𝐶𝐹௜ାఏ(1 + 𝑟)ఏ                                     𝑖𝑓 𝑖 < 𝑇௡

ఏୀଵ              𝑤𝑖𝑡ℎ     𝑛 = 𝑇 − 𝑖        𝐹௜ = 𝐶𝐹்                                                     𝑖𝑓 𝑖 = 𝑇                                       #55 

Comments:  

It is not hard to imagine the recovery rate 𝑅 also being a function of time. For example, it may decline as 
the debt-financed assets depreciate. Conversely, it may increase if the debt is repaid more quickly than the 
assets depreciate. Furthermore, the recovery rate 𝑅 may be treated as a random variable whose expected 
value is known at a future date 𝑇, but which presents a certain degree of uncertainty, as expressed by its 
coefficient of variation. That coefficient, in turn, may increase the further one gets from 𝑇. Certain 
authors have noted that 𝑅 is influenced by the economic cycle15, as the market value of assets declines in 
recessionary periods, which are correlated with defaults and generate an abundance of assets for sale. 

1.4.3 Default probability as a function of default spread and recovery rate 

Before making a calculation, we can get some indication of default probability by referring to the 
transition matrices published by rating agencies. However, these statistics are based on long observation 
periods, so they cover multiple economic cycles. So-called through the cycle matrices tend to smooth out 
the variations in default rate seen between the bottom and the top of the cycle. But someone forming an 
expectation based on their current position in the economic cycle may reach a very different conclusion 
than the long-term probability. In these cases, it makes sense to infer the expected default rates at a given 
date using bond spreads. That said, there are a number of classic pitfalls to this approach owing to the fact 
that it is impossible to know economic agents’ expectations or interpret them with certainty: 

- The general level of risk aversion must be estimated, which means using the CAPM to estimate the 
market risk premium for a portfolio comprising equities, bonds and derivatives; 

- The recovery rate in the event of default is not independent of the economic cycle; 
- Asset betas are hard to forecast;  

                                                
15 E.I. Altman, B. Brady, A. Resti, and A. Sironi, “The link between Default and recovery rates: Theory, Empirical Evidences 

and Implications”, Journal of Business, 78, 6 (2005), pp. 2203-2228. 
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- Liquidity premia are not stable either; 
- And so on. 

Thus, in order to estimate default expectations, it is necessary to use models that are simplified and 
subjective. 

1.4.3.1 Estimates using a straight bond, without default rate curves 

If we refer to formula #54 and posit that it is possible to predict both the expected return 𝑟 of the financial 
asset (risk premium, asset beta) and the recovery rate 𝑅, then the only unknown values are the annual 
default probabilities 𝑑௜:   

𝑉଴ = ෍ 𝐶𝐹௜(1 + 𝑟)௜்
ଵ − (1 − 𝑅) × ෍ 𝑑௜𝐹௜(1 + 𝑟)௜்

ଵ                                               #56 

If no “conditional default rate curve” is available, then as a first approximation we can estimate the 
default probability at date 𝑇, corresponding to the bond’s maturity, by assuming that the conditional 
default function is constant: 𝑑(𝑡) = 𝑑   ∀ 𝑡. In that case, equation #54 becomes: 

෍ 𝐶𝐹௜(1 + 𝑟)௜்
ଵ − 𝑉଴ = 𝑑 × (1 − 𝑅) × ෍ 𝐹௜(1 + 𝑟)௜்

ଵ                                           #57 

The sum of the first part of the equation is simply the hypothetical value of the bond without taking into 
account the default premium, i.e. the present value of the contractual cash flows discounted at a rate equal 
to the bond’s expected return as defined in equations #36 and #38. If we label this hypothetical value with 
no default by time horizon 𝑖 as 𝑉௙;௜, then we get the following equation:  𝑉௙;଴ − 𝑉଴ = 𝑑 × (1 − 𝑅) × ෍ 𝑉௙;௜(1 + 𝑟)௜்

ଵ                                                 #58 

Where “𝑉௙;଴ − 𝑉” may be interpreted as the decrease in the risk-weighted bond’s value relative to its 
hypothetical value if there were no risk of default. 

From this, we can deduce the value of the conditional default probability, 𝑑: 

𝑑 = 𝑉௙;଴ − 𝑉଴ (1 − 𝑅) × ∑ 𝑉௙;௜(1 + 𝑟)௜  ଵ்                                                            #59 
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As an illustration, let’s take the example of a three-year straight bond issued at par – hence its face value 
is equal to its market value – with yield to maturity identical to its nominal yield of 2.6%. Let us assume 
that we know the average beta for straight bonds with the same rating and the same time to maturity, 
giving us an estimated expected return 𝑟 of 2.0%. Lastly, the estimated recovery rate is 40%:  

 The hypothetical value of the bond barring default, 𝑉௙;଴, would be equal to 101.73. 𝑉௙;଴ = 𝐶𝐹ଵ(1 + 𝑟)ଵ + 𝐶𝐹ଶ(1 + 𝑟)ଶ + 𝐶𝐹ଷ(1 + 𝑟)ଷ 

𝑉௙;଴ = 2.61.02 + 2.61.02ଶ + 102.61.02ଷ = 101.73 

 The hypothetical value in one year, all else being equal, 𝑉௙;ଵ, would be 101.16. 𝑉௙;ଵ = 𝐶𝐹ଶ(1 + 𝑟)ଵ + 𝐶𝐹ଷ(1 + 𝑟)ଶ 

𝑉௙;ଵ = 2.61.02 + 102.61.02ଶ = 101.16 
 The hypothetical value in two years, 𝑉௙;ଶ, would be 100.59. 𝑉௙;ଶ = 𝐶𝐹ଷ(1 + 𝑟)ଵ 

𝑉௙;ଶ = 102.61.02 = 100.59 
 Lastly, the value in three years, 𝑉௙;ଷ, when the bond repays 100 and pays the final coupon of 2.6, 

and there is no discounting, would be 102.6. 

 The present value of future losses given default would thus be equal 175.53: (1 − 𝑅) × ෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ = 0.6 × ൬101.161.02 + 100.591.02ଶ + 102.61.02ଷ൰ = 175.53 

 The difference in value that results from taking default risk into account is equal to 1.73: 𝑉௙;଴ − 𝑉଴ = 101.73 − 100 = 1.73 

 With no additional data, if we assume that the conditional default probability in each of the three 
coming years is equal to a constant d, then according to equation #59, it comes to 0.9858%: 𝑑 = 1.73175.53 = 0.9858 × 10ିଶ 

 In this case, the average default intensity is equal to a constant: λത × ∆𝑡 = 𝑑, where ∆𝑡 = 1. In 
keeping with equation #25, the survival function is equal to 𝑆(𝑡) =  𝑒ି஛ഥ×௧, from which we can 
deduce the cumulative default function: 𝐷(𝑡) = 1 − 𝑆(𝑡): 

 

Thus, in this case, the estimated three-year cumulative default probability implied by the bond 
default spread would be 2.91%. 

 

1 year: t = 1 2 years: t = 2 3 years: t = 3
S (t) Survival function 99.0191% 98.0477% 97.0859%
D (t) Cumulative default function 0.9809% 1.9523% 2.9141%
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1.4.3.2 Approximation using the John Hull approach 

In their work, John Hull et al. use the following formula to approximate the default spread, Πௗ, in a risk-
neutral world16:   Πௗ = λത × (1 − 𝑅)                                                    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #60 

Where Πௗ refers to the spread between the bond’s yield to maturity and the risk-free rate (both expressed 
as log returns in continuous time). In our view, there is no reason not to extend this approach to the real 
world. That would mean that the default premium is equal to the difference between the logarithmic yield 
to maturity 𝑟’෡ and the logarithmic expected return 𝑟’ (as defined earlier in equation #49).  

In the example above, the simplified approach used in equation #57 gives us a default intensity of 
0.9775%, materially identical to the value generated by a detailed calculation, i.e. 0.9858%:  

λത = ቀln ቀ1 + 2.6100ቁ − ln (1 + 2100)ቁ (1 − 40100)൙  

Conversely, if we take the average default intensity given by the example, 0.9858%, then applying 
formula #57 leads to a (log) default spread estimate of 0.5915%, compared with the 0.5865% given by 
our approach. The difference is not meaningful, at 0.8%.  0.5865100 = ln ൬1 + 2.6100൰ − ln (1 + 2100) 

Lastly, using the average intensity of 0.9775% resulting from the simplified approach in equation #25 
gives us a cumulative three-year default probability of 2.89%, vs. 2.91%, which is again a minimal 
difference relative to the detailed approach. 

As a general rule, in our experience this approximation produces satisfactory results for investment grade 
returns, but we start to see some significant differences for weaker ratings, below B. However, we do 
want to point out that the errors appear to be acceptable in a working context, considering the amount of 
subjectivity that goes into assigning the rating itself. This approximation formula is not only extremely 
simple to use, it is also valuable because it highlights the link between the default premium and its two 
key explanatory variables: average annual default intensity, λത, and the percentage of loss given default, (1 − 𝑅). 

1.4.3.3 Estimating a default rate curve using default spreads for different maturities 

It is possible to use the approach explained in section 1.2.3.1 to estimate the unconditional default rate of 
a one-year bond with a yield to maturity equal to the average for straight bonds with the same rating. In 
addition, because this calculation makes it possible to know the average default intensity at the first 
maturity, that information can be reused to calculate the default probability of two-year bonds with the 
same rating, which in turn can be used for subsequent maturities. Therefore, this process generates default 
intensity curves and cumulative default rate curves for each maturity and rating. 

 

                                                
16  Hull, John C., Predescu, Mirela, and White, Alan, “Bond Prices, Default Probabilities and Risk Premiums”, March 9, 2005, 

SSRN: https://ssrn.com/abstract=2173148 
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2 From bond default spread to equity default premium 

2.1 Bond/equity commonalities and extrapolating the default premium 

The same reasoning we used for a straight corporate bond can easily be extended to the valuation of a 
fixed-rate perpetual bond, and thus to that of a stock: 

- unlike a straight bond, a perpetual bond carries some uncertainty as to the exit value for the 
investor at the end of his investment horizon, which is obviously not limitless, even though the 
debt has no maturity. The exit value is contingent upon the risk-free rate, the overall risk 
premium, and the default risk on the exit date; 
 

- the model used to value the stock adds in some additional uncertainty regarding the level of free 
cash flow to the shareholder (see below for definition), which is conditional upon the company 
earning a profit and respecting certain prudential constraints on its debt ratios. 

