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Abstract 

In this article, I incorporate the anchoring-and-adjustment heuristic into the Black-

Scholes option pricing framework, and show that this is equivalent to replacing the 

risk-free rate with a higher interest rate. I show that the price from such a 

behavioralized version of the Black-Scholes model generally lies within the no-

arbitrage bounds when there are transaction costs. The behavioralized version 

explains several phenomena (implied volatility skew, countercyclical skew, skew 

steepening at shorter maturities, inferior zero-beta straddle return, and superior 

covered-call returns) which are anomalies in the traditional Black-Scholes 

framework. Six testable predictions of the behavioralized model are also put forward. 
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Behavioralizing the Black-Scholes Model 

 

Black-Scholes model (Black and Scholes 1973) is one of the most well-known 

models in finance. Anchoring-and-Adjustment (Tversky and Kahneman 1974) is one 

of the most robust decision-making heuristics. In this article, I behavioralize the 

Black-Scholes model by incorporating anchoring-and adjustment into the model. I 

show that the price generated by the behavioralized version of the Black-Scholes 

model always lies within the transaction-cost induced bounds derived in 

Constantinides and Perrakis (2002), and is generally within Leland (1985) bounds. 

Hence, anchoring bias does not create arbitrage opportunities in the presence of 

transaction costs. The behavioralized version generates the implied volatility skew, 

which is countercyclical and steepens at shorter maturities. It also explains superior 

covered-call return (Whaley 2002), and inferior zero-beta straddle return (Coval and 

Shumway 2001), which are anomalies in the Black-Scholes/CAPM framework. 

Testable predictions of the behavioralized model are also put forward.  

 The original Black-Scholes article (Black and Scholes 1973) presents an 

alternate derivation that relies on CAPM. Here, I use the same route to introduce the 

anchoring-and-adjustment heuristic. The starting point is the observation that a call 

option magnifies the corresponding gains and losses in the underlying security. 

Hence, call option beta is a scaled-up version of the beta of the underlying security. 

This fact makes the underlying security beta, a natural starting point for call option 
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beta. This starting point needs to be appropriately scaled-up. However, relying on a 

starting point and attempting to make appropriate adjustments exposes investors to 

anchoring bias, which is the robust finding that such adjustments typically do not go 

far enough (see Tversky and Kahneman (1974) for early exposition, and Furnham 

and Boo (2011) for a survey of a large literature on anchoring).  

Anchoring-and-adjustment is a heuristic that we rely upon frequently (Epley 

and Gilovich 2001). In fact, it may be considered an optimal response of a Bayesian 

decision-maker with finite computational resources (Lieder, Griffiths, and Goodman 

2013). What is the orbital-period of Mars? When did George Washington become the 

first president of USA? What is the freezing point of Vodka? When asked these 

questions, people typically reasons as follows: Mars is farther from the Sun than 

Earth is, and Earth’s orbital period is 356 days, so Mars probably takes longer. So 

respondents use 356 days as a starting point and add to it. USA became a country in 

1776. The first president could only be elected after that, so respondents start from 

1776 and add to it. Vodka is still liquid when water freezes, so respondents start from 

0 Celsius and subtract from it. In all cases, the adjustments do not go far enough 

with the final answers remaining too close to the starting points (Epley and Gilovich 

2006, 2001). 

Index beta (such as S&P 500 index) is usually taken as 1 by investors. It 

follows that a call option on an index must have a beta greater than 1. So, 1 is a 

clear starting point, which needs to be scaled-up. As adjustments to starting points 
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do not go far enough (anchoring-bias), it follows that, starting from 1, insufficient 

scaling-up is applied. In other words, a call option beta is typically underestimated. 

This in turn implies that the magnitude of the corresponding put option beta (usually 

negative) is overestimated (put option beta follows deductively from corresponding 

call and underlying beta). Hence, anchoring-bias makes both types of options more 

expensive. Underestimation of call option beta is apparent in stock replacement with 

call option strategy, which is quite popular among market professionals.1 In this 

strategy, stocks are replaced with call options to take advantage of embedded 

leverage; however, the resulting increase in portfolio beta is not properly 

appreciated. 

