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The Topology of Change:
Foundations of Probability with Black Swans

Graciela Chichilnisky

Abstract Classic probability theory treats rare events as ‘outliers’ that are often dis-

regarded and underestimated. Yet in a moment of change rare events can become

frequent and frequent events rare. We therefore postulate new axioms for probabil-

ity theory that require a balanced treatment for rare and frequent events, based on

what we call ”the topology of change”. The axioms extend the foundation of prob-

ability to integrate rare but potentially catastrophic events or black swans: natural

hazards, market crashes, catastrophic climate change and major episodes of species

extinction. The new results presented in this article include a characterization of a

family of purely finitely additive measures that are - somewhat surprisingly - abso-

lutely continuous with respect to the Lebesgue measure. This is a new development

from an earlier characterization of all the probabilities measures implied by the new

axioms as a combination of purely finitely additive and countably additive measures

that was first established in Chichilnisky (2000, 2002, 2008, 2009), and the results

are contrasted here to the work of Kolmogorov (1932), De Groot (1970), Arrow

(1971)), Dubins and Savage (1963), Savage (1954), Von Neumann Morgernstern

(1954), and Hernstein and Milnor (1972).

1 Introduction

Classic probability theory treats rare events as ‘outliers’ and often disregards them.

This is an unavoidable shortcoming of classic theory that has been known for some

time and conflicts with observations about the distribution of rare events in natural

and human systems, such as earthquakes and financial markets. It is now known

that the shortcoming originates from the axioms created by Kolmogorov (1932) to

provide a foundation for probability theory, Chichilnisky (2000, 2002). It turns out

that the same phenomenon that underestimates rare events leads classic probability
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theory to underestimate the likelihood of change. In a situation of change, events

that are rare become frequent and events that are frequent become rare. Therefore

by ignoring rare events we tend to underestimate the possibility of change. In a slight

abuse of language it could be said that classic probability theory leads us to ‘ignore’

change. The change we refer to includes rare events of great importance that should

not be underestimated, for example black swans such as catastrophic climate change

and major episodes of species extinction.

Sensitivity to change - or lack thereof - is a topological issue at its core. It mea-

sures how likelihoods change with changes in measurements or observations. If we

are sensitive to change our responses change in harmony with the signals. To dis-

regard change means that our response ”needle” is either insensitive to, or at odds

with, the signals. In mathematical terms this is all about continuity of the response

and as such it is defined and measured by topology. In a recent discovery it was

found that an important continuity axiom of classic probability theory is responsi-

ble for the insensitivity to rare events. De Groot (1972) calls this axiom SP4, Arrow

(1982) called it ”monotone continuity” (Arrow (1972), and similar continuity ax-

ioms appear in Hernstein and Milnor (1972), see Chichilnisky (2000, 2002)). The

continuity that these axioms provide is coarse, and it was shown to be responsible

for the insensitivity to rare events (Chichilnisky (2009, 2010)). In that sense the

classic axioms lead to insensitivity about the likelihood of change. The fact is that a

single continuity axiom explains why classic probability theory is insensitive to rare

events and why it ignores change.

To overcome this limitation, new axioms for probability theory were created that

balance the treatment of rare and frequent events, based on a more sensitive notion

of continuity or a ‘finer’ topology – and new types of probability distributions have

been identified as emerging from the new axioms (Chichilnisky 2000, 2002). In or-

der to be sensitive to rare events, the new axioms have to use a different continuity

criterion, a topology finer than that implicit in axiom SP4 or in the monotone conti-

nuity axiom, both of which involve averages. This new topology is about extremes

not averages, and it is appropriately called ”the topology of change” because it is

more sensitive to the measurement of rare events that are often at stake in a situation

of change. This new topology is the sup norm topology on L∞ that, while new in this

area, has been used earlier by Debreu (1953) to formalize Adam Smith’s theorem on

the Invisible Hand, and was used in Chichilnisky (2000, 2002) to axiomatize choice

under uncertainty. The sup norm provides a finer notion of continuity than ”mono-

tone continuity” and SP4. This sensitivity tallies with the experimental evidence of

how people react to rare events (Le Doux (1996), Chichilnisky (2009)). Using the

topology of change, the new axioms of probability theory extend the classic foun-

dations of probability, treating rare and frequent events in a more balanced fashion

and providing a more balanced view on the likelihood of change.

This article provides new results in this framework, as follows. We introduce the

Swan Axiom, a new axiom that is based on continuity in the topology of change.

We show how the old and the new topologies differ, namely how continuity in the

sense of monotone continuity and SP4 does not imply continuity in the topology

of change and how this changes the probability distributions from countably addi-
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tive to a combination of countably additive and purely finitely additive measures.

We also identify a new family of purely finitely additive measures that is contin-

uous with respect to the ”topology of change”. Somewhat surprisingly, we show

that the change in topology - from probability distributions that satisfy Monotone

Continuity to those who satisfy the topology of change - does not necessarily give

rise to discontinuity with respect to the Lebesgue measure on R, such as ‘delta func-

tions’ or measures having or ”atoms”. Indeed the new results presented in this article

show the opposite: each of the measures in the family we provide of purely finitely

additive measures satisfying the new axioms is in fact absolutely continuous with

respect to the Lebesgue measure. Therefore the new notion of continuity that derives

from the new axioms does not imply atoms nor assigns positive weights to sets of

Lebesgue measure zero. These new results tally with the earlier characterization of

probabilities measures satisfying the new axioms as combinations of purely finitely

additive and countably additive measures, Chichilnisky (2000, 2002, 2008, 2009).