The fundamental difference between stock and bond valuation is that the expected cash flows accruing to 
the shareholder are not contractual and are not capped, and are defined as estimates derived from the 
future earnings capacity of the issuer. As a result, the cash flow to the shareholder is intrinsically more 
variable than those accruing to bondholders. On the other hand, both actuarial models are based on cash 
flow forecasts that are – either by definition or de facto – conditional upon the issuer’s survival: 

- the bondholder will only receive the coupons and principal repayments used to calculate the 
yield to maturity of the bond, 𝑟̂, if the issuer survives. As we have mentioned, on average, the 
expected value of the return for the investor, 𝑟, is lower than the yield to maturity owing to the 
possibility of the bond issuer defaulting; 

- similarly, the forecast cash flow to the shareholder is either explicitly or implicitly linked to the 
company’s survival. As a result, the cost of capital used to discount the conditional forecast cash 
flows, 𝑟̂, is also higher than the stock’s expected return, 𝑟, based on the cash flows adjusted for 
loss given default. 

We invite readers with experience in valuing a company, either using management forecasts or outside 
forecasts, to ask themselves: have they ever used forecasts that were truly expected values, i.e. forecasts 
adjusted for loss given default? While probability weighted forecasts are by no means rare, those 
forecasts almost never take into account the mortality scenario. 

It never occurs to people to discount a bond’s contractual cash flows at a rate other than the market yield 
to maturity, 𝑟̂, much less at the rate of 𝑟, equal to the expected return adjusted for the default risk. So it is 
odd that so many equity valuations use a rate that is assumed to correspond to the stock’s expected return, 𝑟, to discount forecasts that are conditional upon the company’s survival!  

Remember that the default risk “reduces” the expected cash flow compared with the forecast in case of 
survival. The idiosyncratic nature of the default risk or its inclusion in systematic risk is a different 
question, one that involves how the beta is calculated. In this respect, using the Hamada formula to adjust 
the beta so that it accounts for debt leverage is solely intended to correct the systematic risk for the debt 
leverage. It does not take care of the need to adjust the expected cash flow calculation to reflect the risk of 
a corporate default17, which exists regardless of whether or not the company has any debt. In other words, 

                                                
17  We refer readers interested in this question to the following article: Clère, Roland, “After Modigliani, Miller and Hamada; A 

New Way to Estimate Cost of Capital?” (Après Modigliani, Miller et Hamada: une nouvelle façon d'estimer le coût du 
capital?), November 23, 2016, available at SSRN: https://ssrn.com/abstract=2868702 
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we reject the too-widely-held assertion that default risk (or even forecasting risk) is adequately reflected 
in the beta. The CAPM on which the beta is based does account for the expected value of cash flows and 
not that of flows slanted because they do not factor in default risk (or excessive optimism)18.  

From the above, we can deduce the formula for cost of equity, i.e. the rate at which to discount free cash 
flow to the shareholder, as well as the stock’s expected return, which is assumed to represent the 
investor’s return on investment, i.e. the total of the instrument’s increase in value plus its dividend yield. 𝑟̂ = Πௗ + Πை + 𝛽௅Πோ + Π௅ + 𝑟௙ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௥                                               #61 

As we can see, this equation is not fundamentally different from equation #36, which applies to a bond. 
What distinguishes it, however, is that it also includes a risk premium for excessive optimism or 
confidence, Πை, a bias that from our standpoint is inseparable from any prediction made by human 
beings. As a reminder, an average risk premium for optimism bias can be estimated by comparing the 
forecasts made by analysts (or the companies themselves) against actual performance over multiple 
economic cycles19. 

 
Clarification regarding free cash flow to the shareholder: 

The free cash flow that a company generates for its shareholders over a given time period (one financial 
year, for example), is defined as cash earnings20 (or cash flow), minus investment net of proceeds from 
divesting fixed assets, plus/(minus) the reduction/(increase) in working capital and the 
increase/(reduction) in financial debt, and adjusted for earmarking a portion of the cash flow for 
prudential purposes, since there are few companies able to operate without a minimum of equity capital 
and cash in hand. As a result, to calculate the residual value using a DCF model, the presumed normalized 
cash flow cannot exceed the level of earnings (at least in a standalone approach). 𝐶𝐹ி = 𝐶𝐹 − 𝐼𝑣 − ∆𝑊𝐶𝑅 + ∆𝐷 − ∆𝑆𝐸 

Where 𝐶𝐹 refers to the cash flow over the period, 𝐼𝑣 to investment net of divestment proceeds, ∆𝑊𝐶𝑅 to 
the change in working capital requirement, ∆𝐷 to the change in financial debt, and ∆𝑆𝐸, to the prudential 
reallocation of some shareholders’ equity to managing payments to the company’s suppliers, clients, 
lenders, and employees. 

 
  

                                                
18  For a more in-depth look at this question: http://www.fairness-finance.com/fairness-finance/cms/en/2-34/fiche-n-3-

compatibilite-avec-le-medaf.dhtml  
19  Same as the above note. Readers will find an abundance of literature on forecasting bias in financial analysis here: 

http://www.fairness-finance.com/fairness-finance/cms/en/4-25/liens-utiles-bibliographie-choisie.dhtml  
20  Earnings adjusted for non-cash items such as depreciation and amortization and allowance for provisions or impairments. 
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2.2 Example of a default probability inferred from the implied cost of equity 
Here we present an example involving the steps used to calculate the estimated default probability of an 
issuer based on a stock’s implied cost of capital21. In this example, the stock’s implied cost of capital, 𝑟̂, is 
the IRR at which the present value of forecast free cash flows to the shareholder, per share, is equal to the 
value of the stock, for example as observed on the stock market. To simplify matters, we assume that the 
cash flow forecasts are not tainted by optimism bias or excessive confidence, which means that Πை in 
equation #61 is zero.  

Let us assume that the explicit forecast horizon is limited to three years, the cash flows are received at the 
end of each year, and the residual value generated by selling the stock at the end of year three is equal to 
the value of a perpetual annuity with an annual cash flow growth rate in perpetuity of 𝑔; in this case, the 
implied cost of equity, 𝑟̂, is the IRR at which:  

𝑉଴ = 𝐶𝐹ଵ(1 + 𝑟̂)ଵ + 𝐶𝐹ଶ(1 + 𝑟̂)ଶ + 𝐶𝐹ଷ(1 + 𝑟̂)ଷ + 𝐶𝐹ସ𝑟̂ − 𝑔(1 + 𝑟̂)ଷ             𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #62 

The final term is equal to the residual value according to a perpetual annuity formula, discounted over 
three years. In this term, 𝐶𝐹ସ refers to the “normalized” cash flow expected in year 4, i.e. the cash flow at 
which the theoretical annual growth rate of 𝑔 is compatible with the company’s change in WCR, 
investment, change in shareholders’ equity, and change in financial debt. 

 

Comments on the rate of growth in perpetuity beyond the explicit forecast horizon: 

Unlike the bond value calculations discussed earlier, the formula detailed above requires us to make an 
assumption about growth in perpetuity beyond the explicit forecast horizon, which is generally five years. 
Common sense dictates that the perpetuity rate should not exceed the forecast for nominal economic 
growth (real + inflation). In practice, appraisers tend to use rates that converge towards a floor that is a 
fraction of the economy’s nominal medium-term growth rate. Over the explicit forecast period, however, 
annual free cash flow growth can easily exceed broader economic growth, and this is what financial 
analysts typically assume. If the explicit forecast horizon is shorter than five years, then the growth rate 𝑔 
used to calculate the residual value can naturally be higher than the normalized base rate. This simply 
reflects the fact that the forecaster is taking into account stronger growth between the final explicit 
forecast year and the usual convergence horizon of five years. 

 

With those clarifications in mind, let us look at the example of an implied cost of capital 𝑟̂ of 7.1% (no 
optimism bias premium), an expected return on the stock, 𝑟, equal to 5.6%, growth in perpetuity of 𝑔 
starting in year three of 3%, and the following projected cash flows per share in the event of survival: 
 𝐶𝐹ଵ =  €7.10; 𝐶𝐹ଶ =  €7.53; 𝐶𝐹ଷ =  €7.86; 𝐶𝐹ସ =  €8.10.  

On the calculation date 𝑡 = 0, these assumptions give us a share value 𝑉଴ of €180.42.  

𝑉଴ = 7.1ቀ1 + 7.1100ቁଵ + 7.53ቀ1 + 7.1100ቁଶ + 7.86ቀ1 + 7.1100ቁଷ + 8.107.1100 − 3100ቀ1 + 7.1100ቁଷ = 180.42 

                                                
21  As above, this is the probability in a real-world setting and not a risk-neutral setting. 
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As before, with bonds, the value calculated above using a discount rate that includes a default premium, 𝑟̂, can also be obtained by discounting cash flows adjusted for loss given default at a rate that does not 
include a default premium, 𝑟. Recalling the definitions we used for equation #58, we can express the 
market value of the stock as follows:  

𝑉଴ = 𝑉௙;଴ − 𝑑 × (1 − 𝑅) × ෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ  

Where 𝑉௙;௜ refers to the hypothetical value of the stock at date 𝑖, if the conditional cash flows in the event 
of survival are discounted at the rate 𝑟, deflated to allow for the default premium. 

 

Clarification regarding the recovery rate for shareholders: 

Estimating the recovery rate raises its own questions because it takes time to recover the funds and there 
is no public record cataloguing such transactions, so no recovery rate calculation will be completely 
above criticism or free of subjectivity. When possible, one way to approximate the recovery rate would be 
to compare the value of the receivable immediately after the default occurred with the amount actually 
due on that same date. The drawback to this approach is that the level of discount observed is a product of 
both the issuer’s credit risk and the receivable’s lack of liquidity. The second approach consists of taking 
an ex post survey of the amounts actually recovered and valuing them at the default date, discounting 
them to account for the recovery period. For this approach to work, one would need access to that 
information and a way to justify the discount rate used. 