This article is organized as follows: Section 2 derives the behavioralized 

versions of Black-Scholes formulas applicable to European call and put options.  

Section 3 shows that prices generated by the behavioralized versions generally lie 

within no-arbitrage bounds in the presence of transaction costs. Section 4 shows that 

the behavioralized version generates the implied volatility skew similar to what is 

observed with index options.  Section 5 shows that superior covered-call returns, and 

inferior zero-beta straddle returns, are consistent with the behavioralized model. 

Section 6 derives six testable predictions of the behavioralized model. Section 7 

shows how to behavioralize other option pricing models. Section 8 concludes. 

                                                           
1
 http://www.minyanville.com/mvpremium/2013/11/29/swapping-stock-for-options/ 

http://www.etf.com/sections/features-and-news/nations-1?nopaging=1 

http://www.optionsuniversity.com/blog/stock-replacement-options-mastery-series-lesson-24/ 

 

http://www.minyanville.com/mvpremium/2013/11/29/swapping-stock-for-options/
http://www.etf.com/sections/features-and-news/nations-1?nopaging=1
http://www.optionsuniversity.com/blog/stock-replacement-options-mastery-series-lesson-24/
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2. Anchoring in the Black-Scholes Framework 

To derive the behavioralized PDE, I assume the existence of three instruments: 

1) A riskless bond that evolves as 𝑑𝐵 = 𝑟𝐵𝑑𝑡 where 𝑟 is the risk-free rate. 

2) An underlying security which follows the Ito process: 𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊. 

3) A call option written on the underlying security which, by Ito’s Lemma, follows 

the following process: 

𝑑𝐶 = (𝜕𝐶𝜕𝑡 + 𝜇𝑆 𝜕𝐶𝜕𝑆 + 12 𝜎2𝑆2 𝜕2𝑆𝜕𝑆2) 𝑑𝑡 + (𝜎𝑆 𝜕𝐶𝜕𝑆) 𝑑𝑊                                               (2.1) 

Time subscripts on 𝐶, 𝑆, and 𝐵 are suppressed for notational convenience. It 

follows that 𝛽𝐶 = 𝜕𝐶𝜕𝑆 𝑆𝐶 𝛽𝑆 where 𝛽𝐶 and 𝛽𝑆 are call option and the underlying 

security beta respectively (Black and Scholes 1973). 

By applying CAPM, we can write, for a small time increment 𝑑𝑡: 

𝐸 [𝑑𝑆𝑆 ] = 𝑟𝑑𝑡 + 𝛽𝑆[�̅�𝑀 − 𝑟]𝑑𝑡                                                                                                          (2.2) 

𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + 𝛽𝐶[�̅�𝑀 − 𝑟]𝑑𝑡                                                                                                         (2.3) 

where �̅�𝑀 is the expected return on the aggregate market portfolio. 

 As call beta is a scaled-up version of the underlying security beta, it must be 

true that for some �̅�𝑡: 𝛽𝐶 = (1 + �̅�𝑡)𝛽𝑆. Substituting this in (2.3), realizing 𝐸 [𝑑𝑆𝑆 ] =𝜇𝑑𝑡, and then substituting for 𝛽𝑆[�̅�𝑀 − 𝑟] from (2.2) leads to: 

𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + (1 + �̅�𝑡){𝜇𝑑𝑡 − 𝑟𝑑𝑡}                                                                                           (2.4) 
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The correct scaling-up factor is �̅�𝑡 = 𝜕𝐶𝜕𝑆 𝑆𝐶 − 1. With this substitution, (2.4) becomes: 

𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + 𝜕𝐶𝜕𝑆 𝑆𝐶 {𝜇 − 𝑟}𝑑𝑡                                                                                                     (2.5) 

From (2.1), 𝐸[𝑑𝐶] = (𝜕𝐶𝜕𝑡 + 𝜇𝑆 𝜕𝐶𝜕𝑆 + 12 𝜎2𝑆2 𝜕2𝑆𝜕𝑆2) 𝑑𝑡. Substituting this in (2.5) leads to: 

𝜕𝐶𝜕𝑡 + 𝑟𝑆 𝜕𝐶𝜕𝑆 + 12 𝜎2𝑆2 𝜕2𝑆𝜕𝑆2 = 𝑟𝐶                                                                                                     (2.6) 

(2.6) is the original Black-Scholes PDE as derived in Black and Scholes (1973). 

