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Abstract

In many decisions under uncertainty, there are technological constraints on the
acts an agent can perform and on the events she can observe. To model this, we
assume that the set S of possible states of the world and the set X of possible
outcomes each have a topological structure. The only feasible acts are continuous
functions from S to X , and the only observable events are regular open subsets of S.
We axiomatically characterize Subjective Expected Utility (SEU) representations of
conditional preferences over acts, involving a continuous utility function on X (unique
up to positive affine transformations), and a unique Borel probability measure on S,
along with an auxiliary apparatus called a liminal structure, which describes the
agent’s imperfect perception of events. We also give other SEU representations,
which use residual probability charges or compactifications of the state space.
Keywords: Subjective expected utility; topological space; technological feasibility;
continuous utility; regular open set; Borel measure.
JEL classification: D81.

Natura non facit saltum. —Linnaeus

1 Introduction

Economic decisions under uncertainty often face technological constraints. Consider a
farmer who must plant crops in the early spring, without knowing the meteorological
conditions for the rest of the year. The crop yields of his various planting strategies
are thus uncertain at the moment of choice. But slight variations of the meteorological
conditions will only result in slight variations in yields. The constraints of the agricultural
technology imply that the only strategies available to the farmer are those where crop
yields depend continuously on the unpredictable meteorological conditions.
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Continuity constraints manifest in many other decision problems under uncertainty;
in particular, they arise in most economic activities which depend upon natural resource
extraction, weather conditions, or any other interaction with unpredictable features of
the natural environment. They also arise in medical decisions, where the uncertainty
concerns the patient’s medical condition, and the outcome is her prognosis. Anthropogenic
climate change generates a plethora of such decision problems; there is uncertainty about
the values of many parameters in climate models, which leads to uncertainty about the
response of weather patterns (e.g. temperature, rainfall, floods, droughts) to rising CO2

concentrations. There is also uncertainty about the social and economic impact of these
weather patterns, as well as the proposed policies to reduce CO2 emissions. Finally, there
is hour-to-hour uncertainty about the electricity output of solar and wind-power facilities.
But in all these cases, the outcome varies continuously with the unknown variables.

Continuity constraints also arise in financial decisions. For example, the income stream
arising from an individual’s investment in education or a firm’s investment in physical
capital is a continuous function of future economic conditions. The value of a portfolio is
a linear combination of the values of its constituent assets. In most financial derivatives
(e.g. futures, options), the payoff for both buyer and seller is a continuous function of the
price of the underlying assets. In most insurance contracts, the indemnity is a continuous
function of the loss. Finally, the future real value of a savings instrument is a continuous
function of future real interest rates. In these examples, continuity restrictions can be
interpreted as a kind of market incompleteness.

Feasibility considerations constrain not only the possible actions, but also the infor-
mation available to agents. The limitations of her measurement technology restrict the
events that an agent can observe and use to update her beliefs. Think of a measurement
instrument as a device which converts each state of the world into a “signal”. Such devices
typically have three properties. First, although the set of possible states of the world may
be infinite (even a continuum), the set of possible signals is finite. (Even if the set of signals
is itself a continuum, a human user can only discriminate finitely many distinct values.)
Second, the output is usually continuous: a small variation in the underlying state of the
world leads to a small (or even no) variation in the signal generated. Third, the output
is often ambiguous: the same state of the world could generate more than one signal —
especially if the state lies on the boundary between the domains of two different signals.
For example, consider a digital thermometer which displays temperature to the nearest
degree Celsius. If the temperature is in the interval (23.5, 24.5), then the thermometer will
say “24” (assuming no measurement error). If the temperature is in (24.5, 25.5), then the
thermometer will say “25”. But what if the temperature is exactly 24.5◦ C? In this case,
the thermometer could say either “24” or “25”. In this paper, we will suppose that agents
receive information through devices of this form.

The Subjective Expected Utility (SEU) model is the standard paradigm to describe
decision-making under uncertainty. A key feature of the classic axiomatic foundations
of Savage (1954) is that the agent has preferences over all possible functions from states
into outcomes, and can condition on all subsets of the state space. This makes sense in
decision problems where the state space has a discrete topology (e.g. bets on coin flips,
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urn experiments, sports games, or Arrow-Debreu economies). One could apply the Savage
approach to technologically constrained decision problems, but this would require the agent
to rank infeasible acts and condition on unobservable events; this would undermine both
the normative and the descriptive content of the preference relation, the axioms, and
the resulting SEU representation. At a normative level, it is ill-conceived and possibly
misleading to formulate preferences over infeasible acts, or to condition on unobservable
events; hence we should be reluctant to apply the Savage axioms to such preferences.
These axioms are supposed to impose some “internal consistency” on preferences. But why
should preferences over feasible acts be consistent with, and sometimes even determined
by, preferences over infeasible acts? At a descriptive level, it is impossible by definition
to observe an agent’s preference over infeasible acts, or her preferences conditional on
unobservable events. Such acts and events might still play a role in thought experiments.
But since they are impossible to properly incentivize, we question the empirical meaning
of such preferences and their relevance to the elicitation of utility and beliefs. For these
reasons, technological constraints make it desirable to depart from the Savage framework
and restrict preferences to feasible acts and observable events.

This paper studies decision-making under uncertainty with technological constraints,
and axiomatically characterizes SEU representations of conditional preferences in such an
environment. The consequences of the decision range over a topological space of outcomes ;
these may be crop yields, health status, production levels, income streams, or consumption
bundles. The underlying uncertainty is represented by a topological space of states of the
world ; this encodes all the meteorological, physiological, geophysical, or financial variables
on which the outcome (continuously) depends. The feasible alternatives are given by a
set of continuous functions, or acts, from the state space onto the outcome space; these
could be production plans, medical interventions, climate policies, financial portfolios,
or insurance contracts. We suppose that the agent acquires information about the state
through measurement devices like the digital thermometer described above. We will present
three different models of such devices; one in terms of multifunctions (Section 2), one in
terms of almost-everywhere equivalence (Section 5), and one in terms of stochastic functions
(Section 6). But in all three models, a measurement device determines a partition of the
statespace into regular open subsets. These are the “observable events” for the agent;
they are the basic unit of information that can be obtained by measuring meteorological
conditions or performing medical tests. We will suppose that the agent can form conditional
preferences over acts after observing such an event. We will show that these conditional
preferences satisfy certain axioms if and only if they can admit an SEU representation.

Not every decision under uncertainty exhibits these sorts of topological constraints. But
many do, often in important practical contexts. Does the axiomatization of SEU depend
upon ignoring such constraints? Our results show that it does not. But these constraints
do create some technical difficulties. For example, Savage’s axioms (e.g. the Sure Thing
Principle) depend on the ability to splice any two acts on any bipartition of the state space.
Furthermore, Savage obtains the subjective probability measure and utility function by
restricting preferences to two-valued acts and finitely-valued acts respectively. But both
spliced acts and finitely-valued acts are typically discontinuous, and hence inadmissible in
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our framework. Thus, we must depart from Savage, and use a very different axiomatization.

Despite these obstacles, we obtain several SEU representations. In these representa-
tions, utility is a continuous function; thus, similar outcomes yield similar utility levels.
This makes our representations particularly relevant to applications in economics and fi-
nance, which usually take continuity for granted (Gollier, 2001). Utility is is unique up
to positive affine transformations. But the representation of beliefs depends on the topol-
ogy of the state space. Our first two representations (Theorems 1 and 2) are “classical”:
beliefs take the form of a probability measure (called a residual probability charge), and
are updated via Bayes rule as the agent acquires more information. Theorem 1 applies
to compact state spaces, while Theorem 2 applies to Baire spaces. We then introduce the
more informative liminal SEU representations (Theorems 3 and 4); in this case, beliefs
consist not only of a Borel probability measure, but also a liminal structure, with which
the agent compensates for her informational constraints. These structures provide dynam-
ically consistent, consequentialist updating rules for the Borel probability measures that
generalize the classical Bayes rule. Assuming only a locally compact state space, we obtain
compactification SEU representations (Theorems 5 and 6); here, beliefs are given by a Borel
probability measure and a liminal structure on a compactification of the state space.

This paper is the second in a series of three papers on similar themes. The first of
these (Pivato and Vergopoulos, 2018a) developed an SEU representation for conditional
preferences with imperfect perception. Although that paper used a topological framework
similar to the present paper, its focused more on the constraints on the agent’s information,
and made no specific assumptions about the topology of the state space.

The present paper uses a different model of imperfect perception than the one in Pivato
and Vergopoulos (2018a) (although both involve regular open sets). It allows agents to
acquire more information, and uses stronger topological assumptions, but in exchange, it
obtains more detailed, concrete and informative representation theorems. The third paper
(Pivato and Vergopoulos, 2018b) extends these results to piecewise continuous acts.

The paper is organized as follows. Section 2 introduces our model of imperfect percep-
tion, while Section 3 introduces our model of conditional preferences under uncertainty.
Section 4 introduces the six axioms used in all our results. Section 5 presents our first two
SEU representations, which assume the state space is either compact Hausdorff or Baire,
and which represent the agent’s beliefs with a residual probability charge (which assigns
probability zero to all meager sets). Sections 6 presents the next two SEU representa-
tions, which assume the state space is either compact Hausdorff or normal; in this case,
the agent’s beliefs are represented by a Borel probability measure and a liminal structure,
which describes how the agent copes with imperfect perception. Section 7 provides similar
SEU representations for locally compact state spaces, via their compactifications. Section
8 reviews prior literature. All the proofs are in the Appendix.
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2 Regular sets and imperfect perception

We will first informally summarize the main ideas of this section. Let g : S−→R be
a function representing some physical quantity (e.g. temperature). Suppose the agent
measures this quantity using some device. The device cannot literally display a “real
number” as output; it can only display a finite number of digits of precision. (Even if it
could display an infinite number of digits, the agent couldn’t read them.) To be concrete,
suppose g : S−→[−50, 50] represents a temperature which can range from −50◦C to 50◦C.
Suppose the agent uses a digital thermometer, which displays temperature to the nearest
tenth of a degree. We could represent this by a function f : S−→{−500,−499, . . . , 499},
where f(s) = n if n

10
< g(s) < n+1

10
. Equivalently, we could represent it by a partition of S

into a thousand subsets, namely the preimage sets f−1{−500}, f−1{−499}, . . . , f−1{499}.
Of course, we must make a choice about the value of f(s) when g(s) = n

10
for some

integer n. In such a “knife-edge” case, we could define f(s) = n or f(s) = n − 1; both
choices are equally reasonable. Typically, models make this choice in an arbitrary way. But
it is often more realistic to suppose that f takes both values in a knife-edge case, because
the output of the device is indeterminate —it could go either way. In this case, f is no
longer a function, but a multifunction. Likewise, the preimages f−1{−500}, . . . , f−1{499}
are no longer disjoint, so they do not define a partition, but rather, a covering of S.

This leads to a more general and realistic model of information acquisition, in which
measurement devices are represented as multifunctions (or equivalently, coverings) rather
than ordinary functions (or equivalently, partitions). The greater the preponderance of
multivalued outputs in a multifunction (i.e. the more overlaps in the corresponding cover-
ing), the less informative the corresponding measurement device is. Ordinary functions are
just single-valued multifunctions, and partitions are coverings by disjoint sets; these corre-
spond to the most informative measurement devices. Thus, it might seem obvious that an
agent should always acquire information using functions/partitions. But in the topological
setting of this paper, these may not be available. Physical quantities (like temperature)
correspond to continuous functions on the state space, and the devices which measure
them correspond to upper hemicontinuous multifunctions, which are never single-valued
(unless S is disconnected). A maximally informative measurement device corresponds to
a maximally decisive multifunction —in effect, a multifunction which is “as single-valued
as possible”, while remaining upper hemicontinuous. As we shall soon see, such a mul-
tifunction defines a covering of the state space by closed sets that overlap only on their
boundaries. Their interiors are regular open sets, and determine a regular partition of S.

Regular sets and partitions. A subset R ⊆ S is regular if R = int[clos(R)].1 Let
R(S) be the collection of all regular subsets of S. For any Q,R ∈ R(S), we define
Q∨R := int[clos(Q∪R)]. This is the smallest regular set containing both Q and R. For
example, if S = R, then (0, 1) ∨ (1, 2) = (0, 2). For any R ∈ R(S), let ¬R be the interior
of S \R —another regular subset. The set R(S) is a Boolean algebra under the operations
∨, ∩, and ¬ (Fremlin, 2004, §314P-314Q).