 

With these limits in mind, the available studies put the expected recovery rate at around 40% for bank 
debt with no guaranty or senior unsecured bonds22. The recovery rate is lower for more subordinated debt, 
which means that by definition, the recovery rate for shareholders is lower than for all categories of debt 
holders. As a result, in the event of a failure, the expected recovery rate for shareholders must be very low 
in general, and particularly in cases where the company has financial debt. It may even be considered zero 
in the case of a court-ordered liquidation, or in the case of a leveraged recapitalization preceded by a 
capital reduction (known in French as a coup d’accordéon), which generally has the effect of wiping out 
the value of existing shareholders’ shares. Lastly, experience shows that even if a company implements a 
reorganization plan, there is no way to be sure its share price won’t tumble into penny stocks territory, at 
the expense of existing shareholders. 

With this in mind, in the following discussion we assume that the value of the stock is so low following 
the default that it can safely be ignored, meaning a recovery rate of zero for shareholders. Based on this 
assumption, equation #58 leads to the following formula for the value of a stock adjusted for loss given 
default: 

𝑉଴ = 𝑉௙;଴ − 𝑑 × ෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #63 

 

 

                                                
22  See Altman, Edward, and Vallore, Kishore, “Almost Everything You Wanted to Know about Recoveries on defaulted 

Bonds”, Financial Analysts Journal, Nov/Dec 1996. Also, de Servigny, Arnaud and Zelenko, Ivan , Le risque de credit, 4th 
ed., Dunod, 2010, pp. 129 et seq. 
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 The hypothetical value at the time of issue if there is no default, 𝑉௙;଴, would be equal to €187.93. 

𝑉௙;଴ = 𝐶𝐹ଵ(1 + 𝑟)ଵ + 𝐶𝐹ଶ(1 + 𝑟)ଶ + 𝐶𝐹ଷ(1 + 𝑟)ଷ + 𝐶𝐹ସ𝑟̂ − 𝑔(1 + 𝑟)ଷ  

𝑉௙;଴ = 7.101.056 + 7.581.056ଶ + 7.861.056ଷ + 8.100.071 − 0.03(1.056)ଷ = 187.93 

The discounted cash flows, as in the previous case of the bond, are cash flows in the event of 
survival. As a result, the residual value before discounting, i.e. 197.58, is obtained by capitalizing 
the final cash flow at the rate 𝑟̂ − 𝑔. 

 The hypothetical value in one year all else being equal, 𝑉௙;ଵ, would be €191.36. 

𝑉௙;ଵ = 𝐶𝐹ଶ(1 + 𝑟)ଵ + 𝐶𝐹ଷ(1 + 𝑟)ଶ + 𝐶𝐹ସ𝑟̂ − 𝑔(1 + 𝑟)ଶ  ⇒ 𝑉௙;ଵ = 7.581.056 + 7.861.056ଶ + 8.100.056 − 0.03(1.056)ଶ = 191.36 
 The hypothetical value in two years, 𝑉௙;ଶ, would be €194.55. 

𝑉௙;ଶ = 𝐶𝐹ଷ(1 + 𝑟)ଵ + 𝐶𝐹ସ𝑟̂ − 𝑔(1 + 𝑟)ଵ ⇒ 𝑉௙;ଶ = 7.861.056 + 8.100.056 − 0.031.056 = 194.55 
 Lastly, the value in three years, 𝑉௙;ଷ, the amount expected to be received at the time of the sale, 

corresponds to the sum of the final explicit cash flow and the non-discounted value of the 
annuity, i.e. €205.44. 𝑉௙;ଷ = 𝐶𝐹ଷ + 𝐶𝐹ସ𝑟 − 𝑔 = 7.86 + 8.100.056 − 0.03 = 7.86 + 197.58 = 205.44 

 The present value of future losses given default is thus equal to €530.13: 

෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ = 196.361.056 + 194.551.056ଶ + 205.441.056ଷ = 530.13 

 The difference in value that results from factoring in the default risk is equal to €7.51: 𝑉௙;଴ − 𝑉଴ = 187.93 − 180.42 = 7.51 

 For lack of additional data, if we assume that the conditional default probabilities in each of the 
three coming years are equal to a constant 𝑑, then according to equation #59, the constant comes 
to 1.4166%: 𝑑 = 7.51530.16 = 1.4166 × 10ିଶ 

 This is a case where the average default intensity is equal to a constant: λത × ∆𝑡 = 𝑑, where ∆𝑡 =1. In accordance with equation #25, the survival function is equal to 𝑆(𝑡) =  𝑒ି஛ഥ×௧, from which 
we can deduce the cumulative default function: 𝐷(𝑡) = 1 − 𝑆(𝑡): 

 

Thus, the default probability implied by the bond’s default spread is estimated to be 4.16% over 
three years in this particular case. 

1 year: t = 1 2 years: t = 2 3 years: t = 3
S (t) Survival function 98.5934% 97.2065% 95.8392%
D (t) Cumulative default function 1.4066% 2.7935% 4.1608%
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2.3 Example of a default risk-adjusted cost of capital 
In this example, we take the opposite tack from the one we followed in the previous example. We assume 
that the default risk related to the business plan is known and use it to deduce the appropriate discount 
rate for determining the value of the company’s stock. 

Let us assume that: 

- we have the business plan of a biotech company whose work to develop medical treatments is at 
a relatively advanced stage, such that the last of the treatments to receive market approval will 
probably do so within the next five years; 

- the forecast cash flow in year 6 is deemed to be a normal level;  

- the forecast cash flows for each treatment are weighted for the probability that they will make it 
from the clinical stage to the next stage and on through to market approval. If each of the 
treatments is based on unique techniques and active compounds, then each project’s success can 
be seen as a variable with a binomial distribution, independent of the other projects. Conversely, 
if all the projects use the same active ingredient and it has not been approved, a failure to win 
approval would mean the failure of all of the applications in development. We can imagine a 
spectrum of possible scenarios in which the projects’ success is more or less correlated. But 
regardless of the degree of correlation, the probability of default would be associated with 
enough failures occurring that the company goes bankrupt. We shall assume that the likelihood 
of such a scenario over a five-year horizon is one in three. 

- the average expected return of a stock in this sector is 5.60%, excluding the default premium, 
the liquidity premium, and any forecast bias; 

- the cost of capital for mature companies, 𝑟̂, is equal to 10%; 

- the perpetuity growth rate, 𝑔, used to calculate a perpetual annuity at the end of year 5 is 2.5%; 

- the forecasts for cash flows per share in the event of survival are as follows: CFଵ = −€24.62; CFଶ = €0.00; CFଷ = €6.00; CFସ = €12.50; CFହ = €6.00;  and CF଺ = €33.87.  

 

Given our assumption of a 1-in-3 default probability over five years, what default premium and what cost 
of capital can we use to value the company? What are the values per share that result from these 
assumptions? 

As a first step, the answers to these questions can be obtained initially using equation # 63, in which 𝑉଴ is 
the only unknown variable, by deducing the average conditional probability of default from the expected 
cumulative probability of 331/3%: 𝑆ହ = 𝑒ିௗത×ହ = 23     ⇒     𝑑̅ = ln(3) − ln (2)5 = 8,11 % 

Knowing 𝑑̅, we can deduce the value of 𝑉଴, namely 209.43: 

𝑉଴ = 𝑉௙;଴ − 𝑑̅ × ෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ = 209,43 

To solve this equation, we need to calculate the future losses given default, 𝑉௙;௜, as in the second approach 
described below. 
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The second modus operandi is to proceed by successive approximations, by adding an increasingly large 
default premium to the expected return of 5.60% until we reach a 5-year probability of default that is 
basically equal to 331/3%. For example, adding a default premium Πௗ  to the expected return 𝑟 gives us a 
cost of capital over five years, 𝑟̂∗, which determines: i) the market value of the stock, 𝑉଴, as well as ii) the 
value of the conditional default probability 𝑑, in accordance with equation #59. From that equation, we 
can deduce the average default intensity 𝜆̅ and the cumulative default probability 𝐷 over five years. 

The effect of the default premium’s variation on the conditional default probability and on the cumulative 
five-year default probability is summed up in the chart and table below: 

 
As shown above, taking into account a default premium of 11.04% leads to a cost of equity of 16.64%, 
which implies: i) an average conditional default probability of 8.11% and ii) a cumulative default 
probability of 331/3% over a five-year horizon, the target level defined ex ante in our example.  

We should emphasize that these results are specific to this particular business plan and that any change in 
the time horizon would change the level of default premium that matches the estimate for the default 
probability. For example, if the duration were longer, the initial negative cash flow would be larger in 
absolute terms, so the default premium needed to reach the target default probability of 331/3% would be 
lower. Conversely, reducing the absolute value of the first cash flow would shorten the duration of the 
value, which would make it necessary to increase the default premium in order to reach the five-year 
cumulative default probability target. 

Given the cost of capital 𝑟̂∗ calculated using this method, i.e. 16.64%, the stock’s value comes to €209.43. 

𝑉଴ = −26.00ቀ1 + 16.64100 ቁଵ + 0.00ቀ1 + 16.64100 ቁଶ + 6.00ቀ1 + 16.64100 ቁଷ + 12.50ቀ1 + 16.64100 ቁସ + 26.00ቀ1 + 16.64100 ቁହ + 33.8710.0100 − 2.50100ቀ1 + 16.64100 ቁହ = 209.43 

 The hypothetical value at the time of issue, assuming no default, 𝑉௙;଴, would equal €354.24. 

𝑉௙;଴ = 𝐶𝐹ଵ(1 + 𝑟)ଵ + 𝐶𝐹ଶ(1 + 𝑟)ଶ + 𝐶𝐹ଷ(1 + 𝑟)ଷ + 𝐶𝐹ସ(1 + 𝑟)ସ + 𝐶𝐹ହ(1 + 𝑟)ହ + 𝐶𝐹଺𝑟̂ − 𝑔(1 + 𝑟)ହ  

𝑉௙;଴ = −26.001.056 + 0.001.056ଶ + 6.001.056ଷ + 12.501.056ସ + 26.001.056ହ + 33.870.1 − 0.0251.056ହ = 354.24 
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9.82% 15.42% 7.43% 31.02%

11.04% 16.64% 8.11% 33.33%
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 The hypothetical value in one year, all else being equal, 𝑉௙;ଵ, would be €380.82. 

