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Abstract 

This empirical study has provided interpretive outcome from a univariate forecast using Box-

Jenkins ARIMA methodology. The HCPI_SA seasonally adjusted data for Sierra Leone shows a 

robust model outcome with three months ahead prediction based on the STATIC method result. 

Test results like Autocorrelation and also comparative values for MAPE and the Inverted Root 

values have indicated that the model is a good fit. Despite better choice of outcome from the 

STATIC result in comparison to DYNAMIC forecast, the conclusion a cautious means of advice 

when using results for policy outcomes and with comparative forecasts highly recommended a way 

forward in guiding policy makers’ decision.  
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1. Introduction 

Forecasting is a highly topical discourse in both the academia and also practice-base environment 

across the world; the process itself is not necessarily the best in terms of decisions taken by policy 

makers, but it serve as a guide in enabling objective decisions  to be made, given the possibility of 

margin of errors in the final forecast outcomes (Ericsson, 2016). The use of forecasting is 

becoming more predominant in research-based institutions across the world, particularly in central 

banks to address core objective(s) of price stability, as in the case with the Bank of Sierra Leone. 

                                                      
1 Email: ejackson@bsl.gov.sl / emersonjackson@bsl.gov.sl 
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The methodology of forecasting can incorporate the use of both univariate (as seen in the case with 

this study) and also complex multivariate use of variables in ARIMAX, VAR and DSGE models 

(Etuk et al, 2013 and Giacomini, 2014). 

 

Forecasting in economic sciences study would always adhere to strict scientific means empirical 

outcomes which is mostly done using robust Poperian style methodological approach(es) as a way 

of proving its scientific existence (Jackson, 2016). Mostly for institutions like central banks, the 

process of forecast is normally done using high end aggregation of data connection with Inflation, 

Gross Domestic Product and in some cases, disaggregated level where comparison is likely to be 

made between sectors of an economy or institutional performances. The precision of forecast as a 

means of making judgment about (economic) performances is one that has come under great 

scrutiny lately by professionals across the world (Friedman, 2013 and Batchelor, 2000). 

 

1.1. Stylise Facts about HCPI in Sierra Leone (Post-2017 Data) 

Headline Consumer Price Index (HCPI), a proxy for Inflation is very topical in Sierra Leone and 

more so, a primary objective of the central bank in maintaining stability to general prices of goods 

and services in the country (Jackson et al,  forthcoming). As seen in Figure 1 below, the chart 

provide high frequency data for HCPI since 2007M01 to 2017M09; this is a representation of 

composite of all items in the basket which are weighted by the Central Statistical Office in 

Freetown. Prior to 2007, HCPI data were disaggregated for those in the capital city and the 

provincial towns. As seen, the highly time series data (normal and seasonally adjusted) shows 

upward / deterministic trend in inflation and this is as a result of the predominance of tradable 

influence of the CPI basket driven by the country’s reliance on the importation of basic commodity 

goods needed for consumption in the country. In order to keep track of the bank’s objective of 

monitoring price stability, staff in the research department would normally (quarterly) make use 

of econometric applications like EVIEWS to carry empirical study on simple methodology like 

the Box-Jenkins Autoregressive Moving Average and Autoregressive Integrated Moving Average 

[ARIMA] to forecast inflation dynamics which is fed into policy judgment for rates fixing in the 

country. 

 

Figure 1: Graph Showing Plot of HCPI and HCPI_SA 
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1.2. Hypothetical Question and Objective 

The main question that is set to be answered here is: Does STATIC forecast provide a better 

results than that of DYNAMIC forecast in ARIMA model? In this vein, the main objective here 

is to investigate the accuracy of the out-of-sample forecast for both Static and Dynamic 

approaches using HCPI variable.  

In addition to the aforementioned introduction, the rest of the paper is structure as follows: Section 

two present the Theoretical Framework and Methodology, which is also sub-divided into Time 

series models, Methodology, test description, and Data usage. Section three addresses the 

Empirical Results and discussion, while section four provide conclusion on the outcome and with 

some suggestions for policy makers in terms of a country’s peculiarity.   

 

2. Theoretical Framework and Methodology 

 

2.1. Time Series Model Literature 

Time series model is more common in using past movement of variable as a way of predicting 

future values / events. Unlike structural models which relates to the model at hand to forecast, time 

series models are not necessarily rooted on economic theory, while the reliability of the estimated 

equation is normally based on out-of-sample forecast performance as first observed by Stock and 

Watson (2003). Times series are mostly expressed by Autoregressive Moving Average (ARMA) 

models which was first produced by Slutsky (1927) and Wold (1938) as expressed in the following 

equation:  
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Yt = et – θ1et-1 – θ2et-2 – θ3et-3 - ………- θqet-q      [1] 

Such a series is referred to as a moving average of order q, with the nomenclature MA(q); where 

Yt is the original series and et as error term in the series. As Yule (1926) suggested, the 

autoregressive process of the moving average series can be expressed as: Yt = ϕ1Yt-1 + ϕ2Yt-2 + 

ϕ3Yt-3 + …………. + ϕpYt-p +et        [2] 

It is assumed that t, is independent of Yt−1, Yt−2, Yt−3, ... Yt−q . 