We contrasts the new measures with the those defined by Kolmogorov (1932), De

Groot (1970), Arrow (1971)), Dubins and Savage (1963), Savage (1954), Von Neu-

mann Morgernstern (1954), and Hernstein and Milnor (1972). Finally we show that

the new results rather than contradicting classic theory can be seen as an exten-

sion of it. The new theory of probability offered here is an extension of the old: the

probability distributions implied by the new axioms coincide with classic countably

additive distributions when the sample is populated only by frequent events, even

though they are quite different in general. As already stated the new probability

measures consist of a convex combination of countable and finitely additive mea-

sures with strictly positive elements of both which, in practical terms, assign more

weight to black swans than do normal distributions, and predict more realistically

the emergence of change and generally the incidence of ‘outliers’.1 When applied

to decision theory under uncertainty, this gives rise to a new type of rationality that

changes and updates Bayesian updating rules and also Von Neumann Morgernstern

foundations of game theory (Chichilnisky, 1996, 2000, 2009, 2010, 2011), appear-

ing to coincide with the observations in Le Doux (1996) of how the brain makes

decisions using both the amigdala and the cortex.

The article is organized as follows. First we show how the standard notion of

continuity or topology that is used in classic probability theory – ”monotone con-

tinuity” as defined by Arrow 1971, and in Hernstein and Milnor 1972, De Groot

1970 – implies countably additive measures that are by nature insensitive to rare

events and hence to change: these probability measures assign a negligible weight

to rare events, no matter how important these may be, treating such events as out-

liers, Chichilnisky (2009 a,b). On the other hand the purely finitely additive mea-

sures defined by Dubins and Savage (1972) assign no weight to frequent events,

which is equally troubling, as illustrated in the Appendix. Our new axiomatization

for probability theory is shown to balance the two approaches and to extend both,

requiring sensitivity to rare as well as to frequent events. This as we saw requires a

1 The theory presented here explains also Jump-Diffusion processes (Chichilnisky 2012), the exis-

tence of ’heavy tails’ in power law distributions, and the lumpiness of most of the physical systems

that we observe and measure.
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notion of continuity that is defined with respect to a finer topology that is sensitive

to rare as well as to frequent events, the topology of change. The results presented

here highlight the classic issue of topology and continuity that have always been at

the core of the axioms of probability theory (Villegas, 1964, Arrow 1971).

2 The Mathematics of Uncertainty

Uncertainty is described by a distinctive and exhaustive set of events represented

by sets {Uα} whose union describes a universe U . An event is identified with its

characteristic function φU : U → R 2. The relative likelihood or probability of an

event3 is a real number W (U) that measures how likely it is to occur. The probability

of the universe is 1 and that of the empty set is zero. Classic axioms for subjective

probability (respectively likelihoods) were introduced by Kolmogorov (1932), see

Savage (1954) and De Groot (1970). The relative likelihood or probability of two

disjoint events is the sum of their probabilities: W (U1∪U2) =W (U1)+W (U2) when

U1 ∩U2 = /0. This corresponds to the definition of a probability as a measure on a

family (σ−algebra) of measurable sets of U 4.

A measure is a continuous linear function that assigns to each event U a real num-

ber. The space of events can therefore be identified with the space of characteristic

functions, which are measurable and essentially bounded functions. When U = R,
the characteristic functions are in L∞(R), the space of Lebesgue measurable and

essentially bounded real valued functions on R, which we endow with the ”topol-

ogy of change”, defined as the sup norm f : R → R, namely ‖ f ‖= esssupR | f (x) | .
Recall that the functions in L∞ are defined a.e. with respect to the Lebesgue measure

on R, and are each absolutely continuous with respect to the Lebesgue measure on

R. Since measures are continuous real valued function on L∞, they are by definition

in the dual space of L∞ , denoted L∗
∞ , namely in the space of all continuous real

valued functions on L∞ A measure µ therefore satisfies the usual conditions (1)

µ(A∪B) = µ(a)+µ(B) if A and B are disjoint, and µ(∅) = 0. A countably addi-

tive measure is an element of L∗
∞ that satisfies also (2) µ(∑Ai) =∑i µ(Ai) i= 1, ...∞,

when the sets Ai are disjoint. A purely finitely additive measure is an element of L∗
∞

that satisfies condition (1) but not condition (2); therefore for a purely finitely ad-

ditive measure there are cases where the measure of an infinite sequence of disjoint

sets is not the sum of the sequence of their measures. The space of all purely finitely

additive measures is denoted PA.
It is well known that L∗

∞ = L1 +PA where L1 is the space of integrable functions

on R with respect to the Lebesgue measure; this is a classic representation theorem

(Yosida (1953)). Indeed, each countably additive measure can be represented by an

integrable continuous function on L∞ (R) namely a function g : R → R in L1(R),

2 φU (x) = 1 when x ∈U and φU (x) = 0 when x /∈U
3 In this article we make no difference between probabilities and relative likelihoods.
4 This is Savage’s (1954) definition of probability
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where the representation takes the form µ(A) =
∫

A g(x)dx. This representation does

not apply to purely finitely additive measures.5. A vanishing sequence of events

{Eα}=1,2... is defined as one satisfying.∀α, Eα+1 ⊂ Eα and ∩∞
α=1Eα = /0 a.e. The

following two continuity axioms were introduced in Villegas (1964), see also Ar-

row (1971), Hernstein and Milnor (1972) and DeGroot (1970), in each case for the

purpose of ensuring countable additivity:

Axiom 1 (Monotone Continuity Axiom (MC)) For every vanishing sequence of

events {Eα}=1,2... the probability W (Ei)→ 0 as i → ∞.