𝑉௙;ଵ = 𝐶𝐹ଶ(1 + 𝑟)ଵ + 𝐶𝐹ଷ(1 + 𝑟)ଶ + 𝐶𝐹ସ(1 + 𝑟)ଷ + 𝐶𝐹ହ(1 + 𝑟)ସ + 𝐶𝐹଺𝑟̂ − 𝑔(1 + 𝑟)ସ  

𝑉௙;ଵ = 0.001.056ଵ + 6.001.056ଶ + 12.501.056ଷ + 26.001.056ସ + 33.870.1 − 0.0251.056ସ = 380.82 

 The hypothetical value in two years, 𝑉௙;ଶ, would be €402.14. 

𝑉௙;ଶ = 𝐶𝐹ଷ(1 + 𝑟)ଵ + 𝐶𝐹ସ(1 + 𝑟)ଶ + 𝐶𝐹ହ(1 + 𝑟)ଷ + 𝐶𝐹଺𝑟̂ − 𝑔(1 + 𝑟)ଷ  

𝑉௙;ଶ = 6.001.056ଵ + 12.501.056ଶ + 26.001.056ଷ + 33.870.1 − 0.0251.056ଷ = 402.14 

 The hypothetical value in three years, 𝑉௙;ଷ, would be €418.66. 

𝑉௙;ଷ = 𝐶𝐹ସ(1 + 𝑟)ଵ + 𝐶𝐹ହ(1 + 𝑟)ଶ + 𝐶𝐹଺𝑟̂ − 𝑔(1 + 𝑟)ଶ  

𝑉௙;ଷ = 12.501.056ଵ + 26.001.056ଶ + 33.870.1 − 0.0251.056ଶ = 418.66 

 The hypothetical value in four years, 𝑉௙;ସ, would be €429.61. 

𝑉௙;ସ = 𝐶𝐹ହ(1 + 𝑟)ଵ + 𝐶𝐹଺𝑟̂ − 𝑔(1 + 𝑟)ଵ  

𝑉௙;ସ = 26.001.056ଵ + 33.870.1 − 0.0251.056ଵ = 429.61 

 And lastly, the value in five years, 𝑉௙;ହ, the amount expected to be received at the time of the sale, 
corresponds to the sum of the final explicit cash flow and the non-discounted value of the 
annuity, i.e. €477.61. 

𝑉௙;ହ = 𝐶𝐹ହ + 𝐶𝐹଺𝑟̂ − 𝑔 = 26 + 33.870.1 − 0.025 = 26 + 451.61 = 477.61 

 The present value of future losses given default is thus equal to €1,785.96: 

෍ 𝑉௙;௜(1 + 𝑟)௜்
ଵ = 380.821.056 + 402.141.056ଶ + 418.661.056ଷ + 429.611.056ସ + 477.611.056ହ = 1,785.96 

 The difference in value that results from factoring in the default risk is equal to €144.81: 𝑉௙;଴ − 𝑉଴ = 354.24 − 209.43 = 144.81 
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 For lack of additional data, if we assume that the conditional default probabilities in each of the 
five coming years are equal to a constant 𝑑, then according to equation #59, the constant comes to 
8.1083%: 𝑑 = 144.811.785.86 = 8.1083 × 10ିଶ 

 This is a case where the average default intensity is equal to a constant: λത × ∆𝑡 = 𝑑, where ∆𝑡 =1. In accordance with equation #25, the survival function is equal to 𝑆(𝑡) =  𝑒ି஛ഥ×௧, from which 
we can deduce the cumulative default function: 𝐷(𝑡) = 1 − 𝑆(𝑡): 

 

The five-year cumulative probability of default is thus equal to 331/3%. 

As a reminder, in keeping with equation #56 (adjusted for the lack of recovery and at the constant 
conditional default probability, 𝑑), we verify that the market value of the stock is equal to the present 
value of future cash flows adjusted for the probability-weighted losses given default, discounted at the 
rate 𝑟, excluding a default risk premium. 

𝑉଴ = ෍ 𝐶𝐹௜ − 𝑑𝐹௜(1 + 𝑟)௜்
ଵ                                                𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #64  

According to this definition, the steps used to calculate the stock’s value are broken down in the table 
below, in which the cash flows adjusted for probable loss given default, 𝐶𝐹∗, are calculated and then 
discounted at the rate 𝑟, i.e. the expected rate of return (with no default premium):  

 

  

1 year: t = 1 2 years: t = 2 3 years: t = 3 4 years: t = 4 5 years: t = 5
S (t) Survival function 92.2117% 85.0300% 78.4076% 72.3010% 66.6700%
D (t) Cumulative default function 7.7883% 14.9700% 21.5924% 27.6990% 33.3300%

1 year: t = 1 2 years: t = 2 3 years: t = 3 4 years: t = 4 5 years: t = 5
d Conditional probability of default 8.1083% 8.1083% 8.1083% 8.1083% 8.1083%Vf i Future loss given default -380.82 -402.14 -418.66 -429.61 -477.61
d  x Vf i Weighted loss given default -30.88 -32.61 -33.95 -34.83 -38.73CF CF in case of survival -26.00 0.00 6.00 12.50 477.61
CF* = CF - d  x Vf i CF adjusted for probable loss given default -56.88 -32.61 -27.95 -22.33 438.891/(1+r)t Discount factor with expected r 94.6970% 89.6752% 84.9197% 80.4163% 76.1518%VA{CF*} Present value -53.86 -29.24 -23.73 -17.96 334.22V0 = ∑VA{CFi *} Market Value 209.43
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3 Testing the combined intensity model / CAPM on listed bonds 

To test the intensity model combined with CAPM, we have just presented, we need to estimate the market 
risk premium. For consistency’s sake, we think only one forward-looking model should be used. The 
theoretical basis of the CAPM is forward looking, and it will only be useful to an appraiser if it is based 
on investor expectations. To approximate those expectations, we use the only data available, to our 
knowledge, i.e. sell-side analysts’ forecasts for listed companies. This approach assumes that these 
forecasts can be compiled into a marketplace consensus and, furthermore, that the consensus view is 
shared – at least partly accepted or mostly interpreted in the same way – by investors, the largest of whom 
have their own buy-side research departments. Based on these forecasts, we can determine the market’s 
“implied cost of capital” and derive the CAPM risk premium. 

Much has been written on sell-side analysts’ forecasting bias. Their forecasts notably tend to trail 
movements in market value, so they present a lag relative to investors’ aggregate expectations. In 
addition, analysts’ expectations are tainted by excessive optimism: there is a systematic gap between 
financial forecasts and actual performances, and the gap grows larger as the forecast horizon gets longer. 
However, because these shortcomings are well documented and understood by the market and the 
forecasters themselves, the trick is to be able to measure the average gap with respect to the estimated 
value of the implied cost of capital in order to measure the optimism premium and subtract it from the 
cost of capital used to calculate the market’s expected return. 

Similarly, financial forecasts assume that the company will survive. As far as we know, there are no 
research firms using a methodology that adjusts forecasts to factor in the risk of loss given default. 
Furthermore, from a more practical standpoint, when companies are having such a tough time that they 
become penny stocks, analyst no longer cover them, so they do not factor meaningfully into the implied 
cost of capital calculation as we have framed it here. 

Clearly, testing the intensity model using forward-looking data requires a general analytical framework 
that can be used to evaluate both stocks and bonds. The latter makes it possible to estimate the default risk 
that simultaneously affects both asset classes. A detailed description of such a complicated exercise 
exceeds the scope of this article. Thus, we will limit ourselves to using the results of the model developed 
by the firm Fairness Finance to calculate the risk premium. Nevertheless, we will give a brief description 
of the model’s fundamentals23.  

We will then try to estimate the credit spreads on a given date as a function of rating and other 
explanatory variables. Lastly, using our estimates, we will calculate the market’s implied default 
probabilities based on bond spreads according to i) the CAPM (to first eliminate the systematic risk) and 
ii) tthe intensity model (to then deduce probabilities from the residual default spreads). 

  

                                                
23  For more details, please consult the methodology notes at the following website: http://www.fairness-finance.com/fairness-

finance/cms/en/2/methodologie.dhtml;jsessionid=1D87F09FE75A068FF806C97B5B5E4B37  
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3.1 Estimating the market risk premium 

Research laboratory Fairness Finance performs a monthly estimate of the implied cost of capital in 
Europe and North America using a sample of more than 1,750 listed companies in Europe (as of end-
September 2017) and more than 1,920 listed companies in the US and Canada. Its results are based on 
financial analyst forecasts, which are used to recreate five years of forecast cash flows for each of the 
companies in the two samples, making it possible to generate company-specific estimates for the IRR at 
which the present value of discounted cash flows is equal to the stock price on the calculation date. By 
aggregating these IRRs, weighted by market capitalization, we arrive at the implied cost of capital for the 
equity markets in Europe and North America. The market risk premium in the CAPM sense is then 
calculated by subtracting an optimism bias premium and a default risk premium from the IRR. 

We estimate the average impact on the implied cost of capital from overestimating cash flows, or the 
optimism premium, Πை, by comparing past forecasts with actual performances. 

To calculate the default premium, Πௗ, we measure the unlevered implied cost of capital, 𝑘௎ , by 
estimating the companies’ IRR, which we calculate by setting their enterprise value equal to the 
discounted value of their cash flows split into their three different components according to an APV 
approach24: unlevered cash flow, tax shield cash flow, and the negative cash flow corresponding to the 
cost of systematic risk25, the last two of which are the result of debt. It should be noted that the implied 
unlevered cost of equity (k୙) resulting from this work is still incorporates a default premium (partly due 
to financial leverage), as stock prices are not adjusted to neutralize the risk of default. Hence, the higher 
the risk of default, the larger Πୢ will be in the observed implied cost of capital, as at this stage, the latter 
still includes the contribution of the financial debt at risk of default.  

