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Abstract

This paper offers an explanation for choice overload based on reference-

dependent preferences. We assume that consumers construct an ideal object

that combines the best attributes of all objects in their choice set, and use this as

a reference point. They exhibit loss aversion in any attribute that is worse than

the reference point. When a consumer’s choice set expands, on the one hand,

she is more likely to find a better object, but on the other hand, the reference

point improves making all existing objects appear worse. We characterize when

the latter reference-dependence effect dominates, thus making the probability

of purchase decrease with the number of objects available. We also show that

consumers’ propensity to choose can decrease with object complexity, measured

by the number of attributes.
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1 Introduction

There is widespread evidence that an abundance of choice can make decision mak-

ing harder and indeed may cause people to buy less often, or be less satisfied with

what they purchase. This is often termed “choice overload” or “paradox of choice”.

Iyengar and Lepper (2000) were among the first to show, in their well-known jam

experiment, that consumers when faced with a larger number of choices were less

likely to purchase.1 Similar evidence has been shown in a variety of contexts: A

study by Iyengar, Huberman, and G.Jiang (2004) documented evidence of a nega-

tive impact on employee participation when a larger range of retirement plans were

offered. Other things equal, every ten funds added was associated with 1.5-2% drop

in participation rates. Bertrand, Karlan, Mullainathan, Shafir, and Zinman (2010)

showed that offering a smaller range of loan products (1 vs 4 options) had the same

effect on demand as a 25% decrease in interest rates. A survey by the Consumer

Reports in 2014 also confirms that many consumers are overwhelmed by too many

choices in supermarkets.2 In fact some retailers have started to reduce the number of

products they carry to make shopping easier.3

The evidence is, however, not unambiguous. There are also studies where choice

overload does not arise. See, e.g., Scheibehenne, Greifeneder, and Todd (2010a) and

Chernev, Böckenholt, and Goodman (2015) for surveys of lab and field studies of

choice overload. Moreover, there is recent experimental evidence that suggests that

choice overload is more likely to arise when the decision maker faces a more complex

decision. For instance, Scheibehenne, Greifeneder, and Todd (2010b) conducted an

experiment with pens and mp3 players, and showed that choice overload is more likely

to arise when the objects are more complex in terms of having a greater number of

attributes.

This body of evidence is the starting point for our paper. We present a plausible

1There is some earlier related research, but those papers usually consider a small number of
objects and do not particularly focus on choice overload problem. For instance, Dhar (1997) studies
whether the chance of taking the no-choice option is higher or lower when a new option is added to
a singleton choice set, where the new option is similar to the existing one. Similarly Tversky and
Shafir (1992) show experimentally, by expanding a singleton choice set, that it is possible to induce
a decision maker to delay her purchase decision by adding an alternative.

2https://www.consumerreports.org/cro/magazine/2014/03/too-many-product-choices-in-
supermarkets /index. htm

3See, e.g., https://www.theguardian.com/business/2015/jan/30/tesco-cuts-range-products
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mechanism that can result in choice overload, and is consistent with the evidence. In

particular, we propose a simple and natural model of reference dependence with loss

aversion and present the conditions under which choice overload can or cannot arise.

We also show how the phenomenon of choice overload is affected by the complexity

of the objects.

Our main premise is that when a decision maker chooses a multi-attribute object,

she needs to make trade-offs between various attributes of the object, and she faces

some disutility if her chosen object is worse on some attribute than other objects

that she has seen. It is as if when the decision maker observes multiple options, she

imagines an ideal object that combines the best attributes of all the objects she has

seen, and uses it as a reference point when she evaluates each available object. A

comparison with such a reference point can leave her dissatisfied with every object in

the sample. This type of reasoning has been suggested and studied by psychologists,

though it has not been explored in a formal decision model. For instance, Schwartz

(2004) writes:4

The existence of multiple alternatives makes it easy for us to imagine

alternatives that don’t exist—alternatives that combine the attractive fea-

tures of the ones that do exist. And to the extent that we engage our

imaginations in this way, we will be even less satisfied with the alternative

we end up choosing.

To fix ideas, consider the choice of a house. One might be interested in several

attributes of a house: square footage, size of the backyard, quality of the view and

style. Then, one goes house-hunting. The first open house is just the right size with

a large backyard but no view, while the second is too large, with no backyard, an

ocean view and constructed in mid-century style, while the third is small, has no

backyard, has an ocean view and is in a modern minimalist style. As one samples

more houses, one conjures up the image of an ideal house that combines the best

features of each: a house that is the right size with a backyard, an ocean view and a

modern minimalist design. Often, such an ideal house is not available, and purchase

4Sagi and Friedland (2007) provide some experimental evidence on the idea in Schwartz (2004).
A related idea in psychology is that due to the contrast effect, adding an “attractive but unattainable
alternative” tends to decrease the attractiveness of available alternatives, especially when the decision
needs to be made soon. See, for example, the experimental study by Borovoi, Liberman, and Trope
(2010).
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is delayed, because every house that is available compares unfavorably with the ideal.

Similar situations can arise in many examples that involve choosing multi-attribute

objects such as furniture, job offers, and partners.

Formally, we consider a consumer who faces a choice set of n objects, each with m

attributes. The consumer values all attributes, and her instrinsic valuations are drawn

independently from some distribution. Beyond the intrinsic valuations, the consumer

evaluates any object relative to a reference point which is some “ideal object” that

is based on the set of choices she faces. She suffers a psychological loss that depends

on how an object compares on each attribute with the reference point. A consumer

will purchase her favorite object from the choice set if it gives her a positive overall

utility. We say choice overload arises if the likelihood of purchase decreases with the

number of options available.

We examine two natural possibilities for reference points in this context. We

consider a Utopian reference point, where the consumer imagines an ideal object

that combines the best attributes from all the existing objects. We also consider an

Expectation-based reference point, where before inspecting the existing objects, the

consumer imagines an object that has the expected best value on each attribute and

regards it as the reference point. We ask two key questions. Can choice overload arise

out of this reference dependence? Further, does the likelihood of purchase also vary

with complexity of the object (measured by the number of attributes)?

We first show that choice overload can arise with such reference-dependent pref-

erences, and provide sufficient conditions for this to happen. To see the intuition

behind why choice overload can arise, note that increasing the size of the choice set

has two effects. On the one hand, it increases the chance that better options are avail-

able, and so increases the consumer’s propensity to purchase if there is no reference

dependence. We call this the “sample-size effect”. On the other hand, increasing the

number of choices induces a better reference point, making every object in the choice

set less desirable. We call this the “reference-dependence effect”. When the second

effect dominates, choice overload arises.

We also examine the relationship between choice overload and product complex-

ity. Since our premise is that consumers dislike trade-offs, one may wonder whether

making a decision about an object with many attributes is more likely to give rise to

choice overload because there are potentially many more trade-offs.5 As mentioned

5Bachi and Spiegler (2018) study a market competition model where consumers dislike trade-offs
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earlier, Scheibehenne, Greifeneder, and Todd (2010b) provide experimental evidence

of this. Indeed we find that a key prediction of our model is consistent with the evi-

dence that choice overload is more likely in the case of objects with many attributes.

