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Abstract 

The problem of ambiguity in games is discussed, and a class of ambiguous games is 

identified. 195 participants played strategic-form games of various sizes with 

unidentified co-players. In each case, they first chose between a known-risk game 

involving a co-player indifferent between strategies and an equivalent ambiguous 

game involving one of several co-player types, each with a different dominant 

strategy, then they chose a strategy for the preferred game. Half the players knew 

that the ambiguous co-player types were equally likely, and half did not. Half 

expected the outcomes to be known immediately, and half expected a week’s delay. 

Known-risk games were generally preferred, confirming a significant strategic 

ambiguity aversion effect. In the delay conditions, players who knew that the 

ambiguous co-player types were equally likely were significantly less ambiguity-

averse than those who did not. Decision confidence was significantly higher in 2 × 2 

than larger games. 

 

Keywords: ambiguity aversion; behavioural game theory; confidence; decision making; 

Ellsberg paradox; incomplete information; intolerance of uncertainty; psychological game 

theory; subjective expected utility. 

 

 

Games in which players cannot assign meaningful probabilities to their co-players’ 

strategies present a major challenge to game theory and to rational choice theory in general. 

Ever since von Neumann and Morgenstern (1947) developed an axiomatic theory of expected 

utility (EU), and especially since Savage (1954/1972) presented his theory of subjective 

expected utility (SEU), game theory has rested on the fundamental assumption that a player 

can invariably assign probabilities to a co-player’s strategies. These probabilities are 



 

normally interpreted as the player’s beliefs about how the co-player is likely to act in the 

game. On this basis, the theory purports to provide a comprehensive theory of rational 

interactive decision making. But everyday economic, social, political, and interpersonal 

interactions frequently present agents with interactive decisions in which meaningful 

probabilities cannot be assigned, and in these circumstances game theory is powerless to 

determine what rational agents are likely to believe. We call such games ambiguous games, 

and in this article we explore a phenomenon that we call strategic ambiguity aversion, 

defined as the tendency of human decision makers to prefer known-risk games, in which 

probabilities can reasonably be assigned to co-players’ strategies, to ambiguous games. 

A strategic game is any decision involving two or more decision makers, each with two or 

more ways of acting, and in which the outcome depends on the actions of all the decision 

makers involved. The problem of ambiguity in games has wide implications, because game 

theory plays an important theoretical role across a spectrum of social and behavioural science 

disciplines, including cognitive psychology (e.g., Colman, 2003; Hedden & Zhang, 2002); 

psychobiology (e.g., McCabe, Houser, Ryan, Smith, & Trouard, 2001; Rilling, Gutman, Zeh, 

Pagnoni, Berns, & Kilts, 2002); linguistics (e.g., Dekker & van Rooy, 2000; Nowak & 

Komarova, 2001); and artificial intelligence (e.g., Bowling & Veloso, 2002; Shehory & 

Kraus, 1998). All of these fields of research, and many others, rely at times on standard 

game-theoretic ideas, including the assumption that a player can assign meaningful 

probabilities to the co-players’ strategies. The failure of this assumption in many naturally 

occurring interactive decisions creates a gap in the scope of game theory and leaves open the 

question of how human decision makers respond to ambiguous situations that arise in social, 

economic, and political strategic interactions in everyday life. 

One important clue is provided by the phenomenon of ambiguity aversion in individual 

(non-interactive) decision making. This is the robust tendency, in decisions involving risk or 

uncertainty, to prefer options in which the probabilities associated with the possible outcomes 

are known over options in which the probabilities are unknown. In conventional decision 

theory, a distinction is conventionally drawn between decision making under certainty, in 

which the agent knows in advance the outcome that will follow the choice of any available 

option, and decision making in which the agent lacks certainty about the outcomes. Decisions 

without certainty are sometimes subdivided further into decisions under risk, in which the 

agent, though lacking certainty about the outcomes, knows the outcome probabilities 

associated with the available options, and decisions under uncertainty, in which the agent is 

ignorant even of the outcome probabilities. The distinction between risk and uncertainty was 



 

introduced by Knight (1921), who illustrated it with a Gedankenexperiment involving two 

people attempting to draw a red or a black ball from an urn containing both red and black 

balls: “One man knows that there are red and black balls, but is ignorant of the numbers of 

each; another knows that the numbers are three of the former to one of the latter” (pp. 218–

219). The latter faces a decision under quantifiable risk, whereas the former faces a decision 

under unquantifiable uncertainty, more commonly called ambiguity in the contemporary 

cognitive science literature. 

When confronted with a choice between a risky option and an uncertain one, a substantial 

majority of decision makers manifest ambiguity aversion by choosing the risky option. As an 

illustration of strategic ambiguity aversion – in interactive decision making – consider the 

following mundane strategic dilemmas. (a) You have arranged to meet John for lunch this 

week, and you would like to do it today. He lunches every day in one of two restaurants, a 

long way from each other, alternating daily between the two, but you have forgotten to find 

out which one he is due to visit today, and it is too late to contact him. You have time to try 

just one of the restaurants and, whichever one you choose, there is obviously a 50-50 chance 

of meeting up with him. This is a known-risk game, with a probability of success of one-half. 

(b) You have also arranged to meet Caroline for lunch this week, and you would like to do it 

today if you do not try to meet John. You know that Caroline visits the same restaurant every 

day, and that it is called Luigi’s, but there turn out to be two restaurants by that name, a long 

way from each other, and you do not know which is the one she haunts. It is too late to 

contact her. Once again, you have to choose just one of the restaurants, but in this case you 

have no way of knowing what the relevant probabilities are – you have no way of assigning 

meaningful probabilities to the options. This is an ambiguous game with unknown 

probabilities. Assuming that you would enjoy lunch equally with John or Caroline, which 

dilemma would you prefer – trying to meet John or Caroline? If ambiguity aversion applies to 

games, then you would probably prefer the known-risk game (a) involving John. 

In individual decision making, the ambiguity aversion effect was discovered 

simultaneously and independently by Ellsberg (1961) and Fellner (1961). The simplest 

empirical demonstration of it, based on Knight’s (1921) Gedankenexperiment, is usually 

called the Ellsberg paradox. Two urns are filled with red and black balls. Urn A contains 50 

red and 50 black balls, and Urn B contains an unknown ratio of 100 red and black balls. A 

decision maker chooses a colour (red or black) and an urn (A or B), and then draws a ball 

blindly from the chosen urn and wins a prize if the ball turns out to be of the chosen colour. A 

majority of decision makers strictly prefer – definitely prefer, and not merely consider 



 

equally preferable – the known-risk Urn A to the ambiguous Urn B, irrespective of the chosen 

colour. 

