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Abstract. In this paper we attempt to explore the welfare effects of (process) R&D in an asymmetric

duopoly with a homogeneous product under Cournot and supply function competitions. To this aim,

we consider a two-stage perfect-information game where the duopolists compete in stage one in R&D

investments and in stage two either in quantities or in supply functions. Calculating the (subgame-

perfect Nash) equilibrium of this game numerically for a wide range of initial cost parameters and

comparing it to the equilibrium with no R&D, we show that R&D has a positive effect on the welfares

of consumers and the society as a whole. While its effect on the profits of the duopolists is also

positive under the Cournot competition, it becomes negative under the supply function competition.

This latter negative effect is caused by the duopolists’ more aggressively investing in R&D under the

supply function competition, increasing the industry output, and consequently decreasing the product

price, to a harmful level for themselves. Moreover, we show that R&D always widens up the efficiency

gap between the duopolists under the supply function competition, while narrowing it down under the

Cournot competition.
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1 Introduction

In this paper we consider a homogeneous-product duopoly with cost asymmetry to explore the welfare

effects of process (cost-reducing) R&D when the duopolists compete in either supply functions or (fixed)

quantities. To the best of our knowledge, the welfare effects of (any type of) R&D under the supply

function competition have not been studied before. On the other hand, the welfare effects of R&D under

the quantity competition of Cournot (1838) and under the price competition of Bertrand (1883) have

been extensively studied by many works in the oligopoly literature. A fundamental question investigated

by most of these works is whether the celebrated results of Singh and Vives (1984) and Vives (1985)

about the superiority of the Bertrand competition over the Cournot competition in terms of efficiency

(in consumer surplus and total surplus) remains to hold when the duopolistic firms compete in process
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or product R&D prior to production. A somewhat surprising answer to this question was obtained by

Qiu (1997), showing that in a differentiated duopoly with process R&D, the Cournot competition in the

output market always induces a higher R&D effort than the Bertrand competition, while the outcome

of the Cournot competition can become more efficient than the outcome of the Bertrand competition if

the duopolistic products are close substitutes and R&D productivity as well as spillovers in the output

of R&D are sufficiently high. In fact, the same results were later shown to also hold when the R&D

competition model of Qiu (1997) is modified to involve product R&D (as in Symeonidis, 2013) instead

of process R&D or modified to involve input spillovers in R&D (as in Hinloopen and Vandekerckhove,

2009) instead of output spillovers.

In our model, we consider process R&D as in Qiu (1997) and Hinloopen and Vandekerckhove (2009).

However, unlike these two works, we allow for neither spillovers in R&D nor differentiation in the output

market. Moreover, we consider the supply function competition in the output market in comparison to

the Cournot competition. To give more details, we model the R&D and production process as a two-stage

perfect-information game where the duopolists non-cooperatively choose in the first stage their R&D

investments and in the second stage either their supply functions or their quantities. Calculating the

subgame-perfect Nash equilibrium (Selten, 1965) of this game numerically for a wide range of initial cost

parameters and comparing it to the equilibrium with no R&D, we show that R&D has always a positive

effect on the welfares of consumers and the society as a whole. While its effect on the profits of the

duopolists is also positive under the Cournot competition, it becomes negative under the supply function

competition. This latter negative effect is caused by the duopolists’ more aggressively investing in R&D

under the supply function competition, increasing the industry output, and consequently decreasing the

product price, to a harmful level for themselves. Moreover, we show that R&D always widens up the

efficiency gap between the duopolists under the supply function competition, while narrowing it down

under the Cournot competition.

Besides the welfare effects of R&D, our results also involve a welfare comparison between the supply

function competition and the Cournot competition with and without R&D. However, we should note

that a welfare comparison between these two competitions in the absence of R&D has previously been

provided by Saglam (2008a) and (2008b) in different settings. Unlike our paper, both of these works

consider a symmetric duopoly and they both allow uncertainty about demand. Saglam (2008a) shows

that when the duopolists produce a single homogeneous product the supply function competition can

Pareto dominate the Cournot competition if and only if the size of demand uncertainty is sufficiently

large, whereas Saglam (2008b) finds that under product differentiation the dominance relation in Saglam

(2008a) remains to hold irrespective of the size of demand uncertainty if the degree of product substi-

tution is extremely low. On the other hand, our paper shows that in the absence of R&D, the supply

function competition is always Pareto superior to the Cournot competition over the whole ranges of cost

parameters in our simulations. Moreover, this Pareto ranking is not affected by the presence of process
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R&D.