 Next, I introduce anchoring-bias into the picture. With anchoring-bias, using 

the underlying beta as a starting point, insufficient scaling-up is applied to estimate 

call option beta. That is, 𝐴𝑡 = 𝑚�̅�𝑡 where 0 < 𝑚 < 1. So, (2.4) becomes: 

𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + (1 + 𝑚�̅�𝑡){𝜇𝑑𝑡 − 𝑟𝑑𝑡} 
=> 𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + (1 + �̅�𝑡){𝜇𝑑𝑡 − 𝑟𝑑𝑡} − (1 − 𝑚)�̅�𝑡{𝜇𝑑𝑡 − 𝑟𝑑𝑡} 
=>  𝐸 [𝑑𝐶𝐶 ] = 𝑟𝑑𝑡 + [𝜕𝐶𝜕𝑆 𝑆𝐶] {𝜇𝑑𝑡 − 𝑟𝑑𝑡} − (1 − 𝑚) [𝜕𝐶𝜕𝑆 𝑆𝐶 − 1] {𝜇𝑑𝑡 − 𝑟𝑑𝑡} 

=> 𝐸 [𝑑𝐶𝐶 ] = [𝑟 + (1 − 𝑚)(𝜇 − 𝑟)]𝑑𝑡 + [𝜕𝐶𝜕𝑆 𝑆𝐶] [𝜇 − {𝑟 + (1 − 𝑚)(𝜇 − 𝑟)}]𝑑𝑡 

=> 𝐸 [𝑑𝐶𝐶 ] = 𝑟∗𝑑𝑡 + 𝜕𝐶𝜕𝑆 𝑆𝐶 {𝜇 − 𝑟∗}𝑑𝑡                                                                                         (2.7) 

(2.7) is identical to (2.5) with 𝑟 replaced with 𝑟∗ = 𝑟 + (1 − 𝑚)𝛿 where 𝛿 = 𝜇 − 𝑟 is 

the risk-premium on the underlying security. Note that with correct adjustment, that 

is, in the absence of anchoring-bias (𝑚 = 1), 𝑟∗ = 𝑟. The effect of introducing 

anchoring-bias is equivalent to replacing the risk-free rate, 𝑟, with a higher interest 

rate, 𝑟∗ = 𝑟 + (1 − 𝑚)𝛿.  
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From (2.1), 𝐸[𝑑𝐶] = (𝜕𝐶𝜕𝑡 + 𝜇𝑆 𝜕𝐶𝜕𝑆 + 12 𝜎2𝑆2 𝜕2𝑆𝜕𝑆2) 𝑑𝑡. Substituting this in (2.7) leads the 

following behavioralized version of the Black-Scholes PDE: 

𝜕𝐶𝜕𝑡 + 𝑟∗𝑆 𝜕𝐶𝜕𝑆 + 12 𝜎2𝑆2 𝜕2𝑆𝜕𝑆2 = 𝑟∗𝐶                                                                                                  (2.8) 

where 𝑟∗ = 𝑟 + (1 − 𝑚)𝛿. With correct adjustment, that is, with 𝑚 = 1, the 

behavioralized version converges to the original Black-Scholes PDE.  

 The behavioralized PDE can be solved in the same way as the original Black-

Scholes PDE. Proposition 1 presents the solution. 

