
Munich Personal RePEc Archive

An Internally Consistent Approach to

the Estimation of Market Power and

Cost Efficiency with an Application to

U.S. Banking

Tsionas, Mike and Malikov, Emir and Kumbhakar, Subal C.

Lancaster University Management School, Auburn University, State

University of New York at Binghamton

2018

Online at https://mpra.ub.uni-muenchen.de/85811/

MPRA Paper No. 85811, posted 11 Apr 2018 07:28 UTC



An Internally Consistent Approach to the Estimation of

Market Power and Cost Efficiency with an Application

to U.S. Banking∗

Efthymios G. Tsionas1 Emir Malikov2 Subal C. Kumbhakar3,4

1Department of Economics, Lancaster University Management School, Lancaster, United Kingdom
2Department of Agricultural Economics & Rural Sociology, Auburn University, Auburn, AL, United States
3Department of Economics, State University of New York at Binghamton, Binghamton, NY, United States

4University of Stavanger Business School, Stavanger, Norway

April 9, 2018

Abstract

We develop a novel unified econometric methodology for the formal examination of the market
power – cost efficiency nexus. Our approach can meaningfully accommodate a mutually de-
pendent relationship between the firm’s cost efficiency and marker power (as measured by the
Lerner index) by explicitly modeling the simultaneous determination of the two in a system of
nonlinear equations consisting of the firm’s cost frontier and the revenue-to-cost ratio equation
derived from its stochastic revenue function. Our framework places no a priori restrictions on
the sign of the dependence between the firm’s market power and efficiency as well as allows for
different hierarchical orderings between the two, enabling us to discriminate between competing
quiet life and efficient structure hypotheses. Among other benefits, our approach completely
obviates the need for second-stage regressions of the cost efficiency estimates on the constructed
market power measures which, while widely prevalent in the literature, suffer from multiple
econometric problems as well as lack internal consistency/validity. We showcase our methodol-
ogy by applying it to a panel of U.S. commercial banks in 1984–2007 using Bayesian MCMC
methods.
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1 Introduction

Owing to its important social welfare implications, researchers have long been interested in disen-
tangling the complex relationship between the market structure and the cost efficiency of firms.
The two notable (structural) hypotheses put forth to conceptualize this relationship — the quiet
life and the efficient structure hypotheses (thereafter, QLH and ESH) — contrast rather sharply
both in the sign and implied directionality of the relationship. Not only is it still unclear if the
relationship is positive or negative, but it also remains unsettled whether the market structure de-
termines the firms’ performance, including their efficiency, or whether the market structure should
rather be viewed as an endogenous outcome of firms’ behavior reflective (at least partly) of their
efficiency levels.

The QLH as postulated by Hicks (1935) conceptualizes the market structure as a determinant of
firms’ efficiency, whereby firms with higher market power trade potential monopoly rents for lower
efficiency. This negative relationship may exist because, owing to the high levels of market power
providing them with the “price cushion”, firm managers might not work as hard to keep costs at
minimum or might expend resources to obtain/maintain the market power, i.e., engage in further
rent-seeking (Berger & Hannan, 1998). In contrast, Demsetz’s (1973) ESH asserts that the industry
market structure is instead an outcome of the interaction among individual firms exhibiting different
efficiency levels, through which more efficient firms gain larger market shares and hence secure
greater monopolistic power. Such a positive relationship between the cost efficiency and market
power is oftentimes rationalized as the result of more efficient firms with superior management
out-competing their less efficient rivals which operate at higher costs (Berger, 1995).

Empirical work on the nexus between firm efficiency and market power has particularly favored
the U.S. banking sector as a “laboratory” for analysis owing to the relative homogeneity of banks
in the industry which helps facilitate cross-firm performance comparisons (e.g., Berger & Hannan,
1998; Jayaratne & Strahan, 1998; Koetter, Kolari & Spierdijk, 2012). The findings, however, have
been rather mixed. While Berger & Hannan (1998) and Delis & Tsionas (2009) find that, consistent
with the QLH, U.S. banks exhibiting greater market power tend to suffer from significant cost
efficiency losses, the finding of a positive relationship between cost efficiency and market power of
European banks documented byWeill (2004), Casu & Girardone (2006) and Maudos & Fernández de
Guevara (2007) instead buttress the ESH. More recently, Koetter et al. (2012) have also reported
the empirical evidence pointing to a positive effect of the market power on the bank’s cost efficiency
in the U.S. which lends support to ESH.1 To the contrary, in line with QLH, Koetter & Vins (2008)
consistently find a negative relationship between bank-level measures of market power and cost
efficiency for German savings banks. Similar findings are reported by Turk Ariss (2010) and Dong,
Firth, Hou & Yang (2016) for banks in developing countries including China.

While different in their choice of the measure of market power and in some other methodolog-
ical aspects, overwhelming majority of such studies resort to a two-stage analysis which suffers
from multiple fundamental econometric problems (discussed below) casting a serious shadow on
the validity and reliability of their findings. The same concerns also apply to a broader literature
examining the links between the market structure/competition and firms’ profitability, profit ef-
ficiency or stability,2 which the papers on the cost efficiency – market power nexus closely relate

1They do document an opposite finding in support of the QLH using measures of profit efficiency. Restrepo-Tobón
& Kumbhakar (2014) however cast doubt on the latter finding in their re-examination of Koetter et al. (2012).

2Examples of such studies in banking (with oftentimes contrary findings) include Molyneux, Lloyd-Williams & Thorn-
ton (1994), Goldberg & Rai (1996), Punt & van Rooij (1999), Claessens & Laeven (2005), de Guevara & Maudos
(2007), Schaeck & Cihák (2008), Koetter & Poghosyan (2009), Carbo, Humphrey, Maudos & Molyneux (2009),
among many others.
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to and share much of their methodology with. In this paper, we contribute to the literature by
proposing a novel unified econometric approach that tackles the problems associated with such
two-stage analyses widely favored in the literature.

To make matters more concrete, we focus on the estimation issues concerning the examination
of the firm-level relationship between the market power and cost efficiency. Thus, we measure firms’
market power using the Lerner index which is a popular go-to firm-specific measure of monopolistic
power in the literature (e.g., de Guevara & Maudos, 2007; Berger, Klapper & Turk-Ariss, 2009;
Koetter et al., 2012; Das & Kumbhakar, 2016) since the alternative indices such as Herfindahl-
type concentration ratios or the Rosse-Panzar H-statistic usually yield industry-level estimates3

of competitiveness in the market (for more on these measures, e.g., see Bolt & Humphrey, 2015).
The cost efficiency estimates are obtained using a widely popular stochastic frontier formulation
of the cost function (e.g., Berger & Mester, 1997, 2003; Malikov, Kumbhakar & Tsionas, 2016).
Traditionally, researchers perform their analyses in two stages, where they first compute the Lerner
index using the fitted scale elasticity of cost as well as estimate firm-specific cost efficiency scores
and then regress the obtained cost efficiency estimates on the Lerner index in the second stage
(e.g., see Maudos & Fernández de Guevara, 2007; Koetter & Vins, 2008; Turk Ariss, 2010; Koetter
et al., 2012). However, not only does the latter two-stage model lack internal consistency (validity)
but it also suffers from a number of acute econometric issues.

Specifically, the two-stage analysis fails to accommodate a simultaneous determination of the
Lerner index (firm’s market power) and the cost efficiency. As discussed earlier, the directionality
of the relationship between the market power and efficiency is ambiguous, and causality likely
runs both ways, whereby more efficient firms are able to survive the competition and thus acquire
greater market power which in turn may create “quiet life” incentives leading to a decline in firms’
efficiency. Even if this “reverse causality” problem is acknowledged by researchers, the methodology
used to tackle it however usually falls short of its overreaching task. The endogeneity is oftentimes
argued to be resolved either by merely “adjusting” the Lerner index whereby the efficiency-corrected
estimates of the marginal cost are used in the computation of the index (e.g., Turk Ariss, 2010)
and/or by employing instruments in the second-stage regressions of the efficiency estimates on
the market power index (e.g., Berger & Hannan, 1998; Berger et al., 2009; Koetter et al., 2012).
However, neither of these methods can meaningfully accommodate the simultaneity of the firm’s
market power and efficiency. While the “adjusted” Lerner index indeed explicitly acknowledges the
existence of cost inefficiency, in its construction however, researchers use the marginal cost estimates
from the stochastic cost frontier model that assumes complete independence of the cost (in)efficiency
from the cost function covariates and hence the Lerner index. That is, the efficiency-adjusted Lerner
index is “adjusted” under the assumption that cost efficiency is independent from the firm’s market
power. Not only may the cost (in)efficiency be severely biased because one forcefully imposes
its independence from the market power during the estimation (Delis & Tsionas, 2009), but this
independence also suggests that any second-stage regressions of the cost efficiency on the market
power indicators (and possibly other contextual variables) contradict the underlying assumption
of the first-stage regression and thus are likely to be spurious. Worse yet, the cost inefficiency
is oftentimes assumed to be not only independently but also identically distributed across firms
with constant mean and variance (e.g., Maudos & Fernández de Guevara, 2007; Turk Ariss, 2010;
Koetter et al., 2012), which implies no systemic relationship between the firm’s efficiency and other
covariates thus rendering any second-stage analysis void. Subsequently, the two-stage methodology
lacks internal consistency (validity) by which both stages would be reconcilable with one another.