The rest of the paper is organized as follows: In Section 2, we present our model. Section 3 contains

our results and Section 4 concludes.

2 Model

We consider a duopolistic industry where a single homogeneous good is produced under cost asymmetry.

Firm i = 1, 2 faces the cost function

Ci(qi) = ci(xi)q
2

i/2, (1)

where qi is the quantity produced by firm i and ci(xi) > 0 is its unitary marginal cost that is affected

by the variable xi ≥ 0, denoting the investment in process R&D (hereafter, simply R&D) by firm i. We

assume that the common R&D technology of the firms is such that for each i = 1, 2

ci(xi) = ci,0 exp(−xi), (2)

where xi ≥ 0 and c1,0 < c2,0, i.e., before any R&D takes place in the industry, firm 1 has a lower unitary

marginal cost than firm 2. (Therefore, in many places firms 1 and 2 will be simply called the efficient

and inefficient firms, respectively.) Also note that the technology in (2) implies no R&D spillovers, i.e.,

for any i, j ∈ {1, 2} with j 6= i, ∂ci(xi)/∂xj = 0.

Investing in R&D is costly for each firm. Any firm investing in x ≥ 0 units of R&D incurs a quadratic

cost (as in d’Aspremont and Jacquemin, 1988):

z(x) = δx2/2, (3)

where δ is a parameter that is positive. Note that according to (3), the marginal cost of R&D is

increasing and independent of the size of the firm. Finally, we assume that the demand curve faced by

the duopolistic firms is given by

D(p) = a− bp, (4)

where a, b > 0 are the intercept and slope parameters and p ∈ [0, a/b] denotes the product price.

Equations (1)-(4) as well as the parameters c1,0, c2,0, δ, a, and b are common knowledge.

3 Results

For the duopolistic industry described above, we will consider a two-stage perfect-information game

where the duopolistic firms non-cooperatively determine their R&D investments in stage one and then

non-cooperatively determine their outputs, and consequently the market price, in stage two. Using

backwards induction, we will solve this game starting from the second stage where both firms will have

strategies in supply functions or strategies in fixed quantities. Using the equilibrium strategies calculated

for the second stage, we will then solve the equilibrium of the R&D competition in the first stage.
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3.1 Supply Function Competition with R&D Investment

Here, we will consider the case where the duopolistic firms compete in supply functions in the second

stage game.1 Formally, a stage-two strategy for firm i = 1, 2 is a linear function mapping prices into

quantities, i.e., Si = ηip where ηi ≥ 0. Given the strategies S1 and S2, the duopolistic product market

clears if

D(p) = S1(p) + S2(p) (5)

or

a− bp = η1p+ η2p, (6)

implying an equilibrium price pSF (η1, η2) ≡ pSF (η2, η1), given by

pSF (η1, η2) =
a

b+ η1 + η2
. (7)

A pair of supply functions (S∗
1
(p), S∗

2
(p)) = (η∗

1
p, η∗

2
p) forms a Nash (1950) equilibrium if for each

i, j ∈ {1, 2} with j 6= i the function S∗
i (p) maximizes the expected profits of firm i when firm j

produces according to the function S∗
j (p). That is, (η∗

1
p, η∗

2
p) forms a Nash (1950) equilibrium if for

each i, j ∈ {1, 2} with j 6= i the parameter η∗i solves

max
ηi≥0

pSF
(

ηi, η
∗
j

)

S∗
i

(

(p(ηi, η
∗
j )
)

−
ci(xi)

2
S∗
i (p(ηi, η

∗
j ))