 

Proposition 1: The behavioralized Black-Scholes formula for the price of a European 

call option with strike K is given by: 

𝑪 = 𝑺𝑵(𝒅𝟏∗ ) − 𝑲𝒆−{𝒓+(𝟏−𝒎)𝜹}(𝑻−𝒕)𝑵(𝒅𝟐∗ ) 

where 𝒅𝟏∗ = 𝒍𝒏(𝑺𝑲)+{𝒓+(𝟏−𝒎)𝜹+𝝈𝟐𝟐 }(𝑻−𝒕)𝝈√𝒕−𝒕  ,  𝒅𝟐∗ = 𝒍𝒏(𝑺𝑲)+{𝒓+(𝟏−𝒎)𝜹−𝝈𝟐𝟐 }(𝑻−𝒕)𝝈√𝒕−𝒕 , and  𝟎 ≤ 𝒎 ≤ 𝟏 

Proof: 

By solving (2.8) in the same way as the original Black-Scholes PDE is solved.■ 

Corollary 1: The behavioralized Black-Scholes formula for the price of a European 

put option with strike K is given by: 

𝑷 = 𝑲𝒆−𝒓(𝑻−𝒕){𝟏 − 𝒆−𝜹(𝟏−𝒎)(𝑻−𝒕)𝑵(𝒅𝟐∗ )} − 𝑺{𝟏 − 𝑵(𝒅𝟏∗ )} 
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Proof: 

There are two equivalent ways.  

First method: 𝛽𝑃 = −𝛽𝑆 {𝑆𝑃 − 𝐶𝑃 (1 + 𝑚�̅�)}. Use this expression to calculate the 

expected put return from CAPM. Then, use Ito’s Lemma to substitute out 𝐸[𝑑𝑃] in 

CAPM. Solve the resulting PDE.  

Second Method: Use put-call parity.■ 

Corollary 2 Anchoring-bias makes both types of options more expensive than the 

corresponding Black-Scholes benchmark. 

Proof: 

Follows from direct comparison.■ 

 

3. Behavioralized Model and No-Arbitrage Bounds 

Constantinides and Perrakis (2002) derive option pricing bounds in the presence of 

proportional transaction costs. They show that their bounds are generally tighter than 

Leland (1985) bounds. Here, I show that the price generated by the behavioralized 

model always lies within the bounds derived in Constantinides and Perrakis (2002). 

Note that as anchoring-bias makes options more expensive than the Black-Scholes 

benchmark, we only need to consider the upper bound (as lower bound lies below 

the Black-Scholes price).  If the proportional transaction cost is 𝑘 > 0, then the 
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Constantinides and Perrakis (2002) upper bound in the Black-Scholes context is 

given by: 

𝐶̅ = (1 + 𝑘)(1 − 𝑘) {𝑆𝑁(𝑑1𝜇) − 𝐾𝑒−𝜇(𝑇−𝑡)𝑁(𝑑2𝜇)}                                                                                 (3.1) 

where 𝑑1𝜇 = 𝒍𝒏(𝑺𝑲)+{𝝁+𝝈𝟐𝟐 }(𝑻−𝒕)𝝈√𝒕−𝒕 , 𝑑2𝜇 = 𝒍𝒏(𝑺𝑲)+{𝝁−𝝈𝟐𝟐 }(𝑻−𝒕)𝝈√𝒕−𝒕 , and 𝜇 = 𝑟 + 𝛿 

In other words, call upper bound is the price at which the expected return from a call 

option is equal to the expected return from the underlying security net of round trip 

transaction costs (see Proposition 1 in Constantinides and Perrakis (2002)).  