3Brissimis & Delis (2011) have recently proposed employing nonparametric local regression techniques to obtain
estimates of the Rosse-Panzar H-statistic at a finer level such as the level of a unit.
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In its second stage, virtually no study recognizes that both the firm’s efficiency and the Lerner
index are in fact generated estimates subject to parameter uncertainty which needs to be accounted
for when performing inference. While the sampling uncertainty associated with the first-stage
estimate used as a left-hand-side variable in the second-stage analysis (usually, cost efficiency) does
not generally pose a problem, the same cannot be said about the generated regressor (usually,
the Lerner index) used as a right-hand-side explanatory variable. Further, the standard approach,
whereby the Lerner index is constructed using raw information on the firm’s revenues and estimates
of the marginal cost from a stochastic cost frontier, implicitly assumes away any stochasticity in the
firm’s revenue function. The latter is rather arbitrary; it only appears logical to allow for stochastic
noise in both the firm’s costs and revenues. Lastly but not least importantly, the second-stage
regressions of the cost efficiency scores on the Lerner index are usually estimated via least squares
(ordinary or two-stage) without taking a bounded codomain of the cost efficiency estimates (or the
log thereof) into consideration (e.g., Berger & Hannan, 1998; Weill, 2004; Koetter et al., 2012).4

In this paper, we seek to offer a solution to the above econometric problems associated with
the formal examination of the cost efficiency – market power nexus. More specifically, we propose
a novel, internally consistent approach to modeling a mutually dependent relationship between
the firm’s cost efficiency and marker power (as measured by the Lerner index), which explicitly
accommodates the simultaneous/endogenous determination of the two and completely obviates
the need for a second-stage analysis. Both the firm’s cost efficiency and marker power index are
estimated jointly and derived from a single unified model thus enabling us to interpret and analyze
them on a common ground.

We begin by recognizing that neither the cost efficiency nor the market power are observed
and, therefore, ought to be treated accordingly when estimating the firm’s production process. We
let both of these latent variables directly co-depend in a variety of ways, thereby having efficiency
be automatically adjusted for market power and vice versa, in a system of nonlinear equations
consisting of the firm’s cost frontier and the revenue-to-cost ratio equation derived from the firm’s
stochastic revenue function. Our framework places no a priori restrictions on the sign of the
dependence between market power and efficiency as well as allows for different hierarchical orderings
between the two, enabling us to meaningfully discriminate between the QLH and ESH. To draw
statistical inference, we consider three alternative econometric specifications of our unified system-
based model which we estimate using Markov Chain Monte Carlo (MCMC) methods.

We showcase our unified model by applying it to a panel of U.S. commercial banks operating
in 1984–2007. Regardless of the econometric specification of the model used, the data consistently
point to a negative dependence between the bank’s cost efficiency and the Lerner index thus provid-
ing empirical evidence in support of the QLH. This finding is reversed when we employ a traditional
two-stage analysis where both the cost efficiency and the adjusted Lerner index are estimated sep-
arately without allowing for a simultaneous determination of the two. The latter highlights the
pivotal importance of a proper econometric modeling of the market power – efficiency relationship
which a popular two-stage analysis is unable to deliver.

The rest of the paper proceeds as follows. Section 2 introduces our unified model of market
power and efficiency. We describe three alternative econometric specifications of our model in
Section 3 with the details relegated to the Appendix. Section 4 reports the empirical application.
We conclude in Section 5.

4Few exceptions include Maudos & Fernández de Guevara (2007) and Turk Ariss (2010) who estimate logistic and
tobit regressions in their second-stage analyses, respectively.
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2 A Unified Model

In this section, we propose a novel, internally consistent approach to modeling a mutually dependent
relationship between the firm’s cost efficiency and marker power (as measured by the Lerner index),
which explicitly accommodates the simultaneous/endogenous determination of the two.

For the ease of exposition, we first consider the case where a firm, which may potentially exercise
monopoly power in the market, produces a single output. Suppose the firm’s cost function is given
by C = C(w, y) ≡ minx {w′x | y ≤ F (x)} : RJ

++ × R+ → R+, where x ∈ R
J
+ is the vector of

inputs with the corresponding vector of input prices w ∈ R
J
++, y is the total output quantity, and

F (x) is the production function. Further, let the output price be denoted by p ∈ R++. To measure
the firm’s market power, we use the Lerner index widely favored in the literature. Specifically, we
define the Lerner index of market power as follows: L̃ =

(
p − ∂C(w,y)

∂y

)
/p ∈ [0, 1), where ∂C(w,y)

∂y
is the firm’s marginal cost. The rationale of the index is that the monopolistic firm can set the
price above the marginal cost (which normally equals the competitive price) and, therefore, the
excess of price over marginal cost should be a good measure of market power. Higher values of the
index imply greater market power, whereas the zero value (a lower boundary) points to a perfectly
competitive firm. Lastly, note that the Lerner index is closely related to the conventional measure
of the firm’s markup which uses the marginal cost, as opposed to the output price, as the reference
for sizing the firm’s monopoly power, namely

(
p− ∂C(w,y)

∂y

)/∂C(w,y)
∂y .

We next rewrite the Lerner index L̃ as a function of the firm’s revenue and the output elasticity
of its cost. Specifically,

L̃ =
p− ∂C(w,y)

∂y

p
=
p− C

y × εy

p
=
R− C × εy

R
, (2.1)

where εy = ∂ lnC(w,y)
∂ ln y is the output (scale) elasticity of cost, and R = py ∈ R+ is the total revenue.

From (2.1), it is immediately evident that, had the output elasticity of cost εy been known
and/or directly observable from the data, we could have easily obtained the estimate of the Lerner
index. However, given the unobservability of εy, we need to estimate it too. To do so, we can make
use of the information from the firm’s cost function.5

Before proceeding to the details of how the output elasticity of cost is estimated, we first
generalize the above discussion to the case when the firm engages in a multi -output production.
The firm’s multi-output cost function can then be redefined as

C = C(w,y) ≡ min
x

{
w′x | T (x,y) ≥ 1

}
: RJ

++ × R
M
+ → R+, (2.2)

where y ∈ R
M
+ is the vector of outputs, T (·) is the transformation function relating inputs to

outputs within the set of technologically feasible combinations T = {(x,y) : x can produce y}, and
x and w are just as defined earlier. The vector of output prices is now given by p ∈ R

M
++.

In the instance of M outputs being produced by the firm, it is now imperative to recognize
that, following our earlier definition, one can define M different output-specific Lerner indices, i.e.,
L̃m =

(
pm − ∂C(w,y)

∂ym

)
/pm ∀ m = 1, . . . ,M , with the corresponding M output-specific markup

measures. To get around this issue, we therefore employ a multi-output definition of the Lerner
index where the market power is gauged on the basis of the differential between the firm’s average
total revenue (as opposed to the price) and its “average” marginal cost (e.g., Koetter & Poghosyan,

5See Delis, Iosifidi & Tsionas (2014), for an excellent discussion of the estimation of marginal cost.
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2009; Koetter et al., 2012; Das & Kumbhakar, 2016). Similar to (2.1), the multi-output Lerner
index can then be written as

L =
R− C ×

∑
m εym

R
, (2.3)

where εym = ∂ lnC(w,y)
∂ ln ym

is the elasticity of cost with respect to themth output, and R =
∑

m pmym ∈
R+ is the total revenue as defined earlier. Essentially, such an index provides a measure of the firm’s
“average” monopolistic power across the output markets. From (2.3), it follows that

R

C
=

1

1− L
×
∑

m

εym , (2.4)

which in logs yields

ln

(
R

C

)
= ln

(
∑

m

εym

)
+ uL, (2.5)

where, given the permissible range of the Lerner index, we define the (latent) unbounded one-sided
transformation of L as uL = − ln(1− L) ≥ 0 which is increasing in the firm’s marker power.

Since the so-called “scale elasticity”
∑

m εym is unobservable for a direct computation of uL
(and hence of L), we recover it from the firm’s dual cost function which we estimate simultaneously
along with equation (2.5) while also allowing for (i) the presence of one-sided cost inefficiency and
(ii) mutual dependence between the latter and the Lerner index. Formally, after appending both
equations with two-sided stochastic errors, the nonlinear system of simultaneous equations, which
we seek to estimate, is given by

lnC = ln C (w,y;β) + uC + vC (2.6a)

ln

(
R

C

)
= ln

(
∑

m

εym (w,y;β)

)
+ uL + vL, (2.6b)

where ln C(· ;β) is some parametric specification of the unknown cost function with β being the
vector of unknown parameters, and uC ≥ 0 is the one-sided cost inefficiency term. Here, we
explicitly recognize that εym is a function of the unknown parameters β, since the output elasticity

of cost is found as the partial log-derivative of the fitted cost function, i.e., εym = ∂ ln C(w,y;β)
∂ ln ym

∀ m =
1, . . . ,M . Following the popular practice, we use the translog specification for ln C(· ;β), known to
yield a flexible second-order approximation to an arbitrary, unknown functional form for the cost
function.

