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Abstract

Following Kreps (1979), we consider a decision maker with uncertain beliefs about
her own future taste. This uncertainty leaves the decision maker with preference for
�exibility: When choosing among menus containing alternatives for future choice, she
weakly prefers larger menus. Existing representations accommodating this choice pat-
tern cannot distinguish tastes (indexed by a subjective state space) and beliefs (a
probability measure over the subjective states) as di¤erent concepts, making it impos-
sible to relate parameters of the representation to choice behavior. We allow choice
among menus to depend on exogenous states, interpreted as information. Our axioms
yield a representation that uniquely identi�es beliefs, provided the impact of informa-
tion on choice is rich. The result is suggested as a choice theoretic foundation for the
assumption, commonly made in the incomplete contracting literature, that contract-
ing parties, who know each other�s ranking of contracts, also share beliefs about each
others future tastes in the face of unforeseen contingencies.

1. Introduction

Choice among opportunity sets or menus, which have alternatives for future choice as el-

ements, allows attitudes towards the future to be re�ected in static choice. In particular,

uncertain beliefs about future tastes suggest preference for �exibility: a decision maker (DM)

may prefer not to constrain future choice today. Choice among menus will therefore favor

larger menus. Let � be DM�s preference ranking of menus and let A and B be menus. Then

A [B < A. This property is called Monotonicity.

�Preliminary. I thank Roland Benabou for advice, stimulation and enduring support. I am also grateful
to Faruk Gul, Mark Machina, Eric Maskin and Tymon Tatur for helpful lessons and discussions. Finally, I
thank Wolfgang Pesendorfer, not only for invaluable advice on this work, but also for his shaping in�uence
throughout.

yDepartment of Economics, Princeton University, sadowski@princeton.edu
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Kreps (1979) assumes Monotonicity and establishes a representation theorem for prefer-

ence for �exibility. The representation can be written as

V (A) =
X

s2S

� (s)

�
max
x2A

us (x)

�
;

where a future taste, s 2 S, is captured by the utility function over items, us. Given taste

s, a menu is evaluated according to its most preferred element. The probability distribution

� on S is interpreted as DM�s beliefs that particular tastes occur.

Even though the representation suggests an appealing interpretation of choice satisfying

Monotonicity, its parameters cannot be related to choice behavior: consider a di¤erent

probability distribution b� (s) on S and rescaled utilities

bus (x) = us (x)
� (s)

b� (s) :

Then X

s2S

� (s)

�
max
x2A

us (x)

�
�
X

s2S

b� (s)
�
max
x2A

bus (x)
�
.

Observation of choice does not allow the distinction of beliefs and utilities.

Our work combines preference for �exibility with the arrival of publicly observable in-

formation i 2 I. Timing is the following: in period 1, DM chooses among menus. Between

periods 1 and 2 information arrives and subjective uncertainty about taste resolves. In pe-

riod 2 DM chooses from the menu determined in period 1. The menu chosen in period 1

may be contingent on information. In analogy to the terminology in the classical work by

Savage (1954,) we call the mapping from information to menus an act.1 Acts are objects of

choice.

We have in mind a representation, where DM has an expectation about the arrival of

information and the only impact of information is the updating of beliefs about her taste.

We answer two main questions:

� Does the assumption that information only leads to updated beliefs constrain period 1

choice behavior? Theorem 1 establishes that it does not.

� Can the parameters of such a representation be related to choice behavior in the sense

that beliefs and utilities are conceptually distinct? Theorem 2 identi�es an axiom on choice

behavior, which is equivalent to the unique identi�cation of beliefs and utilities.

1The notion of "contingent menus" appears in Epstein (2006). Nehring (1999) calls acts with menus as
outcomes "opportunity acts":
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Example: As an example of an act, consider a contract between a retailer and a sup-

plier, which conditions on information about consumer con�dence. Consumer con�dence is

either high (H) or low (L). This information becomes publicly available before the retailer�s

order is �nalized. The idiosyncratic demand facing the retailer depends on indescribable

contingencies and is either high (h) or low (l), allowing the sale of quantities qh and ql,

respectively. Idiosyncratic demand may be correlated with consumer con�dence.

A contract g speci�es whether the retailer retains �exibility and can choose between the

two quantities (in this case the contract can be viewed as incomplete), or whether he is

committed to order a particular one. This may depend on the information about consumer

con�dence: g (i) � fqh; qlg for i 2 fH;Lg.

The retailer maximizes pro�ts and a shortage or an oversupply are costly: facing high

demand, he values qh at vh (qh) and ql at

vh (ql) < vh (qh) :

Facing low demand,

vl (ql) > vl (qh) :

The relative value of those utilities is private, unless it is revealed through choice. The

retailer can assign subjective probabilities � (h jH ) and � (h jL), based on his knowledge

about the underlying indescribable contingencies and conditional on information. Choosing

among contracts, the retailer�s objective function is

V (g) =
X

i2fH;Lg

� (i)

2
4 X

s2fh;lg

� (s ji) max
q2g(i)

(vs (q))

3
5 ;

where � is the objective probability distribution over information, i 2 fH;Lg.2

Our domain allows any �nite (or metric) information space, I, and any �nite prize space.

While in the example h and l have a clear interpretation, the taste space S is endogenous

and may in general only have an interpretation in terms of DM�s period 2 preferences. Kreps

(1992) points out that an endogenous taste space naturally accounts for contingencies, that

are not just indescribable, but unforeseen, at least by the observer.

As the taste space is endogenous, it cannot simply be assumed to be �nite. To make

sense of a continuous taste space, we follow Dekel, Lipman and Rustichini (2001), henceforth

2Objective probabilities correspond to observed frequencies.
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DLR.3 As they do, we consider lotteries over the �nite prize space as items on a menu. An

act g is then a mapping from information to contingent menus, g (i), of lotteries over prizes.

Theorem 1 identi�es axioms on choice over acts, under which it can be represented by a

straight forward generalization of the representation in the example: if I is �nite, then

V (g) =
X

i2I

� (i)

2
4
Z

S

�
max
�2g(i)

Us (�)

�
d� (s ji)

3
5

represents choice, where � (s ji) is a subjective probability measure on the taste space, S.

� (s ji) is interpreted as the belief that taste s occurs, conditional on information i. Tastes are

realized von Neumann-Morgenstern utility functions, Us. Information only leads to updated

beliefs, so the scaling of Us does not depend on information.
4 The distribution � corresponds

to objective probabilities over information.

Theorem 2 identi�es an additional axiom on choice over acts that requires ex post prefer-

ences to depend enough on information, and under which the parameters of the representa-

tion V are unique.5 Clearly there are other representations of �, in particular any monotone

transformation of V . Our uniqueness result is analogous, for example, to the uniqueness in

von Neumann-Morgenstern�s (1944) work, where there are many possible representations,

but only one has the functional form of expected utility.

The usual choice theoretic approach is to take our representation as a description only of

period 1 choice, where DM behaves in period 1, as if she held beliefs about possible tastes

that might govern period 2 choice. Theorem 2 relates beliefs, which are parameters of the

representation, to period 1 choice behavior.

However, our context features a second period, in which another choice is made. If

DM has knowledge about the contingencies underlying the formation of her taste, then

the natural inductive step is to employ the beliefs about future tastes to forecast period 2

choice behavior. Doing so implies that the representation V is interpreted as a map of the

decision making process. This cuts two ways: on the one hand it requires evaluating the

appropriateness of the representation for a particular application,6 on the other hand the

model can be refuted, if its forecasts do not agree with observation.

Being able to forecast behavior is relevant in strategic situations. For example, if two

3Dekel, Lipman, Rustichini and Sarver (2007), henceforth DLRS, is a relevant corrigendum.
4The scaling of each vNM utility is endogenous, but it is �xed across information.
5In order to make DLR�s domain more versatile, Ozdenoren (2002) also allows for objective states of the

world, which correspond to our information. The work assumes that ex-post preferences over menus are
independent of the objective state.

6The three main modelling choices are: The expected utility criterion is used to evaluate uncertainty,
information impacts only beliefs and, ultimately, only the chosen item on a menu generates utility.
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parties write a contract in the face of unforeseen or indescribable contingencies, which are

relevant for future utility-payo¤s, then the optimal contract is incomplete as in the example.

Incomplete contracting models usually have to assume that both parties share a common

belief about the probability of future utility-payo¤s, when writing the contract.

However, if those contingencies are more relevant for one party, it seems natural that this

same party can also foresee them better, leading to asymmetric information. In a survey on

incomplete contracts, Tirole (1999) speculates that "... there may be interesting interaction

between "unforeseen contingencies" and asymmetric information. There is a serious issue

as to how parties [...] end up having common beliefs ex ante."

Without doing the game theoretic complexity of the contracting problem justice, beliefs

that are elicited from a party�s preferences over contracts give choice theoretic substance to

the assumption of common beliefs.7

Section 1.1 give a more detailed overview over our results. Section 1.2 demonstrates the

generic identi�cation of beliefs in the example above. Section 2 lays out the model and

establishes Theorems 1 and 2 for a �nite as well as a metric information space.8 Section 3

contains Theorem 3, which combines the two results. Section 4 elaborates the example to

consider both contracting parties and comments on generalizations. Section 5 concludes.

1.1. Overview of Results

In general probabilities of information are subjective. Throughout the paper we use � to

denote subjective probabilities of information, while � is used in the special case, where

subjective probabilities coincide with objective probabilities. The representation V then

becomes

V (g) =
X

i2I

� (i)

2
4
Z

S

�
max
�2g(i)

Us (�)

�
d� (s ji)

3
5 :

To address the question, whether the assumption that information only leads to updated

beliefs constrains period 1 choice behavior, note that V is a special case of a representation,

7Dekel, Lipman and Rustichini (1998-a) note that "... there are very signi�cant problems to be solved
before we can generate interesting conclusions for contracting [...] while the Kreps model (and its modi�ca-
tions) seems appropriate for unforeseen contingencies, [...] there are no meaningful subjective probabilities.
A re�nement of the model that pins down probabilities would be useful."

8In the �nite case, the richness assumption limits the degree to which DM can exhibit preference for
�exibility. This is not the main thrust of the axiom, as can be seen in the case of a metric information space.
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where information may also impact the scaling of utilities,

eV (g) =
X

i2I

� (i)

2
4
Z

S

�
max
�2g(i)

Us;i (�)

�
d� (s ji)

3
5 :

If� is a binary relation on acts that can be represented by eV , it has to satisfy the following
standard axioms: it is a Preference ranking. It is Continuous in an appropriate topology.

Independence holds for an appropriately de�ned convex combination of acts and, because we

constrain S to exclude the trivial taste, � must also satisfy Nontriviality. Comparing acts

which di¤er only in the menu they assign under one particular information, i, but agree on

some default menu otherwise, induces a ranking of menus, �i. It must satisfy Monotonicity.

Because V is a special case of eV , those �ve axioms are necessary for the existence of the
representation V , as well.

Theorem 1 states that the axioms are not only necessary, but also su¢cient for the

existence of the representation V . Thus, whenever eV represents �, so does V . Hence, the

assumption that information only leads to updated beliefs does not constrain period 1 choice.

To address the question, whether the parameters of the representation V can be related to

choice behavior, suppose a representation V exists, where subjective probabilities � coincide

with objective probabilities �. Theorem 2 states that in this representation, subjective prob-

abilities of tastes � (s ji) and utilities Us representing those tastes are generically identi�ed

by �. Thus, beliefs and utilities are conceptually distinct.

The genericity assumption in Theorem 2 requires the impact of changing information on

the ranking of menus to be rich enough: whenever there is preference for �exibility with

respect to two menus under information i, A[B �i A, then those menus are not indi¤erent

under every information; there is j 2 I, such that A �j B. This assumption is trivially

satis�ed, if A �i B. Otherwise, A [B �i A �i B implies that the best lottery is sometimes

in A and sometimes in B. Richness requires that changing information can make one or the

other case more relevant.

Both V and eV evaluate uncertainty according to the expected utility criterion, involving
subjective beliefs. However, just as in Kreps� representation, utilities and beliefs are not two

distinct concepts in the representation eV . This indeterminacy is the central drawback of
existing representations of preference for �exibility.9 Theorem 2 is the main contribution of

this work.

If Richness fails only partially, then parameters of the representation V are not identi�ed

uniquely. However, Proposition 2 gives bounds on those parameters, which depend on the

9In addition to Kreps (1979) and DLR, see also Nehring (1999) and Epstein and Seo (2007).
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extent to which Richness is violated.

While Theorem 1 establishes existence of a representation based on some subjective

probability distribution � over information, Theorem 2 makes a uniqueness statement for

representations based on the objective probability distribution � over information. A com-

bined result that gives conditions under which the representation V exists, the subjective

probability distribution over information � is unique and l (s) and � (s ji) are unique in

the appropriate sense, is not implied by the axioms imposed so far. Theorem 3 �lls this

gap. It requires Partial Information Independence, which is a weakened version of the state

independence assumption suggested by Anscombe and Aumann (1963, henceforth AA.)

If � is not unique, a representation based on � may still not exist. Proposition 3 gives

a robustness result: if there is a representation based on a distribution �, which disagrees

only "slightly" with �, then a representation based on � exists under the technical condition

that I is not too large. In this case the probabilities � (s ji) of tastes, elicited using �, are

at least good estimates of those based on �.

1.2. Illustration of Identi�cation of Beliefs

First Continuation of Example: Recall the retailer�s objective function:

V (g) =
X

i2fH;Lg

� (i)

2
4 X

s2fh;lg

� (s ji) max
q2g(i)

(vs (q))

3
5 .

� Speci�cation 1: The retailer believes that he faces high demand with higher probability, if

consumer con�dence is high, � (h jH ) = 2
3
and � (h jL) = 1

3
.

The ranking of acts induced by V satis�es Richness: fqhg [ fqlg �H fqlg, because if

demand is high, qh is preferred over ql. If also fqhg �H fqlg, then � (h jH ) > � (h jL) implies

fqlg �L fqhg.
10

Hence, beliefs should be identi�ed. Suppose, to the contrary, that there was another

representation of the same ranking of contracts with beliefs b� (s ji) and tastes bvl (ql)�bvl (qh)
and bvh (qh)� bvh (ql):

bV (g) =
X

i2fH;Lg

� (i)

2
4 X

s2fh;lg

b� (s ji) max
�2g(i)

(bvs (q))

3
5 .

10In the example we start from a representation, which is based on only two subjective states. Therefore,
we do not need to consider lotteries over prizes, in order to identify beliefs. Richness is clearly satis�ed, even
if we do consider lotteries.
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V (g) and bV (g) have to generate the same ranking of contracts, in particular of those,
which disagree only under information i. It may be intuitive that the two representations

must agree on the relative "overall weight" given to a particular taste, where this weight is

comprised of the probability and the scaling of the utility:11

b� (h ji) (bvh (qh)� bvh (ql))
b� (l ji) (bvl (qh)� bvl (ql))

=
� (h ji) (vh (qh)� vh (ql))

� (l ji) (vl (qh)� vl (ql))
. (�)

b� (s ji) must be a probability measure. Therefore, for some � > 0,

rh := �
vh (qh)� vh (ql)

bvh (qh)� bvh (ql)
and rl := �

vl (ql)� vl (qh)

bvl (ql)� bvl (qh)

must satisfy

1 = � (h jH ) rh + � (l jH ) rl =
2

3
rh +

1

3
rl

1 = � (h jL) rh + � (l jL) rl =
1

3
rh +

2

3
rl:

The two equations are linearly independent, and therefore rh = rl = 1 is the unique

solution. Then, b� (s ji) = � (s ji) for i 2 fH;Lg and s 2 fh; lg follows immediately from (�).
Hence V is unique up to a common linear transformation of vh (qh)�vh (ql) and vl (ql)�vl (qh).