It is easy to see that: 

𝑆𝑁(𝑑1∗) − 𝐾𝑒−{𝑟+(1−𝑚)𝛿}(𝑇−𝑡)𝑁(𝑑2∗) <  𝑆𝑁(𝑑1𝜇) − 𝐾𝑒−𝜇(𝑇−𝑡)𝑁(𝑑2𝜇) for 0 < 𝑚 ≤ 1 

And 

𝑆𝑁(𝑑1∗) − 𝐾𝑒−{𝑟+(1−𝑚)𝛿}(𝑇−𝑡)𝑁(𝑑2∗) =  𝑆𝑁(𝑑1𝜇) − 𝐾𝑒−𝜇(𝑇−𝑡)𝑁(𝑑2𝜇) for 𝑚 = 0 

It follows: 

𝑆𝑁(𝑑1∗) − 𝐾𝑒−{𝑟+(1−𝑚)𝛿}(𝑇−𝑡)𝑁(𝑑2∗) ≤ 𝑆𝑁(𝑑1𝜇) − 𝐾𝑒−𝜇(𝑇−𝑡)𝑁(𝑑2𝜇)  for 0 ≤ 𝑚 ≤ 1 

And, 

𝑆𝑁(𝑑1∗) − 𝐾𝑒−{𝑟+(1−𝑚)𝛿}(𝑇−𝑡)𝑁(𝑑2∗) < 1+𝑘1−𝑘 {𝑆𝑁(𝑑1𝜇) − 𝐾𝑒−𝜇(𝑇−𝑡)𝑁(𝑑2𝜇)} for 0 ≤ 𝑚 ≤ 1 

Hence, the behavioralized model price is always less than the Constantinides and 

Perrakis (2002) upper bound. As Constantinides and Perrakis (2002) upper bound is 

generally less than the corresponding Leland (1985) bound, it also follows that the  
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Table 1 

Behavioralized model price vs Constantinides & Perrakis (2002) and Leland (1985) 

bounds 

Strike-to-price ratio 0.95 1.0 1.05 

Black-Scholes price 6.07 2.99 1.19 

Behavioralized Black-Scholes (price range) (6.07-6.79) (2.99-3.50) (1.19-1.48) 

Constantinides and Perrakis price 6.93 3.57 1.50 

Leland price with trading interval 1/250 years 7.69 4.90 2.91 

Leland price with trading interval 1/52 years 6.88 3.98 2.05 

 

 

behavioralized price is generally smaller than the Leland (1985) upper bound as well. 

Note that for trading interval, ∆𝑡, the Leland (1985) upper bound is obtained by 

making the following substitution in the Black-Scholes formula: 𝜎2 → 𝜎2 + √8𝜋 𝜎 𝑘√∆𝑡  
As an illustrative example, table 1 shows Black-Scholes price, price range 

from the behavioralized model (∀𝑚 0 ≤ 𝑚 ≤ 1), Constantinides and Perrakis (2002)  

upper bound, as well as Leland (1985) upper bounds with daily and weekly trading 

intervals. The parameter values are: 𝑆 = 100, 𝑇 − 𝑡 = 0.25 𝑦𝑒𝑎𝑟, 𝑟 = 0, 𝜇 = 0.04, 𝜎 =0.15, 𝑎𝑛𝑑 𝑘 = 0.01. Three different levels of money-ness are considered: 0.95, 1.0, 

and 1.05. As can be seen, the behavioralized model price range is less than the 

Constantinides and Perrakis (2002) upper bound as well as Leland (1985) bound 

throughout. The fact that the behavioralized price is always below the Constantinides 
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and Perrakis (2002) upper bound implies that anchoring, as modelled here, can be 

considered a mechanism that further tightens the option pricing bounds. 

4. Implied Volatility Skew in the Behavioralized Model 

If actual prices are generated in accordance with the behavioralized model, and the 

Black-Scholes model is used to back-out implied volatility, then a skew is observed. 

Continuing with the previous example with 𝑆 = 100, 𝑇 − 𝑡 = 0.25 𝑦𝑒𝑎𝑟, 𝑟 = 0, 𝛿 =0.04, 𝜎 = 0.15, and 𝑚 = 0.75, figure 1 plots the skew (blue curve). The skew is also 

plotted at a higher value of 𝛿 = 0.06 (red curve). It is easy to verify that the skew 

steepens as the risk-premium on the underlying security increases (as 𝛿 goes up). 