In this model, we are trying to fit the Box-Jenkins Autoregressive Integrated Moving Average 

(ARIMA) model, which is the generalised model of the non-stationary ARMA model represented 

by ARMA(p,q) and this can be written as: 

Yt = ϕ1Yt-1 + ϕ2Yt-2 + ϕ3Yt-3 + …+ ϕpYt-p +et – θ1et-1 - – θ2et-2…..- – θpet-p    [3] 

Where, Yt is the original series, for every t, we assume that is independent of: 

Yt−1, Yt−2, Yt−3, …, Yt−p . 

 

According to Hamjah (2014: 170-171), the following steps are worth considering when auctioning 

the Box and Jenkins approach to ARIMA forecasting: 

i. Preliminary analysis: Data at hand should conform to a stationary stochastic process. 

ii. Identification: specify the orders p, d, q of the ARIMA model so that it is clear the number of 

parameters to estimate and also recognition of the importance of autocorrelation functions in the 

model. 

iii. Estimate: efficient, consistent, sufficient estimate of the parameters of the ARIMA model 

(maximum likelihood estimator). 

iv. Diagnostics: Model to be checked for appropriateness using tests on the parameters and 

residuals of the model. Even when the model is rejected, still this is a very useful step to obtain 

information to improve the model.  

v. Usage of the model: Once tests outcomes are sufficiently passed or satisfies specification, it can 

then be used to interpret a phenomenon based on forecast outcome(s). 

 

Other procedures worth using and more so, applied in this study include the following: 

- Check normality assumption, proceed to the “Jarque-Bera” test, which measure goodness of 

fit from normality, based on the sample Kurtosis and skewness.  
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- The “Ljung-Box” test can also be applied under the hypothesis that there is no autocorrelation 

in the residuals.  

- Autocorrelation Function [ACF] and Partial Autocorrelation Function [PAC] can also be used 

to detect the order of difference of Stationarity conditions. 

- Use of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for 

model selection criterion. 

 

2.2. Empirical Literature 

Chatfield (2001: 11), defined time series as an observed sequential data computed over a period of 

time; in many cases, such observation may be done for a single (univariate) or many (multi-variate) 

variables. For the purpose of this study, emphasis is paid to univariate time-series observation / 

analysis. In this vein, a univariate time-series refers to an observation that consists of single 

observations recorded sequentially through time, for example, the monthly unemployment rate 

(Klose, Pircher and Sharma, 2004).  

 

In many cases, there is an underlying assumption when doing a time-series analysis, which is to 

do with the regularities expected of data as in the case with multivariate study. Klose et al (2004) 

carried sound univariate study as applied in the case with Austria; in this, they made use of Auto-

integrated Moving Average [ARIMA] model which proved to be a more robust means for forecast 

in comparison to a singular study on VAR model. They also provided some limitations, but on the 

whole, ARIMA was concluded to be a suitable choice of model.  

 

Kelikume and Salami (2014) carried out independent investigation of inflation rate in Nigeria 

using VAR and ARIMA. They made use of CPI data obtained from the National Bureau of 

Statistics and the Central Bank Nigeria (CBN) during 2003 to 2012 to predict movements in the 

general price level. The study highlighted limitations in terms of its reliance on univariate analysis, 

but also brought to the fore some positive outcomes of using ARIMA model. It also outlined the 

limitation of using a single variable which may not necessarily have anything to compare with 

unless based on its past values. 

Bokhari and Feridun (2006) also carried out investigation using comparative univariate analysis 

of VAR and ARIMA to forecast inflation in Pakistan. In their analysis, ARIMA was seen to have 
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produced a better outcome in the forecast than that of a singular VAR study. Despite the fact that 

the study was able to unearth some issues around macroeconomic forecasting, it also brought to 

the fore the implication of such forecast technique for small scale macroeconomic model.  

The use of Univariate studies is also found to be very important and applicable in different areas 

of studies dealing with time series data; Taylor (2008) made use of this using ARIMA to forecast 

trends associated with intra-day arrivals by operators at a retail bank call centre in the UK. The 

study confirmed use of methods like "seasonal ARIMA modelling and AR modelling, an extension 

of Holt-Winters exponential smoothing for the case of two seasonal cycles, robust exponential 

smoothing based on exponentially weighted least absolute deviations regression and dynamic 

harmonic regression, a form of unobserved component state space modeling". The use of 

Univariate forecast is quite prominent given its quick response in finding solution to problems, as 

manifested in Taylor's (2003) research in forecasting short-term electricity demand using double 

exponential smoothening technique.  