In words, this axiom requires that the probability of the sets along a vanishing

sequence goes to zero. For example consider the decreasing sequence made of infi-

nite intervals of the form (n,∞) for n = 1,2. . This is a vanishing sequence. Mono-

tone continuity implies that the likelihood of this sequence of events goes to zero

even though all its sets are unbounded and essentially identical. A similar exam-

ple can be constructed with a decreasing sequence of bounded sets, (−1/n,1/n) for

n= 1,2...,which is also a vanishing sequence as it is a decreasing sequence and their

intersection is a single point {0} : observe that the set consisting of a single point

{0} is almost everywhere (a.e.) equal to the empty set on R, and that the events in

this section are always defined a.e. with respect to the Lebesgue measure of R.6

Axiom 2 (De Groot’s Axiom SP4)7 If A1 ⊃ A2 ⊃ ...is a decreasing sequence of

events and B is some fixed event that is less likely than Ai for all i, then the probabil-

ity or likelihood of the intersection ∩∞
i Ai is larger than the probability or likelihood

of the event B.

The following proposition establishes that the two axioms presented above,

Monotone Continuity and SP4, are equivalent and that both imply countable ad-

ditivity:

Proposition 1. A relative likelihood (or probability measure) satisfies the Monotone

Continuity Axiom if and only if it satisfies Axiom SP4 and each of the two axioms

implies countable additivity of the corresponding relative likelihood.

Proof. Assume that Axiom SP4 is satisfied. When the intersection of a decreasing

(nested) vanishing sequence of events {Ai} is empty namely ∩iAi = /0 and the set B is

less likely to occur than every set Ai, then the subset B must be as likely as the empty

set, namely its probability must be zero. In other words, if B is more likely than the

5 Savage’s probabilities can be either purely finitely additive or countably additive. In that sense

they include all the probabilities in this article. However this article will exclude probabilities that

are either purely finitely additive, or those that are countably additive, and therefore our character-

ization of a probability is strictly finer than that Savage’s (1954), and different from the view of a

measure as a countably additive set function in De Groot, 1970.
6 An equivalent definition of Monotone Continuity is that for every two events E1 and E2 in

{Eα}=1,2...with W (E1) > W (E2), there exists N such that altering arbitrarily the events E1 and

E2 on a subset subset E i, where i > N, does not alter the probability or relative likelihood ranking

of the events, namely W (E ′
1)>W (E ′

2) where E ′
1 and E ′

2 are the altered events.
7 See De Groot (1970, 2004).
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empty set, then regardless of how small is the set B, it is impossible for every set Ai

to be as likely as B. Equivalently, the probability of the sets that are far away in the

vanishing sequence {Ai} must go to zero. Therefore SP4 implies Monotone Conti-

nuity (MC). Reciprocally, assume MC is satisfied. Consider a decreasing sequence

of events Ai and define a new sequence by subtracting from each set the intersection

of the family, namely A1 −∩∞
i Ai, A2 −∩∞

i Ai, .... Let B be a set that is more likely

than the empty set but less likely than every Ai. Observe that the intersection of the

new sequence is empty, ∩iAi −∩∞
i Ai = /0 and since Ai ⊃ Ai+1 the new sequence is,

by definition, a vanishing sequence. Therefore by MC limi W (Ai−∩∞
i Ai) = 0. Since

W (B)> 0, B must be more likely than Ai −∩∞
i Ai for some i onwards. Furthermore,

Ai = (Ai−∩∞
i Ai)∪ (∩∞

i Ai) and (Ai−∩∞
i Ai)∩ (∩∞

i Ai) = /0, so that W (Ai)>W (B) is

equivalent to W (Ai −∩∞
i Ai)+W ((∩∞

i Ai) > W (B). Observe that W (∩∞
i Ai) < W (B)

would contradict the inequality W (Ai) =W (Ai−∩∞
i Ai)+W ((∩∞

i Ai)>W (B), since

as we saw above, by MC, limi W (Ai −∩∞
i Ai) = 0, and W (Ai −∩∞

i Ai)+W ((∩∞
i Ai)

> W (B). It follows that W (∩∞
i Ai) > W (B), which establishes De Groots’s Axiom

SP4. Therefore Monotone Continuity is equivalent to De Groot’s Axiom SP4. A

proof that each of the two axioms implies countable additivity is in Villegas (1964),

Arrow (1971) and De Groot (1970).

The next section shows that the two classic axioms, Monotone Continuity and

SP4, are biased against or neglect rare events, no matter how important these may

be.

3 Rare Events and Change

The axioms presented in this article originated from Chichilnisky (1996, 2000,

2002), except for one new axiom - the Swan Axiom - that is introduced here and

represents the essence of the new probability theory. Below we explain how the

Swan Axiom relates to standard theory and its connection with Godel’s incomplete-

ness theorem and the Axiom of Choice that are at the foundation of Mathematics.