Our system-of-equations approach presents a superior alternative to the standard practice of
empirical assessment of the efficiency – market power relationship in the literature, whereby one
first estimates the firm’s cost function to obtain estimates of cost efficiency and scale elasticity
and then, as a second step, uses the latter to compute the Lerner index. Having done the above,
a common researcher then proceeds to the second-stage regressions of the efficiency estimates on
the Lerner index estimates and, potentially, some other covariates. In principle, there are multiple
problematic issues with this practice (as discussed in detail in Introduction) including the lack of
internal consistency/validity. Therefore, to ensure the coherence and internal consistency of the
econometric model used for the analysis of the market power – cost efficiency relationship, it is
pivotal that one estimates the firm’s level of efficiency and market power jointly while allowing
for potential dependence not only between stochastic noises vC and vL, owing to the seemingly-
unrelated-regressions structure of model in (2.6), but also between uC and uL themselves. Not only
does such a joint estimation automatically “adjust” both measures, but it also completely obviates

6



the need for a second-stage analysis plundered by numerous econometric problems. In fact, explicit
modeling of the potential dependence between uC and uL is the key to a consistent6 testing of the
QLH versus ESH. Unfortunately, statistical inference in this context is quite complicated due to
the fact that both the cost inefficiency and the market power are unobserved latent variables which
are one-sided and correlated. Thus, formal statistical discrimination between the QLH and ESH
may be a rather burdensome task.

3 Econometric Specification

Our model of endogenous (simultaneous) interplay between the firm’s cost efficiency and market
power in (2.6) can be formalized econometrically in the number of ways. In what follow, we propose
three alternative methods of modeling the market power – cost efficiency relationship, which differ
in their formulation of the cross-equation dependence between (2.6a) and (2.6b). Regardless of
the specifics, all three models accommodate mutual dependence of the cost inefficiency uC and the
log-Lerner-index function uL via a simultaneous-equations structure.

In Model I, we take the most “agnostic” view of directionality of the relationship between
the firm’s cost efficiency and market power by imposing no structure onto the order of causality in
their interdependence. We do so by modeling their joint one-sided distribution with the dependence
being controlled by the covariance parameter. As an alternative, Model II postulates an a priori
hierarchical dependence between cost efficiency and market power, whereby the latter is permitted
to directly affect the latent inefficiency term via its mean. Model III relaxes Model II by explicitly
allowing for bidirectional cross-equation effects between cost efficiency and market power working
through their respective means. Thus, in contrast to Model I which also accommodates bidirectional
effects but does so via a single dependence parameter, Model III allows one to directly examine
if both directions are significant (owing to the model’s explicit two-parameter formulation of the
cross-equation dependence). However, neither of the three model specifications impose restrictions
onto signs of the parameters controlling the dependence between uC and uL. Ultimately, the data
are to tell which model describes them more adequately.

To aid the discussion, we first rewrite our system of equations in (2.6) in a stylized form:

y1,it = x′
itβ + v1,it + u1,it (3.1a)

y2,it = f(xit;β) + v2,it + u2,it ∀ i = 1, . . . , n; t = 1, . . . , T, (3.1b)

where y1,it and xit denote lnCit and the associated translog expansion of the cost determinants,
respectively; y2,it denotes ln(Rit/Cit); f(xit;β) ≡ ln (

∑
m εym) denotes the log of scale elasticity of

cost defined as the sum of output elasticities derived by differentiating the translog cost function
specification with respect to the log outputs; and β is a k × 1 vector of unknown parameters to
be estimated. (The details of the MCMC techniques used to estimate each of the three models are
relegated to the Appendix.)

3.1 Model I: Dependence via Joint Distribution

In Model I, the cost inefficiency u1 and the log-Lerner-index function u2 are postulated to be
mutually dependent by following a joint one-sided distribution with the dependence between the
two being controlled by the covariance parameter. Formally, the stochastic assumptions for Model

6Both in the economic and econometric sense.
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I are as follows: [
v1,it
v2,it

]
∼ N (0,Σ) , (3.2a)

[
u1,it
u2,it

]
∼ N

+ (µ,Ω) , u1,it ≥ 0, u2,it ≥ 0, (3.2b)

independently of each other as well as of the regressors xit, where µ = [µ1, µ2]
′ and Ω =

[
ω11 ω12

ω12 ω22

]
.

For the ease of exposition, in the remainder of this subsection, we treat (µ1, µ2) as constants.
However, we can easily allow the means of u1,it and u2,it to vary with some contextual covariates via
the following parameterization: µ1,it = z′1,itγ1 and µ2,it = z′2,itγ2, where z1,it and z2,it is an l1 × 1
and l2 × 1 vector of covariates, and γ1 and γ2 is an l1 × 1 and l2 × 1 vector of the corresponding
parameters, respectively. In fact, we do so in the empirical application, where we let µ1 and µ2 be
time-varying and firm-specific by conditioning them on heterogeneous firm characteristics.

Next, we write xit =
[
x′
o,it,x

′
∗,it
]′
, where xo,it is a ko×1 vector corresponding to the linear terms

in the translog expansion. The scale elasticity
∑

m εym,it
can then be computed as

∑
m εym,it

=
x′
o,itRβ, where R is a ko×k selection matrix whose elements are either 0 or 1. Also, for convenience,

define yit = [y1,it, y2,it]
′, vit = [v1,it, v2,it]

′ and uit = [u1,it, u2,it]
′.

The conditional distribution of the observables is given by

p (yit|xit,θ) = (2π)−1CΩ|Σ|−1/2×
∫ ∞

0

∫ ∞

0
exp

{
−1

2
(rit − uit)

′
Σ−1 (rit − uit)−

1

2
(uit − µ)′Ω−1 (uit − µ)

}
duit,

(3.3)

where rit = yit−
[

x′
itβ

f(xit;β)

]
, CΩ = (2π)−1 |Ω|−1/2Φρ

(
µ1

ω11
, µ2

ω22

)−1
is the normalizing constant of the

bivariate truncated normal distribution with Φρ denoting the bivariate standard normal distribution

function with the correlation coefficient ρ = ω12 (ω11ω22)
−1/2, and θ =

[
β′, vech (Σ)′ , vech (Ω)′ ,µ′]′

denotes the collective vector of all parameters.

It is straightforward but tedious to generalize Pitt & Lee (1981, Appendix 2) and express (3.3)
in the following form:

p (yit|xit,θ) ∝ |Ω|−1/2|Σ|−1/2Φρ

(
Ω−1

diagµ
)−1

Φρ

(
V−1

diagµ
∗
it

)
exp

{
−1

2
Qit

}
, (3.4)

where V−1 = Σ−1 + Ω−1, µ∗
it = V

(
Ω−1µ+Σ−1rit

)
, Qit = (rit − r∗it)W

−1 (rit − r∗it) + µ′Aµ

such that W−1 = Σ−1 − Σ−1VΣ−1, A = Ω−1 − Ω−1
(
V +VΣ−1WΣ−1V

)
Ω−1 and r∗it =

WΣ−1VΩ−1µ. Lastly, Mdiag denotes the diagonal matrix which contains main diagonal elements
of some matrix M.

To obtain (3.4), let X = (rit − uit)
′
Σ−1 (rit − uit) +

1
2 (ui − µ)′Ω−1 (uit − µ) so that the in-

tegral in (3.3) becomes I =
∫
Rd

−

exp
{
−1

2X
}
du with d = 2, and it is more convenient to work

with the convolution r = v + u when u ∈ R
d
− (i.e., uit ≤ 0). Completing the square, we ob-

tain X = Xo + C, where Xo = (u− µ∗)′V−1 (u− µ∗) and C = r′Σ−1r + µ′Ω−1µ − µ∗′V−1µ∗.
The latter term, which does not depend on u, can be factorized (like we have shown above) as
C = (r− r∗)W−1 (r− r∗) + µ′Aµ. Thus, dealing with I requires that we compute the inte-
gral Io =

∫
Rd

−

exp
{
−1

2Xo

}
du by converting it to the integral of the multivariate standard nor-

mal distribution. After the standardization transformation, we have that Xo = z′ρ−1
V z, where
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zi = (ui − µ∗i ) /
√
Vii ∀ i = 1, . . . , d and ρV is the correlation matrix corresponding to the covari-

ance matrix V whose main diagonal elements are denoted by Vii. Then, it is straightforward to

show that Io =
∫
Rd

−

exp
{
−1

2Xo

}
du = 2π

(∏d
i=1 Vii

)1/2
|ρV |1/2ΦρV

(
· · · ,−µ∗iV

−1/2
ii , · · ·

)
, or Io =

2π |V|1/2ΦρV

(
· · · ,−µ∗iV

−1/2
ii , · · ·

)
, where ΦρV

(b) = (2π)−d/2 |ρV |−1/2 ∫∏d
i=1

(−∞,bi]
exp

{
−1

2z
′ρ−1

V z
}
dz.

Here, we generalize Pitt & Lee’s (1981) results in two important ways. First, we allow for
a general matrix Σ. Second, we allow for a multivariate truncated normal distribution of uit.
With the convention that Φρ denotes the d-variate standard normal distribution function with the

correlation matrix ρ =
[
ωij (ωiiωjj)

−1/2 ; i, j = 1, . . . , d
]
, the formula in (3.4) applies to the general

d-dimensional multivariate case.