We provide conditions under which the consumer in our model is less likely to buy

when the number of attributes increases.

Other related literature. In a framework with standard consumers, it is usu-

ally hard to generate choice overload. This is because when the choice set expands, a

rational consumer can always choose to ignore the newly added options. However, if

the average quality of the options somehow decreases as the choice set expands, then

even rational consumers can suffer from a larger choice set if they cannot easily iden-

tify each option’s quality.6 Kamenica (2008) offers a contextual inference explanation

of choice overload in this vein. In his model, a firm knows that consumers have het-

erogeneous preferences and in equilibrium always provides the most popular varieties

of a product. Then the average popularity of the available varieties decreases as the

number of varieties increases. As a result, uninformed consumers who do not know

their own preferences and so have to randomly choose are less likely to purchase. In a

similar spirit, Kuksov and Villas-Boas (2010) offer a search model that features choice

overload. They consider a Hotelling setup where there are n products located at 2i−1
2n

,

i = 1, · · · , n, respectively (which minimizes the expected consumer travelling distance

when information is perfect). Consumers initially do not know which product is in

which location, but can learn via a sequential search process. In such a setup, having

more products implies more uncertainty of product match. When search is relatively

costly, this can induce more consumers to leave the market without purchasing.7

Instead, we adopt a behavioral approach to explain choice overload. Our paper

belongs to the large literature on choice-set dependent preferences (see, for example,

Tversky and Simonson (1993) and Bordalo, Gennaioli, and Shleifer (2013)). It also

relates to work in decision theory that studies preferences over menus with ex-post

regret. Sarver (2008) provides axioms that deliver a unique regret representation,

and can be seen as providing an axiomatic foundation for our preferences, since our

and they employ non-compensatory choice procedures in the absence of a dominant option. For
example, consumers may then stick to the default option even if it is dominated.

6Abaluck and Gruber (2018) provide empirical evidence in this vein from the health insurance
market in the state of Oregon. They show that a larger choice set makes consumers worse off mainly
because it include worse choices on average.

7See Ke, Shen, and Villas-Boas (2016) for another search related explanation for choice overload.
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utility function with a Utopian reference point can be interpreted as a particular case

of the regret representation.8 Choice overload can also naturally arise if we introduce

cost of thinking and assume that the cost is higher when the choice set is larger

(which requires that the decision maker cannot freely discard options). Ortoleva

(2013) axiomatizes a utility function with such a feature.9,10

Different from the decision theory literature, our paper takes a more applied per-

spective. By assuming a utility function with a plausible behavioral component, we

focus on studying how the number of options and the number of attributes affect the

consumer choice behavior. In particular, the question of how object complexity af-

fects choices has not been explored in the decision theory literature. We also examine

how our framework can be extended to explain other commonly observed behavioral

anomalies like the compromise effect and the attraction effect.

The rest of the paper is organized as follows. Section 2 contains the model.

In Section 3, we illustrate the main intuition by considering a limiting case of our

model with extreme reference dependence. In Section 4, we first investigate the

Expectation-based reference point, because this turns out to be an easier setting to

analyze. In Section 5, we discuss the Utopian reference point, and show that the

results are qualitatively similar. In Section 6, we conclude with a discussion of some

applications of our framework.

2 The Model

Consider a consumer who faces a choice set consisting of n multi-attribute options.

Let xj = (xj
1, · · · , xj

m) denote option j ∈ {1, · · · , n}, where xj
i is the consumer’s

8Buturak and Evren (2017) extend Sarver (2008) by introducing a default option that is not
subject to regret consideration and study the choice overload consequence of the modified setup.
This is closer to our model as we also have a normalized outside option that is not subject to the
reference-dependence effect.

9See also Frick (2016) and Gerasimou (Forthcoming) where a larger choice set is associated with
a higher complexity related cost, even if a newly added option is a dominant option or dominated
by the existing ones. This contrasts with our model where adding a dominant or dominated option
never harms the decision maker.

10Other decision theory models that predict choice overload include Ravid (2015) and Fudenberg,
Iijima, and Strzalecki (2016) that both involve stochastic choice by the decision maker. Ravid (2015)
proposes a boundedly rational random choice procedure. The “Focus, Then Compare” procedure
has agents picking an option from their choice set at random, and then making their choice through
a sequence of pair-wise comparisons.
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valuation for option j’s attribute i and m is the number of attributes each option has.

Suppose that the consumer has an additive intrinsic utility function:

u(xj) =
1

m

m∑

i=1

xj
i ,

where for simplicity all attributes are assumed to be equally important. The qual-

itative results will be largely unchanged if we allow different weights on different

attributes. Suppose that xj
i is drawn independently from a distribution F (x) with

support [x, x] and a continuous density f(x), where an infinite support is allowed.

Suppose that the realization of each xj
i is i.i.d. across both j and i. Therefore, all

options are symmetric and all attributes of each option are symmetric. The symmetry

assumptions are made mainly for tractability. Throughout the paper we assume

µ0 ≡ E[xj
i ] > 0 ,

i.e., on average each attribute provides a positive utility.

This random utility model can have two interpretations: We can think of modeling

a single consumer whose valuations for attributes are unknown to the analyst. In this

case, we are interested in the ex-ante probability that the consumer will choose an

option from her choice set. Alternatively, we can think of modeling a large number of

ex-ante symmetric consumers whose valuations for attributes are drawn independently

from the same distribution and can be known to the analyst. In this case, we are

interested in the the fraction of consumers who will choose an option from the available

choice set.

The consumer evaluates each option relative to an “ideal object” or a reference

point r = (r1, · · · , rm). Specifically, the consumer’s valuation for option j is

u(xj)− λ

m

m∑

i=1

max{0, ri − xj
i} , (1)

where λ ≥ 0 is the loss aversion parameter.11 The second term reflects the weighted

sum of the psychological losses from all the attributes which are worse than the

11This is the simplest possible loss-aversion setup. More generally we could consider a gain/loss
function l(r−xj) and assume a loss looms larger than a gain of the same magnitude, but the analysis
would be less tractable.
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reference point. The standard case of no reference dependence corresponds to λ = 0.12

We consider two specifications of the reference point r:

(1) Utopian reference point. The consumer, as suggested in Schwartz’s quotation

above, imagines an “ideal” option which has the best attributes from all available

options, and this object acts as the reference point. That is, the reference point is

r = x1 ∨ · · · ∨ xn with ri = max{x1
i , · · · , xn

i }

Notice that ri is a random variable ex ante, and it increases in n stochastically.13

(2) Expectation-based reference point. Here, the consumer’s reference point is

r = E[x1 ∨ · · · ∨ xn] with ri = E[max{x1
i , · · · , xn

i }] =
∫ x

x

xdF (x)n

where F (x)n is the CDF of max{x1
i , · · · , xn

i }. The interpretation is that before the

consumer sees the available options, she imagines an ideal object that has the expected

best possible value on each attribute, and this serves as the reference point. Notice

that unlike the case of the Utopian reference point, here ri is a constant and it

increases in n deterministically. This is consistent with the idea that a larger choice

set induces people to anticipate a better matched option.