� Speci�cation 2: Now suppose that, instead, � (h jH ) = � (h jL) = 2
3
, so the retailer�s beliefs

are independent of information about consumer con�dence. Clearly the ranking of contracts

induced by V under this speci�cation does not satisfy Richness. To see that beliefs are not

identi�ed, note that now rh and rl have to satisfy

1 = � (h jH ) rh + � (l jH ) rl =
2

3
rh +

1

3
rl

1 = � (h jL) rh + � (l jL) rl =
2

3
rh +

1

3
rl:

These equations are identical, and therefore rh and rl are not determined uniquely, and nei-

ther is � (s ji) for i 2 fH;Lg and s 2 fh; lg.

This reasoning can be generalized: whenever a representation generates at least as many

independent conditions, indexed by i 2 I, on the scaling of vNM utilities as there are

relevant tastes, then the scaling of utilities is uniquely identi�ed up to a common linear

transformation, and consequently beliefs are uniquely identi�ed. For the proof of Theorem

11The generalization of this condition is shown in DLR and also follows from the proof of Theorem 2.
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2, however, no particular representation is given. The crucial step is to show that every

ranking satisfying Richness must be represented this way.

2. The Model

We consider a two-stage choice problem, where public information becomes available between

the two stages. In period 2, DM chooses a lottery over prizes. This choice is not modelled

explicitly. The lotteries available to her in period 2 may depend on choice in period 1 and

on the information. Period 1 choice is described as choice of an act, which speci�es a set

of lotteries (a menu) that is contingent on information and contains the feasible choices for

period 2.

Let Z be a �nite prize space with cardinality k and typical elements x; y; z. �(Z) is

the space of all lotteries over Z with typical elements �; �; . We write explicitly � =

h� (x) ; x;� (y) ; y; :::i, where � (x) is the probability � assigns to x 2 Z etc. Let A be the

collection of all compact subsets of �(Z) with menus A;B;C as elements.12

Endow A with the topology generated by the Hausdor¤ metric

dh (A;B) = max
n
max
A
min
B
dp (�; �) ;max

B
min
A
dp (�; �)

o

where dp is the Prohov metric, which generates the weak topology, when restricted to lot-

teries.

Further let I be an exogenous state space with elements i; j. Call elements of I "infor-

mation". Information is observable upon realization. Let F be a �-algebra on I. Two cases

have to be distinguished. If I is �nite, F is assumed to be the �-algebra generated by the

power set of I. If I is a generic metric space, then F is the Borel �-algebra with respect to

the induced topology.

Let G be the set of all acts. An act is a measurable function g : I ! A. After information

i realizes, DM chooses an object from the menu g (i) 2 A. This choice is not explicitly

modeled. � is a binary relation on G�G. < and � are de�ned the usual way.

G can be viewed as a product space generated by the index set I, G =
Q
i2I

A. Thus, it

can be endowed with the product topology, based on the topology de�ned on A.

12Compactness is not essential. However, items on a menu are alternatives for future choice and choice
from a non-compact set is di¢cult to interpret. If menus were not compact, maximum and minimum would
have to be replaced by supremum and in�mum, respectively, in all that follows.
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De�nition 1: The convex combination of menus is de�ned as

pA+ (1� p)B := f = p� + (1� p) � j� 2 A; � 2 B g :

The convex combination of acts is de�ned, such that

(pg + (1� p) g0) (i) := pg (i) + (1� p) g0 (i) :

The �rst four axioms are standard:

Axiom 1 (Preference): � is asymmetric and negatively transitive.

Axiom 2 (Continuity): The sets fg jg � hg and fg jg � hg are open in the topology de�ned

on G for all h 2 G.

Axiom 3 (Independence): If for g; g0 2 G, g � g0 and if p 2 (0; 1), then

pg + (1� p)h � pg0 + (1� p)h

for all h 2 G.

Axiom 4 (Nontriviality): There are g,h 2 G, such that g � h.

If a convex combination of menus were de�ned as a lottery over menus, then the mo-

tivation of Independence in our setup would be the same as in more familiar contexts.

Uncertainty would be resolved before DM consumes an item from one of the menus. How-

ever, following DLR and Gul and Pesendorfer (2001), we de�ne the convex combinations of

menus as the menu containing all the convex combinations of their elements. The uncer-

tainty generated by the convex combination is only resolved after DM chooses an item from

this new menu. Gul and Pesendorfer term the additional assumption needed to motivate

Independence in our setup "indi¤erence as to when uncertainty is resolved."13

The next de�nition considers acts that give a menu A in event D and some default menu

in the event not D. The default menu is the whole prize space, Z, which takes the form

fh1; zi jz 2 Z g, when written in terms of lotteries. Comparing those acts induces a ranking

�D over menus:

13Both DLR and Gul and Pesendorfer elaborate this argument.
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De�nition 2: For D 2 F and A 2 A, de�ne gAD by

gAD (i) :=

�
A for i 2 D

fh1; zi jz 2 Z g otherwise
:

Let �D be the induced binary relation on A�A, A �D B, if and only if g
A
D � g

B
D. <D and

�D are de�ned the usual way. An event D 2 F is nontrivial, if there are A;B 2 A with

A �D B.

Ranking menus according to �D, DM may have preference for �exibility. This is cap-

tured by the central axiom in Kreps, which states that larger menus are weakly better than

smaller menus:

Axiom 5 (Monotonicity): A [B <D A for all A;B 2 A and D 2 F .

Corollary 1: If � satis�es Axioms 1-5, then �D is a preference relation and satis�es

the appropriate variants of Continuity, Independence and Monotonicity for all D 2 F . Fur-

ther, there is a nontrivial event D 2 F .

The proof is immediate.

Theorem DLRS (Theorem 2 in DLRS): For D 2 F nontrivial, �D is a preference that

satis�es Continuity, Independence and Monotonicity, if and only if there is a subjective state

space SD, a positive countably
14 additive measure �D (s) on SD and a set of non-constant,

continuous expected utility functions Us;D : � (Z)! R, such that

VD (A) =

Z

SD

max
�2A

Us;D (�) d�D (s)

represents �D and every cardinal ranking of prizes x 2 Z corresponds to at most one state

in SD.

Because Us;D (�) are expected utility functions,

VD (pA+ (1� p)B) = pVD (A) + (1� p)VD (B) :

This linearity allows the following convention for expressing VD0 for all D0 2 F . First, �x

14See footnote 3 in DLRS.
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Us (�) := Us;D (�) for some D 2 F . Then, for all D0 2 F , �D0 can be represented with

Us;D0 (�) = Us (�) by simply rescaling �D0 (s) to compensate. Second, normalize �D0 (s) to

be a probability measure for all D0 2 F .

From now on, consider the "taste space", given the prize space Z with cardinality k:

De�nition 3:

S :=

�
s 2 Rk+

����jsj = 1;minz2Z
sz = 0

�

is the taste space.

Up to normalization this is the state space DLRS use in their proof of Theorem DLRS.

Every taste in S is a vector with k components. Every entry can be thought of as specifying

the (relative) utility associated with the corresponding prize, given the taste. Thus, every

ranking of lotteries over prizes corresponds to a unique future taste.15 The cardinal ranking

(or utility), given taste s, is then fully determined by a bounded intensity l (s) associated

with that taste, and the value of the worst prize, us. Prize x 2 Z is evaluated by us +

l (s) sx, where sx is the entry of s, which corresponds to prize x 2 Z. Then, for a lottery

h� (x) ; x;� (y) ; y; :::i,

Us (�) = us +
X

x2Z

l (s)� (x) sx:

Normalize us = 0 for all s 2 S and write

Us (�) = l (s) (� � s) :

We do not consider the taste where DM is indi¤erent over all prizes, implicitly assuming

nontriviality of the ex-post preference over prizes.16 Hence l (s) > 0 for all s 2 S.17

15In Theorem DLRS, as in the theorems that follow, there is clearly always a larger state space, also
allowing a representation of �D, in which multiple states represent the same ranking of lotteries.
16For a nontrivial event D 2 F , the trivial taste is not required to obtain the representation in Theorem

DLRS. As seen below, a representation based on S does not require the assumption of nontriviality for each
D 2 F .
17DLR further establish that, for the smallest taste space SD, which allows a representation of �D,

closure (SD) is unique. If we wanted this closure to agree across information, we would have to require that
information is not exhaustive: If D;D0 2 F and A;B 2 A, then A [B �D A implies A [B �D0 A.
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2.1. A �nite information space

Let T be the cardinality of I. Let F be be the �-algebra generated by the power set of I.

Without risk of confusion we write i 2 I to denote elementary events fig 2 F .

De�nition 4: Let A be the collection of all convex subsets of �(Z). Let G be the col-

lection of all acts: g : I ! A. Call g 2 G a convex act.

Proposition 1: � constrained to G satis�es Axioms 1-3, if and only if there are continuous

linear functions vi : A ! R, such that v : G! R with

v (g) =
X

i2I

vi (g (i))

represents � on G.

Moreover, if there is another collection of continuous linear functions, v0i : A ! R, such

that

v0 (g) =
X

i2I

v0i (g (i))

represents � on G, then there are constants a > 0 and fbi ji 2 I g, such that v
0
i = bi + avi

for each i 2 I.

Proof: The collection of convex acts G together with the convex combination of acts as

a mixture operation is a mixture space. Proposition 1 is an application of the Mixture Space

Theorem (Theorem 5.11 in Kreps (1988)),18 where additive separability across I follows from

the usual induction argument. �

Corollary 2: If i 2 I is nontrivial, then Vi (A) and vi (A) agree on A up to positive

a¢ne transformations.

Proof: Evaluating v
�
gAi
�
implies that vi represents �i on A. vi is linear. The Mixture

Space Theorem states that any other linear representation of �i agrees with vi, up to a

positive a¢ne transformation. According to Theorem DLRS, Vi (A) is linear and represents

�i on A. �

18Axiom 2 (Continuity) is stronger than von Neumann-Morgenstern Continuity on G, which requires that
for all g � g0 � g00 there are p; q 2 (0; 1), such that pg + (1� p) g00 � g0 � qg + (1� q) g00.
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Theorem 1: � satis�es Axioms 1-5, if and only if there are a bounded set of positive

numbers fl (s) js 2 S g, a conditional probability measure � (s ji) and a probability measure

� on I, such that the function V : G! R,

V (g) =
X

i2I

� (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

represents �.

Proof: See Appendix.

From Corollary 2, the proof establishes that setting V � v on G determines V on all of

G, because G is order-dense in G with respect to �. On G, Vi (as determined by Theorem

DLRS) agrees up to scaling with vi. The scaling is absorbed by � (i), which is then normalized

to be a probability distribution. Thus, an act is evaluated by

V (g) =
X

i2I

� (i)Vi (g (i)) .

To illustrate the theorem, note that this is AA�s representation, where our acts have menus

as outcomes, while Anscombe-Aumann acts have lotteries as outcomes.19 Indeed, Axioms

1-3 imply AA�s axioms.

According to Theorem DLRS, Vi (A) has the form

Vi (A) =

Z

S

max
�2A

(Us;i (�)) d�i (s) ;

where Us;i are vNM utility functions.20 And, indeed, Axioms 1-5 imply DLR�s axioms,

according to Corollary 1. Combining the two:

eV (g) =
X

i2I

� (i)

2
4
Z

S

max
�2g(i)

(Us;i (�)) d� (s ji)

3
5

The representation V in Theorem 1 is a special case of eV , where exogenous states are
19In terms of the contracting example, Anscombe-Aumann acts correspond to complete contracts.
20In terms of the contracting example, menus correspond to contracts that do not condition on information.
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information, which impacts only probabilities � (s ji), but not the intensity l (s) of taste s:

V (g) =
X

i2I

� (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

The intensity of each taste is endogenous, but it is �xed across information. Theorem 1 states

that this particular combination of AA and DLRS allows representation of � under their

combined axioms. The assumption that information impacts only beliefs does, therefore, not

constrain period 1 choice.

So far the axioms have not capitalized on the richness of the domain provided by the

information space, I. In fact, it might still be that information is irrelevant for the decision

maker. The next axiom speci�es the way it matters.

Axiom 6 (Richness of Information): If A [ B �i B for some i 2 I, then there is

j 2 I with A �j B.

To roughly paraphrase Axiom 6: whenever there is preference for �exibility with respect

to two menus, then there is also some information dependence in their ranking.

Throughout, the interpretation is that, ultimately, only the chosen item matters for the

value of a menu. If A �i B, then Axiom 6 is empty. If A �i B, then A[B �i B implies that

under i, the chosen item must sometimes be in A and sometimes in B. Axiom 6 requires

that changing information can make either one or the other case more relevant, namely that

there is j 2 I with A �j B.

In terms of the representation established in Theorem 1, there must be a change of

information, that makes the tastes where an item in A is preferred over all items in B more

likely.21 Axiom 6 is not a strong assumption in the sense that it is local: it only requires

breaking indi¤erence.

As before, let � denote objective probabilities of information.

Theorem 2: If, given � : I ! R+,

V (g) =
X

i2I

� (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

21If there are multiple such tastes, only the utility-weighted aggregate probability has to increase.
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represents �,22 then statements i and ii below are equivalent and imply statement iii:

i) � satis�es Axiom 6,

ii) the measure � (s ji) is unique for all i 2 I and up to �-measure zero changes, l (s) is

unique for all s 2 S up to common linear transformations and changes on a set S 0 � S with
P
i2I

� (i)

�R
S0
d� (s ji)

�
= 0,23

iii) the cardinality of S� :=
S
i2I

support(� (s ji)) is bounded above by T .

Proof: See Appendix.

If a decision maker acts, as if she had preference for �exibility, updated her beliefs

when learning information and otherwise maximized expected utility according to objective

probabilities, then her preferences satisfy Axiom 6, if and only if the subjective probabilities

that a Kreps-style representation assigns to future tastes are determined uniquely.

The unique identi�cation of probabilities and utilities gives meaning to the description

of beliefs and tastes as two distinct concepts. The lack of this distinction is the central

drawback of previous work on preference for �exibility, starting with Kreps� (1979) seminal

paper. Theorem 2 is the main contribution of our work.

Further, Axiom 6 generates �niteness of S (statement iii in Theorem 2). Hence, Axiom

6 is not innocuous: F must be rich enough to distinguish between any two menus, for which

DMmight have preference for �exibility. This implies that only �nitely many lotteries can be

appreciated in any menu.24 In this sense a limit on the cardinality of S limits the degree to

which DM can have preference for �exibility. Section 2.2 considers an amendment to Axiom

6, which guarantees su¢cient tightness of information to allow I to be a metric space, thereby

lifting the constraint on the cardinality of S.

If our theory is viewed as purely descriptive of period 1 choice, then considering only

the class of representations V is not an assumption, in the sense that it does not constrain

choice behavior. It merely singles out an intuitive representation, where parameters can

be related to period 1 choice. For illustration, consider the following simple comparative

statics: Information, i 2 I, may have the form of a market outlook. There are three prizes,

Z = fm;x; 0g, interpreted as money, a risky asset and nothing. Money generates the same

value (compared to nothing) under every taste. Uncertainty about the value of the risky

asset is subjective. Thus, every taste identi�es the value of the risky asset in terms of

22In particular every event with � (i) = 0 must be trivial, if this representation exists.
23The expected utilities, Us (�) = us +

P
x2Z l (s)�xsx, are then only unique up to the common linear

transformation of l (s) and the addition of a constant.
24Kopylov (2007) turns this around and generates �niteness of S in the absence of an exogenous state

space, by basically assuming that the number of lotteries DM can appreciate in any given menu is limited.
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money. Renormalizing the taste space, such that s = (1; sx; 0) with sx 2 R and l (s) = 1

for all s 2 S, shows that S is isomorphic to R. �i and �j can then be compared in

terms of the distributions � (sx ji) and � (sx jj ) on R. The following statement is straight

forward: � (sx ji) has a higher mean than � (sx jj ), if and only if a chance to get the risky

asset is compared more favorably to a chance to get money under information i than under

information j:

fhq; x; 1� q; 0ig <j fhp;m; 1� p; 0ig =) fhq; x; 1� q; 0ig �i fhp;m; 1� p; 0ig .