Bianchi et al. (1998), in their Univariate study also made use of ARIMA modelling technique in 

determining seasonal forecasting daily arrivals at a telemarketing call center. In this study, 

supplemented their technique with intervention analysis as a way of controlling the presence of 

outliers, for which the resultant forecasts manifested an out-performance of the standard Holt-

Winters seasonal exponential smoothing. 

In as much as the positive side of using ARIMA model for forecasting univariate study is 

considered soundly echoed in modeling time series data, it was shown in Meyler, Kenny and Quinn 

(1998) study that ARIMA perform poorly compared to stand-alone VAR when applied to volatile 

and high frequency data. On a more positive note, Ho and Xie (1998) complemented ARIMA to 

be a more viable alternative model in terms of predicting performances.  

 

2.3. Data 

Data used were extracted from the Statistics Sierra Leone database source for HCPI from 2007M1 

to 2017M10. In order to smoothen out the series, data were seasonally using EVIEWS to remove 

issues of seasonality.  
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3. Empirical Results and Discussion 

The process commenced with a test of Stationarity for HCPI_SA using Phillips-Perron at 1st level 

as shown in Table 1; with the application of absolute value concept, the result indicate that ARIMA 

is the appropriate methodology to be applied as opposed to ARMA.  

3.1. Table1: Unit Root Result for Headline Consumer Price Index D(HCPI_SA) 

 

   Adj. t-Stat   Prob.* 

     
     

Phillips-Perron test statistic -5.580481  0.0000 

Test critical values: 1% level  -4.031899  

 5% level  -3.445590  

 10% level  -3.147710  

     
     

This is an indication of the method to be proceeded by determining the order of the AR and MA 

processes and the suitability of best model that will bring about the best forecast outcome given 

the nature of data used. At first level, the variable is highly significant with its probability value 

equal to 0.   

 

3.2.Selection and Iteration for Best Model Estimation 

Using the automated ARIMA forecast process, EVIEWS have made the best model selection of 

(6,0)(0,0) as shown in Figure 2. 

 

Figure 2: Automatic ARIMA Model Estimation Choice 
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This is based on the use of a single variable, which is HCPI and for which the lag of it is used to 

determine future occurrences. The estimation output below (4,1,0) in Table 2 is considered the 

best after series of iterations, with the lowest AIC value and an Inverted AR Root value <1. In 

other words,  there is a four AR processes integrated to first difference as shown in the Phillip 

Perrons unit root and with Zero MA process. The R2 value also show high level of significance of 

the univariate HCPI_SA variable and with the Inverted AR Roots for AR showing roots falling 

inside the circle or indicating model stability. 

 

Table 2: Model Estimation 

Dependent Variable: D(HCPI_SA)  

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Date: 12/13/17   Time: 08:29   

Sample: 2007M01 2017M10   

Included observations: 129   

Convergence achieved after 36 iterations  

Coefficient covariance computed using outer product of gradients 

     
     

Variable Coefficient Std. Error t-Statistic Prob.   

     
     

C 0.931163 0.382374 2.435216 0.0163 

AR(4) 0.125753 0.057098 2.202419 0.0295 

AR(2) 0.254703 0.078015 3.264784 0.0014 

AR(1) 0.472282 0.053113 8.892047 0.0000 

SIGMASQ 0.245527 0.018674 13.14840 0.0000 

     
     

R-squared 0.601837     Mean dependent var 0.911797 

Adjusted R-squared 0.588993     S.D. dependent var 0.788332 

S.E. of regression 0.505398     Akaike info criterion 1.519361 

Sum squared resid 31.67295     Schwarz criterion 1.630206 

Log likelihood -92.99877     Hannan-Quinn criter. 1.564400 

F-statistic 46.85761     Durbin-Watson stat 2.046465 

Prob(F-statistic) 0.000000    

     
     

Inverted AR Roots       .91      .07-.48i    .07+.48i      -.59 

 

 

The Autocorrelation Chart below (Table 3) shows information for the results of the residuals and 

with the probability indicating the model is a perfect outcome for the proposed forecast.  
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Table 3: Autocorrelation Chart 