To explain how the new theory intersects with standard probability or relative

likelihood, we compare the results presented here with Savage’s (1954) axiomatiza-

tion of probability measures as finitely additive measures, as well as with Villegas’

(1964) and Arrow’s (1971) classic work that is based instead on countably additive

measures. Savage (1954) axiomatizes subjective probabilities as finitely additive

measures representing the decision makers’ beliefs, an approach that can ignore fre-

quent events as shown in the Appendix. To overcome this, Villegas (1964) and Ar-

row (1971) introduced their additional continuity axiom (‘Monotone Continuity’)

that ensures as we saw above the countably additivity of the measures. However

this requirement of monotone continuity has unusual implications when the subject

is confronted with rare events. A practical example it discussed below: it predicts

that in exchange for a couple of cents, one should be willing to accept a small risk

of death, a possibility that Arrow himself described as ‘outrageous’ (1971, p. 48 and

49). The issue of course is the “smallness” of the risk and here is where topology
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enters. Monotone continuity has a low bar for smallness while the sup norm has

a higher bar as we shall see below. This article defines a realistic solution, and it

implies that for some very large payoffs and in certain special situations, one may

be willing to accept a small risk of death - but not in others. This means that Mono-

tone Continuity holds in some cases but not in others, a possibility that leads to the

axiomatization proposed in this article, which is the logical negation of Monotone

Continuity - one that is consistent with recent experimental observations reported in

Chanel and Chichilnisky (2009 a,b).

This section explains in what sense standard probability theory is biased against

- or disregards - rare events. The next section defines new axioms for relative likeli-

hood, and compares them with the classic axioms. In this section the definitions and

results are given for a general measure space of events; the definitions are refined

below when the events are Borel measurable sets in the real line R.

Definition 1. A probability W is said to be biased against rare events or insen-

sitive to rare events when it neglects events that are ’vanishing’ according to the

definition provided in Section 3 above. Formally, a probability is insensitive to rare

events when given two events A and B and any vanishing sequence of events (E j),∃
N = N( f ,g) > 0, such that W (A) > W (B) ⇔ W (A′) > W (B′) ∀ A′,B′ satisfying

A′ = A and B′ = B a.e. on Ec
j ⊂ R when j > N.8 As already discussed this implies a

bias against the likelihood of change.

Proposition 2. A probability satisfies Monotone Continuity if and only if it is biased

against rare events and underestimates the likelihood of change.

Proof. Chichilnisky (2000).

Corollary 1. Countably additive probabilities are biased against rare events and

underestimate change.

Proof. It follows from Propositions 1 and 2 and Chichilnisky (2000).

Proposition 3. Purely finitely additive probabilties are biased against frequent events.

Proof. See Appendix.

The following example illustrates the role of Monotone Continuity and SP4 in

introducing a bias against rare events. The best way to explain the role of Monotone

Continuity is by means of the example provided by Kenneth Arrow, Arrow (1971),

p. 48 and 49. He explains that if a is an action that involves receiving one cent, b is

another that involves receiving zero cents, and c is a third action involving receiving

one cent and facing a small probability of death, then Monotone Continuity requires

that the third action involving death and one cent should be preferred to the action

with zero cents when the probability of death is small enough. One accepts a small

chance of death in exchange for one cent. Even Arrow says ‘this may sound out-

rageous at first blush...’ Arrow (1971) p. 48 and 49. Outrageous or not, Monotone

Continuity (MC) leads to neglect rare events that involve change with major conse-

quences, like death. It can be said that death is a black swan: this is the content of

Proposition 2 above.

8 Here Ec denotes the complement of the set E, A′ = A a.e. on Ec
j ⇔ A′∩Ec

j = A∩Ec
j a.e.
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4 New Axioms for Probability Theory: the Topology of Change

This section presents the new axiomatic foundation for probability theory that is

neither biased against rare nor against frequent events (Chichilnisky, 2000, 2002).

The new axioms for probability - or relative likelihoods - are as follows:

Axiom 3 Probabilities are additive and continuous in the topology of change.

Axiom 4 Probabilities are unbiased against rare events.

Axiom 5 Probabilities are unbiased against frequent events.

Additivity is a natural condition and continuity captures the notion that ‘nearby’

events are thought as being similarly likely to occur; this property is important to

ensure that ‘sufficient statistics’ exist and it is basaed on a finer topology than Mono-

tone continuity - the sup norm of L∞ that we called the “topology of change” . Ax-

iom 3 defines continuity with respect to a finer topology Axioms 4 and 5 together

are equivalent to the Swan Axiom defined in the previous section, which is required

to avoid a bias against rare and frequent events as shown in Section 3. The con-

cept of continuity bears further elaboration. Topology provides the notion of what

is meant by ‘nearby’; different topologies define different notions of ‘nearby’ and

therefore different notions of what is meant by ‘continuity.’ For example, ‘nearby’

was defined in Villegas (1964) and Arrow (1971) as follows: two events are close

or nearby when they differ on a small set - thus reducing the problem to determine

what is a small set. As stated in Arrow (1971) p. 48: “An event that is far out on a

vanishing sequence is ‘small’ by any reasonable standards” Arrow (1971) p. 48. As

the sets (n,∞) are all similar, there is no reason why they become “small” for large

enough n, according to Villegas and Arrow.

To overcome the bias against rare events, we introduce a new axiom that is the

logical negation of MC: this means that sometimes MC holds and other times it does

not. We call this the Swan Axiom, and is stated formally below:

Axiom 6 (Swan Axiom) There exist vanishing sequences of sets {Ui} −namely,

∀i,Ui+1 ⊂Ui and ∩Ui =∅− where the limit of the measures µ(Ui) as i → ∞ is not

zero.