1Sometimes this is called a regular open subset.
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A regular partition of S is a collection P = {P1,P2, . . .PN} where P1, . . . ,PN ⊂ S are
disjoint regular sets such that P1 ∨ · · · ∨PN = S —equivalently, such that P1 ⊔ · · · ⊔PN is
dense in S. For example, suppose S = R2. For all e ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)},
let Pe := {(x, y) ∈ R2; e1 x > 0 and e2 y > 0}. Then {P1,1,P1,−1,P−1,1,P−1,−1} is a regular
partition of R2. We will use regular partitions to represent an agent’s imperfect perception
of her environment. To explain this, we will first make an interesting connection between
regular partitions and upper hemicontinuous multifunctions.

Multifunctions. Let S and N be sets. Let ℘(N ) be the power set of N . A multifunction

(or correspondence) from S to sN is a function f : S−→℘(N ) such that f(s) 6= ∅ for all
s ∈ S. We indicate this by writing “f : S ⇒ N .” Any function can be regarded as a
multifunction in the obvious way. Conversely, if f is a multifunction and f(s) is a singleton
for all s ∈ S, then we regard f as an ordinary function from S to N , in the obvious way.

For example, let {K1, . . . ,KN} be a covering of S —that is, a collection of subsets of S,
such that S = K1∪· · ·∪KN . Let N = [1 . . . N ], and define f : S ⇒ N by f(s) := {n ∈ N ;
s ∈ Kn}; then f is a multifunction from S to N . Conversely, any multifunction from S to
N can be obtained from a covering of S in this way. Note that f is a function if and only
if K1, . . . ,KN do not overlap —that is, if and only if {K1, . . . ,KN} is a partition of S. As
this example shows, a multifunction into a finite set can be thought of as a “generalized
partition”, where overlaps are allowed.

Let S and N be topological spaces, with N compact. The graph of a multifunction
f : S ⇒ N is the set {(s, n); s ∈ S and n ∈ f(s)}. We say f is upper hemicontinuous

(UHC) if this graph is a closed subset of S ×N . If f : S−→N is a function, and we regard
f as a multifunction, then f is UHC if and only if it is continuous. So upper hemicontinuity
generalizes continuity. Suppose N = [1 . . . N ] with the discrete topology, and f : S ⇒ N
arises from a covering {K1, . . . ,KN} as in the previous paragraph. Then f is UHC if and
only if K1, . . . ,KN are closed subsets of S.

Let f, g : S ⇒ N be two multifunctions. We will say that g is more decisive than f if
g(s) ⊆ f(s) for all s ∈ S. We indicate this by writing “g ⊆ f”; we write“g ⊂ f” if g ⊆ f
and g 6= f . Let F be a class of multifunctions, and let f ∈ F . We say f is maximally

decisive in F if there does not exist any g ∈ F such that g ⊂ f .

Multifunctions vs. regular partitions. There is a natural correspondence between
the regular partitions of a topological space S and the maximally decisive UHC multifunc-
tions from S into finite sets. To be more precise, for any N ∈ N, let RgPrt(S, N) be the set
of all N -element regular partitions of S (indexed by [1 . . . N ]). Meanwhile, let UHC(S, N)
be the set of all UHC multifunctions from S to [1 . . . N ] (with the discrete topology), and
let UHC∗(S, N) be the set of maximally decisive elements of UHC(S, N). The next result
says that there is a canonical bijection between RgPrt(S, N) and UHC∗(S, N).

Proposition 1 Let S be a topological space and let N ∈ N.

(a) Let f ∈ UHC(S, N), and let {K1, . . . ,KN} be the corresponding covering of S by
closed subsets. For all n ∈ [1 . . . N ], let Rn := int(Kn). If f is maximally decisive in
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UHC(S, N), then {R1, . . . ,RN} ∈ RgPrt(S, N).

(b) Let {R1, . . . ,RN} ∈ RgPrt(S, N). For all n ∈ [1 . . . N ], let Kn := clos(Rn);
then {K1, . . . ,KN} is a covering of S . If f : S ⇒ [1 . . . N ] is the corresponding
multifunction; then f is maximally decisive in UHC(S, N).

(c) The mappings UHC∗(S, N)−→RgPrt(S, N) and RgPrt(S, N)−→UHC∗(S, N) de-
scribed in parts (a) and (b) are bijections, and inverses to one another.

Imperfect perception. We will interpret multifunctions as models of imperfect percep-
tion. A multifunction f : S ⇒ [1 . . . N ] represents an observation that the agent could
make to learn something about the state of nature —say, using some instrument or device.
If f was an arbitrary multifunction, then arbitrarily small perturbations of the state could
cause wild variations in the output; this would make the device essentially useless in real
life. Upper hemicontinuity simply means that the measurement device is insensitive to
small perturbations. The fact that f can be multivalued indicates that, for some states,
the observation is ambiguous —for example, the device may produce one of several outputs
in arbitrary and unpredictable way. Clearly, the agent would like to minimize this kind
of erratic behaviour. We will suppose the favorable case where any maximally decisive
measurement is available. Therefore, the agent only considers these measurements.

For example, recall the function g : S−→[−50, 50] representing temperature, which the
agent measures using a digital thermometer, displaying temperature to the nearest tenth
of a degree Celsius. This defines a multifunction f : S ⇒ {−500,−499, . . . , 499}, where
n ∈ f(s) if n/10 ≤ g(s) ≤ (n + 1)/10. If g is continuous, then it is easily verified that f
is upper hemicontinuous. If g is also open, then it is easily verified that f is maximally
decisive; in this case, f determines a regular partition of S into 1000 regular subsets,
corresponding to the 1000 distinct intervals of 0.1 degrees Celsius between −50◦C and
50◦C. To say that g is continuous is just to say that arbitrarily small perturbations of the
state do not result in wild temperature changes. To say that g is open is just to say that
at any state, any small variation in temperature can be obtained by a small perturbation
of the state. Both of these are plausible assumptions.

This example illustrates the general case; almost any physical quantity of interest can be
represented as a continuous function from the state space into some interval of real numbers;
in most cases, this function will also be open. Thus, any measurement of this quantity by
a digital measurement device can be described by an upper hemicontinuous multifunction
from S into a finite set; in most cases, this multifunction will also be maximally decisive,
and hence, yield a regular partition of S.

It might seem that this analysis does not apply to purely analog measurement devices,
but this is an misconception. Human eyes cannot perceive the output of an analog mea-
surement device with infinite precision. So for all intents and purposes, their output might
as well be digital. For example, a human eye looking at an (analog) mercury thermometer
probably cannot discriminate any temperature difference smaller than 0.5 degrees Celsius;
the resulting partition of the state space is even cruder than the one obtained from the
digital thermometer described above.
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Regular partitions (or equivalently, maximally decisive UHC multifunctions) arise fre-
quently in economics as the output of parametrized optimization problems. Let S be a
topological space, let N be a finite set, and let u : S×N−→R be continuous. For all s ∈ S,
let f(s) := {m ∈ N ; u(s,m) ≥ u(s, n) for all n ∈ N}. This describes a parametrized
optimization problem, where S is the parameter space, N is the feasible set, and for any
s ∈ S, f(s) is the set of optimal solutions given parameter value s. It is easy to see that
f is UHC —but it might not be maximally decisive. So, suppose S is an open subset of
RN , for all for all distinct n,m ∈ N , define vn,m : S−→R by vn,m(s) := u(s, n) − u(s,m).
Suppose that vn,m is differentiable (which is automatically true if u is differentiable in the
S coordinate), and furthermore, suppose that the gradient ∇ vn,m is everywhere nonzero.
Then it is easily verified that f is maximally decisive. An observer monitoring the agent’s
optimization behaviour can indirectly learn about the parameter s via f , even if she can-
not directly observe s. The information the observer can thereby acquire corresponds to a
regular partition of the parameter space S.

An important example arises in Bayesian games. Consider an M -player normal form
game, with (finite) strategy sets A1, . . . ,AM . Let T1 be an open subset of RN , representing
the space of possible types of Player 1. Suppose Player 1 has a type-dependent payoff
function u : T1 × A1 × · · · × AM−→R, differentiable in the T1 coordinate. Let ∆−1 :=
∆(A2)× · · ·×∆(AM) be the space of mixed strategy profiles for all the other players, and
let S := T1×∆−1. For any t ∈ T1, δ ∈ ∆−1 and a ∈ A1, let u(a, t, δ) be Player 1’s expected
utility, defined in the obvious way; this yields a continuous function u : A1×S−→R. Thus,
Player 1’s best response correspondence is a UHC multifunction f : S ⇒ A1. In particular,
for any δ ∈ ∆−1, we get a UHC multifunction fδ : T1 ⇒ A1. For any a, b ∈ A1, define
vδa,b : T1−→R by vδa,b(t) := u(a, t, δ) − u(b, t, δ). This function is differentiable. If ∇ va,b is
everywhere nonzero, then fδ is maximally decisive.

Other players can learn about Player 1’s type by observing her best responses. The
information they can thereby acquire is exactly like the digital measurement devices we
considered earlier: it corresponds to a regular partition of Player 1’s type space.

Regular partitions also appear in mathematics (e.g. Voronoi partitions), statistical
physics (e.g. phase diagrams), and even international relations (e.g. territorial boundaries).
In light of Proposition 1 and these examples, we will suppose that an agent’s perception
of her environment is described by some regular partition P of the state space. When
she “observes” the state using P, the outcome of that observation is a regular set. Thus,
regular sets will be the basic unit of information available to agents in our model.

3 Acts and preferences

Let S and X be topological spaces. Elements of S are called states of the world and describe
the various possible resolutions of uncertainty. Elements of X are called outcomes and
represent the various possible consequences of decisions. We will assume X is connected.

Acts. Like Savage, we will suppose that the agent can choose from a menu of acts, where
each act is a function from the state space onto the outcome space. This function describes
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the outcome that would result from the choice of this act at each possible state of the world.
Unlike Savage, we will assume only continuous acts are feasible.

Recall that a subset Y ⊆ X is relatively compact if its closure clos(Y) is compact.
(It follows that any continuous, real-valued function on X is bounded when restricted
to Y .) For example, if X is a metric space, then Y is relatively compact if and only
if Y is a bounded subset of X . A function α : S−→X is bounded if its image α(S) is
relatively compact in X . If X is a metric space, then this agrees with the usual definition
of “bounded”. But this definition makes sense even if X is nonmetrizable. Let C(S,X ) be
the set of all continuous functions from S into X , and let Cb(S,X ) be the set of all bounded
continuous functions from S into X . Unlike Savage, we will assume only bounded acts
are feasible. Meanwhile, our SEU representations will have potentially unbounded utility
functions, whereas Savage’s utility functions were bounded.2

There may be additional feasibility restrictions on acts, beyond continuity and bound-
edness. Thus, we introduce an exogenously given subset A ⊆ Cb(S,X ); this is the set
of feasible acts. If technological constraints only entail continuity and boundedness, then
A = Cb(S,X ). But in general, A could be much smaller. For instance, in some economic
models, it may be appropriate to define A to be the set of all infinitely differentiable
functions from S to X . However, the collection A cannot be too small; it must be large
enough to satisfy structural condition (Rch) below, and must contain all constant acts;
these represents riskless alternatives. The inclusion of such acts in A means that we can
risklessly obtain any outcome by a feasible act.

Conditional preference structures. Savage (1954) started from a preference order on
the set of unconditional acts. He then obtained conditional preferences via axiom P2 (the
Sure Thing Principle). Axiom P2 assumes that, for any two feasible acts α and β, and any
event B, the “spliced” act αRβ (which is equal to α on R and to β on the complement
R∁) is also feasible. But such “spliced” acts are often discontinuous, hence, inadmissible
in our framework. So instead of defining conditional preferences implicitly via P2, we must
assume they exist explicitly. But we will only assume that these preferences can rank
feasible acts, and we only assume preferences conditional on observable events. Thus, in
terms of its primitive behavioral data, our model is not directly comparable to the Savage
(1954) theory: while Savage assumed a single preference order on the universal domain of
acts, our approach relies on a collection of preference orders on a more restrictive domain.
But compared to other conditional versions of SEU ( e.g. Ghirardato, 2002), our approach
requires less data, both in terms of the number of preference orders and their domain.

For any regular subset R ∈ R(S), and any act α ∈ A, let α↿R denote the restriction of
α to a function on R. Let A(R) := {α↿R; α ∈ A} be the set of acts conditional upon R.

2 We need bounded acts for the same reason that Savage needs a bounded utility function u: to make
the composite function u ◦ α bounded so that its expected value can be computed without any technical
complications. In a companion paper (Pivato and Vergopoulos, 2018a), we introduce a strengthening of
our axiomatic framework which makes the utility function u bounded, thereby allowing us to consider
unbounded acts. The axiomatic framework of the present paper could likewise be modified to allow for
unbounded acts. But for reasons of space, we will not develop these variants here.