3.2 Model II: Hierarchical Dependence

In contrast to Model I which imposes no structure onto the order of causality in the dependence
between cost efficiency and market power, Model II postulates an a priori hierarchical dependence
between u1,it and u2,it, whereby the former follows a one-sided distribution conditional on the latent
market power which, in turn, also follows a one-sided distribution. More specifically, we make the
following stochastic assumptions for Model II:

[
v1,it
v2,it

]
∼ N (0,Σ) , (3.5a)

u1,it|u2,it ∼ N
+
(
z′1,itγ1 + ψ1u2,it, ω

2
1

)
, (3.5b)

u2,it ∼ N
+
(
z′2,itγ2, ω

2
2

)
. (3.5c)

In this model, the latent market power is dependent on a vector of contextual covariates z2,it and
follows a truncated normal distribution to ensure its non-negativity. The latent cost inefficiency,
which depends on a vector of contextual covariates z1,it, follows a truncated normal distribution
and, importantly, is also affected by the latent market power through its mean.

We note that the specification of the hierarchical dependence between u1,it and u2,it in (3.5) is
different from that implied by the bivariate truncated normal distribution employed in Model I. To

see this clearly, recognize that, if uit ∼ N
+
([

(z′1,itγ1)
′, (z′2,itγ2)

′]′,Ω
)
, then it follows that

u1,it|u2,it ∼ N
+

(
z′1,itγ1 +

ω12

ω22

(
u2,it − z′2,itγ2

)
, ω11 −

ω2
12

ω22

)
(3.6a)

u2,it|u1,it ∼ N
+

(
z′2,itγ2 +

ω12

ω11

(
u1,it − z′1,itγ1

)
, ω22 −

ω2
12

ω11

)
, (3.6b)

implying that the two variables are dependent through the covariance parameter ω12. Therefore,
the hierarchical dependence is different from the dependence implied by the joint specification.

3.3 Model III: Dependence via Conditional Distributions

Model III relaxes Model II further by also allowing for the dependence of the latent market power
on the cost efficiency via its own conditional distribution. Thus, the cross-equation dependence is
now explicitly bidirectional. That is, we assume that

[
v1,it
v2,it

]
∼ N (0,Σ) , (3.7a)
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u1,it|u2,it ∼ N
+
(
z′1,itγ1 + ψ1u2,it, ω

2
1

)
, (3.7b)

u2,it|u1,it ∼ N
+
(
z′2,itγ2 + ψ2u1,it, ω

2
2

)
. (3.7c)

Clearly, this model (like the previous two) does not a priori restrict signs of the parameters
controlling the dependence between u1 and u2 in the two conditional distributions:

p (u1,it|u2,it, ·) =
(
2πω2

1

)−1/2
exp

{
− 1

2ω2
1

(
u1,it − z′1,itγ1 − ψ1u2,it

)2
}
×

Φ
((
z′1,itγ1 + ψ1u2,it

)
/ω1

)−1
✶ (u1,it ≥ 0) (3.8)

and

p (u2,it|u1,it, ·) =
(
2πω2

2

)−1/2
exp

{
− 1

2ω2
2

(
ui2 − z′2,itγ2 − ψ2u1,it

)2
}
×

Φ
((
z′2,itγ2 + ψ2u1,it

)
/ω2

)−1
✶ (u2,it ≥ 0) . (3.9)

The joint distribution p (u1,it, u2,it|·) = p (u1,it|u2,it, ·) p (u2,it|·) = p (u2,it|u1,it, ·) p (u1,it|·) is un-
available given that the marginal distributions are not specified. Combining with the relevant terms
in the posterior kernel distribution, we have

p (u1,it, u2,it|Ξ,θ) = exp

{
−1

2
(uit − rit)

′
Σ−1 (uit − rit)

}
p (u1,it, u2,it|·) , (3.10)

where Ξ denotes the available data.

4 Empirical Application

We showcase our proposed unified system-based model by applying it to study the interplay between
monopolistic power and cost efficiency in the U.S. commercial banking industry.

4.1 Data

The annual bank-level year-end data that we use in this paper come from Koetter et al. (2012) and
originate in Call Reports of the Federal Reserve System. The sample includes all FDIC-insured
commercial banks with available data between 1984 and 2007. We exclude banks reporting negative
values for assets, equity, outputs and prices. Following Stiroh & Strahan (2003) and Koetter et al.
(2012), we also exclude banks in the District of Columbia and South Dakota due to their exceptional
laws concerning the credit card business practices. To mitigate the influence of outliers, we also
truncate input prices at the 1st and 99th percentiles of their respective empirical distributions. All
nominal quantities are deflated using the 2005 Consumer Price Index for all urban consumption
published by the U.S. Bureau of Labor Statistics. The operational dataset is an unbalanced panel
of 17,148 banks with a total of 216,737 observations.

We model the bank’s production technology using the commonly used “intermediation ap-
proach” of Sealey & Lindley (1977), according to which a bank’s balance sheet is assumed to
capture the essential structure of its core business. Liabilities, together with physical capital and
labor, are taken as inputs to the bank’s production process, whereas assets (other than physical)
are considered as outputs. Specifically, we define two output variables: securities (y1) and loans
(y2). The inputs are fixed assets (x1), labor (x2) and borrowed funds (x3). Total costs (C) equals

10



Table 1. Data Summary Statistics

Variable Mean 5th Perc. Median 95th Perc. Units of Measurement

Production Variables
Securities (y1) 102,384.0 2,806.5 21,011.2 204,704.0 ’000 real 2005 USD
Loans (y2) 332,621.4 7,459.1 45,115.0 567,837.6 ’000 real 2005 USD
Price of Fixed Assets (w1) 36.24 11.57 27.19 94.44 % pt.
Price of Labor (w2) 33.52 18.54 31.00 57.10 ’000 real 2005 USD
Price of Borrowed Funds (w3) 4.22 1.55 4.03 7.09 % pt.
Equity (k) 43,090.1 1,431.0 7,388.9 74,154.6 ’000 real 2005 USD
Cost (C) 28,953.5 1,022.1 4,811.3 48,334.2 ’000 real 2005 USD
Revenue (R) 45,766.0 1,438.5 6,834.4 72,418.2 ’000 real 2005 USD

Contextual Variables
Assets 530,147.9 16,843.2 81,443.3 874,989.5 ’000 real 2005 USD
Top Hundred by Asset Size 0.01 unit-free
Asset Market Share in the State 0.51 0.01 0.10 1.34 % pt.
# of Mergers in the State 20.66 0.00 13.00 61.00 cardinal number
Equity-to-Assets Ratio 9.29 5.75 8.66 14.97 % pt.
Securities-to-Assets Ratio 28.10 6.66 26.45 55.04 % pt.
HHI for Loans 0.45 0.27 0.41 0.77 % pt.
Non-interest Income Share 9.09 2.58 7.71 19.74 % pt.
Loan-Loss Provision Share 0.73 0.00 0.32 2.84 % pt.
Loan-Loss Reserve Share 1.57 0.66 1.31 3.32 % pt.
Z-Score 48.01 5.77 34.24 132.60 unit-free
State Unemployment Rate 5.35 2.97 5.12 8.46 % pt.
State DPI 168,127.5 21,181.0 109,528.5 522,984.7 ’000 real 2005 USD

the sum of expenses on these inputs. Input prices (w1, w2, w3) are obtained by dividing expenses
on these items by their respective quantities. We also include equity capital (k) as an additional
input to the production technology. The treatment of equity as an input to banking production
technology is usually motivated by the argument that banks may use the latter as a source of
loanable funds and thus as a cushion against losses. Due to the unavailability of the price of equity,
we follow Berger & Mester (1997, 2003) in modeling k as a quasi-fixed input. Total revenue (R) is
the sum of revenues from the two output categories.

In addition to the production-related covariates described above, we also incorporate a number
of variables capturing various bank’s characteristics, both internal and external, in our analysis.
These variables are intended to contextualize the economic environment in which banks operate
as well as to control for their different business strategies related to efficiency and market power.
Specifically, we let the cost efficiency and Lerner index be functions of contextual variables that
capture heterogeneity across banks along various dimensions including the scope and overall com-
petitiveness of the market, the bank’s size and product mix as well as risk taking. By controlling
for banks’ heterogeneous features, we seek to more “cleanly” isolate the interplay between cost
efficiency and monopolistic power. In the language of econometric models described in Section 3,
such contextual control covariates are the “z” variables affecting the conditional time-varying bank-
specific means of two one-sided latent variables related to cost inefficiency and the Lerner index.
These variables are as follows: (i) the bank’s total assets capture its size and scale of operations; (ii)
an indicator for the top-hundred banks (by the asset size) in a given year and (iii) the bank’s asset
market share in a given state are included as observable measures of the bank’s dominance in the
market (see Stiroh & Strahan, 2003; Boyd & De Nicolo, 2005; Hannan & Prager, 2004, 2009); (iv)
the number of bank mergers in the state in a given year also captures competitive pressures in the
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Table 2. Posterior Mean Estimates of Scale Elasticity

Model Mean Estimate 95% Bayes Interval

(I) 0.8677 (0.8014; 0.9336)
(II) 0.9083 (0.8147; 1.0010)
(III) 0.8359 (0.7581; 0.9136)
(IV) 0.8858 (0.8220; 0.9496)

market; (v) the bank’s ratio of equity to total assets measuring its capitalization is meant to control
for factors contributing to bank distress (e.g., Gan, 2004); (vi) the bank’s ratio of securities to total
assets, (vii) the Hirschman-Herfindahl index across the banks’ different types of loans and (viii) the
share of non-interest income are all controlling for the possibility that greater competition might
entice banks to engage in nontraditional activities as well as to more actively seek diversification of
their portfolio (Koetter et al., 2012); (ix) the share of loan-loss provisions and (x) loan-loss reserves
in the bank’s total loans proxy for the credit risk, whereas (xi) the bank’s z-score7 proxies for the
overall risk of bank failure; (xii) the disposable personal income and (xiii) the unemployment rate in
the state are the controls for macroeconomic conditions which may affect the competition (Chirinko
& Fazzari, 2000) as well as efficiency. We also include three indicator variables reflective of institu-
tional changes in states that correspond to deregulation in the intrastate branching (by means of
mergers and acquisitions), the interstate expansion (via bistate agreements) and the post-IBBEA
interstate banking. The chosen contextual variables are all likely to greatly influence bank’s busi-
ness strategies in pursuit of the maximum franchise value (Demsetz, Saidenberg & Strahan, 1996;
DeYoung & Rice, 2004) with important implications for its efficiency and/or market power. See
Table 1 of Koetter et al. (2012) for details on the construction and rationale behind the variables.
Table 1 above presents the data summary statistics.