Remark: Let eS = S�R+ be the subjective state space that collects all pairs of vNM utilities

and intensities. Then

X

i2I

� (i)

2
64
Z

eS

max
�2g(i)

(Ues (�)) de� (es ji)

3
75

includes as a special case

X

i2I

� (i)

2
4
Z

S

max
�2g(i)

(Us;i (�)) d� (s ji)

3
5 :

Theorem 2 implies that there is a unique probability measure, e� (es ji), on this larger subjec-
tive state space, eS, that allows representation of � and has the smallest support,S
i2I

support(e� (es ji)) � eS. It is the only measure that allows representation and for which

every taste, s 2 S, corresponds to at most one state, es 2 eS, in its support.
Thus, the restriction to representations based on the taste space S, where information

impacts only beliefs, is equivalent to considering those representations based on the subjec-

tive state space eS, which require only a minimal amount of subjective states in the sense of
DLR.

What can be learned about period 2 choice? If DM has information about the formation

of her future taste, then the natural inductive step is to employ the beliefs about future tastes

elicited in Theorem 2 to forecast period 2 choice. Doing so implies that the representation

V is interpreted as a map of the decision making process and that period 1 choice, which

satis�es Axiom 6, constrains period 2 choice frequencies.

Thus, con�ning attention to the class of representations V becomes an assumption with

behavioral implications. On the one hand this requires justi�cation of the assumption for a
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particular application, on the other hand it allows the assumption to be refuted, if observed

behavior is not in line with the model�s predictions. The particular restriction to repre-

sentations where information leads only to updated beliefs has a similar character to the

restriciton underlying the uniqueness results in AA and Savage. There, beliefs over exoge-

nous states are identi�ed based on the restriction that a state-independent ordinal ranking

implies a state-independent cardinal ranking of prizes.2526

The ability to forecast period 2 choice frequencies is relevant in strategic situations, for

example in the context of incomplete contracts. Section 4 elaborates.

Both types of exogenous uncertainty in our domain are essential for the uniqueness result:

on the one hand, DLR �nd that menus over lotteries alone do not allow to distinguish utility

levels l (s) and probabilities � (s). There has to be some channel through which to vary

one, but not the other. In the representation V , information impacts only probabilities,

� (s ji). On the other hand, Nehring (1999) �nds that acts with menus of prizes as outcomes

do not allow to distinguish utility levels l (s) and probabilities � (s) in the axiomatic setup

developed by Savage (1954).27 To establish the uniqueness result, the payo¤ a menu gives

under an individual taste has to be varied. This is possible, only because DM can be o¤ered

lotteries over prizes.

At the outset, the proof of the su¢ciency statement in Theorem 2 shows that in case of

a �nite information space I, Axiom 6 implies that any representation is based on a �nite

taste space:

V (g) =
X

i2I

� (i)

"X

S�

l (s)

�
max
�2g(i)

(� � s)

�
� (s ji)

#
:

with S� � S �nite. To make the next argument easier, suppose z 2 Z is the worst prize

under every taste s 2 S�. Let Kfzg be an appropriately constructed reference menu. For

each s 2 S� and " small enough, it is possible to construct a menu that is worse than Kfzg

by c (") l (s) under taste s but equally good under all other tastes, where c (") is a strictly

increasing continuous function with c (0) = 0. This construction is a central step in the

25AA�s representation can be viewed as a special case of ours, where there is only one taste. The restricition,
as in our case, is that the scaling of the vNM utility indexed by this taste is independent of information.
26Karni and co-authors (Karni and Mongin [2000], Grant and Karni [2005], Karni [2006]) point out that, if

one were to take AA�s identi�cation of unique subjective probabilities over objective states as a foundation for
Bayesian decision making in the sense that subjective probabilities are interpreted as DM�s true beliefs, then
the assumption that exogenous states do not impact the scaling of the vNM utility would be problematic.
The problem would be that beliefs in AA�s model have no implications for observable behavior. Hence, the
model could not be measured against the quality of its predictions.
27Following Nehring (1996), a companion paper to the one cited above, Epstein and Seo (2007) consider

a domain of random menus, which are lotteries with menus as outcomes. On this domain they tease out
unique induced probability distributions over ex post upper contour sets as the strongest possible uniqueness
statement.
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proof. It is illustrated in the Appendix. Let K"
� be the convex combination of those menus,

where � (s) is the weight given to the menu, which is worse than Kfzg under taste s. Then

V
�
g
Kfzg

i

�
� V

�
g
K"
�

i

�
= � (i) c (")

X

S�

� (s) l (s)� (s ji) :

Now suppose there is another representation

bV (g) =
X

i2I

� (i)

2
4X

cS�

bl (s)
�
max
�2g(i)

(� � s)

�
b� (s ji)

3
5 :

According to this representation the same type of construction yields a set K�
b� , such that

bV
�
g
Kfzg

i

�
� bV

�
g
K
�
b�

i

�
= � (i)bc (�)

X

cS�
b� (s)bl (s) b� (s ji) :

Choose � (s) / 1
l(s)
. Then

V
�
g
Kfzg

i

�
� V

�
g
K"
�

i

�

V
�
g
Kfzg

j

�
� V

�
g
K"
�

j

� = � (i)

� (j)

for all i; j 2 I. For b� (s) / 1
bl(s) , the same holds for K

�
b� in terms of

bV and, as V and bV
represent the same preference, also in terms of V . This implies that, for " and � such that

K"
� �j K

�
b� for some j 2 I, it must be true that K

"
� �i K

�
b� for all i 2 I. Suppose, contrary to

the Theorem, that Axiom 6 holds and S� 6= cS� or l (s) 6= bl (s) for s 2 S�. Then there is s 2 S�
with � (s) 6= b� (s). But then there must be j 2 I, such that, according to V , K"

� [K
�
b� �j K

"
�.

Axiom 6 then implies that there is k 2 I, such that K"
� �k K

�
b� , a contradiction. Thus

S� = cS� and l (s) = bl (s) for all s 2 S�. It is then a variation of standard results, that
� (s ji) = b� (s ji) for all s 2 S� and i 2 I.28
If Axiom 6 fails completely, in the sense that information is irrelevant to the decision

maker, clearly there are no bounds on the range of probability measures � (s ji), which allow

a representation. This is the same indeterminacy �rst encountered by Kreps.

But how much indeterminacy is implied by a partial failure of Axiom 6? Suppose there is

a representation of � as in Theorem 2. Further suppose there is a pair of menus, A;B 2 A,

such that A [ B �i B for some i 2 I, but A �j B for all j 2 I. This means there is

some preference for �exibility in having both A and B available, but their comparison is

independent of information. To say this more precisely:

28Up to � (i)-measure zero changes.
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De�nition 5:

cA;B (s) := l (s)

�
max
�2A

(� � s)�max
�2B

(� � s)

�

is the cost of having to choose from B 2 A instead of A 2 A under taste s 2 S.

A [ B �i B implies that cA;B (s) cannot be zero for all s and A �i B implies that it

cannot be any other constant. Still, A �j B for all j 2 I means

Z

S

cA;B (s) d� (s jj ) = 0

for all j 2 I. This suggests that with b� (s ji) = (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji )

and bl (s) = l(s)
1+�cA;B(s)

we can

construct another representation, bV (g), if � is small enough, such that (1 + �cA;B (s)) > 0
for all s 2 S. The proof of the necessity of Axiom 6 in Theorem 2 shows how this is done in

detail. The following proposition is based on the same idea.

Proposition 2: Suppose

V (g) =
X

i2I

� (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

represents �. Then the following two conditions are equivalent:

i) there is a pair of menus A;B 2 A, such that A[B �i B for some i 2 I, but A �j B for

all j 2 I,

ii) there is a continuum of representations based on b� (s ji) = (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji )

and bl (s) =
l(s)

1+�cA;B(s)
, parametrized by � > � 1

cA;B(s)
.

If there is another pair of menus A0; B0 2 A satisfying i), then they add another set of

possible representations, if and only if

cA0;B0 (s)

cA0;B0 (s0)
6=
cA;B (s)

cA;B (s0)

for some s; s0 2 S.

Proof: See Appendix.
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2.2. A metric information space

Let I be a generic metric space and F the Borel �-algebra with respect to the induced

topology. The goal is to establish appropriate versions of Theorems 1 and 2 for this case.

In addition to Axioms 1-5, the result corresponding to Theorem 1 requires that �D does

not change "too much" for "small" changes in D. As pointed out before, Axiom 6 has to be

strengthened to establish a result as in Theorem 2.

De�nitions and results that correspond to ones in the previous section, but only after

appropriate adjustments, are distinguished by a prime on their label.

De�nition 6: Let fDt jt 2 f1; ::; Tgg be a �nite partition of I with Dt 2 F . fDtg de-

notes a generic partition of this type. Further let GfDtg be the collection of acts where the

outcome depends only on the event D 2 fDtg. Let

G� :=
[

fDtg

GfDtg

be the set of simple acts. G \G� is the collection of all simple convex acts.

The support of g 2 GfDtg is a �nite subset of A.

Proposition 1�: � constrained to G \ G� satis�es Axioms 1-3, if and only if there are

continuous linear functions vD : A ! R, such that v : G \G� ! R with

v (g) =

TX

t=1

vDt (g (Dt))

for g 2 G \GfDtg, represents �.

Moreover, if there is another collection of continuous linear functions, v0D : A ! R, such

that

v0 (g) =

TX

t=1

v0Dt (g (Dt))

represents � on G \ G�, then there are constants a > 0 and fbD jD 2 F g, such that

v0D = bD + avD for each D 2 F .

Proof: See Appendix.

The expectation for probability measures on F can only be calculated directly for simple
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functions, as in the previous case. For general functions it is de�ned as an appropriate limit:

De�nition 7 (Based on De�nition 10.2 in Fishburn (1970)): For a countably additive

probability measure � on F and a bounded measurable function g : I ! R, let h'ni be a

sequence of simple functions, 'n : I ! R,29 that converge from below to '. Then de�ne

E� ['] := sup fE� ['n] jn = 1; 2; :::g

to be the expectation of ' under �.

Fishburn establishes that this expectation is well de�ned. To apply the de�nition, the

better set fA jA �D B g must not change too much for a small change in D. For this purpose

denote by dA (A
0;A00) the Hausdor¤ metric with respect to the Hausdor¤ metric on A, where

A0;A00 � A. For D;D0 2 2I , let d2I (D;D
0) be the Hausdor¤ metric with respect to the

metric on I.

Axiom 7 (Continuity in I): If the sequence hDni in F converges in terms of d2I , then

fA jA �Dn B g converges in terms of dA.

Theorem 1�: � satis�es Axioms 1-5 and 7, if and only if there are a bounded set of

positive numbers fl (s) js 2 S g, a conditional probability measure � (s ji), continuous in I,

and a probability measure � on I, such that the function V : G! R,

V (g) = E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

represents �.

Proof: See Appendix.

Straight forward changes to the proof of Theorem 1 establish the result for � constrained

to all simple acts, G�. In addition, the simple acts are shown to be dense in G in the topology

de�ned on G. Ensuring that De�nition 7 applies completes the proof.

Recall that, if the information space I is �nite, Axiom 6 is not an innocuous assumption,

29As for simple acts, the value of a simple function depends only on some �nite and measurable partition

fDt jt 2 f1; ::; Tgg of I . E� ['n] :=
TP
t=1
� (Dt)'n (Dt).
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because it limits the cardinality of the taste space, S. For the case where I is a metric space,

Axiom 6 is amended in order to guarantee su¢cient tightness to deal with a continuous S.

The next de�nition provides a measure of how much a set A is preferred over set B

in terms of how much the menu corresponding to the whole prize space, fh1; zi jz 2 Z g, is

preferred over the worst menu.

De�nition 8: Given D 2 F , let z be a prize, such that A �D fh1; zig for all A 2 A.
30

For A;B 2 A, de�ne pA;B (D) 2 (�1; 1), such that

i) for A <D B, p = pA;B (D) solves

1

1 + p
A+

p

1 + p
fh1; zig �D

1

1 + p
B +

p

1 + p
fh1; zi jz 2 Z g ;

ii) for B �D A, pA;B (D) = �pB;A (D).

Call pA;B (D) the cost of having to choose from B instead of A under event D.

Note that pA;B (D) 6= 0 implies that D is nontrivial for any representation as in Theorem

1�, because otherwise A �D B for all A;B 2 A.

If two sequences of menus, hAni and hBni, approach each other, then the cost of having

to choose from Bn rather than An vanishes under every event. However, the ratio of such

costs may have a well de�ned limit.

Axiom 6� (Richness and Tightness of Information): If hAni ; hBni ; hCni � A converge

in the Hausdor¤ topology, then
pCn;An[Bn (D)

pCn;Bn (D)
9 1

for some D 2 F implies that there is D0 2 F , such that

pCn;An (D
0)

pCn;Bn (D
0)
9 1:

Axiom 6� implies Axiom 6, where i is substituted by D. To see this, note that Axiom 6

holds trivially unless there isD 2 F , such that A[B �D B and A �D B. De�ne the constant

sequences An := A and Bn := B and let Cn := C �D A. Then pCn;An (D) = pC;A (D) must

be satis�ed. This implies pC;B (D) = pC;A (D) and pC;A[B (D) 6= pC;B (D) or, in terms of the

constant sequences,
pCn;An[Bn (D)

pCn;Bn (D)
9 1:

30This prize exists, because Z is �nite and because of Monotonicity (Axiom 5).
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Thus, according to Axiom 6�, there is D0 2 F with

pCn;An (D
0)

pCn;Bn (D
0)
9 1:

Hence A �D0 B, and Axiom 6 is satis�ed.31

Again, let � represent objective probabilities of events.

Theorem 2�: If, given � : I ! R+,

V (g) = E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

represents �, then statements i and ii below are equivalent:

i) � satis�es Axiom 6�,

ii) the measure � (s jD ) := E� [� (s ji) jD ] is unique for all D 2 F and up to �-measure zero

changes, l (s) is unique for all s 2 S up to common linear transformations and changes on

a set S 0 � S with E�

�R
S0
d� (s ji)

�
= 0.

Proof: See Appendix.

The discussion of Theorem 2 applies here, including the implications of a partial failure

of Axiom 6 and Axiom 6�, respectively.

In the proof of Theorem 2, the individual taste s 2 S� is identi�ed by two menus: one is

preferred over the other under taste s, but they generate the same payo¤ under every other

taste. If S is continuous, the complication is that making a menu preferred less by a �nite

amount under one taste will invariably make it worse under similar tastes,32 too. Therefore,

individual tastes can only be identi�ed in the limiting case, where the less preferred and the

more preferred menu approach each other. In this limiting case the cost of having to choose

from the less preferred menu instead of the more preferred menu tends to zero. Axiom 6�

allows statements about the ratio of these costs for two di¤erent pairs of menus in the limit.

The formal argument is much more tedious, but the main ideas of the proof are the same as

for Theorem 2.

31If pCn;Bn
(D) 9 0, Axiom 6 trivially implies Axiom 6�. Thus, Axiom 6� is only stronger than Axiom 6

for pCn;Bn
(D)! 0.