Observe that in some cases the measures of the sets in a vanishing family may

converge to zero and in other cases they do not. In words, this axiom is the logi-

cal negation of Monotone Continuity and can be equivalently described as follows:

”There exist events A and B with W (A)>W (B), and for every vanishing sequence of

events {Eα}=1,2... an N > 0 such that altering arbitrarily the events A and B on the set

E i, where i>N, alters the probability ranking of the events, namely W (B′)>W (A′),
where B′ and A′ are the altered events.”

Proposition 4. A probability that satisfies the Swan Axiom is neither biased against

rare events, nor biased against frequent events.

Proof. This is immediate from the definition.
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Example: To illustrate how this axiom works in practice consider an experiment

where the subjects are offered a certain amount of money to choose and eat a pill at

random from a pile that contains one pill that causes death (Chanel and Chichilnisky

2009 a,b). Experimentally, it is observed that in some cases people accept a sum

of money and choose a pill provided the pile is large enough - namely when the

probability of death is small enough – thus satisfying the monotone continuity axiom

and in the process determining a statistical value for their lives. But there are also

cases where the subjects will not accept to choose any pill, no matter how large

is the pile. Some people refuse the payment if it involves a small probability of

death, no matter how small the probability may be (Chanel and Chichilnisky, 2009,

a,b). This conflicts with the Monotone Continuity axiom, as explicitly presented by

Arrow (1971). Our Axiom provides a reasonable resolution to this dilemma that is

realistic and consistent with the experimental evidence. It implies that there exist

catastrophic outcomes such as the risk of death, so terrible that one is unwilling to

face a small probability of death to obtain one cent versus half a cent, no matter how

small the probability may be. According to our Swan Axiom, no probability of death

may be acceptable when only one cent and half a cent are involved. Our Axiom also

implies that in other cases there may be a small enough probability that the lottery

involving death may be acceptable, or that the payoff is large enough to justify the

small risk. This is a possibility discussed by Arrow (1971), where he explains that

for large payoffs (for example, one billion US dollars), one may be willing to accept

a small probability of death. In other words: sometimes one is willing to take a risk

of death with a small enough probability of a catastrophe, and in other cases one is

not. This is the content of the Swan Axiom.

We saw in Proposition 2 that the notion of continuity defined by Villegas and

Arrow - namely Monotone Continuity – conflicts with the Swan Axiom and ne-

glects rare events. Indeed Proposition 1 shows that countably additive measures are

biased against rare events. On the other hand, Proposition 3 and the Example in

the Appendix show that purely finitely additive measures can also be biased, in this

case against frequent events. A natural question is whether it is possible to eliminate

simultaneously both biases. The following theorem addresses this issue:

Theorem 1. A probability that satisfies the Swan Axiom is neither biased against

frequent nor against rare events. The resulting measures are neither purely finitely

additive nor countably additive. They are a strict convex combinations of both.

Proof. The next Section contains a proof of Theorem 1 and provides examples when

the events are Borel sets in R or within an interval (a,b)⊂ R.

Theorem 1 establishes that neither Savage’s approach, nor Villegas’ and Arrow’s

approaches, satisfy the three new axioms stated above. These three axioms require

more than the additive probabilities of Savage, since purely finitely additive proba-

bilities are finitely additive and yet they must be excluded here; at the same time the

axioms require less than the countably additivity of Villegas and Arrow, since count-

ably additive probabilities are biased against rare events. Theorem 1 above shows

that a strict combination of both does the job.
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Theorem 1 shows how the Swan Axiom resolves the bias problem against fre-

quent and rare events, but it does not by itself prove the existence of likelihoods that

satisfy all three axioms. What is missing is an appropriate definition of ‘nearby’,

namely of topology and continuity, that does not conflict with the Swan Axiom. The

following shows that this can be achieved.

We now specialize the space of measurable sets so they are Borel measurable

subsets of the real line R, and consider the Lebesgue measure on R. In this con-

text a probability or likelihood function W : L∞ → R is called biased against rare

events, or insensitive to rare events when it neglects events that are small accord-

ing to a probability measure µ on R that is absolutely continuous with respect to the

Lebesgue measure. Formally:

Definition 2. A probability is insensitive to rare events when given two events f and

g ∃ ε = ε( f ,g) > 0, such that W ( f ) > W (g) ⇔ W ( f ′) > W (g′) ∀ f ′,g′ satisfying

f ′ = f and g′ = g a.e. on A ⊂ R and µ(Ac)< ε . Here Ac denotes the complement of

the set A.

Definition 3. A probability or likelihood function W : L→R is said to be insensitive

to frequent events when given any two events f ,g ∃ ε( f ,g)> 0 that W ( f )>W (g)
⇔ W ( f ′) >W (g′) ∀ f ′,g′ satisfying f ′ = f and g′ = g a.e. on A ⊂ R and µ(Ac) >
1− ε.

Definition 4. W is called sensitive to rare (or frequent) events when it is not insen-

sitive to rare (or frequent) events.

