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Abstract

This paper challenges the notion that changes in flood risk will have a minimal

impact on population because of the availability of insurance and that most of the

effect, if any, will be borne out by the real estate market. Insurance premiums even

when subsidized are a cost that a household will need to pay with the increase in flood

risk. The evidence suggests that flood events, historical and contemporaneous, play a

role in the determination of the local perceived flood risk. Attractive communities that

have positive growth before the flood surprise are hardest hit. They see a persistent

1.4% dip in population with a 0.7% decrease in the pre-flood trend. Flooding does not

affect population in the rest of the high surprise locations. Instead, they see close to

4% drop real estate values with the biggest effect among higher tier housing. There is

also evidence that flood incidence in these communities is higher among the low-income

population as suggested by relief payments by FEMA.
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1 Introduction

Extreme weather and the resulting damage is a frequent concern for a big fraction of the

US population. Flooding is one of the most destructive consequences since water damage

is hard to reverse when it comes to building structures and equipment. This is why the

US Federal Government has instituted and maintains a highly subsidized flood insurance

program. The availability of insurance implies that households in flood-prone areas can

minimize their flood risk exposure. The fact that premiums are subsidized and do not

re-price after flooding suggests that a bigger portion of the population can afford to live

in relatively risky locations compared to a system with premiums more closely tied to risk.

Consequently, changes in climate which bring more extreme weather and create the potential

for flooding in unexpected places will leave population patterns unaltered – historically

flood-prone places already minimize risk through insurance while newly flooded places will

start utilizing insurance as flood risk increases. Real estate prices can decline to reflect the

additional cost of insurance as more risk-tolerant households replace less risk-tolerant ones

but the total population is not expected to fundamentally change as locations become more

prone to flooding unless local productivity is affected.

This paper challenges the notion that changes in flood risk will have a minimal impact

on population because of the availability of insurance and that most of the effect, if any, will

be borne out by the real estate market. Insurance premiums even when subsidized are a cost

that a household will need to pay with the increase in flood risk. Additionally, there are other

costs such as foregone wages and temporary relocation expenses which are not insurable. An

upward revision in flood risk can therefore make a location less attractive compared to other

places with similar characteristics but unchanged flood risk. While people already in places

where risk increases usually leave after selling at a discount, keeping population unchanged,

new movers who choose among a set of destinations will likely steer away. Increases in the

flood probability can, therefore, not only affect real estate values but also total population,

especially in places that were an attractive destination prior to the risk revision.
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I evaluate the effect of upward revisions of flood risk on population and real estate

prices. To identify flooding and flood surprises I compile a new comprehensive dataset that

includes insured and uninsured damage at the level of the community between 2003 and 2013.

Insured damage is based on records by the National Flood Insurance Program (NFIP) while

uninsured damage is based on information from the Federal Emergency Management Agency

(FEMA) and the Small Business Administration (SBA). The compiled flood information

measures damage consistently and allows for comparison across locations and over time.

Revisions of flood risk are likely to occur in communities with low flood history which do

experience a flood event. I use information from NFIP on total losses between 1978 and 2000

to identify locations with flood surprises and examine the effect of likely risk revision on total

population and real estate values. I further explore the role of new movers by separating

locations with risk revisions based on their pre-event growth. Finally, I examine the regional

heterogeneity of the national results.

The evidence suggests that flood events, historical and contemporaneous, play a role

in the determination of the local perceived flood risk. The average insurance payouts are

almost double at locations with history of flood losses. With risk already high enough in these

places insurance purchase is likely common. Floods in communities with low historical losses

generate smaller payouts which suggests that they were not widely expected and constitute

flood surprises. I find a big distinction in the impact of floods in the latter communities, a

result consistent with increases in perceived risk. Population declines by 0.3% relative to a

fixed effect and a linear trend during the year following the event. The effect persists in the

period after the impact year with an average decline close to 0.5%. There is also evidence

of a break in the pre-flood trend. Locations with low surprise events do not experience

any population changes. Attractive communities that have positive growth before the flood

surprise are hardest hit. They see a persistent 1.4% dip in population with a 0.7% decrease

in the pre-flood trend. Flooding does not affect population in the rest of the high surprise

locations. Instead, they see close to a 4% drop real estate values with the biggest effect
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among higher tier housing. There is also evidence that flood incidence in these communities is

higher among the low-income population as suggested by relief payments by FEMA. Housing

values are not affected in the attractive communities which suggests that they do not price

the increased flood risk and effectively become more expensive. This is possibly driven by

previous strong demand for new housing and expectations that flood impact is transitory.

Regional evidence strongly suggests that the population decline in attractive communities

after a flood surprise is a general phenomenon across the nation. The events considered do

not significantly impact the housing supply – the median damage as a fraction of total real

estate value is 0.05%, the 75th percentile is 0.14%, and the 95th percentile is 0.87%. The

relative small size implies that observed effects are due to revisions in risk expectations.

The results in this paper help us understand how flooding, the most significant source of

impact from natural disasters, affects where people live and how its risk is reflected in house

values. They allow us to interpret the effect of possible climate change across the country

and how many people will remain in relatively risky locations over time. Expectations about

flood risk are critical and more important than overall level of damage. As a result population

and real estate effects only emerge after flood surprises – in the rest of the cases flood events

appear to already be incorporated in these variables and only generate insurance payouts.

This is an interesting result given the wide availability of flood insurance which can minimize

the upward revision of risk after flood surprises. It further implies that natural disasters are

not necessarily exogenous events in all locations, only the actual timing is. The evidence in

the paper also emphasizes that a general economic analysis of the impact of natural disasters

has to account for changes in perceived risk. The response of the local economy at a low

surprise location may not be comparable to that of a high surprise one because of the different

population and real estate trajectories. The results also emphasize that the attractiveness

of the community determines how it is ultimately impacted by surprises: strong demand for

new housing means that population is mostly affected; weaker demand implies that house

prices are mostly affected.
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This paper can be placed within several different literatures. First, it is related to the

broad literature on location choice and the spatial labor market equilibrium (Moretti (2011),

Gleaser and Gyourko (2005), Gleaser and Gottlieb (2009), Diamond (2014)). This paper is

close in spirit to Topel (1986) who also emphasizes the importance of expectations in the

location choice. This literature generally investigates the effect of Bartik-style productivity

shocks across local markets on migration, real estate prices, and wages. The shock I study

affects expectations about the future cost of living but has a minimal effect on local pro-

ductivity since most of the damage is relatively small. Second, the paper is related to the

literature on natural disasters. This literature mostly focuses on the effect of hurricanes at

different geographical levels and measures damage in a variety of ways. The current study

also includes hurricanes since they produce significant flood damage. Strobl (2011) uses wind

speed as a proxy for damage and finds that hurricanes lower county GDP by 0.5% and do not

change total population but affect its composition. Deryugina (2017) uses hurricane paths

and simulation estimates of damage to examine the disaster and non-disaster transfers to

affected communities as well as the effect on demographic and economic variables. She finds

that population is not affected. Both papers utilize county-level data based on estimates

of damage based on hurricane locations. I use community-level losses that are consistently

imputed by federal agencies and do not rely on associations between wind speed/hurricane

path and damage. Importantly, I focus on communities where flood events constitute sur-

prises and lead to changes in perceived risk since this is where the biggest impact is likely to

occur. Third, this paper is related to the literature on expectation formation and learning

after rare events. It is close to Gallagher (2014) which examines the change in insurance take

up after flood events. The paper concludes that flood events lead to revisions of perceived

risk which lead to higher insurance purchase that is not very persistent. The evidence is

complementary to my findings since it suggests that living in flooded communities becomes

more expensive.

The rest of the paper is structured as follows. Section 2 discusses the institutional details
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of the flood insurance program and describes how the flood data was compiled. Section 3

presents the main results. Section 4 examines the regional heterogeneity of the main results.

Section 5 concludes the paper.