The behavioralized model predicts that the skew should steepen during recessions 

Implied Volatility Skew Steepens with Risk-Premium 

 

Red curve corresponds to 𝛿 = 0.06. Blue curve corresponds to 𝛿 = 0.04. Other parameters are: 𝑆 = 100, 𝑇 − 𝑡 = 0.25 𝑦𝑒𝑎𝑟, 𝑟 = 0, 𝜎 = 0.15, and 𝑚 = 0.75 

Figure 1 
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Implied Volatility Skew Steepens at Shorter Maturity 

 

Red curve corresponds to 𝑇 − 𝑡 = 1 𝑤𝑒𝑒𝑘. Blue curve corresponds to 𝑇 − 𝑡 = 3 𝑚𝑜𝑛𝑡ℎ𝑠. Other 

parameters are: 𝑆 = 100, 𝛿 = 0.04, 𝑟 = 0, 𝜎 = 0.15, and 𝑚 = 0.75 

Figure 2 

 

as 𝛿 is higher during recessions. This is consistent with empirical findings 

(Rosenberg and Engle 2002). Another prediction of the behavioralized model is 

steepening of the skew at shorter maturities. This is also consistent with empirical 

evidence (Derman and Miller 2016). Figure 2 plots the skew at maturities of 3 

months, and 1 week. The steepening at shorter maturity is seen.  
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5. Zero-Beta Straddle and Covered-Call Returns 

Coval and Shumway (2001) find that zero-beta straddles earn negative returns in 

sharp contrast with the prediction of the Black-Scholes/CAPM framework that they 

should earn the risk-free rate. Anchoring-bias makes both call and put options more 

expensive (corollary 2) compared to the Black-Scholes values. This lowers the return 

from zero-beta straddle to below the risk-free rate. Another way of seeing the same 

thing is as follows: If anchoring-bias is present and we set-up a zero-beta straddle 

with the assumption that there is no anchoring-bias, then the weight on the call 

option in our portfolio would be lower than what it should be (the weight on the put 

option would be higher than what it should be) to achieve the risk-free rate. 

Consequently, the return would be lower than the risk-free rate. Zero-beta straddle is 

set-up as follows: 

𝜃𝛽𝐶 + (1 − 𝜃)𝛽𝑃 = 0 

where 𝛽𝐶 = 𝛽𝑆(1 + �̅�) and 𝛽𝑃 = −𝛽𝑆 {𝑆𝑃 − 𝐶𝑃 (1 + �̅�)} for �̅� > 0. 

It follows that the weight on the call option to achieve the risk-free rate is: 

𝜃 = 𝑆𝑃 − 𝐶𝑃 (1 + �̅�)(1 + �̅�) + {𝑆𝑃 − 𝐶𝑃 (1 + �̅�)} 
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If underlying security beta is insufficiently scaled-up to estimate call option beta, then 

the weight on the call option to achieve the risk-free would be: 

𝜃𝑚 = 𝑆𝑃 − 𝐶𝑃 (1 + 𝑚�̅�)(1 + 𝑚�̅�) + {𝑆𝑃 − 𝐶𝑃 (1 + 𝑚�̅�)}  𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑚 < 1 

=> 𝜃𝑚 = 𝑆𝑃 − 𝐶𝑃 (1 + �̅�) + 𝐶𝑃 (1 − 𝑚)�̅�(1 + �̅�) + {𝑆𝑃 − 𝐶𝑃 (1 + �̅�)} − (1 − 𝑚)�̅� + 𝐶𝑃 (1 − 𝑚)�̅� > 𝜃 

It follows that, if there is anchoring-bias and we ignore it while setting up a zero-beta 

straddle, then the weight on the call option is too low and the weight on the put 

option is too high resulting in portfolio return being less than the risk-free rate. 

Hence, the inferior historical performance of zero-beta straddles is consistent with 

anchoring-bias. This suggests that there is a simpler explanation for inferior 

performance of zero-beta straddles than assuming the existence of additional risk 

factors. Nevertheless, empirical work must carefully consider the possibility that the 

inferior performance may be due to the anchoring-bias. 