Below we identify an event with its characteristic function, so that events are

contained in the space of bounded real valued functions on the universe space U ,

L∞(R), and endow this space with the sup norm rather than with the notion of small-

ness and continuity defined by Arrow and Villegas as described above. In this case

the probability or likelihood W : L∞(U )→ R is taken to be continuous with respect

to the sup norm. Events are elements of the Borel measurable sets of the real line

R or an interval (a,b), they are identified with the characteristic functions, denoted

f , g etc, and ‘continuity’ is based on a topology used earlier in Debreu (1953) and

in Chichilnisky (2000, 2002, 2009 a,b), the sup norm ‖ f ‖= esssup
x∈R

| f (x) |. This is

a sharper and more stringent definition of closeness than the one used by Villegas

and Arrow, since an event can be small under the Villegas-Arrow definition but not

under ours, see the Appendix for examples. The difference in the use of topologies

as shown below achieves sensitivity to rare events. To simply notation, a proba-

bility that satisfies the classic axioms in De Groot (1970) is from now on called a

standard probability, and is therefore countably additive. As already mentioned,

a classic representation result is that for any event f ∈ L∞ a standard (countably

additive) probability has the form W ( f ) =
∫

R f (x).φ(x)dµ, where φ ∈ L1(R) is an

integrable function in R..
The next step is to show existence and characterize all the likelihoods or prob-

ability distributions that satisfy the 3 new axioms. The following three axioms are

identical to the three axioms above, specialized to the case at hand, Borel sets of R,
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and measures in L∞ with the topology defined by the sup norm on L∞(R), which we

called ”the topology of change”

Axiom 7 W : L∞ → R is linear and continuous with the sup norm or ”topology of

change”.

Axiom 8 W : L∞ → R is sensitive to frequent events.

Axiom 9 W : L∞ → R is sensitive to rare events.

The first and the second axiom agree with classic theory and standard likelihoods

satisfy them. The third axiom is new.

Lemma 1. A standard probability satisfies Axioms 7 and 8, but it is biased against

rare events and therefore does not satisfy Axiom 9.

Proof. Consider W ( f ) =
∫

R f (x)φ(x)dx,
∫

R φ(x)dx = K < ∞. Then

W ( f )+W (g)=
∫

R
f (x)φ(x)dx+

∫
R

g(x)φ(x)dx=
∫

R
f (x)+g(x).φ(x)dx=W ( f +g),

and therefore W is linear. It is continuous with respect to the L1 norm ‖ f ‖1=
∫

R |
f (x) | φ(x)dµ because ‖ f ‖∞< ε implies

W ( f ) =
∫

R
f (x).φ(x)dx ≤

∫
R
| f (x) | .φ(x)dx ≤ ε

∫
φ(x)dx = εK.

Since the sup norm is finer than the L1 norm, continuity in L1 implies continuity with

respect to the sup norm (Dunford and Schwartz, 1958). Thus a standard probability

satisfies Axiom 1. It is obvious that for every two events f ,g, with W ( f ) > W (g),
the inequality is reversed namely W (g′) > W ( f ′) when f ′ and g′ are appropriate

variations of f and g that differ from f and g on sets of sufficiently large Lebesgue

measure. Therefore Axiom 2 is satisfied. A standard probability is however not sen-

sitive to rare events, as shown in Chichilnisky (2000, 2002, 2006, 2008, 2009 a,b).

5 Existence and Representation Theorems

Theorem 2. There exists a probability distribution or likelihood function W : L∞ →
R satisfying the new Axioms 7, 8, and 9. A probability distribution satisfies Axioms

7, 8, and 9 if and only if there exist two continuous linear functions on L∞ denoted

φ1 and φ2, and a real number λ , 0 < λ < 1, such that for any observable event

f ∈ L∞ the likelihood

W ( f ) = λ

∫
xεR

f (x)φ1(x)dx+(1−λ )φ2( f ) (1)

where φ1 ∈ L1(R,µ) defines a countably additive measure on R and where φ2 is a

purely finitely additive measure.



12 Graciela Chichilnisky

Proof. This result follows from the representation Theorem in Chichilnisky (2000,

2002).

Corollary 2. Absent rare events, a probability that satisfies Axioms 7, 8, and 9 is

consistent with classic axioms and yields a countably additive measure.

Proof. Axiom 9 is an empty requirement when there are no rare events while, as

shown above, Axioms 7 and 8 are consistent with standard relative likelihood.

6 Heavy Tails and Families of Purely Finitely Additive Measures

This section presents new results adding to the introduction of the Swan Axiom 6

defined in Section 4 above: the different notions of continuity, how heavy tails orig-

inate from the new axioms and defines a family of purely finitely additive measures

that are each absolutely continuous with respect to the Lebesgue measure on R.
A main difference introduced by the new axioms is the use of a finer topology -

the ”topology of change”, which is the sup norm on L∞, and defines the continuity

properties of probability distributions. In the classic axioms a probability distribu-

tion is continuous if it satisfies Monotone Continuity or equivalently SP4. Here the

continuity required is with respect to the topology of change, which is a finer topol-

ogy. The following example explains the difference that this makes on the concept

of continuity of probability distributions:

6.1 Contrasting Monotone Continuity and the Topology of Change

Different topologies define different approaches to ‘continuity’. Consider the family