32When tastes are viewed as vectors in Rk+.
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3. Subjective versus Objective Probabilities of Information

Section 2 answers two questions about choice on our domain: under what conditions does

a decision maker with preference for �exibility, à la Kreps, behave like a standard agent in

every other way? In particular DM should choose as if lotteries were evaluated according

to expected utility and there should be a subjective probability measure over information,

according to which acts are also evaluated by expected utility. Further, information should

only lead to updated beliefs. Theorems 1 (meaning Theorem 1 and 1�) give the answer to

this question by establishing the representation

V (g) = E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

for some subjective probability measure � on I.

Now suppose DM�s preferences can be represented thus, where � � �. � is the objective

probability distribution, which corresponds to the true observed frequencies of information.

When is the distinction of probabilities and utilities meaningful? Theorems 2 give a condition

under which l (s) and � (s ji) in the representation V are unique in the appropriate sense.

The two questions can be answered independently of each other. Still, there is a gap

between Theorems 1 and Theorems 2: a combined result that gives conditions under which

the representation V exists, � is unique and l (s) and � (s ji) are unique in the appropriate

sense, has yet to be established.

If � is unique in Theorems 1, then Theorems 2 can be applied to establish uniqueness of

l (s) and � (s ji), based on this unique �. Determining � uniquely in Theorems 1 is analo-

gous to the classical problem addressed by AA. Their unique identi�cation of probabilities

of exogenous states is based on the assumption of a state independence of the ranking of out-

comes. The di¤erence is that they consider acts with lotteries (instead of menus of lotteries)

as outcomes, so there is no room for preference for �exibility in their setup. The combination

of state independence and Axiom 6 would rule out any preference for �exibility. Thus, the

assumption of state independence has to be weakened, to be useful in or context.

De�nition 9: Let 
 � Z denote a non-degenerate set of prizes and �(
) the set of

all lotteries with support in 
. Let 	(� (
)) � A be the set of all menus of lotteries that

have support in 
.

Axiom 8 (Partial Information Independence): There is 
 � Z, such that for A;B 2

	(� (
)), A �D B for some event D 2 F implies A �D0 B for all nontrivial D0 2 F . If �
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satis�es the same condition for 
0 � Z, then also for 
 [ 
0.

To illustrate Axiom 8, consider 
 = fm; 0g to consist of the prizes "money" and "noth-

ing". The �rst part of Axiom 8 then requires all menus that consist only of lotteries over

money and nothing to be ranked independent of information. To motivate the requirement,

it is su¢cient, that the value of money (versus nothing) is assumed to be independent of

information.

Having assumed state independent rankings, AA move on to assume cardinally state

independent rankings (or state independent utilities). This cannot be assumed in terms

of an axiom. Instead it is a constraint on the class of representations for which they es-

tablish their uniqueness result.33 In our representation it would amount to requiring thatR
S

l (s)max
�2A

(� � s) d� (s ji) is independent of i 2 I for all A 2 	. But if 	 � A is a generic

collection of menus, then this might not be consistent with �, which applies to all of G.34

Thus, the requirement must be limited to particular collections of menus 	(� (
)) � A, as

de�ned in De�nition 9.

There clearly is a representation, where the value of menus in 	(� (
)) does not depend

on information i 2 I, and which is consistent across A. To construct it, let the utility l (s) sx

of prizes x 2 
 be independent of the taste, s 2 S. AA�s argument implies that � (D) is

unique for every event D 2 F . Given this probability measure �, Theorems 2 imply that

l (s) is unique in the appropriate sense. Thus, l (s) sx is independent of s for all x 2 
 for

all of the representations, for which the value of menus in 	(� (
)) does not depend on

information i 2 I. The appropriate uniqueness of � (s ji) also follows from Theorems 2.

Once AA restrict attention to representations with state independent utilities, there is

no arbitrariness in their model. In our model, there may be: preference for �exibility implies


 � Z. Hence, there could be 
0 � Z, for which � also satis�es our assumption, while for


 [ 
0 it does not. Either the prizes in 
 or those in 
0 could, then, be assigned a cardinal

ranking, which is independent of information. While there is no inherent argument to favor

one over the other, the two assumptions clearly lead to di¤erent representations. This arbi-

trariness would render the uniqueness result meaningless. The second part of Axiom 8 rules

out this scenario, suggesting the following de�nition:

De�nition 10: If � satis�es Axiom 8, let 
� � Z be the largest set, for which it does.

33Compare the discussion of Theorem 2.
34For a simple example of such inconsistency consider 	 = ff�g ; f�g ; fgg but, for some p 2 (0; 1) and

D;D0 2 F , fp�+ (1� p) g �D f�g �D0 fp�+ (1� p) g. Since
R
S

l (s) sup
�2A

(� � s) d� (s ji ) is linear, it can

not be independent of i 2 I.
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Theorem 3:

� satis�es Axioms 1-6 (6� and 7 if I is metric) and Axiom 8, if and only if � can be

represented by

V (g) = E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji)

3
5

as in Theorems 1, where the evaluation of menus in 	(� (
�)) is independent of infor-

mation. For this representation � is unique, � (s jD ) is unique for all D 2 F and up to

�-measure zero changes and l (s) sx is constant on S for all x 2 

� and up to changes on a

set S 0 with E�

�R
S0
d� (s ji)

�
= 0.

Proof: In the class of representations, where
R
S

l (s)max
�2A

(� � s) d� (s ji) does not depend

on i 2 I, the uniqueness of � follows in complete analogy to the corresponding result in

AA. Given a unique �, Theorem 2 implies the appropriate uniqueness of � (s jD ) and l (s).

Because a representation with l (s) sx constant on S for all x 2 

� clearly exists, the unique

representation must have this feature. �

While AA are speci�cally interested in a situation without objective probabilities of

exogenous states, we are not. As before, let � be the subjective probabilities DM assigns

to information and � the objective probabilities corresponding to observed frequencies of

information. It is easy to modify Axiom 8, such that it implies � � � in Theorem 3.35

Even if � in the representation V is not unique, a representation based on � may not

exist. For example an event D 2 F that is trivial according to � but not according to �

rules out a representation based on �.

Proposition 3: Suppose V based on � represents � and I and S� both have the same

cardinality. If � satis�es Axiom 6, then there is a neighborhood of � in RT , such that for

35Strengthen Axiom 8 the following way. (Objective Probabilities): There is 
 � Z, such that for
A;B 2 	(� (
)) and nontrivial D;D0 2 F ,

� (D0)

� (D) + � (D0)
hAD +

� (D)

� (D) + � (D0)
hBD0 �

� (D)

� (D) + � (D0)
hAD0 +

� (D0)

� (D) + � (D0)
hBD:

If � satis�es the same condition for 
0 � Z, then also for 
 [ 
0.
This implies Axiom 8. It also implies that V

�
gAD
�
� V

�
gBD
�
=
�
V
�
gAD0

�
� V

�
gBD0

��
�(D)
�(D0) for A;B 2

	(� (
)).
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� in this neighborhood, there is a representation

bV (g) = E�
"X

S�

bl (s) max
�2g(i)

(� � s) db� (s ji)
#
;

where bl (s) and b� (s ji) are "close" to l (s) and � (s ji).

Proof: See Appendix.

This robustness result is interesting for applications where beliefs are used as a forecast

of period 2 choice: if the information space is just large enough to identify the representation

uniquely, given objective probabilities of information, and if the observer and the decision

maker disagree slightly in their perception of those "objective" probabilities, then Theorem 2

can be applied36 and the unique subjective probabilities of future tastes provided by Theorem

2 are at least a good approximation of DM�s true beliefs.

The following lemma is at the heart of the proof of Proposition 3:

Lemma 1: If I is �nite, V based on � and bV based on � both represent �, then

� (i)

� (j)
=
� (i)

� (j)

R
S

l(s)
bl(s)d� (s ji)

R
S

l(s)
bl(s)d� (s jj )

has to hold for all nontrivial i; j 2 I.

In Proposition 3, I and S� both have cardinality T . To illustrate the proof of the

proposition, let � (s) 2 RT+ denote the vector with i-th component � (s ji) and let ��� (s) 2

RT+ be the component wise product of this vector with �. On S
� there is a positive solution

bl (s) of the system of equations

� (i) / � (i)
X

S�

l (s)

bl (s)
� (s ji) ;

whenever � is in the positive linear span of the T vectors � � � (s).37 It can be shown

that those T vectors are linearly independent. Thus, they span RT . � can be expressed

36There is a representation based on �, even if DM truly believes �.

37The positive linear span of a collection of vector fvs js 2 S
� g is the set of vectors

�P
S�
ksvs jks 2 R+

�
.
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as a linear combination, which assigns unit weight to the vector � � � (s) for each s 2 S�.

Therefore, � is in the interior of the positive linear span of those vectors, implying that there

is a neighborhood of � in RT+, which is also in their positive linear span.
38 The solution of

a linear system of equations is continuous in all parameters. Hence, for � in a small enough

neighborhood of �, l(s)bl(s) t 1, which implies
�(sji )
b�(sji ) t 1.

4. Incomplete Contracts

As illustrated by the example in the introduction, our domain accommodates incomplete

contracts very naturally: consider I as the event space. At the time that two parties write

a contract, I is describable. Further, there are unforeseen or indescribable contingencies,

which may impact parties� preferences over prizes.

Information about those contingencies may be asymmetric. To illustrate the problem

this poses for two parties trying to agree on an e¢cient contract, reconsider the example:

Second Continuation of Example: In order to agree on an e¢cient contract both the

retailer and the supplier must be able to rank contracts which may condition on information

about consumer con�dence.

The retailer understands the indescribable contingencies determining her idiosyncratic

demand: she can assign probabilities � (h jH ) and � (h jL), conditional on information.

Comparing contracts, the objective function of the retailer is

V (g) =
X

i2fH;Lg

� (i)

2
4 X

s2fh;lg

� (s ji) max
q2g(i)

(vs (q))

3
5 ;

as stated above.

Suppose that only the retailer�s valuations depend on the idiosyncratic demand she faces.

The possible valuations of the supplier only depends on consumer con�dence, i 2 fH;Lg.

The supplier values supplying qh and ql at wi (qh) and wi (ql), respectively. Further suppose

that the supplier does not understand the contingencies determining the retailer�s idiosyn-

cratic demand. He can, therefore, not assign them probabilities. Because of this asymmetry

in information, the supplier�s objective function is only speci�ed conditional on the retailer�s

38Theorem 2 states that S� has at most cardinality T . This argument makes clear why Proposition 3
requires it to have at least cardinality T : If not, then the T vectors � � � (s) can not span RT . Hence the
interior of their positive span is not open in RT .
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beliefs:

W (g) =
X

i2fH;Lg

� (i)

2
4 X

s2fh;lg

� (s ji)wi
�
q�g(i) (s)

�
3
5

where q�A (s) := argmax
q2A

(vs (q)). The supplier�s ability to rank contracts depends on learning

the retailer�s beliefs.

More generally, consider a principal and an agent. For simplicity, suppose that only the

principal�s valuations depend on indescribable contingencies, which are unforeseen only by

the agent. Let S denote the principal�s taste space.39

Actions are observable, so there is no moral hazard. An action pair speci�es actions to

be taken by the principal and the agent, respectively. Each action pair corresponds to a

lottery (potentially dependent on the event i 2 I) over relevant prizes.40

Because there is no uncertainty about the agent�s payo¤, which resolves between writing

the contract and taking an action and on which the contract cannot condition, an e¢cient

contract will assign some control rights to the principal: it will specify a collection of action

pairs for every describable event i 2 I, from which the principal can choose at a later time.

The reduced form of such an incomplete contract, g, speci�es a menu of lotteries over

prizes for every event i 2 I, g : I ! A. The principal may choose from g (i), if state i realizes.

The interpretation is that by the time he chooses, the uncertainty about the contingencies

that determine his taste over prizes, s 2 S, has been resolved. Thus, from the principal�s

point of view, the incomplete contract is nothing more than an act in the domain considered

in the previous sections.41

To agree on an e¢cient contract, both parties must be able to rank all contracts. Let

�s (A) := argmax
�2A

(� � s).42 According to the previous sections, a principal satisfying our

39This simplifying assumption can be relaxed. There could be a space Sagent and another space Sprincipal
to capture possible future preferences of the respective parties. Further, information might be less asym-
metric. However, it is crucial that each party�s information about its own future tastes encompasses all the
information the other party might have. This constraint seems reasonable in many contexts: Contingencies
that are meaningful to both parties should be part of the describable event space.
40If contingencies have impact on the e¤ect of actions on the probabilities of prizes, they are relevant for

both parties. Again, that they are then describable seems reasonable in many contexts.
Actions may be complicated objects, involving multiple dimensions like leisure or work, monetary payment,

schooling etc. Those may translate directly into prizes. They might also generate a probability distribution
over prizes, which is independent of s 2 S. Prices may be thought of as costly or bene�cial to the principal,
the agent or both.
41The mapping from action pairs to lotteries must be surjective, such that every act can be identi�ed with

some contract.
42The argmax exists, because menus are compact. If it is not unique, ties can be broken in the agent�s

interest.
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axioms ranks contracts according to

V (g) = E�

2
4
Z

S

l (s) (�s (g (i)) � s) d� (s ji)

3
5 ;

where � (s ji) are unique in the appropriate sense.

What about the agent? She must be able to assign an event dependent cost, c (x; i), to

every prize x 2 Z. Let c (i) 2 Rk be the vector of these costs.43 Further she must assess

probabilities of events according to objective probabilities, � : I ! [0; 1].44 Lastly, assume

that the agent believes that the representation above reveals the principal�s assessment of

the uncertainty over her own future tastes. Then, conditional on learning the principal�s

ranking of contracts, the agent ranks contracts according to

W (g) = �E�

2
4
Z

S

(�s (g (i)) � c (i)) d� (s ji)

3
5 :

Note thatW (g) depends on the conditional subjective probabilities, � (s ji), as perceived by

the principal but not on the taste dependent intensities, l (s). In our axiomatic setup these

two are distinct concepts.

The assumption that rankings of contracts are commonly known is usually required in

contract theory and justi�ed by some informal story of learning from past observations.45 As

this assumption is not our focus, we make it without doing the game theoretic complexity of

the contracting problem justice. Instead we address the additional assumption required in

the incomplete contracting literature: In order to allow both parties to rank all contracts, it

has to be assumed that they believe in the same probability distribution over utility-payo¤s,

ex ante.46 This ad hoc assumption is made for lack of a useful choice theoretic model of

the bounded rationality involved. It is troubling in the context of unforeseen contingencies,

where asymmetric information seems natural. Our domain is not only well suited to describe

43This cost might be a bene�t. In fact, linear transformations of the cost schedule are irrelevant. It is
labeled as a cost only because in many applications a bene�t for the principal corresponds to a cost for the
agent.
44In general she may asses them according to �agent : I ! [0; 1]. This assessment may or may not agree

with the principal�s assessment, �principal. If it does not, the question arises, whether parties update their
believes after learning the other party�s assessment. Typically probabilities of describable events are assumed
to be assessed according to objective probabilities, � : I ! [0; 1], by both parties.
45For example, contracts signed in a large homogenuous population might be observed.
46See, for example, Hart and Moore (1988). Maskin and Tirole (1999) show that, even for the case of

unobservable actions and under restrictions that are often satis�ed in the literature, this assumption allows
to achieve all those payo¤s with incomplete contracts that could be achieved by a hypothetical complete
contract, which can condition on the indescribable contingencies.
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the type of incomplete contracts laid out above, but for those contracts our axioms also give

choice theoretic content to the assumption of common beliefs.