9



X

S

R1
R2

α1

α2

X

S

R1
R2

α1

α2

α

X

S

R1
R2

α1

α2

X

S

R1
R2

α1

α2

β

Figure 1: Top row. α1 is compatible with α2. Bottom row. The richness condition.

Even when A = C(S,X ), the set A(R) will typically not be C(R,X ); not every continuous
function on R extends to a continuous function on S. For all R ∈ R(S), let �R be a
preference order on A(R). We interpret �R as the conditional preferences over A(R) of
an agent who has observed the event R. We will therefore refer to the system {�R}R∈R(S)

as a conditional preference structure; this will be the primitive data of the model. Our goal
is to axiomatically characterize an SEU representation for {�R}R∈R(S).

The richness condition. As already noted, the restriction to continuous acts means
that we cannot rely on “spliced” acts the way that Savage did. Instead, we will require
the set A of feasible acts to satisfy a “Richness” condition with respect to the conditional
preference structure {�R}R∈R(S). Let R1,R2 ∈ R(S) be disjoint regular subsets of S. For
any α1 ∈ A(R1) and α2 ∈ A(R2), say that α1 and α2 are compatible if there is some α ∈ A
with α↿R1 = α1 and α↿R2 = α2. We need A to satisfy the following condition:

(Rch) For any disjoint regular subsets R1,R2 ∈ R(S), and any α1 ∈ A(R1) and α2 ∈
A(R2), there is an act β2 ∈ A(R2) which is compatible with α1, such that α2 ≈R2 β2.

Thus, the values of an act on a regular set R1 do not restrict the indifference class of that
act conditional upon the disjoint regular set R2, in spite of the continuity requirement on
feasible acts. If there is a “gap” between R1 and R2 in S, then (Rch) is not very restrictive;
often, every element of A(R2) is compatible with α1. The nontrivial case of (Rch) is when
R1 and R2 are “touching” –e.g. when R1 = ¬R2. In particular, (Rch) provides a weak
version of Savage’s act splicing: For any R ∈ R(S), and any α, β ∈ A, there is some γ ∈ A
that is equal to α on R and indifferent to β↿¬R conditional on ¬R. (Rch) is also similar
to solvability, a condition often used in axiomatizations of additive utility.

A need not contain all bounded continuous functions from S to X , as long as it satisfies
(Rch) and contains all constant acts. For example, suppose S and X are differentiable
manifolds (e.g. open subsets of Euclidean spaces RN and RM , for some N,M ≥ 1), and
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let A be the set of all differentiable functions from S to C; then a conditional preference
structure on A can easily satisfy (Rch) along with our other axioms.3 Alternatively, let
S and X be metric spaces, let c ∈ (0, 1], and let A be the set of all c-Hölder-continuous
functions from S to X ; then (Rch) is easily satisfied. Or, let S be a bounded interval in R,
let X be a path-connected metric space, and let A be the set of all continuous functions
from S into X having bounded variation; then again (Rch) is easily satisfied. But if S and
X are open subsets of Euclidean spaces, and A is a set of analytic functions from S to X
(e.g. polynomials), then a conditional preference structure on A cannot satisfy (Rch).

4 Axioms

Throughout the paper, we will assume that each order �R in the conditional preference
structure {�R}R∈R(S) is complete (for any α, β ∈ A(R), at least one of α �R β or β �R α
holds), transitive (for any α, β, γ ∈ A(R), if α �R β and β �R γ, then α �R γ), and
nontrivial (there exist α, β ∈ A(R) such that α ≻R β).

These assumptions are more natural in our framework than in Savage’s: they only
require a transitive ordering on feasible acts, not on all logically possible acts. To under-
stand the interplay between feasibility and transitivity, consider a case where an agent
observes event R ∈ R(S), and must choose between two feasible acts α and γ in A(R).
Say momentarily that she has preferences over unfeasible acts, and that there is an un-
feasible act β such that α �R β and β �R γ. A blind application of transitivity would
yield α �R γ. But the unfeasibility of β undermines the meaningfulness of both rankings
α �R β and β �R γ. Why should these two rankings influence the choice between α and
γ? By restricting preferences to feasible acts, we eliminate such spurious influences.

We will now introduce the six axioms which appear in all of our main results. The
same axioms appear in the companion paper Pivato and Vergopoulos (2018a); we refer the
reader to this paper for more explanation and motivation of these axioms.

The separability axioms. Additive separability over disjoint events is a characteristic
feature of SEU theories. In a Savage framework, it is captured by P2. In Ghirardato’s
(2002) model of conditional preferences, it is captured by the axiom of Dynamic Consis-
tency. It also plays a central role in Hammond’s (1988) derivation of SEU maximization
on decision trees. Our first axiom captures separability through a version of Dynamic
Consistency that only applies to regular partitions of a regular event.

(Sep) For any event R ∈ R(S), any disjoint events D, E ∈ R(S) such that D ∨ E = R,
and any α, β ∈ A(R) with α↿D ≈D β↿D, we have α �R β if and only if α↿E �E β↿E .

It is easy to see that the logical equivalence in Axiom (Sep) also holds for indifference and
for strict preference: for any α, β ∈ A(R) with α↿D ≈D β↿D, we have:

(i) α ≻R β if and only if α↿E ≻E β↿E ; and

3The same is true if A is the set of N -times differentiable functions, for any N ∈ [2 . . .∞].
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(ii) α ≈R β if and only if α↿E ≈E β↿E .

Statement (i) means that no event in R(S) is null. Thus, any SEU representation must
give nonzero probability to all events in R(S). Conversely, statement (ii) says that the
boundary of any event in R(S) is null: the behaviour of α and β on that small part of
R that is not covered by D ∪ E is irrelevant for decisions conditional on R. This seems
to suggest that the SEU representation must give zero probability to the boundary of any
regular set. But A is a set of continuous functions; thus, the behaviour of α and β on the
open sets D and E entirely determines their behaviour on the common boundary ∂D∩ ∂E .
Thus, statement (ii) does not mean that we ignore the behaviour of α and β on ∂D∩∂E , as
if ∂D∩∂E had zero probability; it just means that we have already implicitly accounted for
this behaviour in our rankings of α↿D versus β↿D and α↿E versus β↿E . This implicit account
will become explicit with the “liminal structures” of Sections 6 and 7.

If D, E ∈ R(S) are disjoint and R = D∨E , then Axiom (Sep) says that the �R-ranking
of two acts α, β ∈ A(R) is partly determined by the �D-ranking of α↿D versus β↿D and the
�E -ranking of α↿E versus β↿E . The next axiom says that this dependency is continuous.

(CCP) (Continuity in conditional preferences) Let R = D ∨ E as in axiom (Sep). Let
β, α, β ∈ A(R) be three acts with β ≺R α ≺R β. Then there exist δ, δ ∈ A(D) and

ǫ, ǫ ∈ A(E), with δ ≺D α↿D ≺D δ and ǫ ≺E α↿E ≺E ǫ such that, for any α′ ∈ A(R), if
δ ≺D α′

↿D ≺D δ and ǫ ≺E α′
↿E ≺E ǫ then β ≺R α′ ≺R β.

The intuition here is that a small variation in α↿D and α↿E (relative to the order topologies
on A(D) and A(E)) should not affect the �R- ranking of α versus β and β.

Continuity of ex post preferences. For any x ∈ X , let κx be the constant x-valued
act on S. Let K := {κx; x ∈ X}. We have assumed K ⊆ A, so the preference order �S ,
restricted to K, induces a preference order �xp on X as follows: for any x, y ∈ X ,

(

x �xp y
)

⇐⇒
(

κx �S κy
)

. (1)

�xp describes the ex post preferences of the agent on X when there is no uncertainty. The
next axiom says that these preferences are compatible with the underlying topology on X .

(C) The ex post order �xp is continuous in the topology on X . That is: for all x ∈ X , the
contour sets {y ∈ X ; y �xp x} and {y ∈ X ; y �xp x} are closed subsets of X .

Certainty equivalents. For any R ∈ R(S) and x ∈ X , let κx
R := (κx)↿R; this is the

constant x-valued act, conditional on R. Given an act α ∈ A(R), we say x is a certainty

equivalent for α on R if κx
R ≈R α. The next axiom is a mild richness condition on X .

(CEq) For any event R ∈ R(S), any act α ∈ A(R) has a certainty equivalent on R.

Axiom (CEq) may appear somewhat implausible. But it is a logical consequence of the
following axiom of “constant continuity” which may seem more natural.
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(CC) For any event R ∈ R(S) and any act α ∈ A(R), the sets {x ∈ X ; κx
R �R α} and

{x ∈ X ; α �R κx
R} are closed in X .

If X is connected and A ⊆ Cb(S,X ), then (CC) is equivalent to the conjunction of (C) and
(CEq). So we could state our results with a single axiom (CC) in place of (CEq) and (C).

The statewise dominance axiom. Our next axiom imposes some consistency between
the agent’s conditional preference structure and her ex post preferences. It says that the
agent always prefers a statewise dominating act.

(Dom) For any R ∈ R(S) and any α, β ∈ A(R), if α(b) �xp β(b) for all b ∈ R, then
α �R β. Furthermore, if α(b) ≻xp β(b) for all b ∈ R, then α ≻R β.

Recall that if the agent “observes” the event R ∈ R(S), this does not mean the true state
lies in R —it only lies in the closure of R. But this does not undermine the first part of
(Dom): since α and β are continuous functions, they have unique extensions to the closure
of R, and these extensions preserve weak statewise dominance. Thus, weak statewise
dominance over R implies weak statewise dominance over all states that remain possible:
those in the closure of R. Of course, the extensions of α and β might not preserve strict
dominance. So the second part of (Dom) requires some sub-event of R to be non-null. But
as we have already observed, (Sep) implies that all events in R(S) are non-null.

(Dom) appears similar to (Sep), and thus to Savage’s axiom P2. The difference is that
(Sep) applies to regular partitions, while (Dom) applies to partitions into singleton sets,
which, in general, are not regular. Thus, (Dom) cannot be obtained as a special case of
(Sep). Axiom (Dom) is also related to Savage’s axioms P3 and P7. Axiom P3 requires
the ranking of outcomes to be independent of the events that yield the outcomes. (Dom)
entails a similar form of state independence: it implies that �S can be replaced by �R for
any R ∈ R(S), in formula (1). Thus, the ex post preference orders obtained from different
conditional preference orders must agree with one other. Finally, to see how (Dom) and
P7 overlap, consider the special case of (Dom) where one of α or β is a constant act.

Tradeoff consistency. Our last axiom is a version of the Cardinal Coordinate Indepen-
dence axiom used in Wakker’s (1988) axiomatization of SEU. We need some preliminary
definitions. Let R ∈ R(S), and let Q := ¬R. Consider an outcome x ∈ X and an act
α ∈ A(Q). Structural condition (Rch) yields an act (xRα) ∈ A with two properties:

(B1) (xRα)↿R ≈R κx
R, and (B2) (xRα)↿Q ≈Q α.

We will call (xRα) an (x, α)-bet for R; if R obtains, this bet is indifferent to the outcome
x, while it is indifferent to α conditional on the complement of R. Note that (xRα) is not
uniquely defined by (B1) and (B2). But if (xRα) and (xRα)

′ are two acts satisfying (B1)
and (B2), then axiom (Sep) implies that (xRα) ≈S (xRα)

′.
Fix now four outcomes x, y, v, w ∈ X , and a regular subset R ∈ R(S). Let Q := ¬R.

We write (x R

❀ y) � (v R

❀ w) if there exist α, β ∈ A(Q), an (x, α)-bet (xRα) ∈ A, a
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(y, β)-bet (yRβ) ∈ A, a (v, α)-bet (vRα) ∈ A and a (w, β)-bet (wRβ) ∈ A such that
(xRα) �S (yRβ) while (vRα) �S (wRβ). By the remark in the previous paragraph, this
implies that for any such bets (xRα), (yRβ), (vRα), (wRβ) ∈ A, we have (xRα) �S (yRβ)
and (vRα) �S (wRβ).

If (xRα) �S (yRβ), then the “gain” obtained by changing x to y on R is at least enough
to compensate for the “loss” incurred by changing α to β on Q. In contrast, if (vRα) �S

(wRβ), then the gain obtained by changing v to w on R is at most enough to compensate
for the loss incurred by changing α to β on Q. Together, these two observations imply that
the gain obtained from changing x to y on R is at least as large as the gain from changing
v to w on R; hence the notation (x R

❀ y) � (v R

❀ w). If �S has an SEU representation
with utility function u, then (x R

❀ y) � (v R

❀ w) means that u(y)− u(x) ≥ u(w)− u(v).