2 − z(xi), (8)

or explicitly

max
ηi≥0

(

ηi −
ci(xi)η

2

i

2

)

(

a

b+ ηi + η∗j

)2

− z(xi). (9)

Proposition 1. Given the R&D levels x1 and x2 determined in the first stage of the duopolistic game,

the stage-two competition in linear supply functions has a unique Nash equilibrium characterized by

SSF
i (p) = ηSF

i (xi, xj)p for each i, j ∈ {1, 2} with j 6= i, where

ηSF
i (xi, xj) =

2

ci(xi) +

√

ci(xi)2 +
4

b

(

ci(xi) + cj(xj) + bci(xi)cj(xj)

2 + bcj(xj)

)

. (10)

Proof. If the pair of supply functions 〈ηSF
1

(x1, x2)p, η
SF
2

(x2, x1)p〉 forms a Nash (1950) equilibrium,

then for each i, j ∈ {1, 2} with j 6= i the price pSF
(

ηSF
1

(x1, x2) , η
SF
2

(x2, x1)
)

must solve

max
p≥0

p
(

a− bp− SSF
j (p)

)

−
ci(xi)

2

(

a− bp− SSF
j (p)

)2

− z(xi). (11)

1The supply function competition model we consider here is an adaptation of the symmetric oligopoly model of Klem-

perer and Meyer (1989) to an asymmetric duopoly, like in Green (1999). However, we cannot borrow our related charac-

terization result (Proposition 1) from Green (1999), as he did not need to explicitly characterize the equilibrium supply

functions.
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The first-order necessary condition for the above maximization implies

0 =
(

a− bp− SSF
j (p)

)

+
(

p− ci(xi)
(

a− bp− SSF
j (p)

))

(

−b−
∂SSF

j (p)

∂p

)

, (12)

or

0 = SSF
i (p) +

(

p− ci(xi)S
SF
i (p)

) (

−b− ηSF
j (xj , xi)

)

= ηSF
i (xi, xj)p+

(

p− ci(xi)η
SF
i (xi, xj)p

) (

−b− ηSF
j (xj , xi)

)

, (13)

implying

ηSF
i (xi, xj) =

b+ ηSF
j (xj , xi)

1 + ci(xi)(b+ ηSF
j (xj , xi))

. (14)

Let ηSF
i ≡ ηSF

i (xi, xj) and ηSF
j ≡ ηSF

j (xj , xi). Then, equation (14) implies

1

ηSF
i

=
1

b+ ηSF
j

+ ci(xi) (15)

and

1

ηSF
j

=
1

b+ ηSF
i

+ cj(xj). (16)

Define Ei = 1/ηSF
i and Ej = 1/(b+ ηSF

j ). Then, (15) and (16) imply

Ei = Ej + ci(xi) (17)

and

1
1

Ej

− b
=

1
1

Ei

+ b
+ cj(xj). (18)

Inserting (17) into (18) and with the help of some arrangements we obtain

Ej

1− bEj

=
(1 + bcj(xj))Ej + ci(xi) + cj(xi) + bci(xi)cj(xj)

1 + bEj + bci(xi)
. (19)

It follows from (19) that

E2

j + ci(xi)Ej −
ci(xi) + cj(xj) + bci(xi)cj(xj)

b(2 + bcj(xj))
= 0. (20)

The positive-valued solution to the above quadratic equation can be calculated as

Ej =

−ci(xi) +

√

ci(xi)2 +
4

b

(

ci(xi) + cj(xj) + bci(xi)cj(xj)

2 + bcj(xj)

)

2
. (21)
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Then using (17) and Ei = 1/ηSF
i , we obtain (10). To check the second-order sufficiency condition, we

differentiate the right-hand side of (12) with respect to p to obtain (−b− ηSF
j (xj , xi)) + (1 + ci(xi)(b+