We assume that if the consumer does not choose any of the options, she obtains

an outside option that gives her utility normalized to zero. Hence, the consumer’s

problem is to choose the option with the highest positive utility if any. Let Pn denote

the probability that the consumer will select one of the n options.14

12In our model reference dependence occurs at the attribute level. This is psychologically rea-
sonable and has been extensively adopted in the literature of prospect theory (e.g., Kahneman and
Tversky (2000)).

13Sarver (2008) provides an axiomatic foundation for such preferences: Our utility function can
be interpreted as a special case of Sarver’s regret representation:

zj =
1

m

m∑

i=1

[xj
i − λ(max

k
{xk

i } − x
j
i )] ,

where i is an index of state, 1
m

is the probability of each possible state, and x
j
i is option j’s valuation

at state i. Then the λ term captures the regret of choosing option j when state i is realized ex post.
14Alternatively, if we consider our model to be one of a large population of consumers with i.i.d.

preferences, then Pn is the fraction of consumers who will select one of the n options.
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Denote by

zji ≡ xj
i − λmax{0, ri − xj

i} (2)

the valuation for option j’s attribute i after taking into account loss aversion. Let

Hi(t1, · · · , tn) = Pr(z1i ≤ t1, · · · , zni ≤ tn)

be the joint CDF of zi = (z1i , · · · , zni ). Note that zji and zki are correlated in the case

of Utopian reference point where ri is a random variable, but independent in the case

of expectation-based reference point where ri is a constant. Whenever there is no

confusion, let Hi(tj) be the marginal CDF of zji .

Define

zj ≡ 1

m

m∑

i=1

zji .

Let

H(t1, · · · , tn) = Pr(z1 ≤ t1, · · · , zn ≤ tn)

be the joint CDF of z = (z1, · · · , zn), and whenever there is no confusion let H(tj)

be the marginal CDF of zj . (Here, as well, zj and zk are correlated in the case of

Utopian reference point via the correlation in each attribute.). Then we have

Pn = Pr(max{z1, · · · , zn} > 0) = 1−H(0, · · · , 0) . (3)

We aim to investigate the following two questions: First, how does Pn change with

n? Choice overload occurs if Pn decreases with n. Second, how does Pn change with

the complexity of the options which is measured by m, the number of attributes?

For the first question, the basic trade-off is as follows: As n increases, if each zj were

independent of n, max{z1, · · · , zn} would increase stochastically due to the standard

“sample-size effect”. However, each zj actually decreases with n stochastically due to

the “reference-dependence effect” since the reference point r improves as n increases.

These two effects work in opposite directions, and it is ex ante unclear which effect

dominates.
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3 Illustration: Strong Reference Dependence

We first consider the case with λ → ∞ to illustrate the main intuition of the paper.

First, consider the Utopian reference point. When λ → ∞, a consumer will choose

an option if and only if it is the dominant option in her choice set. This is because if

an option is not the dominant one, it is worse than some other product at least in one

attribute, which will make its utility go to −∞. In other words, the consumer cannot

tolerate any trade-off among options.15 For a given product j with utility realization

xj = (xj
1, . . . , x

j
m), the probability that it is the dominant option is

∏m

i=1 F (xj
i )

n−1.

Then the ex-ante probability that product j is the dominant option is16

∫ m∏

i=1

F (xj
i )

n−1dF (xj) =
m∏

i=1

∫ x

x

F (xj
i )

n−1dF (xj
i ) =

(
1

n

)m

.

Therefore, the probability of having one dominant option out of n is

Pn = n×
(
1

n

)m

=

(
1

n

)m−1

.

It decreases in both n (except when m = 1) and m. The effect of m is intuitive: For a

given n, when m increases, the chance of facing trade-offs increases so the consumer

is less likely to buy. However, the effect of n on Pn is more surprising. For a given

m > 1, when n increases, each option is less likely to be the dominant option, but

there are also now more options. But it tuns out that the first effect always dominates

the second.

Next, consider the expectation-based reference point. When λ → ∞, an option is

not acceptable if and only if at least one of its attributes is worse than the expected

maximum of that attribute. This happens with probability 1 − (1 − F (ri))
m, where

ri =
∫ x

x
xdF (x)n. Then

Pn = 1− [1− (1− F (ri))
m]n .

It is immediate that Pn decreases in m, since with more attributes it is more likely

15This is similar to assuming incomplete preferences by which consumers cannot compare two
options with trade-offs and so will remain indecisive when there is no dominant option.

16The same argument will work here even if we allow the utility from each attribute to be drawn
from different distributions.
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that at least one of them will be worse than ri. In other words, the propensity to

purchase decreases with complexity of the object. What is less clear is whether choice

overload can ever arise, i.e., whether Pn can decrease with n : if ri were independent

of n, Pn would increase in n, but the reference-dependence effect via ri generates

an opposite force. In fact we can show that, for sufficiently large m, the reference

dependence effect dominates so that Pn decreases in n.17 To see how, let us treat

both n and m as continuous variables. Let t(n) ≡ 1−F (ri), and note that t′(n) < 0.

Then

ln(1− Pn) = n ln(1− t(n)m) ,

and its derivative with respect to n is

ln(1− t(n)m)
︸ ︷︷ ︸

sample-size effect

+ n(−t′(n))
mt(n)m−1

1 − t(n)m
︸ ︷︷ ︸

reference-dependence effect

. (4)

Let τ = 1− t(n)m, so τ → 1 as m → ∞. Then

lim
m→∞

(1− t(n)m) ln(1− t(n)m)

mt(n)m
= lim

τ→1

τ ln τ

(1− τ) logt(n)(1− τ)
= 0 .

(The last step is from applying the L’Hospital’s rule.) Therefore, for a fixed n, (4) is

strictly positive (so Pn decreases in n) for sufficiently large m.

In the remainder of the paper, we consider general λ. The specification of the

reference point does not affect our results qualitatively. But the Utopian reference

point is analytically more challenging than the expectation-based one. So, we start

with the simpler case.

4 Expectation-Based Reference Point

The consumer’s expectation-based reference point in attribute i is

ri = E[max{x1
i , · · · , xn

i }] =
∫ x

x

xdF (x)n,

17For small m, however, it is possible that Pn increases in n. For instance, we can verify that
for both the uniform distribution and the exponential distribution, Pn increases in n if and only if
m = 1.
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and it is increasing in n. Using (2) we have

zji =

{

xj
i if xj

i ≥ ri

xj
i − λ(ri − xj

i ) if xj
i < ri

.

Since ri is a constant, zji is a kinked increasing function of xj
i , and {z1i , · · · , zni } are

statistically independent of each other. Then the CDF of zji is

Hi(z) =

{

F ( z+λri
1+λ

) if z ≤ ri

F (z) if z > ri
,

which has support [(1+ λ)x− λri, x] and is (weakly) increasing in n. The mean of zji

is

µ = µ0 − λ

∫ ri

x

F (x)dx , (5)

which clearly decreases in n . Since zj = 1
m

∑m

i=1 z
j
i , {z1, · · · , zn} are also statistically

independent of each other. The CDF of zj , i.e. H(·), is an m-order convolution of

Hi(·). Then
Pn = Pr(max{z1, · · · , zn} > 0) = 1−H(0)n . (6)

Notice that H(0) increases in n, which makes it ex-ante unclear how Pn varies with

n.