2 Flooding Dataset and Institutional Details

Flood insurance in the US is administered by the federal government through the National

Flood Insurance Program (NFIP). The program makes insurance available at communities

that maintain a flood zone map and enforce local building code. The map delineates Special

Flood Hazard Areas (SFHA) with varying degrees of flood risk. Two general SFHAs are

the 100-year and 500-year flood zones where flood is expected to occur with certainty every

100/500 years respectively. The risk within the 500-year SFHA is not uniform – areas close

to the 100-year zone will have a higher risk of flooding if the geography is similar. Insurance

purchase is mandatory for structures within the 100-year zone but not required elsewhere.

This is important because risk expectations rather than local regulation will determine the

insurance purchase outside of the 100-year zone.

NFIP maintains an official record of the number of policies sold, total coverage, and total

payouts at the level of a given community since the program effectively partners with the lo-

cal authority enforcing the flood map and building code. The geographical level is consistent

with the US Census definition of general-purpose government units such as cities, towns,

townships, as well as the remaining county areas (county balance). Insurance information

includes homeowners and business structures. NFIP does not list payouts associated with

particular flood events. Instead, it shows up-to-date payouts starting from 1978. I use his-

torical observations of the official record taken approximately twice a year between 2003 and

2014 to calculate the amount of new payouts claimed at each community. These represent

insured damages associated with flood events during each year. I carefully link the observed

payouts to the set of FEMA disaster declarations for each state. The matching was not
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automated but involved reading the description of FEMA declarations for each state/year

and associating flood events in the covered counties to observed insurance payouts at com-

munities in those counties. This link allows me to identify both the amount of insured and

uninsured damages for each FEMA event. The uninsured damages are sourced from FEMA’s

individual/public assistance data and from Small Business Administration?s (SBA) individ-

ual/business lending data. A disaster declaration makes federal funding available to affected

individuals without insurance. They can receive either a direct non-refundable payment

or a highly subsidized loan depending on their ability to take on additional credit. Jaffe

(2015) suggests that FEMA requests detailed financial information with the application for

relief which is used to determine whether the applicant is contacted directly by FEMA or by

SBA. FEMA administers the direct payments and SBA extends the loans. Both maintain

a registry that identifies the amount of assistance provided and the related total damage at

the zip-code level for each disaster declaration. Altogether, total damage in the data has

four components: insured individual+business from NFIP; uninsured individual from FEMA

and SBA; uninsured business from SBA; uninsured public from FEMA. In this paper I focus

primarily on total damage. The components are only used to control for events where most

of the damage comes from one of the source.

Population information comes from the annual US Census estimates for cities and towns.

The geographical detail of this data maps directly into the community level of the flood

damage data. Locations with less than fifteen thousand people are combined with the county

balance areas to make sure that results are not driven by very small settlements. Real estate

information comes from the Zillow service and is available at the zip-code level. It provides

estimates of house values separated into three tiers. These are calculated by splitting the

price distribution of all housing into three parts and reporting the middle point of each.

The rest of the information used in this paper comes from the 2000 US Census data at the

block-group level.

The paper identifies floods according to the relative size of the damages. Cases where
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more than 0.01% of the total real estate value of the community is destroyed constitute a

flood event while the rest are censored. I focus on a wide spectrum of events because relative

damage is context specific – less destructive floods can have significant impact on perceived

risk if they occur in areas with no flood history.

The first panel of Figure 1 shows a map of all communities that flooded between 2003

and 2013. Flooding appears to be widespread across the country and not only a coastal

phenomenon. In the interior major floods result from significant rain or snowmelt which

causes rivers and creeks to spill in the surrounding areas. Some of the communities in the

sample experience repeated disasters during the sample period. I will separate these into a

different category since their event study explicitly includes an interim period. Furthermore,

the fact that these places flood so frequently suggests that they are fundamentally different

from the rest of the cases. The second panel of Figure 1 shows single and multiple flood

locations. There are about three times more single than multiple hit places (1,519 vs 542). A

significant portion of the latter are located by the coast while the former are more uniformly

distributed.

Table 1 lists some summary statistics for the flood data. The information is categorized

by the number of floods since this allows us to focus on the two major groups in the analysis:

places with no floods and places with one flood. The latter also included places with two

back-to-back floods across two years. There are 1,771 communities without any flooding and

1,519 with one flood. Median population at each group is approximately 34/31 thousand,

respectively; median growth rate is 0.55%/0.39% respectively. Relative damage varies from

0.02% at the 25th percentile to 0.87% at the 95th/3.23% at the 99th percentile. In dollar

values these are $0.64 million (25th percentile), $42.39 million (95th percentile), and $289

million (99th percentile). The distribution within each state shows that there are sufficient

number of locations without any flooding.

I identify flood surprises by utilizing the total number of structures completely destroyed

due to flooding between 1978 and 2003. This information is available from the NFIP data for
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each community and captures the its flood history. I further normalize this number by the

total building structures and compare to the state median across all location that experience

a flood. Communities below the median are considered low-risk and flood event is assumed

to generate a higher surprise than the rest. This ensures that there are sufficient number of

places which can be placed within each category and that the distinction between high and

low surprise is region specific.

The second panel of Figure 2 separates the high/low surprise locations. These tend to be

contiguous suggesting that flood surprises occur when a flood extends beyond a high-risk area

and into a low-risk one. High-risk areas also tend to be contiguous to multiple-flood areas

which reinforces the assumption that the former are at a generally higher risk of disaster.

The map also confirms that high/low surprise locations are relatively close and are part of

the same economic area.

3 Main Results

One of the main results in the paper is that the extent to which disaster damages affect

a community is determined by its historical experience. Flooding at communities with low

flood history constitutes a surprise which increases expected future risk and raises the cost of

living in such places. To set the stage for the formal results, consider the experience of three

communities in Connecticut: Milford, Bridgeport, and New Haven. All were affected by

hurricane Irene in 2011 and Sandy in 2012. Since the events were consecutive they fall in the

single-flood group with no interim period. Milford made it into the local news for the extent

of losses and the fact that no one had the intention to move. It suffered $90 mil in damages

(0.5% of real estate value) while Bridgeport and New Haven suffered $16 mil (0.12%)/$7

mil (0.05%). The difference in damages implies that Milford should be affected significantly

more but its flood history suggests that the event was not such a surprise. Between 1978 and

2003 Milford lost 6.2% of its structures due to flooding while Bridgeport and New Haven lost
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0.7%/0.5% respectively. Figure 3 shows the population growth for each of the communities.

We see that the population in Milford was not affected. At the same time the communities

with smaller overall damage but with relatively low history of floods experienced population

declines. Notice that the communities did not experience a large-scale disaster since damages

were relatively small. Nevertheless, they seem to have changed the expectations about future

flood risk and the attractiveness of the communities with low history.

Flood Surprise and Insurance Payouts

The first set of formal results examine the extent to which historical flood losses can be used

to identify flood surprises. Regulations require that structures within the 100-year flood zone

carry insurance if they have a federally-backed mortgage. Insurance purchase for any other

structures will depend to some extent on the perceived risk of a flood. High flood history

increases perceived risk and leads to insurance purchase. I examine this relation by comparing

the average insurance payouts across the high/low flood history groups in the cross-section

of all events. In particular, I test whether a given amount of total damage (insured and

uninsured) generates more insurance payouts in locations with historical exposure to flood

events i.e. low-surprise communities. I estimate:

ln (Payouts)
i
= αt + βHitSFi ×Dami + γHitSFi ×Dami × LSurprisei + {MFl}+ ǫi (1)

where Payouts is total insurance payouts per capita after an event at community i and αt

is an year effect. HitSF
i

is an indicator for a flood at a single-flood location i, Dami is total

damage per capita (insured+uninsured), and LSurprisei is an indicator for low surprise

flooding (high flood history). {MFl} abbreviates the same set of indicators for locations

with multiple floods. Positive γ implies that higher overall damage leads to more insurance

payouts at places with high history of flooding relative to places with low history. I estimate

two variants of the model above: with and without controlling for total damage. In the

latter case γ represents how much more insurance payouts are generated during an average
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flood event at a communities with history of flooding. It is possible that an average flood

event in these communities is much more destructive so I also estimate the model holding

total damage constant.