ηSF
j (xj , xi)))(−b− ηSF

j (xj , xi)) < 0 for all p ≥ 0. So, pSF (ηSF
1

(x1, x2), η
SF
2

(x2, x1)) solves the problem

in (11), implying that the supply functions ηSF
1

(x1, x2)p and ηSF
2

(x2, x1)p form a Nash equilibrium in

the second-stage game. �

Define pSF (x1, x2) ≡ pSF
(

ηSF
1

(x1, x2) , η
SF
2

(x2, x1)
)

for any x1 and x2. Note that qSF
1

(x1, x2) =

ηSF
1

(x1, x2) p
SF (x1, x2) and qSF

2
(x2, x1) = ηSF

2
(x2, x1) p

SF (x1, x2). Perfectly anticipating the equilib-

rium supply functions that would be chosen in the second stage of the duopolistic game, firm i can

calculate in the first stage its profits πSF
i (xi, xj), at each possible investment pair (xi, xj) where j 6= i,

as follows:

πSF
i (xi, xj) = pSF (xi, xj) q

SF
i (xi, xj)−

ci(xi)

2
qSF
i (xi, xj)

2
− z(xi) (22)

We say that a pair of R&D investment strategies (xSF
1

, xSF
2

) forms a Nash equilibrium of the reduced

game in stage one if for each i, j ∈ {1, 2} with j 6= i, xSF
i maximizes the expected profits of firm i when

firm j invests xSF
j . That is, for each i, j ∈ {1, 2} with j 6= i, the R&D level xSF

i solves

max
xi≥0

πSF
i (xi, x

SF
j ). (23)

Given an equilibrium (xSF
1

, xSF
2

), involving the solution to (23) for each firm, it follows that the strategy

profile 〈(xSF
1

, xSF
2

), (ηSF
1

(xSF
1

, xSF
2

), ηSF
2

(xSF
2

, xSF
1

))〉 constitutes a subgame-perfect Nash equilibrium of

the two-stage game played by the duopolists. At this equilibrium, the profits obtained by firm i become

πSF
i (xSF

i , xSF
j ) = ηSF

i

(

xSF
i , xSF

j

)

pSF
(

xSF
i , xSF

j

)2

−
ci
(

xSF
i

)

2
ηSF
i

(

xSF
i , xSF

j

)2

pSF
(

xSF
i , xSF

j

)2

−
δ

2

(

xSF
i

)2

. (24)

Let QSF (x1, x2) ≡ qSF
1

(x1, x2) + qSF
2

(x2, x1). Then the equilibrium consumer surplus becomes

CSSF (xSF
1

, xSF
2

) =
QSF

(

xSF
1

, xSF
2

)2

2b

=

[

ηSF
1

(xSF
1

, xSF
2

) + ηSF
2

(xSF
2

, xSF
1

)
]2

pSF (xSF
1

, xSF
2

)2

2b
. (25)

We leave the calculation of xSF
i and xSF

j as well as the corresponding equilibrium outputs and welfares

to Section 3.3.

3.2 Cournot Competition with R&D Investment

Here, we assume that the duopolistic firms compete in quantities in the second stage game. Formally, a

stage-two strategy for firm i = 1, 2 is a fixed quantity qi ≥ 0. Given strategies qi and qj chosen by firms
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i and j, the product market clears at a price pC(qi, qj) if

D(pC(qi, qj)) = qi + qj , (26)

implying

pC(qi, qj) =
a− qi − qj

b
. (27)

A pair of quantities (q∗
1
, q∗

2
) forms a (Cournot) Nash equilibrium in the second stage game if for each

i, j ∈ {1, 2} with j 6= i the quantity q∗i maximizes the expected profits of firm i when firm j produces the

quantity q∗j . That is, (q∗
1
, q∗

2
) forms a Nash equilibrium if for each i, j ∈ {1, 2} with j 6= i the quantity

q∗i solves

max
qi≥0

pC(qi, q
∗
j )qi −

ci(xi)

2
q2i − z(xi). (28)

Proposition 2. Given the R&D levels x1 and x2 determined in the first stage of the duopolistic game, the

stage-two competition in quantities has a unique Nash equilibrium characterized by 〈qC
1
(x1, x2), q

C
2
(x2, x1)〉

such that for each i, j ∈ {1, 2} with j 6= i,

qCi (xi, xj) =
1 + bcj(xj)

