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1 Introduction

How do players arrive at their conceptions of a strategic situation? Game theory is mostly

concerned with finding optimal behavior given a formal representation of the strategic situation.

However, where do player’s representations of the strategic situation come from? Have they

been discovered during earlier strategic interaction? If this is the case, then the players’ views of

the strategic situation should be the result of strategic interaction rather than an assumption.

This is the main issue attacked in this paper. This view leads to further questions such as

‘Need representations of the strategic situation be necessarily common among all players as

it is assumed in standard game theory?’ Even in standard games of incomplete information

the description of the strategic situation including all relevant uncertainties is shared among

all players (and the analyst) and is thus common to all players. Players may have different

information but all players conceive of the same set of uncertainties, actions etc.

Game theory has been previously criticized as a formal apparatus that is incapable of

modeling novelty, discovery, and surprise. For instance, Shackle (1972, p. 161) wrote “The

Theory of Games thus supposes the players to have knowledge of all the possibilities: surprise,

the most powerful and incise element in the whole art of war, is eliminated by the theoretical

frame itself; and novelty, the changing of what appeared to be the roles of the game, the

continually threatening dissolution of the conditions and circumstances in which either player

may suppose himself to be operating, is eliminated also, by the supposition that each player,

like a chess player of super-human intellectual range, knows everything that can happen.” We

aim to demonstrate that with the development of game theory with unawareness our formal

apparatus is sufficiently rich for modelling novelty, surprise, transformative experiences (Paul,

2014), discoveries, shattering of player’s views of the strategic situation etc.

This paper is inspired by the literature on unawareness in games. In particular, our mo-

tivation is the quest for a natural notion of equilibrium to games with unawareness. Vari-

ous frameworks for modeling dynamic games with unawareness have been recently introduced

(Halpern and Rego, 2014, Rego and Halpern, 2012, Feinberg, 2012, Li 2008, Grant and Quig-

gin, 2013, Heifetz, Meier, and Schipper, 2013; for a non-technical survey, see Schipper, 2014).

While all of those frameworks are capable of modeling strategic interaction under asymmetric

unawareness at various degrees of generality and tractability, the solution concepts proposed

for those frameworks and thus the implicit behavioral assumptions under unawareness differ.

The solution concepts that have been proposed in the literature can roughly be divided into

equilibrium notions (Halpern and Rego, 2014, Rego and Halpern, 2012, Feinberg, 2012, Li 2008,

Grant and Quiggin, 2013, Ozbay, 2007, Meier and Schipper, 2013) and rationalizability notions

(Heifetz, Meier, and Schipper, 2013, 2012, Meier and Schipper, 2012). Authors proposing equi-

librium notions to dynamic games with unawareness appear to be mainly guided by extending

the mathematical definitions of equilibrium in standard games to the more sophisticated frame-
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works with unawareness. Yet, I believe less attention has been paid to the interpretations of

the behavioral assumptions embodied in these standard equilibrium concepts and whether or

not such interpretations could meaningfully extent also to dynamic games with unawareness.

In standard game theory, equilibrium is interpreted as an outcome in which each player plays

“optimally” given the opponents’ play. It features not just the rationality assumption but also

mutual knowledge of play. This mutual knowledge of play may emerging in a steady-state of a

learning process (Fudenberg and Levine, 1998, Foster and Young, 2003, Hart and Mas-Colell,

2006). This interpretation cannot apply generally to games with unawareness. This is because

players may be unaware of actions and may discover novel actions during play. The ”next

time” they play “the game”, they actually play a different game in which now they are aware of

previously discovered actions. That is, dynamic learning processes in games with unawareness

must not only deal with learning about opponents’ play but also with discoveries that may

lead to transformative changes in players’ views of the game.1 Games with unawareness may

be “self-destroying” representations of the strategic situation in the sense that rational play

may destroy some player’s view of the strategic situation. Only when a view of the strategic

situation is “self-confirming”, i.e., rational play in such a game does not lead to further changes

in the players’ views of the game, an equilibrium notion as a steady-state of a learning process

of behavior may be meaningfully applied. Our paper seeks to make this precise.

We introduce a notion of self-confirming equilibrium for extensive-form games with un-

awareness. In self-confirming equilibrium, nobody discovers that their own view of the game

may be incomplete. Moreover, players play optimally given their beliefs and their beliefs are

not falsified by their play. Self-confirming equilibrium may fail to exist in an extensive-form

game with unawareness because rational play may lead to discoveries. We formalize the notion

of discovered game: For any extensive-form game with unawareness and strategy profile, the

discovered game is a game in which each player’s awareness is “updated” given their discoveries

but their information stays essentially the same (modulo awareness). This leads to a notion akin

to stochastic games except that states correspond now to extensive-form games with unaware-

ness and the transition probabilities model for each extensive-form game with unawareness and

strategy profile the transition to the discovered game. Such a stochastic game and a Markov

strategy that assigns to each extensive-form game with unawareness a mode of behavior we call

a discovery process. We select among discovery processes by requiring the Markov strategy in

the stochastic game to assign only rationalizable strategies to each extensive-form game with

unawareness. For every finite extensive-form game with unawareness, there exists an extensive-

form rationalizable discovery process that leads to an extensive-form game with unawareness

that is an absorbing state of the process. We consider it as a steady-state of conceptions when

players play at each state of the stochastic game with common (strong) belief in rationality

1The conceptual difference between learning and discovery is roughly as follows: When a player learns, she

discards possibilities. When a player discovers, she adds possibilities that she has not previously conceived.
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and call it the rationalizable self-confirming game. In such a game, it makes sense to look also

for a steady-state of a learning process of behavior. The natural outcome of such a learning

process is a self-confirming equilibrium (Battigalli, 1987, Fudenberg and Levine, 1993a, Kalai

and Lehrer, 1993). Moreover, since we assumed that players play extensive-form rationalizable

strategies all along the discovery process, it makes also sense to focus on self-confirming equi-

librium involving only extensive-form rationalizable strategies, a notion of equilibrium that has

been previously discussed in an example of a macroeconomic game by Battigalli and Guaitoli

(1997). Essentially we show an existence result for equilibrium in games with unawareness: We

observe that for every extensive-form game with unawareness there exists a rationalizable dis-

covery process leading to a rationalizable self-confirming game that possesses a self-confirming

equilibrium in extensive-form rationalizable strategies. This is a notion of equilibrium both in

terms of conceptions of the strategic situation as well as strategic behavior.

Before we proceed with our formal exposition, we should clarify some methodological aspects

upfront: First, we focus on the discovery process rather than the learning process. Although

we motivate our solution concept by a learning and discovery process of recurrent play of the

strategic situation, we do not formally model the learning process allowing behavior to converge

once a self-confirming games has been reached in the discovery process. Such learning processes

have been studied elsewhere (e.g., Fudenberg and Levine, 1993b). We instead focus here on the

discovery process because we believe that this is novel to the theory of games. Second, because

we want to justify equilibrium of the “stage-game” as a result of a learning and discovery

process, we do not allow for intertemporal optimization across stage-games as known from the

literature of repeated games. Players are assumed to maximize expected payoffs within the

stage-game of the discovery process. Note, however, intertemporal maximization in finitely

repeated games can be handled w.l.o.g. in our framework because we allow stage-games to be

finite extensive-games with unawareness. Any finitely repeated game - no whether the stage-

game is a normal-form game or an extensive-form game - is itself a finite extensive-form game.

See Section 8.1 for an example of a twice-repeated Battle-of-the-Sexes game with an outside

option. Third, we consider extensive-form games with unawareness rather than normal-form

games with unawareness because they allow for richer consideration of what could be rationally

discovered in a game. We view the definition of updated information sets of discovered versions

as one of the main contributions of the paper. Moreover, extensive-form games allow us to

consider a strong refinement of self-confirming equilibrium by extensive-form rationalizable

strategies that are known to involve forward induction.

The paper is organized as follow: We illustrate our approach with simple examples in the

next section. In Section 3 we introduce the formal framework. Self-confirming equilibrium

is defined in Section 4. Discovery processes are defined in Section 5 followed by rationalizable

discovery processes in Section 6. Section 7 contains our main result. Finally, Section 8 concludes

with a discussion including related literature. Proofs are relegated to the appendix.
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2 Simple Illustrating Examples

Example 1 The first simple example illustrates that any definition of equilibrium in the

literature on unawareness misses the essence of what is equilibrium. It cannot be interpreted

as a steady-state of behavior. The example also illustrates some features of our framework.

Figure 1: (Initial) Game of Example 1
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10, 5 0, 10 5, 6 

1, 7 

l1 r1 

l2 r2 
m2 

1 

2 

10, 5 5, 6 

1, 7 

l1 r1 

l2 r2 

T

T

There are two players, 1 and 2. Player 1 (e.g., the principal) moves first. She can either

delegate to player 2 (e.g., agent) or do the work by herself. In the latter case, the game ends and

both players receive their payoffs. If player 1 delegates to player 2, then player 2 can take one

out of three actions. So far, it sounds like a most basic two-stage principal-agent problem. The

non-standard but straightforward detail is that player 1 is not aware of all of player 2’s actions

(and does not even realize this). She considers only two actions of player 2. This strategic

situation is modeled in the game depicted in Figure 1.

There are two trees. The tree at the bottom, T , is a subtree of the tree at the top, T̄ , in the

sense that action m2 of player 2 is missing in T . This illustrates one non-standard feature of

games with unawareness, namely that instead of just one tree we consider a forest of trees that

differ in how “rich” they describe the situation. The information and awareness of both players

are modeled with information sets. The solid-lined blue spheres and arrows belong to player 1,

the dashed green spheres belong to player 2. At any node in which a player is active, the player

is aware of the tree on which the her information set at this node is located. There are two non-

standard features of these information sets. First, the information set of a decision node in one

tree may consist of decision nodes in a lower tree T . For instance, player 1’s information set at

the beginning of the game in the upper tree T̄ is in the lower tree T . This signifies the fact that

initially player 1 is unaware of player 2’s action m2 and thus considers the strategic situation
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to be represented by the tree at the bottom, T . Second, we added information sets at terminal

nodes. The reason is that in order to discuss notions of equilibrium under unawareness, it will

be useful to analyze also the players’ views at the end of the game. The information sets also

model interactive reasoning of players. For instance, at his information set in tree T̄ , player 2

knows that initially player 1 is unaware of action model and views the game as given by lower

tree T . Moreover, he knows that player 1 considers player 2’s state of mind be given by the

information set in T once she takes action ℓ1. To complete the description, note that players

receive a payoff at each terminal node. The first component at each terminal node refers to

player 1’s payoff whereas the second component refers to player 2’s payoff.

What is equilibrium in this game? A basic requirement is that in equilibrium players should

play rational. That is, each player at each information set where (s)he is to move should play an

action that maximizes her expected payoff subject to her belief over the opponent’s behavior. At

the beginning of the game, player 1 thinks that she faces the situation depicted in lower tree T .

Clearly, with this mindset only action ℓ1 is rational because no matter what she expects player

2 to do, she obtains a higher expected payoff from playing ℓ1 than from r1. At the information

set in the upper tree T̄ , player 2 is aware of his action m2. Since m2 strictly dominates any

of his other actions, the only rational action for player 2 at this information set is to choose

m2. Thus, the path of play emerging from rational play is (ℓ1,m2) with player 1 obtaining zero

payoff and player 2 obtaining a payoff of 10. The game is on purpose trivial so that all solution

concepts to games with unawareness that have been proposed in the literature (Halpern and

Rego, 2014, Rego and Halpern, 2012, Feinberg, 2012, Li 2008, Grant and Quiggin, 2013, Ozbay,

2007, Heifetz, Meier, and Schipper, 2013) yield the same profile of strategies. Yet, we strongly

believe that this profile of rational strategies cannot reasonably be called an equilibrium in this

setting because any profile of strategies in which player 1 chooses ℓ1 and player 2 chooses m2 is

impossible to interpret as a steady-state of a learning process. After players choose rationally

in the game, player 1’s awareness has changed. She discovered action m2 of player 2. This is

symbolized by player 1’s information set at the terminal node after m2 in the tree T̄ . Thus,

the “next” time players do not play the game of Figure 1 but a “discovered version” of it in

which player 1 is aware of action m2 upfront. This discovered game is depicted in Figure 2. At

the beginning of the game, player 1’s information set is now in the upper tree T̄ . Consequently

she is aware of all actions of all players. She won’t be surprised by any terminal node as her

information sets at terminal nodes in the upper tree T̄ also lie in this tree. The lower tree T

becomes in some sense redundant as players are now commonly aware of the strategic situation

modeled by the upper T̄ . Yet, since they are aware, they can envision themselves also in a

situation in which both players are unaware of m2, which is what now T represents although

this counterfactual mindset is not behaviorally relevant. The games in Figure 1 and 2 differ

only in the information sets. The information sets of the game of Figure 1 are updated such

that information is preserved and just the awareness gained from play of the game in Figure 1
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is reflected in the updated information sets of the game in Figure 2.

Figure 2: Game of Example 1 after being played once
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In the discovered version shown in Figure 2, the only rationalizable action for player 1 at

the beginning of the game is to choose r1 in T̄ . Nothing can be discovered anymore. The

game in Figure 2 becomes an absorbing state of the discovering process. Any steady-state of

a learning and discovery process must prescribe r1 for player 1 in T̄ . The discovery process

is schematically depicted in Figure 3. There are two states, left is the game of Figure 1 and

right the game of Figure 2. The transition is via the rational profile of strategies (ℓ1,m2) in

the initial game. Once the right game is reached, it is absorbing.