Forecasting behavior based on beliefs elicited from the principal�s ranking of contracts is

an inductive step. The underlying assumption that the class of representations we consider

maps his actual decision making process is not directly falsi�able. However, it can be falsi�ed

indirectly on the basis of its predictions. The agent might, thus, be comfortable to make this

assumption not only because it is intuitive from introspection, but also because past agents

have found it to generate the right predictions.

More complicated situations should be addressed. For example the principal might not

foresee the indescribable contingencies relevant for his future taste perfectly, himself. In

that case the agent might want to distinguish those beliefs based on information, from those

representing ambiguity.47

Even when ambiguity is not an issue, both parties might have exclusive information about

indescribable contingencies relevant for the other party�s future taste. Then each party may

update their beliefs after learning the other party�s preferences. Sequentiality and a model

of learning would have to be incorporated to generate common beliefs ex ante. We leave this

as an area for future research.

5. Conclusion

The notion of a taste space is attractive, because in principle it allows distinction of con-

sequences and probabilities. In the context of preference for �exibility this distinction, in

turn, reconciles choice with Bayesian decision making, which is at the heart of the notion of

rationality. However, identifying the two conceptually distinct components through prefer-

ences has proven di¢cult. This paper proposes a richness requirement on an exogenous state

space, interpreted as information, which allows their unique identi�cation. The exogenous

state is chosen by Nature. We conclude by suggesting a reinterpretation:

Consider information, which can be determined by an experimenter instead of Nature. In

many contexts the experimenter cannot credibly o¤er alternative informations about states

of nature. If he can, then information is typically interpreted as just another dimension of the

consumption bundle. A context, where DM�s ranking changes with "information" conveyed

by the experimenter and where it is not interpreted as part of the consumption bundle, is

framing. A frame is information, which seems to be irrelevant to the rational evaluation of

47A richer model would be required to accomodate this possibility. Dekel, Lipman and Rustichini (1998-
b) point out that contingencies, which DM can not foresee, are di¢cult to reconcile with the notion of a
state space. We know of no work that uniquely identi�es the two types of beliefs, even in a setting without
subjective states.
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alternatives, but which may a¤ect choice.

One possible interpretation of frames is suggested by Sher and McKenzie (2006). They

propose that logically equivalent frames may not be informationally equivalent: they convey

information about the sender�s knowledge about relevant aspects of the choice situation.

Alternatively, DM might be susceptible to frames for a multitude of other reasons, like

hedonic forces, cognitive load or reference dependent preferences.

Consider pairs (A; f), where A is a menu and f is a frame.48 DM has preferences over

the domain A � I, where I is now interpreted as the collection of all frames, f 2 I. The

adaptation of our axioms to this new domain is straight forward. To paraphrase the identi-

fying assumption, Richness, in this context: if there is preference for �exibility with respect

to two indi¤erent menus, then those can be reframed, so as to break the indi¤erence. Hence,

frames do have an impact on the evaluation of menus.

The representation implied by the axioms suggests interpreting DM�s susceptibility to

frames as Bayesian decision making. The underlying model is not speci�ed, but the unique-

ness result of Theorem 2 lets us classify the information content of changing frame f to frame

f 0 by comparing the probability distributions � (s jf ) and � (s jf 0 ) they induce.

If DM truly was a Bayesian decision maker (in the sense speci�ed by our model,49) then

� (s jf ) should predict how often taste s governs her future choice. Whether and when it

does, is an empirical question.

6. Appendix

6.1. Proof of Theorem 1

For any nontrivial event i 2 I (which exists according to Corollary 1), Vi (A) and vi (A) agree on A up to

a positive a¢ne transformation, as established by Corollary 2. Thus there is an event dependent, positive

scaling factor �0 (i), such that vi (A) = �0 (i)Vi (A) for all A 2A, where �0 (i) = 0, if and only if i is trivial.

Let V 0 represent � on G and V 0 � v on G. Due to Continuity, there is a convex act g 2 G for all g 2 G,

such that g (i) �i g (i). Then, according to Proposition 1, V
0 (g) = V 0 (g) =

P
i2I
vi (g (i)) =

P
i2I
�0 (i)Vi (g (i)).

According to Theorem DLRS, Vi (g (i)) = Vi (g (i)).

Hence, g � h implies
P
i2I
�0 (i)Vi (g (i)) >

P
i2I
�0 (i)Vi (h (i)). Therefore

V 0 (g) =
X

i2I
�0 (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d�i (s)

3
5

48This domain is suggested by Salant and Rubinstein (2007).
49This may be the case, even if she is not explicitly aware of the information content she assigns to frames.

For example a reference point introduced by a frame might persist and in�uence future choice the way DM
"expects" it to.
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represents �. Since v is unique only up to positive a¢ne transformations, �0 (i) can be normalized to be a

probability measure, � (i).

Interpreting � (s ji ) := �i (s) as a conditional probability measure over the taste space S, de�ne

V (g) :=
X

i2I
� (i)

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji )

3
5

to establish the su¢ciency statement in Theorem 1. That Axioms 1-5 are necessary for the existence of the

representation is straight forward to verify. �

6.2. Proof of Theorem 2

To establish that Axiom 6 is su¢cient for the uniqueness, consider �(Z) as a k � 1 dimensional simplex of

lotteries. We now construct the menus K� and K
"
� that allow identi�cation of individual tastes in a sequence

of four claims.

De�nitions 11:

� For X � Z, let SX � S denote all tastes under which all x 2 X are the worst prizes, and all x 2 ZnX

are strictly better. For example, Sfzg denotes all tastes under which z 2 Z is the unique worst prize. Let

](X) be the cardinality of X.

�

KX :=

8
<
:� 2 �(Z)

������
X

y2ZnX
�2 (y) = r2 and � (x) = � (y) for x; y 2 X

9
=
; :

50

�

LX :=

8
<
:� 2 �(Z)

������
X

y2ZnX
�2 (y) = (r cos ")

2
and � (z) = 1�

X

y2ZnX
� (y) for some z 2 X

9
=
; :

� Let �X be the projection of lottery � into the hyperplane with � (x) = 0 for all x 2 X. ]
�
�X ; �X

�
is the

angle between lottery � and �, when projected into this plane.

�

N"
X (�) =

n
� 2 KX

��� ]
�
�X ; �X

�
< "

o
:

Figure 1a shows Kfzg for the case Z = fx; y; zg and r
2 = 1

2 .
51

50The projection of its elements � into the hyperplane with � (x) = 0 for all x 2 X is the positive orthant
of the k � c dimensional sphere of radius r < 1p

k�1 around h1; xi.
51In the case of only three prizes, Kfzg is a subset of the Marshak triangle with prize z at the origin.

34



Figure 1a: Kfzg in the Marshak triangle. b: Endogenous state space S
� = fs; s0g.

KX allows to identify individual tastes in SX . For ] (X) = 1, LX is empty. According to Claim 2 below,

LX contains the most preferred lottery in s
0 2 SY for Y � X. Adding this menu to KX makes sure that the

utility under those tastes is not reduced, when N"
X

�
�X
�
is removed from KX , if � is relevant under some

taste s 2 SX . Note that for s 2 SX the most preferred lottery in KX [ LX is in KX . Lastly, KX \ LX = ;.

Claim 1: argmax
�2KX

(� � s) is a singleton and

argmax
�2KX

(� � s) 6= argmax
�2KX

(� � s0)

for all s 6= s0, s 2 SX , s0 2 SY and Y not a strict subset of X.

Proof: Y not being a strict subset of X implies that for all y 2 Y nX, s0y = 0 and sy > 0. Thus,

max
�2KX

(� � s) is solved uniquely for � parallel to s, implying � (y) > 0. max
�2KX

(� � s0) is solved for � (y) = 0. �

For s 2 SX , the menu f� 2 KX j� is parallel to sg is then a singleton, as KX is a subset of a sphere.

Figure 1b illustrates for the case Z = fx; y; zg and S� =
�
s =

�
4
5 ;

3
5 ; 0
�
; s0 =

�
5
13 ;

12
13 ; 0

�	
.

De�nition 12: Let �Xs 2 KX be the lottery that identi�es s. Conversely, let sX� 2 SX be the taste

parallel to lottery � 2 KX .

Claim 1 implies that ]
�
�Xs ; �

X
s0

�
> 0 for s 6= s0, s 2 SX , s0 2 SY and Y not a strict subset of X.

Claim 2: For s0 2 SY with Y � X, ]
�
�Ys ; �

Y
s0

�
> � for all s 2 SX , and r <

1p
k�1 , there is " (�) > 0, such

that for " < " (�),

argmax
�2KX[LX

(� � s0) � LX :

Proof: ] (Y ) < ] (X) � k � 1. Suppose, for s0 2 SY , � was the most preferred lottery in KX . Split � � s
0

into two parts:
P

x2ZnX
� (x) s0x and

P
x2X

� (x) s0x. By virtue of being in KX , � will assign the same weight to
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all x 2 X. For x 2 Y , s0x = 0. All prizes in XnY might be valued equally:

X

x2X
� (x) s0x �

�
max
x2X

s0x

�0
@1�

X

x2ZnX
� (x)

1
A ] (X)� ] (Y )

] (X)
:

Now ] (Y ) � 1 and ] (X) � k � 1. Therefore,

X

x2X
� (x) s0x �

�
max
x2X

s0x

�0
@1�

X

x2ZnX
� (x)

1
A k � 2

k � 1
:

By choosing � 2 LX with ]
�
�X ; �X

�
= 0, DM can at least guarantee herself

X

x2ZnX
� (x) s0x cos "+

�
max
x2X

s0x

�0
@1�

X

x2ZnX
� (x)

1
A ;

where

1�
X

x2ZnX
� (x) > 1�

X

x2ZnX
� (x)

for " > 0. A su¢cient condition for � to be preferred over � under taste s0 is therefore:

(1� cos ")
X

x2ZnX
� (x) s0x <

�
max
x2X

s0x

�0
@1�

X

x2ZnX
� (x)

1
A 1

k � 1
:

Now ]
�
�Ys ; �

Y
s0

�
> � for s 2 SX and s0 2 SY bounds max

x2X
s0x away from zero and r < 1p

k�1 boundsP
x2ZnX

� (x) away from 1. Thus, there is " (�), such that for " < " (�), � is preferred over � under taste s0. �

De�nition 13: Given a probability distribution over tastes, � : S ! R+, de�ne a particular convex

combination of menus:

K"
� :=

X

X�Z

Z

s2SX

��
KXnN

"
X

�
�Xs
��
[ LX

�
� (s) ds:

Let K� denote the case " = 0.

Note that K� �i K
"
� for all i 2 I and " > 0. Figure 2 illustrates KfzgnN

"
fzg

�
�
fzg
s

�
for the case Z = fx; y; zg

and S� =
�
s =

�
4
5 ;

3
5 ; 0
�
; s0 =

�
5
13 ;

12
13 ; 0

�	
.

Claim 3: For the representation in Theorem 2, the cardinality of

S� :=
[

i2I
support (� (s ji ))

must be bounded above by the cardinality of I; T:
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Figure 2: Kfzg versus KfzgnN
"
fzg (�s).

Proof: Let N 2 [1;1] be the cardinality of S�. We now show that N � T . Let � and �0 have �nite

support. Then, for " small enough, there is s1 2 S
�, such that �0 (s1) 6= � (s1) implies K"

� �i K
"
� [K

"
�0 and

K"
�0 �i K

"
� [K

"
�0 for some i 2 I. Suppose T < N . Then there are tastes fs2; :::; sT+1g 2 S

�. Fix some

� (s) :

�
> 0 for s 2 fs1; :::; sT+1g

= 0 otherwise
:

According to the representation in Theorem 2 (taking into account that � has �nite support here,)

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= � (i)

X

s2S

�
V
�
gKX[LX
i

�
� V

�
g
(KXnN"

X(�
X
s ))[LX

i

��
� (s) :

Thus, V
�
g
K�

i

�
� V

�
g
K"
�

i

�
is linear in � (s). Look for

�0 (s) :

�
> 0 for s 2 fs1; :::; sT+1g

= 0 otherwise

which satis�es the T linear equations

V
�
g
K�

j

�
� V

�
g
K"
�

j

�
= V

�
g
K�0

j

�
� V

�
g
K"
�0

j

�

for all j 2 I. These conditions do not fully specify the T +1 components of �0 (s), and hence �0 (s1) 6= � (s1)

must be possible, implying K"
� �i K

"
� [K

"
�0 for some i 2 I. This contradicts Axiom 6. Hence, N � T must

indeed hold and, thus, the cardinality of S� is bounded above by T . �

According to the representation,

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= � (i)

X

X�Z

Z

s2SX

�
V
�
gKX[LX
i

�
� V

�
g
(KXnN"

X(�
X
s ))[LX

i

��
� (s) ds:

For lottery � 2 KX and taste s 2 SX ,

l (s) (� � s) = rl (s) cos
�
]
�
�; �Xs

��
:
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Claim 4: For " > 0 small enough,

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= � (i) r (1� cos ")

X

s2S�
l (s) � (s)� (s ji ) :

Proof: Consider how

l (s0)

 
max

�2KX[LX
(� � s0)� max

�2(KXnN"
X
(�Xs ))[LX

(� � s0)

!

is evaluated for any given taste s0 and " > 0 small enough. As S� is �nite, Claim 1 allows choosing �, such

that ]
�
�Xs ; �

X
s0

�
> � for all Y * X or Y = X, s 2 SX and s0 2 SY . Let s 2 SX and s0 2 SY and consider

the following three exhaustive cases:

i) Y = X: Then LX is not relevant for the maximum of either menu. Therefore, consider instead

l (s0)

�
max
�2KX

(� � s0)� max
�2KXnN"

X
(�Xs )

(� � s0)

�
= rl (s0)

�
1� cos

�
max

�
0;
�
"� ]

�
�Xs ; �

X
s0

�		��
:52

ii) Y * X: As ]
�
�Xs ; �

X
s0

�
> �, " < � ensures

max
�2KX[LX

f� � s0g � max
�2(KXnN"

X
(�Xs ))[LX

f� � s0g = 0:

iii) Y � X: Then Claim 2 states that for " < " (�), KX is not relevant for the maximum. In that case,

max
�2KX[LX

f� � s0g � max
�2(KXnN"

X
(�Xs ))[LX

f� � s0g = 0:

So for " small enough and for s 2 SX ,

V
�
gKX[LX
i

�
� V

�
g
(KXnN"

X(�
X
s ))[LX

i

�
= � (i)

Z

N"
X
(�Xs )

rl
�
sX�0
� �
1� cos

�
"� ]

�
�Xs ; �

0����
�
sX�0 ji

�
d�0:

Consequently,

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= � (i) r

X

X�Z

Z

SX

� (s)

Z

N"
X
(�Xs )

�
1� cos

�
"� ]

�
�Xs ; �

0��� l
�
sX�0
�
�
�
sX�0 ji

�
d�0ds:

Choose " > 0 small enough, such that " < �. Then

Z

N"
X
(�Xs )

�
�
sX�0 ji

�
d�0 = � (s ji ) :

De�ne � (s) := 0 for s =2 S�. Then

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= � (i) r (1� cos ")

X

s2S�
l (s) � (s)� (s ji ) : �

52Compare Figure 2.
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Now suppose there are two distinct representations, such that

V
�
gAi
�
= � (i)

X

S�

l (s)max
�2A

(� � s)� (s ji ) + const(i)

and
bV
�
gAi
�
= � (i)

X

cS�

bl (s)max
�2A

(� � s) b� (s ji ) +\const(i):

First we show that bl (s) =l (s) up to a linear transformation and that S� = cS�. Consider

� (s) :=

1
l(s)P

S�

1
l(s)

and b� (s) :=
1
bl(s)P

cS�
1
bl(s)

:

Then, by Claim 4,

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
/ � (i)

X

S�

� (s ji ) = � (i)

for all i 2 I, because � (s ji ) is a probability measure. Thus, on the one hand,

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
=
�
V
�
g
K�

j

�
� V

�
g
K"
�

j

�� � (i)
� (j)

for all j 2 I and on the other hand

bV
�
g
Kb�
i

�
� bV

�
g
K
�

b�
i

�
=

�
bV
�
g
Kb�
j

�
� bV

�
g
K
�

b�
j

��
� (i)

� (j)

for all j 2 I, which implies

V
�
g
Kb�
i

�
� V

�
g
K
�

b�
i

�
=

�
V
�
g
Kb�
j

�
� V

�
g
K
�

b�
j

��
� (i)

� (j)
;

because V and bV represent the same preference and are unique up to positive a¢ne transformations. Choose
" and �, such that

V
�
g
K�

i

�
� V

�
g
K"
�

i

�
= V

�
g
Kb�
i

�
� V

�
g
K
�

b�
i

�
:

This is possible, because both sides are positive, continuous in " and � and vanish in the limit of "! 0 and

� ! 0, respectively. Then the observations above imply

V
�
g
K�

j

�
� V

�
g
K"
�

j

�
= V

�
g
Kb�
j

�
� V

�
g
K
�

b�
j

�

for all j 2 I. In order to apply Axiom 6, translate this into a preference statement:

1

2
K� +

1

2
K�
b� �j

1

2
K"
� +

1

2
Kb�
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for all j 2 I.

Claim 4 implies that cK�;K"
�
(s) / � (s) for " small enough. Unless S� = cS� and l (s) and bl (s) disagree

only by a linear transformation, � (s) > b� (s) on some s 2 S�. Because all tastes in S� are relevant in some
positive measure event j 2 I, there must be j 2 I, such that

V

�
g
( 12K�+

1
2
K
�

b�)[( 12K
"
�+

1
2
Kb�)

j

�
= V

�
g
1
2
K�+

1
2
Kb�

j

�
�
1

2
� (i)

X

s2S�
min

�
cK�;K"

�
(s) ; c

Kb�;K
�

b�
(s)
�
� (s ji )

> V
�
g
1
2
K�+

1
2
Kb�

j

�
�
1

2
� (i)

X

s2S�
cK�;K"

�
(s)� (s ji ) = V

�
g
1
2
K"
�+

1
2
Kb�

j

�

or �
1

2
K� +

1

2
K�
b�

�
[

�
1

2
K"
� +

1

2
Kb�

�
�j

1

2
K"
� +

1

2
Kb�:

Thus, by Axiom 6, there is k 2 I, such that

1

2
K� +

1

2
K�
b� �k

1

2
K"
� +

1

2
Kb�;

a contradiction. Hence S� = cS� and bl (s) =l (s) up to linear transformations on S�.
Next we have to show that the measure � (: ji ) is unique for all i 2 I with � (i) > 0. This follows

immediately from the result in DLR (their Theorem 1), that b� (s ji )bl (s) / � (s ji ) l (s) for the case of a �nite
taste space. Alternatively, it can be shown directly. To do so, �x i. Suppose s 2 SX . For a parameter

� 2 (0; 1] and y 2 ZnX, let pyx :=
�
sy
. For y 2 X, let pyx := 1. Consider �, such that for all y 2 ZnX,

1� pyx � 0. Then p
y
xsy + (1� p

y
x) sx = � is constant on ZnX �X for all �. Let

P := fhpyx; y; (1� p
y
x) ; xi jx 2 X; y 2 Z g :

53

For y 2 ZnX and x 2 X, the one-sided derivative
@V (gPi )
@p

y
x

dpyx
d�

����
�
is de�ned everywhere, as V

�
gPi
�
is convex54

and continuous in pyx. Write it as
@V (gPi )(fpyxg)

d�

����
�
, implying that, for the purpose of taking the derivative,

V
�
gPi
�
is considered a function only of pyx. Analogously write

@V (gPi )
�
fpyxg

y2 eY
x2fX

�

d�

�����
�
, implying that for the

derivative, V
�
gPi
�
is considered a function of all pyx with y 2 eY � Z and x 2 eX � X.55

Suppose y 2 ZnX and x 2 X. Note that, for x 2 X, h1; xi 2 P . Therefore hpyx; y; (1� p
y
x) ; xi 2

argmax
�2P

Us0 (�) implies s0y > s0x. Hence, under taste s0, lowering � makes all lotteries in
n
hpyx; y; (1� p

y
x) ; xi

���x 2 eX; y 2 eY
o
less desirable. All lotteries in Pn

n
hpyx; y; (1� p

y
x) ; xi

���x 2 eX; y 2 eY
o

remain unchanged. Under which tastes, then, will lowering of � matter? Under all those tastes s0 2 S�, for

which all most preferred lotteries become worse, or all s0 2 S� with argmax
�2P

(� � s0) �

53Note that pyx and P are de�ned with respect to s. For notational simplicity we do not index them
accordingly.
54V

�
hPi
�
is linearly increasing in qyx in all the states, where hp

y
x; y; (1� p

y
x) ; xi is the most preferred lottery

in P . h1; xi is also available in P . Therefore, the subset of S where this is the case can only gain elements,
when pyx is increased. This implies convexity.
55We need to use this awkward notation, because we are changing the relevant values pyx simultaneously.
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n
hpyx; y; (1� p

y
x) ; xi

���x 2 eX; y 2 eY
o
. So

@V
�
gPi
� �
fpyxg

y2eY
x2 eX

�

d�

������
�

/ � (i)

0
BBB@

X
�
s0

����argmax
�2P

Us0 (�)�fhpyx;y;(1�pyx);xijx2 eX;y2eY g
�
l (s0)� (s0 ji )

1
CCCA :

We are interested in isolating the value � (i) l (s)� (s ji ) for the taste s 2 SX , which generated the menu P .

Accounting yields that

� (i) l (s)� (s ji ) /
@V
�
gPi
� �
fpyxg

y2ZnX
x2X

�

d�

������
�

�
X

fzg�Z

@V
�
gPi
� �
fpyxg

y2(ZnX)nfzg
x2Xnfzg

�

d�

������
�

+
X

fz;z0g�Z

@V
�
gPi
��
fpyxg

y2(ZnX)nfz;z0g
x2Xnfz;z0g

�

d�

��������
�

+ :::+ (�1)Z�2
X

x2X;y2ZnX

@V
�
gPi
�
(fpyxg)

d�

�����
�
:

Given i 2 I, the value of the expected utility representation across menus is unique up to positive a¢ne

transformations. l (s) is unique up to linear transformations. The speci�c probability � (i) is given. Then,

the requirement that � (s ji ) must be a probability measure uniquely identi�es it for � (i) > 0.

This establishes that Axiom 6 is su¢cient for the uniqueness statement in Theorem 2.

It remains to establish that Axiom 6 is also necessary. Suppose to the contrary that the representation

holds with the stated uniqueness, but Axiom 6 is violated. Then, there are two menus A;B 2 A, such that

A �j B for all j 2 I and A [ B �i B for some i 2 I. A �j B for all j 2 I implies
P
S�
cA;B (s)� (s jj ) = 0

for all j 2 I. A [B �i B implies that cA;B (s) cannot be zero under all tastes, so it must be positive under

some tastes and negative under others. For us it is important that it is not constant across tastes: de�ne

b� (s ji ) := (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji ) , where � is small enough, such that 1+�cA;B (s) > 0 for all s 2 S

�. Accordingly

de�ne bl (s) := l(s)
1+�cA;B(s)

. Clearly the function

bV (g) :=
X

I

� (i)
X

S�

bl (s) max
�2g(i)

(� � s) b� (s ji )

is a representation of�i, when evaluated in acts g
A
i . As such, it is unique up to positive a¢ne transformations.

To verify that it represents �, it is, therefore, su¢cient to �nd two menus, A �j B for all j 2 I, for which

the relative cost of getting gBj instead of gAj across I is the same according to
bV (g) as according to V (g).

Consider again

� (s) :=

1
l(s)P

S�

1
l(s)

Then, for " > 0 small enough, it is established above that V
�
g
K�

i

�
� V

�
g
K"
�

i

�
/ � (i). But, according to
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Claim 4,

bV
�
g
K�

i

�
� bV

�
g
K"
�

i

�
= � (i) r (1� cos ")

X

s2S�
bl (s) � (s) b� (s ji ) / � (i)

1 + �
P
S�
cA;B (s)� (s ji )

= � (i) :

This contradicts the uniqueness statement in Theorem 2. Thus, Axiom 6 must hold. �

6.3. Proof of Proposition 2

That i) implies ii) is demonstrated above. The reverse follows from Theorem 2.

It remains to be shown that if there is another pair of menus, A0; B0 2 A, such that A0 �j B0 for all

j 2 I and A0 [B0 �i B0 for some i 2 I, then they add another set of possible representations, if and only if

cA0;B0 (s)

cA0;B0 (s0)
6=
cA;B (s)

cA;B (s0)

for some s; s0 2 S. That this condition is su¢cient for the existence of additional representations is obvious.

To see that it is necessary, suppose there was a representation bV (g) with b� (s ji ) 6= (1+�cA;B(s))�(sji )P
S�
(1+�cA;B(s))�(sji ) for

all �. There must be some non-constant function c : S ! R, such that b� (s ji ) � (1+�c(s))�(sji )P
S�
(1+�c(s))�(sji ) for some

� > 0 and c (s) 6= cA;B (s). �i mandates that bl (s) / l(s)
1+�c(s) . Because

bV (g) represents the same preference
as V (g),

P
S�
c (s)� (s ji ) must be constant. Hence, there is some non-constant function ec : S ! R, with

P
S�
ec (s)� (s ji ) = 0 for all i 2 I. Let ec+ (s) and ec� (s) be the positive and negative part of ec (s), respectively.

Choose A0 := 1
2K�+ +

1
2K

�

��
and B0 := 1

2K
"
�+
+ 1

2K�� , where �
+ (s) / ec+ (s) and �� (s) / ec� (s). Then,

A0 �i B0 for all i 2 I, but A0 [B0 �j B0 for some j 2 I, because cA0;B0 (s) is not constant. Thus A0 and B0

violate Axiom 6. They satisfy
cA0;B0 (s)

cA0;B0 (s
0) 6=

cA;B(s)
cA;B(s0)

by construction. �

6.4. Proof of Proposition 1�:

That v (g) =
TP
t=1
vDt

(g (Dt)) for g 2 G\GfDtg represents � con�ned to G\GfDtg, is implied by Proposition

1.

If the simple act g is constant on each element of fDtg
T
t=1, then it is also constant on each element of a

�ner partition fD0
tg
T 0

t=1. For � � f1; :::; T
0g, such that Dt =

S
t2�
D0
t, the usual induction argument yields

1

]�
(g� (D1) ; :::; g

� (Dt�1) ; A; g
� (Dt+1) ; :::; g

� (DT )) +
]� � 1

]�
g�

=
X

t2�

1

]�

�
g� (D0

1) ; :::; g
� �D0

t�1
�
; A; g�

�
D0
t+1

�
; :::; g� (D0

T 0)
�
;

and thus vDt
(A) =

P
t2�
vD0

t
(A). Therefore, v (g) =

TP
t=1
vDt

(g (Dt)) for g 2G\GfDtg represents � constrained

to all simple acts, g 2 G \G�.

The uniqueness statement follows immediately from the uniqueness in Proposition 1. That the repre-
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sentation implies continuity and linearity of v and, thus, the axioms is obvious. �

6.5. Proof of Theorem 1�

As suggested in the text, �rst establish the result for simple acts and then show that those are dense in the

space of all acts. Once this is established, verify that De�nition 7 can be employed. Corollary 2 still holds,

where i is replaced with D.

Claim 5: If � satis�es Axioms 1-5, then there are a set of bounded positive numbers fl (s)gs2S, a collection

of probability measures f�D (s)gD2F and a countably additive probability measure � on F , such that, for

g 2 GfDtg,

V (g) =
TX

t=1

� (Dt)

Z

S

l (s) max
�2g(Dt)

(� � s) d�Dt
(s)

represents � on G�. Furthermore, there is a function v : G! R as in Proposition 1 that agrees with V on

G�.

Proof: Just as in the proof of Theorem 1, establish that there is an event dependent, positive scaling

factor �0 (D), such that

v (g) =
TX

t=1

�0 (Dt)

Z

S

l (s) max
�2g(Dt)

(� � s) d�Dt
(s)

for g 2 GfDtg, where v represents �. �
0 (D) = 0, if and only if D is trivial. �D is then represented byR

S

l (s)max
�2A

(� � s) d�D (s). Holding utilities �xed, it is a straight forward variation of AA�s classical result,

that �D identi�es �D (s) uniquely. Thus, it obviously identi�es �
0 (D)�D (s) up to the value �

0 (D). Now

consider a partition fDtg
T
t=1 with D [ D

0 2 fDtg
T
t=1 and a �ner partition fD

0
tg
T 0

t=1 with D;D
0 2 fD0

tg
T 0

t=1.

According to the proof of Proposition 1�, vD[D0 (A) = vD (A) + vD0 (A). As l (s) does not depend on D,

the representation for the �ner partition must then assign the same relative weight to any taste s, as the

representation for the coarser partition:

�D[D0 (s) / �0 (D)�D (s) + �
0 (D0)�D0 (s)

for all s 2 S and D;D0 2 F . Thus, for �D[D0 (s) to be a probability measure, it must hold that �0 (D [D0) =

�0 (D) + �0 (D0). Inductively establish that

�0
�[

Dt

�
=
X

�0 (Dt)

for
S
Dt 2 F . F is a �-algebra, so it includes all countable unions of its elements. Since v is unique only up

to positive a¢ne transformations, � (D) / �0 (D) can be normalized, such that � (D) is a countably additive

probability measure.

For g 2 G�, de�ne

V (g) :=
TX

t=1

� (Dt)

Z

S

l (s) max
�2g(Dt)

(� � s) d�Dt
(s)
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to establish the Claim 5. �

Claim 6: The simple acts G� are dense in G in the topology de�ned on G.

Proof: We have to argue that every neighborhood of an act g 2 G in the product topology contains a

simple act. Let pi : G ! Gi be the natural projection from G to Gi = A and let B" (A) � A be an open

ball of radius " > 0 around A 2 A,

B" (A) := fB 2 A jdh (A;B) < "g :

It su¢ces to show that, for every act g 2 G, there is a simple act in every �nite intersection of sets of the

form p�1i (B" (g (i))) � G.
56 Let a �nite set I 0 � I index the relevant dimensions for this intersection. Then

we need to establish that there is always a simple act h with

max
i2I0

dh (g (i) ; h (i)) < ":

Let L � �(Z) be a �nite set of lotteries over Z, such that for all � 2 �(Z) there is �0 2 L with dp (�; �0) < ".

This set exists, because �(Z) is compact. Let A0 be the set of all subsets of L. Then A0 � A, and for

all A 2 A there is A0 2 A0 with dh (A;A0) < " by the de�nition of dh (A;B). Thus, there is an act in
T
I0
p�1i (B" (g (i))) with support only in A

0. Because I 0 is �nite and F the Borel �-algebra, there is �nite

partition fDtg of I, such that i; j 2 I
0 and i 2 Dt imply j =2 Dt. Thus, for every g 2 G and for all " > 0,

there is a simple act in
T
I0
p�1i (B" (g (i))). �

Claim 6 implies that

v (g) �
TX

t=1

� (Dt)

Z

S

l (s) max
�2g(Dt)

(� � s) d�Dt
(s)

on G�, which can be guaranteed according to Claim 5, uniquely determines the continuous function v (g) on

all of G.