Date: 01/03/18   Time: 04:48    

Sample: 2007M01 2018M01      

Included observations: 129     

Q-statistic probabilities adjusted for 3 ARMA terms  

              
Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

              
       .|.     |        .|.     | 1 -0.027 -0.027 0.0973  

       .|.     |        .|.     | 2 -0.036 -0.037 0.2714  

       .|.     |        .|.     | 3 0.048 0.046 0.5854  

       .|.     |        .|.     | 4 -0.027 -0.025 0.6811 0.409 

       .|.     |        .|.     | 5 0.004 0.006 0.6830 0.711 

       .|.     |        *|.     | 6 -0.064 -0.068 1.2448 0.742 

       .|*     |        .|*     | 7 0.126 0.127 3.4614 0.484 

       .|.     |        .|.     | 8 0.057 0.058 3.9185 0.561 

       .|.     |        .|.     | 9 0.008 0.027 3.9272 0.687 

       *|.     |        *|.     | 10 -0.083 -0.097 4.9021 0.672 

       .|.     |        .|.     | 11 -0.053 -0.056 5.3011 0.725 

       .|.     |        .|.     | 12 0.009 -0.004 5.3121 0.806 

       .|.     |        .|.     | 13 -0.065 -0.042 5.9239 0.822 

       .|.     |        .|.     | 14 0.066 0.058 6.5731 0.833 

       .|.     |        .|.     | 15 0.072 0.059 7.3521 0.833 

       .|.     |        .|.     | 16 0.041 0.040 7.6078 0.868 

       .|.     |        .|.     | 17 -0.041 -0.033 7.8624 0.896 

       .|*     |        .|*     | 18 0.094 0.120 9.2014 0.867 

       *|.     |        *|.     | 19 -0.073 -0.075 10.011 0.866 

       .|*     |        .|*     | 20 0.128 0.164 12.539 0.766 

       .|.     |        .|.     | 21 -0.006 -0.041 12.545 0.818 

       .|*     |        .|*     | 22 0.079 0.100 13.521 0.811 

       .|.     |        *|.     | 23 -0.033 -0.108 13.690 0.846 

       *|.     |        *|.     | 24 -0.131 -0.092 16.469 0.743 

       .|.     |        .|.     | 25 0.033 -0.012 16.642 0.783 

       *|.     |        *|.     | 26 -0.105 -0.071 18.445 0.733 

       .|*     |        .|*     | 27 0.127 0.129 21.111 0.632 

       .|.     |        .|.     | 28 0.003 -0.001 21.112 0.686 

       .|.     |        .|.     | 29 -0.032 -0.029 21.284 0.727 

       .|.     |        .|.     | 30 0.023 -0.020 21.373 0.768 

       .|.     |        .|.     | 31 -0.023 0.055 21.464 0.805 

       .|.     |        .|.     | 32 -0.037 -0.058 21.701 0.832 

       .|.     |        .|.     | 33 -0.044 0.026 22.047 0.852 

       .|.     |        .|.     | 34 0.027 -0.065 22.180 0.877 

       .|.     |        .|.     | 35 -0.010 -0.016 22.197 0.902 

       .|.     |        .|.     | 36 0.011 -0.060 22.221 0.923 
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In order to check the robustness of the forecast, both Static and Dynamic outcomes have been 

produced to help in term of providing constructive judgment about which forecast method is to be 

used for policy consideration. Based on the outcome on Figure 3, it is clear that the use of STATIC 

forecast is more appropriate in terms of results within the actual HCPI_SA data. In comparison, 

the DYNAMIC forecast shows marked diversion from the actual HCPI_SA data and with very 

high margin of errors as shown in the Root Mean Squared Error, Mean Absolute Error and Mean 

Absolute Percentage Error values in comparison to that of the STATIC forecast.  

3.3. Figure 3: Forecast Comparison Graphs [Static and Dynamic] 

 

 

 

 

 

4. Conclusion 

The above forecast outcome shows that STATIC forecast results is a better prediction of future 

inflation trend when compared to DYNAMIC forecast. Supposedly, STATIC forecast allow results 
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of previous forecast to be done singly as a predictor of future inflation outcomes and this is very 

well tracked as the margin of error is quite small when compared to DYNAMIC forecast outcomes. 

The DYNAMC forecast on the other hand, forecast outcomes based on series of projected  period, 

as in this case, three monthly periods (2017M10 – 2018M01). 

 

To say that STATIC forecast method is generally the best can sometimes be an over-statement as 

some researchers have proved that DYNAMIC forecast can be a better choice, even though the 

former have embedded some economic theory justification (Ericsson, 2016). 

 

To wrap it up, the use of either STATIC or DYNAMIC forecast as a means for economic policy 

decision must be treated with caution given the experiences of realities from the opposite of 

dogmatic forecast outcomes, which on the whole can be detrimental for business confidence and 

also economic realities. In this situation, it will be advisable that the peculiarity of the economy is 

taken seriously into consideration when using forecast results as a means of policy decisions. In 

addition, the use of comparative forecasts may also seem a good way of supporting policy makers' 

decisions, for example, the use of multivariate means of forecast results using methodologies like 

ARIMAX, VAR and even in an open-economy DSGE model.  
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