4.2 Results

In this section, we report the results from our unified system-based model in (2.6) estimated using
the three specifications described in Section 3. These econometric models are respectively referred
to as the Model I, II and III. In all three cases, we assume the translog cost function and allow for
non-neutral temporal shifts in the bank’s cost frontier as well as let the means of latent uC and uL
be time-varying and bank-specific conditional on the contextual variables capturing heterogeneous
bank characteristics. In line with the intuition outlined earlier, we include the contextual variables
summarized in Section 4.1 in the covariate set of the mean function of cost inefficiency uC and/or
the log-Lerner-index function uL; both means also include the time trend and its square. (For
complete variable lists corresponding to each mean function, see Table 4). The bank’s cost efficiency
is computed as exp{−ûC}, whereas the (automatically adjusted) Lerner index is recovered as 1 −
exp{−ûL}.

To highlight the merits of our proposed system-based approach, we also examine the relationship
between market power and cost efficiency employing the most popular strategy in the literature
whereby we estimate the stochastic cost frontier in (2.6a) alone without accounting for the joint
dependence of the Lerner index and efficiency. Following Koetter et al. (2012) and many others, the
fitted cost frontier is then used along with raw data on total revenues to construct the “adjusted”
Lerner index as follows: L̂ =

(
R − Ĉ ×

∑
m ε̂ym

)
/R, where both Ĉ and ε̂ym are obtained from

the estimated stochastic cost frontier. The relation between the cost efficiency estimates and the

7Computed following Laeven & Levine (2009) and using the four-year rolling-window standard deviations.
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Table 3. Posterior Mean Estimates of Cost Efficiency and Market Power

Model Mean Estimate 95% Bayes Interval

Model I
Efficiency 0.8230 (0.7928; 0.8534)
Lerner Index 0.3349 (0.2885; 0.3812)

Model II
Efficiency 0.8090 (0.7530; 0.8649)
Lerner Index 0.3321 (0.2737; 0.3904)

Model III
Efficiency 0.7983 (0.7288; 0.8675)
Lerner Index 0.3589 (0.3015; 0.4165)

Model IV
Efficiency 0.7675 (0.6704; 0.8644)
Lerner Index 0.4356 (0.3858; 0.4854)

Lerner index is then analyzed in the second stage. We refer to this model hereinafter as Model IV.
It is primarily meant to illustrate the empirical sensitivity of the findings to proper modeling of the
simultaneous determination of both the bank’s efficiency and market power.

Before we proceed to the discussion of the main results concerning the market power – efficiency
nexus and its accompanying hypotheses, we first examine the estimates of the scale elasticity. The
posterior mean estimates of εy along with their 95% credible interval from the four estimated models
are reported in Table 2. The estimates are of interest because they gauge returns to scale in the
industry. Specifically, the bank is said to exhibit increasing/constant/decreasing returns to scale
if the scale elasticity (of cost) is less than/equal to/greater than one. While the posterior mean
(point) estimates from all four models suggest that, on average, banks operate at increasing returns
to scale during our sample period, in the case of Model II the 95% posterior coverage region includes
unity thereby suggesting roughly constant returns to scale. All other models however indicate that
the banking industry exhibits significant scale economies, consistent with the recent findings (e.g.,
Wheelock & Wilson, 2012; Hughes & Mester, 2013; Malikov, Restrepo-Tobón & Kumbhakar, 2015).

Table 3 presents the estimates of primary interest to our paper. The reported are the posterior
mean estimates of the bank’s cost efficiency and the Lerner index from the four models over the
entire sample. Among the three specifications of our system-based approach, Model I yields the
highest estimates of the mean cost efficiency for banks at around 0.82, while Model III produces the
lowest estimates that are, on average, about 2.5 basis points lower. Interestingly, when we estimate
the cost frontier without any accommodation of the joint dependence of the bank’s market power
and efficiency (Model IV), we obtain efficiency scores that are even lower with the average posterior
estimate of 0.77. The differences in results from the two types of models (our preferred system-based
estimator vs. a more popular single-equation specification) are more evident when we contrast their
estimates of the Lerner index. Model IV appears to over-estimate the monopolistic power exercised
by the banks in our sample, with the pooled mean posterior estimate being as high as 0.44 versus
the value of the corresponding statistic from our system-based Models I–III ranging between 0.33
and 0.36.

We are now ready to formally examine the relationship between the bank’s market power and
cost efficiency, the focal point of our paper. In Table 4, we report the posterior mean estimates
(along with their 95% Bayes intervals) of the parameters describing the distribution(s) of the two
latent variables of interest: cost inefficiency uC and the log-Lerner-index function uL. Our proposed
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Table 4. Posterior Mean Estimates of Parameters across Models I–IV

(I) (II) (III) (IV)

Mean of Cost Inefficiency
Constant –1.335 –0.717 –0.445 –0.373

(–1.515; –0.877) (–0.944; –0.342) (–0.525; –0.316) (–0.551; –0.212)
t 0.035 0.042 0.017 0.005

(0.017; 0.044) (0.030; 0.052) (0.012; 0.023) (0.002; 0.013)
t2 –0.004 0.003 0.001 0.001

(–0.006; –0.002) (–0.004; 0.005) (–0.002; 0.003) (–0.002; 0.003)
log(Size) 0.377 0.173 0.216 0.105

(0.221; 0.414) (0.005; 0.224) (0.130; 0.245) (0.007; 0.155)
Equity-to-Assets Ratio 0.251 0.180 0.313 0.216

(0.181; 0.322) (0.103; 0.199) (0.277; 0.366) (0.189; 0.256)
Loan-Loss Provision Share 0.414 0.255 0.202 0.104

(0.303; 0.525) (0.188; 0.344) (0.177; 0.287) (0.005; 0.153)
Loan-Loss Reserve Share 0.382 0.214 0.288 0.105

(0.301; 0.405) (0.187; 0.289) (0.217; 0.322) (0.007; 0.114)
Z-Score –0.155 0.224 –0.188 0.150

(–0.182; –0.051) (0.117; 0.344) (–0.226; –0.032) (0.008; 0.178)
log(DPI) 0.036 0.043 0.025 –0.015

(0.017; 0.045) (0.025; 0.062) (0.010; 0.041) (–0.022; –0.006)
Unemployment Rate –0.040 –0.035 –0.044 –0.017

(–0.051; –0.032) (–0.044; –0.022) (–0.051; –0.030) (–0.001; –0.024)
Intrastate Deregulation 0.355 0.132 0.177 0.044

(0.228; 0.381) (0.065; 0.187) (0.045; 0.193) (0.035; 0.057)
Interstate Deregulation –0.312 –0.044 –0.225 –0.104

(–0.420; –0.255) (–0.055; –0.038) (–0.326; –0.189 (–0.005; –0.176)
IBBEA Deregulation 0.286 0.188 0.142 0.176

(0.133; 0.351) (0.102; 0.197) (0.133; 0.171) (0.103; 0.222)
u2 0.166 0.182

(0.103; 0.177) (0.144; 0.202)

(continued on the next page)

NOTE: The 95% credible intervals in parentheses.

system-based approach to modeling joint dependence of the latent market power and cost efficiency
presents a natural tool to statistically assess the relationship and to formally discriminate between
the two competing hypotheses: QLH versus ESH. More specifically, depending on the econometric
formulation of our system, we can test the sign of the relationship by examining (i) the covariance
between uC and uL in Model I, (ii) the coefficient of uL appearing in the mean function of uC in
Model II or (iii) the coefficients of uL and uC respectively appearing in the mean functions of uC and
uL in Model III. From Table 4, we see that, across all three unified system-based Models I–III, the
relevant parameters regulating the dependence between uL and uC are significantly positive. Since
uC is a decreasing function of the cost efficiency while uL is an increasing function of the market
power, the data thus lend support to the QLH whereby the greater monopolistic power generally
permits banks to operate at lower efficiency levels.8 This is consistent with earlier findings by
Koetter & Vins (2008), Delis & Tsionas (2009), Turk Ariss (2010) and Dong et al. (2016) for
banks in the U.S. and other countries. Also, recall that our result is conditional on heterogeneous
bank characteristics which we control for in the estimation of means of uC and uL. Further, the

8Since a positive relationship between uC and uL imply a negative relationship between cost efficiency (exp{−uC})
and the Lerner measure of market power (1− exp{−uL}).
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Table 4. Posterior Mean Estimates of Parameters across Models I–IV (cont.)