Table 2 shows the estimation results. Communities with a low-surprise flood i.e. high

flood history have a significantly higher insurance payouts per capita during an average

flood event. These locations receive almost double the insurance compensation after an event

compared to locations with low previous experience with flooding. Column 2 of Table 2 looks

at the regional heterogeneity of this result. I find that high history is associated with higher

insurance payout across the US regions. Notice that the Mid-Atlantic and South Atlantic

region have higher than national average payouts but even there low surprise communities

receive higher amounts. It is possible that low surprise events generate more insurance

payouts because they experience more damaging events. Column (3) accommodates this

by controlling for overall damage. 1% increase in total damage leads to 0.43% increase in

insurance payouts at communities with low history of flooding and 0.66% increase in payouts

at high flood history locations. Communities with previous floods 50% more of the damage

through insurance compared to the rest. Column (4) shows that this result is consistent

across regions of the US. Interestingly, the Mid-Atlantic area covers a bigger proportion of

the overall damages with insurance but history of flooding still drives higher payouts.

Overall, the results provide evidence that flood surprises are related to flood history. They

also suggest that high damages in general do not necessarily lead to high impact on the local

economy, outside rebuilding activities, because those may be in line with expectations and

do not change the perceived risk.

Population Responses

Next I examine how the population of communities is affected by flood events focusing on

surprises and the level of attractiveness prior to the event. I estimate the following model in
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several variations:

lnPopit = αi+ti+γst+β1HitSFit−1+β2PostHitSFit−2+β3PostTrendSFit−2+δXit−1+{MFlit−1}+ǫit (2)

Log population for community i within state s in year t is explained by an individual average,

αi, individual linear trend, ti, and a state-year effect, γst. This specification is flexible enough

to allow for time-invariant difference in settlement size and community-specific difference in

the population trajectory. The former is important given the heterogeneity in community

size in the data. The latter accounts for differences in productivity, amenities, and prior

flood events which give rise to different population changes across locations. The state-year

effect captures variations in local population which can be traced to the state/national level.

The Great Recession is an important factor in the sample which has affected population and

can be accommodated with the state-year controls.

I identify the effect of floods by first separating communities according to the number of

floods. For the case of the single-flood group (SF) I include an indicator for the year after

the flood, HitSF
it−1

, an indicator for the period from the second year onwards, PostHitSF
it−2

,

and a trend break after the flood, PostTrendSF
it−2

. For the case of more than one floods

I additionally include an indicator for the period(s) between the floods. The results in

this paper focus on the single-hit communities since they represent the bulk of the location

count and the identification is more straightforward. The β1 represents the contemporaneous

effect of the flood i.e. within the first year; β2 captures the persistence of the initial effect;

β3 allows for a change in the trend relative to the pre-flood one. Xit−1 includes a set of

additional important indicators that have been interacted with HitSF
it−1

, PostHitSF
it−2

, and

PostTrendSF
it−2

. These include indicators for: top 66th percentile of FEMA/NFIP/SBA

business/SBA homeowners damage shares; bottom 33th percentile of relative damages; top

50th percentile of share of non-construction occupations; top 50th percentile of share of

renters. The last two indicators are based on the 2000 Census values and therefore are

time-invariant. While the fixed effects already control for these differences I can still identify
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whether locations with more non-construction workers and more renters respond differently

to flood events. The first controls for the diversity in the local job opportunities and the

second controls for capacity to accommodate the displaced from floods. Both can lead to

increases in local population even if the community is hit by a flood. Additionally, flood

events lead to an inflow of emergency/construction/temporary workers. These will likely be

housed in communities with higher capacity of rentals. This is the reason why I control for

the rental share. This control will not be sufficient if these additional workers are placed in

temporary housing. In this case it is important to examine the persistence of the estimated

flood impact since temporary workers will lead to a reversal of the initial impact as they

leave. Higher PostHit estimate is consistent with outflow of temporary workers.

The baseline results assume that the level of flood surprise does not affect the responses.

I examine whether these differ by the level of surprise. Finally, I separate the impact by

pre-flood population growth (last five years). Most communities have turnover in local

population. Growing locations attract more new comers and experience demand for new

housing because of improved labor market or/and local amenities. Conditioning on pre-

growth can reveal how persistent demand for housing affects the overall response to a flood

surprise. It also helps us interpret the trend break by identifying whether growing or stagnant

locations see a change in trajectory. Note that pre-growth is time varying while the controls

for the local economy/renters are not. The former accounts for higher-frequency shocks while

the latter identifies lower-frequency ones such as whether the location is a bigger city. For

example, places with diversified local economies are not expected to necessarily be growing.

For that to happen they need additionally to be affected by a productivity shock. Although

both factors are important I focus on the effect of the higher-frequency shock and simply

control for the other one.

Table 3 shows the results from the population model. Each of the three versions of the

baseline model includes estimates without/with Xit−1 controls. Population at the average

location with flood from model (1) is not impacted by the event. The average location from
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model (2) with less diversified economy and lower availability of rentals among other controls

sees a 0.92% decline in population in the year following the event. This decline is persistent

and is accompanied by a decline in the pre-flood trajectory of 0.4%. The difference in results

comes from the fact that the composition of the local economy, the availability of rentals, and

the share of FEMA-recoded damages each soften the flood impact or in some cases increase

population. While these are important results on their own the paper focuses on the impact

of flood surprises and persistent demand for new housing so they are designated to the set

of controls. Overall, model (2) shows that flooded places with lower rental share, higher

construction occupations share, and intermediate damage shares see a decrease in expected

population which is persistent and accompanied by a trend break. Even without accounting

for the level of surprise population is negatively impacted.

The effect of flood surprises is identified in model (3) and (4). In both cases they lead to

significant declines in population on impact and in the following periods. An average location

from (3) is only affected when the flood is unexpected. On impact expected population

drop by 0.3%; the effect is persistent; pre-flood trend declines by 0.15% after the event.

Compared to (1) where floods do not affect population we see that identifying surprises is

critical. This is consistent with the insurance results and suggests that revisions of flood risk

disrupt the pre-flood population dynamic. In the case with controls flood surprises generate

significantly bigger declines in population: 1.2% decline on impact, 1% in the post period,

and 0.6% decline in pre trend. Low surprise floods also affect population. Interestingly, the

regional results show that this effect is not a nation-wide phenomenon but comes from the

northeastern region. Both estimates (3) and (4) strongly suggest that expected population

declines when a flood occurrence breaks with historical experience. While the initial decline

in population is persistent it is still relatively small at 1%. The trend break represents a much

bigger impact on the population of a community following the event. A 0.6% decline in the

pre-trend amounts to a 3%/6% lower population in 5/10 years relative to where population is

expected to be without the flood. The fact that most events have relatively small magnitude
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implies that the effect stems from revisions of risk expectations. Consequently, biggest

population changes will not necessarily overlap with biggest damages. Flooding seems to

lead to some population increases in places with more diversified local economies and more

rental capacity. This offsets the negative effect from the increase in riskiness. In the cases of

flood surprises the second effect is much stronger and leads to overall decrease in population.

The evidence so far shows that surprises disrupt the pre-existing population trajectory.

A decline in the linear trend implies a slow down in expansion and stabilizing of population

in a growing location; in a stable or declining place it implies loss of population or an

acceleration of such loss. To help interpret the trend break I separate the impact effects

according to pre-flood growth: positive and negative growth in the preceding five years.

This also helps understand how a productivity/amenity shock interacts with risk revisions.

The results in (5) and (6) show that the surprise driven population decline occurs primarily

in attractive communities with higher pre-flood growth. Population drops by 0.55%/1.4%

without/with controls and remains lower in the post period. There is a decline in the pre

trend of 0.4%/0.8%. These communities effectively stop expanding after the flood surprise

and population becomes fixed at its pre-flood level. Locations with declining population

are either not affected (with controls) or see an increase (without controls). The difference

in outcomes by pre-growth after the surprise strongly suggests that the population decline

works through the demand for new housing or excess of newcomers. This is consistent with

a decrease in the attractiveness of the community following a revision of expected flood

risk. Importantly, it requires that the real estate market does not fully compensate the risk

increase with a discount that offsets the cost of insurance. Similarly, the fact that lower

growth communities are not affected suggests that the real estate there may be discounted

providing compensation for higher risk.