Figure 3: Discovery process in Example 1Discovery process

Self-confirming

Discovered versionInitial game

Rationalizable

Play
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To sum up, we note first that games with unawareness may not possess solutions that can

be interpreted as steady-states of a learning process (see the game in Figure 1). Second, an

equilibrium notion capturing the idea of a steady-state of a learning and discovery process in

games with unawareness must not only involve the usual conditions on behavior of players but

must also impose restrictions on their views of the strategic situation. That is, their represen-

tations of the strategic situation must be consistent with their behavior and behavior must be

consistent with their representations of the strategic situations. The process of discovering ac-

tions must have reached a steady-state as well. To emphasize this, we will use the terminology

of self-confirming game.2 The game of Figure 1 is not a self-confirming game while the game of

Figure 2 is. When players play the game in Figure 2, no further changes of awareness are fea-

sible. The representation of the game (together with rationality) and player 1’s belief in player

2’s rationality induces the behavior and what is observed with this behavior just confirms the

representation. In contrast, when players play rationally in the game depicted in Figure 1 then

player 1 discovers features of the game that she was previously unaware of. That is, player 1’s

initial representation of the game is destroyed and a new version is discovered in which optimal

behavior differs from optimal behavior in the initial version.

Example 2 Example 1 should not mislead the reader to believe that self-confirming games

must involve common awareness of the strategic situation and that rational discovery would

justify restricting the focus to standard games like given by the upper tree T̄ in Figure 2. One

can easily extend the example to discuss a situation in which the self-confirming game involves

understandings of the strategic situation that differ by players. For instance, Figure 4 depicts

a slightly more complicated version of the prior example in which initially each player is aware

of an action of which the other player is unaware. Note first that trees T ′ and T together

with their information sets are just as in Figure 1. Trees T̄ and T ′′ are similar but contain an

additional action ∗ for player 1 (indicated by red edges). Initially, player 1 is aware of action ∗

but unaware of action m2. This is indicated by the blue arrow that leads from the initial node

in tree T̄ to the blue information set containing the initial node of tree T ′′. In contrast, player 2

is initially unaware of action ∗ but aware of his action m2. This is shown by green intermitted

arrows from his nodes after history ℓ1 and r1 in tree T̄ to the green intermitted information set

containing the analogous node in tree T ′.

It is easy to see that for player 1, action ∗ is strictly dominated. Thus, she will never use

it in any kind of rational solution. Consequently, player 2 won’t be able to discover it and will

remain unaware of it. Together with arguments about optimal play in Example 1, it implies

that after the game is optimally played once by both players, the representation must change

2At a first glance, this terminology may sound odd because in standard game theory, the representation of

the strategic situation is given and players’ behavior is endogenous. But the point of our terminology is precisely

that in our setting the representation of the strategic situation becomes endogenous too.
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Figure 4: (Initial) Game of Example 2
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Figure 5: Game of Example 2 after being rationally played once
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to the one depicted in Figure 5. In this discovered version, player 1 is aware of both actions

∗ and m2 (i.e., she “lives” in tree T̄ ). This is indicated by the blue information sets in the

upmost tree T̄ , which are now different from Figure 4. Player 1 realizes that player 2 remains

unaware of ∗ and believes that player 2 views the strategic situation as represented by T ′ and

T . Optimal play is as in the game of Figure 2. Thus, player 2 won’t become aware of ∗ and

differences in players’ awareness persist. The game of Figure 5 is self-confirming.

Figure 6: Non-rationalizable Discovered Version of the Game in Example 2
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Last situation is probably symptomatic for most strategic situations in reality. Players

interact with different views of the game and settle in a steady-state of behavior that does not

allow them to learn or more precisely discover that they have different views.

The game in Figure 5 is not just a self-confirming game. It is a rationalizable self-confirming

game because it is a discovered version of the game in Figure 4 after players played rationalizable

strategies. If players play differently, they may discover other versions that are self-confirming.

For instance, the game in Figure 6 is a discovered version of the game in Figure 4 after player

1 played ∗ once. Note that is not rational for player 1 to play ∗. Thus, this discovered version

in Figure 6 is not rationalizable. It is also not self-confirming because when player 1 learns to

play optimally ℓ1 in the game of Figure 6, then player 2 gets to play choosing rationally m2.

Consequently, player 1 would discover that player 2 has action m2. The discovered version is

depicted in Figure 7. This game is also self-confirming since no further action could be dis-

covered. But it is not a rationalizable self-confirming game because the discoveries required to
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Figure 7: Non-rationalizable Self-confirming game in Example 2
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Figure 8: Discovery process in Example 2

Non-rationalizable
play
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evolve views from Figures 4 to 6 cannot be rationalized. This shows that non-rationalizable

discoveries may lead to views that are different from views emerging from from rationalizable

discoveries. Figure 8 summarizes the discovery processes. From the initial state in the upper

left corner, rationalizable play yields the self-confirming game in the upper right corner. Non-

rationalizable play eventually leads to the self-confirming game in the lower right corner.

Example 3 In Example 2, although the awareness in the limit of the rationalizable discovery

process differs from awareness in the limit of the non-rationalizable discovery process, it is

behaviorally irrelevant. This is an artefact of the simplicity of the example. The following

example shows that it would be wrong to conclude that the mode of discovery is behaviorally

irrelevant.

Figure 9: Features of Example 3

L R
U 2, 0 -1, 1
D 3, -1 4, 4

L R
U 2, 0 -1, 1

L
U 2, 0
D 3, -1

Row player’s 
initial awareness

Column player’s 
initial awareness

Before play, they can talk.

Making each other aware is not rationalizable. 
Once one player tells, the other one suddenly wants too. 

Rationalizable vs. Nonrationalizable discoveries are behaviorally 
relevant. 

There are two players who play the 2 × 2 game in Figure 9. The twist is that initially

the row player is aware only of his own action U and opponent’s actions L and R whereas

the column player is aware only of his own action L and opponent’s actions U and D. (Note

that simultaneous move games are a special case of our framework.) Before players play the

2 × 2 game, they can talk about their actions. For instance, the row player can state her

awareness of actions after which the column player can state her awareness of actions. Even

without modeling this example in detail as a game with unawareness, it is easy to see that the

row player does not find it rational to make the column player aware of action R. She fears

that the column player takes R and being herself unaware of D, she is unable to anticipate

the payoff-dominant outcome (D,R). Also for the column player it is not rational to make

the row player aware of action D (unless being made aware of L beforehand). Consequently,

with rationalizable play, their awareness remains unchanged and their different limited views

of the game are self-confirming. Yet, if one of them by mistake raises the awareness of the

other, then the other finds is rational to raise the opponent’s awareness as well allowing them

to fully become aware of the game and reaching the payoff dominant outcome. That is, with

non-rationalizable play the full game becomes self-confirming and makes both strictly better off

than with rationalizable play. In the appendix, we present the detailed model of the example
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as an extensive-form game with unawareness.

3 Extensive-Form Games with Unawareness

In this section, we outline extensive-form game with unawareness as introduced by Heifetz,

Meier, and Schipper (2013) together with some crucial extensions especially required for our

analysis. As with any detailed work on extensive-form games, some amount of notation is

unavoidable.

To define an extensive-form game with unawareness Γ, consider first, as a building block, a

finite game with perfect information and possibly simultaneous moves. The major purpose is

just to outline all physical moves. There is a finite set of players I and possibly a special player

“nature” with index 0. We denote by I0 the set of players including nature. Further, there is a

nonempty finite set of “decision” nodes D̄ and a player correspondence P : D̄ −→ 2I
0
\{∅} that

assigns to each node n ∈ D̄, a nonempty set of “active” players P (n) ⊆ I0. (That is, we allow

for simultaneous moves.) For every decision node n ∈ D̄ and player i ∈ P (n) who moves at that

decision node, there is a nonempty finite set of actions Ai
n. Moreover, there is a set of terminal

nodes Z̄. Since we will also associate information sets with terminal nodes for each player, it

will be useful to extent P to Z̄ by P (z) = I and let Ai
z ≡ ∅ for all i ∈ I, z ∈ Z̄. Finally, each

terminal node z ∈ Z̄ is associated with a vector of payoffs (ui(z))i∈I . We require that nodes

in N̄ := D̄ ∪ Z̄ constitute a tree denoted by T̄ . That is, nodes in N̄ are partially ordered by

a precedence relation ⋖ with which (N̄ ,⋖) forms an arborescence (that is, the predecessors of

each node in N̄ are totally ordered by ⋖). There is a unique node in N̄ with no predecessors

(i.e., the root of the tree). For each decision node n ∈ D̄ there is a bijection ψn between the

action profiles
∏

i∈P (n)A
i
n at n and n’s immediate successors. Finally, any terminal node in Z̄

has no successors.

Note that so far we treat nature like any other player except that at terminal nodes we do

not assign payoffs to nature.3 We do not need to require that nature moves first or that nature

moves according to a pre-specified probability distribution (although these assumptions can be

imposed in our framework). Nature may also move simultaneously with other players.

Consider now a join-semilattice T of subtrees of T̄ .4 A subtree is defined by a subset of

nodes N ⊆ N̄ for which (N,⋖) is also a tree. Two subtrees T ′, T ′′ ∈ T are ordered, written

T ′ � T ′′

if the nodes of T ′ constitute a subset of the nodes of T ′′.

We require three properties:

3Alternatively, we could assign at every terminal node the same payoff to nature.
4A join semi-lattice is a partially ordered set in which each pair of elements has a join, i.e., a least upper

bound.
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1. All the terminal nodes in each tree T ∈ T are in Z̄. That is, we do not create “new”

terminal nodes.

2. For every tree T ∈ T, every node n ∈ T , and every active player i ∈ P (n) there exists

a nonempty subset of actions Ai,T
n ⊆ Ai

n such that ψn maps the action profiles AT
n =

∏

i∈P (n)A
i,T
n bijectively onto n’s successors in T . We say that at node n action profile

an ∈ AT
n leads to node n′ if ψn(an) = n′.

3. For any tree T ∈ T, if for two decision nodes n, n′ ∈ T with i ∈ P (n) ∩ P (n′) it is the

case that Ai
n ∩Ai

n′ 6= ∅, then Ai
n = Ai

n′ .

Within the family T of subtrees of T̄ , some nodes n appear in several trees T ∈ T. In what

follows, we will need to designate explicitly appearances of such nodes n in different trees as

distinct objects. To this effect, in each tree T ∈ T label by nT the copy in T of the node n ∈ N̄

whenever the copy of n is part of the tree T , with the requirement that if the profile of actions

an ∈ An leads from n to n′ in T̄ , then anT
leads also from the copy nT to the copy n′T . More

generally, for any T, T ′, T ′′ ∈ T with T � T ′ � T ′′ such that n ∈ T ′′, nT ′ is the copy of n in

the tree T ′, nT is the copy of n in the tree T , and (nT ′)T is the copy of nT ′ in the tree T , we

require that “nodes commute”, nT = (nT ′)T . For any T ∈ T and any n ∈ T , we let nT := n

(i.e., the copy of n ∈ T in T is n itself).

Denote by D the union of all decision nodes in all trees T ∈ T, by Z the union of terminal

nodes in all trees T ∈ T, and by N = D∪Z. Copies nT of a given node n in different subtrees

T are now treated distinct from one another, so that N is a disjoint union of sets of nodes.

In what follows, when referring to a node inN we will typically avoid the subscript indicating

the tree T for which n ∈ T when no confusion arises. For a node n ∈ N we denote by Tn the

tree containing n.5

Denote by NT the set of nodes in the tree T ∈ T. Similarly, for any i ∈ I0 denote by DT
i

the set of decision nodes in which player i is active in the tree T ∈ T. Finally, denote by ZT

the set of terminal nodes in the tree T ∈ T.

Information sets model both information and awareness. At a node n of the tree Tn ∈ T,

the player may conceive the feasible paths to be described by a different (i.e., less expressive)

tree T ′ ∈ T, T ′ � Tn. In such a case, her information set will be a subset of T ′ rather than

Tn and n will not be contained in the player’s information set at n. An example is the initial

information set of player 1 in Figure 1.

In order to define a notion of self-confirming equilibrium we also need to consider the

players’ views at terminal nodes. Thus, we also devise information sets of terminal nodes that

model both the players’ information and awareness at the ends of the game. This is different

5Bold capital letters refer to sets of elements across trees.
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from Heifetz, Meier, and Schipper (2013) but akin to signal, outcome, or feedback functions in

some works on self-confirming equilibrium, see for instance Battigalli and Guaitoli (1997) and

Battigalli et al. (2015).

Formally, for each node n ∈ N (including terminal nodes in Z), define for each active player

i ∈ P (n) \ {0} a nonempty information set hi(n) with the following properties:6

U0 Confined awareness: If n ∈ T , then hi(n) ⊆ T ′ with T ′ � T .

U1 Generalized reflexivity: If T ′ � T , n ∈ T , hi(n) ⊆ T ′ and T ′ contains a copy nT ′ of n,

then nT ′ ∈ hi(n).

I2 Introspection: If n′ ∈ hi(n), then hi(n
′) = hi(n).

I3 No divining of currently unimaginable paths, no expectation to forget currently conceiv-

able paths: If n′ ∈ hi(n) ⊆ T ′ (where T ′ ∈ T is a tree) and there is a path n′, . . . , n′′ ∈ T ′

such that i ∈ P (n′) ∩ P (n′′), then hi(n
′′) ⊆ T ′.

I4 No imaginary actions: If n′ ∈ hi(n), then A
i
n′ ⊆ Ai

n.

I5 Distinct action names in disjoint information sets: For a subtree T ∈ T, if there a decision

nodes n, n′ ∈ T ∩D with Ai
n = Ai

n′ , then hi(n
′) = hi(n).

I6 Perfect recall: Suppose that player i is active in two distinct nodes n1 and nk, and there

is a path n1, n2, ..., nk such that at n1 player i takes the action ai. If n
′ ∈ hi (nk), n

′ 6= nk,

then there exists a node n′1 6= n′ and a path n′1, n
′
2, ..., n

′
ℓ = n′ such that hi (n

′
1) = hi (n1)

and at n′1 player i takes the action ai.