We want to use De�nition 7. Hold l (s) �xed. It is bounded by construction. For a simple act, gn 2 GfDtg,

consider the function 'n : I ! R, de�ned as

'n (i) :=

Z

S

l (s) max
�2gn(D)

(� � s) d�D (s)

for i 2 D 2 fDtg. Then, the task is to �nd a sequence of simple acts, hgni � G�, such that 'n converges

from below to the bounded function

' (i) :=

Z

S

l (s) max
�2g(i)

(� � s) d�i (s)

for a given act g 2 G and some measure �i (s):

56Open sets in the product topology are the product of open sets in the topology dh on A, which coincide
with A for co�nitely many i 2 I.
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First, for gn 2 GfDtg, let D
n (i) be such that i 2 Dn (i) 2 fDtg. Because gn 2 GfDtg can always be

expressed by using a �ner partition and because F is the Borel �-algebra, it is without loss of generality to

assume lim
n!1

Dn (i) = fig. Given �D (s), l (s) is unique. Axiom 7 then implies that �i (s) := lim
gn!g

�Dn(i) (s)

is well de�ned. (� � s) is continuous; thus, gn (i)! g (i) for gn ! g holds by construction.

Second, compactness of �(Z) and Continuity (Axiom 2) imply that the set of acts with only singletons

in their support has a worst element, g. Axiom 5 then implies that g < g for all g 2 G. For a singleton f�g,

Z

S

l (s) max
�2f�g

(� � s) d�i (s) =
X

x2Z

0
@� (x)

Z

S

l (s) sxd�i (s)

1
A :

For z = argmin
x2X

�R
S

l (s) sxd�i (s)

�
, this expression is minimized in � = h1; zi. Thus, g has support in

ffh1; zig jz 2 Z g, which is a �nite set. Hence g is simple.

With a simple act as a worst act, there must then be a sequence of simple acts, such that gn (i)! g (i)

from below. Continuity of v and De�nition 7 give

E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d�i (s)

3
5 = v (g) :

Interpreting � (s ji ) := �i (s) as a probability measure over the taste space S, conditional on the infor-

mation i 2 I, yields the representation in Theorem 1�:

V (g) = E�

2
4
Z

S

l (s) max
�2g(i)

(� � s) d� (s ji )

3
5 :

This completes the proof of the su¢ciency statement in Theorem 1�. That the axioms are also necessary for

the existence of the representation is straight forward to verify. �

6.6. Proof of Theorem 2�

As in the proof of Theorem 2, we want to relate the ranking of acts to something that is proportional toR
S
l (s) � (s) d� (s jD ) for a given probability measure � : S ! R+. In the case of Theorem 2, S� turns out

to be �nite. It is, therefore, possible to construct two menus, whose payo¤ di¤er only under one taste. This

is more complicated now, because making a menu preferred less by a �nite amount under one taste will

invariably make it worse under neighboring tastes, too. Given a probability measure �, the proof below

de�nes a speci�c sequence of probability measures, e� (n) : S ! R+, e� (n)! �, and a sequence of su¢ciently

small numbers, " (n) !
n!1

0. Write e� and " for ease of notation, when there is no risk of confusion. K"
e� is

the convex combination of menus as de�ned in De�nitions 11, constructed with respect to e� (n) and " (n).
Claim 7 states that, for the speci�cations of e� and " given in the proof of the claim, the cost of having to

choose from K"
e� instead of Ke� in event D,

R
S0
l (s)

 
max
�2Ke�

f� � sg � max
�2K"

e�
f� � sg

!
d� (s jD ), is proportional to

R
S0
l (s) � (s) d� (s jD ) in the limit of n!1. This is what we want. To state the claim, one more de�nition

is needed. Suppose D 2 F induces measure � (s jD ) on the taste space S.

45



De�nition 14: For S0 � S, let

� (S0) := E�

2
4
Z

S0

d� (s ji )

3
5 :

Claim 7: For S0 a Borel set with � (S0) > 0 and for D 2 F with � (D) > 0,

R
S0
l (s)

 
max
�2Ke�

f� � sg � max
�2K"

e�
f� � sg

!
d� (s jD )

r
R

N"
X(b�X)

�
1� cos

�
"� ]

�
b�X ; �X

���
d�
R
S0
l (s) � (s) d� (s jD )

! 1

for n ! 1, for s 2 SX , for b� = argmax
�

R
N"
X
(�X)

�
1� cos

�
"� ]

�
�X ; �X

���
d� and for e� and " as con-

structed in the proof of this claim.

Proo�ng this claim is the main work. The following de�nition, corollary and claim are also for e� and "
as constructed in the proof of Claim 7.

De�nition 15 Given a representation V (g) as in Theorem 1 and for �(s), such that �(s) l (s) is equal

to a constant function � (s jD )-almost everywhere, let

� (D;D0) := lim
n!1

pKe�;K
"
e�
(D)

pKe�;K
"
e�
(D0)

;

for all s 2 S.

If there are multiple representations as in Theorem 1, � (D;D0)must be independent of the representation

chosen, as it is de�ned by the relative ranking of two particular menus, fh1; zi jz 2 Z g and fh1; zig, as can

be seen from the de�nition of pA;B (D), De�nition 8.

With De�nition 15 and Claim 7, a corollary and another claim can be established for the limit of n!1:

Corollary 3:

pKe�;K"
e�
(D)

pKe�;K"
e�
(D0)

!

R
S

l (s) � (s) d� (s jD )

R
S

l (s) � (s) d� (s jD0 )
� (D;D0)

for D;D0 2 F with � (D) > 0 and � (D0) > 0.
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Proof:

pKe�(r);K"
e�(r)

(D)

pKe�(r);K"
e�(r)

(D0)
!

R
S

l (s)

 
max

�2Ke�(r)
f� � sg � max

�2K"
e�(r)

f� � sg

!
d� (s jD )

R
S

l (s)

 
max

�2Ke�(r)
f� � sg � max

�2K"
e�(r)

f� � sg

!
d� (s jD0 )

� (D;D0)

!

R
S

l (s) � (s) d� (s jD )

R
S

l (s) � (s) d� (s jD0 )
� (D;D0) ;

where the last limit is implied by Claim 7. �

For the case, where � (s) l (s) is constant, the corollary just restates De�nition 15.

Claim 8: If for any D 2 F with � (D) > 0, � (s) l (s) is not equal to a constant function � (s jD )-almost

everywhere, then there is D0 2 F with � (D0) > 0, such that

pKe�;K"
e�
(D)

pKe�;K"
e�
(D0)

9 � (D;D0) :

With Corollary 3 and Claim 8 at hand, the proof is analogous to the �nite case: suppose to the contrary

that there was a second representation,

bV (g) = E�

2
4
Z

S

bl (s) max
�2g(i)

(� � s) db� (s ji )

3
5 ;

such that l (s) and bl (s) disagree by more than a linear transformation on a set of tastes S0 with positive
measure � (S0).57 Consider the probability measure

b� (s) :=
1
bl(s)R

S

1
bl(s0)ds

0

and eb� (s) constructed with respect to b� (s) as e� (s) with respect to � (s). According to bV (g), De�nition 15
implies that

pKeb�;K
"
eb�
(D)

pKeb�;K
"
eb�
(D0)

! � (D;D0)

for all D;D0 2 F . But b� (s) l (s) is not equal to a constant function � (s jD )-almost everywhere for all D 2 F .

Claim 8 then implies that there is D0 2 F with � (D0) > 0, such that, according to V (g),

pKeb�;K
"
eb�
(D)

pKeb�;K
"
eb�
(D0)

9 � (D;D0) :

57They might agree on every set S0 � S with � (S0) > 0, but disagree on a set with b� (S0) > 0. To rule
out this case, just switch the labels in this argument.
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Because
pKeb�;K

"
eb�
(D)

pKeb�;K
"
eb�
(D0) and � (D;D

0) are determined by �, this is a contradiction. Hence, no such representation

bV (g) can exist, and l (s) is unique for all s 2 S up to linear transformations and up to changes on a set S0

with � (S0) = 0.

We also have to show that the Borel measure � (: jD ) is unique up to measure zero changes to establish

the su¢ciency of our axioms. Again, this follows directly from DLR (their Theorem 1). Alternatively, from

the proof for the case of �nite F , copy the part that establishes

� (D) l (s)� (s jD ) /
@V
�
gPD
� �
fpyxg

y2ZnX
x2X

�

d�

������
�

�
X

fzg�Z

@V
�
gPD
� �
fpyxg

y2(ZnX)nfzg
x2Xnfzg

�

d�

������
�

+
X

fz;z0g�Z

@V
�
gPD
��
fpyxg

y2(ZnX)nfz;z0g
x2Xsnfz;z0g

�

d�

��������
�

+ :::+ (�1)Z�2
X

x2X;y2ZnX

@V
�
gPD
�
(fpyxg)

d�

�����
�
:

For the case where F is in�nite, S is potentially in�nite, so � (s jD ) may be a density. Given D 2 F ,

the value of the expected utility representation across menus is unique up to a¢ne transformations. l (s) is

unique in the sense established above. The speci�c probability � (D) is given. Then the requirement that

� (s jD ) must be a probability measure uniquely identi�es � (S0 jD ) for all S0 � S. With this the su¢ciency

of Axiom 6� for the uniqueness is established, once Claims 7 and 8 are proofed.

Proof of Claim 7: First, note that S � [0; 1]
k
. Partition [0; 1]

k
the following way: index prizes in Z

by � 2 f1; :::; kg. For every prize �, de�ne

eS� (n) :=
n r
n
jr 2 f0; 1; :::; ng

o

with typical element esr�.

De�nition 16: For

S� (n) := fs
r
� jr 2 f0; 1; :::; n� 1gg ;

where sr� = esr� + � (n), de�ne the half open intervals Qn (s) = Qn (s1; :::; sk)

Qn (s) := f(x1; :::; xk) js
r
� < x� , sr� < s� for all � 2 f1; :::; kg and r 2 f0; :::; n� 1gg :

and Hs� as the hyperplane fs�g � [0; 1]
k�1

, which is orthogonal to �.

The intervals have the hyperplanes as boundaries.

De�nition 17: Given � (n) > 0, de�ne

� (n) :=
[

X�Z
fs 2 SX j9s

0 =2 Qn (s) \ SX with ] (�xs ; �
x
s0) � � (n) for some x 2 X g
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and

S�X (n) :=
�
s 2 SX

��For X � X 0 @s0 2 SX0 with ]
�
�Xs ; �

X
s0

�
< � (n)

	
:

Corollary 4: For S0 � S, the closure of S0n
S

X�Z
S�X (n) is contained in � (n).

Proof: Immediate.

Lemma 2: For any b > 0 and n > 0, it is possible to choose � (n) and � (n), such that � (� (n)) < b.

De�nition 18: Let B� (s) be the open � neighborhood of s in [0; 1]
k
. Let

B� (S) :=
[

s2S
B� (s) .

Proof of Lemma 2: Given a sequence h� (n)in=1;:::;1, there is a sequence h� (n)in=1;:::;1, such that, for

s 2 SX ,

fs0 2 SX j] (�
x
s ; �

x
s0) < � (n) for some x 2 X g � B�(n) (s) :

Consider the sets fs 2 S js� 2 (esr�; esr� + 2�)g. For any # > 0 choose � small enough, such that

� (fs 2 S js� 2 (esr�; esr� + 2�)g) < #:

To see this, decompose � (S0) into a continuous and a discrete component,

� (S0) = �c (S0) + �d (S0) ;

where �c and �d each sum to at most one. Continuity of �c allows to �nd � small enough to guarantee

�c (fs 2 S js� 2 (esr�; esr� + 2�)g) <
#

2
:

�d has (at most) countable support Sd =
�
sd1; s

d
2; :::

	
. The cdf of �d is a convergent sequence with limitP

s2Sd
�d (fsg). Thus, there is a �nite number T , such that

X

s2Sd
�d (fsg)�

X

s2fsd1 ;:::;sdtg

�d (fsg) <
#

2

for all t � T . Choose � small enough, such that fs 2 S js� 2 (esr�; esr� + 2�)g \
�
sd1; :::; s

d
T

	
= ;: Taking the

two together, � (fs 2 S js� 2 (esr�; esr� + 2�)g) < #. Now note that

� (n) �
[

�2f1;:::;kg

[

r2f0;1;:::;n�1g
fs 2 S js� 2 (esr�; esr� + 2�)g :

Choose #, such that kn# < b to establish the lemma.k

According to Lemma 2, h� (n)in=1;:::;1 and h� (n)in=1;:::;1 can be chosen, such that � (� (n))! 0.
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De�ne K"
� exactly as in the case where I is �nite, except that S is now potentially not �nite:

De�nition 13�: Given a probability distribution over tastes, � : S ! R+, de�ne a particular convex

combination of menus:

K"
� :=

X

X�Z

Z

s2SX

��
KXnN

"
X

�
�Xs
��
[ LX

�
� (s) ds:

Let K� denote the case " = 0.

Lastly de�ne e� (s) given fQng:

De�nition 19: De�ne e� (s) to be the probability measure, such that
� for all s 2 S�X (n) with � (Qn (s)) > 0,

e� (s) /

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))

� otherwise, e� (s) = 0.

The menu K"
e� (n) is now speci�ed. To evaluate

Z

S0

l (s)

 
max
�2Ke�

f� � sg � max
�2K"

e�
f� � sg

!
d� (s jD ) ;

�rst evaluate

l (s0)

 
max

�2KX[LX
f� � s0g � max

�2(KXnN"
X
(�Xs ))[LX

f� � s0g

!

for any given taste s0 and " > 0. For tastes s 2 SXnS�X (n), e� (s) = 0. Therefore, consider only s 2 S�X (n),
s0 2 SY (n). Distinguish four exhaustive cases:

i) Y = X: Then LX is not relevant for the maximum of either menu and N"
X

�
�Xs
�
� KX . Hence,

l (s0)

 
max

�2KX[LX
f� � s0g � max

�2(KXnN"
X
(�Xs ))[LX

f� � s0g

!
=

rl (s0)
�
1� cos

�
max

�
0; "� ]

�
�Xs ; �

X
s0

�	��
;

as in the �nite case.

ii) Y * X: For s 2 S�X and s
00 2 SX[Y , ]

�
�Xs ; �

X
s00

�
> � by the construction of S�X . For s

0 2 SY , there must

be s00 2 SX[Y , such that ]
�
�Xs ; �

X
s0

�
� ]

�
�Xs ; �

X
s00

�
. Then " < � ensures

max
�2KX[LX

f� � s0g � max
�2(KXnN"

X
(�Xs ))[LX

f� � s0g = 0:

iii) Y � X and s0 2 S�Y : Then ]
�
�Ys ; �

Y
s0

�
> �. Hence, Claim 2 states that for " < " (�), KX is not relevant
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for the maximum. In that case,

max
�2KX[LX

f� � s0g � max
�2(KXnN"

X
(�Xs ))[LX

f� � s0g = 0:

iv) Y � X and s0 2 SY nS�Y :

c ("; n; s; s0) := max
�2KX[LX

f� � s0g � max
�2(KXnN"

X
(�Xs ))[LX

f� � s0g .