It is important to point out an issue that relates to the possible endogeneity of flooding

and local economic factors such as high poverty. It is possible that poor communities invest

less in flood protection and ultimately experience bigger damages. Here it really matters how
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poverty or a local economic factor is related to the population trajectory before the flood

and after the flood. If either of these cause population to be decreasing before the flood then

I incorporate this in the model by allowing the trajectory to be different before the flood.

For an impact to be significant in this case we have to see that population declines even

more than suggested by pre-flood rates driven by poverty or an economic factor. If these

factors cause population to respond differently only after the flood i.e. a poor place grows

just as rich place before the flood then it is hard for me to disentangle the effect. I can only

do it by allowing poor places to respond in a different way after the shock. I accommodate

this possibility with a set of controls described above.

Real Estate Responses

I examine how the housing market responds to surprises and more specifically whether there

is evidence of compensating effects by estimating the most restricted version of the model

as in (6) above. Results are listed in Table 4 for each of the three tiers provided by Zillow.

There is no evidence that housing values compensate for the increase in flood risk at

locations with high pre growth. This is the case for all three tiers of housing. This is

consistent with the decrease in population following the event in that potential movers into

the location see an increased cost associated with the destination – both the insurance

premium and uninsurable damage. The persistent demand for new housing before the event

or the expectation that the event is transitory seem to prevent house prices from adjusting.

Interestingly, housing in low growth communities declines after a surprise. Top and middle-

tier housing decrease by 2.3%-3.4% on impact; the dip is persistent and remains at close to

4.4% in the post period. Bottom-tier housing does not appear to decrease on impact although

there is evidence of a decline in the post period. The change in real estate prices paired with

the lack of population declines suggests that locations without demand for additional housing

provide a discount that can compensate for the increase in expected flood risk and the

associated costs. This result is consistent with the literature that looks at how health risks
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are priced into real estate values (Davis (2004)). All together the housing and population

results suggest the following interpretation. Flood surprises drive upward revisions of the

underlying probability of a future flood which in turn raises the cost of living. In locations

where demand for housing is low existing structures are sold at a discount that covers the

additional cost. This appears to be sufficient to maintain the existing population trajectory.

In location where demand for housing is high structures are not sold at a discount, possibly

due to expectations that the pre-growth will be maintained, which drives new movers to

other destinations.

Low wealth incidence

The decline in house prices is consistent with turnover in the community whereby higher-

risk tolerant households replace less-risk tolerant ones after a reduction in prices. This leaves

population unchanged but alters the type of people remaining. This is an example of sorting

based on changes in perceived risk. It relies on the assumption that households can finance

their exit from the community by trading their house for a comparable structure somewhere

else. If this is not the case sorting will not take place as people are prevented from leaving.

This is an example of a lock-in effect (Stein (1995)).

I examine the extent to which low wealth can explain the lack of population changes in

low growth areas. I do this by using the FEMA relief payments data. Guidelines from the

agency imply that lower income applicants for disaster relief will be given non-refundable

payments as opposed to loans. A lower-wealth household will be able to pay lower amount

out of pocket and therefore will likely be given a higher non-refundable payment for a given

amount of damage. I test whether flood incidence among low-wealth households is higher

in low growth communities by examining total FEMA payments per damage recorded and

how they differ in low-growth communities. In particular I estimate:

ln(FemaPay)i = βDami + γ1Dami × LSurpi + γ2Dami × LGri + αY + {MulF l}+ ǫi (3)
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where FemaPay is total relief payments per capita, Dam is total damages recorded, and αY

is a year effect. The specification estimates the fraction of damages disbursed by fema, β,

and allows this to be different for low-surprise events, γ1, and at low growth locations, γ2.

Positive γ2 indicates that FEMA disburses more per given amount of damages in low growth

locations, a result consistent with higher low-wealth incidence of flooding.

Results are shown in Table 5. The national cross-section, (1), reveals that low-growth

locations do receive more non-refundable payments per recorded damage. When I estimate

the same model allowing for regional heterogeneity we see that floods affect poorer commu-

nities in low growth areas mostly in Northeast and Mid/South Atlantic. Overall, there is

evidence that at least in some parts of the US insufficient wealth can explain the lack of

population change after flood surprises. It suggests that sorting will not necessarily occur

in these parts. It still remains to be seen how real estate values respond in those regions as

well.

Let us go back to the case of Milford vs the two neighbors. Figure 4 shows the evolution

of population and real estate. Milford has a high history of flooding and the flood events

do not constitute surprises. We see that population and real estate values (top tier) are not

affected. New Haven and Bridgeport, on the other hand, see a decline in population but

in line with the results in this section housing closely follows the trajectory of Milford and

does not decline. This puts the two neighbors in the high-pre-growth group where demand

for new housing seems to prevent a compensating decline that offsets higher risk. The cost

increase is consistent with population decline.

4 Regional Results

The main results are based on a national sample which combines locations across various ge-

ographies each with specific climates and regulatory settings. The econometric specification

accounts for this heterogeneity with the individual average, trend, and state-year effects but
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we cannot be certain that the identified responses are a general phenomenon occurring across

the country. It is possible that population responds strongly only in one area of the US with

there being no effect elsewhere. Additionally, I have also argued that real estate variations

are closely related and help understand population effects. It is important to confirm that

this relationship is maintained within separate regions. I investigate within-country hetero-

geneity by allowing the main coefficients to vary by a grouping based on a mix between

Census divisions and regions – region 1 is split into Northeast and Mid-Atlantic; region 3 is

split into South Atlantic and South Central.

The regional results for population are listed in Table 6. The table includes coefficients

from one estimation – different columns show estimates by surprise/pre-growth group. For

example, the coefficients for the high-surprise/high-growth group from the Mid-Atlantic re-

gion is listed in the second column rows 2, 8, and 14. The results confirm that surprises affect

population at high pre-growth communities. Not all regions experience on impact, post, and

trend break effects but all of them feature some combination. This suggests that the national

results identify a general phenomenon where new movers choose a different destination after

risk increases. Notice that the population decline at high pre-growth communities with low

surprises estimated in the main results actually can be traced exclusively to the Northeast

region and is not as general. This cautions against directly interpreting the national results

without confirming that they hold at the regional level.

Regional real estate results for top-tier housing are shown in Table 7. We see no real

estate depreciation in any of the regions for high-surprise/high-growth locations. The only

exception is the Northeast region which sees a trend break. This supports the interpretation

of the population declines. The case of the South Atlantic is somewhat different. High-

surprise/high-growth areas do not experience population decline on impact – they see a

trend break. This implies that population was not significantly affected and demand for new

housing persisted. Uninterrupted population is reflected in the increase in house prices for

this group. This suggests that expected flood risk may not have adjusted significantly after
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the flood surprises. Alternatively, it is likely that the high-surprise group includes locations

where risk is already perceived to be high – consistent with the insurance estimates for South

Atlantic in Table 2.

Housing depreciates in low pre-growth communities in all regions except for the Midwest

and South Central. The price reduction paired with minimal changes in population in these

locations is consistent with turnover in the local population where some sorting based on

risk occurs. In the case of Midwest and South Central there are both minimal population

changes and no price adjustment. Living in these areas effectively becomes more expensive

but the real estate does not provide compensation. The evidence from the FEMA payments

suggests that at least for the South Central area the incidence of the disaster may be higher

on low-wealth households. This can explain why we do not observe any population effects –

these communities are locked in.

Overall, the regional results for housing and population are closely matched. They pro-

vide evidence for the interaction between revisions of perceived flood risk and existing de-

mand for new housing which ultimately determine whether more people will inhabit risky

locations.

5 Robustness

Relative Damage vs Flood Indicator

The results in this paper use an indicator for a flood based on a cutoff for minimum relative

damage. I investigate the extent to which actual relative damage affects the main results

regarding population. I introduce variations in damage by replacing the flood indicator with

three indicators for relative damage. These indicators reflect the lower 33th/33th-66th/upper

66th percentile respectively of the distribution of damages at the state level. Specifying the

main population model with them rather than a flood indicator allows us to examine whether

events with relatively higher damage are different from those with relatively lower one. The
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results are shown in Table 8. Focusing on the models with controls we can see that all parts

of the damage distribution reduce population for the respective groups that are affected in

the main results. The effect of the upper 66th percentile is slightly lower while the lower 33th

percentile generally has higher effects. These are not statistically different from each other.