I7 Information sets consistent with own payoff information: If hi(z) ⊆ T then hi(z) ⊆ ZT .

Moreover, if z′ ∈ hi(z) then ui(z
′) = ui(z).

Properties (I2), (I4), and (I5) are standard for extensive-form games, and properties (U0),

(U1), and (I6) generalize standard properties of extensive-form games to our generalized setting.

At each information set of a player, property (I3) confines the player’s anticipation of her future

view of the game to the view she currently holds (even if, as a matter of fact, this view is about to

be shattered as the game evolves). (I7) is new. It makes information sets of terminal nodes akin

to feedback functions in the literature on self-confirming equilibrium. At any terminal node, a

player considers only terminal nodes. That is, she knows that the game ended. Moreover, any

two terminal nodes that a player cannot distinguish must yield her the same payoff because

otherwise she could use her payoffs to distinguish among these terminal nodes. This implies

that at the end of the game each player knows her own payoff. Note that this assumption does

6We keep the numbering consistent with Heifetz, Meier, and Schipper (2013).
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not rule out imperfect observability of opponents’ payoffs. It also does not rule out that the

player may not perfectly observe the terminal node.

Heifetz, Meier, and Schipper (2013) already illustrated properties I2 to I6 with graphic

examples. They also introduced and discussed properties U0-U1. Graphically illustrations of

U0-U1 can be found in Schipper (2018). Figure 10 illustrates property I7. For this illustration,

assume that the player moving at the node that is immediately preceding the terminal nodes

is the player whose payoffs are indicated by the first component of the payoff vectors that are

attached to the terminal nodes.

Figure 10: Property I7

1, 1 1, 1 1, 2 1, 1 2, 3

h1(z)

1, 2 2, 1

h1(z)

I7 ●
●
●

●
●
●

We denote by Hi the set of i’s information sets in all trees. For an information set hi ∈ Hi,

we denote by Thi
the tree containing hi. For two information sets hi, h

′
i in a given tree T, we

say that hi precedes h
′
i (or that h

′
i succeeds hi) if for every n

′ ∈ h′i there is a path n, ..., n′ in T

such that n ∈ hi. We denote it by hi  h′i.

The following property is implied by I2 and I4 (see Heifetz, Meier, and Schipper, 2013,

Remark 1): For all i ∈ I, if n′, n′′ ∈ hi where hi = hi (n) is an information set, then Ai
n′ = Ai

n′′ .

Hence, if n ∈ hi we can write also Ahi
for Ai

n.

Properties U0, U1, I2, and I6 imply no absent-mindedness (see Heifetz, Meier, and Schipper,

2013, Remark 2): For all i ∈ I, no information set hi contains two distinct nodes n, n′ on some

path in some tree.

The perfect recall property I6 and no absent-mindedness guarantee that with the precedence

relation  player i’s information sets Hi form an arborescence: For every information set

h′i ∈ Hi, the information sets preceding it {hi ∈ Hi : hi  h′i} are totally ordered by  .

Confined awareness (U0) and Perfect recall (I6) imply that a player cannot become unaware

during the play (see Heifetz, Meier, and Schipper, 2013, Remark 6). Awareness may only

increase along a path. Formally, for all i ∈ I, if there is a path n, . . . , n′ in some subtree T ′′

such that player i is active in n and n′, and hi (n) ⊆ T while hi (n
′) ⊆ T ′, then T ′ � T .

To model unawareness proper, we impose as in Heifetz, Meier, and Schipper (2013) addi-

tional properties. Different from that earlier paper, these properties are now also applied to
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information sets at terminal nodes. They parallel properties of static unawareness structures

in Heifetz, Meier, and Schipper (2006): For all i ∈ I,

U4 Subtrees preserve ignorance: If T � T ′ � T ′′, n ∈ T ′′, hi(n) ⊆ T and T ′ contains the copy

nT ′ of n, then hi(nT ′) = hi(n).

U5 Subtrees preserve knowledge: If T � T ′ � T ′′, n ∈ T ′′, hi(n) ⊆ T ′ and T contains the

copy nT of n, then hi(nT ) consists of the copies that exist in T of the nodes of hi(n).

It is known that U5 implies U3, see Heifetz, Meier, and Schipper (2013, Remark 3):

U3 Subtrees preserve awareness: For all i ∈ I, if n ∈ T ′, n ∈ hi(n), T � T ′, and T contains a

copy nT of n, then nT ∈ hi(nT ).

U4 says that a player at a node in a less expressive tree cannot know more than at a corre-

sponding node in a more expressive tree. U5 says that a player in a less expressive tree knows

histories that he also knows at corresponding nodes in a more expressive tree provided that

he is still aware of it. Properties U3 to U5 are illustrated graphically with an example and

counterexample each in Schipper (2018).

For trees T, T ′ ∈ T we denote T ֌ T ′ whenever for some node n ∈ T and some player i ∈

P (n) it is the case that hi(n) ⊆ T ′. Denote by →֒ the transitive closure of֌. That is, T →֒ T ′′

if and only if there is a sequence of trees T, T ′, . . . , T ′′ ∈ T satisfying T ֌ T ′
֌ · · ·֌ T ′′. For

instance, in Figure 4 we have T̄ ֌ T ′ and T ′
֌ T as well as T̄ ֌ T ′′ and T ′′

֌ T . Clearly,

T̄ →֒ T .

An extensive-form game with unawareness Γ consists of a join-semilattice T of subtrees of

a tree T̄ satisfying properties 1–3 above, along with information sets hi(n) for every n ∈ T with

T ∈ T and i ∈ P (n), and payoffs satisfying properties U0, U1, U4, U5, and I2-I7 above.

For every tree T ∈ T, the T -partial game is the join-semisublattice of trees including T and

all trees T ′ in Γ satisfying T →֒ T ′, with information sets as defined in Γ. A T -partial game is a

extensive-form game with unawareness, i.e., it satisfies all properties 1–3, U0, U1, U4, U5, and

I2-I7 above. For instance, in Figure 4 the sublattice {T ′, T} together with all information sets

in those trees forms the T ′-partial game. In fact, it is the game with unawareness of Figure 1.

We denote by HT
i the set of i’s information sets in the T -partial game, T ∈ T. This set

contains not only i’s information sets in the tree T but also in all trees T ′ ∈ T with T →֒ T ′.

Further, we denote by HD

i (HT,D
i , resp.) the set of i’s information sets of decision nodes (in

the T -partial game, resp.) and by HZ

i (HT,Z
i , resp.) the set of i’s information sets of terminal

nodes (in the T -partial game, resp.).
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3.1 Strategies

For any collection of sets (Xi)i∈I0 we denote by

X :=
∏

i∈I0

Xi, and X−i :=
∏

j∈I0\{i}

Xj

with typical elements x and x−i, respectively. For any collection of sets (Xi)i∈I0 and any tree

T ∈ T, we denote by XT
i the set of objects in Xi restricted to the tree T and analogously for

XT and XT
−i, where “restricted to the tree T” will become clear from the definitions below.

A pure strategy for player i ∈ I,

si ∈ Si :=
∏

hi∈HD

i

Ahi

specifies an action of player i at each of her information sets hi ∈ HD

i of decision nodes. We let

s0 ∈ S0 :=
∏

n∈D0

A0
n

denote the “strategy” of nature, with D0 denoting the “decision” nodes of nature.

For any player i ∈ I, strategy si, and node n ∈ DTn

i , player i’s action at n is si(hi(n)).

Thus, by U1 and I4 the strategy si specifies what player i ∈ I does at each of her active nodes

n ∈ DTn

i , both in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a

tree which is distinct from the tree Tn to which n belongs. In the first case, when n ∈ hi(n),

we can interpret si(hi(n)) as the action chosen by player i in node i. In the second case, when

n /∈ hi(n), si(hi(n)) cannot be interpreted as the action chosen “consciously” by player i in n

since he is not even aware of Tn. Instead, his state of mind at n is given by his information set

hi(n) in a tree lower than Tn (denoted by Thi
). Thus, si(hi(n)) is the physical move of player i

in n in tree Tn induced by his “consciously” chosen action at his information set hi(n) in tree

Thi(n) (with Tn ≻ Thi(n) by U0). As an example, consider player 1 in the game of Figure 1.

At his first decision node in the upper tree T̄ , the root of the tree, player 1’s information set

consists of the corresponding node in the lower tree T . The optimal strategy of player 1 may

assign ℓ1 to his information set in the lower tree T . But it also induces action ℓ1 at the root of

the upper tree T̄ .

In an extensive-form game with unawareness Γ the tree T̄ ∈ T represents the physical paths

in the game; every tree in T that contains an information set represents the subjective view of

the feasible paths in the mind of a player, or the view of the feasible paths that a player believes

that another player may have in mind, etc. Moreover, as the actual play in T̄ unfolds, a player

may become aware of paths of which she was unaware earlier, and her views the game may

change. Thus, in an extensive-form game with unawareness, a strategy cannot be conceived as

an ex ante plan of action. Formally, a strategy of player i is a list of answers to the questions
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“what would player i ∈ I do if hi were the set of nodes she considered as possible?”, for hi ∈ Hi

(and analogous for nature). A strategy of a player becomes meaningful as an object of beliefs

of other players. How “much” of a player’s strategy other players can conceive depend on their

awareness given by the tree in which their information set is located. This leads to the notion

of T -partial strategy. For a strategy si ∈ Si and a tree T ∈ T, we denote by sTi the strategy

in the T -partial game induced by si (i.e., s
T
i (hi) = si (hi) for every information set hi ∈ HT

i of

player i in the T -partial game). Denote by ST
i player i’s set of T -partial strategies.

A mixed strategy of player i ∈ I0, σi ∈ ∆(Si), specifies a probability distribution over

player i’s set of pure strategies. With this notation, we let σ0 the probability distribution over

“strategies” of nature. We do not consider mixed strategies as an object of choice of players;

this notion is just be used here in technical ways.

A behavior strategy for player i ∈ I,

πi ∈ Πi :=
∏

hi∈Hi

∆(Ai(hi))

is a collection of independent probability distributions, one for each of player i’s information

set hi ∈ Hi, where πi(hi) specifies a mixed action in ∆(Ahi
). With the behavior strategy πi, at

node n ∈ DTn

i define player i’s mixed action at n to be πi(hi(n)). Thus, the behavior strategy

πi specifies the mixed action of player i ∈ I at each of her active decision nodes n ∈ DTn

i ,

both in the case that n ∈ hi(n) and in the case that hi(n) is a subset of nodes of a tree which

is distinct from the tree Tn to which n belongs. It may be the case that Ai(n) % Ai(hi(n)).

Yet, we have automatically that πi does not assign strict positive probabilities to actions in

An \ Ahi(n). (I.e., at the decision node n of the richer tree Tn player i may have more actions

than she is aware of at hi(n). In such a case, she is unable to use actions that she is unaware

of.) With respect to nature, we let π0 ∈ Π0 =
∏

n∈D0
∆(A0(n)).

For a behavior strategy πi ∈ Πi and a tree T ∈ T, we denote by πTi the strategy in the

T -partial game induced by πi (i.e., π
T
i (hi) = πi (hi) for every information set hi ∈ HT

i of player

i in the T -partial game). Denote by ΠT
i player i’s set of T -partial strategies.

3.2 Information Sets Consistent with Strategies

In extensive-form games with unawareness there are two distinct notions of a strategy profile

being consistent with a node that we call a “strategy reaching a node” and “a node occurs with

a strategy”, respectively. The first is a more “subjective” notion capturing what nodes a player

with a certain awareness level expects a strategy profile to reach. The second notion is more

an “objective” notion of what nodes actually occur with a strategy profile. Both notions are

relevant. The first is relevant to extensive-form rationalizability, the second for self-confirming

equilibrium.
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We say that a strategy profile s = (sj)j∈I0 ∈ S reaches a node n ∈ T if the players’ actions

and nature’s moves
(

sTj (hj (n
′))

)

j∈P (n′)
in nodes n′ ∈ T lead to n. That is, the sequence of

action profiles induced by s at predecessors of n in T lead to n ∈ T . Notice that by property

(I4) (“no imaginary actions”), sTj (hj (n
′))

j∈I is indeed well defined: even if hj (n
′) * T for

some n′ ∈ T ,
(

sTj (hj (n
′))

)

j∈P (n′)
is a profile of actions which is actually available in T to the

active players j ∈ P (n′) and possibly nature at n′. We say that a strategy profile s ∈ S reaches

the information set hi ∈ Hi if s reaches some node n ∈ hi. We say that the strategy si ∈ Si

reaches the information set hi if there is a strategy profile s−i ∈ S−i of the other players (and

possibly nature) such that the strategy profile (si, s−i) reaches hi. Analogously, we say that

the strategy profile s−i ∈ S−i reaches the information set hi if there exists a strategy si ∈ Si

such that the strategy profile (si, s−i) reaches hi. For each player i ∈ I, denote by Hi(s) the

set of information sets of i that are reached by the strategy profile s. This set may contain

information sets in more than one tree.

We say that node n ∈ T̄ in the upmost tree T̄ occurs with strategy profile s = (sj)j∈I0 ∈ S

if the players’ actions and nature’s moves (sj (hj(n
′)))

j∈P (n′) in nodes n′ ∈ T̄ reach n ∈ T̄ . We

extend the notion to any node in any tree by saying that node n ∈ T occurs with strategy

profile s = (sj)j∈I ∈ S if there is n′ ∈ T̄ s.t. n′T = n occurs with s. This is well-defined because

T is a join semi-lattice. In particular, for any T ∈ T and n ∈ T there is a node n′ ∈ T̄ such

that n′T = n.

We say that information set hi ∈ Hi occurs with strategy profile s ∈ S if some node n ∈ Di

with hi(n) = hi occurs with s. Note that for this definition we do not require n ∈ hi.