It is not difficult to show that this violates the axioms of SEU theory as formulated by 

Savage (1954/1972). Without loss of generality, suppose a decision maker chooses red and 

strictly prefers Urn A to Urn B. Knowing that the probability of drawing a red ball from Urn 

A is 1/2, the decision maker must, according to the assumptions of SEU theory, have assigned 

a subjective probability less than 1/2 to drawing a red ball from Urn B, otherwise Urn A 

should not be strictly preferred for the prospect of drawing a red ball. This implies that the 

decision maker’s subjective probability of drawing a black ball from Urn B must be greater 

than 1/2, because the ball that is drawn must obviously be either red or black, and the two 

probabilities must therefore sum to unity. According to SEU theory, the decision maker 

should therefore prefer the prospect of drawing a black ball from Urn B to that of drawing a 

red ball from Urn A, and the strict preference for drawing a red ball from Urn A must 

therefore have been inconsistent with the decision maker’s own preferences. The decision 

maker violated SEU theory by failing to maximize SEU. In fact, ambiguity aversion violates 

not just SEU theory, but every theory of choice under uncertainty based on conventional 

probabilities. Nonetheless, a substantial majority of decision makers prefer the known-risk 

Urn A for both red and black balls, and this is evidence not only of human irrationality, at 

least as rationality is interpreted in SEU theory, but more specifically of ambiguity aversion. 

The phenomenon has been extensively studied in individual decision making and is now 

known to be both moderately powerful and robust (Camerer, 1995, pp. 644–649; Camerer & 

Weber, 1992; Curley & Yates, 1989; Frisch & Baron, 1988; Rode, Cosmides, Hell, & Tooby, 

1999). Ambiguity aversion has been reported even when decision makers are informed of the 

second-order probabilities associated with the ambiguous options. In Ellsberg urn choices, 

for example, ambiguity aversion has been found when the decision makers do not know the 

specific ratio of red to black balls in the ambiguous urn but know that every possible ratio is 

equally likely, or that the specific ratio was chosen randomly from a sampling frame 

containing every possible ratio, so that every ratio had an equal chance of being selected 

(e.g., Rode et al., 1999). This information enables statistically minded decision makers to 

infer the outcome probabilities, but a degree of ambiguity aversion is generally observed 

nevertheless. Even without this information, a decision maker faced with an ambiguous 

choice can invariably reformulate it as a risky choice by assigning subjective second-order 

probabilities to the raw probabilities that might apply (Gärdenfors & Sahlin, 1982, 1983; 

Marschak, 1975; Savage, 1954/1972, p. 58), at the very least by simply applying the principle 



 

of insufficient reason and treating the unknown probabilities as though they were known to 

be equal (Knight, 1921, p. 219; Raiffa, 1961). However, although ambiguity can be converted 

into risk without difficulty, it is clear from the empirical evidence that ambiguity and risk 

have distinct psychological properties and quite different effects on choice behaviour. 

Several theories have been put forward to explain ambiguity aversion, but none has yet 

gained general acceptance (Camerer, 1995, pp. 644–649; Camerer & Weber, 1992; Curley, 

Yates, & Abrams, 1986; Keren & Gerritsen, 1999). We believe that ambiguity aversion is 

driven by loss of decision confidence arising from pessimism in response to uncertainty. Our 

uncertainty intolerance hypothesis is based partly on the reasonable assumption that people 

are motivated to feel confident about their judgments and decisions, and partly on clear 

evidence that uncertainty undermines confidence (Becker & Brownson, 1964; Dugas, 

Gosselin, & Ladouceur, 2001; Ghosh & Ray, 1997) and induces a psychological state that 

most people find disturbing or aversive (Freeston, Rhéaume, Letarte, Dugas, & Ladouceur, 

1994). Freeston et al. proposed that ambiguous situations activate an uncertainty schema that 

makes people worry and feel more anxious. Similarly, Ghosh and Ray (1997) demonstrated 

that the presence of ambiguity accentuates people’s perceptions of risk, and that decision 

makers who are less risk averse, and have more tolerance for ambiguity, display greater 

confidence in their choice. Thus, we argue that the tendency of decision makers to prefer 

known-risk to ambiguous options arises because most people tend to become more anxious 

and less confident in the face of uncertainty, and ambiguous options, almost by definition, 

involve greater uncertainty than risky options. 

 

Theoretical Modelling of Ambiguity in Games 

Eichberger, Kelsey, and Schipper (2003) modelled pessimistic and optimistic responses to 

ambiguity in dyadic games in terms of Choquet expected utility (CEU) theory, according to 

which decision makers’ beliefs or subjective probabilities are represented by neo-additive 

(non-extremal outcome additive) probabilities or capacities (see also Dow & Werlang, 1994; 

Eichberger & Kelsey, 2000, 2004). The Choquet expected utility is a essentially a weighted 

average of the minimum, maximum, and expected payoffs. According to this interpretation, 

ambiguity aversion arises when a decision maker responds to ambiguity with pessimistic 

caution, overweighting the worst possible outcome relative to SEU theory (Lopes, 1987). 

Alternative theoretical interpretations of ambiguity in games have been put forward by Lo 

(1996) and Marinacci (2000). 

 



 

Experimental Modelling of Certainty, Risk, and Ambiguity in Games 

According to a fundamental rationality assumption of game theory (see, e.g., McClennen, 

1991; Sugden, 1991), players are assumed to be rational in the sense of SEU theory. This 

implies that they always choose strategies that maximize their individual SEU, relative to 

their knowledge and beliefs at the material time. SEU theory is essentially a formalization of 

the commonsense notion of instrumental rationality, according to which people have more or 

less coherent preferences and probability judgments and try to do the best for themselves, 

relative to these preferences and beliefs, in every decision that arises. An interpretation of 

SEU in terms of revealed preferences, popular in economics, asserts that a person who 

chooses A and rejects B reveals a preference of A over B and a higher utility for A than B, and 

choices therefore maximize SEU tautologically. However, most psychologists (e.g., Colman, 

2003) and some economists (e.g., Sen, 1978) believe that revealed preference theory explains 

too little, because choices are not the only indicators of preferences, and too much, because 

other factors apart from preferences influence choices. In psychology, preferences are 

therefore usually interpreted as internal attitudes that influence choices. 