Local Social Organizations and Churches

A big literature on resilience after natural disasters emphasizes the importance of local

social capital (Aldrich 2012). To accommodate this I use information from the County

Business Patterns dataset which lists the total number of establishments at a zip code by

6-digit industry code. I calculate the total number of civic and social organizations (NAICS

813410) and religious organizations (NAICS 813110) per capita in each community and define

an indicator for locations with above state-median number. I then include it among the rest

of the controls in Xit. The results for population and real estate are listed in Table 9. The

coefficient estimates for the impact of higher level of social capital are listed at the bottom

of the table. The overall results are very similar to the baseline. Social capital weakens the

decline in the pre-flood trend for population and lowers the decline in the post period for

the real estate values. These results are consistent with the literature on social capital which

suggests that communities with higher endowment will do better after disasters.

6 Conclusion

This is the first study that investigates the effect of flood surprises using consistent national

data of insured and uninsured damages at the level of the community. It investigates how

changes in underlying flood risk affect the local population trajectory and real estate values.

I find that changes in risk expectations are much more important that the amount of overall

damage – at least in the case of lower scale events. Locations with a history of flooding do

not experience changes in population and real estate. This indicates that flooding is widely
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expected and the local population is already somewhat insulated from the risk with insur-

ance. Locations with flood surprises see a combination of declines in population and house

value depreciation. The level of pre-existing demand for new housing is critical. Attractive

communities that are surprised by a flood experience population declines and no housing

depreciation, a combination consistent with new comers steering away. Less attractive loca-

tions see predominately house price declines and stable population. Using these results to

interpret how climate change will affect communities within the US we will see three general

local outcome. First, risky locations will not see any changes. Second, attractive locations

where risk increases will experience population declines leading to stabilizing of population at

the pre-flood level. Third, locations where risk increase and where demand for new housing

is low will not see changes in population but will experience depreciation of housing.
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Tables and Figures

Table 1: Summary Statistics

Floods Freq. Percent Cum.

0 1,771 42.71 42.71
1 1,519 36.63 79.33
2 542 13.07 92.4
3 238 5.74 98.14
4 77 1.86 100

Total 4,147 100

Number of Floods

State 0 1 2 3+

Alabama 41 50 5
Arkansas 20 40 17
California 316 45 1
Colorado 38 23
Connecticut 36 33 7 5
Delaware 4 2
Florida 7 99 34 47
Georgia 99 43 12 3
Illinois 74 74 54 27
Indiana 38 88 6 4
Iowa 6 44 29
Kentucky 22 48 31 6
Louisiana 6 6 20 40
Maryland 29 5
Massachusetts 46 67 21 2
Minnesota 90 23 6 2
Mississippi 8 30 26 23
Missouri 38 48 30
Nevada 13 2
New Hampshire 2 24
New Jersey 12 83 14 77
New York 66 74 19 34
North Carolina 82 51 8 2
North Dakota 4 11
Ohio 89 73 34 6
Oklahoma 25 38 15
Oregon 45 10 2
Pennsylvania 39 82 49 31
Rhode Island 2 12 14
South Carolina 51 15
South Dakota 7 7 1
Tennessee 38 75
Texas 170 65 56
Vermont 3 13 2
Virginia 67 28 6 4
Washington 64 26
West Virginia 20 23 5 2
Wisconsin 58 46 7

Total 1771 1519 542 315

Relative Damage

Fl p25 p50 p75 p90 p95

1 0.02% 0.05% 0.14% 0.46% 0.87%
2 0.02% 0.06% 0.19% 0.69% 1.55%
3 0.02% 0.07% 0.25% 0.86% 1.72%
4 0.02% 0.09% 0.34% 1.27% 8.66%

Total Damage

Fl p25 p50 p75 p90 p95

1 0.64 1.67 5.02 16.14 42.39
2 0.64 1.80 5.70 20.75 47.18
3 0.79 2.45 9.14 33.90 76.74
4 0.83 3.42 13.50 69.68 213.80

Average Pop (1,000)

Fl p25 p50 p75 p90 p95

0 21 34 62 111 167
1 21 31 57 110 179
2 22 32 55 104 207
3 21 35 60 139 214
4 23 36 77 138 184

Population Growth

Fl p25 p50 p75 p90 p95

0 -0.04% 0.55% 1.36% 2.50% 3.44%
1 -0.15% 0.39% 1.14% 2.22% 3.18%
2 -0.24% 0.28% 0.97% 1.97% 2.90%
3 -0.27% 0.21% 0.75% 1.71% 2.51%
4 -0.20% 0.31% 0.96% 2.20% 3.12%
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Table 2: Flood Surprises and Insurance Payouts

(1) (2) (3) (4)
VARIABLES ln (Payouts)

i
ln (Payouts)

i
ln (Payouts)

i
ln (Payouts)

i

HitSF 0.450*
(0.230)

HitSF × LSurprise 0.963***
(0.119)

HitSF × Northeast 0.0442
(0.588)

HitSF × Mid-Atlantic 0.706***
(0.228)

HitSF × Midwest -0.0915
(0.216)

HitSF × South Atlantic 1.048**
(0.472)

HitSF × South Central 0.209
(0.358)

HitSF × West -0.438
(0.307)

HitSF × Northeast × LSurp 1.338***
(0.145)

HitSF × Mid-Atlantic × LSurp 0.929***
(0.150)

HitSF × Mid West × LSurp 1.265***
(0.257)

HitSF × South Atlantic × LowSurp 0.624*
(0.339)

HitSF × South Central × LSurp 0.796***
(0.221)

HitSF × West × LSurp 1.668***
(0.185)

HitSF × Dam 0.428***
(0.0886)

HitSF × Dam × LSurprise 0.234***
(0.0276)

HitSF × Dam × Northeast 0.476***
(0.148)

HitSF × Dam × Mid-Atlantic 0.640***
(0.0508)

HitSF × Dam × Midwest 0.396***
(0.0554)

HitSF × Dam × South Atlantic 0.355***
(0.115)

HitSF × Dam × South Central 0.448***
(0.0840)

HitSF × Dam × West 0.366***
(0.0597)

HitSF × Dam × Northeast × LSurp 0.266***
(0.0593)

HitSF × Dam × Mid-Atlantic × LSurp 0.153***
(0.00957)

HitSF × Dam × Mid West × LSurp 0.298***
(0.0227)

HitSF × Dam × South Atlantic × LowSurp 0.241***
(0.0428)

HitSF × Dam × South Central × LSurp 0.171***
(0.0594)

HitSF × Dam × West × LSurp 0.317***
(0.0438)

Observations 3,443 3,443 3,443 3,443
R-squared 0.613 0.620 0.778 0.793
Additional Controls Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. ln (Payouts)
i
is log insurance payouts per capita at location i. HitSF

is an indicator for flooding at a single-flood location. Dam is total damage per capita. LSurp is an indicator
for a high history of flooding i.e. low-surprise event. The estimation results do not report the coefficients for
multiple-flood communities. Sample covers the period between 2000 and 2016. SE clustered by state.
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Table 3: Flood Surprises and Population Changes

(1) (2) (3) (4) (5) (6)

VARIABLES lnPopit lnPopit lnPopit lnPopit lnPopit lnPopit

HitSF -0.000840 -0.00918***
(0.00113) (0.00203)

PostHitSF -0.00396*** -0.00934***
(0.00144) (0.00278)

PostTrendSF -4.08e-05 -0.00404***
(0.000484) (0.000855)

HitSF × HSurp -0.00310** -0.0120***
(0.00121) (0.00241)

HitSF × LSurp 0.00292 -0.00487**
(0.00193) (0.00234)

PostHitSF × HSurp -0.00462*** -0.0103***
(0.00174) (0.00312)

PostHitSF × LSurp -0.00259 -0.00758**
(0.00217) (0.00309)

PostTrendSFd × HSurp -0.00148** -0.00582***
(0.000582) (0.000911)

PostTrendSF × LSurp 0.00213*** -0.00140
(0.000615) (0.000931)

HitSF × HSurp × LGr 0.00664*** -0.00305
(0.00115) (0.00243)