Conversely, we write (x R

❀ y) ≺ (v R

❀ w) if there exist γ, δ ∈ A(Q), an (x, γ)-bet
(xRγ) ∈ A, a (y, δ)-bet (yRδ) ∈ A, a (v, γ)-bet (vRγ) ∈ A and a (w, δ)-bet (wRδ) ∈ A
such that (xRγ) �S (yRδ) while (vRγ) ≺S (wRδ). Again, this implies that (xRγ) �S (yRδ)
and (vRγ) ≺S (wRδ) for any such bets (xRγ), (yRδ), (vRγ), (wRδ) ∈ A. If �S had an SEU
representation, then this means that u(y)− u(x) < u(w)− u(v). Here is our final axiom:

(TC) For any two regular subsets R1,R2 ∈ R(S), there are no x, y, v, w ∈ X such that

(x
R1
❀ y) � (v

R1
❀ w) while (x

R2
❀ y) ≺ (v

R2
❀ w).

5 SEU representations using residual charges

A topological space S is Hausdorff if any pair of points in S can be placed in two disjoint
open neighbourhoods. For example, any metrizable space (e.g. any subset of RN) is
Hausdorff. The space S is compact if, for any collection O of open sets whose union is
S, there is a finite subcollection {O1, . . .ON} ⊆ O such that O1 ∪ · · · ∪ ON = S. For
example, any closed, bounded subset of RN is compact. Our first result will give an SEU
representation for conditional preference structures on any compact Hausdorff state space.

Let Bor(S) be the Borel sigma-algebra of S —that is, the smallest sigma-algebra con-
taining all open sets. Observe that R(S) ⊆ Bor(S) as sets, but the Boolean algebra
operations are different. A subset N ⊆ S is nowhere dense if int[clos(N )] = ∅. For ex-
ample, for any R ∈ R(S), the boundary ∂R is nowhere dense in S. A subset M ⊆ S
is meager if it is a countable union of nowhere dense sets. Heuristically, meager sets are
“small”. For example, the set Q of rational numbers is meager in the space R.

Let B be a Boolean algebra of subsets of S (for example, B = Bor(S)). A probability

charge onB is a function ν : B−→[0, 1] such that (1) ν[S] = 1 and (2) ν[A⊔B] = ν[A]+ν[B]
for any disjoint A,B ∈ B. We say that ν is a residual charge if, furthermore, ν[M] = 0 for
any meager M ∈ B. We say that ν has full support if ν(R) > 0 for any nonempty regular
subset R ∈ R(S). In particular, if every nonempty open subset of S contains a nonempty
regular subset (i.e. S is quasiregular), then ν has full support if and only if ν(O) > 0 for
any nonempty open subset O. Here is our first representation theorem.
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Theorem 1 Let S be a nonsingleton, compact Hausdorff space, let X be a connected space,
and let A ⊆ Cb(S,X ). Let {�R}R∈R(S) be a conditional preference structure on A satisfying
(Rch). Then {�R}R∈R(S) satisfies (CEq), (C), (Dom), (Sep), (CCP) and (TC) if and only
if there is a residual probability charge ν on Bor(S) with full support, and a continuous
function u : X−→R such that for any R ∈ R(S) and any α, β ∈ A(R), we have

(

α �R β
)

⇐⇒

(∫

R

u ◦ α dν ≥

∫

R

u ◦ β dν

)

. (2)

Furthermore, ν is unique, and u is unique up to positive affine transformation.

Theorem 1 is a special case of a more general result. A subset B ⊆ S has the Baire

property if B = O△M for some open O ⊆ S and some meager M ⊂ S. Heuristically, this
means that B is “almost open” in S. Let Bai(S) be the collection of all subsets of S with
the Baire property; then Bai(S) is a Boolean algebra under the standard set operations.
Again, R(S) ⊆ Bai(S) as sets, but the Boolean algebra operations are different.

A topological space S is a Baire space if the intersection of any countable family of
open dense sets is dense. For example, any open subset of the Euclidean space RN is
a Baire space. More generally, any completely metrizable space is Baire (Willard, 2004,
Corollary 25.4). In particular, every topological manifold is Baire. Finally, any locally
compact Hausdorff space is Baire. Intuitively, non-Baire spaces are extremely “sparse”
or “porous”; they are unlikely to arise naturally in economic models. (For example, a
countable Hausdorff space is not Baire. Also, the product topology on Q×R is not Baire.)
Finally, S is nondegenerate if it contains a nonempty open subset which is not dense —or
equivalently, a proper closed subset with nonempty interior. This means that R(S) is not
trivial. Nondegeneracy is a very mild condition; for example, any nonsingleton Hausdorff
space is nondegenerate (Lemma A2(a)). Our second result gives an SEU representation
for conditional preference structures on any nondegenerate Baire state space.

Theorem 2 Let S be a nondegenerate Baire space, let X be a connected space, and let
A ⊆ Cb(S,X ). Let {�R}R∈R(S) be a conditional preference structure on A satisfying (Rch).
Then {�R}R∈R(S) satisfies (CEq), (C), (Dom), (Sep), (CCP) and (TC) if and only if there
is a residual probability charge ν on Bai(S) with full support, and a continuous function
u : X−→R such that statement (2) holds for any R ∈ R(S) and any α, β ∈ A(R).
Furthermore, ν is unique, and u is unique up to positive affine transformation.

Imperfect perception via observational equivalence. Section 2 presented a model
of imperfect perception based on regular partitions of the state space (or equivalently,
maximally decisive UHC multifunctions). But Theorems 1 and 2 suggest another model of
imperfect perception. Let B be a Boolean algebra of subsets of S (e.g. Bor(S) or Bai(S)),
and let µ be a probability charge on S. Given B1,B2 ∈ B, recall that B1 and B2 are
equal µ-almost everywhere (or µ-a.e.) if µ[B1△B2] = 0 (where B1△B2 = (B1 \ B2) ⊔ (B2 \
B1)). We will indicate this by writing “B1 ≈

µ
B2”. This is an equivalence relation on B.

Likewise, if P = {P1, . . . ,PN} and P′ = {P ′
1, . . . ,P

′
N} are two B-measurable partitions
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of S, then we say P and P′ are equal µ-a.e. if Pn ≈
µ
P ′

n for all n ∈ [1 . . . N ]. This is an
equivalence relation on the set of B-measurable partitions. In probability theory, if two
partitions are equal µ-a.e., then they are regarded as observationally equivalent; an agent
will never be able to tell whether she is observing the world via the partition P or via the
partition P′. The event that these two partitions generate different observations (i.e. the
set (P1△P ′

1) ∪ · · · ∪ (PN△P ′
N)) has probability zero. Thus, probabilistically speaking, it

never happens; even if the agent performed a million experiments, she would never observe
a situation where P and P′ disagree. For all intents and purposes, P and P′ are “the
same partition”. Indeed, in probability theory and real analysis, this informal observation
is often formalized by working only with a.e.-equivalence classes of sets and functions.

For residual charges, these observations have a particular significance. For any B1,B2 ∈
B, write “B1 ≈ B2” if B1△B2 is meager; this is an equivalence relation on B. If B1 ≈
B2, then a fortiori B1 ≈

µ
B2 for any residual charge µ, because every meager set has µ-

measure zero. Likewise, ifP = {P1, . . . ,PN} andP′ = {P ′
1, . . . ,P

′
N} are twoB-measurable

partitions of S, then we will write P ≈ P′ if Pn ≈ P ′
n for all n ∈ [1 . . . N ]; this is an

equivalence relation on the set of B-measurable partitions.
If P ≈ P′, then P ≈

µ
P′ for any residual charge µ. Thus, if an agent’s beliefs about the

state space are represented by a residual charge (as in Theorems 1 and 2), then to her, P
and P′ are observationally equivalent, exactly as described above. Thus, as in probability
theory and analysis, it makes sense to work with ≈-equivalence classes of events.

Proposition 2 Suppose that either (i) S is a compact space and B = Bor(S), or (ii) S
is a Baire space, and B = Bai(S). For any B ∈ B, there is a unique R ∈ R(S) such
that B ≈ R; define φ(B) := R. This yields a surjective Boolean algebra homomorphism
φ : B−→R(S).

In other words, every ≈-equivalence class of events in B can be identified with a unique
regular set, and every ≈-equivalence class ofB-measurable partitions can be identified with
a unique regular partition. Section 2 introduced a “non-classical” model of information, in
which the agent could only obtain information about the state of the world through regular
partitions. But Proposition 2 renders this equivalent to a totally classical model, where
the agent obtains information about the state through (ordinary) B-measurable partitions.
But she assigns zero probability to all meager sets, and as in standard probability theory,
she cannot distinguish between two events that are equal almost everywhere.

Thus, in this alternative model of imperfect perception, the Boolean algebra R(S)
is merely a convenient mathematical shorthand for dealing with ≈-equivalence classes of
events in Bor(S) or Bai(S). But this model has two limitations. First, it only works for
compact spaces and Baire spaces, whereas we want a theory which applies to a wider class
of state spaces. Second, this approach assumes the agent already has probabilistic beliefs,
and that furthermore these beliefs are a residual charge. But following the tradition of
Savage, our goal in this paper is to derive the agent’s beliefs from her preferences over
acts, via a subjective expected utility representation. Thus, while this alternative model
provides another justification for using R(S) to represent the information available to the
agent, it is not our primary justification. Our main justification is the model in Section 2.
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6 SEU representations with liminal structures

Theorems 1 and 2 yield “classical” SEU representations, quite similar to Savage. But they
use residual charges, which assign probability zero to the boundaries of regular sets, as if
the agent thinks that such boundary events “never” occur. This means that she does not
perceive her measurement devices as truly ambiguous: although a state on the knife-edge
between two measurement outcomes could occur in principal, such a situation never arises
in practice. We will now introduce an SEU representation where the agent recognizes
that boundary events can occur; this is encoded in what we call a liminal structure, which
encodes the probabilities of different measurement outcomes at each knife-edge state. Also,
the residual charges from Theorems 1 and 2 are only finitely additive, and not normal. In
contrast, the SEU representations in this section use normal Borel probability measures.

LetBor(S) be the Borel sigma-algebra of S. Let ν be a Borel probability measure on S —
that is, a (countably additive) probability measure onBor(S). Recall that ν is normal if, for
every B ∈ Bor(S), we have ν[B] = sup{ν[C]; C ⊆ B and C closed in S} and ν[B] = inf{ν[O];
B ⊆ O ⊆ S and O open in S}. For any B ∈ Bor(S), let νB be the restriction of ν to a
Borel measure on B, and let L1(B, νB) be the Banach space of real-valued, νB-integrable
functions on B, modulo equality νB-almost everywhere. Finally, let L1(B, νB; [0, 1]) be the
set of [0, 1]-valued functions in L1(B, νB). A liminal density structure subordinate to ν is a
collection {φR}R∈R(S), where, for all R ∈ R(R), φR ∈ L1(∂R, ν∂R; [0, 1]) is a function such
that, for any regular partition {R1, . . . ,RN} of S, we have

φR1 + · · ·+ φRN
= 1, ν-almost everywhere on ∂R1 ∪ · · · ∪ ∂RN . (3)

In the model we develop in this section, the agent’s “beliefs” will be represented by a
Borel probability measure ν, along with a liminal density structure {φR}R∈R(S) subordinate
to ν. Heuristically, ν describes the agent’s ex ante beliefs, while {φR}R∈R(S) describes how
she copes with her informational constraints. To be more precise, suppose the agent obtains
information through an upper hemicontinuous multifunction f : S ⇒ [1 . . . N ], which we
represent using a regular partition {R1, . . . ,RN}, as in Proposition 1. For all n ∈ [1 . . . N ],
her ex ante probability of receiving the signal “n” is

µ[Rn] := ν[Rn] +

∫

∂Rn

φRn
dν.

Now suppose the agent receives the signal “n”. Then she knows that the state of the world
lies in clos(Rn). But there is a chance that the state is not in Rn itself, but instead on
its boundary ∂Rn. Indeed, the state is in Rn with probability ν[Rn]/µ[Rn], whereas it is
on the boundary of Rn with probability 1− (ν[Rn]/µ[Rn]). Furthermore, the density φRn

tells the agent where the state is likely to be on ∂Rn, given that this latter case occurs. To
be precise, she assigns the following conditional probability to any event B ∈ Bor(S):

ν(B ∩Rn) +

∫

B∩∂Rn

φRn
dν

ν(Rn) +

∫

∂Rn

φRn
dν

. (4)
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Thus, receiving the signal “n” increases the probability of Rn to ν[Rn]/µ[Rn], but not
necessarily to certainty. However, this “spillover” probability is confined to the closure of
Rn; formula (4) implies that the probability of clos(Rn) given Rn always equals one.