{E i} where E i = [i,∞), i = 1,2, .... This is a vanishing family because ∀i E i ⊃ E i+1

and
⋂∞

i=1 E i =∅. Consider now the events f i(t) = K > 0 when t ∈ E i and f i(t) =
0 otherwise, and gi(t) = 2K when t ∈ E i and gi(t) = 0 otherwise. Then for all i,
supE i | f i(t)− gi(t) |= K. In the sup norm topology this implies that f i and gi are

not ‘close’ to each other, as the difference f i − gi does not converge to zero. No

matter how far along we are along the vanishing sequence E i the two events f i,gi

differ by at least the number K. Yet since the events f i, gi differ from f ≡ 0 and

g ≡ 0 respectively only in the set E i, and {E i} is a vanishing sequence, for large

enough i they are as ‘close’ as desired according to Villegas-Arrow’s definition of

‘nearby’ events.
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6.2 Heavy Tails

The following illustrates the additional weight that the new axioms assign to rare

events; in this example in the form of ‘heavy tails’ (e.g. Chichilnisky (2000). The

finitely additive measure φ2 appearing in the second term in 1 can be illustrated as

follows. On the subspace of events with limiting values at infinity, L′
∞ = { f εL∞ :

limx→∞(x) < ∞}, define φ2( f ) = limx→∞ f (x) and extend this to a function on all

of L∞ using Hahn Banach’s theorem. The difference between a standard probability

and the likelihood defined in (1) is the second term φ2, which focuses all the weight

at infinity. This can be interpreted as a ‘heavy tail’ namely a part of the distribution

that is not part of the standard density function φ1 and gives more weight to the sets

that contain terminal events namely sets of the form (x,∞).

6.3 The Family PA of Purely Finitely Additive Measures on R

This section provides a new family of purely finitely additive measures that are ab-

solutely continuous with respect to the Lebesgue measure, and studies its properties.

Definition 5. An open neighborhood of a real number x ∈ R has the standard mean-

ing under the usual topology of the line R. An ‘open neighborhood of ∞′ is defined

to be a set of the form {x ∈ R : x. > r for r ∈ R}. As already stated, the word ”es-

sentially” means a.e. with respect to the Lebesgue measure on R that has been used

to define the space L∞.

We now define a property on measures in the space L∗
∞ :

Definition 6 (Property (P)). A measure in L∗
∞ is said to satisfy Property (P) at x if

it assigns measure zero to any set that is essentially contained in the complement of

an open neighborhood of x. A measure in L∗
∞ is said to satisfy Property (P) at ∞,

if it assigns measure 0 to any measurable set that is essentially contained in the

complement of an open neighborhood of ∞ as defined above. A measure is said to

satisfy Property (P) if it satisfies Property (P) either at ∞ or at any x ∈ R.

Lemma 2. A measure satisfying property (P)is always purely finitely additive.

Proof. Consider first the case where the measure has property (P) at ∞. De-

fine a countable family of disjoint sets F = {A1,A2...} recursively as follows:

A1 = {x : −1 < x < 1} and for all n, An = {x : −n < x < n} − An−1. Observe

that each set An has measure zero, since by assumption µ satisfies property (P),
and that each of the sets in the family F is bounded. The sets in the family F are

also disjoint by construction. If µ was countably additive, then we should have

µ(∪F) = µ(∪∞
n=1An) = ∑

∞
n=1 µ(An) = 0. Yet the measure of the union of the count-

able family F is not 0, because ∪F = R, the entire real line, so that µ(∪F) = 1.

Therefore µ fails to be countably additive on the countable and disjoint family F.
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Since by definition µ is a measure, and it fails to be countably additive, it must be a

purely finitely additive measure.

A similar argument can be given for the case where the measure has property

(P) at a finite number x ∈ R. Define now F = {An}n=1,2,...recursively as follows:

A1 = [x− 1, x+ 1]c where the super-index c denotes the complement of a set, and

for all n ≥ 1, An = [x−1/n, x+1/n]c − An−1. Observe that each set in the family F

has measure 0. The union of the family is not the whole space as before - since the

point {x} is not in the union; yet the entire space minus {x} should have the same

measure than the space as a whole, because by definition a measure is a continuous

linear function on L∞, the space of measurable and essentially bounded functions

with the Lebesgue measure on R, which means that the measure must provide the

same value to functions in L∞ that are essentially equal, in the sense of differing

only in a set of Lebesgue measure 0. The characteristic functions of two measurable

sets differing in a set of measure zero, must therefore be are assigned the same value

by a measure, so the union of the family F must be assigned the same measure as

the entire space, namely µ(∪F)= 1.Therefore the measure µ fails to be countably

additive, and since it is a measure it must be purely finitely additive.

Observe that in Lemma 1 the same argument applies for a measure that has prop-

erty (P) at x for a finite x ∈ R, or one that has property (P) at {∞}. The ”test” family

F is defined similarly in both cases, where for a finite x A1 = {x : −ε < x < ε},
and An = {x : −n < x < n}−An−1.The only difference in the argument arises from

the fact that, for a finite {x}, the union of the family ∪F is not all of R, but rather

R−{x}. But this is essentially the same as R in the Lebesgue measure used to define

L∞.

Lemma 3. Using Hahn-Banach’s theorem it is possible to define purely finitely ad-

ditive measures on R.

Proof. Lemma 1 started from assuming the existence of a measure in L∗
∞ that sat-

isfies property (P) at ∞. Using Hahn Banach’s theorem we now define the desired

measure, namely a continuous linear function h from L∞ to R, and show that it sat-

isfies (P) at ∞. Therefore by Lemma 1, the function h is a purely finitely additive

measure, as we wished to prove.