(2 + bci(xi))(2 + bcj(xj))− 1
. (29)

Proof. The first-order necessary condition associated with the maximization problem in (28) is given

by

−
1

b
qi +

a− qi − q∗j
b

− ci(xi)qi = 0. (30)

If (q∗
1
, q∗

2
) = (qC

1
, qC

2
) forms a Nash equilibrium, then for each i, j ∈ {1, 2} with j 6= i the quantity

qi = qCi must satisfy the above first-order condition when q∗j = qCj , implying

qCi =
a− qCj

2 + bci(xi)
. (31)

Changing the role of i and j in (31), we can also get

qCj =
a− qCi

2 + bcj(xj)
. (32)

Then, solving (31) and (32) together, we can obtain qCi (x1, x2) as in (29). To check the second-order suffi-

ciency condition, we differentiate the left-hand side of (30) with respect to qi to obtain −(2/b)−ci(xi) < 0

for all qi ≥ 0. So, the quantity qCi (xi, xj) solves the problem in (28), implying that the strategies

qC
1
(x1, x2) and qC

2
(x2, x1) form a Nash equilibrium in the second-stage game. �.

Define pC(xi, xj) ≡ pC(qCi (xi, xj), q
C
j (xj , xi)) using (27) and (29) and also define QC(x1, x2) ≡

qC
1
(x1, x2) + qC

2
(x2, x1). Perfectly anticipating the equilibrium quantities that would be chosen in the
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second stage of the duopolistic game, firm i can calculate in the first stage its profits πC
i (xi, xj), at each

possible investment pair (xi, xj) where j 6= i, as follows:

πC
i (xi, xj) = pC(xi, xj) q

C
i (xi, xj)−

ci(xi)

2
qCi (xi, xj)

2 − z(xi) (33)

A pair of R&D investment strategies (xC
1
, xC

2
) forms a Nash equilibrium if for each i, j ∈ {1, 2} with

j 6= i, xC
i maximizes the expected profits of firm i when the R&D level of firm j is xC

j . That is, xC
i

solves

max
xi≥0

πC
i (xi, x

C
j ). (34)

Given an equilibrium (xC
1
, xC

2
), involving the solution to (34) for each firm, it follows that the strategy

profile 〈(xC
1
, xC

2
), (qC

1
(xC

1
, xC

2
), qC

2
(xC

2
, xC

1
))〉 constitutes a subgame-perfect Nash equilibrium of the two-

stage game played by the duopolists. At this equilibrium, the profits of firm i become

πC
i (x

C
i , x

C
j ) = pC(xC

i , x
C
j )q

C
i (x

C
i , x

C
j )−

ci(x
C
i )

2
qCi (x

C
i , x

C
j )

2 −
δ

2
(xC

i )
2, (35)

whereas the consumer surplus becomes

CSC(xC
1
, xC

2
) =

QC(xC
1
, xC

2
)2

2b
. (36)

3.3 The Output and Welfare Effects of R&D Investment

Due to the functional complexity of the optimization programs in (23) and (34), we cannot analytically

calculate the subgame-perfect Nash equilibria of the two-stage game played by the duopolists. However,

we will be able to calculate these equilibria numerically with the help of a computer, using the program-

ming package Gauss Version 3.2.34 (Aptech Systems, 1998). The source code and the simulated data

are available from the author upon request.

For our computations, we set a = 3, b = 1, and c1,0 = 1, while we vary the parameter c2,0 from 1.0 to

2.9 with increments 0.1 and the parameter d from 0.1 to 9.6 with increments 0.5. At each parameter set,

we compute the Nash equilibrium in R&D investments with a grid search technique. Basically, given a

competition type t ∈ {SF,C} that we have considered in Sections 3.1 and 3.2, we change both exp(−xi)

and exp(−xj) from 0.005 to 0.995 with increments of 0.005, and calculate all possible πt
i(xi, xj) and