A common knowledge assumption, now standard in game theory, requires the 

specification of the game, including the strategy sets and payoff functions of the players, to 

be common knowledge in the sense that every player knows it, knows that every other player 

knows it, knows that every other player knows that every other player knows it, and so on. 

This assumption was introduced by Lewis (1969, pp. 52–68) and formalized mathematically 

by Aumann (1976). 

In order to study strategic ambiguity aversion experimentally in simple dyadic games, we 

modelled strictly determined, risky, and ambiguous strategic games in terms of players’ 

knowledge and beliefs. In some games, the rationality and common knowledge assumptions 

of game theory enable Player I to predict Player II’s choice with certainty, because one of 

Player II’s strategies is uniquely rational according to SEU theory. In these circumstances, 

Player I knows what Player II will choose and therefore faces a decision under certainty, and 

the game is strictly determined. 

  



 

 

  II 

  C D 

I 
C 2, 1 0, 0 

D 0, 1 2, 0 

 

Figure 1. A strictly determined game in which Player I chooses under certainty. The pair of 

numbers in each cell are the payoffs to Player I (choosing between the rows) and Player II 

(choosing between the columns) in that order. 

 

 

Figure 1 shows a simple example of such a game. Player I chooses one of the rows, 

Player II independently chooses one of the columns, and the four cells represent the possible 

outcomes, with the pair of numbers in each cell indicating (in units of utility) the payoffs to 

Players I and II respectively in that outcome. For example, Player I, by choosing Strategy D, 

wins nothing if Player II chooses Strategy C but wins 2 units if Player II chooses D. In this 

game, Player II has a dominant C strategy by virtue of receiving a higher payoff from 

choosing C than D irrespective of Player I’s choice. Thus, Player II, by choosing Strategy C, 

wins 1 unit whatever strategy Player I chooses, whereas by choosing strategy D, Player II 

receives a zero payoff whatever Player I chooses. Thus, the rationality and common 

knowledge assumptions imply that Player I knows what Player II will choose and therefore 

knows the outcome and corresponding payoffs that will result from choosing row C or D: 

row C will lead to a (C, C) outcome and payoffs of (2, 1); and row D will lead to a (D, C) 

outcome and payoffs of (0, 1). Because Player I seeks to maximize SEU, the outcome (C, C) 

is therefore strictly determined, and the payoffs (2, 1) are predictable with certainty – subject 

only to the standard rationality and common knowledge assumptions. The game in Figure 1 is 

clearly unambiguous. 

 

  II 

  C D 

I 
C 2, 1 0, 1 

D 0, 1 2, 1 

 

Figure 2. A risky game for Player I. 

 

In other games, Player I cannot predict Player II’s strategy with certainty but can, with 

some confidence, assign subjective probabilities, representing beliefs about how Player II 



 

will act, and in those circumstances Player I faces a risky decision. Figure 2 depicts the 

simplest game of this type, with a payoff function that assigns Player II the same expected 

payoff in every outcome of the game, indicating that Player II is indifferent between the four 

possible outcomes. The rationality and common knowledge assumptions do not specifically 

require Player II to choose between the columns using a (1/2, 1/2) mixed strategy – a random 

strategy choice using predetermined probabilities, in this case equal, implemented by tossing 

a coin, for example – nor do they require Player I to adopt the belief that Player II is equally 

likely to choose either strategy (C or D). Contemporary game theory requires merely that a 

player’s strategies should be rationalizable in the sense of being justified in terms of 

consistent beliefs, including beliefs about the co-player’s beliefs (Bernheim 1984; Pearce 

1984), but it seems natural for Player I to assign equal subjective probabilities to Player II’s 

strategies and, assuming that the labelling of strategies is arbitrary, it would be difficult to 

find a reasoned basis for any other belief by Player I about Player II’s likely behaviour. 

Under the natural equal-probability assumption, Player I faces a risky decision, with an 

expected payoff from a C choice of (1/2)(2) + (1/2)(0) = 1, and similarly from a D choice of 

(1/2)(0) + (1/2)(2) = 1. This game is risky rather than ambiguous. 

We model ambiguous games with the notion of incomplete information, according to 

which players are assumed to be ignorant of their co-players’ preferences. The specification 

of such games requires a refinement of the standard common knowledge assumption of 

classical game theory. To model games of incomplete information, Harsanyi (1967–1968) 

introduced a theory of Bayesian games, in which incomplete information is transformed into 

complete information by introducing a fictitious player representing chance. In a two-player 

game in which Player I is ignorant of Player II’s preferences, the Harsanyi transformation 

involves defining as many Player II types as are possible, each with a different payoff 

function representing the preferences that Player II might have. Player I’s ignorance of Player 

II’s preferences is modelled by specifying all the Player II preference patterns that Player I 

considers possible, with a probability assigned to each according to how likely Player I 

considers it to be. Chance makes the first move in a Bayesian game by selecting one of the 

Player II types, each type having a predetermined probability of being selected according to 

the subjective probability that Player I assigns to it, and then Players I and II choose their 

strategies independently in the usual way. Player I is ignorant of which payoff matrix has 

been selected by chance, but the probabilities associated with the Player II types are assumed 

to be common knowledge in the game, and this transformation thus reduces any game of 

incomplete information to one accessible to standard analytic techniques applicable to games 



 

of complete information. The idea generalizes straightforwardly to both players, if both have 

incomplete information, and to multi-player games. 

 

  II    II 

  C D    C D 

I 
C 2, 1 0, 0  

I 
C 2, 0 0, 1 

D 0, 1 2, 0  
D 0, 0 2, 1 

 

Figure 3. An ambiguous game in which Player I does not know which of the two payoff 

matrices governs Player II’s actions, and Player I therefore chooses under uncertainty. 
 

The probabilities associated with Player II types are endogenous variables in Bayesian 

game theory, in the sense that they are not inherent in the specification of a game but arise 

from a player’s subjective response to it, and ambiguous cases can arise as in the dilemma of 

lunch with Caroline outlined earlier. Figure 3 depicts a simple ambiguous game in which, 

from Player I’s perspective, two Player II types are possible. This models a game in which 

Player I knows that Player II will be one of these two types but, we assume, does not know 

their respective probabilities. Player I’s payoffs are identical in both matrices, as in a 

conventional Bayesian game. The Player II type on the left has a strictly dominant C strategy, 

because that player is certain, by choosing C, to receive a payoff of 1, and by choosing D, a 

payoff of zero, irrespective of Player I’s choice. The Player II type on the right has a strictly 

dominant D strategy, because here Player II’s choice of D guarantees a payoff of 1 and C a 

payoff of zero, irrespective of Player I’s choice. Player I chooses a strategy without knowing 

which type is in the role of Player II, and therefore which payoff matrix applies, and in these 

circumstances Player I may be assumed to face an ambiguous choice with unknown 

probabilities. 