HitSF × HSurp × HGr -0.00552*** -0.0141***
(0.00142) (0.00243)

HitSF × LSurp × LGr 0.0118** 0.00347
(0.00537) (0.00505)

HitSF × LSurp × HGr 0.000115 -0.00752***
(0.00132) (0.00210)

PostHitSF × HSurp× LGr 0.000943 -0.00530
(0.00190) (0.00333)

PostHitSF × HSurp× HGr -0.00534*** -0.0113***
(0.00206) (0.00315)

PostHitSF × LSurp× LGr 0.00253 -0.00267
(0.00478) (0.00474)

PostHitSF × LSurp× HGr -0.00329 -0.00841***
(0.00213) (0.00318)

PostTrendSF × HSurp× LGr 0.00695*** 0.00222**
(0.000597) (0.000894)

PostTrendSF × HSurp× HGr -0.00410*** -0.00788***
(0.000655) (0.000917)

PostTrendSF × LSurp× LGr 0.00891*** 0.00498***
(0.000874) (0.00104)

PostTrendSF × LSurp× HGr -0.000591 -0.00381***
(0.000693) (0.000967)

Observations 70,403 70,403 70,403 70,403 70,403 70,403
Within R-squared 0.005 0.023 0.009 0.028 0.039 0.052
Xit Controls No Yes No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.HitSF is an indicator for flood event. PostHitSF is an indicator for the
period following the first year of impact. PostTrendSF is a linear trend starting the in the period following the
impact. LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Sample: 2000/2016. SE clustered by community. Additional controls:
indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-based local
economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do not report the
coefficients for multiple-flood communities.
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Table 4: Flood Surprises and Real Estate Values

(1) (2) (3)

VARIABLES TopTier MiddleTier BottomTier

HitSF × HSurp × LGr -0.0338*** -0.0230* -0.0204
(0.0122) (0.0134) (0.0162)

HitSF × HSurp × HGr -0.00211 0.00941 0.0175
(0.00900) (0.00916) (0.0117)

HitSF × LSurp × LGr -0.0147 0.00534 0.00815
(0.0138) (0.0129) (0.0167)

HitSF × LSurp × HGr 0.00410 0.0132 0.0170
(0.00944) (0.00943) (0.0120)

PostHitSF × HSurp× LGr -0.0425*** -0.0439** -0.0553***
(0.0153) (0.0174) (0.0204)

PostHitSF × HSurp× HGr -0.00408 0.00425 0.00116
(0.0115) (0.0115) (0.0142)

PostHitSF × LSurp× LGr -0.0117 0.00724 -0.0166
(0.0176) (0.0173) (0.0200)

PostHitSF × LSurp× HGr -0.000138 -0.00135 -0.00581
(0.0123) (0.0123) (0.0149)

PostTrendSF × HSurp× LGr -0.000319 0.00314 0.00870*
(0.00365) (0.00403) (0.00471)

PostTrendSF × HSurp× HGr -0.00526* -0.00270 0.000444
(0.00278) (0.00296) (0.00331)

PostTrendSF × LSurp× LGr -0.00615 -0.00567 0.00167
(0.00402) (0.00416) (0.00450)

PostTrendSF × LSurp× HGr -0.00588** -0.00341 0.000448
(0.00290) (0.00297) (0.00362)

Observations 61,454 60,825 54,459
Within R-squared 0.02 0.023 0.021
Additional Controls Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. Top/Middle/BottomTier refers
to the log of the respective house price Zillow index. HitSF is an indi-
cator for flood event. PostHitSF is an indicator for the period follow-
ing the first year of impact. PostTrendSF is a linear trend starting the
in the period following the impact. LSurp/HSurp is an indicator for a
low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Sample: 2000/2016. SE
clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-
based local economy; above median renter fraction; below 33th perc. tot.
damage.
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Table 5: Low-wealth Incidence in Low-Growth Communities

(1) (2)

VARIABLES ln(FemaPay) ln(FemaPay)

HitSF × Dam 0.859***
(0.0141)

HitSF × Dam × LSurp -0.00489
(0.00808)

HitSF × Dam × LGr 0.0307**
(0.0143)

HitSF × Dam × Northeast 0.923***
(0.0285)

HitSF × Dam × Mid-Atlantic 0.816***
(0.0188)

HitSF × Dam × Midwest 0.911***
(0.0154)

HitSF × Dam × South Atlantic 0.816***
(0.0162)

HitSF × Dam × South Central 0.881***
(0.0102)

HitSF × Dam × West 0.821***
(0.0247)

HitSF × Dam × LSurp × Northeast -0.0435
(0.0392)

HitSF × Dam × LSurp × Mid-Atlantic 0.0140
(0.0244)

HitSF × Dam × LSurp × Midwest -0.0116
(0.0143)

HitSF × Dam × LSurp × South Atlantic 0.00162
(0.0143)

HitSF × Dam × LSurp × South Central -0.0158
(0.0130)

HitSF × Dam × LSurp × West -0.0159
(0.0243)

HitSF × Dam × LGr × Northeast 0.0318**
(0.0124)

HitSF × Dam × LGr × Mid-Atlantic 0.0253***
(0.00757)

HitSF × Dam × LGr × Midwest 0.00139
(0.0190)

HitSF × Dam × LGr × South Atlantic -0.00168
(0.0267)

HitSF × Dam × LGr × South Central 0.0359*
(0.0191)

HitSF × Dam × LGr × West -0.109**
(0.0521)

Observations 3,105 3,145
R-squared 0.973 0.971
Additional Controls Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1. FemaPay refers to total FEMA
relief per capita, Dam refers to total FEMA damage recorded, LSurp is
an indicator for low-surprise event, and LGr is an indicator for low pre-
growth location. Sample: 2000/2016. SE clustered by state. Additional
controls: indicators for top 66th perc. of fema/insured/business/sba dam-
age; above median non-construction-based local economy; above median
renter fraction; below 33th perc. tot. damage.
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Table 6: Regional Population Responses

lnPopst
it

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

HitSF × Northeast -0.00754** -0.0101*** -0.00669* -0.00998***
(0.00303) (0.00286) (0.00396) (0.00273)

HitSF × Mid-Atlantic -0.00504 -0.0163*** 0.00213 -0.00901*
(0.00540) (0.00488) (0.00376) (0.00463)

HitSF × Midwest 0.00438 -0.0137*** -0.000326 -0.00311
(0.00355) (0.00381) (0.00577) (0.00295)

HitSF × South Atlantic 0.000893 -0.00667 0.00518 -0.00812
(0.00687) (0.00576) (0.00532) (0.00507)

HitSF × South Central -0.00315 -0.0141** 0.0184 -0.00271
(0.00668) (0.00630) (0.0164) (0.00611)

HitSF × West -5.64e-05 -0.0189*** -0.00613 -0.00849
(0.0104) (0.00660) (0.0123) (0.00832)

PostHitSF × Northeast -0.0142*** -0.0175*** -0.0122* -0.0139***
(0.00527) (0.00435) (0.00676) (0.00455)

PostHitSF × Mid-Atlantic -0.00925 -0.0113 -0.00333 -0.0113
(0.00998) (0.00786) (0.00711) (0.00765)

PostHitSF × Midwest 0.000359 -0.0134*** -0.00254 0.000863
(0.00434) (0.00450) (0.00531) (0.00403)

PostHitSF × South Atlantic -0.00438 -0.00197 -0.00829 -0.0164**
(0.00908) (0.00794) (0.00793) (0.00800)

PostHitSF × South Central -0.00242 -0.00915 0.0113 0.00184
(0.00815) (0.00802) (0.0143) (0.00999)

PostHitSF × West 0.00316 -0.0267*** -0.0112 -0.0132
(0.0130) (0.00820) (0.0163) (0.0105)

PostTrendSF × Northeast 0.00171 -0.000892 0.00366 -0.00297**
(0.00154) (0.00147) (0.00230) (0.00149)

PostTrendSF × Mid-Atlantic 0.00374 -0.00868*** 0.00531** -0.00171
(0.00290) (0.00268) (0.00252) (0.00256)

PostTrendSF × Midwest 0.00396*** -0.00714*** 0.00443*** -0.00498***
(0.00117) (0.00157) (0.00129) (0.00133)

PostTrendSF × South Atlantic 0.000617 -0.0112*** 0.00492* -0.00305
(0.00293) (0.00249) (0.00276) (0.00250)

PostTrendSF × South Central 0.00477*** -0.00460*** 0.00850*** -0.000660
(0.00183) (0.00176) (0.00277) (0.00263)

PostTrendSF × West 0.00638* -0.0106*** 0.00903** -0.00701**
(0.00362) (0.00306) (0.00446) (0.00281)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 3 for details. Sample:
2000/2016. SE clustered by community. Additional controls: indicators for top 66th perc.
of fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.