For example, suppose S = [−1, 1], and consider the multifunction f : S ⇒ {L,R}
such that f(s) = {L} for all s < 0, f(s) = {R} for all s > 0, and f(0) = {L,R}. This
corresponds to the regular partition {L,R}, where L := [−1, 0) and R := (0, 1] . Note that
∂L = ∂R = {0}, so that φL and φR are entirely determined by their values at 0. Suppose
that ν{0} > 0. Formula (8) says that φL(0) + φR(0) = 1. Let µ[L] := ν(L) + φL(0) ν{0},
while µ[R] := ν(R)+φR(0) ν{0}; these are the agent’s subjective probabilities of receiving
the signals “L” and “R”, respectively. The agent believes that, if the true state were s = 0,
then she would receive the signal “L” with probability φL(0), whereas she would receive
the signal “R” with probability φR(0). Once she has received “L” she thinks that actually
s = 0 with probability p := φL(0) ν{0}/µ(L), whereas s < 0 with probability 1 − p. On
the other hand, if she receives “R” , then she thinks that actually s = 0 with probability
q := φR(0) ν{0}/µ(R), whereas s > 0 with probability 1− q.

We will explain this interpretation more formally below, by representing the agent’s
perception of her environment with stochastic functions. But first we will state our next
representation theorem using these liminal structures.

Liminal density SEU representation. Let X be a topological space, let A ⊆ Cb(S,X )
be a set of feasible acts , and let {�R}R∈R(S) be a conditional preference structure on A.
A liminal density SEU representation for {�R}R∈R(S) is given by a Borel probability measure
ν on Bor(S) and a liminal density structure {φR}R∈R(S) subordinate to ν, along with a
continuous utility function u : X−→R, such that, for all R ∈ R(S) and all α, β ∈ A(R),

(

α �R β
)

⇐⇒ (5)
(∫

R

u ◦ α dν +

∫

∂R

(u ◦ α)φR dν ≥

∫

R

u ◦ β dν +

∫

∂R

(u ◦ β)φR dν

)

.

(Here we use the fact u ◦ α and u ◦ β have unique extensions to ∂R, by continuity.) Note
that the “boundary” terms in (5) do not violate consequentialism or dynamic consistency.
To see this, let α, β ∈ A. Because α, β and u are all continuous, the values of u ◦ α and
u◦β on ∂R are completely determined by their values on R. Thus, (5) satisfies consequen-
tialism: if α↿R = β↿R, then α and β must have the same expected utility, conditional on R.
Meanwhile, equation (8) ensures that the expected utility of α on S is a weighted average
of the conditional-expected utilities of α on R and on ¬R (as expressed on the right side of
(5)), and likewise for β. Thus, if the conditional-expected utility of α is greater than that
of β on both R and ¬R, then it must be greater on all of S, in accord with the principle
of dynamical consistency. If S = R, then (5) simplifies to

(

α �S β
)

⇐⇒

(∫

S

u ◦ α dν ≥

∫

S

u ◦ β dν

)

. (6)

In other words, the unconditional preference order �S always has a “classical” SEU rep-
resentation. The liminal density structure only emerges in the representation of the con-
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ditional preference orders: it influences the way the agent updates her preferences and
beliefs as new information is acquired. Our third result provides a characterization of
liminal density SEU representations in terms of the axioms of Section 4.

Theorem 3 Let S be a (nonsingleton) compact Hausdorff space, let X be a connected
space, and let A ⊆ C(S,X ). Let {�R}R∈R(S) be a conditional preference structure on A
satisfying (Rch). Then {�R}R∈R(S) satisfies (CEq), (C), (Dom), (Sep), (CCP) and (TC)
if and only if it admits a liminal density SEU representation (5), where ν is a normal Borel
probability measure with full support. Furthermore, ν is unique, the elements of {φR}R∈R(S)

are unique (ν-almost everywhere), and u is unique up to positive affine transformation.

At first glance, there appears to be a direct contradiction between the “uniqueness”
claims in Theorems 1 and 3, since both theorems could be applied to the same conditional
preference structure. But there is no contradiction: Theorem 3 is formulated in terms of
a countably additive probability measure, while Theorem 1 was formulated in terms of a
residual charge. They are not the same type of representation. (Likewise, none of our later
SEU representations will contradict each other’s “uniqueness” claims.)

Imperfect perception via stochastic functions. In Sections 2 and 5, we introduced
two models of imperfect perception in terms of regular partitions —one in terms of upper
hemicontinuous multifunctions, and one in which partitions are regarded as observationally
equivalent if they differ on a meager set. But Theorem 3 suggests a thirdmodel of imperfect
perception, in terms of measurement devices with a random or erratic output.

For any N ∈ N, let ∆[1 . . . N ] be the set of probability measures on [1 . . . N ]. A stochas-

tic function from S to [1 . . . N ] is a function ζ : S−→∆[1 . . . N ]. This can be interpreted
as an observation of the state made by an “erratic” measurement device which can emit
N possible signals, but which has a somewhat random behaviour: for any s ∈ S, ζ(s) is
the probability distribution of the signal the device will emit if the true state is s. We will
indicate this by writing “ζ : S  [1 . . . N ]”. Any ordinary function from S into [1 . . . N ]
can be treated as a stochastic function which maps each state in S to a point mass on
[1 . . . N ]. Conversely, if ζ is a stochastic function which maps each state in S to a point
mass, then we can regard it as an ordinary function in the obvious way.

A stochastic function ζ : S  [1 . . . N ] is harmonic if, for all s ∈ S, there is an open
neighbourhood Qs ⊆ S around s, and a probability measure µ ∈ ∆(Qs) such that

ζ(s) =

∫

Qs

ζ(q) dµ[q], (7)

and furthermore, for any q ∈ Qs, µ can be chosen such that µ{q} > 0. In other words,
ζ(s) is a weighted average of ζ-values at nearby points.4 Let Ms be the set of all µ in
∆(Qs) that satisfy (7). Then Ms has “full support” in a strong sense: any point in Qs

gets positive probability from some element of Ms. If ζ represents a measurement device,
then (7) says that the output is subject to a random “jitter” in the state which is observed.

4The name harmonic is by analogy to a similar property of harmonic functions in classical analysis.
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If the true state is s, then the device will actually return a reading at some nearby point
q ∈ Qs. But q must be a nearby point, which limits the error. In particular, if δn is the
point mass at some n ∈ [1 . . . N ], then ζ(s) = δn if and only if ζ(q) = δn for all q ∈ Qs\{s}.

Let ζ : S  [1 . . . N ] be a stochastic function. For all s ∈ S, define suppζ(s) :=
supp[ζ(s)]; this yields a multifunction suppζ : S ⇒ [1 . . . N ]. If ζ is harmonic, then suppζ
is upper hemicontinuous —indeed,

suppζ(s) =
⋃

q∈Qs\{s}

suppζ(q).

Conversely, given any upper hemicontinuous multifunction f : S ⇒ [1 . . . N ], there is some
harmonic ζ : S  [1 . . . N ] such that suppζ = f .

Given two stochastic functions ζ, ξ : S  [1 . . . N ] and some s ∈ S, we say that ξ is
more random than ζ at s if there is another probability measure γs ∈ ∆[1 . . . N ] and some
rs ∈ (0, 1] such that ξ(s) = rs ζ(s) + (1 − rs) γs. In effect, the signal generated by the
ξ-device in state s is the outcome of a two-stage random process: first, flip an (rs, 1− rs)-
biased coin, and then, depending on the outcome, either take a reading using the ζ-device,
or generate a random signal drawn from γs. We say that ξ is more random than ζ if it
is more random than ζ at every point in S, we indicate this by writing “ξ ☎ ζ”. It is
easily verified that relation ☎ is a preorder (that is, a transitive and reflexive relation).
Furthermore, if ζ ✂ ξ, then suppζ ⊆ suppξ. (This is because rs > 0 for all s ∈ S.)

Let Ξ(S, N) be the set of harmonic stochastic functions from S into [1 . . . N ]. Let
ζ ∈ Ξ(S, N); we say that ζ is minimally random in Ξ(S, N) if there is no ξ ∈ Ξ(S, N) with
ξ ✁ ζ. From the observations in the previous two paragraph, this implies that suppζ is
maximally decisive in UHC(S, N). Thus, ζ defines a regular partition {R1, . . . ,RN} via
Proposition 1. For all n ∈ [1 . . . N ], Rn is the set of all states in S which ζ maps to the
point mass δn. Thus, if ζ represents an erratic measurement device, then Rn is the set of
states where this device is guaranteed to emit the signal n. In contrast, ∂Rn is the set of
states where the device might emit n, but might also randomly emit some other signal.

Stochastic functions also arise in Bayesian games, in the form of type-dependent mixed
strategies. Recall the notation at the end of Section 2. Given a strategy profile δ ∈
∆(A2) × · · · × ∆(AM), let fδ : T1 ⇒ A1 be the best response correspondence for Player
1 (where T1 is Player 1’s type space and A1 is her strategy space). A (type-dependent)
mixed strategy for Player 1 is a stochastic function ζ : T1  A1; it is a best response to δ if
suppζ(t) ⊆ fδ(t) for all t ∈ T1. As noted in Section 2, other players can learn about Player
1’s type by observing her pattern of play. Player 1 can hinder this by randomizing over all
elements of fδ(t), so that suppζ(t) = fδ(t) for all t ∈ T1. This implies that ζ is harmonic.
If fδ is maximally decisive, then ζ is minimally random.

These considerations yield a third model of imperfect perception, in addition to those
suggested in Sections 2 and 5. In this model, the agent has access to a collection of erratic
measurement devices, each with a finite set of possible outputs. Due to technological
constraints, the associated stochastic functions are harmonic. But the devices are still as
reliable as possible given this constraint. In other words, the associated stochastic functions
are minimally random in Ξ(S, N). As explained above, each of these erratic measurement
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devices then defines a regular partition of S. Suppose the set of measurement devices is
large enough that every regular subset of S can be realized in this way; then the Boolean
algebra R(S) describes the set of all events which are observable by the agent.

This suggests an interesting interpretation of Theorem 3. Let ν be a Borel probability
measure on S, and let {φR}R∈R(S) be a liminal density structure subordinate to ν. Let
P = {P1, . . . ,PN} be a regular partition of S. By modifying the functions φP1 , . . . , φPN

on a set of ν-measure zero if necessary, we can assume without loss of generality that5

φP1(s) + · · ·+ φPN
(s) = 1, for all s ∈ ∂P1 ∪ · · · ∪ ∂PN . (8)

We can now define a stochastic function ζP : S  [1 . . . N ] as follows: For all s ∈ S, if
s ∈ Pn for some n ∈ [1 . . . N ], then define ζP(s) := δn. Meanwhile, if s ∈ ∂P1 ∪ · · · ∪ ∂PN ,
then define ζP(s) := (φP1(s), . . . , φPN

(s)). Suppose that for all n ∈ [1 . . . N ], we have
φPn

(s) > 0 for all s ∈ ∂Pn. Then ζP is harmonic, and is minimally random in Ξ(S, N).
Let us say that the liminal density structure {φR}R∈R(S) has full support if φR is nonzero

ν-almost everywhere, for all R ∈ R(S). In this case, via the construction in the previous
paragraph, we can associate to each regular partition P a minimally random, harmonic
stochastic function ζP (unique ν-almost everywhere). Thus, the liminal density SEU rep-
resentation (5) describes an agent whose prior beliefs about the world are given by the
Borel probability measure ν, and whose information about the world is described by the
collection of stochastic functions {ζP}, where P ranges over all regular partitions of S.

SEU representations on normal state spaces. A shortcoming of Theorem 3 is that
S must be compact, which makes it inapplicable in certain situations. In Section 7, we
will extend Theorem 3 to locally compact Hausdorff spaces. But many spaces are not even
locally compact (e.g. infinite-dimensional normed vector spaces), and these could easily
arise as state spaces in decision problems. For this reason, we will now obtain an SEU
representation analogous to Theorem 3, but for normal state spaces. The price we pay for
this generality is that ν is no longer a countably additive Borel measure, but only a finitely
additive charge. This, in turn, will force us to modify the definition of liminal structure.