 

Rationale of the Experiment 

We have shown how decision making under certainty, risk, and ambiguity can be 

modelled in interactive decisions, using game-theoretic assumptions and devices. This invites 

the essentially empirical question as to whether ambiguity aversion influences interactive 

behaviour. We report below an experiment designed to answer this question and to throw 

further light on the nature and scope of ambiguity aversion in human judgment and choice. In 

the experiment, players were presented with sequences of problems, in each of which they 



 

had to choose between taking the role of Player I in a risky game of complete information, 

similar to the one displayed in Figure 2, and taking the role of Player I in an ambiguous game 

of incomplete information, similar to Figure 3. In each case, the decision maker chose 

between playing a known-risk game, with outcome probabilities that could reasonably be 

inferred, and playing an ambiguous game with unknown outcome probabilities. On the basis 

of evidence from individual decision making, we hypothesized that strategic ambiguity 

aversion would cause most players to prefer the known-risk games. 

To test our uncertainty intolerance interpretation of ambiguity aversion, we examined the 

effects of time delay on strategic choices. Half the players made their choices after being told 

that a lottery would take place and the winner would receive a cash payment immediately 

after the experimental session, and the other half after being told that they would have to wait 

a week for the lottery before discovering whether they had won the cash reward. We 

predicted that ambiguity aversion would be greater in the delay conditions, because the 

aversive psychological effects of uncertainty that underlie ambiguity aversion, according to 

our interpretation of the phenomenon, are prolonged when the outcome is delayed. It seems 

reasonable to expect decision makers to be more strongly motivated to avoid an aversive state 

if it is expected to last a long time, because it would entail more unpleasantness. To provide 

further information about the putative role of confidence in ambiguity aversion, players rated 

their confidence after every choice between a known-risk and an ambiguous option. 

To determine whether strategic ambiguity aversion occurs when second-order 

probabilities are known, we informed half the participants that the Player II types in the 

ambiguous option were equally likely and withheld this information from the others. We 

predicted that significantly more ambiguity aversion would occur when players were not 

informed of these second-order probabilities, partly because that is what has been found in 

individual decision making, and partly because uncertainty is self-evidently more profound 

when even the second-order probabilities are unknown. 

In order to examine the effects of matrix size on strategic ambiguity aversion, we 

presented participants with choices involving 2 × 2, 3 × 3, and 4 × 4 games. We predicted 

greater ambiguity aversion in choices involving larger games, because ambiguity tends to 

increase with the number of possible outcomes. 

Method 

Participants 

The sample consisted of 195 undergraduate students (160 women and 35 men), with a 

mean age of 19.84 years (SD = 0.92, range 19 to 24). These participants were assigned to the 



 

role of Player I and were rewarded according to a variant of the random lottery incentive 

system (Cubitt, Starmer, & Sugden, 1998). Five additional participants were assigned to play 

the role of Player II – this was the fewest possible Player IIs, because the 4 × 4 games 

required one Group A and four Group B Player II types, and we needed at least one 

participant to fill the role of each. A prize of up to £81 was awarded to one participant, 

selected by lottery, the actual payment being calculated according to the payoffs that the 

player accumulated over nine games. In the event, the lottery-winning Player I earned £40. 

Whenever Player I chose an ambiguous option, one of the four participants in the role of 

Player II was selected randomly as the co-player. The data reported below refer only to the 

choices of players in the role of Player I. 

 

Materials 

Each participant in the role of Player I took part in three 2 × 2, three 3 × 3, and three 4 × 4 

games. An example of a choice involving 2 × 2 games, as it was presented to the players, is 

shown in Figure 4. On each trial, participants in the role of Player I were told that they were 

free to choose whether to be paired with a Player II from Group A or one of the specified 

Player II types from Group B. In every Group A game, the payoffs were chosen to indicate 

that Player II had no preferences between the column strategies, given the absence of any 

preferences of Player I between the row strategies. Player II’s payoff function was thus flat in 

the sense that it yielded the same expected (average) payoff irrespective of the column 

strategy chosen. Group A therefore represented a known-risk option for Player I, because 

equal probabilities could reasonably be assigned to Player II’s strategies. In Group B, each of 

the specified Player II types had a different strictly dominant strategy, but Player I did not 

know which Player II type would be chosen and, even at the time of choosing a strategy, 

Player I did not know which of the payoff matrices in Group B would determine Player II’s 

payoffs. Group B therefore represented an ambiguous option for Player I. The known-risk 

option A and the ambiguous option B were strategically equivalent in every case. All nine 

games used in the experiment (known-risk and ambiguous options) are shown in summary 

form in the appendix. 

  



 

 

A 

  II 

  C D 

I 
C 8, 4 0, 4 

D 0, 4 8, 4 

 

B      

  II   II 

  C D   C D 

I 
C 8, 4 0, 0   8, 0 0, 4 

D 0, 4 8, 0   0, 0 8, 4 

 

Figure 4. Game 1, as it was presented to the players. Players first chose between the known-

risk version A, and the ambiguous version B, and then chose between Strategies C or D. 

 

Design and Procedure 

An independent-groups experimental design was used to investigate the effects of 

information, time delay, and matrix size on choice behaviour (known-risk versus ambiguous 

option choice), on strategy choices, and on self-rated decision confidence. The confidence 

ratings were intended to provide an indication of the participants’ beliefs that they had chosen 

the best options. The experiment was completed in a 45-minute experimental session. 

For each of the nine games, participants in the role of Player I were presented with a 

standard forced-choice decision task in which they were free to choose either a known-risk or 

an ambiguous option. Half the participants, in the no-delay conditions, were told that, 

immediately after the experimental session, they would be entered into a prize lottery and the 

winner would be paid in cash, up to £81, depending on their payoffs accumulated during the 

experiment. The rest of the participants, in the one-week delay conditions, were given the 

same information, apart from being told that there would be a delay of one week after the 

experimental session before the prize lottery and cash payment. 