We say that information set hi ∈ Hi occurs with strategy si ∈ Si if there is a strategy profile

s−i ∈ S−i of the other players (and possibly nature) such that hi occurs with the strategy profile

(si, s−i). Analogously, we say that information set hi ∈ Hi occurs with strategy profile s−i ∈ S−i

if there exists a strategy si ∈ Si such that hi occurs with the strategy profile (si, s−i). For each

player i ∈ I, denote by H̃i(s) the set of information sets of i that occur with strategy profile s.

This set may contain information sets in more than one tree.

The notions of reaching nodes/information sets and nodes/information sets occurring are

discussed further in Schipper (2018) who also provides examples as to where they differ.

We extend the definitions of information set reached and information sets occurring to be-

havior strategies in the obvious way by considering nodes/information sets that are reached/occurring

with strict positive probability. For any i ∈ I, we let Hi(π) denote the set of player i’s informa-

tion sets that are reached with strict positive probability by the behavior strategy profile π and

H̃i(π) denote the set of player i’s information sets that occur with strict positive probability

with the behavior strategy profile π.
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3.3 Belief Systems

A belief system of player i ∈ I,

βi = (βi (hi))hi∈Hi
∈

∏

hi∈Hi

∆
(

S
Thi

−i

)

is a profile of beliefs – a belief βi (hi) ∈ ∆
(

S
Thi

−i

)

about the other players’ strategies (and

possibly nature) in the Thi
-partial game, for each information set hi ∈ Hi, with the following

properties:

• βi (hi) reaches hi, i.e., βi (hi) assigns probability 1 to the set of strategy profiles of the

other players (including possibly nature) that reach hi.

• If hi precedes h
′
i (i.e., hi  h′i), then βi (h

′
i) is derived from βi (hi) by Bayes rule whenever

possible.

Note that different from Heifetz, Meier, and Schipper (2013) a belief system specifies also

beliefs about strategies of opponents and nature at information sets of terminal nodes. This

is an essentially feature that we require for defining self-confirming equilibrium. Denote by Bi

the set of player i’s belief systems.7

For a belief system βi ∈ Bi, a strategy si ∈ Si and an information set hi ∈ Hi, define player

i’s expected payoff at hi to be the expected payoff for player i in Thi
given βi (hi), the actions

prescribed by si at hi and its successors, assuming that hi has been reached.

We say that with the belief system βi and the strategy si player i is rational at the infor-

mation set hi ∈ HD

i if either si does not reach hi or there exists no strategy s′i which is distinct

from si only at hi and/or at some of hi’s successors in Thi
and yields player i a higher expected

payoff in the Thi
-partial game given the belief βi (hi) on the other players’ strategies S

Thi

−i .

Player i’s belief system on behavior strategies of opponents,

µi = (µi(hi))hi∈Hi
∈

∏

hi∈Hi

∆(Π
Thi

−i )

is a profile of beliefs – a belief µi(hi) ∈ ∆(Π
Thi

−i ) about the behavior strategies of other players

(incl. possibly nature) in the Thi
-partial game, for each information set hi ∈ Hi, with the

following properties

7In some applications, we may want to fix prior beliefs about moves of nature. In such a case, we would

consider Bi to consist only of belief systems in which for every belief the marginal on nature is consistent with

the fixed prior belief about moves of nature. Note that since a poorer tree may lack some moves of nature of a

richer tree, further conditions on the prior may be imposed so as to form a system of priors, one for each tree,

that is consistent across trees.
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• µi (hi) reaches hi, i.e., µi (hi) assigns probability 1 to the set of behavior strategy profiles

of the other players (incl. possibly nature) that reach hi.

• If hi precedes h
′
i (i.e., hi  h′i), then µi (h

′
i) is derived from µi (hi) by Bayes rule whenever

possible.

We denote by Mi the set of player i’s belief systems over behavior strategies of opponents.

For a belief system µi ∈ Mi, a behavior strategy πi ∈ Πi and an information set hi ∈ Hi,

define player i’s expected payoff at hi to be the expected payoff for player i in Thi
given µi (hi),

the mixed actions prescribed by πi at hi and its successors, assuming that hi has been reached.

We say that with the belief system µi and the behavior strategy πi player i is rational at

the information set hi ∈ HD

i if either πi does not reach hi or there exists no behavior strategy

π′i which is distinct from πi only at hi and/or at some of hi’s successors in Thi
and yields player

i a higher expected payoff in the Thi
-partial game given the belief µi (hi) on the other players’

behavior strategies Π
Thi

−i .

4 Self-Confirming Equilibrium

The discussion of the first example in Section 2 in the introduction made clear that the challenge

for a notion of equilibrium is to deal with changes of awareness along the equilibrium paths. In

a “steady-state of conceptions”, awareness should not change. We incorporate this requirement

into our definition of self-confirming equilibrium. For simplicity, we first consider a notion of

self-confirming equilibrium in pure strategies.

Definition 1 (Self-confirming equilibrium in pure strategies) A strategy profile s ∈ S

is a self-confirming equilibrium if for every player i ∈ I:

(0) Awareness is self-confirming along the path: There is a tree T ∈ T such that for all

occurring information sets hi ∈ H̃i(s) we have hi ⊆ T .

There exists a belief system βi ∈ Bi such that

(i) Players are rational along the path: With belief system βi, strategy si is rational at all

occurring information sets in H̃i(s).

(ii) Beliefs are self-confirming along the path: For any information set of terminal nodes

hi ∈ HZ

i ∩ H̃i(s) occurring with strategy profile s, the belief system βi is such that βi(hi)

assigns probability 1 to the subset of profiles of opponents’ and nature’s strategies of S
Thi

−i

that reach hi. Moreover, for any preceding (hence non-terminal) information set h′i  hi,

βi(h
′
i) = βi(hi).
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Condition (0) requires that awareness is constant along the equilibrium path. Players do

not discover anything novel in equilibrium play. This is justified by the idea of equilibrium as

a stationary rest-point or stable convention of play. Implicitly, it is assumed that discoveries if

any are made before equilibrium is reached.

Condition (i) is a basic rationality requirement of equilibrium. Note that rationality is re-

quired only along information sets that occur along the path of play induced by the equilibrium

strategy profile. The equilibrium notion is silent on off-equilibrium information sets (in partic-

ular on information sets that could be visited with si but are not visited with s−i). Condition

(i) does not require that players believe others are rational along the path, believe that others

believe that etc. It is just a “minimal” rationality requirement in an extensive-form game.

Condition (ii) consists of two properties. First, at the end of the game the player is certain

of strategies of opponents and nature that allow her to reach the particular end of the game.

That is, terminal beliefs are consistent with what has been observed during play (and hence

at the end of the play). Second, beliefs do not change during the play. That is, beliefs at

any information set reached during the play are consistent with what is observed at any point

during the play and in particular with what is observed at the end of the game. Again, the idea

is that everything that could have been learned on this path has been learned already in the

past. This is justified by the idea of equilibrium as a stationary rest-point or stable convention

of play as a result of prior learning. Note that this notion of equilibrium is silent on beliefs off

equilibrium path.

It should be obvious that pure self-confirming equilibria may not exist even in standard

games. Consider as a simple counterexample the matching pennies game, which fits our frame-

work as we allow for simultaneous moves. Therefore, we consider also an analogous notion of

self-confirming equilibrium in behavior strategies.

Definition 2 (Self-confirming equilibrium in behavior strategies) A behavior strategy

profile π ∈ Π is a self-confirming equilibrium if for every player i ∈ I:

(0) Awareness is self-confirming along the path: There is a tree T ∈ T such that for all of

player i’s visited information sets hi ∈ H̃i(π) we have hi ⊆ T .

There exists a belief system µi ∈Mi such that

(i) Players are rational along the path: With belief system µi, behavior strategy πi is rational

at all visited information sets in H̃i(π).

(ii) Beliefs are self-confirming along the path: For any information set of terminal nodes

hi ∈ HZ

i ∩ H̃i(π) occurring with the behavior strategy profile π, the belief system µi is

such that µi(hi) assigns probability 1 to {π′−i ∈ Π
Thi

−i : π′j(hj) = πj(hj) for j ∈ I0 \ {i}
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and hj ∈ H̃
Thi

j (π)}. Moreover, for any preceding (hence non-terminal) information set

h′i  hi, µi(h
′
i) = µi(hi).

The interpretation of properties (0) to (ii) is analogous to previous Definition 1. For property

(ii), note that {π′−i ∈ Π
Thi

−i : π′j(hj) = πj(hj) for j ∈ I0 \ {i} and hj ∈ H̃
Thi

j (π)} is the

set of behavior strategy profiles of opponents of player i and nature that are behaviorally

indistinguishable from π at all information sets conceived by i and found relevant by i along

actual paths of play induced by π in i’s model.

We do not require that in self-confirming player i believes that opponents mix independently.

This is because we do not find independence easy to motivate. The literature on self-confirming

equilibrium knows both assumptions. For instance, independence is assumed in Fudenberg and

Levine (1993a) but not in Rubinstein and Wolinsky (1994).

It may be helpful to briefly compare self-confirming equilibrium to standard notions of

equilibrium in standard games. Consider the class of finite extensive-form games without un-

awareness. Nash equilibrium in behavior strategies is simply Nash equilibrium in behavior

strategies given the “behavior strategy” of nature if any. The following remark is well-known.

Since we need this observation later in our proofs, we added a proof in the appendix. There we

also discuss that the converse does not hold.

Remark 1 Consider a finite extensive-form games without unawareness. Any Nash equilibrium

in behavior strategies is a self-confirming equilibrium in behavior strategies.

While it is well-known in the literature (see for instance Fudenberg and Levine, 1993, Fu-

denberg and Kreps, 1995, Battigalli and Guaitoli, 1997) that self-confirming equilibrium is a

coarsening of Nash equilibrium, the point here is to contrast it with the case of unawareness.

Despite the fact that self-confirming equilibria are a coarsening of Nash equilibria, they may

not exist in finite extensive-form games with unawareness due to failure of condition (0). The

game in Figure 1 in Section 2 constitutes a simple counterexample.

Example 1 (continued): Failure of self-confirming equilibrium in finite extensive-

form games with unawareness. Condition (i), rationality along the path, requires that

player 1 chooses ℓ1 and player 2 chooses m2 in T̄ and r2 in T in the game of Figure 1. It is

also easy to see that for each player there exists a belief system satisfying condition (ii) of the

definition of self-confirming equilibrium. Yet, the play emerging from rational strategies reaches

an information set of player 1 that contains a terminal node in T̄ after being initially only aware

of T , which violates condition (0). That is, awareness is not self-confirming along the path.

Hence, there is no self-confirming equilibrium. The failure is due changes of awareness on any

potential equilibrium path violating condition (0). The point is that not every extensive-form
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game with unawareness allows for a rational path of play with constant awareness of players.�

A special subclass of extensive-form games with unawareness are extensive-form games with

common constant awareness. An extensive-form game with unawareness has common constant

awareness if there exists T ∈ T such that for all n ∈ T̄ , hi(n) ⊆ T for all i ∈ I. That is, the

awareness among players is constant and common at every play of the game. It does not imply

though that players are fully aware of every move because we may have T ≺ T̄ . The proof of

the following remark is contained in the appendix.

Remark 2 Consider a finite extensive-form game with unawareness. If it has common constant

awareness then it possesses a self-confirming equilibrium. The converse is false.

Special subclasses of extensive-form games with common constant awareness are games with

full awareness, i.e., for all n ∈ T̄ we have hi(n) ⊆ T̄ , and standard extensive-form games. Every

standard extensive-form game is an extensive-form game with full awareness (but not vice versa

since a game with full awareness may still have a non-trivial join-semilattice of trees although

it is in some sense redundant; see Figure 2 for an example).

5 Discovery Processes

In this section, we like to model how players playing a game discover actions and may eventually

reach a self-confirming game.

Let Γ be the set of all extensive-form games with unawareness for which the initial build-

ing block (i.e., outlining the physical moves) is the finite extensive-form game with perfect

information 〈I, T̄ , P, (ui)i∈I〉. By definition, Γ is finite.

For any extensive-form game with unawareness Γ ∈ Γ, denote by SΓ the set of pure strategy

profiles in Γ.

Definition 3 (Discovered version) Given an extensive-form game with unawareness Γ =

〈I,T, P, (Hi)i∈I , (ui)i∈I〉 ∈ Γ and a strategy profile in this game sΓ, the discovered version

Γ′ = 〈I ′,T′, P ′, (H ′
i)i∈I′ , (u

′
i)i∈I′〉 is defined as follows:

(i) I ′ = I, T′ = T, P ′ = P , and u′i = ui for all i ∈ I ′.

(ii) For i ∈ I ′, the information sets in H ′
i of Γ

′ are defined as follows: Let

T i
sΓ

:= sup
{

T ∈ T : hi(n) ⊆ T, hi(n) ∈ H̃i(sΓ)
}

.8

For any n ∈ T̄ (i.e., the upmost tree in T) with hi(n) ∈ Hi, hi(n) ⊆ T ′, T ′, T ′′ ∈ T,

8This least upper bound exist in T since T is a finite (hence join-complete) join-semilattice.
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a. if T ′ � T i
sΓ

� T ′′ � T̄ , the information set h′i(nT ′′) ∈ H ′
i is defined by9

h′i(nT ′′) :=
{

n′ ∈ T i
sΓ

: hi(n
′) = hi(n)

}

.

b. if T ′ � T ′′ � T i
sΓ
, the information set h′i(nT ′′) ∈ H ′

i is defined by

h′i(nT ′′) :=
{

n′ ∈ T ′′ : hi(n
′) = hi(n)

}

.

c. Otherwise, if T ′ 6� T i
sΓ

and T ′ � T ′′ � T̄ , the information set h′i(nT ′′) ∈ H ′
i is defined

by

h′i(nT ′′) := hi(nT ′′).