A Hausdorff space S is normal (or “T4”) if, for any disjoint closed subsets C1, C2 ⊂ S,
there exist disjoint open sets O1,O2 ⊂ S with C1 ⊆ O1 and C2 ⊆ O2. For example, every
metrizable space is normal (e.g. any subset of RN , any topological manifold). Also, every
compact Hausdorff space is normal. Finally, the order topology on any strictly ordered
set is both Hausdorff and normal. Thus, almost all topological spaces which would arise
naturally in economic applications are normal.

Charges and liminal charge structures. Let A(S) be the Boolean algebra generated
by the open subsets of S. Thus, A(S) contains all open subsets, all closed subsets, and all
finite unions and intersections of such sets. A function ν : A(S)−→[0, 1] is a charge if it
is finitely additive —i.e. ν[A ⊔ B] = ν[A] + ν[B] for any disjoint A,B ∈ A(S). We say ν

5This measure-zero modification of φP1
, . . . , φPN

must be made after we fix the partition P. Different
partitions may require different measure-zero modifications.

21



is a probability charge if, furthermore, ν(S) = 1. Another charge ρ is absolutely continuous

relative to ν if ρ[B] = 0 whenever ν[B] = 0.

Let ν be a probability charge on A(S). For any B ∈ A(S), let νB be the restriction of
ν to a charge A(B). A liminal charge structure subordinate to ν is a collection {ρR}R∈R(S),
where, for all R ∈ R(R), ρR is a charge on A(∂R) which is absolutely continuous with
respect to ν, such that, for any regular partition {R1, . . . ,RN} of S, we have

ρR1 + · · ·+ ρRN
= ν∂R1∪···∪∂RN

. (9)

As with the liminal density structures introduced earlier in Section 6, the liminal charge
structure describes how the agent copes with her informational limitations; once she has
received the signal “n”, the charge ρRn

describes how much probability she conditionally
assigns to ∂Rn, and how this probability is distributed. To be precise, for any U ∈ A(S),
the conditional probability she assigns to U , given the signal “n”, is the following ratio:

ν(U ∩Rn) + ρRn
(U ∩ ∂Rn)

ν(Rn) + ρRn
(∂Rn)

. (10)

A charge ν is normal if, for every B ∈ A(S), we have ν[B] = sup{ν[C]; C ⊆ B and C closed
in S} and ν[B] = inf{ν[O]; B ⊆ O ⊆ S and O open in S}. A liminal charge structure
{ρR}R∈R(S) is normal if ρR is a normal charge on ∂R for all R ∈ R(S). Finally, a charge
ν is said to have full support if ν(O) > 0 for any open set O in S.

Liminal charge SEU representation. Let X be another topological space, let A ⊆
Cb(S,X ), and let {�R}R∈R(S) be a conditional preference structure on A. A liminal charge

SEU representation for {�R}R∈R(S) is given by a charge ν on A(S), a liminal charge structure
{ρR}R∈R(S) subordinate to ν, and a continuous utility function u : X−→R, such that, for
all R ∈ R(S) and all α, β ∈ A(R),

(

α �R β
)

⇐⇒

(∫

R

u ◦ α dν +

∫

∂R

u ◦ α dρR ≥

∫

R

u ◦ β dν +

∫

∂R

u ◦ β dρR

)

. (11)

In this representation, the value of an act conditional on a regular event R has two compo-
nents, which correspond to the two ways in whichR could be the outcome of an observation,
as explained above. Here is a version of Theorem 3 for normal state spaces.

Theorem 4 Let S be a (nonsingleton) normal Hausdorff space, let X be a connected space,
and let A ⊆ Cb(S,X ). Let {�R}R∈R(S) be a conditional preference structure on A which
satisfies condition (Rch). Then {�R}R∈R(S) satisfies Axioms (CEq), (C), (Dom), (Sep),
(CCP) and (TC) if and only if it admits a liminal charge SEU representation (11), where
ν is a normal probability charge on A(S) with full support, and {ρR}R∈R(S) is a normal
liminal charge structure. Furthermore, ν and {ρR}R∈R(S) are unique, and u is unique up
to positive affine transformation.
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7 SEU representations on compactifications

In many economic applications, the relevant state space is not compact —for example, it
could be an unbounded subset of RN . Theorem 3 cannot accommodate such state spaces.
Theorem 4 can, but only by sacrificing countable additivity. We will now extend Theorem
3 to non-compact spaces by constructing compactifications of these spaces.

A Hausdorff space S is locally compact if every point in S has a compact neighbourhood.
For example, every compact Hausdorff space is locally compact. Every topological manifold
is locally compact. In particular, any open or closed subset of RN is locally compact.
(However, the set of rational numbers is not locally compact.) Every totally bounded,
locally complete metric space is locally compact. In short: most topological spaces which
would arise naturally in economic applications are locally compact.

For any other Hausdorff space X , let CL(S,X ) be the set of all continuous functions
α : S−→X which converge to some limit “at infinity” in the following sense: there exists
x ∈ X such that, for any open neighbourhood O ⊆ X around x, there is a compact subset
K ⊆ S such that α(S \ K) ⊆ O. When it exists, this limit x is unique and denoted lim

∞
f .

Let S be a locally compact Hausdorff space. The Alexandroff (or one-point) compact-

ification Ṡ is the set S ⊔ {∞} (where ∞ represents a “point at infinity”) equipped with
the smallest topology such that every open subset of S remains open in Ṡ, while the open
neighbourhoods of ∞ are the sets Ṡ \K, where K is any compact subset of S. For example,
the Alexandroff compactification of [0,∞) is [0,∞]. The Alexandroff compactification of
R is homeomorphic to a circle. The Alexandroff compactification of R2 is homeomorphic
to a sphere. In general, Alexandroff compactifications have the following properties:

(A1) Ṡ is compact and Hausdorff. If S is noncompact, then S is a dense open subset of
Ṡ. (Otherwise, if S is already compact, then ∞ is an isolated point of Ṡ.)

(A2) For any Hausdorff space X , any function α ∈ CL(S,X ) has a unique extension
α̇ ∈ C(Ṡ,X ) defined by α̇↿S = α and α̇(∞) = lim

∞
α.

(A3) For any R ∈ R(S), there is a unique Ṙ ∈ R(Ṡ) such that Ṙ ∩ S = R.6

Let X be a Hausdorff space. Let A ⊆ CL(S,X ) be a set of feasible acts , and let
{�R}R∈R(S) be a conditional preference structure on A. An Alexandroff SEU represen-

tation for {�R}R∈R(S) is given by a normal Borel probability measure ν̇ on Bor(Ṡ) and

a liminal density structure {φ̇Ṙ}Ṙ∈R(Ṡ) subordinate to ν̇, along with a continuous utility
function u : X−→R, such that, for all R ∈ R(S) and all α, β ∈ A(R),

(

α �R β
)

⇐⇒ (12)
(∫

Ṙ

u ◦ α̇ dν̇ +

∫

∂Ṙ

(u ◦ α̇) · φ̇Ṙ dν̇ ≥

∫

Ṙ

u ◦ β̇ dν̇ +

∫

∂Ṙ

(u ◦ β̇) · φ̇Ṙ dν̇

)

.

6See Lemma 7.4(a) in Pivato and Vergopoulos (2018c).
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A key difference between the Alexandroff SEU representation and the SEU representations
of Sections 5 and 6 is in the unconditional preference order �S . While both the residual
charge and liminal density SEU representations yield a “classical” representation of type
(6), formula (12) yields the following representation, for any α, β ∈ A:

(

α �S β
)

⇐⇒ (13)
(∫

S

u ◦ α dν̇ + ν̇{∞} · lim
∞

(u ◦ α) ≥

∫

S

u ◦ β dν̇ + ν̇{∞} · lim
∞

(u ◦ β)

)

.

Thus, ex ante beliefs consist of two components: a Borel probability measure on S, and
an additional coefficient weighting the asymptotic utility of the acts “at infinity”. Here is
our first extension of Theorem 3 to locally compact spaces.

Theorem 5 Let S be a noncompact, locally compact Hausdorff space, let X be a connected
Hausdorff space, and let A ⊆ CL(S,X ). Let {�R}R∈R(S) be a conditional preference struc-
ture on A which satisfies condition (Rch). Then {�R}R∈R(S) satisfies Axioms (CEq), (C),
(Dom), (Sep), (CCP) and (TC) if and only if it admits an Alexandroff SEU representation
(12), where ν̇ has full support on Ṡ. Furthermore, ν̇ is unique, the elements of {φ̇Ṙ}Ṙ∈R(Ṡ)

are unique (ν̇-almost everywhere), and u is unique up to positive affine transformation.

The main advantage of Theorem 5 is that it applies when S is an unbounded space
like RN , whereas Theorem 3 does not. The main disadvantage of Theorem 5 is that the
conditional preference structure can only compare acts which converge “at infinity”. The
problem is that a conditional preference structure defined over a larger domain of acts
may be sensitive to the asymptotic behaviour of these acts in a way which eludes an
Alexandroff SEU representation. For example, if S = R2, then the conditional preference
structure could be sensitive in different ways to the asymptotic behaviour of acts along
different curves, like y = x2 and y = x3. Intuitively, to capture such sensitivity with an
SEU representation, we would need to introduce distinct “endpoints” for these two curves,
and then assign different probabilities to these endpoints. But no such distinct endpoints
exist in R2, or in its (spherical) Alexandroff compactification. To solve this problem, we
must add a plethora of new states to S, each acting like a distinct “point at infinity”. To
be precise, we must extend S to its Stone-Čech compactification.

Let S is a locally compact Hausdorff space. There is a unique compact Hausdorff space
Š, called the Stone-Čech compactification of S, with the following properties.

(SČ1) S is an open, dense subset of Š, and the native topology of S is the same as the
subspace topology it inherits from Š.

(SČ2) For any compact Hausdorff space K, and any continuous function f : S−→K, there
is a unique continuous function f̌ : Š−→K such that f̌↿S = f .
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(SČ3) For anyR ∈ R(S), there is a unique Ř ∈ R(Š) such that Ř∩S = R. Furthermore,
the mapping R(S) ∋ R 7→ Ř ∈ R(Š) is a Boolean algebra isomorphism.7

Let X be another Hausdorff space. For any α ∈ Cb(S,X ), assertion (SČ2) says there is a
unique function α̌ ∈ C(Š,X ) such that α̌↿S = α. Let A ⊆ Cb(S,X ), and let {�R}R∈R(S) be
a conditional preference structure on A. A Stone-Čech SEU representation for {�R}R∈R(S)

is given by a normal Borel probability measure ν̌ on Bor(Š) and a liminal density structure
{φ̌Ř}Ř∈R(Š) subordinate to ν̌, along with a continuous utility function u : X−→R, such
that, for all R ∈ R(S) and all α, β ∈ A(R),

(

α �R β
)

⇐⇒ (14)
(∫

Ř

u ◦ α̌ dν̌ +

∫

∂Ř

(u ◦ α̌) φ̌Ř dν̌ ≥

∫

Ř

u ◦ β̌ dν̌ +

∫

∂Ř

(u ◦ β̌) φ̌Ř dν̌

)

.

Similarly to formula (13), the Stone-Čech representation of �S yields ex ante beliefs that
may assign some weight outside of S. More precisely, for any α, β ∈ A, we have

(

α �S β
)

⇐⇒ (15)
(
∫

S

u ◦ α dν̌ +

∫

Š\S

u ◦ α̌ dν̌ ≥

∫

S

u ◦ β dν̌ +

∫

Š\S

u ◦ β̌ dν̌

)

.

The set Š \ S is called the corona —intuitively, this is the set of “points at infinity”.
These points play an essential role in the Stone-Čech representation. It is straightforward
to construct examples of SEU representations where much of the probability weight lies
in the corona (Pivato and Vergopoulos, 2018c, Examples 4.13 and 6.6). Our last theorem
generalizes Theorem 5 by providing an SEU representation on locally compact state spaces
without requiring feasible acts to have a limit at infinity.

Theorem 6 Let S be a (nonsingleton) locally compact Hausdorff space, let X be a con-
nected Hausdorff space, and let A ⊆ Cb(S,X ). Let {�R}R∈R(S) be a conditional preference
structure on A satisfying (Rch). Then {�R}R∈R(S) satisfies (CEq), (C), (Dom), (Sep),
(CCP) and (TC) if and only if it admits a Stone-Čech SEU representation (14), where ν̌
has full support on Š. Furthermore, ν̌ is unique, the elements of {φ̌Ř}Ř∈R(Š) are unique
(ν̌-almost everywhere), and u is unique up to positive affine transformation.