28



Table 7: Regional Real Estate Responses for Top Tier Housing

TopTier House Index

HighSurprise LowSurprise

VARIABLES LowGrowth HighGrowth LowGrowth HighGrowth

HitSF × Northeast -0.0404** -0.0296* -0.0280 -0.0381**
(0.0191) (0.0153) (0.0256) (0.0151)

HitSF × Mid-Atlantic 0.00921 0.0203 0.0108 -0.00540
(0.0293) (0.0260) (0.0332) (0.0253)

HitSF × Midwest -0.0196 0.00228 0.00589 0.0163
(0.0222) (0.0157) (0.0181) (0.0148)

HitSF × South Atlantic -0.0917*** 0.0378** -0.0200 0.0232
(0.0251) (0.0164) (0.0308) (0.0175)

HitSF × South Central -0.00133 0.00963 0.0132 0.0459**
(0.0228) (0.0193) (0.0245) (0.0218)

HitSF × West -0.159*** -0.00704 -0.120*** -0.0419
(0.0300) (0.0274) (0.0299) (0.0282)

PostHitSF × Northeast -0.0572** -0.0373* -0.0356 -0.0519**
(0.0268) (0.0221) (0.0355) (0.0220)

PostHitSF × Mid-Atlantic -0.0959*** -0.0261 -0.0492 -0.0597*
(0.0370) (0.0333) (0.0414) (0.0323)

PostHitSF × Midwest 0.000684 0.0177 0.0161 0.0361**
(0.0256) (0.0167) (0.0234) (0.0163)

PostHitSF × South Atlantic -0.0428 0.0459* -0.000888 0.0241
(0.0395) (0.0253) (0.0372) (0.0295)

PostHitSF × South Central 0.0134 0.0173 0.0339 0.0424
(0.0296) (0.0240) (0.0359) (0.0266)

PostHitSF × West -0.219*** -0.0265 -0.0863* -0.0806**
(0.0424) (0.0330) (0.0501) (0.0387)

PostTrendSF × Northeast -0.0154** -0.0126** -0.00827 -0.00917
(0.00642) (0.00568) (0.00969) (0.00604)

PostTrendSF × Mid-Atlantic 0.0287*** 0.00497 0.0218** 0.0128
(0.00967) (0.00966) (0.00913) (0.00814)

PostTrendSF × Midwest -0.00199 -0.00443 -0.00780 -0.00386
(0.00522) (0.00420) (0.00493) (0.00430)

PostTrendSF × South Atlantic -0.0280*** -0.00343 -0.0201* -0.0182**
(0.0101) (0.00815) (0.0117) (0.00780)

PostTrendSF × South Central 0.00462 -0.00172 -0.00222 0.00628
(0.00758) (0.00576) (0.00760) (0.00599)

PostTrendSF × West -0.00554 -0.00358 0.00233 -0.0103
(0.0107) (0.00710) (0.0266) (0.00821)

Notes: *** p<0.01, ** p<0.05, * p<0.1. Consult notes for Table 4. Sample: 2000/2016.
SE clustered by community. Additional controls: indicators for top 66th perc. of
fema/insured/business/sba damage; above median non-construction-based local economy;
above median renter fraction; below 33th perc. tot. damage.
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Table 8: Population Responses with Spline Damage Specification

(1) (2) (3) (4)
VARIABLES lnPopit lnPopit lnPopit lnPopit

HitSF × Dam1 -0.000581 -0.00872***
(0.00181) (0.00241)

PostHitSF × Dam1 -0.00343 -0.00833**
(0.00221) (0.00342)

PostTrendSF × Dam1 0.000144 -0.00371***
(0.000606) (0.000927)

HitSF × Dam2 -0.00191 -0.00995***
(0.00162) (0.00220)

PostHitSF × Dam2 -0.00455* -0.00958***
(0.00238) (0.00296)

PostTrendSF × Dam -0.00104 -0.00473***
(0.000800) (0.000931)

HitSF × Dam3 0.000262 -0.00760***
(0.00134) (0.00229)

PostHitSF × Dam3 -0.00383* -0.00861**
(0.00200) (0.00343)

PostTrendSF × Dam3 0.000915 -0.00277***
(0.000675) (0.00102)

HitSF × HSurp × Dam1 -0.00441** -0.0130***
(0.00173) (0.00327)

HitSF × LSurp × Dam1 0.00823* 0.00108
(0.00433) (0.00360)

PostHitSF × HSurp × Dam1 -0.00679*** -0.0143***
(0.00249) (0.00482)

PostHitSF × LSurp × Dam1 0.00460 0.00313
(0.00424) (0.00420)

PostTrendSFd × HSurp × Dam1 -0.00118 -0.00498***
(0.000730) (0.00126)

PostTrendSF × LSurp × Dam1 0.00292*** -0.000330
(0.000887) (0.00116)

HitSF × HSurp × Dam2 -0.00276 -0.0120***
(0.00195) (0.00300)

HitSF × LSurp × Dam2 -0.000601 -0.00753**
(0.00274) (0.00309)

PostHitSF × HSurp × Dam2 -0.00214 -0.0107***
(0.00312) (0.00406)

PostHitSF × LSurp × Dam2 -0.00856** -0.00972**
(0.00350) (0.00399)

PostTrendSFd × HSurp × Dam2 -0.00280*** -0.00678***
(0.00105) (0.00124)

PostTrendSF × LSurp × Dam2 0.00156 -0.00155
(0.00108) (0.00125)

HitSF × HSurp × Dam3 -0.000564 -0.00982***
(0.00173) (0.00319)

HitSF × LSurp × Dam3 0.00112 -0.00446*
(0.00180) (0.00261)

PostHitSF × HSurp × Dam3 -0.00357 -0.0122**
(0.00258) (0.00479)

PostHitSF × LSurp × Dam3 -0.00420 -0.00315
(0.00278) (0.00399)

PostTrendSFd × HSurp × Dam3 -0.000159 -0.00412***
(0.000863) (0.00139)

PostTrendSF × LSurp × Dam3 0.00188** -0.00134
(0.000879) (0.00128)

Observations 70,403 70,403 70,403 70,403
Within R-squared 0.007 0.02 0.019 0.041
Xit Controls No Yes No Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.Dam1/Dam2/Dam3 are indicators for the lower 33th

percentile/33th-66th percentile/upper 66th of damage within the state. HitSF is an indicator
for flood event. PostHitSF is an indicator for the period following the first year of impact.
PostTrendSF is a linear trend starting the in the period following the impact. LSurp/HSurp
is an indicator for a low/high surprise event. LGr/HGr is an indicator for positive/negative
population growth 5 years prior to the event. Sample: 2000/2016. SE clustered by com-
munity. Additional controls: indicators for top 66th perc. of fema/insured/business/sba
damage; above median non-construction-based local economy; above median renter fraction;
below 33th perc. tot. damage. The estimation results do not report the coefficients for
multiple-flood communities.