 Whaley (2002) documents superior returns from covered-call writing when 

compared with the Black-Scholes/CAPM benchmark. Again, this is exactly what one 

expects from the behavioralized model. As a call option is overpriced when 

compared with the Black-Scholes benchmark, the initial value of covered-call writing 

portfolio is smaller, which increases returns. 
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6. Behavioralized Model: Six Testable Predictions 

Anchoring-bias implies that investors insufficiently scale-up underlying security beta 

to estimate call option beta. If anchoring-bias is present and we ignore it while 

deleveraging a call option, then we would over deleverage. Hence, the resulting 

deleveraged portfolio would have a beta smaller than the intended target beta of the 

underlying security. Similarly, we would under-deleverage a put option creating a 

portfolio with a beta greater than that of the underlying security. Hence, option 

deleveraging exercises provide a fertile testing ground for the behavioralized model. 

The expected return from a call option over 𝑑𝑡 under Black-Scholes model is: 

1𝑑𝑡 𝐸 [𝑑𝐶𝐶 ] = 𝑟 + 𝜕𝐶𝜕𝑆 𝑆𝐶 (𝜇 − 𝑟) 

Deleveraging means combining a call option with the risk-free asset so that the 

portfolio beta is equal to the beta of the underlying security. This is achieved by 

creating a portfolio with the weight of 
1𝜕𝐶𝜕𝑆𝑆𝐶 on a call option and the weight of 1 − 1𝜕𝐶𝜕𝑆𝑆𝐶 on 

the risk-free asset. So, under the Black-Scholes model: 

𝑟 + 𝜕𝐶𝜕𝑆 𝑆𝐶 (𝜇 − 𝑟)𝜕𝐶𝜕𝑆 𝑆𝐶 + (1 − 1𝜕𝐶𝜕𝑆 𝑆𝐶) 𝑟 = 𝜇                                                                                         (6.1) 

So, under the Black-Scholes model, the expected return from a deleveraged call 

option is equal to the expected return from the underlying security. 
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Under the behavioralized Black-Scholes model, the expected return from a call 

option is: 

1𝑑𝑡 𝐸 [𝑑𝐶𝐶 ] = 𝑟∗ + 𝜕𝐶𝜕𝑆 𝑆𝐶 (𝜇 − 𝑟∗) 𝑤ℎ𝑒𝑟𝑒 𝑟∗ = 𝑟 + (1 − 𝑚)𝛿 

So, the expected return from a deleveraged call option is: 

𝑟∗ + 𝜕𝐶𝜕𝑆 𝑆𝐶 (𝜇 − 𝑟∗)𝜕𝐶𝜕𝑆 𝑆𝐶 + (1 − 1𝜕𝐶𝜕𝑆 𝑆𝐶) 𝑟 = 𝜇 − (1 − 𝑚)𝛿 {1 − 1𝜕𝐶𝜕𝑆 𝑆𝐶}                                      (6.2) 

Hence, the following two predictions directly follow from the behavioralized model 

regarding call options: 

1) Deleveraged call option return must be lower the return on the underlying 

security. 

2) Deleveraged call option return must fall as the ratio of strike-to-spot increases. 

This is because 
𝜕𝐶𝜕𝑆 𝑆𝐶 rises as strike-to-spot increases, which increases 1 − 1𝜕𝐶𝜕𝑆𝑆𝐶 

The expected return from a put option under the Black-Scholes model is: 

1𝑑𝑡 𝐸 [𝑑𝑃𝑃 ] = 𝑟 − [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] (𝜇 − 𝑟) 𝑤ℎ𝑒𝑟𝑒 �̅� = 𝜕𝐶𝜕𝑆 𝑆𝐶 − 1 

Deleveraging a put option requires combining a writing position in the put option with 

a long position in the risk-free asset with the weight of 
1𝑆𝑃−𝐶𝑃(1+�̅�) on the put writing 

position and the weight of 1 + 1𝑆𝑃−𝐶𝑃(1+�̅�) on the risk-free asset.  
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Hence, under the Black-Scholes model, a deleveraged put should yield: 

𝑟 − [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] (𝜇 − 𝑟)− [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] + (1 + 1𝑆𝑃 − 𝐶𝑃 (1 + �̅�)) 𝑟 = 𝜇                                                  (6.3) 

Just like a deleveraged call option, a deleveraged put option should also yield a 

return equal to the underlying security return if the Black-Scholes model is correct. 