πt
j(xi, xj) values using equation (22) under the supply function competition in the output market and

using equation (33) under the Cournot competition. Given these calculations, we pick a pair (xt
i, x

t
j)

of R&D investments to be a Nash equilibrium for the competition type t if πt
i(x

t
i, x

t
j) ≥ πt

i(xi, x
t
j)

for all xi such that exp(−xi) ∈ {0.05, 0.010, . . . , 0.995} and πt
j(x

t
j , x

t
i) ≥ πt

j(xj , x
t
i) for all xj such that

exp(−xj) ∈ {0.05, 0.010, . . . , 0.995}. If there exist multiple Nash equilibria, we pick the Nash equilibrium

(xt
i, x

t
j) with the highest xt

i + xt
j value.

In Figures 1-3 below, we compare several outcomes obtained under the competitions considered in

Sections 3.1 and 3.2. Note that all graphs in all three figures plot at each simulated value of c2,0 the
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average value of a relevant model outcome, corresponding to the 20 distinct simulation values of d

between 0.1 and 9.6.

Figure 1. Investments Under the Two Forms of Competitions (C & SF)

1 1.5 2 2.5 3
0.50

0.60

0.70

c20

(i) Investment of the Efficient Firm (x1)

C with R&D SF with R&D

1 1.5 2 2.5 3

0.55

0.60

0.65

c20

(ii) Investment of the Inefficient Firm (x2)

1 1.5 2 2.5 3
1.00

1.10

1.20

1.30

c20

(iii) Industry Investment (x1 + x2)

1 1.5 2 2.5 3

−0.10

−5 · 10−2

0.00

5 · 10−2

c20

(iv) Investment Difference (x1 − x2)

In Figure 1, panels (i) and (ii) show that the R&D investment of the efficient firm under the supply

function competition is much higher than under the Cournot competition at all levels of cost asymmetry.

On the other hand, for the inefficient firm the R&D investment can be slightly higher (lower) under the

supply function competition if and only if the cost asymmetry is small to medium (high). Although

the R&D level for the whole industry is always significantly higher also under the supply function

competition as shown in panel (iii), the firm level differences behave entirely differently under the two

types of competitions. As illustrated by panel (iv), the R&D investment of the efficient firm is always
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higher than that of the inefficient firm under the supply function competition while the opposite becomes

true under the Cournot competition.

In Figure 2, we plot the equilibrium outputs both in the presence and absence of R&D. Note that an

equilibrium with no R&D can arise in our model when the firms have no access to the R&D technology

in equation (2) or when R&D is infinitely costly, i.e. δ = ∞ in equation (3). The first three panels of

Figure 2 show that the outputs of both firms as well as the industry output are higher when investment

in R&D is present than when it is not. However, the positive effect of R&D seems to be much more

significant under the supply function competition than under the Cournot competition.

Figure 2. Comparisons of Outputs Under the Two Forms of Competitions (C & SF)
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c20

(i) Output of the Efficient Firm

C without R&D C with R&D SF without R&D SF with R&D
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(ii) Output of the Inefficient Firm
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(iii) Industry Output
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(iv) Output Difference
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In panels (i) and (ii) of Figure 2 we also observe that the effect of cost asymmetry on output is

different for the two firms. For both types of competitions, this effect is positive for the efficient firm

and negative (and much larger) for the inefficient firm, irrespective of the presence of R&D possibility.

In fact, the said negative effect on the output of the inefficient firm is so large that the industry output

is always decreasing in the level of cost asymmetry, as we observe in panel (iii). In addition, we observe

in the first three panels that the effect of cost asymmetry becomes always more pronounced when the

firms compete in supply functions. Finally, panel (iv) shows that the efficient firm always produces

more than the inefficient firm under both types of competitions irrespective of whether the two firms

are able to engage in R&D or not. Moreover, the difference between the firms’ outputs is always higher

under the supply function competition than under the Cournot competition, while this difference is not

affected by the possibility of R&D investment much.

Next, in Figure 3 we plot the equilibrium welfares of producers, consumers, and the society as a whole.