(I) (II) (III) (IV)

Mean of the log Lerner Index
Constant –0.355 –0.714 –0.525

(–0.617; –0.188) (–1.414; –0.353) (–0.871; –0.212)
t 0.044 0.032 0.030

(0.015; 0.055) (0.020; 0.048) (0.017; 0.055)
t2 –0.004 –0.002 –0.001

(–0.008; –0.002) (–0.001; –0.003) (–0.012; 0.120)
log(Size) 0.366 0.289 0.312

(0.216; 0.457) (0.155; 0.317) (0.181; 0.416)
Top Hundred Bank 0.422 0.388 0.455

(0.289; 0.588) (0.101; 0.560) (0.317; 0.588)
Asset Market Share in State 0.203 0.181 0.225

(0.113; 0.352) (0.044; 0.203) (0.141; 0.327)
# Mergers in State 0.456 0.188 0.417

(0.382; 0.551) (0.072; 0.277) (0.226; 0.617)
Securities Share 0.388 0.217 0.181

(0.144; 0.524) (0.044; 0.513) (0.072; 0.226)
HHI for Loans 0.727 0.515 0.103

(0.551; 0.827) (0.313; 0.688) (0.064; 0.203)
Non-interest Income Share 0.332 0.202 0.188

(0.187; 0.482) (0.103; 0.355) (0.065; 0.254)
log(DPI) 0.316 0.217 –0.016

(0.188; 0.415) (0.188; 0.335) (–0.035; 0.044)
Unemployment Rate 0.188 0.103 –0.022

(0.055; 0.213) (0.054; 0.210) (–0.036; –0.015)
Intrastate Deregulation 0.316 –0.117 –0.025

(0.188; 0.440) (–0.221; –0.073) (–0.033; 0.015)
Interastate Deregulation 0.283 0.132 –0.017

(0.155; 0.318) (–0.071; 0.218) (–0.022; 0.030)
IBBEA Deregulation 0.187 0.351 –0.032

(0.133; 0.220) (0.144; 0.447) (–0.052; 0.071)
u1 0.228

(0.170; 0.316)

Variance–Covariance
var(u1) 0.317 0.225 0.228 0.187

(0.285; 0.388) (0.188; 0.287) (0.186; 0.303) (0.115; 0.214)
var(u2) 0.455 0.317 0.285

(0.388; 0.515) (0.289; 0.355) (0.212; 0.317)
cov(u1, u2) 0.224

(0.216; 0.277)

Log Bayes Factor 22.351 1.000 2.305

NOTE: The 95% credible intervals in parentheses. Bayes Factors are relative to Model II.
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differences in our formulation of the dependence between the cost efficiency and the Lerner index
across specifications I through III also allow us to implicitly assess the underlying nature of the
relationship between the two. Concretely, the log Bayes factors9 reported at the bottom of Table 4
indicate that our data distinctly favor the “agnostic” Model I over the two alternative econometric
specifications of the joint dependence between uC and uL. Thus, the selected model implies that
the data are not revealing of a clear causal directionality in the relationship between the bank’s
efficiency and monopolistic power.

The QLH-consistent negative relationship between the bank’s cost efficiency and market power
can be vividly seen by looking at Figure 1. The top row of Figure 1 depicts contours of bivariate
kernel densities10 of the bank-level estimates of cost efficiency and the Lerner index for all three
specification of our proposed model. These plots allow us to assess the relationship not just at a
given moment (say, average) but distribution-wise. Conversely, plots in the bottom row of Figure 1
enable us to examine the relationship at different quantiles. Specifically, they show the estimated
10th, 25th, 50th, 75th and 90th quantiles of the bank’s cost efficiency conditional on its Lerner
index. The fitted conditional quantile functions are obtained by inverting the nonparametrically
estimated kernel conditional cdf of the cost efficiency given the market power.11 To avoid any
confusion, we would like to stress that the plotted are not the confidence bounds. Both kinds of
plots suggest that, when the simultaneous determination of the banks’ efficiency and the market
power is modeled explicitly (as in Models I–III), the two exhibit a strong negative relationship. To
the contrary of the above results from our system-based models, a single-equation Model IV points
to a positive relationship between the bank’s cost efficiency and the Lerner index which is in line with
the ESH. To see this, consider Figure 2 which plots the bivariate kernel density and the conditional
quantile functions for the estimates from Model IV. For instance, Koetter et al. (2012) also find
such a positive relationship using the method like the one of Model IV. However, since Model IV
does not explicitly formulate the joint dependence between the market power and efficiency, we
do not have a direct way to formally test for the sign of the relationship between the two. While
one would normally be tempted to run a second-stage regression as widely done in the literature,
the latter procedure would not produce valid inference in the light of the problems discussed in
the Introduction. Thus, any inference, even informal, on the basis of patterns discernible from
Figure 2 is likely to be misleading, especially because the estimates of both measures are prone to
simultaneity and misspecification biases due to Model IV’s failure to meaningfully accommodate
the joint dependence of the two.

We conclude by briefly commenting on the results pertaining to contextual controls. Most bank
characteristics have significant effects on the mean cost inefficiency and marker power, and the
effects are largely of expected signs with very few reversals across model specifications. We find
that, over time, banks have generally acquired more market power while having become more cost
inefficient. Rather expectedly, the results from all models also suggest that larger banks tend to
be less efficient but also to exert greater monopolistic power in the markets than their smaller
counterparts. Consistent with one’s intuition, the largest banks as well as, more generally, banks
with larger market share are estimated to have more market power. Same holds for the institutions
operating in less competitive markets as proxied by the number of mergers at the state level. The
banks with higher market power are also found to be those with less diversified loan portfolios
(higher HHI for loans) and those more heavily engaged in nontraditional activities. Based on the
results from Model I most preferred by the data, we also find that the deregulation appears to have

9Computed using a Laplace approximation (DiCiccio, Kass, Raftery & Wasserman, 1997).
10We use an axis-aligned bivariate Gaussian kernel, evaluated on a square grid using the normal reference bandwidth.
11We employ the second-order Gaussian kernel and the cross-validated bandwidth.
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Figure 1. Banks’ Cost Efficiency and Market Power (Models I–III):
Bivariate Kernel Densities (top row) and Nonparametric Quantile Regressions (bottom tow)
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Figure 2. Bivariate Kernel Density and Nonparametric Quantile Regression of Banks’ Cost
Efficiency and Market Power (Model IV)

positively contributed to the monopolization of the industry. The model also suggests that banks
with lower z-scores (higher probability of insolvency) tend to be more cost inefficient.

5 Conclusion

This paper develops a novel unified econometric methodology for the formal examination of the
market power – cost efficiency nexus. Our approach can meaningfully accommodate a mutually
dependent relationship between the firm’s cost efficiency and marker power (as measured by the
Lerner index) by explicitly modeling the simultaneous/endogenous determination of the two in a
system of nonlinear equations consisting of the firm’s cost frontier and the revenue-to-cost ratio
equation derived from its stochastic revenue function. Both the firm’s cost efficiency and marker
power index are estimated jointly and derived from a single unified model thus enabling us to
interpret and analyze them on a common ground. Our framework places no a priori restrictions
on the sign of the dependence between the firm’s monopolistic power and efficiency as well as
allows for different hierarchical orderings between the two, enabling us to meaningfully discriminate
between competing quiet life and efficient structure hypotheses. Among other benefits, our approach
completely obviates the need for second-stage regressions of the cost efficiency estimates on the
constructed market power measures which, while widely prevalent in the literature, suffer from
multiple econometric problems as well as lack internal consistency/validity.

We showcase our methodology by applying it to a panel of U.S. commercial banks in 1984–2007.
To draw statistical inference, we consider three alternative econometric specifications of our unified
system-based model which we estimate using MCMC methods. Regardless of the econometric
specification of the model used, the data consistently point to a negative dependence between the
bank’s cost efficiency and the Lerner index thus providing empirical evidence in support of the
quiet life hypothesis. This finding is reversed when we employ a traditional two-stage analysis
where the cost efficiency and the adjusted Lerner index are estimated separately without allowing
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for a simultaneous determination of the two. The latter highlights the pivotal importance of a
proper econometric modeling of the market power – efficiency relationship which a popular two-
stage analysis is unable to deliver.

Appendix: MCMC Techniques

Across all models (where appropriate), we use the following priors for γ1, γ2, ψ1, ψ1, Ω and Σ: γj ∼
N(0, 104I) for j = 1, 2; ψj ∼ N(0, 104) independently for j = 1, 2; p(Ω) ∝ |Ω|(−n̄+1) exp{tr[ĀΩ−1]}
and p(Σ) ∝ |Σ|(−n̄+1) exp{tr[ĀΣ−1]}, both from the inverse-Wishart distribution with n̄ = 1 and
Ā = 10−4I.