With two levels of information about the distribution of Player II types (equally-

likely/any-distribution) and two levels of delay (one-week-delay/no-delay), there were four 

treatment conditions. Within each of those conditions, we presented the two options (known-

risk/ambiguous) in counterbalanced order, so that half of the participants saw each 

ambiguous option above and half saw it below its known-risk counterpart. To control for 



 

labelling and positional effects, we also transposed the rows and columns of each payoff 

matrix systematically, so that different players saw the matrices in different layouts and 

positions on the page. 

Participants, were randomly assigned to the four treatment conditions, and they began by 

filling in consent forms and providing demographic and contact details. Those assigned to the 

equally-likely, no-delay treatment conditions then read the following written instructions: 

 

On your questionnaire is a participant number, which corresponds to a raffle ticket that is in a “hat.” In 

a few minutes time, when everyone has finished the experiment, raffle tickets will be drawn out of the “hat” 

and if you are selected you will get the opportunity to come to the front of the room and the decisions that 

you will by then have made on the questions below will be paid in cash. 

The choices that you make will influence the amount of money that you are eligible to receive, so 

please think carefully about your decisions. 

You will be Person I, on the left of the grid. Your cash payoffs are shown in the grid on the LEFT of 

each box in bold italics. The person that you are paired with will be Person II at the top. THEIR cash 

payoffs are shown on the right of each box. So in the example below if you choose C and they choose D 

then you are paid £2 and they are paid £1.  

 
 II 

 C D 

I 

C 5,  3 2,  1 

D 1,  2 4,  4 

 

In the room there are 2 groups of people that you can be paired up with: 

In one of the groups everyone has been given the same grid to look at and they will win money 

whichever column they choose. 

In the other group the grids have been given out so that there are equal numbers of people with each 

type of grid. There are different grids and you will be shown what they are. You don’t know which person 

you will get paired with and which grid they will be looking at. 

You will be randomly assigned a partner from the group you have chosen by a computer. Your 

payments will then be worked out by looking at the choices you both made for that game. 

Once you have decided which group of people you want the computer to select you a partner from you 

can then decide which of the rows you wish to choose. 

 

Minor alterations were made to these instructions for the other treatment conditions. In 

the one-week-delay conditions, the last part of the second sentence was altered to read: “if 

you are selected you will get the opportunity to come to the front of the room at the start of 

next week’s lecture and the decisions that you have made on the questions below will then be 



 

paid in cash.” In the any-distribution information conditions, in which Player I was not told 

that Player II types were equally likely, the third sentence below the displayed payoff matrix 

was altered to: “In the other group the grids have been given out and there are different 

numbers of people with each type of grid. There are different grids and you will be shown 

what they are, but not told how many people have each grid. You don’t know which person 

you will get paired with and which grid they will be looking at.” All participants were told 

that the payoffs represented pounds sterling. 

Games 1–9 were presented in fully counterbalanced order on separate sheets after the 

instruction sheet. For each game, the participants were asked the following three questions: 

Would you prefer to be paired with a person from Group A or Group B? Using a scale from 0 

(not at all confident) to 100 (totally confident), and using any number to represent your 

confidence, how confident are you that you have picked the group that will give you the best 

chance of winning? You are Person I on the left. Which of the rows do you wish to choose? 

The five additional participants (not counted in our tally of 195 Player I participants) were 

assigned to play the role of Player II. One served as Player II for all choices of Group A 

(known-risk options), and this participant saw only the single known-risk payoff matrix for 

each of the nine games. Four participants served as Player II in Group B (the ambiguous 

options), and each of these players saw only one of the ambiguous option payoff matrices. 

We did not tell our participants how many people were in each group, hence the sizes of the 

groups were ambiguous, but they could have been assumed to be large, given that there were 

200 people in the room. The strategy choices of the participants assigned to the role of Player 

II were used to determine their own payoffs and those of the participants in the role of Player 

I, including the lottery prizewinning Player I, whose payoffs were subsequently converted to 

cash. 

The main dependent variable, ranging from 0 to 9, was the number of times that the 

ambiguous option was chosen over the nine games by each Player I. We also calculated the 

number of times the ambiguous option was chosen in the 2 × 2, 3 × 3, and 4 × 4 games 

(across the within-subjects factor), yielding scores between 0 and 3 for each matrix size. Self-

rated decision confidence ranged from 0 to 100 for each Player I decision. 

 

Results 

Ambiguity Aversion 

Ambiguous options were chosen in 41% of games, whereas the known-risk option was 

chosen in 59% of the games, confirming a significant, medium-sized ambiguity aversion 



 

effect in interactive decisions, t(194) = 4.16, p < .001, effect size d = .60. Game-by-game 

results are shown in Figure 7. They reveal that known-risk games were preferred to 

ambiguous games in the overwhelming majority of cases, in line with our strategic ambiguity 

aversion hypothesis. Table 1 confirms that when the Player I participants were informed that 

their Player II co-player types were equally likely, six of the nine games showed differences 

in the direction of ambiguity aversion, although game-by-game significance tests produced a 

significant effect (beyond p < .05) only for Game 7. The mean ambiguity aversion effect size 

w (for association) in this condition is negligible (w = .05). However, when the participants 

were informed that any distribution of Player II types was possible, differences were in the 

hypothesized direction in all cases and highly significant ambiguity effects occurred in seven 

of the nine games (Games 2, 3, 4, 6, 7, 8, 9), with a mean effect size of w = .21 (between 

“small” and “medium”, according to Cohen, 1992). 

A 2 × 2 × 3 analysis of variance (Delay × Information × Matrix Size), with repeated 

measures on the last factor, was performed on the ambiguous choice data. The main effect of 

delay was non-significant, F(1, 191) = 2.72, p = .10, ns. The main effect of information was 

significant, F(1, 191) = 5.47, p = .02, effect size (partial eta squared) ηp
2 = .03 (small). 

Participants who were informed that the ambiguous option contained “equal numbers of 

people with each type of grid” were more likely to choose the ambiguous option (M = 1.39/3 

= 46.30%) than those who were told merely that the ambiguous option contained “different 

grids and you will be shown what they are, but not told how many people have each grid” (M 

= 1.09/3 = 36.27%). This effect should be interpreted in the light of a significant Delay × 

Information interaction (see Figure 5), indicating that participants who were informed that the 

Player II types in the ambiguous options were equally likely were significantly less 

ambiguity-averse than those who had no information about the Player II probabilities, but this 

difference was significant in the one-week-delay conditions (Ms = 1.62/3 = 54.07% and 

1.07/3 = 35.57% respectively) and not in the no-delay conditions (Ms = 1.16/3 = 38.53% and 

1.11/3 = 36.97% respectively): F(1, 191) = 3.91, p = .049, ηp
2 = .02 (small). Supplementary 

analysis confirmed that information was a significant factor in the one-week-delay 

conditions, F(1, 93) = 7.85, p = .006, ηp
2 = .08 (medium), but not in the no-delay conditions, 

F(1, 98) = 0.08, ns. 