4.1 Choice overload

We first ask, for a fixed m, whether choice overload can arise at least for some range

of n. We know that the lower bound of zj is (1 + λ)x − λri with ri =
∫ x

x
xdF (x)n.

We also know that ri is increasing in n. It follows that if this lower bound is positive

for n = 1 but negative for some n > 1, then we will have P1 = 1 and Pn < 1 for some

n > 1, which will imply that choice overload arises for some range of n. Therefore we

have the following preliminary result.

Proposition 1. For a fixed m, if (1+λ)x−λµ0 > 0 but (1+λ)x−λri < 0 for some

n > 1 (where ri =
∫ x

x
xdF (x)n), then Pn decreases in n at least for a range of n.

In particular, when each option has many attributes, i.e., when m → ∞, it is

easy to show that the probability of purchase Pn decreases weakly in n. As m → ∞,

11



each zj = 1
m

∑m

i=1 z
j
i converges to the mean µ according to the law of large numbers.

Then a consumer will choose one option if and only if µ > 0. In this case the sample-

size effect vanishes and only the reference-dependence effect remains. Given that

µ decreases in n, the probability that the consumer will choose an option (weakly)

decreases with n, i.e., limm→∞ Pn decreases in n. If µ > 0 for n = 1 and µ < 0 for

a sufficiently large n, then the consumer will not choose any option if the number of

options exceeds a threshold.18

Now consider, a finite but large m such that we can approximate H(·) by using

the central limit theorem (CLT). If zji has a mean µ and a variance σ2, CLT implies

that approximately zj − µ ∼ N(0, σ2

m
). Then

H(0) = Pr(zj − µ < −µ) ≈ Φ(−√
m
µ

σ
) ,

where Φ is the CDF of the standard normal distribution. Therefore,

Pn = 1−H(0)n ≈ 1− Φ(−√
m
µ

σ
)n (7)

for a large m. (Notice that this formula justifies our previous discussion when m →
∞.) We have the following proposition.

Proposition 2. Let µ and σ2 be the mean and variance of zji , respectively. For a

given n,

1. If −µ

σ
decreases at n, then for m large enough, there is no choice overload.

2. If µ < 0 and −µ

σ
increases at n, there exists m̂1 such that Pn+1 < Pn for

m > m̂1.

Proof. For the first part, notice that if −µ

σ
decreases at n, then Pn approximated in

(7) must increase in n, such that there is no choice overload.

For the second part, let us treat n as a continuous variable. Let ρ(n) ≡ −µ

σ
.

Then our assumption implies ρ(n) > 0 and ρ′(n) > 0. When m is sufficiently large,

18For instance, if xi
j were drawn from the uniform distribution over [0, 1], one can check that

µ = 1
2 (1 − λ( n

n+1 )
2). If λ ∈ (1, 4), µ > 0 for n = 1 and µ < 0 if and only if n ≥ 1√

λ−1
. That is, Pn

will drop from 1 to 0 when n exceeds 1√
λ−1

.
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Pn ≈ 1− Φ(
√
mρ(n))n. Consider

lnΦ(
√
mρ(n))n = n ln Φ(

√
mρ(n)) .

Its derivative with respect to n is

log Φ(
√
mρ(n)) + n

φ(
√
mρ(n))

Φ(
√
mρ(n))

√
mρ′(n) ,

where φ(·) is the density of the standard normal distribution. The sign of this deriva-

tive is the same as that of

log Φ(
√
mρ(n))

φ(
√
mρ(n))

+ n

√
mρ′(n)

Φ(
√
mρ(n))

. (8)

For a given ρ(n) > 0, limm→∞
√
mρ(n) = ∞. By L’Hospital’s rule, we have

lim
x→∞

log Φ(x)

φ(x)
= lim

x→∞

φ(x)/Φ(x)

φ′(x)
= lim

x→∞

φ(x)

φ′(x)
= lim

x→∞
(−1

x
) = 0 .

(The second last equality follows from the fact that φ′(x) = −xφ(x) for the standard

normal density function.) Therefore, for a fixed n, the first term in (8) tends to zero

as m → ∞, while the second one is positive and bounded away from zero. This

implies that Φ(
√
mρ(n))n increases in n (and so Pn decreases in n) for a large m.

To illustrate, let us consider the uniform distribution example with F (x) = x and

ri =
n

n+1
. The density function of zji is then

hi(z) =

{
1

1+λ
if z ≤ ri

1 if z > ri

for z ∈ [− nλ
n+1

, 1]. One can check that the mean of zji is µ = 1
2

(

1− λ
(

n
n+1

)2
)

, and

its variance is σ2 = 1
3

(

1 +
(

n
1+n

)3
(λ2 − λ)

)

− µ2. It is straightforward to verify that

−µ

σ
increases in n.

In Figure 1, the left panel depicts how the approximated Pn in (7) varies with n

for several values of m when λ = 2. It is clear that choice overload can arise at least

when n is not too large. The right panel shows how the true Pn = 1 −H(0)n varies

13



with n (not restricting attention to large m). For m = 5, the two graphs are already

almost identical, suggesting that our approximation works well even when m is not

too large.

Figure 1: Pn with expectation-based reference points and uniform distribution: The left

panel plots how Pn varies with n for large m, using the Central Limit Theorem approximation. The

right panel plots the exact Pn = 1−H(0)n for different values of m.

An observation that emerges from Figure 1 is that while Pn decreases with n in a

certain range, eventually for sufficiently large n, Pn can increase again to 1. In fact,

we can show that limn→∞ Pn = 1 for any fixed m if f(x) > 0 everywhere in [x, x].19

In other words, when there are enough options the sample-size effect dominates the

reference-dependence effect such that there is no choice overload. However, this is

not generally true if xj
i has an unbounded support. Figure 2 plots the exact Pn for

the exponential and normal distributions: In these cases, Pn always decreases in n

when m is not too small.

19The proof is as follows: Given f(x) > 0 everywhere, so is hi(z). Then there exists a constant

κ > 0 independent of n, such that Pr(zji > 0) =
∫ x

0 hi(z)dz > xminz∈[0,x] hi(z) > κ. (The reason

we introduce κ is that xminz∈[0,x] hi(z) usually depends on n.) Then Pr( 1
m

∑m

i=1 z
j
i > 0) > κm > 0.

This implies H(0) < 1− κm for any n. Then limn→∞ H(0)n = 0 and so limn→∞ Pn = 1.

14



Figure 2: Pn with expectation-based reference points under Exponential and Normal

distributions: The left panel shows how Pn varies with the number of options n for different values

of m under the exponential distribution. The right panel shows the same for the normal distribution.

4.2 Impact of option complexity

Next, we turn to the question of how the purchase probability Pn changes with m.