Once we have estimated this cost of capital, we can then calculate the default premium using the 
following equation:  𝑘௎ = 𝑟௙ + 𝛽௎Πோ + Πௗ + Πை + Π஺                                        𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #65   
Where 𝑟௙  refers to the risk-free rate, assumed to be equal to the average yield on 10-year government bonds 
rated at least AA26 for each region (Europe and North America), 𝛽௎ refers to the weighted average beta with 
zero debt for the companies in each of the two samples, and Πோ refers to the equity market risk premium in the 
CAPM sense. Π஺ corresponds to the portion of the AAA corporate spread not explained by systematic risk or 
default risk (see below). 

The market’s average beta with zero debt is estimated using that of the companies in the sample, which 
are in turn inferred from the betas of the stocks calculated on the basis of three years of share price 
movements using Hamada’s formula to approximate the effect of debt leverage on systematic risk:  

𝛽௅ = 𝛽௎ ቆ1 + 𝐷𝑁𝐸 (1 − 𝑇𝑥)ቇ                                                            #66 

                                                
24  The estimate for kU is calculated using an adjusted present value approach taken from the work of Pablo Fernandez, which 

explicitly singles out debt’s tax shield and systemic risk components in the cash flows. For more detail, please read 
“Methodological note 5: the APV approach” on the website of Fairness Finance, http://www.fairness-finance.com/fairness-
finance/cms/en/2-35/fiche-n-5-l-approche-apv.dhtml  

25  According to P. Fernandez, this APV is equivalent to Hamada’s formula.  
26  For our eurozone calculations, the risk-free rate is assumed to be equal to the German government bond yield for the desired 

maturity. 
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Where 𝛽௅ refers to the beta of the stock with debt leverage, 𝐷𝑁 is the average debt over three years, 𝐸 is the 
average market capitalization for each company, and 𝑇𝑥 is the estimated rate at which interest expense may be 
deducted. 
Furthermore, in keeping with equation #36, the average spread of the companies in the sample is 
expressed as follows:  𝑆𝑐തതത =  𝛽஽തതതത × Πோ + Πௗ஽ + Π஺                                                               #67 

Where 𝑆𝑐തതത refers to the weighted average credit spread that corresponds to the weighted average rating of 
the companies in the sample (determined using the methodology described below in section 3.2), 𝛽஽തതതത 
refers to the average beta of the debt, Πௗ஽  refers to the default premium included in the spread, and Π஺ 
refers to the residual average spread of the AAA-rated companies in our sample. In this example, we 
ignore the liquidity premium because the spread is estimated for large cap issuers. 

Defining 𝑃 as the average rate of loss experienced by lenders in the event of a default, we assume that it is 
100% for shareholders. According to John Hull’s approximation (see equation #60), this produces the 
following relationship between the average bond default premium and the average equity default 
premium: Πௗ = Πௗ஽𝑃                                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 #68  
Where:  𝑃 =  1 − 𝑅, and 𝑅 refers to the recovery rate in the event of a default. 

According to equations #65 to #68, we can finally deduce the CAPM risk premium, Πୖ: 

Πோ = Πா௎ − Πை − (𝑆𝑐 − 𝑅. Π஺) 𝑃⁄𝛽௎ି 𝛽஽𝑃                                                               #69 

Where Πா௎ is the market premium with zero debt, i.e. 𝑘௎ − 𝑟௙. 

Having estimated the CAPM risk premium, Πோ, we can use this value to calculate the equity default 
premium, as defined in equation #65. 

From the above, we can infer the market’s expected return, 𝐸(𝑘௅), from the implied cost of capital in 
accordance with the CAPM:  𝐸(𝑘௅) =  Πோ + 𝑟௙ 

The implied cost of capital, 𝑘௅, is itself equal to the market’s expected return (with leverage), 𝐸(𝑘௅), plus 
a premium for optimism bias and one for default risk:  𝑘௅ =  𝐸(𝑘௅) + Πை + Πௗ 

3.2 Ranking of corporate spreads at end-December 2015 in euros 

As we discussed earlier, to estimate the market risk premium, we need an estimate for the market’s 
weighted average spread. At 31 December 2015, the weighted average rating for issuers in our sample of 
listed stocks in Europe, as compiled by Fairness Finance, was BBB+.  

To estimate the average spread, first we compile a sample of straight bonds with fixed coupons, issued 
and listed in euros, excluding bonds with a remaining time to maturity of less than one year and those 
without a rating. The yield to maturity of each bond is supplied by the Thomson Reuters Eikon database, 
which also shows the risk-free fate for each maturity, as determined by the yield curve for straight fixed-
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rate German government bonds. To give us an element of volatility for each instrument, we selected 
bonds issued by companies that also have listed stocks. Lastly, we created two samples so that we could 
separate banking institutions from other companies in order to limit the financial sector to its weight in 
the equity index, i.e. around 10%, whereas it accounts for an overwhelming share of the European bond 
market. After this screening, as of end-December 2015, we arrived at a sample of 512 bonds27 for the 
non-banking sector. We present an analysis of their spreads below. 

For this exercise, we created a multiple linear regression model in which the spread, “Sc”, is the unknown 
variable and in which the five explanatory variables are: 

- the rating, “N”, converted into a scale of 1 (D) to 23 (AAA), which is assumed to be negatively 
correlated with the spread. The ratings are taken from the agencies Sandard & Poor’s, Moody’s and 
Fitch Ratings;  

- a measure of size, “T”, which is the market capitalization in millions of euros, since a larger 
company is assumed to have more favorable financing conditions than a smaller one with a similar 
rating and amount of issuance; 

- a measure of liquidity, “L”, which is the amount of the bond issue in millions of euros, and which 
is assumed to have a negative correlation with the spread; 

- a measure of the dispersion of the issuing company’s market value, “σ”, which is the annualized 
volatility of the stock price over a three-year period. This variable is used to reflect the challenges 
the market faces in forecasting the company’s future performance and is thus assumed to have a 
positive correlation with the spread; 

- the bond’s remaining time to maturity, “D”, since the risk of a rating change or a default increases 
with time and the bond’s value becomes more sensitive to interest rate fluctuations. As a result, 
time to maturity is assumed to have a positive correlation with the spread. 

The table below shows the breakdown of our sample according to company ratings and the average 
values for each sub-category’s explanatory variables: 
 

 
 
In this linear regression, the unknown variable and the explanatory variables produce the following 
equation: ln(𝑆𝑐) = 𝛼଴ + 𝛼ଵ𝑁 + 𝛼ଶ ln(𝑇) + 𝛼ଷ ln(𝐿) + 𝛼ସ𝜎 + 𝛼ହ ln(𝐷) + 𝜀 

The coefficients of the variables are all meaningful (the liquidity measure is the least meaningful) and 
their influence on the spread bears out our assumptions. The table below summarizes our analysis of the 
explanatory strength of the measures used in the regression: 

                                                
27  Out of a total of 542 bonds, after excluding the 5% of cases with the largest standardized residuals in absolute terms, as 

calculated using the linear regression presented below. 

Subsets by rating class * Total sampleAAA AA A BBB BB B CCC BBBT (Market capitalization of the issuer in € m) 408,075 149,354 48,616 17,053 7,944 1,803 104 33,397σ  (annualized monthly volatility, 3 years) 24.80% 17.52% 24.26% 21.30% 27.71% 53.32% 31.91% 23.50%D (time to maturity in years) 12.93 8.16 7.33 5.74 4.15 5.98 2.96 6.38L (size of the issue in € m) 1750 963 867 588 645 322 160 568Number of bonds 2 14 36 124 17 13 4 512
 * Only the classes corresponding to whole ratings are presented, the total of 512 bond issues including the intermediate note classes.

Sample selected for the calculation of the spread: average values
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Given the small number of AAA-rated bonds, we created a second ad hoc model that pools all of the 
AAA-rated bonds, regardless of sector, including those of issuers without a publicly quoted stock. In the 
second model, it is no longer possible to perform a regression of the spread as a function of stock price 
volatility, so we replace that variable with the bonds’ own price volatility. However, that volatility is 
naturally dependent upon the time to maturity. As a result, we only use the portion of the volatility not 
attributable to maturity (r² of 86%) as our explanatory variable, which we refer to as “∆𝜎ఋ”. We also 
factor in the difference between the issuer’s rating and that of the bond, ∆𝑁, since the spread of an  
AAA-rated bond is greater the weaker the issuer’s rating. Lastly, as earlier, we use variables for duration 
(𝑙𝑛(𝐷)) and liquidity (𝑙𝑛(𝐿)). This approach gives us a sample of 42 AAA-rated bonds. The coefficients 
in the regression are all meaningful using a threshold of 5%, and the (adjusted) coefficient of 
determination comes to 70.8%. 