Theorems 5 and 6 are special cases of a large family of results. Let S be any compacti-
fication of S —that is, a compact Hausdorff space which contains S as a dense subset. Let
CS(S,X ) be the set of continuous functions in C(S,X ) which can be extended to continuous
functions in C(S,X ). (For example, let S := R. Then R := [−∞,∞] is a compactification,
and CR(R,X ) is the set of continuous functions from R to X which converge to (possibly

7Property (SČ2) holds if S is any Tychonoff space; see e.g. Theorem 19.5 of Willard (2004) or Theorem
2.79 of Aliprantis and Border (2006). But property (SČ3) only holds for the somewhat smaller class of
locally compact Hausdorff spaces (Pivato and Vergopoulos, 2018c, Lemma 6.4(a)).
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different) limits at ±∞.) If A ⊆ CS(S,X ), and {�R}R∈R(S) is a conditional preference
structure on A which satisfies (Rch), (CEq), (C), (Dom), (Sep), (CCP) and (TC), then we
can obtain a normal Borel probability measure ν on Bor(S), a liminal density structure
{φR}R∈R(S) subordinate to ν, and a continuous utility function u : X−→R, which together
yield an SEU representation for {�R}R∈R(S) analogous to representations (12) and (14).

There are generally many compactifications which will yield such a representation for
a given conditional preference structure on A. We just need S to be “large enough”
that A is contained in CS(S,X ). But if S is a locally compact Hausdorff space, then the
set of all compactifications of S is a complete lattice (Engelking, 1989, Theorems 3.5.9-11,
p.169). Thus, for any A ⊆ Cb(S,X ), there exists a unique minimal compactification S such
that A ⊆ CS(S,X ); this is the smallest compactification on which we can construct SEU
representations for conditional preference structures on A. For example, if A ⊆ CL(S,X ),
then Theorem 5 says we can use the smallest compactification of S, namely Ṡ. At the
opposite extreme, if A = Cb(S,X ), then we must use the largest compactification, which
is Š. Other collections of feasible acts lead to other choices of compactification.

8 Prior literature

Several previous papers have derived continuous utility functions from preferences. For
example, Grandmont (1972) obtained continuous utility functions in a von Neuman and
Morgenstern (1947) framework. Other papers consider acts from a measurable state space
into a topological outcome space, typically assumed to be connected and separable. For
example, Wakker (1985, 1988) and Wakker (1989a, Chapter 5) characterized continuous,
state-independent SEU representations in this setting. Wakker (1987) characterized con-
tinuous and state-dependent SEU over a finite state space, while Wakker and Zank (1999)
characterized it over any measurable space. Wakker (1989b) characterized continuous Cho-
quet expected utility representations over a finite state space. Finally, Casadesus-Masanell
et al. (2000) characterized continuous maximin expected utility representations.

As far as we know, Zhou (1999) is the only previous paper to consider the case where
both the state space and the outcome space are topological spaces, and acts are continuous
functions. But unlike the present paper, Zhou restricts attention to the case where the out-
comes are themselves lotteries over some finite set of consequences, so that acts correspond
to “two-stage lotteries” of the kind considered by Anscombe and Aumann (1963). In this
framework, Zhou proves versions of Anscombe and Aumann’s SEU representation theorem,
as well as the Choquet expected utility representation theorem of Schmeidler (1989), in
both cases obtaining continuous utility functions. Unlike Zhou, we do not assume any spe-
cial structure on the outcome space; our framework is more like the framework of Savage,
rather than that of Anscombe and Aumann.

Section 7 obtained SEU representations by compactifying the state space S —in effect,
we enlarged S by adding “ideal points at infinity”. Such enlargement via “ideal points”
has many precedents in decision theory. For example, Stinchcombe (1997) used such an
enlargement to solve certain paradoxes which arise from the failure of countable additivity
in the Savage SEU representation. In many models of ambiguity aversion, the agent’s
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beliefs are not even finitely additive. But these failures of additivity in the original state
space are sometimes consistent with finite additivity in some extended state space (Gilboa
and Schmeidler, 1994). Other authors have used extended state spaces to distinguish
between objective reality and the agent’s internal representation of that reality. For ex-
ample, Lipman (1999) augments the original state space with “impossible possible worlds”
to model the agent’s lack of logical omniscience. Jaffray and Wakker (1993) and Mukerji
(1997) introduce “two-tiered” state spaces; in the model of Jaffray and Wakker, the agent
has probabilistic beliefs about one tier and total ignorance about the other, whereas in
Mukerji’s model, one tier represents the agent’s internal epistemic state and the other tier
represents objectively payoff-relevant information. In a similar way, we could interpret S
as the “true” state space and S as the agent’s internal model of this space; in this view, the
extra elements of S \ S would be like the “impossible possible worlds” of Lipman (1999).

Chichilnisky (2000, 2009) has proposed a model of “catastrophic risks”, where the
agent’s preferences are represented by a sum

∫

S
u ◦ α(s) dν[s] + Φ(u ◦ α). Here, the ν-

integral represents subjective expected utility, while Φ is a linear functional that encodes
sensitivity to catastrophic risks. One way to represent Φ is as an integral on the Stone-
Čech compactification of the state space (Chichilnisky and Heal, 1997), so there is a clear
similarity between Chichilnisky’s representation and our Stone-Čech SEU representation
(15) (although her axioms are very different from ours).

More recently, Alon (2015) has proposed a model of unawareness based on an augmented
state space. In her model, the agent knows that the initial state space S is incomplete,
but is unable to precisely describe the missing states. So she adds a single state s0 to S;
the fact that s0 obtains means that none of the states in S obtains. Each act α on S is
extended into an act α on S = S ∪ {s0} by defining α(s0) to be the worst outcome of α
over S. Thus, s0 can again be interpreted as a “catastrophe”. However, Alon’s state space
has no topology, so s0 cannot be described in terms of a compactification.

Conclusion

This paper has presented a series of SEU representations for preferences under uncertainty.
However, it is now well-established that the SEU model is often not descriptively accurate.
In some cases, it may not even be normatively compelling, e.g. when the agent faces
ambiguity, where she lacks even sufficient information to form probabilistic beliefs about
the state of the world. Thus, there has been much recent interest in “non-SEU” models of
decision-making under uncertainty. But there has been little exploration of such non-SEU
models in explicitly topological environments like the ones considered in this paper.8 In
that respect, the results in the present paper can be seen as benchmarks, which set the
stage for future research into non-SEU representations on topological spaces.

We have assumed that only continuous acts are feasible. This may seem unduly restric-
tive. Of course, Borel-measurable functions can be extremely complex, and it is unlikely

8Wakker (1989b), Casadesus-Masanell et al. (2000), and Zhou (1999) are exceptions. But the first two
only put a topology on the outcome space.
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that all such functions could be technologically feasible acts. But it seems plausible that
piecewise continuous acts could be feasible (i.e. functions which are continuous on each cell
of some regular partition of the state space). By restricting ourselves to continuous acts to
obtain our SEU representations, we have actually solved a harder problem. It is straight-
forward to extend these SEU representations to preferences over piecewise continuous acts
(Pivato and Vergopoulos, 2018b).

Appendix

Proof of Proposition 1. (a) Clearly, R1, . . . ,RN are regular. It remains to show that they
are disjoint and that R1 ∪ · · · ∪ RN is dense S.

Disjoint (by contradiction) SupposeR1, . . . ,RN are not disjoint. For simplicity, suppose
R1 and R2 are not disjoint. Then R2 ∩ K1 6= ∅. Let K′

1 := K1 \ R2; then K′
1 is a closed

proper subset of K1. However, K′
1 ∪ K2 = K1 ∪ K2. (To see this, note that if s ∈ K1,

then either s ∈ K′
1, or s ∈ R2 in which case s ∈ K2; either way, s ∈ K′

1 ∪ K2.)
Thus, K′

1 ∪ K2 ∪ · · · ∪ KN = S; hence {K′
1,K2, . . . ,KN} is a closed covering of S. Let

g : S ⇒ [1 . . . N ] be the corresponding multifunction; then g ∈ UHC(S, N) and g ⊂ f ,
contradicting the maximal decisiveness of f .

Density. For all n ∈ [1 . . . N ], let Qn := clos(Rn). Thus, clos(R1 ∪ · · · ∪ RN) =
Q1 ∪ · · · ∪ QN . Thus, R1 ∪ · · · ∪ RN is dense in S if and only if Q1 ∪ · · · ∪ QN = S.

Now, K2 ∪ · · · ∪ KN is closed; thus, (K2 ∪ · · · ∪ KN)
∁ is open, and is a subset of K1,

because K1 ∪ · · · ∪ KN = S. Thus, (K2 ∪ · · · ∪ KN)
∁ ⊆ R1, since R1 = int(K1). Thus,

R1 ∪ K2 ∪ · · · ∪ KN = S. Thus, Q1 ∪ K2 ∪ · · · ∪ KN = S.

Next, Q1 ∪ K3 ∪ · · · ∪ KN is closed; thus, (Q1 ∪ K3 ∪ · · · ∪ KN)
∁ is open, and is a

subset of K2, because Q1 ∪K2 ∪ · · · ∪KN = S. Thus, (Q1 ∪K3 ∪ · · · ∪KN)
∁ ⊆ R2, since

R2 = int(K2). Thus, Q1 ∪R2 ∪K3 ∪ · · · ∪KN = S. Thus, Q1 ∪Q2 ∪K3 ∪ · · · ∪KN = S.

Next, let m ∈ [2 . . . N ], and suppose (by induction) that we have shown that Q1 ∪
· · ·∪Qm−1∪Km∪· · ·∪KN = S. Now, Q1∪· · ·∪Qm−1∪Km+1∪· · ·∪KN is closed; thus,
(Q1 ∪ · · · ∪Qm−1 ∪Km+1 ∪ · · · ∪KN)

∁ is open, and is a subset of Km, because Q1 ∪ · · · ∪
Qm−1∪Km∪· · ·∪KN = S by hypothesis. Thus, (Q1∪· · ·∪Qm−1∪Km+1∪· · ·∪KN)

∁ ⊆ Rm,
because Rm = int(Km). Thus, Q1 ∪ · · · ∪ Qm−1 ∪ Rm ∪ Km+1 ∪ · · · ∪ KN = S Thus,
Q1 ∪ · · · ∪ Qm−1 ∪ Qm ∪ Km+1 ∪ · · · ∪ KN = S.

Proceeding by induction on m, we establish that Q1∪ · · ·∪Qm∪Km+1∪ · · ·∪KN = S
for all m ∈ [1 . . . N ]. Setting m = N , we obtain Q1 ∪ · · · ∪ QN = S, as desired.

(b) To see that {K1, . . . ,KN} is a covering, note that K1 ∪ · · · ∪ KN = clos(R1) ∪ · · · ∪
clos(RN) = clos(R1 ⊔ · · · ⊔ RN) = S, because R1 ∪ · · · ∪ RN is dense in S because
{R1, . . . ,RN} is a regular partition. Let f : S ⇒ [1 . . . N ] be the multifunction defined
by {K1, . . . ,KN}. Then f is upper hemicontinuous because K1, . . . ,KN are closed.

Claim 1: For all n ∈ [1 . . . N ], f is single-valued on Rn.
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Proof. Let n,m ∈ [1 . . . N ], with m 6= n; it suffices to show that Rn is disjoint from
Km. By hypothesis, {R1, . . . ,RN} is a regular partition of S; thus, Rn is disjoint
from Rm. Thus, Rn ⊆ R∁m, and hence Rn ⊆ int(R∁m), because Rn is open. But
int(R∁m) = clos(Rm)

∁. Thus, Rn is disjoint from clos(Rm). But clos(Rn) = Km, by
definition. Thus, Rn is disjoint from Km. This holds for all m 6= n. Thus, f(s) = {n}
for all s ∈ Rn, as claimed. ✸ Claim 1

Let g : S ⇒ [1 . . . N ] be another upper hemicontinuous multifunction such that g ⊆ f .
To show that f is maximally decisive, it suffices to show that g = f . Let s ∈ S and
let M := f(s), a subset of [1 . . . N ]. Thus, for all m ∈ M, we have s ∈ Km. But
Km = clos(Rm), so there is a net {rmi }i∈I in Rm converging to s (where I is some
directed set). For all i ∈ I, Claim 1 yields f(rmi ) = {m}; thus, g(rmi ) = {m}, because
g ⊆ f and g(rmi ) 6= ∅. But then m ∈ g(s), because g is upper hemicontinous. This
argument holds for all m ∈ M; thus, M ⊆ g(s). In other words, f(s) ⊆ g(s). On
the other hand, we must have g(s) ⊆ f(s) because g ⊆ f . Thus, we conclude that
g(s) = f(s). This holds for all s ∈ S; hence g = f .