A Model I

The augmented kernel posterior distribution is

p (β,Σ,Ω,µ,u|Ξ) ∝ |Ω|−nT/2 |Σ|−nT/2Φρ

(
Ω−1

diagµ
)−nT

×

exp

{
−1

2

n∑

i=1

T∑

t=1

[
(rit − uit)

′Σ−1(rit − uit)− (uit − µ)′Ω−1(uit − µ)
]}

,

(A.1)

where rit = yit −
[

x′
itβ

f(xit;β)

]
.

Like we have showed in Section 3, while it is certainly possible to integrate the latent variables
out, the resulting posterior is however highly nonlinear. Since β enters the second equation in
(3.1) in a nonlinear way, we need to construct an efficient proposal distribution to use with the
Metropolis-Hastings algorithm.

Let β̂ be some estimator of β, say, the least squares estimator applied to the cost function
in (3.1a). Then, the scale elasticity can then be computed as

∑
m ε̂ym,it

= x′
o,itRβ̂. Linearizing

f(xit;β) ≡ ln
(∑

m εym,it

)
, we obtain that f̂it(x;β) ≃ ln

(∑
m ε̂ym,it

)
− 1 +

(∑
m ε̂ym,it

)−1
x′
o,itRβ.

We next rewrite the system in (3.1) as follows:

y1,it − u1,it = x′
itβ + v1,it (A.2a)

y2,it − ln
(
x′
o,itRβ̂

)
+ 1− u2,it ≃

(
R′xo,it

(
x′
o,itRβ̂

)−1
)′

β + v2,it ≡ x̃′
o,itβ + v2,it. (A.2b)

For known values of uit, the GLS estimator of β is given by

β∗ =

(
n∑

i=1

T∑

t=1

XitΣ
−1X′

it

)−1 n∑

i=1

T∑

t=1

XitΣ
−1Yit, (A.3)

where we let Yit =

[
y1,it − u1,it

y2,it − ln
(
x′
o,itRβ̂

)
+ 1− u2,it

]
and Xit =

[
xit

x̃o,it

]
. The corresponding GLS

variance-covariance matrix is V∗ =
(∑n

i=1

∑T
t=1XitΣ

−1X′
it

)−1
.
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The proposal distribution is Nk (β
∗, hV∗), where h > 0 is a certain constant. If we draw a

candidate βc ∼ Nk (β
∗, hV∗) and the chain is currently at βo, according to the independence

Metropolis-Hastings proposal, the acceptance probability is

min

{
1,

exp
{
−1

2 tr
[
Q(βc)Σ−1

]
− 1

2h2 (β
c − β∗)′V∗−1 (βc − β∗)

}

exp
{
−1

2 tr [Q(βo)Σ−1]− 1
2h2 (β

o − β∗)′V∗−1 (βo − β∗)
}
}
, (A.4)

where Q(β) =
∑n

i=1

∑T
t=1

(
yit −

[
x′
itβ

f(xit;β)

])(
yit −

[
x′
itβ

f(xit;β)

])′
.

An alternative is to use a random walk Metropolis-Hastings proposal in which βc ∼ Nk (β
o, hV∗).

The acceptance probability then becomes

min

{
1,

exp
{
−1

2 tr
[
Q(βc)Σ−1

]}

exp
{
−1

2 tr [Q(βo)Σ−1]
}
}
. (A.5)

Also, note that the proposal distributions can be constructed using the direct least squares esti-
mator of the cost function in (A.2a). In this case, β∗ andV∗ in the above discussion is to be replaced

with β∗ =
(∑n

i=1

∑T
t=1 xitx

′
it

)−1∑n
i=1

∑T
t=1 xit(y1,it − u1,it) and V∗ = s2

(∑n
i=1

∑T
t=1 xitx

′
it

)−1
,

where s2 = (nT )−1
∑n

i=1

∑T
t=1

(
y1,it − u1,it − xitβ̂

)2
. Then, we can use either an independence or

a random walk Metropolis-Hastings algorithm. The benefit is that we avoid the costly inversion of
the GLS variance-covariance matrix in each MCMC iteration.

The posterior conditional distribution of uit is given by

p (uit|β,Σ,Ω,µ,Ξ) ∝ exp

{
−1

2
(uit − µ∗

it)
′
V−1 (uit − µ∗

it)

}
× ✶ (uit ≥ 0) , (A.6)

or uit|β,Σ,Ω,µ,Ξ ∼ N
+
d (µ∗

it,V). Random draws can be obtained, say, in the bivariate case by
using the conditional distributions as follows:

u1,it|u2,it,β,Σ,Ω,Ξ ∼ N
+
1 (û1,it, 1/V11)

u2,it|u1,it,β,Σ,Ω,Ξ ∼ N
+
1 (û2,it, 1/V22) , (A.7)

where û1,it = µ∗1,it+
V12

V11

(
µ∗2,it − u2,it

)
, û2,it = µ∗2,it+

V12

V22

(
µ∗1,it − u1,it

)
, V−1 = [Vij ; i, j = 1, 2] and

µ∗
it =

[
µ∗1,it, µ

∗
2,it

]′
.

Since these distributions are univariate, we can use standard procedures for generating normal
random variables truncated from below at zero. Here, we use the acceptance sampling based on
an exponential distribution. For the truncated normal distribution u ∼ N

+ (M, v), the parameter

of the exponential distribution is λ = M+
√
M2+4v
2 . The draw u ∼ Exp(λ) is accepted with the

probability

exp

{
λu− 1− 1

2v
(u−M)2 +

(
λ−1 −M

)2
}
, (A.8)

which corresponds to the unique solution of the saddle-point problem:

min
λ

max
u

: λ−1 exp

{
λu− 1

2v
(u−M)2

}
× ✶ (u ≥ 0) . (A.9)
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The analogous problem in the multivariate case u ∼ N
+
d (M ,V ) has the solution λ+V −1M −

V −1Λ−1 = 0d, where Λ = diag {λ} = diag {λ1, ..., λm} is the matrix of the parameters of the
exponential distributions. Assuming λ1 = · · · = λm = α, the unique solution is given by α =(
d−1

∑d
i=1 u

∗
i

)−1
, where u∗ solves the following equations:

1d = d
(
1′du

∗)V −1 (u∗ −M) . (A.10)

Next, the posterior conditional distribution of Σ is given by

p (Σ|β,Ω,u,Ξ) ∝ |Σ|−nT/2 exp

{
−1

2
tr
[
A∗Σ−1

]}
, (A.11)

where A∗ =
∑n

i=1

∑T
t=1 (rit − uit) (rit − uit)

′, i.e., a Wishart distribution.

Further, the posterior conditional distribution of Ω−1 is

p
(
Ω−1|β,Σ,u,µ,Ξ

)
∝ |Ω|−nT/2 exp

{
−1

2
tr
[
A∗∗Ω−1

]}
Φρ

(
Ω−1

diagµ
)−nT

, (A.12)

where A∗∗ =
∑n

i=1

∑T
t=1 (uit − µ) (ui − µ)′, which would have been a Wishart distribution if it

were not for the last term.

Finally, we have

p (µ|β,Σ,Ω,u,Ξ) ∝ exp

{
−1

2
tr
[
Ω−1

]
A∗∗

}
Φρ

(
Ω−1

diagµ
)−nT

, (A.13)

from where it follows that µ|β,Σ,Ω,u,µ,Ξ ∼ Nd

(
(nT )−1

∑n
i=1

∑T
t=1 uit, (nT )

−1Ω
)
, apart from

the last term in the above expression.

We note that, if the location parameter of the truncated normal distribution of uit is not constant

but varying with some contextual variables, i.e., if µit =

[
µ1,it
µ2,it

]
=

[
z′1,itγ1

z′2,itγ2

]
=

[
z1,it 0l1
0l2 z2,it

]′ [
γ1

γ2

]
≡

Z′
itγ, where z1,it and z2,it is an l1 × 1 and l2 × 1 vector of covariates, and γ1 and γ2 is an l1 × 1

and l2 × 1 vector of the corresponding parameters, respectively, then

p (γ|β,Σ,Ω,u,Ξ) ∝ exp

{
−1

2
tr
[
Ω−1

] n∑

i=1

T∑

t=1

(
uit − Z′

itγ
) (

uit − Z′
itγ
)′
}
×

n∏

i=1

T∏

t=1

Φρ

(
Ω−1

diagZ
′
itγ
)−1

. (A.14)

From the first half of the above expression it follows that γ|β,Σ,Ω,u,Ξ ∼ Nl1+l2 (γ̂,Vγ),

where γ̂ =
(
Z′ (InT ⊗Ω−1

)
Z
)−1

Z′ (InT ⊗Ω−1
)
U and Vγ =

(
Z′ (InT ⊗Ω−1

)
Z
)−1

with U =
[u1,11, . . . , u1,nT , u2,11, . . . , u2,nT ]

′ and

Z =




z′1,11 0
...

...
z′1,nT 0

0 z′2,11
...

...
0 z′2,nT
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being of the 2nT × 1 and 2nT × (l1 + l2) dimensions, respectively. Apart from the nonlinear
product term appearing in the second half of the expression in (A.14), the posterior conditional
corresponds to the SUR model. Hence, for samples of the large size, γ̂ can be computed as γ̂ =(∑n

i=1

∑T
t=1 ZitΩ

−1Z′
it

)−1∑n
i=1

∑T
t=1 ZitΩ

−1Uit along with Vγ =
(∑n

i=1

∑T
t=1 ZitΩ

−1Z′
it

)−1
.