When an extensive-form game with unawareness Γ is played according to a strategy profile

sΓ, then some players may discover something that they were previously unaware of. The

discovered version Γ′ of an “original” extensive-form game with unawareness Γ represents the

views of the players after the extensive-form game with unawareness has been played according

to a strategy profile sΓ. The discovered version has the same set of players, the same join-

semilattice of trees, the same player correspondence, and the same payoff functions as the

original game. What may differ are the information sets. In particular, in a discovered version

some players may from the beginning be aware of more actions than in the “original” game

Γ but only if in the “original” game it was possible to discover these action with the strategy

profile sΓ. The information sets in the discovered version reflect what players have become

aware when playing Γ according to sΓ.

To understand part (ii) of Definition 3, note first that T i
sΓ

is the tree that represents the

player i’s awareness of physical moves in the game Γ after it has been played according to

strategy profile sΓ. It is determined by the information sets of player i that occur along the

play-path in the upmost tree according to sΓ. Now consider all information sets of player i

that arise at nodes in the upmost tree T̄ in the “original” game Γ. These information sets may

be on lower trees than T i
sΓ
. Since player i is now aware of T i

sΓ
, all those information sets that

in Γ were on a tree lower than T i
sΓ

are now lifted to tree T i
sΓ
, the tree that in player i’s mind

represents the physical moves of the strategic situation after Γ has been played according to

sΓ. Yet, this holds not only for reached nodes in the upmost tree T̄ but also for copies of those

nodes in trees T ′′ ∈ T, T i
sΓ

� T ′′ � T̄ . This is because by Property U4 of extensive-form games

with unawareness the information sets at copies of those nodes in trees T ′′ are also on trees

lower than T i
sΓ

in Γ. When information sets are lifted to higher trees, they contain all nodes in

such a tree that previously gave rise to the information set at a lower tree in Γ. This explains

part a. of (ii) of Definition 3.

Part b. pertains to information sets in trees below T i
sΓ
. These are trees that miss certain

aspects of tree T i
sΓ
. These trees are relevant to player i in T ′ nevertheless as she has to consider

9As defined previously, we take nT ′′ the copy of node n ∈ T̄ in the tree T
′′. When T

′′
≡ T̄ , then nT ′′ = n.
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other players’ views of the strategic situation, their views of her view etc. Since other players

may be unaware of aspects of which player i is aware, she should consider her own “incarnations”

with less awareness. In the discovered version Γ′, the information sets on trees T ′′ � T i
sΓ

model

the same knowledge of events as in information sets on tree T i
sΓ

provided that she is still aware

of those events in T ′′. This is crucial for the discovered version to satisfy property U5 of

extensive-form games with unawareness.

Part c. just says that in the discovered version information set of player i in trees incompara-

ble to T i
sΓ

remain identical to the original game Γ. These information sets represent awareness

that necessarily has not been discovered when Γ is played according to strategy profile sΓ.

Figure 11: Original Γ (left game form) and Discovered Version Γ′ (right game form)
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¡ ¡
0

The notion of discovered version is illustrated in Figure 11. This example is sufficiently rich

to cover at least cases a. and b. distinguished in (ii) of Definition 3. Consider the extensive-form

game with unawareness to the left, Γ, as the “original” game. Initially, the player’s awareness

is given by tree T1. The strategy in the original game is indicated by the solid orange line in T1.

It induces actions also in more expressive trees indicated by the orange dotted lines. When the

strategy is executed, the player’s awareness is raises to tree T3. (I.e., the information set at the

terminal node in T̄ = T5 that occurs with the actions induced by the orange dotted strategy is

located in T3.)
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The extensive-form game with unawareness to the right is the discovered version Γ′ if players

(and possibly nature) follow the strategy profiles indicated by the orange dashed lines. Clearly,

T 5 in Figure 11 corresponds to T̄ in Definition 3 (ii), T 1 to T ′, and T 3 to T i
sΓ
. For case a., let

T ′′ in Definition 3 (ii) be T 4. For case b., let T ′′ correspond to T 2.

When a player discovers something, her awareness is raised. Consequently, discovered ver-

sions of a game involve more awareness. Game Γ′ has (weakly) more awareness than game Γ if

for every player and every node at which the player is active in Γ′, her information set is in a

tree that is at least as expressive as the tree on which her corresponding information set is in

Γ. The following definition makes this precise.

Definition 4 (More awareness) Consider two extensive-form games with unawareness Γ =

〈I,T, P, (Hi)i∈I , (ui)i∈I〉 and Γ′ = 〈I ′,T′, P ′, (H ′
i)i∈I′ , (u

′
i)i∈I′〉 with I ′ = I, T′ = T, P ′ = P ,

and u′i = ui for all i ∈ I ′. Γ′ has (weakly) more awareness than Γ if for every node n and every

active player i ∈ P (n), hi(n) ⊆ T and h′i(n) ⊆ T ′ implies T ′ � T .

Discovered versions shall just reflect changes of awareness. The information about play, i.e.,

what players know about the history in the game, should not change. That is, in a discovered

version players should have the same knowledge or ignorance about play modulo awareness as

in the original game. Game Γ′ preserves information of game Γ if Γ′ has weakly more awareness

than Γ and for each player and decision node of the player the information set contains the

same nodes or copies thereof as the corresponding information set in Γ. The following definition

makes this precise.

Definition 5 (Preserve information) Consider two extensive-form games with unawareness

Γ = 〈I,T, P, (Hi)i∈I , (ui)i∈I〉 and Γ′ = 〈I ′,T′, P ′, (H ′
i)i∈I′ , (u

′
i)i∈I′〉 with I ′ = I, T′ = T,

P ′ = P , and u′i = ui for all i ∈ I ′ such that Γ′ has (weakly) more awareness than Γ. Γ′

preserves information of Γ if

(i) for any n and every active player i ∈ P (n), hi(n) consists of copies of nodes in h′i(n).

(ii) for any tree T ∈ T, any two nodes n, n′ ∈ T and every active player i ∈ P (n) ∩ P (n′), if

hi(n) = hi(n
′) then h′i(n) = h′i(n

′).

Proposition 1 For any extensive-form game with unawareness Γ ∈ Γ and any strategy profile

sΓ ∈ SΓ in this game, the discovered version Γ′ is unique and an extensive-form game with

unawareness. Moreover, Γ′ has more awareness than Γ. Finally, Γ′ preserves the information

of Γ.

The proof is relegated to the appendix. It verifies one-by-one the properties of extensive-

form games with unawareness.
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Discovered versions do not depend on differences in strategies that are irrelevant to dis-

coveries. They only depend on the realized path. This follows immediately from Definition 3

because T i
sΓ

depends only on H̃i(sΓ).

Remark 3 For any extensive-form game with unawareness Γ ∈ Γ, if sΓ and s′Γ are two strategy

profiles in Γ that generate the same path of nodes occurring in the upmost tree of Γ, then the

discovered version given sΓ is identical to the discovered version given s′Γ.

The players interaction may lead to discoveries, interaction in the discovered games may lead

to further discoveries etc. To model the set of discovery processes based on an extensive-form

game with unawareness, we essentially define a stochastic game in which each state represents

an extensive-form game with unawareness.

Definition 6 (Discovery game) The discovery game based on Γ is the stochastic game 〈Γ, τ〉

defined as follows

• the set of states is a finite set of all extensive-form games with unawareness Γ (with

identical initial building block 〈I, T̄ , P, (ui)i∈i〉.)

• the transition probabilities are given by for Γ,Γ′ ∈ Γ, s ∈ SΓ,

τ(Γ′ | Γ, s) =

{

1 if Γ′ is the discovered version of Γ given s

0 otherwise

The discovery game is a stochastic game in which states are identified with extensive-form

games with unawareness all based on the same building blocks. This means that each stage

game is an extensive-form game with unawareness. The set of players is the set of players in

the underlying extensive-form games with unawareness (including nature if any). Each player’s

set of actions is state-dependent and consist of the strategies at the extensive-form games with

unawareness. Since Γ and Γ′ differ in information sets, they also differ in sets of available

strategies since strategies ascribe actions at information sets. The transition probabilities are

degenerate in the sense that only transitions to discovered versions are allowed (given the

strategy profiles). Payoff functions of players are given by the underlying extensive-form games

with unawareness. Since all those games have the same building block, payoff functions are in

fact the same in all states. What changes from state to state are information sets (and hence

also the set of strategies available at those stage games as well as the belief systems).10

10This notion of stochastic game differs slightly from the common definition of stochastic game (cf. Shapley,

1953). First, in our setting there is an extensive-form game with unawareness at each state of the stochastic

game while in standard stochastic games there is a matrix game at each state. Second, we do not assume that

players maximize payoffs across stage-games. Third, in our setting the transition probabilities are degenerate.
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Clearly, the discovery game cannot be interpreted as a game that players are necessarily

fully aware. Rather, it is a convenient model for the modeler/analyst. Consequently, the

supergame strategies of player in this discovery game are not objects actually chosen by players

but just conveniently summarize the modeler’s assumptions about players’ play in all those

games. A discovery game strategy of player i in the discovery game 〈Γ, τ〉 is a mapping fi :

Γ −→
⋃

Γ∈Γ∆(SΓ,i) that assigns to each game Γ ∈ Γ a probability distribution over strategies

of that player in this game Γ (i.e., fi(Γ) ∈ ∆(SΓ,i)). The notion makes clear that we only

consider discovery strategies that are stationary Markov strategies. For each player i ∈ I0

(including nature) denote by Fi the set of all discovery strategies and by F = ×i∈I0Fi. Denote by

f = (fi)i∈I0 a profile of discovery strategies. We extend the definition of transition probabilities

in order to be able to write τ(· | Γ, f) for any Γ ∈ Γ and f ∈ F . We allow fi to assign mixtures

over strategies of player i in order to capture the modeler’s uncertainty over player i’s strategies.

Definition 7 (Discovery process) A discovery process 〈Γ, τ, (fi)i∈I0〉 consists of a discovery

game 〈Γ, τ〉 and a discovery strategy fi : Γ −→
⋃

Γ∈Γ∆(SΓ,i), one for each player i ∈ I0

(including nature if any).

In our formulation, every discovery process is a Markov process. An extensive-form game

with unawareness Γ ∈ Γ is an absorbing state of the discovery process 〈Γ, τ, f〉 if τ(Γ | Γ, f) = 1.

Definition 8 (Self-confirming game) An extensive-form game with unawareness Γ ∈ Γ is

a self-confirming game of a discovery process 〈Γ, τ, f〉 if Γ is an absorbing state of 〈Γ, τ, f〉.

We believe that this terminology is justified by the fact in a self-confirming game play

won’t lead to further discoveries and changes of awareness and the information structure. All

players’ subjective representations of the game are in a steady-state. In this sense, the game is

self-confirming.

Remark 4 Self-confirming games may not necessarily have common constant awareness. See

Example 2 in the introduction for an example.

It is easy to see that every discovery process leads to a self-confirming game. Suppose to the

contrary there is a discovery process that is not absorbing, then there must exist a cycle since Γ

is finite. In such a cycle there must exist two distinct extensive-form games with unawareness

Γ,Γ′ ∈ Γ, Γ 6= Γ′, such that Γ is discovered from Γ′ and Γ′ is discovered from Γ (possibly via

further games). Yet, by Proposition 1, discovered versions must have more awareness, awareness

must weakly increase along any discovery process, a contradiction to a cycle. Note that “weakly

more awareness” is a partial order on Γ. If Γ has weakly more awareness than Γ′ and Γ′ has

weakly more awareness than Γ, then Γ = Γ′. This proves the following assertion:
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Proposition 2 Every discovery process leads to a self-confirming game.

Remark 5 A discovery process may have more than one self-confirming game since discovery

strategies allow for mixtures over stage-game strategies. E.g., consider Example 2 in the intro-

duction and a discovery process in which the modeler considers possible that that player 1 can

take any strategy in the initial game given in Figure 4. Then both the games in Figures 5 and 7

are self-confirming games of the discovery process.

6 Rationalizable Discovery Processes

How to select among discovery processes? Which behaviorial assumptions should be imposed on

discovery processes? Clearly, it would be absurd to assume that players chose optimal discovery

strategies since this would presume awareness of the discovery game and hence awareness of

everything modelled in Γ. In other words, there wouldn’t be anything to discover.

We propose to restrict discovery processes to extensive-form rationalizable strategies in each

Γ ∈ Γ. A rational player in a novel game should be able to reason about the rationality of

others, their (strong) beliefs about rationality etc. This selects among discovery processes and

games that can be discovered in such processes. Figures 5 and 7 show two examples of self-

confirming discovered versions of the game in Figure 4. But there is an important difference.

The self-confirming version in Figure 7 can never be discovered by playing rationally in the

original game of Figure 4 or any discovered versions thereof. This gives rise to notions of

rationalizable discovery processes and rationalizable discovered versions, i.e., discovery process

and versions of games that can be discovered when players play extensive-form rationalizable

strategies in the original game, any discovered game, any discovered game of a discovered game

etc. Rationalizable versions of games emerge in discovery processes in which players play only

extensive-form rationalizable strategies.

We use extensive-form rationalizability à la Pearce’s (1984) and Battigalli (1997) extended

by Heifetz, Meier, and Schipper (2013) to extensive-form games with unawareness. It is an itera-

tive reduction procedure of beliefs that allows for correlated beliefs about opponents’ strategies.

It captures common strong belief in rationality (Battigalli and Siniscalchi, 2002, Guarino, 2017).

Definition 9 (Extensive-Form Rationalizable Strategies) Fix an extensive-form game with

unawareness. Define, inductively, the following sequence of belief systems and strategies of
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player i ∈ I:

B1
i = Bi

R1
i =

{

si ∈ Si :
there exists a belief system βi ∈ B1

i with which for every

information set hi ∈ Hi player i is rational at hi

}

...