 



 

Table 1 

Choices of Known-risk and Ambiguous Options Over Nine Games by Participants Informed 

that Player II Types were Equally Likely or were Drawn from Any Distribution 

 Option Chosen    

Game  Known-risk Ambiguous χ2 p Effect size w 

Equally Likely      

1  50 (55.56%) 40 (44.44%) 1.11 .292 .08 

2  51 (56.67%) 39 (43.33%) 1.60 .206 .09 

3  52 (57.78%) 38 (42.22%) 2.18 .140 .11 

4  51 (56.67%) 39 (43.33%) 1.60 .206 .09 

5  43 (47.78%) 47 (52.22%) 0.18 .673 –.03 

6  41 (45.56%) 49 (54.44%) 0.71 .399 –.06 

7  57 (63.33%) 33 (36.67%) 6.40 .011 .18 

8  41 (45.56%) 49 (54.44%) 0.71 .399 –.06 

9  49 (54.44%) 41 (45.56%) 0.71 .399 .06 

Any Distribution     

1  59 (56.19%) 46 (43.81%) 1.61 .205 .09 

2  67 (63.81%) 38 (36.19%) 8.01 .005 .21 

3  72 (68.57%) 33 (31.43%) 14.49 .001 .28 

4  71 (67.62%) 34 (32.38%) 13.04 .001 .26 

5  53 (50.48%) 52 (49.52%) 0.01 .922 .00 

6  65 (61.90%) 40 (38.10%) 5.95 .015 .18 

7  71 (67.62%) 34 (32.38%) 13.04 .001 .26 

8  77 (73.33%) 28 (26.67%) 22.87 .001 .39 

9  67 (63.81%) 38 (36.19%) 8.01 .005 .21 

Mean   115 (58.97%) 80 (41.03%)    

 



 

 

 

Figure 5. Two-way interaction of Delay × Information for ambiguity aversion. 

 

A small but significant effect of matrix size on ambiguity aversion (proportions of 

ambiguous strategy choices) was found: F(2, 382) = 3.89, p = .02, ηp
2 = .02. A posteriori 

multiple comparisons showed that there was less ambiguity aversion in 3 × 3 games (M = 

1.34/3 = 44.67%) than 2 × 2 games (M = 1.20/3 = 40.00%), and less in 3 × 3 games than 4 × 

4 games (M = 1.14/3 = 38.00%). No two-way or three-way interactions between delay, and 

information, and matrix size were significant. 

 

Strategy Choices 

In four of the nine games (Games 1, 3, 7, and 8, see Appendix), Player I’s strategy 

choices differed significantly between the known-risk and ambiguous versions of the games, 

and in two more (Games 2 and 4), the differences were marginally significant (.05 < p < .10). 

In Game 1 (shown in Figure 4), for example, Player Is who opted for the known-risk version 

preferred Strategy C in 75.23% of choices and Strategy D in 24.77%, while those Player Is 

who opted for the ambiguous version preferred Strategy C in 55.81% of choices and Strategy 

D in 44.19%, χ2(1) = 8.15, p = .004, w = 0.20 (small to medium). Similar significant 

associations between known risk or ambiguity and strategic choice, with small to medium 

effect sizes, were found in one other 2 × 2 game, in one 3 × 3 game, and in two 4 × 4 games. 

Among those who selected the known-risk options, a clear majority tended to prefer one or 

other of the available strategies, whereas among those who chose the ambiguous options, 

preferences were more evenly spread more evenly among the strategies. 
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Decision Confidence 

A significant and large effect of matrix size on self-rated decision confidence was found: 

F(2, 382) = 59.02, p < .001, ηp
2 = .24. A posteriori multiple comparisons revealed that 

confidence was significantly higher in the 2 × 2 games (M = 53.48) than in the 3 × 3 games 

(M = 46.83), and also significantly higher in the 2 × 2 games than the 4 × 4 games (M = 

45.61). There were no main effects of delay or information on confidence, and no two-way 

interactions, but a three-way interaction between delay, information, and matrix size, 

depicted in Figure 6, was significant, F(2, 382) = 3.43, p = .03, ηp
2 = .02 (small). This 

interaction suggests that the greater decision confidence in 2 × 2 games, relative to 3 × 3 and 

4 × 4 games, was less pronounced for players who were informed that the Player II types 

were equally likely and who expected a delay than in all other treatment combinations. 

 

 

Figure 6. The three-way interaction of Delay × Information × Matrix Size for confidence 

scores. 

 

To compare the confidence of players choosing the known-risk and the ambiguous 

options, we computed the mean confidence ratings separately for each type of choice. There 

were 21 players who never chose the ambiguous option, and 12 who never chose the known-

risk option, and these players were treated as missing data for the following analysis. 

Decision confidence for known-risk option choices (M = 48.13) was not significantly 

different from confidence for ambiguous option choices (M = 47.22), t(161) = 0.82, p = .41, 

ns. Furthermore, players’ confidence in their known-risk choices correlated highly with their 

confidence in their ambiguous choices, r(162) = .69, p < .001, in line with research 

suggesting the existence of a general cognitive trait of confidence (West & Stanovich, 1997). 
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Figure 7. Choices of known-risk and ambiguous versions of nine games with distributions of 

possible co-player types equally likely or completely unknown (any distribution). 

 

We compared self-rated confidence of players choosing known-risk options, on a game-

by-game basis using t tests, with confidence of players choosing ambiguous options, but no 

significant differences were found in any of the nine games. The mean confidence across all 

nine choices was computed and correlated with the number of times the ambiguous option 

was chosen, but no significant association was found, r(195) = .08, p =.26, ns. 

 

Discussion 

The data reported in this article establish clearly that ambiguity aversion influences 

interactive decision making. This suggests that ambiguous games constitute a meaningful 

class worthy of special consideration in behavioural and psychological game theory and 

research. The findings confirm our major hypothesis and appear to provide the first empirical 

evidence for strategic ambiguity aversion – ambiguity aversion in the context of strategic 

games. 