Panels (i), (ii), and (iii) illustrate the effects of R&D on the profits of the duopolists and the industry

as a whole. While this effect is found to be always positive under the Cournot competition, it is always

negative under the supply function competition. This latter negative effect is caused by the aggressive

investment in R&D, especially by the efficient firm, observed under the equilibrium of the supply function

competition (Figure 1), raising the industry output, and consequently reducing the product price, to a

harmful level for both firms. Moreover, as expected, an increase in the cost asymmetry has a positive

effect on the welfare of the efficient firm and a negative effect on the welfare of the inefficient firm under

both types of competitions, irrespective of the presence or absence of R&D. However, which of these

opposite effects becomes dominant on the total industry profits is more involving. As illustrated in

panel (iii) of Figure 3, when the firms engage in the Cournot competition in the output market, the

industry profits are decreasing at all levels of cost asymmetry irrespective of the possibility of R&D

investment. On the other hand, when the firms compete in supply functions in the output market, the

industry profits are always slightly decreasing with respect to the cost asymmetry in the absence of

R&D and always slightly increasing in the presence of R&D. We also observe in panel (iv) that the firm

that has an initial cost advantage in production can always obtain higher profits irrespective of the type

of competition, the level of cost asymmetry, and the possibility of R&D investment.

Finally, panels (v) and (vi) of Figure 3 illustrate that the effect R&D on the consumer surplus and

the social welfare are very significant and positive under the supply function competition and very small,

yet positive, under the Cournot competition. Moreover, irrespective of the presence or absence of R&D,

the welfares of both consumers and the society as a whole are always higher under the supply function

competition. We can also observe that the level of cost asymmetry has, in general, negative effects on

the consumer surplus and social welfare, especially under the supply function competition.
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Figure 3. Comparisons of Welfares Under the Two Forms of Competitions (C & SF)
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4 Conclusion

In this paper we have considered a duopolistic model with cost asymmetry to study how process R&D

may affect the welfares of producers, consumers, and the society as a whole when both firms compete

either in supply functions or in quantities in the output market. To this end, we have constructed a two-

stage perfect-information game where the duopolistic firms non-cooperatively choose in the first stage

their R&D investments and in the second stage their productions (according to the supply function or

quantity competition). Solving the subgame-perfect Nash equilibrium of this game numerically for a

wide range of initial cost parameters, we have found that under both types of competitions the outputs

of both firms, and resultingly the industry output, are always higher when they both invest in R&D

than when neither of them makes any investment.

We have also observed that the output expansion due to the aggressive R&D investment under the

supply function competition becomes so large that the negative effect of this expansion on the profits of

the firms and the whole industry outweighs a positive effect stemming from the reduction in the unitary

marginal costs of the firms due to R&D. Consequently, under the supply function competition with

process R&D the duopolistic firms find themselves trapped in a situation like the Prisoners’ Dilemma.

Even though R&D can be beneficial for any firm when the rival firm has no access to R&D, it becomes

destructive under the supply function competition when both firms non-cooperatively engage in R&D.

In contrast, competing in R&D before the Cournot competition in the output market becomes always

beneficial for both firms, especially for the inefficient firm. On the other hand, regarding the welfares of

consumers and the society as a whole, we have found that R&D has always a positive effect under both

types of competitions, whereas this effect is incomparably larger under the supply function.

Our simulations have also showed that the supply function competition is always Pareto superior

to the Cournot competition at all levels of cost asymmetry, irrespective of the presence or absence

of R&D. Besides, the possibility of R&D competition before the supply function competition in the

output market may yield huge welfare benefits for consumers at the expense of huge profit losses for the

duopolistic firms. This suggests that public authorities acting on behalf of consumers, or the society

as a whole, may have strong incentives to subsidize (or facilitate) non-cooperative R&D investments of

the duopolistic firms –at any level of cost asymmetry– when they compete in supply functions, like they

usually do in electricity markets. Our findings also imply that social gains from such subsidies might

be very small when the duopolistic firms compete in quantities.

Finally, future research may fruitfully extend our work to study the welfare effects of process and/or

product R&D in an asymmetric duopoly with differentiated products.
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