From Figures 1 and 2, we can see that Pn decreases in m when n is above a small

threshold. To further understand how the number of attributes (or the complexity of

the options) might play an important role in the choice overload problem, consider

two cases: m = ∞ and m = 1. Recall, that in the limiting case of m → ∞, choice

overload arises if µ > 0 for n = 1 and µ < 0 for n large enough. Now consider the

opposite case of choosing a single attribute object i.e., m = 1. In this case, H = Hi

and so we have

Pn = 1−H(0)n = 1− F (
λri
1 + λ

)n .

Here both the sample-size effect and the reference-dependence effect are present. For

the uniform distribution example with F (x) = x, one can check that ri =
n

n+1
and

Pn = 1−
(

λ

1 + λ

n

n+ 1

)n

.

Since both ( λ
1+λ

)n and ( n
n+1

)n decrease in n, Pn must increase with n. So, in this

example with m = 1, the sample-size effect always dominates and there is no choice

15



overload.

These two polar cases naturally gives rise to the question of how Pn varies with m

generally. To that end, we need to know how H(0) = Pr( 1
m

∑m

i=1 z
j
i < 0) changes in

m. One may conjecture that if zji has a negative mean, the sample mean 1
m

∑m

i=1 z
j
i

should be negative more likely for a larger m. Conversely if zji has a positive mean,

the sample mean should be positive more likely for a larger m. This is, however, not

true in general.20 In the following we present sufficient conditions for this to be true:

one is when m is large, and the other is when n is large.

Consider a setting with large m, so that (as we have shown before) Pn ≈ 1 −
Φ(−√

mµ

σ
)n. It is then clear that Pn decreases in m if µ < 0 and increases in m if

µ > 0. We state this in the proposition below.

Proposition 3. There exists m̂2 such that if m > m̂2, then Pn is decreasing in m if

µ < 0 and increasing in m if µ > 0.

In other words, if reference-dependence effect is strong enough such that µ < 0 and

the options are already complicated, then the probability that a consumer chooses

an option from her choice set decreases as the decision becomes more complex (as m

increases).

We next study the case when n is large. The following proposition characterizes

when choice overload arises for symmetric and log-concave density functions.

Proposition 4. Suppose f is log-concave and symmetric. Then if µ0 <
λ

1+λ
x, there

exists n̂1 such that for n > n̂1, Pn decreases in m. If µ0 >
λ

1+λ
x, there exists n̂2 such

that for n > n̂2, Pn increases in m.

Proof. To prove this proposition we need a lemma.

Lemma 1. Consider a sequence of i.i.d. random variables {x1, · · · , xm} with a com-

mon density function f(x) and mean E[x]. Suppose f(x) is log-concave and symmetric

about the mean. Then Pr( 1
m

∑m

i=1 xi < a) decreases in m if E[x] > a and increases in

m if E[x] < a.

20Here is a simple counter example: Consider two i.i.d. binary random variables z1 and z2.
Suppose Pr(zi = −2) = α and Pr(zi = 1) = 1 − α. Then Pr(z1 + z2 = −4) = α2, Pr(z1 +
z2 = −1) = 2α(1 − α), and Pr(z1 + z2 = 2) = (1 − α)2. It is easy to see that in this example
Pr( z1+z2

2 < 0) = 2α− α2 > Pr(zi < 0) = α for any α ∈ (0, 1), regardless of whether the mean of zi
is positive or negative.
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The interested reader can refer to the Appendix for a proof of the lemma. Note

that in our model, the density of zji is not symmetric due to the reference point, even

if the density of xj
i is. So we cannot apply this lemma directly. Nevertheless, notice

that the density of zji is

hi(z) =

{
1

1+λ
f( z+λri

1+λ
) if z ≤ ri

f(z) if z > ri
,

and f( z+λri
1+λ

) is symmetric if f(z) is. If n is sufficiently large such that ri is close to x,

then the part of z > ri becomes negligible and hi(z) becomes almost symmetric. Then

the lemma can be applied to obtain Proposition 4. See the details in the appendix.

Notice that µ0 <
λ

1+λ
x̄ is equivalent to limn→∞ µ < 0. So this result is consistent

with the above discussion that if zji has a negative mean (e.g., because λ is sufficiently

large), it is more likely that 1
m

∑m

i=1 z
j
i < 0 when m increases. The conditions for this

result are satisfied in both the uniform and the normal example. They are not satisfied

in the exponential example where f is not symmetric, but the simulations in Figure 2

show that Pn still goes down with m when n is relatively large.

While we show above that Pn can decrease with m for a fixed n, one may ask

whether increased product complexity also increases the range of n over which Pn

decreases in n. Figure 1 suggests that this is indeed the case. Increased product

complexity can amplify choice overload in the sense that choice overload happens for

a larger range of n.

5 Utopian Reference Point

Recall that the Utopian reference point has the highest values on each attribute from

the available objects in the choice set, i.e., ri = maxj{xj
i} in attribute i is a random

variable, and

zji = (1 + λ)xj
i − λri .

The support of zji is [x, x] if n = 1 and [(1 + λ)x− λx, x] if n ≥ 2. The mean of zji is

µ = (1 + λ)µ0 − λ

∫ x

x

xdF (x)n . (9)
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When n increases from 1 to infinity, it decreases from µ0 to (1 + λ)µ0 − λx. Notice

that {z1i , · · · , zni } are now correlated due to the random reference point, and so are

{z1, · · · , zn}. This is the main difference compared to the case of the expectation-

based reference point. It turns out that, though this difference makes the analysis

more difficult, it does not qualitatively affect the main results.

5.1 Choice overload

When m = 1, there is no choice overload in this setting, as we will discuss later. For

m > 1, we have a result analogous to Proposition 1:

Proposition 5. For a fixed m > 1, if 0 < x < 1
1+λ

(
λ− 1

m−1

)
x, then Pn decreases in

n at least for a range of n.

Proof. Given x > 0, we must have P1 = 1 in the current setup. It then suffices to

show Pn < 1 for some n > 1.21 Given the continuity of our distribution, we only need

to find that for some n there exists one realization of {xj
1, · · · , xj

m}nj=1 such that every

option has a negative valuation. Consider n > m. Suppose option j’s attribute j has

value xj
j = x for j = 1, · · · , m, and xj

i = x for all other j and i. Then each of the first

m options has valuation

1

m
[x+ (m− 1)((1 + λ)x− λx)] < 0

given the stated condition, and the other options have an even lower valuation.

As before, we next consider the case with largem such thatH can be approximated

by CLT. Let µ = (µ, · · · , µ) be the mean of zi = (z1i , · · · , zni ), and let

Σ =







σ2 · · · σ12

...
. . .

...

σ12 · · · σ2







(10)

be its covariance matrix, where σ2 is the variance of zji and σ12 is the covariance of

(z1i , z
2
i ). Then when m is large, z = 1

m
zi has approximately a multivariate normal

21Unlike the case of expectation-based reference point, it is now not enough to just show that the
lower bound of zji is negative. This is because in the current setup it is impossible that zji is equal
to the lower bound for all i and j.

18



distribution N (µ, 1
m
Σ), and Pn can be approximated as follows.