  

  

Coefficients of determination Residuals analysisCoefficient of determination R² 86.93% Kurtosis -0.027Adjusted coefficient de determination R² 86.80% Skewness 0.419Standard error 0.260 Khi² 9.154 p(x<X²) = 3%Number of observations 512 K-S 5.26% p(x<K-S) = 1%
Regression coefficients N Ln(T ) Ln(L ) σ Ln(D ) ConstantCoefficient -0.1742 -0.0528 -0.0222 1.1728 0.4077 -1.8849
t 29.9 4.5 1.3 7.5 22.2 14.2Probability (unilateral except the constant) 2.694E-114 4.575E-06 9.3% 1.653E-13 3.478E-77 1.099E-38Variance inflation factor 1.5 1.2 2.2 2.4 1.1 n/a
Confidence interval of the mean E(Sc)* E(ln(Sc )) E(Sc ) Fisher testExpected value of the mean -4.20 1.50% F 50695% confidence interval [-4.14 ; -4.26] [1.41% ; 1.59%] P value 6.3E-221

*By retaining the average values of the variables and in the idealized hypothesis of a perfect normal residual distribution

Coefficients of determination Residuals analysisCoefficient of determination R² 72.38% Kurtosis -0.659Adjusted coefficient de determination R² 70.83% Skewness 0.368Standard error 0.316Number of observations 42 K-S 10.77% p(x<K-S) = 1.5%
Regression coefficients ΔN Ln(L) ln(D) Δσ δ CstCoefficient -0.2243 -0.0541 0.2547 6.0786 -5.6036
t 6.4 1.7 4.5 1.7 25.7Probability (unilateral except the constant) 1.021E-07 5.0% 3.183E-05 4.752E-02 1.641E-25Variance inflation factor 1.1 1.1 1.0 1.0 na
Confidence interval of the mean E(Sc)* E(ln(Sc )) E(Sc ) Fisher testExpected value of the mean -5.44 0.43% F 24.295% confidence interval [-5,21 ; -5,67] [0,34% ; 0,55%] P value 6.6E-10

*By retaining the average values of the variables and in the idealized hypothesis of a perfect normal residual distribution
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3.3 Bond betas as a function of bond rating and time to maturity 

As shown in equation #67, to estimate the default premium within the bond spread, we need to know the 
bond’s beta. With this in mind, we created portfolios of identically rated bonds according to their 
remaining time to maturity. For example, bonds with the same rating and a time to maturity of between 1 
and 2 years make up a portfolio with an average time to maturity of 1.5 years. Variations in the value of 
the (equally weighted) portfolio indices are then recorded each month. On the first of the month, we 
adjust the composition of each index as a function of bonds’ remaining time to maturity and rating before 
measuring the index’s movement. We then calculate the beta for each index relative to the equity market 
index using monthly price frequencies over a moving three-year time period. 

Using the portfolio betas observed on December 31, 2015, we performed a regression of the betas (log) as 
a function of the portfolios’ remaining time to maturity (log) and rating (log). The theoretical values of 
the betas as a function of time to maturity and the coefficients of determination of the regressions are 
detailed in the table below, with betas expressed as a percentage for clarity’s sake:  

 

For the CCC rating, which is at the limit for the model, we used the average of the previous log model 
and a linear model, (as the r² of 75% corresponds to the lower coefficient of the two approaches). Both 
approaches encompass the values actually observed for longer maturities. 

  

β AAA AA A BBB BB B CCC
Time to maturity  \ r² 90% 90% 90% 90% 90% 90% 75%

1 1.3% 1.6% 2.2% 2.5% 5% 9% 21%
2 2.1% 2.6% 3.5% 4.0% 8% 15% 28%
3 2.8% 3.4% 4.6% 5.2% 11% 19% 33%
4 3.4% 4.1% 5.6% 6.3% 13% 23% 38%
5 3.9% 4.8% 6.5% 7.3% 15% 27% 43%
6 4.5% 5.4% 7.4% 8.3% 17% 31% 48%
7 4.9% 6.0% 8.2% 9.2% 19% 34% 52%
8 5.4% 6.5% 9.0% 10.1% 21% 37% 56%
9 5.9% 7.1% 9.7% 10.9% 22% 40% 60%

10 6.3% 7.6% 10.4% 11.7% 24% 43% 64%
15 8.3% 10.0% 13.7% 15.4% 31% 57% 81%
20 10.0% 12.1% 16.6% 18.7% 38% 69% 97%
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3.4 The model’s implied default probabilities: a market anomaly? 

If we know the theoretical spread for corporate issuers (excluding banks), “Sc”, and bond debt betas, 
“𝛽஽”, as a function of their rating, “N”, and time to maturity, “D”, we can deduce the bond’s default 
spread, “Πௗ”, as well as the default probability “𝐸(𝐷௧)” implied by the time to maturity and rating. 

To do so, we use the CAPM estimate of the eurozone equity market risk premium calculated by Fairness 
Finance, “Πோ”. At end-2015, the premium came to 4.23% for the eurozone compared with the German 
10-year risk-free rate. However, the risk premium derived from the difference between the required return 
on equities and the risk-free rate depends upon the investment horizon. If we assume that the required 
return on equities is not very sensitive to the time horizon28, then the market risk premium will generally 
be a decreasing function of the investment duration, as the risk-free yield curve typically has an upward 
slope. 

Furthermore, the variables measuring the bond’s liquidity, the issuer’s size and the stock price’s volatility 
are equal to the average values for bonds in same rating category (see table detailing the sample used to 
calculate the spread). 

Once we have estimated bond spreads and betas as a function of time to maturity, we can calculate the 
implied default premium by subtracting the portion resulting from systemic risk, using equation #67, if 
we ignore the residual risk premium for AAA-rated European corporates. The default probability is 
determined in the second step, by applying John Hull’s approximation (see equation #60). 
 
AAA-rated corporate bonds: 

 

As shown in the table above, this approach delivers a 10-year default premium of 0.23%, which implies a 
default probability of 3.8%. That seems excessive. In the transition matrices published by Standard & 
Poor’s, for example, the rate comes to 1.03%29 (adjusting for the proportion of bonds that have ceased to 
be rated 10 years, on average, after the bond was issued). As the coefficient of variation of the default rate 
calculated by S&P is 107%, a value of 3.8% would thus be 3.5 standard deviations away from the mean. 

  

                                                
28  The implied cost of capital is a single IRR that applies to all maturities. We do not have enough information to establish a 

yield curve for the equity cost of capital using this methodology. 
29  Here we assume that the default rate for the population of bonds that have ceased to be rated is close enough to that of the 

bonds that are still rated. For more on this assumption and the reasons bonds are removed from coverage, please consult: 
Hamilton, David T., and Cantor, Richard, “Measuring Corporate Default Rates”, Moody’s, November 2006.  

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t E(D t ) S&P  2016*1 1.3% 4.6% 0.06%  - 0.06% 0.26% 0.20% 99.67% 0.33% 0.00%2 2.1% 4.6% 0.10%  - 0.10% 0.31% 0.21% 99.30% 0.70% 0.03%3 2.8% 4.5% 0.13%  - 0.13% 0.34% 0.21% 98.93% 1.07% 0.14%4 3.4% 4.4% 0.15%  - 0.15% 0.37% 0.22% 98.56% 1.44% 0.19%5 3.9% 4.3% 0.17%  - 0.17% 0.39% 0.22% 98.19% 1.81% 0.41%6 4.5% 4.2% 0.19%  - 0.19% 0.41% 0.22% 97.82% 2.18% 0.47%7 4.9% 4.0% 0.20%  - 0.20% 0.42% 0.22% 97.44% 2.56% 0.67%8 5.4% 3.9% 0.21%  - 0.21% 0.44% 0.22% 97.06% 2.94% 0.74%9 5.9% 3.7% 0.22%  - 0.22% 0.45% 0.23% 96.59% 3.41% 0.82%10 6.3% 3.7% 0.23%  - 0.23% 0.46% 0.23% 96.22% 3.78% 1.03%15 8.3% 3.2% 0.27%  - 0.27% 0.51% 0.24% 94.10% 5.90% 1.46%20 10.0% 3.0% 0.30%  - 0.30% 0.55% 0.25% 91.93% 8.07% 2.45%

               * Calculation period 1981 - 2016. Source: S&P Global ratings, 2016 Annuel Global Corporate Default Study And Rating Transitions, 
                 available on the S & P website: https://www.spglobal.com/our-insights/2016-Annual-Global-Corporate-Default-Study-and-Rating-Transitions.html
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There are several hypotheses that could explain this apparent overestimation of default risk:  

- First of all, the beta is tainted by a margin of error and is estimated using past correlation over three 
years, which may differ from investor expectations. For the default probability to be in line with the 
historical level of 1.03%, the expected beta would have to be 10.5%, which is 67% higher than the 
value used in our calculations; 

- The expected average recovery rate in the event of default may be different than the 40% generally 
used in the literature. If the rate were 50% owing to the “blue chip” status of AAA listed 
companies, then the implied default rate would be 4.51% over ten years. Conversely, lowering the 
recovery rate would not be enough to move exactly in line with the historical statistic. Even if the 
recovery rate were zero, in this case the implied default rate would be 2.2% over 10 years, or 
double the long-term value; 

- The risk-free rate may be different than the Bund rate. Companies of every nationality, including 
US companies, issue bonds in euros. However, the data available to us do not show a significant 
difference between European issuers and those whose corporate offices are outside of the eurozone. 
Furthermore, the risk-free rate is often confused with the interbank lending rate, which incorporates 
counterparty risk, resulting in a premium (vs. the Bund) that has peaked during crisis periods. 
When it comes to bond debt, this intermediation cost does not appear to be warranted; 

- After consideration, we have opted for the hypothesis that says that there is an incompressible 
premium that cannot be explained either by systematic risk or by default risk. This premium for a 
lack of liquidity or adverse selection penalizes AAA-rated corporate bonds relative to government 
bonds with the same rating. The volume of publicly traded corporate bonds is small compared with 
the volume of bonds issued by governments. In addition, certain investors face regulatory 
constraints that encourage them to favor AAA-rated government bonds over corporate bonds. And 
lastly, tax treatment typically favors government bonds. In fact, in certain countries, such as the 
US30, this phenomenon might explain much of the yield spread investors require between AAA-
rated corporate bonds and government bonds with the same rating. 

If we take this last hypothesis as our assumption and set the AAA premium such that the implied default 
probability is minimized for every maturity (1 year to 30 years), then “ПA” represents approximately 74% 
of the difference between the AAA corporate spread, its systematic component31, and the long-term 
default rate. 

 

  

                                                
30  Edwin, Elton, Gruber, Martin, Agrawal Deepak, and Mann, Christopher, “Explaining the rate spread on corporate bonds”, 

Journal of Finance, 56, 2001, pp. 247-277 
31  In this case we use a coefficient “α” common to all the maturities, such that: Π஺೟ = 𝛼൫𝑆𝑐௧ − 𝛽௧Πோ೟൯. 
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AAA-rated corporate bonds (probabilities factoring in the residual AAA premium): 

  

As shown in the table above, the AAA premium thought to correspond to the part of the corporate bond 
spread left unexplained by either systematic risk (which represents a majority) or default risk (equal to the 
historical average) falls into a range of 14bp to 19bp inclusive at end-2015. 

By setting the AAA premium this way, we can estimate the implied default probabilities for ratings A to 
CCC. As shown in the six tables that follow, according to this approach, the implied default probabilities 
converge towards the historical averages for ratings below BBB. However, for ratings between BBB and 
AA, the implied default probabilities appear to be materially above their historical averages. 