Bk
i =























βi ∈ Bk−1
i :

for every information set hi, if there exists some

profile of the other players’ strategies

s−i ∈ Rk−1
−i =

∏

j 6=iR
k−1
j such that s−i reaches hi,

then βi(hi) assigns probability 1 to R
k−1,Thi

−i























Rk
i =

{

si ∈ Si :
there exists a belief system βi ∈ Bk

i with which for every

information set hi ∈ Hi player i is rational at hi

}

The set of player i’s extensive-form rationalizable strategies is

R∞
i =

∞
⋂

k=1

Rk
i .

Letting nature’s “extensive-form rationalizable strategies” be R∞
0 = S0, the set of extensive-

form rationalizable strategy profiles is

R∞ = ×i∈I0R
∞
i .

Denote by R∞
Γ,i the set of extensive-form rationalizable strategies of player i in the extensive-

form game with unawareness Γ. A rationalizable discovery process is now defined as a discovery

process where for each extensive-form game with unawareness each player is restricted to play

extensive-form rationalizable strategies only.

Definition 10 (Rationalizable discovery process) A discovery process 〈Γ, τ, (fi)i∈I0〉 is a

rationalizable discover process if for all players i ∈ I, fi : Γ −→
⋃

Γ∈Γ∆
(

R∞
Γ,i

)

.

Again, we emphasize that player i’s discovery strategy fi shall be interpreted as representing

the analyst’s belief in the strategies played by player i in extensive-form games with unawareness

in Γ. To the extent to which fi(Γ) is a nondegenerate probability distribution in ∆
(

R∞
Γ,i

)

, it

represents the analyst’s uncertainty about which extensive-form rationalizable strategy player

i plays in Γ.

Often, the analyst wants to analyze a particular game with unawareness. Thus, it will be

helpful to designate it as the initial state of the discovery game. We denote by 〈Γ, τ,Γ0〉 the

discovery game with initial game Γ0.
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A self-confirming game that is a result of a rationalizable discovery process we call a ratio-

nalizable self-confirming game. It is easy to see that for every game with unawareness there

exists a rationalizable self-confirming game. By Proposition 2, we know that every discovery

process is absorbing and thus leads to a self-confirming version. As a corollary, also every ra-

tionalizable discovery process must be absorbing and leading to a self-confirming version. The

existence of a rationalizable discovery process follows now from Proposition 1 in Heifetz, Meier,

and Schipper (2013), who show that for every (finite) extensive-form game with unawareness

the set of extensive-form rationalizable strategies is nonempty for every player. Thus, we have

the following observation:

Proposition 3 For every extensive-form game with unawareness Γ0 there exists a rational-

izable discovery process 〈Γ, τ,Γ0, (fi)〉 that leads to a self-confirming game. We call such a

self-confirming game a rationalizable self-confirming game.

7 Equilibrium

In this penultimate section, we return to the quest for an appropriate equilibrium for extensive-

form games with unawareness. Previously we argued that often extensive-form games with

unawareness do not possess equilibria that capture the result of a learning process because

of the self-destroying nature of games with unawareness. Yet, since for every extensive-form

game with unawareness there exists a discovery process that leads to a self-confirming version,

the appropriate notion of equilibrium of a game with unawareness should naturally involve the

equilibrium in the self-confirming version. This captures equilibrium both of conceptions and

behavior.

We also argued for restricting discovery processes to rationalizable discovery processes. This

motivates to restrict equilibria to extensive-form rationalizable strategies as well since it would

be odd to assume that players play extensive-form rationalizable strategies all along the discov-

ery process but once a rationalizable self-confirming version is reached and a convention of play

could emerge, such equilibrium convention suddenly involves strategies that are not extensive-

form rationalizable. That is, we propose to use extensive-form rationalizability not only to put

endogenously restrictions on the games that can be discovered but also on the self-confirming

equilibrium that may emerge in absorbing states of discovery processes. While self-confirming

equilibrium is a rather weak solution concept, the requirement of using only extensive-form

rationalizable strategies strengthens it considerably as extensive-form rationalizability involves

forward induction.

A technical obstacle in defining self-confirming equilibrium in extensive-form rationaliz-

able strategies is that self-confirming equilibrium is defined in behavior strategies whereas

extensive-form rationalizability is defined in (pure) strategies. We do require the extension

33



of self-confirming equilibrium to behavior strategies because it may not exist in pure strategies

even in standard games. Although mixed strategies do not makes sense in games with unaware-

ness when interpreted as an object of choice of players because it would mean that players can

choose ex ante without any consideration of their awareness, we can consider mixed strategies

that are equivalent to behavioral strategies from a modeler’s view. This requires us to spell out

the notion of equivalence between strategies.

For any node n, any player i ∈ I0, and any opponents’ profile of strategies s−i (including

nature if any), let ρ(n | βi, s−i) and ρ(n | σi, s−i) denote the probability that (βi, s−i) and

(σi, s−i) reach node n, respectively. For any player i ∈ I0, a mixed strategy σi and a behavior

strategy βi are equivalent if for every profile of opponents’ strategies s−i ∈ S−i and every node

n ∈ N of the extensive-form game with unawareness ρ(n | σi, s−i) = ρ(n | βi, s−i). This notion

of equivalence between strategies is based on the notion of strategies reaching nodes. Schipper

(2018) shows that it implies also equivalence between strategies with respect to nodes occurring.

Definition 11 (Self-confirming equilibrium in extensive-form rationalizable strategies)

A behavior strategy profile π∗ = (π∗i )i∈I0 ∈ Π is a self-confirming equilibrium in extensive-form

rationalizable strategies of the extensive-form game with unawareness Γ if for every player i ∈ I0

any mixed strategy σ∗i equivalent to π∗i assigns zero probability to any strategy of player i that

is not extensive-form rationalizable.11

To see quickly that rationalizable self-confirming equilibrium refines self-confirming equi-

librium, consider Example 3 in the Appendix. In this game, (out, accommodate) is a self-

confirming equilibrium. Yet, it is not a rationalizable self-confirming equilibrium because no

extensive-form rationalizable strategy of player 1 involves playing out. The only rationalizable

self-confirming equilibrium in this game is (in, accommodate). More interestingly, extensive-

form rationalizability strongly refines self-confirming equilibrium because it imposes forward-

induction embodied in extensive-form rationalizability. As an example, we discuss in Section 8.1

the self-confirming equilibrium in extensive-form rationalizable strategies of the battle-of-the-

sexes game with an outside option.

The following theorem asserts that for every finite extensive-form game with unawareness

there exists a steady-state of conceptions and behavior emerging from rationalizable play.

Theorem 1 For every extensive-form game with unawareness there exists a rationalizable dis-

covery process leading to a rationalizable self-confirming game which possesses a self-confirming

equilibrium in extensive-form rationalizable strategies.

11We call our equilibrium notion self-confirming equilibrium in extensive-form rationalizable strategies in order

to distinguish it from different versions of rationalizable self-confirming equilibrium in Rubinstein and Wolinsky

(1994), Esponda (2013), Dekel, Fudenberg, and Levine (1999), and Fudenberg and Kamada (2015, 2018).
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The proof is contained in the appendix.

We interpret this result as a general existence result for equilibrium in conceptions and

behavior for finite games with unawareness.

8 Discussion

8.1 Repeated Games with Unawareness

We considered a fixed set of players rather than a population with random matching. This

requires us to assume that players play repeatedly in a myopic way without any attempt to

maximize intertemporally. While we allow players to make others strategically aware of actions

so as to maximize payoff in the current game, there is no attempt to strategically teach them

in order to “cash in” in future “repetitions” of the game. Neglecting repeated game effects

is motivated by finding a learning foundation for stage-game equilibrium. This assumption

is common in the literature on learning equilibrium (e.g. Foster and Young, 2003, Hart and

Mas-Colell, 2006). Learning stage-game equilibrium can be in jeopardy in standard normal-

form games without unawareness if strategic teaching is allowed (see Schipper, 2017). The

notion of self-confirming equilibrium could also be meaningfully applied to repeated games

with intertemporal optimization, see for instance Kalai and Lehrer (1993). We argue here that

as long as we focus on finitely repeated games, our framework of finite extensive-form games

with unawareness is sufficient. The reason is simply that every finitely repeated game is a

finite extensive-form game. Moreover, our framework explicitly allows for simultaneous moves.

Below we demonstrate this with an example. The example also illustrates the role of forward-

induction in games with unawareness and the refining power of self-confirming equilibrium in

extensive-form rationalizable strategies.

The example is a twice-repeated Battle-of-the-Sexes game with an outside option.12 Initially

player 2 is unaware of the outside option of player 1. Player 1 can make him aware of the outside

option by taking it in the first stage and subsequently not taking it in the repetition. In such a

case the presence of the outside option unfolds its power of forward-induction via extensive-form

rationalizability embodied in our solution concept.

The game is described in Figure 12. We assume that throughout the interaction, player 1

is aware of everything. For simplicity we omit his information sets. The blue information sets

model the information and awareness of player 2. There are two stages. The first stage features

a game with two trees. The upper tree consists of a standard Battle-of-the-Sexes game with

an outside option. If player 1 does not take the outside option, then players play a Battle-of-

the-Sexes game. Player 2 is unaware of player 1’s outside option. This is indicated by the blue

12I thank Byung Soo Lee for suggesting such an example.
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Figure 12: Twice-Repeated Battle-of-the-Sexes Game with an Outside Option
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information set that emanates after player 1 chooses “in” and that consists of a standard 2× 2

Battle-of-the-Sexes game, the lower “tree” of the initial game. When player 1 chooses “out”,

then player 2 becomes aware of “out” as indicated by his blue information set at the terminal

node with payoff vector (2, 0).

The second stage of the repeated game depends on the action of player 1 in the first. When

player 1 chooses “out” in the first stage, then player 2 becomes aware of the outside option.

This is reflected by the updated information sets in the left game (stage 2). When player 1

chooses “in”, then player 2 remains unaware of “out”. Consequently, in the second stage the

game is identical to the first stage (the right game of the stage 2 in Figure 12).

In this repeated game, it is extensive-form rationalizable for player 1 to play “out” in the

first stage and (in, B) in the second. Moreover, player 2 plays B in the left game of the second

stage. Initially, player 2 is unaware of “out”. Thus, player 2 cannot forward-induce from player

1 not taking “out” that player 1 plays B in the Battle-of-the-Sexes. That is, unawareness of

the outside option mutes forward-induction. Player 1 realizes this and takes “out” in the first

stage so as to raise player 2’s awareness of “out”. In the second stage, he can now choose “in”

anticipating that player 2 chooses B by forward induction.

Once the twice-repeated game is over, the discovered version is depicted in Figure 13. It

is now a repetition of the Battle-of-the-Sexes game with an outside option in which player

2 is aware of the player 1’s outside option from the beginning. This repeated game is self-

confirming. In this game, playing (in, B) in each stage for player 1 and playing B for player 2

is a self-confirming equilibrium in extensive-form rationalizable strategies.

Note that the discovered version is used twice in this example. Once in the left second stage

game of the game in Figure 12 and once in Figure 13. The latter is the discovered version of
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Figure 13: Discovered Twice-Repeated Battle-of-the-Sexes Game with an Outside Option
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Figure 14: Discovery Process of Twice-Repeated Battle-of-the-Sexes Game with an Outside

Option

the repeated game while the former is the discovered version of the stage game. The discovery

process is depicted in Figure 14.

8.2 Mutual Belief of Constant Awareness

Our definition of self-confirming equilibrium requires among others that each player’s aware-

ness is constant along the equilibrium paths. One may ask whether this implies that there is

mutual or even common belief in constant awareness. This would be a sensible requirement on

equilibrium. Not only shall each player’s awareness be constant in equilibrium but each player

shall also believe that any other player’s awareness is constant in equilibrium. Unfortunately
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this is not necessarily the case if players awareness in incomparable in equilibrium. Figure 15

presents a counterexample. There are two players and four trees. The unique equilibrium path

(which is also the unique extensive-form rationalizable path) is given by the thin orange lines.

The information structure of player 1 is drawn in blue, the one of player 2 is marked with green

intermitted lines. Player 1 is aware of both of his actions left and right but remains unaware

of the left action of player 2. Player 2 is aware of his left action but remains unaware of player

1’s left and right actions. Along the equilibrium path in the upmost tree T̄ all of player 1’s

information sets are located in tree T 1. All of player 2’s information sets along the equilibrium

path in T̄ are located in tree T 3. Thus both players have constant awareness. Yet, the infor-

mation sets of player 2 along the equilibrium path in T 1 move from T 2 at player 2’s decision

node to T 1 at the terminal node. Player 1 believes that player 2’s awareness along equilibrium

is changing. Thus, there is an opportunity for further strengthening the equilibrium concept

by requiring also mutual belief in constant awareness. For existence, we would need to restrict

to extensive-form games with unawareness in which the set of trees form a complete lattice so

that there is always a meet of all players’ trees on which awareness could be constant for all

players and in which this fact would be common belief.

Figure 15: No mutual belief of constant awareness along the equilibrium path
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8.3 Awareness of Unawareness

So far we focused on unawareness proper but did not discuss awareness of unawareness. More

precisely, if a player is unaware of an action then she is unaware that she is unaware of it. Yet,

the framework is flexible enough to allow for awareness of unawareness of “something”. As in

previous work (Halpern and Rego, 2014, Heifetz, Meier, and Schipper, 2013), we can model

awareness of unawareness by including imaginary actions as placeholders for actions that a

player may be unaware and terminal nodes/evaluations of payoffs that reflect her awareness of

unawareness. A player may now take such an imaginary action (or some other investigative

action) that may or may not reveal what happens without being able to precisely anticipate

what happens. We refer to Heifetz, Meier, and Schipper (2013) modeling details. Awareness of

unawareness can be retained in self-confirming equilibrium of a self-confirming game only if in

such an equilibrium the player decides not to investigate (further) her awareness of unawareness.