The ambiguity aversion effect was strongest in the conditions in which participants, 

taking the role of Player I, did not know that their possible co-player types were all equally 

likely. In individual decision making, ambiguity aversion has been shown to occur even when 

such second-order probabilities are supplied (e.g., Rode, et al., 1999), but the degree of 

ambiguity is clearly greater without this information, and we therefore hypothesized, and 

found, significantly greater ambiguity aversion in the truly ambiguous conditions in which 

the players did not know the probabilities. This finding is consistent with our uncertainty 

intolerance hypothesis, according to which ambiguity aversion is caused by pessimism in the 
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face of uncertainty, leading to loss of decision confidence. Uncertainty was obviously greater 

when the probability information was lacking, and it may explain the significant information 

effect. In the uninformed (equally-likely) conditions, a highly significant ambiguity aversion 

effect occurred in seven of the nine games. In Game 1, the effect failed to attain significance, 

although the difference was in the direction of ambiguity aversion, and in Game 5 the known-

risk and ambiguous options were almost equally preferred. Overall, in the uninformed (any 

distribution) conditions, the mean effect size was similar to what has been found in 

investigations of ambiguity aversion in individual decision making. 

The slightly anomalous result for Game 5 cannot be explained in terms of presentation 

order (because order was fully counterbalanced) or positional properties, such as the fact that 

in this game Player I’s payoff in the salient top-left cell is maximal, because the arrangements 

of rows and columns in the payoff matrices were systematically rotated. Game 5 is quite 

complex, inasmuch as there are three rows and columns and Player II’s indifference between 

strategies in the known-risk version is not modelled by a simple constant payoff function. 

However, some of the games that yielded significant ambiguity aversion effects were even 

more complex than this; for example, there was a four-strategy game (Game 8) in which 

Player II’s indifference between strategies in the known-risk version was modelled in the 

same way as in Game 5, and it yielded a highly significant ambiguity aversion effect (see 

Table 1). Game 5 elicited slightly atypical choice behaviour that is inexplicable in terms of 

any properties of the game itself, and we therefore attribute it to a random fluctuation in the 

data. 

The significant Delay × Information interaction, depicted in Figure 5, indicates that the 

difference in ambiguity aversion between participants who knew that their co-player types 

were equally likely and those who did not was significant only for players who expected a 

delay between their decisions and the prize lottery and possible cash payments. It appears 

from Figure 5 that the anticipation of a delay caused players who knew the probabilities of 

Player II types, but not those who did not, to become relatively ambiguity-seeking. This may 

have been a side-effect of the well-known phenomenon of time discounting of utilities 

(Frederick, Loewenstein, & O’Donoghue, 2002). Events that are expected to be delayed tend 

to have diminishing utilities, other things being equal. The aversive effects of uncertainty are 

therefore also likely to be reduced for events that are expected to be delayed, and this may be 

what partially dissolved the ambiguity aversion effect. If this interaction is replicated in 

future research, it might be interpreted as an indication that decision makers are more willing 

to choose speculative prospects when there is a delay between decisions and outcomes, but 



 

only for prospects that include an element of calculated risk, rather than a complete shot in 

the dark. 

Our hypothesis that delay would increase ambiguity aversion was not corroborated by the 

data. We predicted a main effect of delay, because the aversive effects of uncertainty that are 

assumed in our uncertainty intolerance hypothesis are prolonged when the outcome is 

delayed. It is worth noting, however, that the manipulation of delay was not very strong. The 

version of the random lottery incentive system that we used meant that the players knew that 

they were unlikely to be affected by the delay, because they were unlikely to win the prize. 

Perhaps a stronger manipulation of time delay would expose greater ambiguity aversion in 

the face of anticipated delay. We do not feel that our data warrant a decisively negative 

conclusion on this point. 

The small but significant effect of matrix size appears puzzling at first. Ambiguity 

aversion was significantly less in 3 × 3 games than in 2 × 2 games or 4 × 4 games. Bearing in 

mind that only three games of each size were used in the experiment, we believe that this was 

a side-effect of the anomalous behaviour of Game 5, which happened to be a 3 × 3 game and 

failed to elicit significant ambiguity aversion. Whatever explains the lack of significant 

ambiguity aversion elicited by Game 5 – possibly nothing more than chance – presumably 

also explains the matrix size effect. 

The large effect of matrix size on self-rated decision confidence is hardly surprising. 

Confidence was significantly higher in 2 × 2 games than in 3 × 3 games or 4 × 4 games. The 

effect was probably due to the fact that 2 × 2 games are relatively simple and easier to 

analyze and understand than larger games. This, too, is consistent with our uncertainty 

intolerance hypothesis, because, other things being equal, uncertainty and pessimism are 

clearly least in the smallest and simplest games. The significant three-way interaction 

between delay, information, and matrix size shown in Figure 6 suggests that the greater 

decision confidence in 2 × 2 games, relative to the larger games, was less pronounced, 

relative to all other treatment combinations, for players who were informed that the Player II 

types were equally likely and who expected a delay. Perhaps the knowledge of the 

probabilities of Player II types undermined the participants’ confidence that they had chosen 

the best options in the 2 × 2 games, because in such small games, with only two Player II 

types known to be equally likely, the ambiguous option was hardly more ambiguous than the 

known-risk option, and this, coupled with the time-discounted utilities resulting from the 

anticipated delay, may have reduced the players’ confidence that they had chosen the best 

option. 



 

Among players’ who chose both known-risk and ambiguous options, self-rated 

confidence was highly correlated (r = .69), in line with research suggesting the existence of a 

general cognitive trait of confidence (West & Stanovich, 1997). Confidence in known-risk 

options was not significantly greater than confidence for ambiguous options. We do not 

believe that this finding contradicts our uncertainty intolerance hypothesis, because 

participants were free to choose a known-risk or an ambiguous version of every game. 

According to our interpretation, participants are motivated to avoid ambiguous options 

precisely when – in fact, because – their confidence is undermined by the uncertainty 

involved in such a choice. Under conditions of selective exposure to known-risk and 

ambiguous game options, we should expect players to choose ambiguous options only when 

the uncertainty associated with such choices does not markedly depress their confidence. 