AA-rated corporate bonds: 

  

A-rated corporate bonds: 

  
  

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t E(D t ) S&P  20161 1.3% 4.6% 0.06% 0.14% 0.21% 0.26% 0.05% 99.91% 0.09% 0.00%2 2.1% 4.6% 0.10% 0.15% 0.25% 0.31% 0.06% 99.81% 0.19% 0.03%3 2.8% 4.5% 0.13% 0.16% 0.28% 0.34% 0.06% 99.72% 0.28% 0.14%4 3.4% 4.4% 0.15% 0.16% 0.31% 0.37% 0.06% 99.62% 0.38% 0.19%5 3.9% 4.3% 0.17% 0.16% 0.33% 0.39% 0.06% 99.52% 0.48% 0.41%6 4.5% 4.2% 0.19% 0.16% 0.35% 0.41% 0.06% 99.42% 0.58% 0.47%7 4.9% 4.0% 0.20% 0.16% 0.36% 0.42% 0.06% 99.31% 0.69% 0.67%8 5.4% 3.9% 0.21% 0.17% 0.38% 0.44% 0.06% 99.21% 0.79% 0.74%9 5.9% 3.7% 0.22% 0.17% 0.39% 0.45% 0.06% 99.09% 0.91% 0.82%10 6.3% 3.7% 0.23% 0.17% 0.40% 0.46% 0.06% 98.99% 1.01% 1.03%15 8.3% 3.2% 0.27% 0.18% 0.45% 0.51% 0.06% 98.40% 1.60% 1.46%20 10.0% 3.0% 0.30% 0.19% 0.49% 0.55% 0.07% 97.80% 2.20% 2.45%

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 1.6% 4.6% 0.07% 0.14% 0.22% 0.22% 0.00% 100.00% 0.00% 0.02%2 2.6% 4.6% 0.12% 0.15% 0.27% 0.29% 0.02% 99.93% 0.07% 0.07%3 3.4% 4.5% 0.15% 0.16% 0.31% 0.34% 0.03% 99.83% 0.17% 0.15%4 4.1% 4.4% 0.18% 0.16% 0.34% 0.39% 0.05% 99.69% 0.31%5 4.8% 4.3% 0.20% 0.16% 0.37% 0.42% 0.06% 99.51% 0.49% 0.42%6 5.4% 4.2% 0.22% 0.16% 0.39% 0.46% 0.07% 99.30% 0.70%7 6.0% 4.0% 0.24% 0.16% 0.41% 0.49% 0.08% 99.06% 0.94% 0.75%8 6.5% 3.9% 0.26% 0.17% 0.42% 0.51% 0.09% 98.79% 1.21%9 7.1% 3.7% 0.26% 0.17% 0.43% 0.54% 0.10% 98.46% 1.54%10 7.6% 3.7% 0.28% 0.17% 0.45% 0.56% 0.11% 98.14% 1.86% 1.22%15 10.0% 3.2% 0.32% 0.18% 0.50% 0.66% 0.16% 96.13% 3.87% 2.02%20 12.1% 3.0% 0.36% 0.19% 0.55% 0.75% 0.20% 93.65% 6.35% 3.77%

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 2.2% 4.6% 0.10% 0.14% 0.25% 0.43% 0.18% 99.70% 0.3% 0.06%2 3.5% 4.6% 0.16% 0.15% 0.32% 0.57% 0.25% 99.17% 0.8% 0.16%3 4.6% 4.5% 0.21% 0.16% 0.37% 0.67% 0.30% 98.51% 1.5% 0.30%4 5.6% 4.4% 0.25% 0.16% 0.41% 0.75% 0.34% 97.74% 2.3%5 6.5% 4.3% 0.28% 0.16% 0.44% 0.82% 0.38% 96.88% 3.12% 0.72%6 7.4% 4.2% 0.31% 0.16% 0.47% 0.89% 0.41% 95.95% 4.0%7 8.2% 4.0% 0.33% 0.16% 0.49% 0.94% 0.45% 94.93% 5.1% 1.35%8 9.0% 3.9% 0.35% 0.17% 0.52% 1.00% 0.47% 93.86% 6.1%9 9.7% 3.7% 0.36% 0.17% 0.53% 1.05% 0.51% 92.67% 7.3%10 10.4% 3.7% 0.38% 0.17% 0.55% 1.09% 0.53% 91.51% 8.5% 2.51%15 13.7% 3.2% 0.44% 0.18% 0.62% 1.29% 0.65% 84.96% 15.0% 5.07%20 16.6% 3.0% 0.49% 0.19% 0.68% 1.45% 0.75% 77.83% 22.2% 8.66%
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BBB-rated corporate bonds: 

  
BB-rated corporate bonds: 

  
B-rated corporate bonds: 

  
 
CCC-rated corporate bonds: 

 

  

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 2.5% 4.6% 0.11% 0.14% 0.26% 0.74% 0.48% 99.20% 0.80% 0.19%2 4.0% 4.6% 0.18% 0.15% 0.34% 0.98% 0.65% 97.87% 2.1% 0.59%3 5.2% 4.5% 0.24% 0.16% 0.39% 1.16% 0.76% 96.25% 3.7% 1.09%4 6.3% 4.4% 0.28% 0.16% 0.44% 1.31% 0.86% 94.42% 5.6%5 7.3% 4.3% 0.32% 0.16% 0.48% 1.43% 0.94% 92.43% 7.6% 2.60%6 8.3% 4.2% 0.35% 0.16% 0.51% 1.54% 1.02% 90.30% 9.7%7 9.2% 4.0% 0.37% 0.16% 0.54% 1.64% 1.09% 88.06% 11.9% 4.48%8 10.1% 3.9% 0.40% 0.17% 0.56% 1.73% 1.15% 85.74% 14.3%9 10.9% 3.7% 0.41% 0.17% 0.58% 1.82% 1.22% 83.29% 16.7%10 11.7% 3.7% 0.43% 0.17% 0.60% 1.89% 1.26% 81.01% 19.0% 7.83%15 15.4% 3.2% 0.50% 0.18% 0.68% 2.24% 1.52% 68.36% 31.6% 15.88%20 18.7% 3.0% 0.55% 0.19% 0.74% 2.52% 1.73% 56.26% 43.7% 23.12%

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 5.1% 4.6% 0.23% 0.14% 0.38% 1.40% 1.02% 98.32% 1.7% 0.80%2 8.1% 4.6% 0.37% 0.15% 0.53% 1.86% 1.32% 95.69% 4.3% 2.74%3 10.7% 4.5% 0.48% 0.16% 0.64% 2.19% 1.54% 92.61% 7.4% 5.40%4 12.9% 4.4% 0.57% 0.16% 0.73% 2.47% 1.71% 89.22% 10.8%5 15.0% 4.3% 0.65% 0.16% 0.81% 2.70% 1.86% 85.62% 14.4% 12.07%6 17.0% 4.2% 0.71% 0.16% 0.87% 2.91% 2.00% 81.89% 18.1%7 18.8% 4.0% 0.76% 0.16% 0.93% 3.10% 2.13% 78.04% 22.0% 19.27%8 20.6% 3.9% 0.81% 0.17% 0.98% 3.27% 2.24% 74.17% 25.8%9 22.3% 3.7% 0.83% 0.17% 1.00% 3.43% 2.36% 70.14% 29.9%10 24.0% 3.7% 0.88% 0.17% 1.05% 3.58% 2.46% 66.34% 33.7% 29.84%15 31.5% 3.2% 1.02% 0.18% 1.20% 4.23% 2.92% 48.21% 51.8% 47.24%20 38.2% 3.0% 1.13% 0.19% 1.32% 4.75% 3.29% 33.37% 66.6% 59.13%

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 9.2% 4.6% 0.42% 0.14% 0.57% 3.50% 2.89% 95.30% 4.7% 4.28%2 14.7% 4.6% 0.67% 0.15% 0.83% 4.65% 3.73% 88.30% 11.7% 10.95%3 19.3% 4.5% 0.87% 0.16% 1.03% 5.48% 4.33% 80.54% 19.5% 18.16%4 23.4% 4.4% 1.03% 0.16% 1.19% 6.17% 4.81% 72.57% 27.4%5 27.2% 4.3% 1.17% 0.16% 1.33% 6.75% 5.22% 64.73% 35.3% 32.31%6 30.7% 4.2% 1.28% 0.16% 1.45% 7.28% 5.59% 57.20% 42.8%7 34.1% 4.0% 1.38% 0.16% 1.54% 7.75% 5.92% 50.11% 49.9% 45.53%8 37.3% 3.9% 1.46% 0.17% 1.63% 8.18% 6.23% 43.58% 56.4%9 40.3% 3.7% 1.50% 0.17% 1.68% 8.58% 6.54% 37.48% 62.5%10 43.3% 3.7% 1.59% 0.17% 1.76% 8.96% 6.80% 32.19% 67.8% 59.55%15 56.9% 3.2% 1.84% 0.18% 2.02% 10.57% 7.97% 13.63% 86.4% 76.99%20 69.0% 3.0% 2.04% 0.19% 2.23% 11.89% 8.92% 5.11% 94.9% 81.46%

Time to maturity b d PR PR x b d PA PR x b d  + PA Sc Pd S t D t S&P  20161 20.8% 4.6% 0.96% 0.14% 1.11% 5.43% 4.20% 93.24% 6.8% 31.65%2 27.5% 4.6% 1.26% 0.15% 1.42% 7.20% 5.57% 83.07% 16.9% 46.77%3 33.2% 4.5% 1.51% 0.16% 1.66% 8.50% 6.52% 72.17% 27.8% 57.62%4 38.4% 4.4% 1.69% 0.16% 1.85% 9.55% 7.30% 61.47% 38.5%5 43.2% 4.3% 1.86% 0.16% 2.02% 10.46% 7.96% 51.52% 48.5% 71.68%6 47.6% 4.2% 1.99% 0.16% 2.15% 11.27% 8.54% 42.55% 57.4%7 51.9% 4.0% 2.10% 0.16% 2.26% 12.00% 9.08% 34.66% 65.3% 77.78%8 56.0% 3.9% 2.20% 0.17% 2.37% 12.67% 9.57% 27.93% 72.1%9 59.9% 3.7% 2.24% 0.17% 2.41% 13.29% 10.06% 22.12% 77.9%10 63.8% 3.7% 2.34% 0.17% 2.51% 13.88% 10.46% 17.49% 82.5% 84.31%15 81.4% 3.2% 2.64% 0.18% 2.82% 16.37% 12.27% 4.65% 95.3% 91.44%20 97.4% 3.0% 2.88% 0.19% 3.07% 18.41% 13.72% 1.03% 99.0% 93.76%
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The implied default probabilities as a function of rating and remaining time to maturity can be depicted 
by the following charts. We note that the curves’ concavity or convexity is matched by that of the 
historical curves: 

 

The observation of “physical” implied default probabilities that are higher than the historical default rates 
is a phenomenon that has already been noted in the work that Davidenko et al. performed in 2003 on 
investment grade bonds. As with that work, the spreads for speculative ratings, on the other hand, are 
smaller. Remember that these results were obtained by a structural-type model using a totally different 
approach that what we have used. Thus, the confirmation of the earlier result appears to indicate that 
investment grade bond spreads may be excessive relative to the systematic risk and default risk present in 
the instruments in question. 