8.4 Benefits of Non-rationalizable Discoveries

We introduced extensive-form rationalizability in order to limit predictions of what could be

discovered. It also means that if the goal is to maximize discoveries, then one should not

limit oneself to rationalizable discoveries. This is already illustrated in Example 2. It matches

the observation that in reality quite a number of path-breaking discoveries like the discovery

of penicillin were due to chance and serendipity. Example 3 makes clear that rationalizable

discoveries may leave players worse off than non-rationalizable discoveries. This is precisely due

to the fact that even rational players cannot anticipate discoveries. It does not mean though

that players would be necessarily better off with non-rationalizable discoveries (examples can

be easily constructed).

8.5 Related Literature

There is a large and growing literature on self-confirming equilibrium in games starting with

Battigalli (1987), Fudenberg and Levine (1993a), and Kalai and Lehrer (1993), who use the

terminology “conjectural”, “self-confirming”, and “subjective” equilibrium, respectively.13 In

this literature, a mixed strategy of a player is either interpreted as a distribution of pure

strategies in the population (e.g. Fudenberg and Levine, 1993a, Battigalli et al. 2015) or as a

mixture played by a fixed set of players (e.g., Fudenberg and Kreps, 1995, Dekel, Fudenberg,

and Levine, 1999, 2002). We prescribe to the latter interpretation because when considering a

population of players for each player position, we would also have to specify a distribution of

awareness for those players in the population, which would complicate the setting considerably.

The focus on latter interpretation also justifies the use of what has been called unitary belief

13See Oechssler and Schipper (2003) for a first experiment on self-confirming equilibrium in games.
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assumption (Fudenberg and Levine, 1993a). Instead of defining self-confirming equilibrium

such that for each strategy in the support of the mixed equilibrium strategy there is a belief

about opponents’ strategies with which it is rational, we define it as there exist a belief over

opponents’ strategies for which every strategy in the support of the mixed equilibrium strategy

is rational.

Various notions of rationalizable self-confirming equilibrium have been introduced in the

literature. Battigalli and Guaitoli (1997) briefly discuss conjectural equilibrium in extensive-

form rationalizable strategies with point-beliefs and pure strategies (and without unawareness)

in a particular example of a macroeconomic game. Rubinstein and Wolinsky (1994) consider

rationalizable conjectural equilibrium in normal-form games (without unawareness) in which

players receive signals about other player’s actions and it is common knowledge that every

player maximizes expected payoff given her signal. Gilli (1999) presents a strengthening of

rationalizable conjectural equilibrium by Rubinstein and Wolinsky (1994). His refinement is

equivalent to ours when self-confirming equilibrium in pure strategies is considered in standard

games without unawareness. This follows from his Theorem 5. Esponda (2013) extends ra-

tionalizable conjectural equilibrium of Rubinstein and Wolinsky (1994) to static games with

incomplete information (without unawareness). He also provides a characterization in terms

of a procedure of iterative elimination of strategies as well as an epistemic characterization.

Dekel, Fudenberg, and Levine (1999, 2002) introduce a notion of rationalizable self-confirming

equilibrium for extensive-form games. Their notion differs from ours in several respects. First,

they restrict players’ beliefs to correspond to independent randomizations whereas we and Ru-

binstein and Wolinsky (1994) allow for correlation in the spirit of correlated rationalizability.

Second, they assume that the path of play is public information to all players whereas we allow

for more general information/signals. Third, our notion of rationalizable discovery process mo-

tivates restricting self-confirming equilibrium to extensive-form rationalizable strategies while

in Dekel, Fudenberg, and Levine (1999, 2002) a player’s strategy need to be optimal only at all

of her information sets that are not precluded by the strategy itself. Finally, Dekel, Fudenberg,

and Levine (1999, 2002) do not consider unawareness. Fudenberg and Kamada (2015, 2018)

generalize the solution concept by Dekel, Fudenberg, and Levine (1999, 2002) to allow for more

general information partitions over terminal nodes.

Self-confirming equilibrium has also been extended to contexts with more radical uncer-

tainty such as ambiguity. Battigalli et al. (2015) study self-confirming equilibrium in the

smooth ambiguity model. They show that the set of self-confirming equilibria is expanding in

ambiguity aversion. Moreover, an intuitive status-quo biases emerges: Ambiguity about played

actions vanishes while ambiguity about unused actions remains present making latter even less

attractive. Unawareness is distinct from ambiguity. Ambiguity is about lacking the ability to

judge uncertainties probabilistically. Unawareness is about lacking even conception of some

uncertainties.
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Our approach is related to the literature on strategic interaction with misspecified models.

Esponda and Pouzo (2016) consider interaction in normal-form games with players that form

subjective distributions over their outcomes conditional on their own signal and action. Their

models may be misspecified in the sense that their set of priors may not include the true

distribution. In equilibrium, players play optimally given their belief and every subjective

distribution in the support of their belief minimizes a distance to the true distribution. Our

approach and their’s have in common that we both in some sense extend the notion of self-

confirming equilibrium to misspecified models. We focus explicitly on misspecifications due to

unawareness while in their setting unawareness does not play any explicit role. Their approach

is restricted to normal-form games while we explicitly consider general extensive-form games

in which players may not be able to commit ex ante to contingent plans of actions due to

unawareness. Moreover, we explicitly make use of the extensive-form structure to refine self-

confirming equilibrium by extensive-form rationalizability (and hence forward induction) while

they simply lack the necessary game theoretic structure to do this in their “reduced-form”

statistical approach. We admire their apparent tractability and generality of their statistical

approach. At the same time, we see value in exploring the consequence of unawareness as a

particular source of misspecification in an explicit game theoretic approach.

There are a few papers that are closely related to ours as they all combine ideas of some

sort of self-confirming equilibrium with a context that allows for lack of awareness. Greenberg,

Gupta, and Luo (2009) study solution concepts related to both rationalizable self-confirming

equilibrium and extensive-form rationalizability in strategic situations in which each player

can live in their “own game” that could be widely unrelated. Note that this is different from

our approach because we are motivated by the literature on unawareness. Players are not

allowed to entertain delusions but they may just “miss” some features of the game. Greenberg,

Gupta, and Luo’s (2009) notion of path-mutual accepted course of actions corresponds roughly

to our notion of self-confirming equilibrium in extensive-form rationalizable strategies but in

some sense players are interpreted to play the same own games over and over. There is no

discovery of structural features of the underlying strategic situation, which we believe is a key

component of our modeling approach. Sasaki (2017) observes that Nash equilibrium may fail to

model a stable convention in games with unawareness. He proposes essentially a notion of self-

confirming equilibrium and shows that it may fail to exist in some games with unawareness. He

just considers normal-form games with unawareness though. Čopič and Galeotti (2006) study

normal-form games with unawareness in which the awareness is determined endogenously in an

equilibrium of conceptions and behavior, which is very similar to our notion of self-confirming

equilibrium in a self-confirming game. Their analysis is confined to normal-form games while we

consider extensive-form games. They do not have the analogue to our notion of discovery process

nor do they consider an analogue to self-confirming equilibrium in extensive-form rationalizable

strategies. In an unpublished thesis, Camboni (2015) studies self-confirming equilibrium in
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single-person decision problems with unawareness. He requires as we do that awareness is

self-confirming.

Somewhat further away from our approach is inductive game theory (e.g., Kaneko and Kline

2008). We share in the desire to explain the origins of players’ views of strategic situations.

Moreover, both approaches feature a feedback between behavior and the players’ views and the

possibility of multiplicity of views. Yet, there are important conceptual differences. The authors

assume that even initially some notion of recurrent situation and regular behavior exists while we

would reject it in light of our introductory example. Moreover, they postulate that exogenously

players experiment occasionally with behavior while we prescribe rationalizable behavior along

the discovery process. Players can also forget infrequent features of the game in inductive game

theory while our players’ awareness can only (weakly) increase. From private communication

I also know that Mamoru Kaneko rejects to the use of extensive-form rationalizability. Yet,

despite the differences of our formal approaches and conceptual differences with respect to

solution concepts, we both share the aim of extending the tools of game theory so as to model

more carefully the players’ perception of strategic situations.

Our notion of discovered game can be understood as (an extensive-form) game theoretic

analogue to awareness bisimulation in van Ditmarsch et al. (2018). Awareness bisimulation is

used to compare awareness structures of Fagin and Halpern (1988). Roughly, two awareness

structures are awareness bisimilar if they model the same information modulo awareness. In

our context, the discovered version of a game with unawareness models the same information

modulo awareness.

We view our paper adding the equilibrium notion to the tool-box of game theory with un-

awareness. Future research should focus on applications. For instance, Ryall (2003) argues that

self-confirming equilibrium can naturally be applied to strategic interaction between firms. Our

framework with unawareness should be especially suited to situations in which firms compete

with innovations and decisions makers are not aware of all attributes of products relevant to

consumers.

A Proofs

Proof of Remark 1

Any extensive-form game without unawareness is associated with just one tree T̄ . Let π be a

Nash equilibrium in behavior strategies of the finite extensive-form game. Construct a profile of

belief systems µ such that for every i ∈ I, µi(hi)({π−i}) = 1 for hi ∈ H̃i(π) such that there is no

h′i ∈ H̃i(π) with h
′
i  hi. That is, hi is player i’s initial information set along the path induced

by β. Using Bayesian updating of belief systems, µi(h
′′
i )({π−i}) = 1 for all h′′i ∈ H̃i(π). For other

information sets that are not on any Nash equilibrium paths, we let beliefs to be arbitrary. We
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claim that π is a self-confirming equilibrium in behavior strategies: Condition (0) is vacuously

satisfied in finite extensive-form games without unawareness. Condition (i) is implied by π being

a Nash equilibrium. For any player i ∈ I, given belief system µi, Nash equilibrium behavior

strategy βi maximizes player i’s expected payoff at every of her (non-terminal) information sets

along the equilibrium paths. Condition (ii) is satisfied by construction of µ. �

The converse does not hold as the following simple example demonstrates:

Figure 16: Entry game

I

II
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accommodatefight
1, 3

2, 20, 0

Example 3 In the standard entry game in Figure 16, the profile (out, fight) is a Nash equi-

librium but (out, accommodate) is not. If player II accommodates, then the best response of

player I is to move in. Yet, consider a belief system of player I such that she believes that player

I would fight, µI(fight) = 1. The profile (out, accommodate) constitutes a self-confirming equi-

librium because player I’s false belief is never falsified with player I’s action to move out.14

Example 3 shows that there are self-confirming equilibrium profile of actions that are not

Nash equilibrium profile of actions. Yet, in this example the non-Nash self-confirming equi-

librium still yields a Nash equilibrium in terms of the outcome. A stronger counterexample is

presented in Fudenberg and Kreps (1995) who consider a three-player game in which there is a

self-confirming equilibrium that does not even yield Nash equilibrium outcomes.15 No matter

whether we compare the equilibrium notions in terms of strategies or outcomes, we conclude

that self-confirming equilibrium is a coarsening of Nash equilibrium in standard games:

Corollary 1 For every finite extensive-form game without unawareness, there exists a self-

14Different from definitions of self-confirming equilibrium in the literature (e.g., Fudenberg and Levine, 1993,

Battigalli and Guatoli, 1997) we use sequential rationality in Definition 1 (i). Yet, this is just required on

the equilibrium path. Thus, incredible Nash equilibria like (out, fight) are not ruled out by our notion of

self-confirming equilibrium.
15For a more detailed comparison of Nash equilibrium and self-confirming equilibrium in standard games, see

Kamada (2010) and Shimoji (2012).
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confirming equilibrium in behavior strategies.

Proof of Remark 2

If Γ is an extensive-form game with common constant awareness then there exists T ∈ T such

that for all n ∈ T̄ , hi(n) ⊆ T for all i ∈ I. This tree together with the information sets of

all players on this tree constitutes an extensive-form game without unawareness. Since it is

finite, it follows now from Nash’s existence theorem and Kuhn’s theorem on the equivalence

of behavior strategies and mixed strategies in extensive-form games with perfect recall (and

without unawareness) that the game possesses a Nash equilibrium in behavior strategies. By

Remark 1 it is a self-confirming equilibrium of this standard extensive-form game. Extend the

equilibrium to a self-confirming equilibrium of Γ. Such an extension is possible because condi-

tions of self-confirming equilibrium pertain to beliefs and information sets along the equilibrium

path in T only, for all i ∈ I. To see that the converse does not hold, consider for instance the

game in Figure 5 as a counterexample. �

Proof of Proposition 1

We show that for any extensive-form game with unawareness Γ ∈ Γ and any strategy profile

sΓ ∈ SΓ, the discovered version Γ′ satisfies all properties 1–3, U0, U1, U4, U5, and I2-I7 above.

For any player i ∈ I, we verify these properties one-by-one.

Properties 1–3: This follows directly from Definition 3 (i) and the fact that Γ satisfies

properties 1–3.

U0: Definition 3 (ii a.) says that for any n ∈ T ′′, the redefined information set is a subset

of T i
sΓ

with T i
sΓ

� T ′′. Definition 3 (ii b.) says that for any n ∈ T ′′, the redefined information

set is a subset of T ′′. All other information sets (Definition 3 (ii c.)) remain unchanged. Thus,

Γ′ satisfies U0 because Γ does.

For the proof of the remaining properties, we use the fact that Γ′ satisfies U0 without always

explicitly mentioning it.

U1: Consider first information sets redefined by Definition 3 (ii a.). By assumption T̄ �

T ′′ � T i
sΓ

� T ′, n ∈ T̄ , hi(n) ⊆ T ′. If nT i
sΓ

is the copy of n in T i
sΓ
, then since Γ satisfied U4

we have hi(nT i
sΓ
) = hi(n). Since nT i

sΓ
= (nT ′′)T i

sΓ
, we have hi((nT ′′)T i

sΓ
) = hi(n). Hence by

Definition 3 (ii a.) (nT ′′)T i
sΓ

∈ h′i(nT ′′).