The most important conclusion of this research is that ambiguous games have behavioural 

and psychological characteristics that distinguish them from the known-risk games on which 

the entire edifice of orthodox game theory is based. In several of the games studied in this 

experiment, strategy choices differed significantly between the known-risk and ambiguous 

versions of the games. It is difficult to provide a reasoned interpretation of these differences, 

because the games were all designed to avoid equilibrium and other features that might guide 

players to rational solutions, and because the known-risk and ambiguous options were 

strategically equivalent in orthodox game-theoretic terms, but this finding confirms that 

players do not respond to strategic ambiguity by simply converting it to risk. A majority of 

players manifested strategic ambiguity aversion when choosing between ambiguous and risky 

games. When given the option to avoid ambiguity many people tend to take it. It is worth 

noting, however, that ambiguous options were chosen in a large minority of cases. Bearing in 

mind that research into individual decision making has also found that decision makers vary 

in their individual responses to ambiguity, this is just one promising avenue of further 

investigation in behavioural or psychological game theory. 

Above all, the data presented in this article have opened up a new avenue of research that 

could be pursued by behavioural game theorists and also by decision researchers who are 

interested in understanding ambiguity aversion in a wider context. 
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Appendix: Basic Games Used in Experiment (Known-Risk Options Top, Ambiguous 

Options Bottom). 

 

Game 1 
 

8, 4 0, 4 

0, 4 8, 4 

 

8, 4 0, 0   8, 0 0, 4 

0, 4 8, 0   0, 0 8, 4 

 

Game 2 
 

6, 6 2, 2 

2, 2 6, 6 

 

6, 4 2, 2   6, 2 2, 4 

2, 4 6, 2   2, 2 6, 4 

 
Game 3 
 

0, 3 6, 3 

6, 3 0, 3 

 

0, 3 6, 0   0, 0 6, 3 

6, 3 0, 0   6, 0 0, 3 

 

Game 4 
 

9, 3 0, 3 0, 3 

0, 3 9, 3 0, 3 

0, 3 0, 3 9, 3 

 

9, 3 0, 0 0, 0   9, 0 0, 3 0, 0   9, 0 0, 0 0, 3 

0, 3 9, 0 0, 0   0, 0 9, 3 0, 0   0, 0 9, 0 0, 3 

0, 3 0, 0 9, 0   0, 0 0, 3 9, 0   0, 0 0, 0 9, 3 

 



 

Game 5 
 

5, 3 1, 2 3, 2 

3, 4 5, 3 1, 4 

1, 2 3, 4 5, 3 

 

5, 4 1, 3 3, 2   5, 3 1, 2 3, 4   5, 2 1, 4 3, 3 

3, 4 5, 3 1, 2   3, 3 5, 2 1, 4   3, 2 5, 4 1, 3 

1, 4 3, 3 5, 2   1, 3 3, 2 5, 4   1, 2 3, 4 5, 3 

 

Game 6 
 

12, 4 0, 4 0, 4 

0, 4 12, 4 0, 4 

0, 4 0, 4 12, 4 

 

12, 4 0, 0 0, 0   12, 0 0, 4 0, 0   12, 0 0, 0 0, 4 

0, 4 12, 0 0, 0   0, 0 12, 4 0, 0   0, 0 12, 0 0, 4 

0, 4 0, 0 12, 0   0, 0 0, 4 12, 0   0, 0 0, 0 12, 4 

 

Game 7 
 

16, 4 0, 4 0, 4 0, 4 

0, 4 16, 4 0, 4 0, 4 

0, 4 0, 4 16, 4 0, 4 

0, 4 0, 4 0, 4 16, 4 

 

16, 4 0, 0 0, 0 0, 0   16, 0 0, 4 0, 0 0, 0   16, 0 0, 0 0, 4 0, 0   16, 0 0, 0 0, 0 0, 4 

0, 4 16, 0 0, 0 0, 0   0, 0 16, 4 0, 0 0, 0   0, 0 16, 0 0, 4 0, 0   0, 0 16, 0 0, 0 0, 4 

0, 4 0, 0 16, 0 0, 0   0, 0 0, 4 16, 0 0, 0   0, 0 0, 0 16, 4 0, 0   0, 0 0, 0 16, 0 0, 4 

0, 4 0, 0 0, 0 16, 0   0, 0 0, 4 0, 0 16, 0   0, 0 0, 0 0, 4 16, 0   0, 0 0, 0 0, 0 16, 4 

 

Game 8 
 

7, 3 1, 4 3, 2 5, 1 

5, 4 7, 1 1, 3 3, 4 

3, 1 5, 2 7, 4 1, 3 

1, 2 3, 3 5, 1 7, 2 

 

7, 4 1, 3 3, 2 5, 1   7, 1 1, 4 3, 3 5, 2   7, 2 1, 1 3, 4 5, 3   7, 3 1, 2 3, 1 5, 4 

5, 4 7, 3 1, 2 3, 1   5, 1 7, 4 1, 3 3, 2   5, 2 7, 1 1, 4 3, 3   5, 3 7, 2 1, 1 3, 4 

3, 4 5, 3 7, 2 1, 1   3, 1 5, 4 7, 3 1, 2   3, 2 5, 1 7, 4 1, 3   3, 3 5, 2 7, 1 1, 4 

1, 4 3, 3 5, 2 7, 1   1, 1 3, 4 5, 3 7, 2   1, 2 3, 1 5, 4 7, 3   1, 3 3, 2 5, 1 7, 4 

 



 

Game 9 
 

12, 3 0, 3 0, 3 0, 3 

0, 3 12,3 0, 3 0, 3 

0, 3 0, 3 12, 3 0, 3 

0, 3 0, 3 0, 3 12, 3 

 

12, 3 0, 0 0, 0 0, 0   12, 0 0, 3 0, 0 0, 0   12, 0 0, 0 0, 3 0, 0   12, 0 0, 0 0, 0 0, 3 

0, 3 12, 0 0, 0 0, 0   0, 0 12, 3 0, 0 0, 0   0, 0 12, 0 0, 3 0, 0   0, 0 12, 0 0, 0 0, 3 

0, 3 0, 0 12, 0 0, 0   0, 0 0, 3 12, 0 0, 0   0, 0 0, 0 12, 3 0, 0   0, 0 0, 0 12, 0 0, 3 

0, 3 0, 0 0, 0 12, 0   0, 0 0, 3 0, 0 12, 0   0, 0 0, 0 0, 3 12, 0   0, 0 0, 0 0, 0 12, 3 

 
Note. In the versions presented to participants, the positioning of known-risk options, shown above the 

ambiguous options in every case here, was counterbalanced, half the participants seeing each known-risk option 

above the ambiguous option and half seeing the ambiguous option above the known-risk option in each case. In 

addition, the rows and columns of the matrices were systematically transposed to control for positional and 

labelling effects, and the games were presented to participants in randomized order to control for order effects. 

The payoffs represent pounds sterling.  
 