We have formulated a hypothesis that the residual premium on AAA bonds is the result of an adverse 
selection process, since corporate bonds are less liquid than government bonds, which are very similar but 
also tend to enjoy more favorable tax treatment in Europe and the US. This adverse selection premium is 
therefore assumed to apply to all of the rating categories. On the other hand, for other investment grade 
ratings, it is easy to imagine that there might be additional premia using the following mechanisms: 

 on a rating scale of 1 for the weakest (D) to 23 for the strongest (AAA), we note that the rating is 
positively correlated to the size of the issuer and the size of the issue. As a result, spreads for a 
given rating partly reflect a size and liquidity effect. For example, for the BBB rating, according 
to our calculations, bonds whose size and liquidity are identical to those in the population of 
AAA bonds, the expected spread is 1.57% for a 10-year maturity (vs. 1.90%), bringing the 
implied default probability to 14.6%, compared with 19.2% previously using the average 
parameters for the BBB-rated class. As a result, even after correcting for size and liquidity 
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effects, the implied default probability would still be double the historical default rate. This 
explanation does not seem to adequately explain the apparent excess remuneration of investment 
grade spreads at end-2015; 

 Thus, we prefer the hypothesis which says that there is an additional spread on top of the AAA 
residual premium that is not explained by liquidity/size, nor by systemic risk, nor by default risk. 
This spread, between 60bp and 80bp inclusive for BBB-rated bonds with maturities of between 5 
and 10 years, may result from banks’ influence on pricing, since they originate and/or subscribe 
part of the issue themselves. Banks’ intermediation margins must ensure that they earn the 
regulatory required return on the capital that they hold in reserve for their lending activities. Their 
profit motives and regulatory constraints clearly require them to demand an additional margin 
over and above just the remuneration for default risk and systematic risk. A comparison of bond 
spreads and intermediation margins in the US, furthermore, reveals that there is an additional, 
material banking spread of around 240bp32 for bonds with comparable guarantees. We posit that 
such a spread also exists in Europe. 

To test this hypothesis, let us assume that the BBB credit spread on a 10-year maturity, which we 
calculate to be 1.90%, includes a premium of 0.49%, and that the premium corresponds to an implied 
default probability of 7.8%, equal to the historical rate for senior unsecured debt, with a 40% expected 
rate of recovery. What spread would a bank need to finance this type of loan? To answer that question, we 
need to set a target level for bank return on equity, assuming that its expected ROE is the same as the 
expected return an investor would require of the bank’s stock. To perform this calculation, we use the 
following parameters: 

- a bank beta of around 1.25, which is the level observed, for example, by Fairness Finance for the 
year 2015 (based on 36 months of historical returns comprising a portfolio of equities issued by 39 
listed European institutions); 

- a German 10-year risk-free rate equal to 0.56% and a residual AAA premium of 0.17%; 

- an equity market risk premium in the CAPM sense of 4.23% compared to the 10-year Bund yield. 

The expected return on bank equity thus comes to 6.02%, excluding premia for optimism bias and for not 
taking the bank’s own default risk into account. 

Once the level of target ROE is set, we simply need to recreate the simplified income statement for a 
lending business with zero growth. Let us assume that the percentage of regulatory reserves relative to the 
outstanding level of intermediated lending (or bonds) held by the bank is 8% (6% to 10% inclusive). Then 
for a net return on equity of 6.02%, the bank would have to generate net profit margin of 48bp. As shown 
in the table below, by assuming an efficiency ratio of 60%, the bank spread relative to the 10-year Bund 
would be 3.25%, which is nearly 136bp higher than what the bond market would have required at end-
2015. This gap would narrow to 95bp if we used a reserve ratio of 6%, and would expand to 177bp if we 
used a ratio of 10%. 

                                                

32  Schwert, Michael, “Is Borrowing from Banks More Expensive than Borrowing from the Market?”, Fisher College of 
Business Working Paper No. 2017-03-23, October 25, 2017, available at SSRN: https://ssrn.com/abstract=3059607 
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Thus, if credit institutions were to subscribe a significant portion of the listed bonds, that would 
apparently be sufficient to explain the existence of a residual spread of 80bp relative to the bond market at 
end-201533 for BBB-rated bonds with a 10-year maturity (assuming that at that date, the 10-year default 
expectation is close to the long-term average). However, banks probably have a much smaller influence 
on non-investment grade spreads. That segment basically corresponds to the secondary market, unlike the 
investment grade segment, which corresponds to both the primary and secondary markets. It would be 
interesting to test this hypothesis by verifying that investment grade spreads usually provide additional 
remuneration over and above the default risk and systematic risk, whereas in the non-investment grade 
segment, spreads fluctuate more freely, since they don’t necessarily cover the average levels of systematic 
and default risk. 

In any case, if it could be confirmed that the investment grade segment is excessively remunerated, there 
would be a boon for individual investors and for any investor not subject to reserve requirements. The 
rapid development of crowdfunding platforms and the more widespread decline in banking intermediation 
may be clues to the existence of such a remuneration spread. The confirmation of the bond market’s 
greater efficiency, both for the investor and for the issuer, would bolster the case that this financing 
channel’s is useful as a substitute for bank intermediation as a way to avoid credit crunches and pave the 
way to recovery. This question is especially relevant now in the wake of the Great Recession of 2008-
200934. 

 

                                                
33   If bank capital were inadequately remunerated by bond spreads, they could make up the difference with origination fees. 
34  Grjebine, Thomas, Szczerbowicz, Urszula, and Tripier, Fabien, “Corporate Debt Structure and Economic Recoveries”, 

Banque de France Working Paper No. 646, October 2017, available at SSRN: https://ssrn.com/abstract=3057390 

 Targeted ROE and P&L Target spread vs BundOutstanding loans 100.000 Contractual interest rate 3.81%Equity 8.000 Risk-free rate (bund) rf  0.56%Indebtedness 92.000 Spread vs rf (bund) 3.25%

Interest income 3.814 Contractual interest rate 3.81%Interest expense -0.920 Expected loss as % of loans -0.47%
Net interest income 2.894 Expected return before tax / loans 3.34%Non interest expenses -1.736 Risk-free rate (bund) rf  0.56%Efficiency ratio 60.0% Expected spread net of default 2.78%
Earnings before loan losses 1.158Cost of default ** -0.470 Risk-free rate (bund) rf  0.56%As a % of net interest income -16.2% Interbank spread vs rf 0.44%
Earnings before taxes 0.688 Cost of debt 1.00%Taxes -0.206
Net earnings 0.481 Euribor 1 year as of 31/12/15 0.06%Bund 1 year -0.38%
ROE 6.02% Interbank spread 0.44%

** 1/10 th  outstanding loans x  default rate x  (1- R) Expected return on bank equityBeta 1.25Equity risk premium CAPM ПR 4.23%Risk-free rate 10 years (bund) 0.56%Premium AAA ПA 0.17%
E(KL) 6.02%
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4 Conclusion 
 

Our results corroborate those previously produced by the Merton model, but using an entirely different 

approach. Unlike so-called structural approaches, the one we use in this report is a direct descendant of 

the CAPM, meaning it operates in a risk-averse world. It is based on an intensity model that does not 

presuppose a particular method for estimating distance to default and which, for that reason, does not 

limit its scope to indebted companies. Furthermore, it constitutes a first concrete attempt to reconcile 

models for valuing stocks and bonds within the CAPM. It thus includes a forward-looking element to the 

extent that it relies on a model for estimating the implied cost of capital to calculate an expected risk 

premium. Fine-tuning the forward-looking element by adding a completely endogenous credit risk model, 

i.e. one also based on analyst forecasts, is a complementary line of inquiry, and one we began to explore 

in a previous article. That article used the cost of capital to tackle the question of forecasting risk35, i.e. 

matching fixed costs with the margin on variable costs, which is the fundamental issue of default risk. 

 

In order to deduce investors’ expected default probabilities from credit spreads, we designed a broader 

model for calculating the implied cost of capital. Indeed, stocks and bonds are risk financial assets and we 

think that they need to be assessed jointly, in keeping with the CAPM. Valuing them separately is a 

purely theoretical exercise and highly artificial. Furthermore, keeping them separate appears to create 

market anomalies. If that proves to be the case, it would mean that investors are receiving a windfall. That 

may seem anachronistic in a modern financial economy, but it could be due to the fact that a regulated 

sector dominates credit in Europe. As a result, it would seem to be advantageous to continue investigating 

this market anomaly hypothesis, as a better understanding of it and the advantages that could be gained 

from it are both topics of research in and of themselves. 

  

                                                
35  Clère, Roland, “After Modigliani, Miller and Hamada; A New Way to Estimate Cost of Capital?” (Après Modigliani, Miller 

et Hamada: une nouvelle façon d’estimer le coût du capital?), November 23, 2016, available at SSRN: 
https://ssrn.com/abstract=2868702 
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