(5) (6)
VARIABLES lnPopit lnPopit

HitSF × HSurp × LGr ×Dam1 0.00739*** 0.00615***
(0.00151) (0.00215)

HitSF × HSurp × HGr ×Dam1 -0.00683*** -0.0166***
(0.00203) (0.00390)

HitSF × LSurp × LGr ×Dam1 0.0202 0.00558
(0.0129) (0.00827)

HitSF × LSurp × HGr ×Dam1 0.00349* -0.00192
(0.00199) (0.00253)

PostHitSF × HSurp× LGr ×Dam1 -0.00139 0.000660
(0.00268) (0.00441)

PostHitSF × HSurp× HGr ×Dam1 -0.00679** -0.0168***
(0.00291) (0.00586)

PostHitSF × LSurp× LGr ×Dam1 0.0111 0.00513
(0.0109) (0.00755)

PostHitSF × LSurp× HGr ×Dam1 0.00243 0.00149
(0.00316) (0.00431)

PostTrendSF × HSurp× LGr ×Dam1 0.00800*** 0.00562***
(0.000880) (0.00115)

PostTrendSF × HSurp× HGr ×Dam1 -0.00368*** -0.00716***
(0.000809) (0.00149)

PostTrendSF × LSurp× LGr ×Dam1 0.00909*** 0.00400***
(0.00167) (0.00149)

PostTrendSF × LSurp× HGr ×Dam1 0.000210 -0.00203
(0.000919) (0.00139)

HitSF × HSurp × LGr ×Dam2 0.00732*** 0.00627**
(0.00180) (0.00279)

HitSF × HSurp × HGr ×Dam2 -0.00545** -0.0159***
(0.00234) (0.00362)

HitSF × LSurp × LGr ×Dam2 0.0126 -0.000747
(0.00971) (0.0100)

HitSF × LSurp × HGr ×Dam2 -0.00372* -0.00930***
(0.00196) (0.00278)

PostHitSF × HSurp× LGr ×Dam2 0.00361 0.00499
(0.00352) (0.00567)

PostHitSF × HSurp× HGr ×Dam2 -0.00372 -0.0149***
(0.00371) (0.00473)

PostHitSF × LSurp× LGr ×Dam2 0.00129 -0.00434
(0.00796) (0.00834)

PostHitSF × LSurp× HGr ×Dam2 -0.00985** -0.0107**
(0.00382) (0.00458)

PostTrendSF × HSurp× LGr ×Dam2 0.00739*** 0.00514***
(0.000825) (0.00121)

PostTrendSF × HSurp× HGr ×Dam2 -0.00572*** -0.00926***
(0.00124) (0.00143)

PostTrendSF × LSurp× LGr ×Dam2 0.0103*** 0.00628***
(0.00141) (0.00162)

PostTrendSF × LSurp× HGr ×Dam2 -0.00115 -0.00364**
(0.00127) (0.00147)

HitSF × HSurp × LGr ×Dam3 0.00429* 0.00324
(0.00236) (0.00324)

HitSF × HSurp × HGr ×Dam3 -0.00279 -0.0130***
(0.00206) (0.00393)

HitSF × LSurp × LGr ×Dam3 0.00315* -0.00757
(0.00187) (0.00627)

HitSF × LSurp × HGr ×Dam3 0.000665 -0.00429
(0.00241) (0.00331)

PostHitSF × HSurp× LGr ×Dam3 0.000924 0.00185
(0.00288) (0.00481)

PostHitSF × HSurp× HGr ×Dam3 -0.00578* -0.0167***
(0.00335) (0.00620)

PostHitSF × LSurp× LGr ×Dam3 -0.00569* -0.0103
(0.00331) (0.00657)

PostHitSF × LSurp× HGr ×Dam3 -0.00241 -0.000780
(0.00358) (0.00522)

PostTrendSF × HSurp× LGr ×Dam3 0.00470*** 0.00259**
(0.000762) (0.00122)

PostTrendSF × HSurp× HGr ×Dam3 -0.00245** -0.00580***
(0.00111) (0.00180)

PostTrendSF × LSurp× LGr ×Dam3 0.00758*** 0.00357**
(0.00107) (0.00158)

PostTrendSF × LSurp× HGr ×Dam3 -0.000908 -0.00362**
(0.00102) (0.00164)

Observations 70,403 70,403
R-squared 0.061 0.081
Xit Controls No Yes
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Table 9: Population and Real Estate Responses Controlling for Local Churches and Social
Organizations

(1) (2) (3) (4) (5) (6)
VARIABLES lnPopit lnPopit lnPopit TopTier MiddleTier BottomTier

HitSF -0.0101***
(0.00230)

PostHitSF -0.00948***
(0.00318)

PostTrendSF -0.00545***
(0.000970)

HitSF × HSurp -0.0128***
(0.00244)

HitSF × LSurp -0.00577**
(0.00287)

PostHitSF × HSurp -0.0103***
(0.00336)

PostHitSF × LSurp -0.00772**
(0.00362)

PostTrendSFd × HSurp -0.00723***
(0.00101)

PostTrendSF × LSurp -0.00281***
(0.00104)

HitSF × HSurp × LGr -0.00325 -0.0369*** -0.0261* -0.0275*
(0.00244) (0.0125) (0.0135) (0.0160)

HitSF × HSurp × HGr -0.0141*** -0.00445 0.00703 0.0122
(0.00246) (0.00917) (0.00930) (0.0118)

HitSF × LSurp × LGr 0.00341 -0.0183 0.00181 0.000337
(0.00603) (0.0143) (0.0133) (0.0169)

HitSF × LSurp × HGr -0.00758*** 0.00145 0.0107 0.0114
(0.00234) (0.00961) (0.00966) (0.0120)

PostHitSF × HSurp× LGr -0.00501 -0.0545*** -0.0569*** -0.0694***
(0.00356) (0.0158) (0.0177) (0.0207)

PostHitSF × HSurp× HGr -0.0108*** -0.0127 -0.00556 -0.00958
(0.00336) (0.0118) (0.0117) (0.0144)

PostHitSF × LSurp× LGr -0.00213 -0.0249 -0.00689 -0.0321
(0.00561) (0.0183) (0.0177) (0.0205)

PostHitSF × LSurp× HGr -0.00808** -0.00908 -0.0110 -0.0167
(0.00348) (0.0125) (0.0125) (0.0154)

PostTrendSF × HSurp× LGr 0.00124 0.00144 0.00518 0.00855*
(0.00104) (0.00379) (0.00422) (0.00500)

PostTrendSF × HSurp× HGr -0.00858*** -0.00398 -0.00118 0.000514
(0.00100) (0.00281) (0.00299) (0.00339)

PostTrendSF × LSurp× LGr 0.00400*** -0.00438 -0.00366 0.00149
(0.00120) (0.00414) (0.00427) (0.00464)

PostTrendSF × LSurp× HGr -0.00448*** -0.00474 -0.00207 0.000298
(0.00105) (0.00292) (0.00299) (0.00369)

HitSF × Social 0.00222 0.00208 0.000223 0.00560 0.00552 0.0137*
(0.00194) (0.00194) (0.00210) (0.00581) (0.00606) (0.00729)

PostHitSF × Social 0.00109 0.000896 -0.000535 0.0204*** 0.0228*** 0.0271***
(0.00256) (0.00255) (0.00258) (0.00753) (0.00790) (0.00959)

PostTrendSF × Social 0.00284*** 0.00284*** 0.00150** -0.00265 -0.00318 0.000614
(0.000711) (0.000705) (0.000680) (0.00184) (0.00201) (0.00230)

Observations 70,403 70,403 70,403 61,530 60,920 54,554
Within R-squared 0.025 0.03 0.052 0.023 0.026 0.025
Xit Controls Yes Yes Yes Yes Yes Yes

Notes: *** p<0.01, ** p<0.05, * p<0.1.HitSF is an indicator for flood event. PostHitSF is an indicator
for the period following the first year of impact. PostTrendSF is a linear trend starting the in the period
following the impact. LSurp/HSurp is an indicator for a low/high surprise event. LGr/HGr is an indicator for
positive/negative population growth 5 years prior to the event. Social is an indicator for above median number
of social organizations and churches per capita. Sample: 2000/2016. SE clustered by community. Additional
controls: indicators for top 66th perc. of fema/insured/business/sba damage; above median non-construction-
based local economy; above median renter fraction; below 33th perc. tot. damage. The estimation results do
not report the coefficients for multiple-flood communities.
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Figure 1: Locations with Single and Multiple Floods between 2003–2013

Figure 2: Locations with Flood Surprises between 2003–2013



Figure 3: Population Growth of Milford vs New Haven and Bridgeport

Figure 4: Population and Real Estate Values at Milford vs New Haven and Bridgeport
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