B Model II

Since, in our empirical application, we set z1,it = z2,it =
[
1, t, 12 t

2
]′
, here we focus on the special case

when z1,it = z2,it ≡ zit, which is said to be of dimension l. When estimating the hierarchical model,
the only component which changes in the MCMC scheme is the way we sample the latent variables
and their corresponding parameters. After some algebra in the kernel posterior distribution, we
derive the following posterior conditional distributions:

uit|β,γ, ψ1,Σ, ω
2
1, ω

2
2,Ξ ∼ N

+
2 (ûit,Vu)× Φ

((
z′itγ1 + ψ1u2,it

)
/ω1

)−1
, (B.1)

where

ûit =
(
ω2
1ω

2
2Σ

−1 +
(
ω2
1 + ω2

2

(
1 + ψ2

1

))
I2
)−1 (

ω2
1ω

2
2Σ

−1rit + [ι2 ⊗ zit]
′ϕ
)

ϕ =

[
γ1/ω

2
2

ω2
1

(
γ2 − ψ1ω

2
2γ1

)
]

Vu = ω2
1ω

2
2

(
Σ−1 +

(
ω2
1 + ω2

2

(
1 + ψ2

1

))
I2
)−1

,

where ι2 is a 2× 1 vector of ones.

Since u2,it appears in a nonlinear way, we can use the following alternative posterior conditional
distributions:

u1,it|u2,it,β,γ, ψ1,Σ, ω
2
1, ω

2
2,Ξ ∼ N

+

(
µ1,it,

ω2
1

1 + σ11ω2
1

)
(B.2a)

u2,it|u1,it,β,γ, ψ1,Σ, ω
2
1, ω

2
2,Ξ ∼ N

+

(
µ2,it,

ω2
2

1 + σ22ω2
2

)
× Φ

((
z′itγ1 + ψ1u2,it

)
/ω1

)−1
, (B.2b)

where

µ1,it =

(
ψ1 − ω2

1σ12
)
u2,it + z′itγ1 + ω2

1

(
Σ−1rit

)
1

1 + σ11ω2
1

, µ2,it =
−ω2

2σ12u1,it + z′itγ2 + ω2
2

(
Σ−1rit

)
2

1 + σ22ω2
2

and
(
Σ−1rit

)
j
denotes the jth row of

(
Σ−1rit

)
for j = 1, 2. Although the first conditional distribu-

tion above is a truncated normal, the second one is however not due to the presence of its last term,
which comes from the normalizing constant of the prior conditional for u1,it|u2,it, zit. To draw sam-
ples from this conditional distribution, we first write it in the form of x ∼ N

+
(
µ, v2

)
×Φ (a+ bx)−1

using obvious notation. Suppose w = a + bx. It is then easy to show that the derivatives
of the log density are f ′(x) = 1

2(bv)
−1(w − a − bµ) + bvΛ(w), where Λ(w) = φ(w)/Φ(w) and

−f ′′(x) = 1
2 +(bv)2Λ(w) [1 + Λ(w)] > 0 for all w ∈ R, from where it follows that the distribution is

log-concave. The mode satisfies the following nonlinear equation: w∗+2(bv)2Λ(w∗)− (a+ bµ) = 0,
from where we get x∗ = b−1 (w∗ − a). Thus, we can use acceptance sampling when the source

distribution is x ∼ N
+
(
x∗,−f ′′ (x∗)−1

)
.

When the sample size is large, we have to resort to certain simplifications to speed up the

procedure. First, to avoid solving the nonlinear equation, we set x ∼ N
+
(
x∗,−f ′′ (x∗)−1

)
which
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is one fixed-point iteration away from the initial condition w(0) = a+ bµ. Second, in extreme cases
when it takes more than 100 rejections to obtain a draw, we resort to a Metropolis-Hastings by

drawing x ∼ N
+
(
a−1 (w∗ − b) ,−f ′′

(
a−1 (w∗ − b)

)−1
)
and accepting the draw with the probability

min

{
1, exp

{
− 1

2v2

[
(x− µ)2 +

(
x(o) − µ

)2]
+ 1

2v2

[
(x− x∗)2 +

(
x(o) − x∗

)2]}
Φ (a+ bx)−1Φ

(
a+ bx(o)

)}
.

(B.3)

For other parameters, the posterior conditional distributions are as follows:

[
γ1

ψ1

] ∣∣∣uit,β,γ2,Σ, ω
2
1, ω

2
2,Ξ ∼ Nl+1

((
Z′
uZu

)−1
Z′
uu1, ω

2
1

(
Z′
uZu

)−1
)
×

n∏

i=1

T∏

t=1

Φ
((
z′itγ1 + ψ1u2,it

)
/ω1

)−1

(B.4a)

γ2|uit,β, ψ1,Σ, ω
2
1, ω

2
2,Ξ ∼ Nl

(
Z′Z)−1Z′u2, ω

2
2(Z

′Z)−1
)
×

n∏

i=1

T∏

t=1

Φ
(
z′itγ2/ω2

)−1
, (B.4b)

where Z = [z11, . . . , znT ]
′, u1 = [u1,11, . . . , u1,nT ]

′, u2 = [u2,11, . . . , u2,nT ]
′ and Zu =

[
Z u2

]
.

C Model III

Similar to Model II, here we focus on the special case when z1,it = z2,it ≡ zit, which is said to
be of dimension l. If approximations to the marginal distributions are available, then the joint
distribution of u1,it and u2,it is

p̃ (u1,it, u2,it|zit) =
[
p (u1,it|u2,it, zit) p (u2,it|u1,it, zit) p̃ (u1,it|zit) p̃ (u2,it|zit)

]1/2
, (C.1)

where p̃ (u1,it|zit) and p̃ (u2,it|zit) denote certain approximations to the marginal distributions.
Specifically, we use the following approximations:

u1,it|zit ∼ N
+
(
µ̂1,it, ω̂

2
1

)
(C.2a)

u2,it|zit ∼ N
+
(
µ̂2,it, ω̂

2
2

)
, (C.2b)

where the location and scale parameters are to be determined. To build such approximations, we

use MCMC to obtain a large sample of dependent draws

{
u
(s)
it =

[
u
(s)
1,it, u

(s)
2,it

]′
, s = 1, ..., S

}
from

the specification of conditional distributions. Therefore, the posterior distribution of the latent
variables is

p (u1,it, u2,it|Ξ,θ) = exp

{
−1

2
(uit − rit)

′

Σ−1 (uit − rit)

}
×

[
p (u1,it|u2,it, zit) p (u2,it|u1,it, zit) p̃ (u1,it|zit) p̃ (u2,it|zit)

]1/2

∝ exp

{
−1

2
(uit − rit)

′

Σ−1 (uit − rit)−
1

4ω2

1

(u1,it − z′itγ1
− ψ1u2,it)

2 − 1

4ω2

2

(u2,it − z′itγ2
− ψ2u2,it)

2

}
×

Φ−1/2 ((z′itγ1
+ ψ1u2,it) /ω1) Φ

−1/2 ((z′itγ2
+ ψ2u1,it) /ω2)×

exp

{
− 1

4ω̂2

1

(u1,it − µ̂1,it)
2 − 1

4ω̂2

2

(u2,it − µ̂2,it)
2

}
. (C.3)
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Now, we need to determine the location and scale parameters in the approximations of the

marginal distributions. Based on the univariate approximately random samples
{
u
(s)
1,it, s = 1, ..., S

}

and
{
u
(s)
2,it, s = 1, ..., S

}
obtained by MCMC from the set of conditional distributions, we can

employ the ML method to determine parameters ζ̂1, ζ̂2, ω̂
2
1 and ω̂2

2 under the assumption that

µ̂1,it = z′itζ̂1 and µ̂2,it = z′itζ̂2. The ML estimates can be obtained by maximizing the following
log-likelihood:

Lj = −nT
2

ln ω̂2
j −

1

2ω̂2
j

n∑

i=1

T∑

t=1

(
ũj,it − z′itζ̂j

)2
−

n∑

i=1

T∑

t=1

lnΦ
(
z′itζ̂j/ω̂j

)
∀ j = 1, 2. (C.4)

Then, from the expression

p (u1,it, u2,it|Ξ,θ) = exp

{
−1

2
(uit − rit)

′
Σ−1 (uit − rit)

}
p (u1,it, u2,it|zit) (C.5)

we can obtain, through a small-scale MCMC, a draw {ũit, i = 1, ..., n; t = 1, . . . , T} from p (u1,it, u2,it|zit)].
Given the existing draw

{
u
(o)
it , i = 1, ..., n; t = 1, . . . , T

}
, the new draw will be accepted with the

probability

min

{
1, exp

{
−1

2
tr

[
n∑

i=1

T∑

t=1

(ũit − rit) (ũit − rit)
′ −

n∑

i=1

T∑

t=1

(
u
(o)
it − rit

)(
u
(o)
it − rit

)′
]}}

. (C.6)

This procedure updates the latent variables as a group for all observations so if the acceptance
probability is not exceedingly low or exceedingly high, it is expected to perform quite well.
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