Lemma 2. When m is large,

Pn ≈ 1−
∫ ∞

−∞
Φ
(

−√
mµ

σ
−√

ρx√
1−ρ

)n

φ(x)dx , (11)

where ρ = σ12/σ
2 and Φ and φ are the CDF and density function of the standard

normal distribution.22

Proof. Consider an n-dimensional random variable x which has a multivariate normal

distribution N (µ, 1
m
Σ). Define x̂ ≡

√
m

σ
(x− µ). Then x̂ ∼ N (0, Σ̂), where

Σ̂ =







1 · · · ρ
...

. . .
...

ρ · · · 1







with ρ = σ12/σ
2. That is, x̂ has an equicorrelated multivariate normal distribution.

Then

Pr(x < 0) = Pr(x̂ < −
√
m

σ
µ) =

∫ ∞

−∞
Φ
(

−√
m

µ

σ
−√

ρx√
1−ρ

)n

φ(x)dx . (12)

The last step is from the formula of calculating orthant probability for an equicorre-

lated multivariate normal distribution (see, e.g., Steck and Owen, 1962).23 When m

is large, Pn ≈ 1− Pr(x < 0).

The term inside Φ(·) in (11) is complicated, so it is still hard to analytically

investigate how Pn varies with n. This complication is caused by the correlation

among (z1i , · · · , zni ). Intuitively z1i and z2i are correlated only if the realization of ri is

x1
i or x2

i (in which case they must be negatively correlated). The probability of this

event decreases when n increases, and so when n is large the correlation between z1i

22If ρ < 0,
√
ρ is a complex number and Φ(·) is defined as follows:

Φ(a+ ib) = e
1

2
b2
∫ a

−∞
e−itbφ(t)dt .

It is an integration along a path in the complex plane parallel to the a-axis from −∞+ ib to a+ ib.
23Notice that for a non-equicorrelated multivariate normal distribution, the orthant probabity

Pr(x̂ < 0) usually does not have an analytical expression. Our result makes use of the fact that
{z1i , z2i , · · · , zni } are symmetric.
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and z2i should be negligible (i.e. ρ ≈ 0). Therefore, when both m and n are large, an

approximation of Pn is

1− Φ
(

−√
m
µ

σ

)n

,

and so the result in Proposition 2 applies.

As shown in the appendix, in the uniform distribution example we have

µ =
1

2
−
(

n

n + 1
− 1

2

)

λ, σ2 =
(1 + λ)2

12
− λ(n+ 1 + λ)

(n + 2)(n+ 1)2
, σ12 = − λ (n+ 1 + λ)

(n+ 2) (n + 1)2
.

(As discussed above, here σ12 is indeed negative and goes to zero as n → ∞.) Figure 3

below depicts how the approximated Pn in (11) and the simulated true Pn in this

example change with n when λ = 2. They are qualitatively similar to those in the

case of expectation-based reference point.

Figure 3: Pn with Utopian reference points with the uniform distribution: The left panel

shows how Pn varies with the number of options n for large m, using the Central Limit Theorem

approximation. The right panel plots the exact Pn.

The normal and exponential examples are also similar to the case of expectation-

based reference point, as shown in Figure 4 below.
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Figure 4: Pn with Utopian reference points under exponential and normal distributions:

The left panel shows how the true Pn varies with n under the exponential distribution. The right

panel does the same for the normal distribution.

5.2 Impact of option complexity

The results on impact of the complexity of the object on the probability of purchase

are also analogous to the case of expectation-based reference point. When m = 1,

there is no choice overload. To see why, note that

Pn = Pr(max{x1
1, · · · , xn

1} ≥ 0) = 1− F (0)n

is clearly increasing in n. The intuition is straightforward: With m = 1 there is

always a dominant option, and the dominant option is not subject to the reference-

dependence effect.

On the other hand, when m is large, from (11) we see that Pn decreases in m if

µ < 0 and increases in m if µ > 0. This is also the same as in the previous case

with expectation-based reference point. Finally, consider the case when n is large. A

result similar to Proposition 4 holds here. The proof is in the Appendix.

Proposition 6. Suppose that f is log-concave and symmetric. Then, if µ0 < λ
1+λ

x,

there exists n̂3 such that for n > n̂3, Pn decreases in m. If µ0 >
λ

1+λ
x, there exists n̂4

such that for n > n̂4, Pn increases in m.
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6 Discussion

In this paper, we propose an explanation for choice overload that stems from reference

dependent preferences. When consumers use a reference point that combines the best

attributes of existing choices, then increasing the number of choices improves the

reference point and can make each available choice look less appealing, thus giving

rise to choice overload. Below we argue that our reference dependence framework can

be extended to explain other behavioral anomalies beyond choice overload.

6.1 Reference dependence and other behavioral biases

Two of the most robust departures from standard rational choice are the compro-

mise effect and the attraction effect. Both these effects are well documented both

empirically and in experimental settings (e.g. Tversky and Simonson (1993)). The

compromise effect refers to the phenomenon that the introduction of an “extreme”

but not inferior option into the choice set increases the probability with which the de-

cision maker chooses an “intermediate alternative.” It captures the decision maker’s

inclination to choose a “compromise option.” The attraction effect refers to the phe-

nomenon that the introduction of a relatively inferior (or dominated) option into the

choice set increases the probability that the decision maker chooses the dominating

alternative in the choice set. It captures the idea that the decision maker is attracted

to options that dominate some other option in the choice set. The attraction effect

was first documented by Huber, Payne, and Puto (1982) and the compromise effect

by Simonson (1989). In both cases, decision makers violate the regularity in a stan-

dard choice model that the chance of an option being chosen cannot increase when

the choice set is expanded. We show below that a modified version of our reference

dependent preferences can also yield these two effects.

Reference dependence and the compromise effect. Consider the three two-attribute

options x, y, and z in Figure 5 below.

The compromise effect arises if adding option z to a decision maker’s choice set

increases the chance that option y (which is now the compromised option) is chosen.

Let us now extend our reference-dependence framework by allowing the loss function

to be convex (i.e., the pain from two small losses is less than the pain from a big loss

which equals the sum of the two small losses). Formally, suppose the utility function
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Figure 5: Reference dependence and the compromise effect

with a reference point r is

1

m

m∑

i=1

[xi − l(max{0, ri − xi})] ,

where the loss function l(·) ≥ 0 is convex and l(0) = 0. The previous basic model

is the special case with a linear l(·). For a transparent illustration, we focus on the

two-attribute case with m = 2, and assume x1 + x2 = y1 + y2 = z1 + z2 in Figure 5.

Before option z is introduced, the reference point is r = (x1, y2) and the decision

maker is indifferent between x and y. After option z is introduced, the reference

point becomes r′ = (x1, z2). Then the decision maker is indifferent between x and z,

and the utility from each of them equals half of

x1 + x2 − l(z2 − x2) = z1 + z2 − l(x1 − z1) .

While the utility of y becomes half of

y1 + y2 − l(x1 − y1)− l(z2 − y2) .