(c) Let Φ : UHC∗(S, N)−→RgPrt(S, N) and Ψ : RgPrt(S, N)−→UHC∗(S, N) be the
mappings described in parts (a) and (b). We will show they are inverses. It follows that
both are bijective.

Let P = {R1, . . . ,RN} ∈ RgPrt(S, N), and let f := Ψ(P). Then f : S ⇒ [1 . . . N ],
and for all n ∈ [1 . . . N ], if we define Kn := {s ∈ S; n ∈ f(s)}, then Kn = clos(Rn),
by the construction in part (b). Thus, Rn = int(Kn), because Rn is regular. Thus,
P = Φ(f), by the construction in part (a).

Conversely, let f ∈ UHC∗(S, N), let Φ(f) = P = {R1, . . . ,RN} and then let g :=
Ψ(P); we must show that g = f . For all n ∈ [1 . . . N ], let Kn := {s ∈ S; n ∈ f(s)};
then Rn = int(Kn). Meanwhile, let Qn := {s ∈ S; n ∈ g(s)}; then Qn := clos(Rn),
by the construction in part (b). Now, clearly Qn ⊆ Kn, because Kn is a closed set that
contains Rn. Thus, g ⊆ f . But f is maximally decisive in UHC(S, N); thus, f = g. ✷

A credence is a function µ : R(S)−→[0, 1] with µ[S] = 1, and such that for any disjoint
Q,R ∈ R(S), we have µ[Q∨R] = µ[Q]+µ[R]. In other words, a credence is like a “finitely
additive probability measure” defined on the Boolean algebra R(S). Given any bounded
continuous function f : S−→R and any regular subset R ∈ R(S), there is a natural
definition of the “conditionally expected value” of f on R with respect to µ, which we will
denote by E

µ
R[f ]. This conditional expectation operator satisfies the standard properties;

for example, it is linear (i.e. Eµ
R[c1 f1+c2 f2] = c1 E

µ
R[f1]+c2 E

µ
R[f2] for any functions f1 and

f2 and constants c1, c2 ∈ R), and if R = R1 ∨ R2 for some disjoint R1,R2 ∈ R(S), then
µ[R]Eµ

R[f ] = µ[R1]E
µ
R1
[f ] + µ[R2]E

µ
R2
[f ] (Pivato and Vergopoulos, 2018c, Theorem 4.4).

Thus, if u : X−→R is a continuous “utility function”, then for any bounded continuous
“act” α : S−→X , we can define the “conditional expected utility” Eµ

R[u◦α]. The pair (u, µ)
is a subjective expected utility (SEU) representation for a conditional preference structure
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{�R}R∈R(S). if, for any R ∈ R(S) and any α, β ∈ A(R), we have

(

α �R β
)

⇐⇒
(

ER [u ◦ α] ≥ ER [u ◦ β]
)

. (A1)

The following axiomatic characterizaton of such subjective expected utility representations
is the main result of a companion paper (Pivato and Vergopoulos, 2018a). We will make
essential use of this representation theorem in the proofs which follow.

Theorem A1 Let S be a nondegenerate topological space, let X be a connected topological
space, and let A ⊆ Cb(S,X ). Let {�R}R∈R(S) be a conditional preference structure on
A which satisfies condition (Rch). Then, it further satisfies Axioms (CEq), (C), (Dom),
(Sep), (CCP), and (TC) if and only if it has an SEU representation (u, µ), where u :
X−→R is a continuous function and µ is a credence on R(S) with full support. Finally,
µ is unique, and u is unique up to positive affine transformation.

Proof. See Theorem 13 in (Pivato and Vergopoulos, 2018a). ✷

What is the relationship between credences and Borel probability measures? What is
the relationship between the conditional expectation E

µ
R[f ] and the Lebesgue integral?

These questions are addressed in another companion paper (Pivato and Vergopoulos,
2018c). The following proofs proceed by combining the Theorem A1 with the main re-
sults of Pivato and Vergopoulos (2018c). We will refer to results in this paper with the
prefix “PV”. Thus, “Theorem PV-4.4” should be read as, “Theorem 4.4 from Pivato and
Vergopoulos (2018c).”

Proof of Theorem 2. The proof is based upon a natural equivalence between credences and
residual charges. Let ν : Bai(S)−→[0, 1] be a residual probability charge, as defined in
Section 5. Recall that R(S) ⊆ Bai(S), but R(S) is not a subalgebra of Bai(S), because
the Boolean algebra operations are different (i.e. ∨ vs. ∪). But if we restrict ν to
R(S), then we get a credence on R(S).9 Conversely, if µ : R(S)−→[0, 1] is a credence,
then we can define a residual probability charge ν : Bai(S)−→[0, 1] in a natural way.
For any B ∈ Bai(S), there is a unique R ∈ R(S) such that B△R is meager (Fremlin,
2004, §314Q). Define ν(B) := µ(R). It is easily verified that ν is a residual probability
charge (see Proposition PV-3.8). Furthermore, the µ-conditional expectation structure
on R(S) satisfies

E
µ
R[f ] =

1

ν[R]

∫

R

f dν, (A2)

for any R ∈ R(S) and f ∈ Cb(S,R) (see Proposition PV-6.1).

“⇐=” Let ν be a residual probability charge on S with full support, and u : X−→R

be a continuous function that together provide an SEU representation of {�R}R∈R(S) as

9Proof. For any disjoint R,Q ∈ R(S), we have R ∨ Q = R ⊔ Q ⊔ M, where M is meager. Thus,
ν[R∨Q] = ν[R] + ν[Q] + ν[M] = ν[R] + ν[Q], because ν[M] = 0, because ν is a residual charge.
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in equation (2). Let µ be the credence on R(S) obtained by restricting ν to R(S) as
explained above. By combining equations (2) and (A2), we obtain an SEU representation
(A1). Moreover, ν has full support, so µ also has full support. Thus, {�R}R∈R(S) must
satisfy all of axioms (CEq), (C), (Dom), (Sep), (CCP) and (TC), by Theorem A1.

“=⇒” If {�R}R∈R(S) satisfies Axioms (CEq), (C), (Dom), (Sep), (CCP) and (TC),
then Theorem A1 says it has an SEU representation (A1) given by a credence µ on
R(S) with full support, and a continuous utility function u : X−→R. Let Eµ be the
µ-compatible conditional expectation structure from Theorem PV-4.4. Since S is a
Baire space, Propositions PV-3.8 and PV-6.1 yields a residual probability charge ν on
S representing µ, as explained above. Combining equations (A1) and (A2), we obtain
SEU representation (2). Since µ has full support, ν has also full support.

Finally, suppose that both (u, ν) and (u′, ν ′) provide residual charge SEU representa-
tion of {�R}R∈R. Let µ and µ′ be the credences obtained by restricting respectively ν
and ν ′ to R(S). Then, by combining these SEU representations with equation (A2), we
deduce that (u, µ) and (u′, µ′) both provide SEU representations as in formula (A1). By
uniqueness in Theorem A1, u and u′ are positive affine transformations of each other.
Moreover, µ and µ′ are equal to each other. Thus, Proposition PV-3.8 implies that
ν = ν ′. ✷

Proof of Theorem 1. The proof is very similar to the proof of Theorem 2, but uses
Proposition PV-3.7 instead of Proposition PV-3.8. ✷

Proof of Proposition 2. In Case (ii), the statement follows from Proposition 314Q(b) of
Fremlin (2004) or Proposition 514I(b,f) of Fremlin (2008). In Case (i), it follows from
Case (ii), along with Lemma 2 on p.274 of Givant and Halmos (2009). ✷

The proofs of Theorems 3, 4, 5 and 6 are very similar to the proof of Theorem 2, and we
only briefly sketch them. They require the following lemma.

Lemma A2 (a) Any nonsingleton Hausdorff space is nondegenerate.

(b) If S is a nondegenerate space, then R(S) is nontrivial.

(c) Suppose S is either locally compact or normal Hausdorff. For any nonempty open
O ⊆ S, there is a nonempty R ∈ R(S) with clos(R) ⊆ O.

Proof. (a) Since |S| ≥ 2, there exist s1, s2 ∈ S with s1 6= s2. Since S is Hausdorff, there
are disjoint open neighbourhoods O1,O2 ⊂ S around s1 and s2. Thus, O1 and O2 are
both nonempty open subsets which are not dense in S.
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(b) Let O ⊂ S be a nonempty, non-dense open subset. Let C := S \ O. Then C is
a proper closed subset of S with a nonempty interior (because O is not dense). Let
R := int(C). Then ∅ 6= R 6= S, and R is regular, because it is the interior of a closed
set. Thus, R(S) is nontrivial.

(c) First suppose S is locally compact. Let s ∈ O. By local compactness, O contains
a compact subset K which is also a neighbourhood of s. Let R := int(K). Then
clos(R) ⊆ K ⊆ O, and R 6= ∅, because s ∈ R. Finally, R is regular, because it is the
interior of the closed set K.

Now suppose S is normal. If O = S, the statement is trivial. So assume O 6= S.
Let s ∈ O and let C := S \ O. Then C is closed, and {s} is also closed, because S
is Hausdorff. By normality, there exist disjoint open sets U1,U2 containing {s} and C.
Let K = clos(U1); the K is closed and disjoint from U2. Thus, K is disjoint from C, so
K ⊆ O. Let R := int(K). Then R is regular (being the interior of a closed set), R is
nonempty (it contains U1) and clos(R) ⊆ K ⊆ O. ✷

Proof of Theorem 3. By Lemma A2(a,b), R(S) is nontrivial. The sufficiency and necessity
of the axioms, as well as the uniqueness of the representation, are obtained as in Theorem
2, with equations (PV-6T) and (PV-6U) and Corollary PV-6.7 playing respectively the
same role as equation (A2) and Proposition PV-3.8. Finally, there is a minor difference
in the proof of the full support property of the probability measure in the sufficiency
of the axioms. Let µ be the credence on R(S) obtained by applying Theorem A1. Let
Eµ be the µ-compatible conditional expectation structure from Theorem PV-4.4. Let ν
be the Borel probability measure obtained by applying Corollary PV-6.7 to Eµ. Now,
suppose ν[O] = 0 for some nonempty open subset O of S. By Lemma A2(c), there exists
a nonempty R ∈ R(S) such that clos(R) ⊆ O. Thus,

µ(R)
(a)

ν(R) +

∫

∂R

φR dν ≤
(b)

ν(R) + ν(∂R)

= ν(clos(R)) ≤
(c)

ν(O) = 0,

where (a) is by Corollary PV-6.7, (b) is by equation (8) and (c) is because clos(R) ⊆ O.
But this contradicts the fact that µ has full support. Thus, ν[O] > 0 for every nonempty
open subset O of S, so ν has full support. ✷

Proof of Theorem 4. The sufficiency and necessity of the axioms, as well as the uniqueness
of the representation, are obtained as in Theorem 3, with equations (PV-6D) and (PV-
6E) and Proposition PV-6.4 playing respectively the same role as equations (PV-6T)
and (PV-6U) and Corollary PV-6.7. The proof of full support is as in Theorem 3. ✷
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Proof of Theorem 5. The sufficiency and necessity of the axioms, as well as the uniqueness
of the representation, are obtained as in Theorem 3, with equations (PV-7A) and (PV-
7b), Theorem PV-7.2, and Example PV-7.3(a) playing respectively the same role as
equations (PV-6T) and (PV-6U) and Corollary PV-6.7. However, in the sufficiency of
the axioms, the proof that the Borel probability measure ν̇ on Ṡ has full support is
slightly different. Let µ be the credence on R(S) obtained from Theorem A1. Let Eµ

be the µ-compatible conditional expectation structure from Theorem PV-4.4. Let ν̇ be
the Borel probability measure on Ṡ obtained by applying Theorem PV-7.2 to Eµ. Now,
suppose ν̇[Ȯ] = 0 for some nonempty open subset Ȯ of Ṡ. Since Ṡ is compact Hausdorff,
Lemma A2(c) gives a nonempty regular subset Ṙ ∈ R(Ṡ) such that closṠ(Ṙ) ⊆ Ȯ.
Define R := Ṙ∩S. By Lemma PV-7.4(a), R is a regular subset of S. By equation (PV-
7A), we have µ(R) = ν̇(Ṙ) +

∫

∂Ṙ
φ̇Ṙ dν̇Ṙ. At this point, we can proceed as in Theorem

4 to obtain µ(R) = 0, which contradicts the fact that µ has full support. Hence the full
support of ν̇. ✷

Proof of Theorem 6. The proof is very similar to Theorem 5, but using Example PV-7.3(c)
instead of Example PV-7.3(a). ✷
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