Consider the subspace CL∞ of all functions f in L∞ that are continuous and have

an essential limit at ∞. CL∞ is a closed linear subspace of the Banach space L∞. On

the subspace CL∞ define the function h( f ) = ess limx→∞ f (x). By construction the

function h is well defined on CL∞; this function is continuous, linear and has norm 1.

The function h can therefore be extended by using Hahn-Banach’s theorem to all of

L∞, as a continuous, linear function that preserves the norm of h. Since h has norm 1

the extension is not the zero function. Call this extension h as well; by construction,

h ∈ L∗
∞. Therefore by definition, the extended function h defines a measure. Now

observe that h : L∞ → R satisfies Property (P) since when applied to characteristics

functions of bounded sets, it assigns to them measure zero. A similar argument can

be replicated to show the existence of purely finite measures that satisfy property

(P) at any x ∈ R.
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We have mentioned that it is not possible to construct a purely finitely additive

measure on R the same way as one constructs a countably additive measure on R.
This is not surprising since the Hanh-Banach Theorem that is used to define a purely

finitely additive measure in Lemma 2 is itself not constructible. The next and last

section show the connection between the new axioms for probability (or relative

likelihoods) presented here and the Axioms of Choice and Godel’s (1940) work.

7 The Axiom of Choice and Godel’s Incompleteness theorem

There is a connection between Axioms 3, 4, and 5 presented here and the Axiom

of Choice that is at the foundation of mathematics (Godel, 1940). The Axiom of

Choice postulates that there exists a universal and consistent fashion to select an

element from every set.

The best way to describe the situation is by means of an example, see also Dun-

ford and Schwartz (1958), Yosida (1952, 1974), Chichilnisky and Heal (1997) and

Kadane and O’Hagan (1995).

Example: Representing a purely finitely additive measure.

Define a measure ρ as follows: for every Borel measurable set A ⊂ R, ρ(A) = 1

if A ⊃ {x : x > a, for some a ∈ R}, and otherwise ρ(A) = 0. Then ρ is not count-

ably additive, because the family of countably many disjoint sets {Vi}i=0,1,... de-

fined as Vi = (i, i+ 1]
⋃
(−i− 1,−i], satisfy Vi

⋂
Vi = ∅ when i 6= j, and

∞⋃
i=0

Vi =

∞⋃
i=0

(i, i+1]
⋃
(−i−1,−i] = R, so that ρ(

∞⋃
i=0

Vi) = 1,while
∞

∑
i=0

ρ(Vi) = 0, which con-

tradicts countable additivity. Since the contradiction arises from assuming that ρ is

countably additive, ρ must be purely finitely additive. Observe that ρ assigns zero

measure to any bounded set, and a positive measure only to unbounded sets that

contain a ’terminal set’ of the form

{x ∈ R : x > a for some a ∈ R}.

One can define a function on L∞ that represents this purely finitely additive mea-

sure ρ if we restrict our attention to the closed subspace L′
∞ of L∞ consisting

of those functions f (x) in L∞ that have a limit when x → ∞, by the formula

ρ( f ) = limx→∞ f (x), as in Lemma 3 of the previous section. The function ρ(.) can

be seen as a limit of a sequence of delta functions whose support increases without

bound. The problem is now to extend the function ρ to another defined on the entire

space L∞. This could be achieved in various ways but as we will see, each of them

requires the Axiom of Choice.

One can use Hahn - Banach’s theorem (Dunford Schwartz, 1958) to extend the

function ρ from the closed subspace L′
∞ ⊂ L∞ to the entire space L∞ preserving its

norm. However, in its general form Hahn - Banach’s theorem requires the Axiom
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of Choice (Dunford Schwartz, 1958). Alternatively, one can extend the notion of a

limit to encompass all functions in L∞ including those with no standard limit. This

can be achieved by using the notion of convergence along a free ultrafilter arising

from compactifying the real line R as in Chichilnisky and Heal (1997). However the

existence of a free ultrafilter also requires the Axiom of Choice.

This illustrates why the attempts to construct purely finitely additive measures

that are representable as functions on L∞, require the Axiom of Choice. Since our

criteria require purely finitely additive measures, this provides a connection between

the Axiom of Choice and our axioms for relative likelihood. It is somewhat surpris-

ing that the consideration of rare events that are neglected in standard statistical

theory conjures up the Axiom of Choice, which is independent from the rest of

mathematics (Godel, 1940).
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Appendix

Example: A probability that is biased against frequent events.

Consider W ( f ) = liminfxεR( f (x)). This is insensitive to frequent events of arbi-

trarily large Lebesgue measure (Dunford and Schwartz, 1958) and therefore does

not satisfy Axiom 2. In addition it is not linear, failing Axiom 1.

Example: The dual space L∗
∞ consists of countably additive and finitely additive

measures.

The space of continuous linear functions on L∞ is the ‘dual’ of L∞, and is de-

noted L∗
∞. It has been characterized e.g. in Yosida (1952, 1974). L∗

∞ consists of the

sum of two subspaces (i) L1 functions g that define countably additive measures ν
on R by the rule ν(A) =

∫
A

g(x)dx where
∫
R

| g(x) | dx < ∞ so that υ is absolutely

continuous with respect to the Lebesgue measure, and (ii) a subspace consisting of

purely finitely additive measure. A countable measure can be identified with an L1

function, called its ’density,’ but purely finitely additive measures cannot be identi-

fied by such functions.

Example: A finitely additive measure that is not countably additive.

See Example in Section 7.
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