In s0 also the probability � assigns to prizes in XnY may generate utility. Dropping r from the expression

in case i clearly yields an upper bound on c ("; n; s; s0):

c ("; n; s; s0) < l (s0)
�
1� cos

�
max

�
0; "� ]

�
�Xs ; �

X
s0

�	��
:

Let (numerator) and (denominator) refer to the expression in Claim 7. Then the four cases imply

(numerator) :=
1

r

Z

S0

l (s)

 
max

�2Ke�(n)
f� � sg � max

�2K"
e�(n)

f� � sg

!
d� (s jD ) =

X

X�Z

Z

S0\SX

l (s)

0
B@

Z

N"
X
(�Xs )

�
1� cos

�
"� ]

�
�Xs ; �

X
���

e�
�
sX�
�
d�

1
CA d� (s jD ) + C("; n) �!

"!0
0;

where the limit is independent of e� and

C("; n) :=
1

r

X

X�Z

X

Y�X

Z

S0\(SY nS�Y (n))

0
B@

Z

N"
X
(�Xs )

c
�
"; n; sX� ; s

�
e�
�
sX�
�
d�

1
CA d� (s jD ) :

(denominator) :=

Z

N"
X(b�Xs )

�
1� cos

�
"� ]

�
b�Xs ; �X

���
d�

Z

S0

l (s) � (s) d� (s jD ) �!
"!0

0:

To establish the claim, we �rst show that lim
n!1

(numerator)�C(";n)
(denominator) = 1 and second that

lim
n!1

C(";n)
(denominator) = 0.

Subclaim 7.1: lim
n!1

(numerator)�C(";n)
(denominator) = lim

n!1

P
X�Z

R
S0\SX

l(s)
R

N"
X(�

X
s )

e�(sX� )d�d�(sjD )

R

N"
X(b�

X)
d�

R
S0

l(s)�(s)d�(sjD )
for any given e�:

Proof: Apply l�Hospital�s rule twice with respect to ". When taking the necessary derivatives, " appears

only in linear combinations of trigonometric functions, which vanish at the integration boundary:

@

@"
((numerator)� C("; n)) =

X

X�Z

Z

S0\SX

l (s)

0
B@

Z

N"
X
(�Xs )

sin
�
"� ]

�
�Xs ; �

X
��
e�
�
sX�
�
d�

1
CA d� (s jD ) �!

"!0
0
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@2

@"2
((numerator)� C("; n)) =

X

X�Z

Z

S0\SX

l (s)

0
B@

Z

N"
X
(�Xs )

cos
�
"� ]

�
�Xs ; �

X
��
e�
�
sX�
�
d�

1
CA d� (s jD )

@

@"
(denominator) =

Z

N"
X(b�X)

sin
�
"� ]

�
b�X ; �X

��
d�

Z

S0

l (s) � (s) d� (s jD ) �!
"!0

0

@2

@"2
(denominator) =

Z

N"
X(b�X)

cos
�
"� ]

�
b�X ; �X

��
d�

Z

S0

l (s) � (s) d� (s jD )

Note that @
@"
(denominator)

��
">0

6= 0 and @2

@"2
(denominator)

���
">0

6= 0, hence, l�Hospital�s rule can be applied.

For " (n) as speci�ed above,

lim
n!1

P
X�Z

R
S0\SX

l (s)

 
R

N"
X
(�Xs )

cos
�
"� ]

�
�Xs ; �

X
��
e�
�
sX�

�
d�

!
d� (s jD )

R

N"
X(b�X)

cos
�
"� ]

�
b�X ; �X

��
d�
R
S0
l (s) � (s) d� (s jD )

= lim
n!1

P
X�Z

R
S0\SX

l (s)
R

N"
X
(�Xs )

e�
�
sX�

�
d�d� (s jD )

R

N"
X(b�X)

d�
R
S0
l (s) � (s) d� (s jD )

: k

Thus, for
@2

@"2
((numerator)�C(";n))
@2

@"2
(denominator)

!
n!1

1, we have to show

P
X�Z

R
S0\SX

l (s)
R

N"
X
(�Xs )

e�
�
sX�

�
d�d� (s jD )

R

N"
X(b�X)

d�
R
S0
l (s) � (s) d� (s jD )

!
n!1

1.

This must hold for any Borel set S0 with � (S0 jD ) > 0. Note that

e�
�
sX�
�
/

R

Qn(sX� )
� (s0) d� (s0)

�
�
Qn

�
sX�

��

is constant for �2 N"
X

�
�Xs
�
for all s 2 S0 \ SX and s =2 � (n). According to Lemma 2, � (n) and � (n) can

be chosen, such that � (� (n))! 0. Hence, it is su¢cient to show

Z

S0

l (s)e� (s) d� (s jD )!
Z

S0

l (s) � (s) d� (s jD ) :

for any Borel set S0.

Because e� (s) and � (s) are both probability measures,

e� (s) /

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))
! � (s)
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implies e� (s)! � (s).

Because l (s) in the representation of Theorem 1 is integrable over S, �
�
bS jD

�
= 0 impliesR

bS l (s) d� (s jD ) = 0. Hence, considering l (:)� (: jD ) as a measure on S, we want to establish this conver-

gence almost everywhere according to l (:)� (: jD ). It is su¢cient to show that this holds almost everywhere

according to � (:), because
R
bS l (s) d� (s jD ) > 0 implies �

�
bS jD

�
> 0, which in turn implies �

�
bS
�
> 0,

because by assumption, � (D) > 0.

Subclaim 7.2: For every bS � S:

Z

bS

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))
d� (s)!

Z

bS

� (s) d� (s) .

Lemma 3: Z

S
bS Qn(s)

f (s) d� (s)!

Z

bS

f (s) d� (s)

for every bounded function f : S ! R.

Proof: It is su¢cient to show the lemma for all Borel sets, or, because S is compact and metrizable

by the standard metric on Rk, for all compact sets. Let bS be a compact set. Then for s =2 bS there is N ,
such that s =2

S
bS
Qn (s) for all n > N . To see this, recall that Qn (s) was de�ned to have length

1
n
in every

dimension. Let 1
N
< min

s02bS
(d (s; s0)), where d (s; s0) is the standard Euclidian distance in Rk. This implies

that
S
bS
Qn (s)& bS and, hence, �

�S
bS Qn (s)

�
! �

�
bS
�
:58 Thus, for f : S ! R bounded,

Z

S
bS Qn(s)

f (s) d� (s)!

Z

bS

f (s) d� (s) : k

Proof of Subclaim 7.2: Because � (s) is a probability measure, it is clearly bounded. Thus, on the

one hand, Lemma 3 implies

Z

S
bS Qn(s)

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))
d� (s)!

Z

bS

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))
d� (s) :

On the other hand, Qn (s) are disjoint, and hence

Z

S
bS Qn(s)

R
Qn(s)

� (s0) d� (s0)

� (Qn (s))
d� (s) =

X

Q2fQn(s)js2bS g

Z

Q

R
Q

� (s0) d� (s0)

� (Q)
d� (s) =

X

Q2fQn(s)js2bS g

Z

Q

� (s0) d� (s0) =

Z

S
bS Qn(s)

� (s0) d� (s0)!

Z

bS

� (s0) d� (s0) ;

58See, for example, Theorem 2.1 in Billingsley (1995).
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again by the lemma. k

So indeed,

lim
n!1

(numerator)� C("; n)

(denominator)
=1.

Now we only have to check that lim
n!1

C(";n)
(denominator) = 0. According to case iv above, C("; n) < C("; n),

where

C("; n) :=
1

r

X

X�Z

X

Y�X

Z

S0\(SY nS�Y (n))

l (s)

0
B@

Z

N"
X
(�Xs )

�
1� cos

�
max

n
0; "� ]

�
�Xs ; �

X
�o��

e�
�
sX�
�
d�

1
CA d� (s jD ) :

As before, according to l�Hospital�s rule,

lim
n!1

C("; n)

(denominator)
= lim

n!1

@2

@"2
C("; n)

@2

@"2
(denominator)

.

= lim
n!1

P
X�Z

P
Y�X

R
S0nS�

Y
(n)

l (s)

 
R

N"
X
(�Xs )

cos
�
"� ]

�
�Xs ; �

X
��
e�
�
sX�

�
d�

!
d� (s jD )

R

N"
X(b�X)

cos
�
"� ]

�
b�X ; �X

��
d�
R
S0
l (s) � (s) d� (s jD )

.

By Corollary 4, S0nS�Y (n) � � (n). Thus, � (� (n))! 0 implies lim
n!1

C(";n)
(denominator) = 0.

This completes the proof of the Claim 7. �

Proof of Claim 8: Let

� (s) :=

1
l(s)R

S
1

l(s0)ds
0 :

Then � (s) l (s) is equal to a constant function � (s jD )-almost everywhere. Construct e� (s) with respect to
� (s), like e� (s) is constructed with respect to � (s). Lastly let Cn = 1

2Ke� +
1
2Ke� for each n. Then

pCn; 12K"
e�+

1
2
Ke�
(D)

pCn; 12K"
e�+

1
2
Ke�
(D0)

=
pKe�;K"

e�
(D)

pKe�;K"
e�
(D0)

holds by construction. According to De�nition 15,

p
Ke�;K

�

e�
(D)

p
Ke�;K

�

e�
(D0)

! � (D;D0)

for all D0 2 F . For " (n) small enough, Continuity (Axiom 2) allows to �nd � (n), such that

pKe�(r);K"
e�(r)

(D)

p
Ke�(r);K

�

e�(r)
(D)

= 1;
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which implies
pCn; 12K"

e�+
1
2
Ke�
(D)

p
Cn;

1
2
Ke�+

1
2
K
�

e�
(D)

= 1

for all n.

Suppose l (s) � (s) is not constant � (s jD )-almost everywhere. This implies that there is S0 � S with

Z

S0

l (s) � (s) d� (s jD ) <

Z

S0

l (s) � (s) d� (s jD )

and � (S0 jD ) > 0.

According to Claim 7,

R
S

l (s)

 
max
�2Cn

f� � sg � max
�2 1

2
K"
e�+

1
2
Ke�

f� � sg

!
d� (s jD )

R
S

l (s)

0
@max
�2Cn

f� � sg � max
�2 1

2
Ke�+

1
2
K
�

e�

f� � sg

1
A d� (s jD )

!

R
S0
l (s) � (s) d� (s jD )

R
S0
l (s) � (s) d� (s jD )

and hence,

R
S

l (s)

0
@max
�2Cn

f� � sg � max
�2 1

2
Ke�+

1
2
K
�

e�

f� � sg

1
A d� (s jD )

R
S

l (s)

0
@max
�2Cn

f� � sg � max
�2

�
1
2
Ke�+

1
2
K
�

e�

�
[( 12K"

e�+
1
2
Ke�)

f� � sg

1
A d� (s jD )

< 1

for all n. This is equivalent to
p
Cn;

1
2
Ke�+

1
2
K
�

e�
(D)

p
Cn;

�
1
2
Ke�+

1
2
K
�

e�

�
[( 12K"

e�+
1
2
Ke�)

(D)
9 1:

Axiom 6� then requires that there be D0 2 F , such that

p
Cn;

1
2
Ke�+

1
2
K
�

e�
(D0)

pCn; 12K"
e�+

1
2
Ke�
(D0)

9 1:

As noted before, this requires � (D0) > 0. The observations above then imply

pCn; 12K"
e�+

1
2
Ke�
(D)

pCn; 12K"
e�+

1
2
Ke�
(D0)

=
pKe�;K"

e�
(D)

pKe�;K"
e�
(D0)

9 � (D;D0) :

This establishes Claim 8. �

It remains to show that Axiom 6� is also necessary. The argument requires only slight changes compared

to the �nite case: suppose to the contrary that the representation holds with the stated uniqueness, but

Axiom 6� is violated. Then, there are sequences hAni ; hBni ; hCni � A, which converge in the Hausdor¤

topology, with
pCn;An[Bn (D)
pCn;Bn (D)

9 1 for some D 2 F and
pCn;An(D

0)
pCn;Bn (D

0) ! 1 for all D0 2 F .
pCn;An(D

0)
pCn;Bn (D

0) ! 1 for
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all D0 2 F implies that R
S

cAn;Bn
(s)� (s jD0 )

R
S

cCn;Bn
(s)� (s jD0 )

! 0

for all D0 2 F . pCn;An[Bn (D)
pCn;Bn (D)

9 1 implies

cAn;Bn
(s)R

S

cCn;Bn
(s)� (s jD )

9 0

� (s jD )-almost everywhere. In complete analogy to the �nite case, de�ne

b� (s jD ) :=

0
@1 + � cAn;Bn

(s)R
S

cCn;Bn
(s)� (s jD )

1
A� (s jD ) ;

where � is small enough, such that 1 + �
cAn;Bn (s)R

S

cCn;Bn (s)�(sjD )
> 0 for all s 2 S. From here the argument is

identical to the one in the �nite case. Thus, Axiom 6� must hold. �

6.7. Proof of Proposition 3

Proof of Lemma 1: For any given i 2 I, V (g) and bV (g) represent the same preference, �i. De�ne

�0 (s ji ) :=
l (s)

bl (s)
� (s ji ) :

Then b� (s ji ) must be a probability measure with b� (s ji ) / �0 (s ji ). Hence

b� (s ji ) = �0 (s ji )R
S

db� (s ji ) ;

and consequently

bl (s) b� (s ji ) = l (s)� (s ji )R
S

d�0 (s ji )
:

At the same time V (g) and bV (g) have to represent the same preference across I. Then � (i) must be a
probability measure with

� (i) / � (i)

R
S

l (s)max
�2A

(s � �) d� (s ji )

R
S

bl (s)max
�2A

(s � �) db� (s ji )
= � (i)

Z

S

d�0 (s ji ) = � (i)

Z

S

l (s)

bl (s)
d� (s ji ) ;

which establishes Lemma 1. k

I is assumed to have �nite cardinality T . According to Lemma 1, bl (s) has to solve the system of equa-

tions

� (i) / � (i)
X

S�

l (s)

bl (s)
� (s ji ) :
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We want to establish that there is a neighborhood of �, such that all � in this neighborhood allow an alter-

native representation, bV (g). Interpret � and � as vectors in RT+. Denote with � (s) 2 RT+ the vector with
i-th component � (s ji ) and with � � � (s) 2 RT+ the component wise product of those vectors. The system

of equations has a solution with bl (s) > 0, if and only if � is in the interior of the positive linear span of

f� � � (s)gs2S� .

Lemma 4: Under the conditions of Proposition 3, f� (s)gs2S� are linearly independent.

Proof: Suppose not. Let n 2 f1; :::; Tg index the tastes in S�. Then there must be parameters cn for

n 2 f1; :::; T � 1g, such that � (sT ) =
P

n2f1;:::;T�1g
cn� (sn). Then for some � 2 (0;1) n f1g, we can de�ne

�0 (s ji ) to be probability measures, such that

�0 (sT ) / �� (sT ) and
�0 (sn ji )

�0 (sm ji )
=
� (sn ji )

� (sm ji )

for all n;m 2 f1; :::; T � 1g and all i 2 I. Then

l0 (sn) := l (sn)
� (sn ji )

�0 (sn ji )

is well de�ned for all n 2 f1; Tg, and

V (g) = E�

"X

S�

l0 (s) max
�2g(i)

(� � s)�0 (s ji )

#
.

This contradicts Theorem 2. k

� 2 RT+. Thus, f� � � (s)gs2S� must also be linearly independent. S
� is also assumed to have cardinality

T . Therefore f� � � (s)gs2S� spans R
T , and the positive linear span of f� � � (s)gs2S� is open in R

T
+. �

can be expressed as a linear combination, which assigns unit weight to T linearly independent vectors:

� =
P
S�
� � � (s). Hence, � is in the interior of the positive linear span of f� � � (s)gs2S� . This establishes

the �rst part of Proposition 3: under the conditions of the proposition, there is a neighborhood of � in RT ,

such that all � in this neighborhood allow an alternative representation, bV (g). Since the solution of a linear
system of equations is continuous in all parameters, it is continuous in �. Thus l(s)

bl(s) t 1, which implies

�(sji )
b�(sji ) t 1. This establishes Proposition 3. �
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