Since (x1 − y1) + (z2 − y2) = z2 − x2 (where we have used x1 + x2 = y1 + y2), option

y is perferred over x and z whenever l(·) is strictly convex. Intuitively, x now has

a large disadvantage relative to r′ on attribute 2, while y has two relatively small

disadvantages on both attributes. The convexity of the loss function then implies
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that x is worse than y.

Reference dependence and the attraction effect. Consider the three two-attribute

options x, y, and z in Figure ?? below.

b

b b

b

b

Attribute 1

Attribute 2

y

z1

r xr′

z

y1

x2

Figure 6: Reference dependence and the attraction effect

The attraction effect arises if adding option z (which is dominated by y but not

x) to a decision maker’s choice set increases the chance that option y is chosen. To

explain this effect, we now suppose that the decision maker regards the combination

of the worst attributes from all the existing options as the reference point r, and the

utility function becomes

1

m

m∑

i=1

[xi + g(max{0, xi − ri})] ,

where the gain function g(·) ≥ 0 is concave and g(0) = 0. A concave gain function

implies that the decision maker prefers two small gains over a big gain which equals

the sum of the two small gains. Again, for expositional simplicity we focus on the

two-attribute case with m = 2, and assume x1 + x2 = y1 + y2, zi < yi, i= 1, 2,

but z2 > x2. Before option z is introduced, the reference point is r = (y1, x2) and

the decision maker is indifferent between x and y. After option z is introduced, the

reference point becomes r′ = (z1, x2). Then the utility of x is half of

x1 + x2 + g(x1 − z1) ,
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and the utility of y is half of

y1 + y2 + g(y1 − z1) + g(y2 − x2) .

Since (y1 − z1) + (y2 − x2) = x1 − z1 (where we have used x1 + x2 = y1 + y2), y

is preferred over x whenever g(·) is strictly concave. Intuitively, x now has a large

advantage relative to r′ on attribute 1, while y has two relatively small advantages

on both attributes. The concavity of the gain function then implies that x is worse

than y.

Notice that this second alternative framework with the worst combination as ref-

erence point can also explain the compromise effect. More generally, we can consider

a utility function with two reference points r (the best combination) and r (the worst

combination):

1

m

m∑

i=1

[xi − µl × l(ri − xi}+ µg × g(xi − ri))] ,

where l(·) and g(·) have the same properties as above, and µl and µg indicate the

importance of loss and gain, respectively. In particular, µl can be interpreted as how

likely a consumer is “greedy” in the sense that she compares what is available to the

best possibility, and µg can be interpreted as how likely a consumer is “contented” in

the sense that she compares what is available to the worst possibility. This framework

can account for both attraction and compromise effect, and when the loss is more

important than the gain it can also account for choice overload.

6.2 Other Applications

In this paper, we restrict attention to understanding the individual decision maker’s

choice behavior, given that she has reference-dependent preferences. An important

question is what implications such reference-dependent preferences have on firm be-

havior. For example, if consumers use Utopian reference points, competing firms

may be led to producing similar multi-attribute products even though that intensi-

fies price competition. Consider a situation where two firms compete in producing

a multi-attribute product. Each firm faces a budget which is not enough to invest

in all the potential attributes. With standard consumer preferences, firms will maxi-

mize product differentiation by investing in as many different attributes as possible,
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thereby weakening price competition. However, with our reference-dependent con-

sumers the incentives for product differentiation are different. When firms invest in

different attributes, consumers will imagine an ideal product which has all the poten-

tial attributes being invested as a reference point. This will make each firm’s product

less attractive and more consumers may thus leave the market. Taking into account

this new effect, firms will have less incentive to differentiate and instead will invest in

similar attributes to ensure that no firm is left behind significantly in any attribute.

Another application is product line design. Consider the classic Mussa-Rosen

model where a firm can design products with different qualities to screen consumers

with different willingness-to-pay for quality. If consumers have reference-dependent

preferences as in our model, they will regard an ideal product which has the highest

quality and the lowest price in the product line as the reference point. This will make

each version of the product less attractive. Taking into account this effect, the firm

will have an incentive to compress the product line. Exploring such applications is

left for future research.
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Appendix A

A.1 Proof of Lemma 1

Proof. Denote ym ≡ ∑m

i=1 xi/m. Notice that ym has the same mean E[x] and its

density is also symmetric. Given f is strictly log-concave and symmetric, Theorem

2.3 in Proschan (1965) implies that ym+1 is more peaked than ym in the sense that

Pr(|ym − E[x]| ≤ t) < Pr(|ym+1 − E[x]| ≤ t) (13)

for any 0 < t < x− E[x].

Suppose first E[x] > a. Substituting t = E[x]− a in (13) yields

Pr(a ≤ ym ≤ 2E[x]− a) < Pr(a ≤ ym+1 ≤ 2E[x]− a) .

Then the symmetry of ym and ym+1 implies that

Pr(ym < a) > Pr(ym+1 < a) .

When E[x] < a, substituting t = a− E[x] in (13) yields the opposite result.

A.2 Proof of Proposition 4

Proof. We suppress the superscript j for convenience. Notice that

H(0) = Pr(

m∑

i=1

zi < 0) = Pr(

m∑

i=1

xi < λ

m∑

i=1

max{0, ri − xi}).

When n is sufficiently large, ri ≈ x and so

Pr(
m∑

i=1

zi < 0) ≈ Pr(
1

m

m∑

i=1

xi <
λ

1 + λ
x) .

According to Lemma 1, the right-hand side decreases in m (so Pn increases in m)

if E[x] = µ0 > λ
1+λ

x, and increases in m (so Pn decreases in m) if E[x] = µ0E[x] <
λ

1+λ
x.
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A.3 Joint distribution with Utopian reference point

The following lemma characterizes the joint distribution of {z1i , · · · , zni } in the case

of the Utopian reference point.

Lemma 3. (i) The joint CDF of zi = (z1i , · · · , zni ) is

Hi(t1, · · · , tn) =
n∑

j=1

∫ tj

x

∏

k 6=j

F

(

min{r, tk + λr

1 + λ
}
)

dF (r) , (14)

where tj ∈ [(1 + λ)x− λx, x] if n ≥ 2 and tj ∈ [x, x] if n = 1, and t ∈ [x, x].

(ii) The marginal CDF of zji is

Hi(tj) = F (tj)
n +

∫ x

tj

F

(
tj + λr

1 + λ

)

dF (r)n−1 . (15)

(iii) The marginal CDF of (z1i , z
2
i ) is

Hi(t1, t2) = F (t1)
n+

∫ t2

t1

F

(
t1 + λr

1 + λ

)

dF (r)n−1+

∫ x

t2

F

(
t1 + λr

1 + λ

)

F

(
t2 + λr

1 + λ

)

dF (r)n−2

(16)

for t1 ≤ t2, and the expression for t1 > t2 is analogous.