Similarly, consider now information sets redefined by Definition 3 (ii b.). We claim that for

all T ′′ ∈ T with T ′ � T ′′ � T i
sΓ
, n′ ∈ T ′′, and i ∈ P ′(n′), we have n′ ∈ h′i(n

′) ⊆ T ′′ (which implies

U1 for those information sets). By Definition 3 (ii b.), nT ′′ ∈ h′i(nT ′′) if hi(nT ′′) = hi(n). (Recall

that n ∈ T̄ and hi(n) ⊆ T ′.) Let n′ = nT ′′ . Then hi(nT ′′) = hi(n) follows from Γ satisfying U4.
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Any other information set of Γ on T ′ 6� T i
sΓ

remains unchanged in Γ′ by Definition 3 (ii c.).

Since Γ satisfies U1, so do these information set in Γ′.

I2: Consider first information sets redefined by Definition 3 (ii a.). First we show if for

some n′ ∈ T̄ , n′
T i
sΓ

∈ h′i(nT ′′), then h′i(n
′
T i
sΓ

) ⊆ h′i(nT ′′). (Assuming that there exists a n′ ∈ T̄

whose copy in T i
sΓ

is w.l.o.g. because any node in a lower tree must be the copy of a node in a

larger tree.) ñ ∈ h′i(n
′
T i
sΓ

) if and only if hi(ñ) = hi(n
′), ñ ∈ T i

sΓ
, by Definition 3 (ii a.). Since Γ

satisfies U4, hi(n
′) = hi(n

′
T i
sΓ

). Since n′
T i
sΓ

∈ h′i(nT ′′), hi(n
′
T i
sΓ

) = hi(n) by Definition 3 (ii a.).

Thus, hi(n
′) = hi(n). Hence hi(ñ) = hi(n). Therefore ñ ∈ h′i(nT ′′).

Second, we show that if for some n′ ∈ T̄ , n′
T i
sΓ

∈ h′i(nT ′′), then h′i(n
′
T i
sΓ

) ⊇ h′i(nT ′′). ñ ∈

h′i(nT ′′) if and only if hi(ñ) = hi(n), ñ ∈ T i
sΓ

by Definition 3 (ii a.). By the same argument as

for the proof of the converse above, U4 of Γ implies hi(ñ) = hi(n
′). Thus, ñ ∈ h′i(n

′
T i
sΓ

).

The proof for information sets redefined in Definition 3 (ii b.) is analogous. Finally, all

information sets defined in Definition 3 (ii c.) remained unchanged from Γ. Since Γ satisfies I2,

so do these information sets.

I3: We need to show that if n1 ∈ h′i(n) ⊆ T ∗ and there is a path n1, ..., nk ∈ T ∗ such

that i ∈ P (n1) ∩ P (nk), then h′i(nk) ⊆ T ∗. Consider first the case in which h′i(n) ⊆ T ′ and

T ′ � T i
sΓ

� T ′′ � T̄ . By Definition 3 (ii a.), h′i(nT ′′) = {n′ ∈ T i
sΓ

: hi(n
′) = hi(n)}. Suppose now

to the contrary that n1 ∈ h′i(nT ′′) and there is a path n1, ..., nk ∈ T i
sΓ

such that i ∈ P (n1)∩P (nk)

and h′i(nk) ⊆ T ′′′ 6� T i
sΓ
. Such information set h′i(nk) violates U0. Hence T ′′′ � T i

sΓ
. But then

h′i(nk) violates Definition 3 (ii. a).

Consider now the case in which h′i(n) ⊆ T ′ and T ′ � T ′′ � T i
sΓ
. By Definition 3 (ii b.),

h′i(nT ′′) = {n′ ∈ T ′′ : hi(n
′) = hi(n)}. Information sets are now stationary in the sense that the

node at which the information occurs is an element of the information set. Thus, information

sets in such trees satisfy I3.

Finally, for all other cases, I3 follows from the fact that Γ satisfies I3.

I4: This follows immediately from Γ satisfying I4 and Γ′ satisfying U0.

I5: This follows immediately from Definition 3 and the fact that the original game Γ satisfies

I5. Note that equivalent information sets are treated equally in Definition 3.

I6: Suppose there is a path n1, n2, ...nk, n1 6= nk, with i ∈ P (n1) ∩ P (nk) such that at n1

player i takes action ai. Moreover, let n′ ∈ h′i(nk) with n
′ 6= nk. Further, suppose now to the

contrary that there doesn’t exist n′1 6= n′ with a path n′1, n
′
2, ..., n

′
ℓ = n′ such that h′i(n

′
1) = h′i(n1)

and at n′1 player i takes action ai.

Consider first the case in which h′i(nk) ⊆ T ′′ � T i
sΓ
. By Definition 3 (ii b.) we must have

n1, n2, ..., nk ∈ T ′′. Since T ′′ � T̄ , there exists mk ∈ T̄ such that (mk)T ′′ = nk. By Definition 3

(ii b.), h′i(nk) = h′i((mk)T ′′) = {ñ ∈ T ′′ : hi(ñ) = hi(mk)}. Moreover, there must be a path

m1, ...,mk ∈ T̄ with (m1)T ′′ = n1 and (mk)T ′′ = nk. Assume w.l.o.g. that T ′′ ≺ T̄ . Otherwise,
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if T ′′ = T̄ , then T̄ = TsΓ = T ′′ and Definition 3 leaves information sets unchanged in these

cases. From hi(ñ) = hi(mk) we conclude by U1 of Γ that ñ ∈ hi(mk) with ñ 6= mk. By I6 of

Γ, there exists ñ1 6= ñ and a path ñ1, ñ2, ..., ñℓ = ñ (all in T ′′) such that hi(ñ1) = hi(m1) and

at ñ1 player i takes action ai. By Definition 3 (ii b.), h′i(ñ1) = {n′ ∈ T ′′ : hi(n
′) = hi(m1)} =

h′i((m1)T ′′) = h′i(n1), a contradiction in this case.

The remaining cases, h′i(nk) ⊆ T ′′ 6� T i
sΓ
, follow directly from I6 of Γ.

I7: This follows from from Definition 3 and the fact that the original game Γ satisfies

I7. Note that information sets of the original game consisting of terminal nodes give rise

to information sets of terminal nodes in the discovered version. To show that if z′ ∈ h′i(z)

then ui(z
′) = ui(z), suppose to the contrary that ui(z

′) 6= ui(z). Then by Definition 3 there

exists z′ ∈ h′i(z) such that hi(z
′) = hi(z

∗) with (z∗)T
h′
i
(z)

= z. By U1, if hi(z
∗) ⊆ T̂ then

(z∗)
T̂
∈ hi(z

∗) and by Definition 3 (ii a., b.) (z′)
T̂
∈ hi(z

′). Since the original game Γ satisfies

I7, ui((z
′)
T̂
) = ui((z

∗)
T̂
) and thus ui(z

′) = ui(z
∗) by definition of Γ, a contradiction.

U4: First, consider the case T i
sΓ

� T ′′ � T̄ , n ∈ T̄ , h′i(n) ⊆ T i
sΓ
, and nT ′′ ∈ T ′′. We need to

show that h′i(nT ′′) = h′i(n). If h′i(n) = hi(n), then the claim follows from U4 of Γ. Otherwise,

if h′i(n) 6= hi(n), then hi(n) ⊆ T ′ with T ′ � T i
sΓ

by Definition 3 (ii a.). By Definition 3 (ii a.),

h′i(nT ′′) = {n′ ∈ T i
sΓ

: hi(n
′) = hi(n)}. Thus, we need to show that h′i(n) = {n′ ∈ T i

sΓ
: hi(n

′) =

hi(n)}. But this follows Definition 3 (ii a.), i.e., h′i(nT̄ ) = {n′ ∈ T i
sΓ

: hi(n
′) = hi(n)} since

n = nT̄ .

Next, consider the case T ′ � T ′′ � T i
sΓ
, n ∈ T i

sΓ
, h′i(n) ⊆ T ′ and nT ′′ ∈ T ′′. We need to

show that h′i(nT ′′) = h′i(n). By Definition 3 (ii b.), h′i(nT ′′) ⊆ T ′′ and h′i(n) ⊆ T i
sΓ
. Hence,

T i
sΓ

= T ′ = T ′′ and h′i(nT ′′) = h′i(n).

Finally, for any other case the information sets remain unchanged and the result follows

from U4 of Γ.

U5: First, consider the case T i
sΓ

� T ′′ � T̄ , n ∈ T̄ , h′i(n) ⊆ T ′′, nT i
sΓ

∈ T i
sΓ
. We need

to show that h′i(nT i
sΓ
) consists of copies of nodes in h′i(n) in tree T i

sΓ
. By Definition 3 (ii a.),

h′i(nT i
sΓ
) = {n′ ∈ T i

sΓ
: hi(n

′) = hi(n)} and h′i(n) = {n′ ∈ T i
sΓ

: hi(n
′) = hi(n)}. Hence T

′′ = T i
sΓ

and the claim follows.

Next, consider the case T ′ � T ′′ � T i
sΓ
, n ∈ T i

sΓ
, h′i(n) ⊆ T ′′, nT ′ ∈ T ′. We need to

show that h′i(nT ′) consists of copies of nodes in h′i(n) in tree T ′. By Definition 3 (ii b.),

h′i(nT ′) = {n′ ∈ T ′ : hi(n
′) = hi(n)} and h′i(n) = {n′ ∈ T i

sΓ
: hi(n

′) = hi(n)}. Hence, T
i
sΓ

= T ′′.

Since Γ satisfies U5, h′i(nT ′) consists of copies of nodes in h′i(n) in the tree T ′ as required.

Finally, for any other case the information sets remain unchanged and the result follows

from U5 of Γ.

To see that Γ′ has more awareness than Γ, note that from Definition 3 it is clear that if at

some node an information set in the discovered version differs from the original game, then it
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is because it is has been raised to a more expressive tree.

Uniqueness follows from T i
sΓ

being unique for each sΓ and player i ∈ I and the fact that

Definition 3 uniquely redefines information sets of Γ′.

That Γ′ preserves information of Γ follows from Definition 3, the fact that Γ′ has more

awareness than Γ, and the fact that both games satisfy U0, U1, and I2.

This completes the proof of Proposition 1. �

Proof of Theorem 1

By Proposition 3 every extensive-form game with unawareness possesses a rationalizable self-

confirming version. What is left to show is that every self-confirming game possesses a ratio-

nalizable self-confirming equilibrium.

Preliminary observation: Fix a finite extensive-form game with unawareness. By Remark

7 in Heifetz, Meier, and Schipper (2013), for every player i ∈ I, Rk
i ⊆ Rk−1

i for k > 1. Since

the game is finite, there exists k̄i such that for all k > k̄i, R
k
i = Rk̄i

i . Thus, R∞
i = Rk̄i

i . Let

k̄ := maxi∈I{k̄i + 1}. From Definition 9 follows that si ∈ R∞
i is rational for some βi ∈ Bk̄

i at

every information set of player i among all strategies in Si (not just among strategies in Rk̄
i ).

More precisely, for each si ∈ R∞
i , there exists a belief system βi ∈ Bk̄

i such that si is rational

with βi at all information sets hi ∈ Hi. Moreover, any strategy si that for some βi ∈ Bk̄
i is

rational at all information sets hi ∈ Hi is contained in R∞
i .16 By Proposition 1 in Heifetz,

Meier, and Schipper (2013), R∞
i is nonempty for every i ∈ I.

Fix a rationalizable discovery process that has “full support” on all extensive-form ratio-

nalizable strategies in each stage-game Γ ∈ �. By Proposition 3 it has an absorbing state,

a rationalizable self-confirming game Γ∗. Since it is an absorbing state of the rationalizable

discovery process with “full support” starting in the initial game Γ0, we have that in Γ∗ for

each player i ∈ I, there is a tree T i ∈ T such that for all hi ∈ H̃i(s), for all s ∈ R∞
Γ∗ , we have

hi ⊆ T i.

Denote by U T̄
i (σ) player i’s expected payoff from the mixed strategy profile σ in the upmost

tree T̄ . (Fix nature’s strategy (if any) in an arbitrary way.) Note that if σ ∈ ∆(R∞
Γ∗), then

UT i

i (σ) = U T̄
i (σ) (since nothing is discovered with any s ∈ R∞

Γ∗ in Γ∗). Define σ∗ ∈ ∆(R∞
Γ∗)

by for all i ∈ I, U T̄ i

i (σ∗) ≥ U T̄ i

i (σi, σ
∗
−i) for all σi ∈ ∆(R∞

Γ∗,i). (This may be interpreted as a

Nash equilibrium in mixed strategies restricted to extensive-form rationalizable strategies only

(given nature’s strategy if any).) From our preliminary observation follows that this holds for

all σi ∈ ∆(SΓ∗,i) (and not just for all σi ∈ ∆(R∞
Γ∗,i)). Hence, σ∗ is a Nash equilibrium of Γ∗

(given nature’s strategy if any). By Nash’s existence theorem and perfect recall, such a Nash

16In other words, the set of extensive-form rationalizable strategies is an extensive-form best-response set in

the terminology of Battigalli and Friedenberg (2012).
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equilibrium exist. By Kuhn’s Theorem for games with unawareness (Schipper, 2018), we can

consider the equivalent behavior strategy profile π∗. This is a self-confirming equilibrium. (0)

is implied by the fact that Γ∗ is a rationalizable self-confirming game and σ∗ ∈ ∆(R∞
Γ∗). (i) and

(ii) are implied by σ∗ being Nash equilibrium of Γ∗. �

B Graphical Model of Example 3

Figure 17: Initial and Rationalizable Self-Confirming Game in Example 3
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Figure 18: Self-Confirming Game after Irrational Actions in Example 3
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