Under the behavioralized Black-Scholes model: 

1𝑑𝑡 𝐸 [𝑑𝑃𝑃 ] = 𝑟 − [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] (𝜇 − 𝑟) − 𝐶𝑃 (1 − 𝑚)�̅�𝛿 

So, deleveraged put option return is: 

𝑟 − [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] (𝜇 − 𝑟) − 𝐶𝑃 (1 − 𝑚)�̅�𝛿− [𝑆𝑃 − 𝐶𝑃 (1 + �̅�)] + (1 + 1𝑆𝑃 − 𝐶𝑃 (1 + �̅�)) 𝑟 

= 𝜇 + (1 − 𝑚)𝛿 𝐶 (𝜕𝐶𝜕𝑆 𝑆𝐶 − 1)𝑆 (1 − 𝜕𝐶𝜕𝑆)                                                                                                        (6.4) 

The following two testable predictions follow: 

1) Deleveraged put option return must be larger than the return on the 

underlying security. 

2) Deleveraged put option return must fall as the ratio of strike-to-spot increases. 

 

Apart from the two testable predictions pertaining to the deleveraged call option and 

the two predictions pertaining to the deleveraged put option, it is possible to derive 
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further predictions by subtracting deleveraged call return from deleveraged put 

return. That is, eq. (6.4) minus eq. (6.2) results in: 

𝐷𝑒𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑢𝑡 − 𝐷𝑒𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐶𝑎𝑙𝑙 = (1 − 𝑚)𝛿 (𝜕𝐶𝜕𝑆 𝑆𝐶 − 1)(1 − 𝜕𝐶𝜕𝑆) (𝜕𝐶𝜕𝑆 𝑆𝐶)                           (6.5) 

It follows that, according to the behavioralized model: 

1) The difference between corresponding deleveraged put and deleveraged call 

returns must fall as the ratio of strike-to-spot increases. 

2) The difference between corresponding deleveraged put and deleveraged call 

returns must rise as time-to-expiry nears. 

 In this section, six testable predictions of the behavioralized Black-Scholes 

model are derived. Careful empirical testing of these predictions is the subject of 

future research. Intriguingly,  Constantinides , Jackwerth and Savov (2013) present 

empirical results consistent with the first four predictions derived in this section. 

 

7. Behavioralizing Other Option Pricing Models 

The approach used in behavioralizing the Black-Scholes model can be easily 

generalized to behavioralize other option pricing models such as the ones developed 

in Heston (1993) and Bates (1996). The only change is that instead of scaling-up the 

beta of underlying security, one scales-up the risk of underlying security to estimate 

the risk of a call option. Anchoring-bias then implies that call option risk is 
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underestimated. It is straightforward to see that the call option formulas pertaining to 

Heston (1993) and Bates (1996) models would change in only one way: replacing 

the risk-free rate, 𝑟, with a higher interest rate, 𝑟∗, which is equal to 𝑟 + (1 − 𝑚)𝛿.  

 

8. Conclusions 

In this article, anchoring-and-adjustment heuristic is incorporated into the Black-

Scholes model and behavioralized versions of call and put option pricing formulas 

are put forward. It is shown that the behavioralized price generally lies within no-

arbitrage bounds with proportional transaction costs. The behavioralized model 

explains several implied volatility and option return puzzles. Six testable predictions 

of the behavioralized model are also derived. The technique shown here can be 

used to behavioralize any option pricing model such as stochastic volatility model of 

Heston (1993) and stochastic volatility with jumps model of Bates (1996). 
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