Proof. (i) Notice that

Hi(t1, · · · , tn) =
∫

r

Pr(z1i ≤ t1, · · · , zni ≤ tn|ri = r)dF (r)n ,

where F (r)n is the CDF of ri. We claim that

Pr(z1i ≤ t1, · · · , zni ≤ tn|ri = r) =
1

n

n∑

j=1

I{tj≥r}

F (r)n−1

∏

k 6=j

F

(

min{r, tk + λr

1 + λ
}
)

,

where I{·} is the standard indicator function. Conditional on ri = r, xj
i = r with

probability 1
n
. In that case, zji = r, and so zji ≤ tj holds iff tj ≥ r. This explains the

indicator function term. For k 6= j, xk
i must be less than r (conditional on xj

i = r).

Notice that

zki = (1 + λ)xk
i − λr ≤ tk ⇔ xk

i ≤ tk + λr

1 + λ
.
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So the conditional probability that zki ≤ tk is

F
(
min{r, tk+λr

1+λ
}
)

F (r)
. (17)

Also notice that conditional xj
i = r, all zki , k 6= j, are independent of each other.

Then multiplying (17) over k 6= j and summing over j yeild the above expression.

Therefore,

Hi(t1, · · · , tn) =
1

n

n∑

j=1

∫

r

I{tj≥r}

F (r)n−1

∏

k 6=j

F

(

min{r, tk + λr

1 + λ
}
)

dF (r)n .

This can be easily simplified to (14).

(ii) Notice that

Hi(tj) =

∫

r

Pr(zji ≤ tj|ri = r)dF (r)n .

Conditional on ri = r, xj
i = r with probability 1

n
, in which case zji = r and so zji ≤ tj

iff tj ≥ r. With probability n−1
n
, xj

i < r in which case the conditional probability of

zji ≤ tj is F
(

min{r, tj+λr

1+λ
}
)

/F (r). Hence,

Hi(tj) =

∫

r

[
1

n
I{tj≥r} +

n− 1

n

F
(

min{r, tj+λr

1+λ
}
)

F (r)
]dF (r)n .

This simplifies to (15).

(iii) Notice that

Hi(t1, t2) =

∫

r

Pr(z1i ≤ t1, z
2
i ≤ t2|ri = r)dF (r)n .

By a similar logic as before, the integrand is equal to

1

n
I{r≤t1}

F
(
min{r, t2+λr

1+λ
}
)

F (r)
+

1

n
I{r≤t2}

F
(
min{r, t1+λr

1+λ
}
)

F (r)

+
n− 2

n

F
(
min{r, t1+λr

1+λ
}
)
F
(
min{r, t2+λr

1+λ
}
)

F (r)2
.

Due to the symmetry, we can focus on the case with t1 ≤ t2. Then one can readily

verify (16).
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It is useful to have the densify functions of zji and (z1i , z
2
i ):

hi(tj) = F (tj)
n−1f(tj) +

1

1 + λ

∫ x

tj

f

(
tj + λr

1 + λ

)

dF (r)n−1 ,

and for t1 ≤ t2

hi(t1, t2) =
1

1 + λ
f(

t1 + λt2
1 + λ

)f(t2)F (t2)
n−2+

1

(1 + λ)2

∫ x

t2

f

(
t1 + λr

1 + λ

)

f

(
t2 + λr

1 + λ

)

dF (r)n−2 .

Now consider the uniform example with F (x) = x. When n ≥ 2 the support of t

is [−λ, 1], and the support of r is [0, 1]. Then one can check that

hi(t) =







1
1+λ

(1 + λtn−1) if t ∈ [0, 1]

1
1+λ

(1− (− t
λ
)n−1) if t ∈ [−λ, 0)

.

Then

µ =
1

2
−
(

n

n+ 1
− 1

2

)

λ and σ2 = E[(zji )
2]−µ2 =

(1 + λ)2

12
− λ(n + 1 + λ)

(n + 2)(n+ 1)2
.

On the other hand, one can check that when t1 ≤ t2,

hi(t1, t2) =







1−(−t1
λ )

n−2

(1+λ)2
if − λ ≤ t1 < t2 ≤ 0 or if − λ ≤ t1 < 0 < t2 <

−t1
λ

≤ 1

1+λtn−2

2

(1+λ)2
if − λ ≤ t1 < 0 < −t1

λ
< t2 ≤ 1 or if 0 ≤ t1 < t2 ≤ 1

.

Then

E[z1i z
2
i ] = 2

∫

t1≤t2

t1t2hi(t1, t2)dt1dt2 =
1

4

1− λ

n+ 2
(n(1− λ) + 2(1 + λ)) ,

and

σ12 = E[z1i z
2
i ]− µ2 = − λ (n + 1 + λ)

(n+ 2) (n + 1)2
.
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A.4 Proof of Proposition 6

The proof of Proposition 6 follows by deriving a multidimensional version of Lemma 1,

which we present below.

Lemma 4. Consider a sequence of i.i.d. n-dimensional random vectors {x1, · · · ,xm},
where xi = (x1

i , · · · , xn
i ). Let f(x) be the joint density function of xi and let µ be the

mean. Suppose xj
i is symmetric across j = 1, · · · , n, so that µ = (µ, · · · , µ) and

f(· · · , xj
i , · · · , xk

i , · · · ) = f(· · · , xk
i , · · · , xj

i , · · · ) for any j 6= k. Suppose f(x) is log-

concave and symmetric about the mean (i.e., f(x − µ) = f(µ − x)). Then for any

constant vector a = (a, · · · , a), Pr( 1
m

∑m

i=1 xi < a) increases in m if µ < a and

decreases in m if µ > a.

Proof. Denote

ym ≡ 1

m

m∑

i=1

xi .

It is clear that ym has the same mean µ and is also symmetric about µ. Given f is

log-concave and symmetric, a multivariate version of Theorem 2.3 in Proschan (1965)

(which is proved in Olkin and Tong, 1988) implies that ym+1 is more peaked than ym

in the following sense: for any compact, convex, and symmetric (about µ) A ⊂ R
n

which is non-empty and is a subset of the domain of xi, we have

Pr(ym+1 ∈ A) > Pr(ym ∈ A) . (18)

Suppose first µ < a, and let A in (18) be the hypercube [2µ − a, a]n which is

centered at µ and with a corner at a. Since A is compact, convex and symmetric

about µ, Pr(ym ∈ A) increases in m. In the following, for convenience we consider

the two-dimensional case with n = 2. (The argument works for the general case.) Let

us divide the domain of (y1m, y
2
m) into multiple regions along the boundaries of A as

in the figure below.

Let Bi, i = 1, 2, denote the probability that Pr(ym ∈ Bi). We want to show

3B1 + 2B2 decreases in m because Pr(ym < a) = 1 − (3B1 + 2B2). From Pr(ym ∈
A) = 1 − 4(B1 + B2) being increasing in m, we deduce that 4(B1 +B2) decreases in

m, so does B1 + B2. In the same time, if we apply the multivariate version of the

result by Proschan to the stripe which consists of A and two B2’s, we deduce 2B1+B2

decreases in m. Then we claim (B1 +B2) + (2B1 +B2) = 3B1 + 2B2 decreases in m.
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y2m

y1m

2µ − a

a

µ

x̄

x
2µ − a aµ x̄

B1 B2

B2

B1

B1

B2

B1B2

Ab

The case with µ > a can be dealt with similarly.
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